Departamento de Computacion

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

INFORME TECNICO

IGNATIUS
A Tool to Build Supervisory Systems

Silvia V. Benitez, Juan J. Seoane,
Gabriel A. Wainer, Roberto J.G. Bevilacqua.

Report n.: 96-006

Pabellon 1 - Planta Baja - Ciudad Universitaria
(1428) Buenos Aires
Argentina

http://www.dc.uba.ar

Title:

Authors:

E-mail:

Report n.:

Key-words:

Abstract:

IGNATIUS: a tool to develop Supervisory Systems.

Silvia V. Benitez, Juan J. Seoane, Gabriel A. Wainer,
Roberto J. G. Bevilacqua.

silvia.v.benitez@ac.com, seoane@vnet.ibm.com,
{gabrielw,robevi}@dc.uba.ar

96-006

Supervisory systems, SCADA, real-time system
software development tools.

In this work we address the design and implementation of
a tool to build Real-Time Supervisory Systems -called
IGNATIUS. An architectural decomposition of all the
Supervisory Systems in three service levels has been
proposed: Interface Service Level, Particular Service Level
and Basic Service Level. The ISL and PSL vary with each
particular implementation, but the BSL is common for all
of them. IGNATIUS encapsulates the BSL. This
decomposition reduces the development cycle, letting the
user to concentrate on high level design aspects. This
approach allows to build complex SCADA applications
reducing development and maintenance cost.

To obtain a copy of this report please fill in your name and address and return this page to:

Infoteca

Departamento de Computacion - FCEN
Pabellon 1 - Planta Baja - Ciudad Universitaria
(1428) Buenos Aires - Argentina

TEL/FAX: (54)(1)783-0729
e-mail: infoteca@dc.uba.ar

You can also get a copy by anonymous ftp to: zorzal.dc.uba.ar/pub/tr

or visiting our web: http://www.dc.uba.ar/people/proyinv/tr.html

IGNATIUS
A Tool to Build SCADA Systems

Gabriel A. Wainer
gabrielw@dc.uba.ar

Juan J. Seoane
seoane@vnet.ibm.com

Silvia V. Benitez
silvia.v.benitez@ac.com

Departamento de Computacion
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

ABSTRACT

In this work we addressthe designand implementationof a tool to build Real-Time Supervisory
Systemscalled IGNATIUS. An architecturaldecompositiorof all the SupervisorySystemsn three
servicelevelshasbeenproposedinterfaceServiceLevel, ParticularServiceLevel and Basic Service
Level. TheISL andPSL vary with eachparticularimplementationbut the BSL is commonfor all of

them.IGNATIUS encapsulatethe BSL. This decompositiorreducesthe developmentycle, letting

the userto concentrateon high level designaspectsIGNATIUS providesthe userwith a complete
developmentenvironmentthat can be easily used by inexperiencedprogrammers.This approach
allows to build complex SCADA applications reducing development and maintenance cost.

Keywords: Supervisory systems, SCADA, real-time systems, software development tools.

Roberto J. G. Bevilacqua
robevi@dc.uba.ar

1. INTRODUCTION

At present, the advancesand cost reduction in
hardwarehasincreasedhe numberof computersused
to control physical processes.This led to the
automationof processeswhere manual intervention
was a requirement (i.e.: avionics monitoring and
control, chemical processescontrol, traffic light
control in a city). This kind of processagedreal-time
response.

In a real-time systemthe resultsnot only dependson
the logic correctnesf the computationsbut also on
the momentwhenthe resultsaregeneratedif thetime
constraintsare not accomplished,a system failure
occurs leading to catastrophicconsequenceddence,
this kind of systems,must guaranteethat timing
constrains will be accomplished [Wai94].

Thereare manyreal-timeapplicationsin the industry,

and a growing number of computers controlling

industrial processesProcesscontrol can be definedas
“the exerciseof a planedaction,for whatis considered
object, to satisfy particular objectives” [Miy93]. A

controller accepts the information coming from

sensorsthe information is processedand the results
aresentto the controlledobjectthroughactuatorsThe

output information affects the controlled object.

In several cases exception conditions occurs, and

objectives of the control system cannot be

accomplished.To prevent this conditions ensuring
correctsystemresponseywe canusea setof programs,
called Supervisory Systemsor SCADA (Supervisory
Control And Data Acquisition) systems. To

accomplish with these functions, the system must
control the plant operationand provide the managers
and plant engineerswith a snapshotof the process
status.

Supervisory systems are designed to coordinate,
monitor and servicesystemcomponentsThey handle
input and output of messagesind data, schedulethe
executionflow, assesspriorities betweenapplication
programsand carry out housekeepindunctions. They
also can processinterrupts and deal with error and
emergency conditions. They must be designed to
coordinatethe functions of the systemunder varying
loads.

Thoughseveralchangeshave occurredin the process
control area, most SCADA applications are not

flexible enoughand havea very limited rangeof use.
With this scenarian mind, our proposaladdressethe

designandimplementationof a tool to build SCADA

applications. Several existing semi-formal Design
Techniqueshave beenstudied,and the tool has been
adapted to the selected technique. Also, system
software has been selectedto provide a complete
development environment that can be used by

programmergo improve security, maintainabilityand
correctnes®f the developedapplicationsThe tool has
beendesignedto let the userbuild a wide variety of

supervisory applications with minimum effort.

This work is organizedas follows: in section2 we
describethe developmentools chosenjn section3 we
describeour approachto build SCADA systems,in

section4 thereis a descriptionof the tool components.

Finally, in section5 we show the use of the tool to
build SCADA applications.

2. TOOLS SELECTION

The first stageof our work wasto selecta setof tools
to develop our environment. This included the
selectionof a developmentnethodologyan operating
systemand a programminglanguageln this way we
canprovide a completedevelopmenenvironmenthat
can be integratedwith our tool to achievethe goals
mentionedn sectionl. In this sectionwe will explain
the tools we chooseand the motivations for these
selections.

2.1 Design Methodology

Real-timecontrol applicationsare usually composebf
several tasks executing concurrently at different
speeds. Also, taskbatexecuten asynchronousnode,

need to be synchronizedto accomplish functional
requirementsHence,at the designstageof real-time
applications, we have to consider additional
requirementsof those considered by conventional
design methodologies.

We analyzedseveral design methodologiesto meet
thesegoals,including: DARTS (Design Approachfor
Real Time Systems) [Gom84], Structured
Development for Real TimBystemgWar86], Deutsch
[Deu88] and MASCOT (Modular Approach to
Software Construction,Operationand Test) [Mas87].
The following essentialrequirementsfor real-time
applications design have been evaluated [Gom84]:

1. Data Flow Oriented Design.

2. Task Communication and Synchronization.

3. Information Hiding.

4. State Dependency in Transaction Processing.

We decidedto use MASCOT as designmethodology
becauseit is very simple to use and understandby
inexperienced designers and it considers all the
requirementsmentionedabove. It also can be easily
integratewith our tool [Wai93] and providesmost of
the entities provided by the Operating Systemswe
studied. In this way, a complete development
environmento build complexsupervisoryapplications
with low cost and high productivity can be constructed.

2.2. Operating System

Severaloperatingsystemsavailablein the markethave
been analyzed.In Table 1 some of their major
advantages and disadvantages have been highlighted.

The use of the DOS operating system was not
considered,mainly becauseit has no multitasking
capabilities. The samehappenedwvith Windows. The
main reasonto discard UNIX was that often, the
schedulingalgorithm hasno preemptivemultitasking.
This is an important requirement for real-time
applications development. The Windows-NT bad
performance led us to the situation of decidiegween
QNX and OS/2. Though QNX is a widely usedreal-
time OperatingSystem,0S/2 was chosendue to very
good performancejts priorities preemptivealgorithm
andits OOUI features.The lack of SCADA tools for
OS/2whenthe decisionwastaken,alsoencouragedis
to select this Operating System.

OPERATING DISADVANTAGES ADVANTAGES
SYSTEM
MS-DOS . No multitasking capabilities . Massive acceptance
. Bad useof new processoffeatures(i.e.: 32 bit | . Easy to use
bus, large amount of RAM, etc.) . Low cost hardware configuration required
. Poor memory management . Full access to hardware capabilities
. No graphical interface
. Few facilities to develop complex concurrent
systems.
MS-Windows . No native Operating System . Massive acceptance. Easy to use
. No multitasking capabilities . Graphical User Interface
. Poor memory management . Low cost hardware configuration required
. Not stable development platform
UNIX? . No preemptive priorities multitasking (in | . Multitasking
several versions) . Widely used in the industry and academy
. High cost hardware configuratigdevelopedn | . Low cost hardware configuration required
the version) (depending on the version)
. Difficult to develop graphical user interfaces | . Full access to hardware capabilities
. Complete security system
QNX . Not widely used in non-industrial environmer| . Real-Time oriented
. Few development tools . Multitasking
. Few software developed . Distributed
. High cost hardware configuration . Several scheduling algorithms
. Difficult portability . No swapping
. Plenty of timing capabilities
. Widely used for control applications
Windows-NT . Bad performance . Widely used
. Not scaleable . LAN oriented
. Not stable development platform . Easy to use
. Hardware Abstraction Level
. Low cost hardware configuration required
0S/2 . Difficult to configure some devices . Very good performance
. High cost hardware configuration Preemptive multitasking with priority
. Difficult portability management algorithm
. 32 bit operation
. OOUI (Object Oriented User Interface)
. Event driven
. Protected mode operation
. Interoperability facilities
. Large number of tools

Table 1. Operating Systems comparison

2.3 Programming Language

The major characteristics considered for the
programminglanguageselection were the low-level
coding capabilities.It is also easyto makeuseof the
Operating System features (semaphores,messages,
gueuespipes,etc.),aswell asthe high-levelfacilities
to build user interfaces easily.

Among the different languagesevaluated (Pascal,
Rexx, C, C++), we found that only C++ satisfiesthe

requirementslt hasall the low-level power of the C

language, whereas the classes provide high-level
facilities. In addition,asan ObjectOrientedlanguage,
C++ providesthe mechanism®f Information Hiding,

Encapsulation, Inheritance and Polymorphism.

To build theISL andPSLthatwill be mentionedater,
we used a visual programmingtool. VisualBuilder,
Dialog and Vispro/C++ were evaluated.Vispro/C++

was chosenbecauset is the easiesto useand canbe
fully integratedwith IGNATIUS, providing the usera
complete development environment.

3. AN APPROACH TO BUILD SCADA
SYSTEMS

After analyzing several available SCADAs, we
identified threeService Levels common to them:

1. Interface Service Level (I): this level encapsulates
all the programghat providethe interfacebetweerthe

SCADA and the operator. It provides graphical

displays, alarms, screen messages, etc. The

implementation of this set of programs changes
according to the software and hardware platform

selected for the development.

! Main Unix versions were included for this analysis: Aix, Solaris, SCO, Linux, Minix, etc.

2. Particular Service Level (PSL): this level
encapsulatesall the programs that implement the
particular requirementsfor a specific SCADA. This
includes,for instance alarm assistanceoutines,event
handlers,user commandassistanceoutines,etc. The
implementationof this set of programschangesfor
each SCADA according to the particular service
characteristics.

3. Basic Service Level (BL): this level encapsulates
all the programsthat implementthe basicsupervision
servicescommonto all the SCADAs. In this level we
include plant image point internal representation,
alarm detection routines, historic storage, message
transmissionusercommandexecutionhigh level task
scheduling,processmodeling, etc. From a functional
point of view, this servicelevel is the samefor every
SCADA.

MM

Figure 1. SCADA Service Level Decomposition.

IGNATIUS wasbuilt to avoid the developmenbf the
BSL services(commonto all SCADA) minimizing
and facilitating the programming task.

According to the [Kap95] classification,IGNATIUS

acts as an interface with a programminglanguage.
This type of tool is very flexible thoughit is a library

that can be adaptedto control any processof the real
world. It is not end-useroriented,but intendedto be
used by programmersthat need to develop specific
supervisory applications with minimum effort.

Thetool wasimplementedasa classlibrary usingthe

Client/Servermodel. IGNATIUS acts as the server,
andthe ISL andPSL arethe clientsthat vary for each
particular supervisory system implementation.
Therefore,IGNATIUS can be seenas the sameBSL

serverthat providesservicesto different ISL and PSL

clients. IGNATIUSprovidesthreeserviceshroughthe

following classes:

+ OBJECT DATA TABLES (ODT): Thisis a
setof tablesthat storethe dataof the differentreal
world objects,including plantimage,alarms,1/O
ports, mimics, etc.

+ INFORMATION ACCESS METHODS
(IAM): The way to use the dastoredin the ODT
is throughthe Information AccessMethods.They
areimplementedas classmethodsthat enablethe
userto store, read, updateand deletethe ODT
information. The only way to use the ODT is
through the IAM.

« EXECUTION ENGINE (EE): The
ExecutionEngineis a setof routinesthat startthe
system execution. These routines execute
concurrently, each in a different thread,
synchronizecby a high level task scheduler.The
following components are part of the EE:

- High Level Task Scheduler (TS)
- Alarm Analyzer (AA)

- Historic Recorder (HR)

- Mimic Manager (MM)

- Command Interpreter (Cl)

- Port Handler (PH)

IE<=3E
F 8.
NS,

|

—

rno
P
>

_>
?

e
~

==

Figure 2. IGNATIUS component interaction.

4. CLASS DESCRIPTION

As previously stated, IGNATIUS is built as class
library implementing objects to build SCADA
applications. It is composed of the following classes:

4.1. IMAGE

This classrepresentshe plantimagepoint valuesand
the methods to control it. All monitored valumsistbe
storedin a central repository implementedwith this
class.Theimageis dividedinto threevirtual segments
representinginteger, analog and digital values. The

implementationof virtual segmentsallows the userto
manage the image pointsthout regardingabouttheir
internal storage.The classstoresthe information for
each of the image points that it represents.This
includes the point value, set-point, alarm status,
guantity of updates made, update percentage(for

historical recording) and date and time of last update.

There are methodsto add, delete,read or updatean
imagepoint. We alsocanincreasan onethe quantity
of updates,or modify the statusof an image point.
Finally, we can return the number of image points
storedin the object, return the virtual segmentwhere
an image point is storedand acknowledgean alarm
status.

4.2. ALARM

This class represents the values ofdte@mconditions
that must be evaluatedby the EE to detect alarm
scenarios, anthe alarmconditionsmethodsaswell. It
also links alarm conditions with real world image
points. Thiglink allowsthe userdefinemultiple many-
to-many relationshipsbetweenalarm conditions and
imagepoints. The PSL alarm assistanceoutinesmay

to thesemessageslt is usedas the communication
channel betweenexternal control elements(such as
PLCs) and the SCADA.

4.4, HISTORIC

This classreadsthe In Queue messagesnd stores
historical information of the image point includedin
the messagebasedon an updateparameterspecified
by the user. This class lets the user retrieve
information about the different values of an image
point duringa period,allowing the userto analyzethis
information and detect changesor problemsin the
environment.The updateratio lets the userspecifythe
rate of historic recording for each image point.

4.5. TASK

This classsynchronizeghe executionof the different
componentsof the EE. Its use can be extendedto
synchronizeuser written routines (like a routine to
refresh data on the screen). It stoaéighe information
of the task componentsof the EE. The High Level
Task Schedule(TS) is responsiblego synchronizethe
other components using systsemaphoreslo do this
work the class stores name, processid, execution

analyze the information of the alarm scenarios detectedrequencyin milliseconds,wait time in milliseconds

by the EE to give the required treatment.

The class storesinformation for each of the alarm
conditions it represents,including name, priority,

addressof an alarm assistanceroutine, lowest and
highestvaluesallowed, evaluationcriteria (high, low,

rate of changes)lt also storesquantity of evaluations
made, evaluation frequency (in milliseconds), wait

time sincelast evaluation(in milliseconds),maximum
and minimum changerate allowed and time of last
update.

The relations between alarm condition and image
point include alarmd, imagepointid andimagepoint
virtual segment location.

The associatedmethodslet add, update and delete
alarm conditions, read conditions. It also allows to
increment the number of times the condition was
evaluated, calculate lowest and highedtiesbasedon
a set-pointvalueanda tolerancepercentagerinally, it
lets searchthe alarm condition linked to an image
point, searchthe image point linked to an alarm
conditionor link and alarm condition with an image
point.

4.3. QUEUE

This class representsthe messagessent from the
SCADA to the physical devices(In Queue) and the
messages sent from the physical devices t&@&DA
(Out Queue) It alsorepresentshe methodsassociated

since last execution, and the event handler.
4.6. PROCESS

This classmodelsa plant process,i.e.: drying oven
process,evaporationplant process,chemical reactor
vesseletc. This informationcanbe usedby the ISL to
show process data on the screen.

4.7. MESSAGE

This classencapsulatethe messagesentby the class
MIMIC to the SCADA througha systempipe. Each
messagecontainsinformation about an image point
and its attributeson the screen:position, color, etc.
This information is used by the ISL to display the
image points of the process in display.

4.8. PIPE

This class implements, through system pipes, the
communicatiorchannelbetweerthe MIMIC classand
the SCADA for the messagedelivery. The MIMIC
classwrites MESSAGEsin the PIPE while the ISL
read this messagesto display the image point
information on the screen.

4.9. MIMIC

This class linkseal world processesvith imagepoints
andtheir screenattributes:position, foregroundcolor,
backgroundcolor, etc. The Mimic Manager (MM)
writes the attributes of the points belongingto the

processto display in the PIPE. This is done with a
frequency defined by the user.

The classes MESSAGE and PIBEe partof this class.
They are usedfor implementationpurposesand serve

In both examplesve consideredhe requirementof a
drying oven process application [Ben93]. The
componentsredried by beingpassedhroughanoven
divided in threesectionspreheatdrying and cooling.
The componentsare placed on a conveyor belt that

as the communication vehicle between the MM and theconveysthem slowly through the drying oven. The

ISL.

4.10. PORT

This class handlesthe I/O ports that are used to
connect the computer to the physical devices
(especiallycontrol industrial devicessuchas PLCs or
other controllers). The classallows to link physical
deviceswith image points letting the user to define
multiple many-to-manyrelationsbetweenthem.To do
so, usesthe In and Out Queueslt alsoinitializes sets

the I/O ports (baud rate, parity control, data bits, etc.).

4.11. COMMAND

This class provides a mechanisordefineandmanage
commands entered by the operatbalsovalidatesthe

commands angarameterenteredo determinef they
are correct.In this approachthe commanddefinition,

handling and validation are separatedfrom the

commandexecution.While this classencapsulatethe

former functions, the command assistanceroutines
must be implementedin the PSL. The command
assistanceoutines executioncan be accomplishedn

two different ways: scheduledor immediate.In the

first case, the command entered is added to a

commandqueueand executedonce all the previous
commandsn the queuehavefinishedtheir execution.
In the secondcase,the commandenteredis executed
immediatelywithout waiting for the commandsn the

gueue to finish their execution.

5. BUILDING SCADA APPLICATIONS

To test the tool and show its usagewe built two
different SCADA systems.

The first one, showsthe usageof the tool to build a
customizableSCADA. This SCADA lets the operator
dynamically configure the resources:define image
points, alarm conditions, processesphysical devices,
screenrepresentationgjpdatethe imagepoint values,
alarm conditions, etc. The flexibility given by the
dynamic configuration, allowssto useof the SCADA
for any particular purpose implementation.

The secondshowsthe usageof the tool to build a
single purposeSCADA. In this case the resourcesre
statically defined. The operatorhas no capability to
dynamically configure resources.

oven is heatedby three gas-fired burners placed at
intervalsalongthe oven. The temperaturesn eachof
the areasheatedby the burnersis monitored and
controlled. An operator console unit enables the
operator to monitor and contrtiie unit operation.The
systemis controlled by a hardwired control system.
Therequirementis to provide supervisorytools for the
control system.

Based on these requirements, wadea systemdesign
using MASCOT and we implemented it using
IGNATIUS and the visual programmingtools stated
earlier.

Example 1 let us measure the utilitytb&tool to build
a complexSCADA. It alsoallwed usto determinethe
effort required to build a SCADA using all the
facilities of the tool. Example 2 let us measurethe
utility of the tool to build a simple SCADA and
determine the minimum effort required to build a
SCADA using the tool.

We testedthe examplessharingthe CPU with other
applications and changing the SCADA execution
modeto backgroundThe SCADA responsdime was
always within the expectedtime frame due to the
Operating System scheduling algorithms and the
design of the TS. In this scenario, the priorities
preemptiveschedulingalgorithm avoidsthe excessive
use of the CPU by processegshat could delay the
executionof the EE. The EE routineswere scheduled
within the TS with differentintervals.In a first stage,
these routines were executedwith intervals greater
than the second.

With anaverageCPUload, the expectedesponsdime
was accomplished.In the last stage, the minimal
interval was obtainedto let the systemrespondwithin
the expectedime frame consideringan averageCPU
load (see Table 2).

Minimal Interval
with average CPU
load (in seconds)

EE routine

Alarm Analyzer (AA) 0.15
Historic Recorder (HR) | 0.45
Mimic Manager (MM) 0.35

Command
(®)

Interpreter | 0.65

Port Handler (PH) 0.55

Table 2. EE Minimal Interval

4 Herramienta para Desarrollo de Aplicaciones en TR = | O

{lEmperalun g EAsur e |

Linea de Comandos:

Aplicacion Imagen Procesos Mimicos Alarmas Ports Histirico Ayuda
v 258y B ? = '
-alarmas —
'Hrlatrrs B
WL N N
I I -
Preheat ’ Diryintg, | L:.-ulmg _ Conponsni
Guard 35.01 | g2.a1 | 4017 | L
— ____i_@____ﬂ""'
S
w4 [T] s |
Thermocoirpies

Comando: |monitorear_proceso, 1

ng

|

Procesar I

Figure 3. Example 1 - Main Window.

This lets the user executeother tasks while the
SCADA is running, sharing the CPU without
letting the SCADA off line. For instace,we can
analyze historical records, draw or scan new
processes]aunch an Operating System session,
add alarm conditions, processes, mimics, etc.

The time expendedto design,code and test the

exampleswvas minimal. A total of 120 manhours
was usedfor the examplel, while only 24 man

hourswere usedto developthe example2. These
time valuesclearly reflect the tool usefulnessaand

the developmentcycle time reduction, reducing
also the complexity and letting tluserconcentrate
on high level design aspects.

The developmenteffort is proportional to the
complexity of the particularproblemenvironment.
As we could seein our examples,the effort is
minimum for medium complexity environments.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

In this workwe havepresented tool to providean
integratedand flexible developmentenvironment
to develop SCADA applications.

Though several control techniques have not
changedmuch since the beginningof the use of
computerdfor processcontrol, processsupervision
wasinvolvedin severalchangesin mostcaseghe
applicationsare not flexible enough:theycanhave
a very limited range of use, or its complexity is
excessive for simple control applications.

We could seethat all the supervisorysystemscan
be composef threelevels.We haveencapsulated
the Basic Service Level in the taallowing to have
a flexible tool to develop generaland particular
purpose SCADAs.

The utility of the tool and the effort requiredto
built SCADAs with different complexity
requirementswas determined.Performancetests
have beenappliedto both examplesto checkthe
responsetime constrainsfor different EE task
intervals.

The Object Oriented technology simplified the
design and developmentof the tool. Code error
detectionwas also easierbecauseof the dataand
related code encapsulation.This paradigm also
provided reusability and simplified maintenance
characteristics.

The OS/2Warp 3.0 OperatingSystemprovided a
stable developmentenvironment. The protected
mode execution avoids system crashing due to
involuntaryerrorsintroducedin the code,which is
very important for this kind of applications.
Multitasking facilities increasedthe productivity
during the development cycle.

0OS/2 also isolates the hardware level from the
application software level. Applications cannot
operate directly with the physical devices: the
devicedriversmustactasan interfacebetweerthe
applicationprogramsandthe hardware While this
isolates the application software from physical
devicecharacteristicsit makesit dependentpon
the type of device driver loaded to handle the
device(i.e.: the resultof a consolewrite operation
may change dependirigthe devicedriver is ANSI
or not). Some devices are available to the
applicationprogramsonly if the appropriatedevice
driver hasbeenpreviouslyinstalled(i.e.: the serial
port cannotbe openedby an applicationuntil a
communications driver is loaded).

We could seethat the proposeddecompositionin

threeservicelevelsandthe useof the tool reduces
any SCADA developmentto the building of the
ISL and PSL, shorteningthe developmentcycle
and reducing the complexity.

The tool also lets the user concentratéhih level
designaspectsproviding a completedevelopment
environment that can be easily used by
inexperienced programmers, helping them to
maintainthe integrity of the systemmakechanges
and develop correct applications.

At presentwe will startto usethattool in the Real
Time Systemscoursein our Department.lt also
will be integrated with other projects of the
departmenivherea previousversionof the tool is
being used [Wai93].

Several new developmentscan be faced in the
future as an extension to our work:

1. Migration of the tool to other operating systems.

2. Design and implementationof a supervisory
system using a distributed Client/Server
architectureThe BSL will residein the serverand
the ISL and PSL will reside in the client.

3. Design and implementationof the BSL as a
single server(single database)providing services
to different supervisory systems.

4. Addition of interfacesto differentindustrial PCs
and PLCs.

5. Test of the tool in rough application
environments (including its embeding in ROM).

6. Develop other supervisory applications:
electronic worksheets, statistics generator, etc.

7. REFERENCES

[Ben93] BENNET, S. “Real-Time computer
control: an introduction”. Prentice-Hall
International. 2° Edition, 1993.

[Ben96b] BENITEZ, S.; SEOANE, J.; WAINER,
G.; BEVILACQUA, R.J.G."Developmentand
implementationof a tool to build supervisory
systems".(in Spanish).M.Sc. Thesis. Computer

Sciences Department. Facultad de Ciencias Exactas

y Naturales. Universidad de Buenos Aires. 1996.

[Deu88] DEUTSCH, M. “Focusing real-time
systems analysis on user operations”. IEEE
Software, September 1988. pp 39-50.

[GomB84] GOMAA, A. "A Software Design
Methodfor Real-TimeSystems”.Communications
of the ACM, September 1984, pp 938-949.

[Kap95] KAPLAN, G.; HOUSE, R. “Data
Acquisition Software for Engineers and Scientists”.
IEEE Spectrum, May 1995. pp. 23-39.

[Mas87] MASCOT. “The official handbookof
MASCOT, version 3.1”. Computing Division,
RSRE, Malvern. 1987.

[Miy93] MIYAGI, P.; PEREIRA RIBEIRO
BARRETO,M.; SILVA, J.“Domotic: Controland
automation” (in Portuguese)Vol 1l, VI EBAL
1993.

[WAI93] WAINER, G. “SSDT: a tool to develop
Real Time Supervisory Systems” (in Spanish).
Proceeding®f the JornadasChilenasde Ciencias
de la Computacion, October 1993. pp. 44-52.

[Wai94] WAINER, G. “Introduction to the
developmenbf Real Time Systems”(in Spanish).
On Line publication,
http//zorzal.dc.uba.ar/pub/materias/str/libro, 1994.

[War86] WARD, J.; MELLOR, P. “Structured
developmentfor real time systems”. Yourdon
Press, 1986.

