

EXPERIENCES WITH A TOOL TO BUILD SUPERVISORY APPLICATIONS

Silvia V. Benítez Juan J. Seoane Gabriel A. Wainer Roberto J.G.Bevilacqua
sbenitez@vnet.ibm.com seoane@vnet.ibm.com gabrielw@dc.uba.ar robevi@dc.uba.ar

Departamento de Computación

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Pabellón I - Ciudad Universitaria
(1428) Buenos Aires - Argentina

ABSTRACT

This work is devoted to present the results obtained when
using a tool to build Supervisory Systems called
IGNATIUS. An architectural decomposition the
Supervisory Systems in three service levels allows to
improve development times and security. IGNATIUS
encapsulates the Basic Service routines, providing a
development environment that can be easily used by
inexperienced programmers. This approach allowed to build
complex Supervisory applications, experiences whose
results are discussed with detail.

1. INTRODUCTION

At present the advances and cost reduction in hardware
have increased the number of computers used to control
physical systems automatically. In several cases, exception
conditions in the controlled system occur, and the
automatic control of the desired process fails. To prevent
these conditions and to insure correct system response,
Supervisory Systems can be used [1].

Supervisors can be built tailored to the application, or using
any of the existing general purpose supervisory tools (also
called SCADA, Supervisory Control And Data
Acquisition). SCADA systems coordinate, monitor and
service system components. They handle communication
with the controlled processes, schedule the execution flow,
assess priorities between application programs and carry
out housekeeping functions. They also process interrupts
and deal with error and emergency conditions. They must
be designed to coordinate the functions of the system
under varying loads. They also must provide the managers
and plant engineers with a snapshot of the process status.

This work was partially supported by the SECYT (Science
and Technique Secretary) of the Universidad de Buenos
Aires. Research Project EX-033, "Concurrence in Operating
Systems".

Both approaches are not flexible enough and have a very
limited range of use. The use of SCADAs for simple
applications can be difficult to manage (as configuration
tasks are usually complex). Supervisors specially designed
for an application can be difficult to maintain (or to scale up
if the system complexity increases). To avoid these
problems, the design and implementation of a tool to build
SCADA applications was faced [2]. Three Service Levels
common to all SCADA systems were identified. The tool
(called IGNATIUS) was built to avoid the development of
the basic services, reducing and easing the process cycle.

This Basic Service Level (BSL) encapsulates all the
routines to provide basic supervision services. It includes,
for instance, point internal representation, alarm detection
routines, historic storage, user command interpretation,
high level task scheduling, etc. The Interface Service Level
(ISL) includes the routines to provide man-machine
interaction (displays, mimics, alarms, screen messages, etc.).
Finally, the Particular Service Level (PSL) implement the
particular requirements for a specific SCADA (for instance,
alarm handling routines, event managing, user command
execution, etc.).

In this work we analyze the results obtained with the use of
this tool when developing Supervisory applications. Special
attention is paid to complexity reduction and improvements
in flexibility and development times.

2. TOOL DESCRIPTION

IGNATIUS is not end-user oriented, but intended to be
used by programmers that need to develop specific
supervisory applications with minimum effort. It was
implemented as a Client/Server class library. IGNATIUS
acts as a server, and the ISL and PSL as the clients. These
service levels may vary for each particular application.
Therefore, IGNATIUS can be seen as the same BSL server
providing services to different ISL and PSL clients.

The tool was designed to be coupled with most existing
semiformal real-time design techniques, but specially
adapted to MASCOT [3]. It was also necessary to count
with a stable development environment, easy to use by
inexperienced developers. Another goal is to improve
security, maintainability and correctness of the developed
applications. With this purpose several operating systems
were analyzed, and OS/2 was selected. This operating
system provides multitasking with priorities preemptive
scheduling, that can be used to emulate most existing real-
time scheduling algorithms.

In OS/2, the smallest execution unit is the thread,
consisting of instructions, a set of CPU registers values,
and a stack. Each process consists, at least, of one
execution thread, and can have several threads running
concurrently. The process consists of data, code and other
resources (file handlers, semaphores, pipes, etc.). The
multithreading facilities allow efficient execution of new
tasks with little overhead. This feature is useful for certain
supervisory tasks, such as detection of exception
conditions. Finally, a session consists of one or more
processes, each running in a virtual console (a virtual
screen and the keyboard). The operating system supports
up to 255 concurrent sessions and 4095 processes (each
with a variable number of threads).

In this case, IGNATIUS runs as a process, providing the
instructions and data, as other resources. Each of the
running task will execute in a different thread. The
supervisory applications runs in the session level,
providing the virtual console for the application.

The class library has been built using C++, and Vispro/C++
was used as graphical front-end. To obtain further
information about these decisions, see [2,4].

TS

CI

AA

HR

PH

MM

I MAGE

ALARMS

HISTORIC

MIMICS

COMANDS

TASK

IN QUEUE

OUT QUEUE

I
A

M

O
D

T

E
E

I
S
L

P
S
L

CMD QUEUE

Figure 1. IGNATIUS component interaction.

The main services provided by IGNATIUS are shown in the
figure 1, and they can be described as follows.

Object Data Tables (ODT)
This is a set of data structures used to store information
about the different real world objects. The following classes
are included:

Image: image points for the physical system (divided
into three virtual segments representing integer, analog and
digital values).

Alarm: values of the alarm conditions that must be

checked to detect alarm scenarios, and the alarm conditions
methods as well. It also links alarm conditions with real
world image points.

Queue: messages sent from the SCADA to the physical

devices (In Queue) and the messages sent from the
physical devices to the SCADA (Out Queue).

Historic: stores historical information of the image

points based on an update parameter externally specified.

Task: synchronizes the execution of the different

system components by using system semaphores. It is
used to perform high level task scheduling.

Process: basic information for a physical process

(relating mimics, displays, alarms, command interpreters,
etc.). It provides information that can be used by the ISL to
display process data.

Message: messages sent by the class Mimic to the

SCADA. Each message contains information about an
image point and its attributes on the screen: position, color,
etc., used by the ISL to display the process' image points.

Pipe: communication channel between the Mimic class

and the SCADA for the message delivery. The Mimic class
writes Messages in the Pipe, while the ISL read this
messages to display the image point information on the
screen.

Mimic: links the physical processes with image points

and their screen attributes: position, foreground color,
background color, etc.

Port: I/O port handling, used to connect the computer

to the physical devices. The class allows to link physical
devices with image points letting the user to define multiple
relations between them.

Command: a mechanism to define command interpreters.

It also validates the commands and parameters entered to
determine if they are correct. Command definition, handling

and validation are separated from the command execution
(command assistance routines must be implemented in the
PSL).

Information Access Methods (IAM)
These methods provide a way to use the data stored in the
ODT. They are implemented as class methods that enable
the user to store, read, update and delete the ODT
information.

Execution Engine (EE)
This set of routines included to ease the construction of
complex applications. They have been built using the ODT
(accessed through the IAM), and can be changed or
excluded if necessary. The main components include a High
Level Task Scheduler (TS), an Alarm Analyzer (AA), a
Historic Recorder (HR), a Mimic Manager (MM), a
Command Interpreter (CI) and a Port Handler (PH).

4. BUILDING SUPERVISORY APPLICATIONS

IGNATIUS has been used as an educational tool, and this
section will present two different supervisor application
developed by students. The goal of this phase was to test
the tool and show its usage by building different supervisor
systems. In both examples the requirements of a drying
oven process application [5] has been considered. First, the
requirements of this control application were considered
and a specification document was constructed.

In this case, a drying oven is considered. The oven
consists of three different areas: preheating, drying and
cooling. The material to be dried is placed on a conveyor
belt used to transport the material through the oven. The
normal velocity of the conveyor belt is 80 to 100
feet/minute. If the speed falls below those values, an alarm
must be issued. The temperature is maintained by using gas
heaters. Their values are automatically controlled using a
PID algorithm, and the present value must be displayed in
the operator console. If the temperature differs more than
5% from the set-point, another signal alarm must be issued.

As a second stage, the specification document was used to
build general and detailed design documents using
MASCOT methodology. Finally, the supervisor was
implemented following the detailed design specification,
using IGNATIUS and the visual programming tools stated
earlier.

The first supervisor developed is a simple application
specially tailored to the controlled system. It was built to
experience the usage of the tool and to determine the
minimum effort required to build a single purpose
application. In this case, the resources are statically defined

(the operator has no capability to dynamically configure
them).

The control applications were not built, but simulated. Two
different simulation approaches were considered, allowing
to test different facilities provided by the tool. The first one
was centralized, running the control simulated application
as another thread in the system. The simulation is executed
by including the corresponding task in the system task
queue to be scheduled by the high level Task Scheduler.
Every sensor, actuator and controller was emulated with an
object in this class. The activation rates for each control
task were established during the supervisor construction.
In this way we also tested how to develop simulation
facilities using the tool.

After that, a simple distributed (hierarchical) configuration
was considered (i.e., the control application running in a
PLC or an industrial PC communicating with the supervisor
through RS-232 ports). In this case, the control parameters
were simulated in a different processor. The Port Handler
reads the input messages, and places them in the input
queue, letting the supervisor to act as if an external
message would have arrived.

The main work was devoted to build the ISL and PSL
routines. The ISL for this application consists of a simple
mimic, a command interpreter and a historic recorder. The
mimic displays a unique bit-map for the process, with
values associated for each of the monitored variables. The
command interpreter allows to input user commands.

The available commands are strongly related with the PSL
routines. In this case there are commands to show or print
historical records, and to refresh the screen. Other
commands are related with the drying oven operation. The
oven can be started or stopped, the conveyor belt can be
halted, and the whole system can be shut down in an
orderly fashion.

Four different alarms are included to accomplish with the
specification. Three of them are related with the temperature
in the different oven areas, and the fourth is used to
monitor the conveyor belt speed (the main screens for this
system have been included in the Appendix).

At present, this example system has been slightly changed
to be tailored to a real application for a cotton plant. In this
case a cotton drying control system has been implemented
using digital control, and the modification of the presented
application provides supervisory functions.

The second example developed allowed to test the utility of
the tool to build complex customizable SCADA systems. It
also served to determine the effort required to build a
SCADA using all the facilities of the tool. This application

lets the operator dynamically configure the resources:
define image points, alarm conditions, processes, physical
devices, screen representations, update the image point
values, alarm conditions, etc. The flexibility given by the
dynamic configuration, allows us to use of the SCADA for
any particular purpose implementation.

In this example also the main work was devoted to define
the ISL and BSL routines. The ISL was built to allow simple
configuration and operation, including pop-up menus and
icons bars representing the existing operations in a friendly
fashion. Commands can also be manually issued. Alarms
can be recognized by issuing a command, or by clicking
buttons on the screen. Different alarm levels are displayed
and can be recognized. Each process can use different
mimics that can be defined with any existing graphic tool,
and are stored as bitmaps (the main screens for this
SCADA are also included in the Appendix).

Each of PSL functions permit to define or use different
functions. In this case, the particular services allow
different flexible operations, including:

• Image point definition and update;
• Physical process basic definition and association with

mimics;
• Mimics definition and their association with image

points;
• Alarm condition definition and update, allowing its

association with user defined attention routines;
• Definition of relationships between alarms and image

points;
• Definition of input/output ports and their initialization;
• Port association with image points;
• Historic data recording conditions;
• Historic data visualization;
• Execution motor start/stop;
• Command input and interpretation.

5. EXPERIMENTAL RESULTS

The tool was thoroughly tested. First, unit test was carried
out, analyzing each of the methods in the IAM,
independently of the integrated behavior. After that, the
integration test allowed to check the behavior of the
integrated work for each of the functions in the IAM. The
main attention was paid to the interface testing and the
communication between modules. Finally, the examples
presented in the previous section also served as a system
test workbench. In all the mentioned cases, the chosen
tools allowed to improve the error detection.

The use of object-oriented programming made easy the
error detection. The stable environment provided by the
operating system avoided system crashes, even when the

errors hung individual tasks. Building the applications
following the specifications and the design also helped to
detect subtle mistakes (mainly those generated by
concurrent task's synchronization). Finally, the division in
three levels also helped to ease the testing phase: errors are
easily associated with the service level in which they are
detected.

Both examples were tested while the CPU was shared with
other applications. The response times resulted between
the specified parameters (with an activation rate of, at most,
one second). The SCADA execution mode was also
changed to background, and response times were
respected. Therefore, the user can execute other tasks
concurrently with the SCADA, without letting the
supervisor system off line. For instance, he can analyze
historical records, start new processes, add alarm
conditions, monitor mimics, etc.

The timing requirements were accomplished by the high
level scheduler. Here, the priorities preemptive scheduling
algorithm was combined with the Rate Monotonic algorithm
[6]. This combination avoided the excessive use of the CPU
by processes that could delay the execution of the EE, and
reduced the interference of low priorities tasks.

To provide more precise activation rates, the system was
tested with standard system loads and the average minimal
periods were obtained. The tests were repeated with the
system running in a stand-alone fashion (see Table 1).
These tests were done in an 50 MHz Intel 80486 CPU with
4Mb RAM.

EE routine (A) (B)
Alarm Analyzer (AA) 0.15 0.05
Historic Recorder (HR) 0.45 0.20
Mimic Manager (MM) 0.35 0.15
Command Interpreter (CI) 0.65 0.50
Port Handler (PH) 0.50 0.05

Table 1. EE Minimal Intervals (in seconds). (A): average
system execution times when running concurrently with
standard loads; (B) Stand-alone execution mode.

The use of the tool allowed to reduce the time spent to
design, code and test the examples. A total of 24 man hours
was used for the first example, while only 120 man hours
were used to develop the second example. These values
clearly reflect the tool usefulness and the reduction in the
development cycle time, mainly considering that both
systems were developed by undergraduates. The
complexity is highly reduced, letting the designer to
concentrate on high level design aspects.

The development effort is proportional to the complexity of
the particular problem environment. As we could see in our

examples, the effort is minimum for medium complexity
environments.

6. CONCLUSION AND FUTURE DIRECTIONS

This work presented the results obtained when using a tool
for integrated and flexible development of SCADA
applications.

A three level classification of the supervisory tasks allowed
to reduce the development times for SCADA applications.
The Basic Service Level is encapsulated in the tool,
reducing the programming tasks and allowing flexible
development of general and particular purpose SCADAs.

The utility of the tool and the effort required to built
SCADAs with different complexity requirements were
tested. Performance bounds were determined by checking
the response time constrains for different task intervals.

The use of Object Oriented programming and the provision
of a stable environment also helped to reduce the
development times. These factors also made easier the
debugging and testing phases (the most expensive ones for
this kind of systems). Therefore, the tool also can be used
as a base for rapid prototyping or incremental design.

The proposed decomposition in three service levels and the
provision of the basic service level reduces any SCADA
development. Only the ISL and PSL must be built,
shortening the development cycle and reducing the
complexity. The implementation of these services is
dependent of the software platform and the particular
application requirements. The implementation time for the
ISL can be substantially reduced by using any of the
existing visual programming tools.

The development cost of the particular services is
proportional to the environment complexity, improving the
flexibility of the developed systems. The tool also lets the
user concentrate on high level design aspects, providing a
complete development environment that can be easily used
by inexperienced programmers. It can help the programmers
to maintain the systems, make changes, and develop correct
applications. This could be checked by using the tool with
educational purposes in undergraduate programs.

IGNATIUS is now being integrated in several projects
where another tool [7] is being used. Several structural
changes have been faced, including the migration of the
tool to other operating systems, and its use in a distributed
Client/Server architecture. In this case the BSL will be
implemented as a separated server providing services to
different supervisory systems (the clients). It is also
planned the addition of interfaces to different industrial PCs
and PLCs and its testing in rough application environments.

Finally, the development of other supervisory applications
(electronic worksheets, statistic generators, etc.) will be
faced. Most of these improvements will be carried out by
undergraduates without explicit knowledge about the tool.
In this way, we would test the tool's utility when used by
inexperienced programmers.

At present the tool is public domain and can be obtained at:
http://www.dc.uba.ar/people/materias/str.

7. REFERENCES

[1] G. Wainer. Real-Time Systems: concepts and
applications. (in Spanish). Nueva Librería. 1997.

[2] S. Benítez; J. Seoane, G. Wainer and R. Bevilacqua.
“IGNATIUS: a tool to develop Supervisory Systems”.
Technical Report 96-006, Departamento de Computación,
FCEN/UBA.http://www.dc.uba.ar/people/proyinv/tr.html.
1996.

[3] M. Jackson. The official handbook of MASCOT, version
3.1. Computing Division, RSRE, Malvern. 1987.

[4] S. Benítez and J. Seoane. Development and
implementation of a tool to build supervisory systems. (in
Spanish). M.Sc. Thesis. Computer Sciences Department.
Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires. 1996.

[5] S. Bennett. Real-Time computer control: an
introduction. Prentice-Hall International. 2nd. Edition, 1993.

[6] J.P. Lehoczky; L. Sha; Y. Ding. "The Rate Monotonic
Scheduling algorithm - exact characterization and average
case behavior". Proceedings of the IEEE Real-Time
Systems Symposium. CS Press, Los Alamitos, Calif. 1986.pp.
166-171.

[7] G. Wainer. “SSDT: a tool to develop Real Time
Supervisory Systems ” (in Spanish). Proceedings of the
Jornadas Chilenas de Ciencias de la Computación, La
Serena, Chile. October 1993. pp. 44-52.

APPENDIX - Graphical interfaces

Figure 2. Example 1 - Main Window.

Figure 3. Example 2 - Main Window.

Figure 4. Example 2 - Image point definition.

Figure 5 - Process information.

Figure 6 - Mimics information.

Figure 7 - Alarm information.

Figure 8 - Port information.

