
Departamento de Computación

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

INFORME TÉCNICO

IGNATIUS
A Tool to Build Supervisory Systems

Silvia V. Benítez, Juan J. Seoane,
Gabriel A. Wainer, Roberto J.G. Bevilacqua.

Report n.: 96-006

Pabellón 1 - Planta Baja - Ciudad Universitaria
(1428) Buenos Aires

Argentina

http://www.dc.uba.ar

Title: IGNATIUS: a tool to develop Supervisory Systems.

Authors: Silvia V. Benítez, Juan J. Seoane, Gabriel A. Wainer,
Roberto J. G. Bevilacqua.

E-mail: silvia.v.benitez@ac.com, seoane@vnet.ibm.com,
{gabrielw,robevi}@dc.uba.ar

Report n. : 96-006

Key-words : Supervisory systems, SCADA, real-time systems,
software development tools.

Abstract: In this work we address the design and implementation of

a tool to build Real-Time Supervisory Systems called

IGNATIUS. An architectural decomposition of all the

Supervisory Systems in three service levels has been

proposed: Interface Service Level, Particular Service Level

and Basic Service Level. The ISL and PSL vary with each

particular implementation, but the BSL is common for all

of them. IGNATIUS encapsulates the BSL. This

decomposition reduces the development cycle, letting the

user to concentrate on high level design aspects. This

approach allows to build complex SCADA applications

reducing development and maintenance cost.

To obtain a copy of this report please fill in your name and address and return this page to:

Infoteca
Departamento de Computación - FCEN
Pabellón 1 - Planta Baja - Ciudad Universitaria
(1428) Buenos Aires - Argentina

TEL/FAX: (54)(1)783-0729
e-mail: infoteca@dc.uba.ar

You can also get a copy by anonymous ftp to: zorzal.dc.uba.ar/pub/tr

 or visiting our web: http://www.dc.uba.ar/people/proyinv/tr.html

Name:..

Address:...

..

IGNATIUS
A Tool to Build SCADA Systems

Silvia V. Benítez Juan J. Seoane Gabriel A. Wainer Roberto J. G. Bevilacqua
silvia.v.benitez@ac.com seoane@vnet.ibm.com gabrielw@dc.uba.ar robevi@dc.uba.ar

Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

ABSTRACT

In this work we address the design and implementation of a tool to build Real-Time Supervisory
Systems called IGNATIUS. An architectural decomposition of all the Supervisory Systems in three
service levels has been proposed: Interface Service Level, Particular Service Level and Basic Service
Level. The ISL and PSL vary with each particular implementation, but the BSL is common for all of
them. IGNATIUS encapsulates the BSL. This decomposition reduces the development cycle, letting
the user to concentrate on high level design aspects. IGNATIUS provides the user with a complete
development environment that can be easily used by inexperienced programmers. This approach
allows to build complex SCADA applications reducing development and maintenance cost.

Keywords: Supervisory systems, SCADA, real-time systems, software development tools.

1. INTRODUCTION

At present, the advances and cost reduction in
hardware has increased the number of computers used
to control physical processes. This led to the
automation of processes where manual intervention
was a requirement (i.e.: avionics monitoring and
control, chemical processes control, traffic light
control in a city). This kind of processes need real-time
response.

In a real-time system the results not only depends on
the logic correctness of the computations but also on
the moment when the results are generated. If the time
constraints are not accomplished, a system failure
occurs leading to catastrophic consequences. Hence,
this kind of systems, must guarantee that timing
constrains will be accomplished [Wai94].

There are many real-time applications in the industry,
and a growing number of computers controlling
industrial processes. Process control can be defined as
“the exercise of a planed action, for what is considered
object, to satisfy particular objectives” [Miy93]. A
controller accepts the information coming from
sensors, the information is processed, and the results
are sent to the controlled object through actuators. The
output information affects the controlled object.

In several cases exception conditions occurs, and
objectives of the control system cannot be
accomplished. To prevent this conditions ensuring
correct system response, we can use a set of programs,
called Supervisory Systems or SCADA (Supervisory
Control And Data Acquisition) systems. To
accomplish with these functions, the system must
control the plant operation and provide the managers
and plant engineers with a snapshot of the process
status.

Supervisory systems are designed to coordinate,
monitor and service system components. They handle
input and output of messages and data, schedule the
execution flow, assess priorities between application
programs and carry out housekeeping functions. They
also can process interrupts and deal with error and
emergency conditions. They must be designed to
coordinate the functions of the system under varying
loads.

Though several changes have occurred in the process
control area, most SCADA applications are not
flexible enough and have a very limited range of use.
With this scenario in mind, our proposal addresses the
design and implementation of a tool to build SCADA
applications. Several existing semi-formal Design
Techniques have been studied, and the tool has been
adapted to the selected technique. Also, system
software has been selected to provide a complete
development environment that can be used by
programmers to improve security, maintainability and
correctness of the developed applications. The tool has
been designed to let the user build a wide variety of
supervisory applications with minimum effort.

This work is organized as follows: in section 2 we
describe the development tools chosen, in section 3 we
describe our approach to build SCADA systems, in
section 4 there is a description of the tool components.
Finally, in section 5 we show the use of the tool to
build SCADA applications.

2. TOOLS SELECTION

The first stage of our work was to select a set of tools
to develop our environment. This included the
selection of a development methodology, an operating
system and a programming language. In this way we
can provide a complete development environment that
can be integrated with our tool to achieve the goals
mentioned in section 1. In this section we will explain
the tools we choose and the motivations for these
selections.

2.1 Design Methodology

Real-time control applications are usually composed of
several tasks executing concurrently at different
speeds. Also, tasks that execute in asynchronous mode,

need to be synchronized to accomplish functional
requirements. Hence, at the design stage of real-time
applications, we have to consider additional
requirements of those considered by conventional
design methodologies.

We analyzed several design methodologies to meet
these goals, including: DARTS (Design Approach for
Real Time Systems) [Gom84], Structured
Development for Real Time Systems [War86], Deutsch
[Deu88] and MASCOT (Modular Approach to
Software Construction, Operation and Test) [Mas87].
The following essential requirements for real-time
applications design have been evaluated [Gom84]:

1. Data Flow Oriented Design.
2. Task Communication and Synchronization.
3. Information Hiding.
4. State Dependency in Transaction Processing.

We decided to use MASCOT as design methodology
because it is very simple to use and understand by
inexperienced designers and it considers all the
requirements mentioned above. It also can be easily
integrate with our tool [Wai93] and provides most of
the entities provided by the Operating Systems we
studied. In this way, a complete development
environment to build complex supervisory applications
with low cost and high productivity can be constructed.

2.2. Operating System

Several operating systems available in the market have
been analyzed. In Table 1 some of their major
advantages and disadvantages have been highlighted.

The use of the DOS operating system was not
considered, mainly because it has no multitasking
capabilities. The same happened with Windows. The
main reason to discard UNIX was that often, the
scheduling algorithm has no preemptive multitasking.
This is an important requirement for real-time
applications development. The Windows-NT bad
performance led us to the situation of deciding between
QNX and OS/2. Though QNX is a widely used real-
time Operating System, OS/2 was chosen due to very
good performance, its priorities preemptive algorithm
and its OOUI features. The lack of SCADA tools for
OS/2 when the decision was taken, also encouraged us
to select this Operating System.

Table 1. Operating Systems comparison

1 Main Unix versions were included for this analysis: Aix, Solaris, SCO, Linux, Minix, etc.

2.3 Programming Language

The major characteristics considered for the
programming language selection were the low-level
coding capabilities. It is also easy to make use of the
Operating System features (semaphores, messages,
queues, pipes, etc.), as well as the high-level facilities
to build user interfaces easily.

Among the different languages evaluated (Pascal,
Rexx, C, C++), we found that only C++ satisfies the
requirements. It has all the low-level power of the C
language, whereas the classes provide high-level
facilities. In addition, as an Object Oriented language,
C++ provides the mechanisms of Information Hiding,
Encapsulation, Inheritance and Polymorphism.

To build the ISL and PSL that will be mentioned later,
we used a visual programming tool. VisualBuilder,
Dialog and Vispro/C++ were evaluated. Vispro/C++

was chosen because it is the easiest to use and can be
fully integrated with IGNATIUS, providing the user a
complete development environment.

3. AN APPROACH TO BUILD SCADA
SYSTEMS

After analyzing several available SCADAs, we
identified three Service Levels common to them:

1. Interface Service Level (ISL): this level encapsulates
all the programs that provide the interface between the
SCADA and the operator. It provides graphical
displays, alarms, screen messages, etc. The
implementation of this set of programs changes
according to the software and hardware platform
selected for the development.

OPERATING
SYSTEM

DISADVANTAGES ADVANTAGES

MS-DOS . No multitasking capabilities
. Bad use of new processor features (i.e.: 32 bit
bus, large amount of RAM, etc.)
. Poor memory management
. No graphical interface
. Few facilities to develop complex concurrent
systems.

. Massive acceptance

. Easy to use

. Low cost hardware configuration required

. Full access to hardware capabilities

MS-Windows . No native Operating System
. No multitasking capabilities
. Poor memory management
. Not stable development platform

. Massive acceptance. Easy to use

. Graphical User Interface

. Low cost hardware configuration required

UNIX 1 . No preemptive priorities multitasking (in
several versions)
. High cost hardware configuration (developed in
the version)
. Difficult to develop graphical user interfaces

. Multitasking

. Widely used in the industry and academy

. Low cost hardware configuration required
(depending on the version)
. Full access to hardware capabilities
. Complete security system

QNX . Not widely used in non-industrial environments
. Few development tools
. Few software developed
. High cost hardware configuration
. Difficult portability

. Real-Time oriented

. Multitasking

. Distributed

. Several scheduling algorithms

. No swapping

. Plenty of timing capabilities

. Widely used for control applications

Windows-NT . Bad performance
. Not scaleable
. Not stable development platform

. Widely used

. LAN oriented

. Easy to use

. Hardware Abstraction Level

. Low cost hardware configuration required

OS/2 . Difficult to configure some devices
. High cost hardware configuration
. Difficult portability

. Very good performance

. Preemptive multitasking with priority
management algorithm
. 32 bit operation
. OOUI (Object Oriented User Interface)
. Event driven
. Protected mode operation
. Interoperability facilities
. Large number of tools

2. Particular Service Level (PSL): this level
encapsulates all the programs that implement the
particular requirements for a specific SCADA. This
includes, for instance, alarm assistance routines, event
handlers, user command assistance routines, etc. The
implementation of this set of programs changes for
each SCADA according to the particular service
characteristics.

3. Basic Service Level (BSL): this level encapsulates
all the programs that implement the basic supervision
services common to all the SCADAs. In this level we
include plant image point internal representation,
alarm detection routines, historic storage, message
transmission, user command execution, high level task
scheduling, process modeling, etc. From a functional
point of view, this service level is the same for every
SCADA.

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

HR

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

MM

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

PH

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

CI

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

TS

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

ODT
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

IAM

IS L PS L

SCADA

B S L

Figure 1. SCADA Service Level Decomposition.

IGNATIUS was built to avoid the development of the
BSL services (common to all SCADA) minimizing
and facilitating the programming task.

According to the [Kap95] classification, IGNATIUS
acts as an interface with a programming language.
This type of tool is very flexible though it is a library
that can be adapted to control any process of the real
world. It is not end-user oriented, but intended to be
used by programmers that need to develop specific
supervisory applications with minimum effort.

The tool was implemented as a class library using the
Client/Server model. IGNATIUS acts as the server,
and the ISL and PSL are the clients that vary for each
particular supervisory system implementation.
Therefore, IGNATIUS can be seen as the same BSL
server that provides services to different ISL and PSL
clients. IGNATIUS provides three services through the
following classes:

• OBJECT DATA TABLES (ODT): This is a
set of tables that store the data of the different real
world objects, including plant image, alarms, I/O
ports, mimics, etc.

• INFORMATION ACCESS METHODS
(IAM): The way to use the data stored in the ODT
is through the Information Access Methods. They
are implemented as class methods that enable the
user to store, read, update and delete the ODT
information. The only way to use the ODT is
through the IAM.

• • EXECUTION ENGINE (EE): The
Execution Engine is a set of routines that start the
system execution. These routines execute
concurrently, each in a different thread,
synchronized by a high level task scheduler. The
following components are part of the EE:

- High Level Task Scheduler (TS)
- Alarm Analyzer (AA)
- Historic Recorder (HR)
- Mimic Manager (MM)
- Command Interpreter (CI)
- Port Handler (PH)

TS

CI

AA

HR

PH

MM

I MAGE

ALARMS

HISTORIC

MIMICS

COMANDS

TASK

IN QUEUE

OUT QUEUE

I
A

M

O
D

T

E
E

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

I
S
L

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

P
S
L

CMD QUEUE

Figure 2. IGNATIUS component interaction.

4. CLASS DESCRIPTION

As previously stated, IGNATIUS is built as class
library implementing objects to build SCADA
applications. It is composed of the following classes:

4.1. IMAGE

This class represents the plant image point values and
the methods to control it. All monitored values must be
stored in a central repository implemented with this
class. The image is divided into three virtual segments
representing integer, analog and digital values. The

implementation of virtual segments allows the user to
manage the image points without regarding about their
internal storage. The class stores the information for
each of the image points that it represents. This
includes the point value, set-point, alarm status,
quantity of updates made, update percentage (for
historical recording) and date and time of last update.

There are methods to add, delete, read or update an
image point. We also can increase in one the quantity
of updates, or modify the status of an image point.
Finally, we can return the number of image points
stored in the object, return the virtual segment where
an image point is stored and acknowledge an alarm
status.

4.2. ALARM

This class represents the values of the alarm conditions
that must be evaluated by the EE to detect alarm
scenarios, and the alarm conditions methods as well. It
also links alarm conditions with real world image
points. This link allows the user define multiple many-
to-many relationships between alarm conditions and
image points. The PSL alarm assistance routines may
analyze the information of the alarm scenarios detected
by the EE to give the required treatment.

The class stores information for each of the alarm
conditions it represents, including name, priority,
address of an alarm assistance routine, lowest and
highest values allowed, evaluation criteria (high, low,
rate of changes). It also stores quantity of evaluations
made, evaluation frequency (in milliseconds), wait
time since last evaluation (in milliseconds), maximum
and minimum change rate allowed and time of last
update.

The relations between alarm condition and image
point include alarm id, image point id and image point
virtual segment location.

The associated methods let add, update and delete
alarm conditions, read conditions. It also allows to
increment the number of times the condition was
evaluated, calculate lowest and highest values based on
a set-point value and a tolerance percentage. Finally, it
lets search the alarm condition linked to an image
point, search the image point linked to an alarm
condition or link and alarm condition with an image
point.

4.3. QUEUE

This class represents the messages sent from the
SCADA to the physical devices (In Queue) and the
messages sent from the physical devices to the SCADA
(Out Queue). It also represents the methods associated

to these messages. It is used as the communication
channel between external control elements (such as
PLCs) and the SCADA.

4.4. HISTORIC

This class reads the In Queue messages and stores
historical information of the image point included in
the message, based on an update parameter specified
by the user. This class lets the user retrieve
information about the different values of an image
point during a period, allowing the user to analyze this
information and detect changes or problems in the
environment. The update ratio lets the user specify the
rate of historic recording for each image point.

4.5. TASK

This class synchronizes the execution of the different
components of the EE. Its use can be extended to
synchronize user written routines (like a routine to
refresh data on the screen). It stores all the information
of the task components of the EE. The High Level
Task Scheduler (TS) is responsible to synchronize the
other components using system semaphores. To do this
work the class stores name, process id, execution
frequency in milliseconds, wait time in milliseconds
since last execution, and the event handler.

4.6. PROCESS

This class models a plant process, i.e.: drying oven
process, evaporation plant process, chemical reactor
vessel, etc. This information can be used by the ISL to
show process data on the screen.

4.7. MESSAGE

This class encapsulates the messages sent by the class
MIMIC to the SCADA through a system pipe. Each
message contains information about an image point
and its attributes on the screen: position, color, etc.
This information is used by the ISL to display the
image points of the process in display.

4.8. PIPE

This class implements, through system pipes, the
communication channel between the MIMIC class and
the SCADA for the message delivery. The MIMIC
class writes MESSAGEs in the PIPE while the ISL
read this messages to display the image point
information on the screen.

4.9. MIMIC

This class links real world processes with image points
and their screen attributes: position, foreground color,
background color, etc. The Mimic Manager (MM)
writes the attributes of the points belonging to the

process to display in the PIPE. This is done with a
frequency defined by the user.

The classes MESSAGE and PIPE are part of this class.
They are used for implementation purposes and serve
as the communication vehicle between the MM and the
ISL.

4.10. PORT

This class handles the I/O ports that are used to
connect the computer to the physical devices
(especially control industrial devices such as PLCs or
other controllers). The class allows to link physical
devices with image points letting the user to define
multiple many-to-many relations between them. To do
so, uses the In and Out Queues. It also initializes sets
the I/O ports (baud rate, parity control, data bits, etc.).

4.11. COMMAND

This class provides a mechanism to define and manage
commands entered by the operator. It also validates the
commands and parameters entered to determine if they
are correct. In this approach, the command definition,
handling and validation are separated from the
command execution. While this class encapsulates the
former functions, the command assistance routines
must be implemented in the PSL. The command
assistance routines execution can be accomplished in
two different ways: scheduled or immediate. In the
first case, the command entered is added to a
command queue and executed once all the previous
commands in the queue have finished their execution.
In the second case, the command entered is executed
immediately without waiting for the commands in the
queue to finish their execution.

5. BUILDING SCADA APPLICATIONS

To test the tool and show its usage we built two
different SCADA systems.

The first one, shows the usage of the tool to build a
customizable SCADA. This SCADA lets the operator
dynamically configure the resources: define image
points, alarm conditions, processes, physical devices,
screen representations, update the image point values,
alarm conditions, etc. The flexibility given by the
dynamic configuration, allows us to use of the SCADA
for any particular purpose implementation.

The second shows the usage of the tool to build a
single purpose SCADA. In this case, the resources are
statically defined. The operator has no capability to
dynamically configure resources.

In both examples we considered the requirements of a
drying oven process application [Ben93]. The
components are dried by being passed through an oven
divided in three sections: preheat, drying and cooling.
The components are placed on a conveyor belt that
conveys them slowly through the drying oven. The
oven is heated by three gas-fired burners placed at
intervals along the oven. The temperatures in each of
the areas heated by the burners is monitored and
controlled. An operator console unit enables the
operator to monitor and control the unit operation. The
system is controlled by a hardwired control system.
The requirement is to provide supervisory tools for the
control system.

Based on these requirements, we made a system design
using MASCOT and we implemented it using
IGNATIUS and the visual programming tools stated
earlier.

Example 1 let us measure the utility of the tool to build
a complex SCADA. It also allwed us to determine the
effort required to build a SCADA using all the
facilities of the tool. Example 2 let us measure the
utility of the tool to build a simple SCADA and
determine the minimum effort required to build a
SCADA using the tool.

We tested the examples sharing the CPU with other
applications and changing the SCADA execution
mode to background. The SCADA response time was
always within the expected time frame due to the
Operating System scheduling algorithms and the
design of the TS. In this scenario, the priorities
preemptive scheduling algorithm avoids the excessive
use of the CPU by processes that could delay the
execution of the EE. The EE routines were scheduled
within the TS with different intervals. In a first stage,
these routines were executed with intervals greater
than the second.

With an average CPU load, the expected response time
was accomplished. In the last stage, the minimal
interval was obtained to let the system respond within
the expected time frame considering an average CPU
load (see Table 2).

EE routine
Minimal Interval
with average CPU
load (in seconds)

Alarm Analyzer (AA) 0.15
Historic Recorder (HR) 0.45
Mimic Manager (MM) 0.35
Command Interpreter
(CI)

0.65

Port Handler (PH) 0.55
Table 2. EE Minimal Interval

Figure 3. Example 1 - Main Window.

This lets the user execute other tasks while the
SCADA is running, sharing the CPU without
letting the SCADA off line. For instace, we can
analyze historical records, draw or scan new
processes, launch an Operating System session,
add alarm conditions, processes, mimics, etc.

The time expended to design, code and test the
examples was minimal. A total of 120 man hours
was used for the example 1, while only 24 man
hours were used to develop the example 2. These
time values clearly reflect the tool usefulness and
the development cycle time reduction, reducing
also the complexity and letting the user concentrate
on high level design aspects.

The development effort is proportional to the
complexity of the particular problem environment.
As we could see in our examples, the effort is
minimum for medium complexity environments.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

In this work we have presented a tool to provide an
integrated and flexible development environment
to develop SCADA applications.

Though several control techniques have not
changed much since the beginning of the use of
computers for process control, process supervision
was involved in several changes. In most cases the
applications are not flexible enough: they can have
a very limited range of use, or its complexity is
excessive for simple control applications.

We could see that all the supervisory systems can
be composed of three levels. We have encapsulated
the Basic Service Level in the tool allowing to have
a flexible tool to develop general and particular
purpose SCADAs.

The utility of the tool and the effort required to
built SCADAs with different complexity
requirements was determined. Performance tests
have been applied to both examples to check the
response time constrains for different EE task
intervals.

The Object Oriented technology simplified the
design and development of the tool. Code error
detection was also easier because of the data and
related code encapsulation. This paradigm also
provided reusability and simplified maintenance
characteristics.

The OS/2 Warp 3.0 Operating System provided a
stable development environment. The protected
mode execution avoids system crashing due to
involuntary errors introduced in the code, which is
very important for this kind of applications.
Multitasking facilities increased the productivity
during the development cycle.

OS/2 also isolates the hardware level from the
application software level. Applications cannot
operate directly with the physical devices: the
device drivers must act as an interface between the
application programs and the hardware. While this
isolates the application software from physical
device characteristics, it makes it dependent upon
the type of device driver loaded to handle the
device (i.e.: the result of a console write operation
may change depending if the device driver is ANSI
or not). Some devices are available to the
application programs only if the appropriate device
driver has been previously installed (i.e.: the serial
port cannot be opened by an application until a
communications driver is loaded).

We could see that the proposed decomposition in
three service levels and the use of the tool reduces
any SCADA development to the building of the
ISL and PSL, shortening the development cycle
and reducing the complexity.

The tool also lets the user concentrate on high level
design aspects, providing a complete development
environment that can be easily used by
inexperienced programmers, helping them to
maintain the integrity of the system, make changes
and develop correct applications.

At present we will start to use that tool in the Real
Time Systems course in our Department. It also
will be integrated with other projects of the
department where a previous version of the tool is
being used [Wai93].

Several new developments can be faced in the
future as an extension to our work:

1. Migration of the tool to other operating systems.
2. Design and implementation of a supervisory
system using a distributed Client/Server
architecture. The BSL will reside in the server and
the ISL and PSL will reside in the client.
3. Design and implementation of the BSL as a
single server (single data base) providing services
to different supervisory systems.
4. Addition of interfaces to different industrial PCs
and PLCs.
5. Test of the tool in rough application
environments (including its embeding in ROM).

6. Develop other supervisory applications:
electronic worksheets, statistics generator, etc.

7. REFERENCES

[Ben93] BENNET, S. “Real-Time computer
control: an introduction”. Prentice-Hall
International. 2ND Edition, 1993.

[Ben96b] BENITEZ, S.; SEOANE, J.; WAINER,
G.; BEVILACQUA, R.J.G."Development and
implementation of a tool to build supervisory
systems". (in Spanish). M.Sc. Thesis. Computer
Sciences Department. Facultad de Ciencias Exactas
y Naturales. Universidad de Buenos Aires. 1996.

[Deu88] DEUTSCH, M. “Focusing real-time
systems analysis on user operations”. IEEE
Software, September 1988. pp 39-50.

[Gom84] GOMAA, A. “A Software Design
Method for Real-Time Systems”. Communications
of the ACM, September 1984, pp 938-949.

[Kap95] KAPLAN, G.; HOUSE, R. “Data
Acquisition Software for Engineers and Scientists”.
IEEE Spectrum, May 1995. pp. 23-39.

[Mas87] MASCOT. “The official handbookof
MASCOT, version 3.1”. Computing Division,
RSRE, Malvern. 1987.

[Miy93] MIYAGI, P.; PEREIRA RIBEIRO
BARRETO, M.; SILVA, J. “Domotic: Control and
automation” (in Portuguese) Vol II, VI EBAI.
1993.

[WAI93] WAINER, G. “SSDT: a tool to develop
Real Time Supervisory Systems ” (in Spanish).
Proceedings of the Jornadas Chilenas de Ciencias
de la Computación, October 1993. pp. 44-52.

[Wai94] WAINER, G. “Introduction to the
development of Real Time Systems” (in Spanish).
On Line publication,
http//zorzal.dc.uba.ar/pub/materias/str/libro, 1994.

[War86] WARD, J.; MELLOR, P. “Structured
development for real time systems”. Yourdon
Press, 1986.

