Improved Cellular Modelswith Parallel Cell-DEVS

Gabridel A. Wainer

Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabellén |—Ciudad Universitaria, BuenosAires (1428), Argentina; E-mail: gabrielw@dc.uba.ar; URL: http://
www.dc.uba.ar/people/proyinvicelldevs.

The Cell-DEVS paradigm allows the specification of executable cell spaces with timing delays. This approach
allows easy definition of complex behavior in physical systems, which can be validated formally. The original
definition of this formalism can lead to serialization and incorrect execution when the models are considered to
executein parallel. The extension presented here permits parallel specification of these models, and an associ-
ated simulation mechanismallowstheir execution. Cell-DEVSmodel sinclude timing delay constructions, whose
behavior was extended, and whose use is exemplified in detail. These new constructions improve the definition
of complex timing behavior, reducing the complexity of the rules needed to represent it. In addition, neighbor-
hood sizes can be reduced, cutting down the overhead involved, and allowing a higher number of quiescent cells
in the model.

Keywords: Parallel DEV S models, DEV S paradigm, Cell-DEV S models, discrete event simulation, modelling

methodologies

1. Introduction

This article presents an extension to the n-dimensional Cell-
DEV Sformalism [1], alowing the definition of parallel models.
Theformalismisderived from the binary timed Cell-DEV S[2],
acombination of the DEV S paradigm [3, 4], and Cellular Auto-
mata[5].

Cellular Automata formalism is well suited to describe real
systems that can be represented as cell spaces. A cellular auto-
maton is an infinite regular n-dimensional lattice whose cells
can take one finite value. The states in the lattice are updated
according to a local rule in a simultaneous and synchronous
way. The cell states change in discrete time steps as dictated by
alocal transition function using the present cell state and a fi-
nite set of nearby cells (called the neighborhood of the cell).

The DEV S (Discrete EVents Systems specification) formal-
ism allowsoneto describe areal systeminamodular fashion. It
attacks the complexity using a hierarchical approach. A DEVS
model can be described as composed of several submaodels, each
being behavioral (atomic) or structural (coupled). Tested mod-
els can be reused, enhancing reliability, reducing testing time
and improving productivity.

Each model is described as a set consisting of a time base,
inputs, states, outputs, and functions. A model uses input and
output ports to communicate with the others. The internal and
external events produce state changes, whose results are spread
through the output ports. The influences of the ports determine
if these values should be sent to other models.

Received: November 1999; Revised: January 2000; Accepted: February 2000

TRANSACTIONS of The Society for Computer Smulation International
ISSN 0740-6797/00

Copyright © 2000 The Society for Computer Simulation International
Volume 17, Number 2, pp. ##-##

When cellular automata are used to simulate complex sys-
tems, large amounts of computation time are required, and the
use of adiscrete time base poses restrictionsin the precision of
themodel. The Timed Cell-DEV Sformalism triesto solvethese
problems by using the DEV'S paradigm to define a cell space
where each cell isdefined asaDEV Satomic model. Thegoal is
to build discrete event cell spaces, improving their definition by
making the timing specification more expressive.

Each cell can use one of two kinds of delay constructions
[6]. The transport delays allow one to model a variable com-
mute time for each cell with anticipatory semantics. Instead,
inertial delaysintroduce preemptive semantics. some scheduled
events are not executed dueto atoo-small interval between two
input events [7]. The paradigm allows the inclusion of integer,

Cell’s Neighbor hood

Figure 1. Sketch of acellular automaton

June TRANSACTIONS 2000

A4, A5

A5
A5 A3 A3A2 | b
L) A3 A2,A1
A5,A3]
A3,A4
l—’ A4
A5,A4

Figure 2. Coupling of DEVS models (A1, A3, A4: atomic models)

real, binary, or three-state valuesfor each of the cellsin the space,
and the models can be n-dimensional. Simulation tools were
built using the bidimensional paradigms [8, 9], and have been
extended to n-dimensiona models [10].

Thesimulation literature showsthat the use of parallel simu-
lation mechanisms is a promising approach to obtain results,
because it allows speedups in the simulation process [11]. The
provision of ameaningful sample of behavior by using sequen-
tial execution isatime consuming process. These assertionsare
valid for the ssimulation of Cell-DEV'S, because they involve a
high degree of computation time. Besides, cell spacesareinher-
ently parallel, and their serial execution istoo restrictive.

Unfortunately, the present definition of Cell-DEV S has sev-
eral problemswhen the spaces are executed in parallel. There-
mai ning sections of thiswork will be devoted to analyzing these
problems, and to consider different solutions based on the Par-
allel DEVS formalism [12]. The work is organized as follows:
the following section will present some serialization problems
related to Cell-DEVS models. Then, a definition for paralel
CdI-DEV S modelsisintroduced. Finaly, different definitions
related to the timing delays used for each cell are depicted.

2. Serialization Problemsin Cell-DEVS Models

Céll-DEV S has been formally specified to analyze severa basic
properties. In the following, a brief review of these specifica
tions will be presented to allow a more detailed analysisin the
following sections. A Cell-DEV S atomic model is defined by:

TDC=<X,V,1,S, 6,N,d, 8int, Sext, T, \, D >

Xisaset of external input events;

Y isaset of external output events;

| represents the model’s modular interface;
Sisthe set of sequential statesfor the cell;
0 isthe cell state definition;

N isthe set of states for the input events;

d isthe transport delay for the cell;

74 TRANSACTIONS Volume 17, No.2

Oint isthe internal transition function;
Oext isthe external transition function;
T isthelocal computation function;

A isthe output function; and

D isthe state’s duration function.

Each cell uses aset of N input values to compute the future
state. These values are received through a well-defined inter-
face composed of afixed number of ports. The cell computesa
local function by using the cell’sinputs and present state. A de-
lay function can be associated with each cell, allowing one to
defer the execution results of thelocal computing functions. To
alow the deferral of the computations, a FIFO queueis used to
keep track of the next events. Therefore, the outputsof acell are
not transmitted instantaneoudly, but after the consumption of
the delay. The model advancesthrough the activation of theinter-
nal, external, output, and state's duration functions, as in other
DEV S models.

After thebasic behavior for acell isdefined, the complete cell
spacewill be constructed by building acoupled Cell-DEV Smode!:

GCC = < Xligt, Ylist, I, X, Y, n, {ty,...tn}, N, C, B, Z, select >

Xlist isthe input coupling list;

Ylist isthe output coupling list;

| representsthe definition of theinterfacefor themodular modd;
X isthe set of external input events,

Y isthe set of external output events;

n isthe dimension of the cell space;

{t1,...,tn} isthe number of cellsin each of the dimensions;
N is the neighborhood set;

C isthecell space;

B isthe set of border cells;

Z isthetrandation function; and

select isthe tie-breaking function for simultaneous events.

G.A. Wainer

Cédll’s connections

@

\
IEAN

T

() =s

Cell definition

Figure 3. Informal definition of a Cell-DEV'S model

The cell spacedefined by this specificationisacoupled model
composed of an array of atomic cells. Each of themis connected
to the cells defined by the neighborhood. Because the cell space
isfinite, the borders should be provided with a different behav-
ior than therest of the space. Otherwise, the spaceis*“ wrapped,”
meaning that cellsin one border are connected with thosein the
opposite one. Finally, the Z function allows one to define the
internal and external coupling of cellsin the model. This func-
tion translates the outputs of mth output port in cell C; j into
values for the mth input port of cell Ckj. Each output port will
correspond to one neighbor and each input port will be associ-
ated with one cell in the inverse neighborhood.

As stated in [13], if we call eto the elapsed time since the
occurrence of an event, amodel can exist inthe DEV Sstructure
at e=0or e=D(s). Inthe case of coupled models, the modeler
can use the select function to resolve the conflicts of simulta-
neous scheduled events. The caseis different for basic models:
once they are coupled, ambiguity arises when an event is re-
celved by amodel scheduled for aninternal transition. The prob-
lem hereishow to determinewhich of both el apsed times should
be used. The select function solves the ambiguity by choosing
only one of the imminent models. Thisis a source of potential
errors, because the serialization may not reflect the simultaneous
occurrence of events. Moreover, the serialization reduces the
possible exploitation of parallelism among concurrent events.

Chow [13] required that the following properties hold:

» Caoallision handling: the behavior of acollision must be con-
trollable by the modeler.

e Parallelism: theformalism must not use any serialization func-
tion that prohibits possible concurrencies.

» Uniformity: thehierarchical construction must haveuniform
behavior: different hierarchical constructs of the same model
must display the same behavior.

These properties resulted in the definition of Parallel DEVS
[13]. In this approach, the select function was eliminated and a

new transition function was created to manage the collisions.
This function (called d¢gn, the confluent transition function)
should be defined by the modeler. Its goal is to define the be-
havior of a model receiving externa events at the time of its
internal transition (e = D(s) or e = 0). A scheduled internal tran-
sition function is carried out. However, if there are colliding
external and internal events, the confluent transition functionis
activated. The values of the events generated simultaneously
before the execution of each internal function should be gath-
ered together. Therefore, theinputsfor each model are collected
into a bag (multiset).

In the timed Cell-DEV S formalism, the desired unifor mity
was addressed in adifferent way. In this case, there was no need
toinclude abag construction asin the Parallel DEV S paradigm,
due to the definition of the cell's interfaces. They are defined
such that only oneinput per port can bereceived at atime: each
cell is connected with the others using a unique port, and they
are not alowed to transmit two simultaneous events.

This assertion is based on the fact that each cell cannot use
delays of zero time units. This assumption was made because
the real systems under consideration never have delays or acti-
vation frequency of exactly zero time units. Moreover, zero-
time delays can lead to non-deterministic behavior.

Lemma 1l
The use of zero-time delays in Cell-DEV S models can lead to
non-deterministic behavior.

Proof:

L et ussupposethe propositionisfalse. That is, zero-time delays
aways lead to deterministic behavior. The following are coun-
terexamplesfor this proposition. Figure 4(a) showsthe original
satusfor asubset of acdl spacefor theLifegame[14]. The update
rule for a cell in this model says that, if there are two or three
living neighbors (denoted with adot in the figure), the cell will
remain alive. If fewer than two neighbors are active, the cell dies.

Inthiscase, consider that atransport delay of zerotime units
is used for the cell (1,1) (being (0,0) the origin cell). Let us
suppose now that the cells (0,0) and (1,1) should be activated
simultaneously, and both execute in parallel. The cell (1,1)
changes to 0 (it has only one living neighbor), and it sends a
message to the cell (0,0), informing of the state change. When
the cell (0,0) receivesthe message, it can treat itsinternal event
prior to the external event. In this case, it will consider that, at

@D
o QO o| e .
(a) (b) ©

Figure 4. Execution evolution for the Life game;
(a) original state; (b) results when (0,0) is activated
first; (c) resultswhen (1,1) is activated first

Volume 17, No.2 TRANSACTIONS 75

June TRANSACTIONS 2000

=N

4

Figure5. A Cell-DEV S model coupled with atraditional model

present, the cell has two living neighbors. Therefore, it will re-
main alive, and the result in Figure 4(b) will be abtained. In-
stead, if the external message is processed first, the cell will
consider that there is only one living neighbor, and the result
will be the one presented in Figure 4(c).

The caseissimilar when an external DEV S model produces
two eventswith the same simulated time. Themodel in Figure 5
represents a section of urban traffic. The update rule saysthat if
thereisanew car arriving at a cell, and the north cell hasacar,
acollision occurs. Let us suppose that the external model sends
the output value 1 (indicating acar’s arrival). Then, another in-
ternal transition is executed in the same simulated time, and the
value for the external model is 0. If the first external event is
processed when it arrives, the collision status is raised for the
cell. Asacaollision exists, the second event isignored, and when
the new external value (saying that there is no car in the exter-
nal model) appears, the cell staysin collision status. Instead, if
both events are treated together, the car coming from the north
advances and no collision occurs.

As stated earlier, the definition for Cell-DEV S models con-
sidered that the delays should have non-zero values and that a
DEV S connected asinput should not activate simultaneous out-
puts. Nevertheless, if general models are needed, zero-time de-
lays can lead to a non-uniform behavior. The following lemma
will show that in those cases we must include an input bag for
atomic Cell-DEVS.

Lemma 2
Cell-DEV S models should be built as Bag-DEV S when:
a. Cellswith delays of zero-time units are used, or

b. A DEVSmodel connected to the cell isallowed to send two
output events in the same simulated time.

Proof:

To show that the Lemma 2(a) isvalid, it must be seen that only
when thetiming delays are zero, two different values can arrive
simultaneously at a cell’s port. The Cell-DEV'S definition in-
cludes one input port for each connection with the other models,
as defined in the moddl’s interface, | = < n, pX, Wy, PX, PY >,
Here,n O N, n < oo isthe neighborhood’ssize, pX, Wy O N, pX,
WY < oo isthe number of other input/output ports, and V j O
[L,n],i O{X,Y}, Pji isadefinition of a port (input or output
respectively), with Pji ={ (N;i, T;)/V j O[1,n+pi], Nji Oiq,
in+ul (port name), y T;i O Ij (port type) }, where lj = { x/x 0 X
if X}orlj={x/xOYifi=Y}.

Figure 6 presents an example of the definition of this inter-
face. The cell with a mark in Figure 6(a) is connected to the
neighborhood and to other two DEV'S models. The A model
transmits integer values, and the B model uses real state vari-
ables. The internal coupling of this cellular model is defined as
shown in the Figure 6(b) and 6(c). Because two neighbors are
used, two input/output ports are included in each cell. Figure
6(b) shows the cells to which both output ports are connected.
Figure 6(c) representsthe ports giving input to the cell. Finally,
because the marked cell is connected with other DEVS, two
extrainput/output portsare needed. Figure 6(d) showstheinter-
faceof thiscell. Inthiscase, n = 2, p* = WY = 1. Therefore, PX =
{ PrX, P, PX} ={ (N¥, binary), (N2%, binary), (N3*, integer) }
andPY={ P, Py, PV} ={ (N1, binary), (N2, binary), (N3 redl) }.

A given input port can receive two different inputs with the
same simulated time only if the influencer transmits more than
onevauein that given simulated time. Considering the seman-
ticsfor acell execution, this only occurs if two internal transi-
tions are executed in the same instant (details of this semantics
canbefoundin[1]). Whentheinternal function isexecuted, the
first event in the squeue istransmitted. This queue keeps all the
delayed values; therefore, the simultaneous outputsin theinflu-
encer only can occur if zero-time delays are allowed. There-
fore, the Lemma 2(a) isvalid.

Lemma 2(b) considers that a cell space can be connected to
other DEV S models, using the last 1 input ports defined in the
interface. The semantics for a DEVS model is that the output
function transfersinformati on between models, and they are acti-
vated prior to the internal transitions. Therefore, the execution
of two simultaneous internal transitions can occur only if the

(2
Z

ol e

a,’

98]
~
N
~

(@) (b)

(©

P —— PY
ll) PXZ | T P%
P —1— Py

(d)

Figure6.

76 TRANSACTIONS Volume 17, No.2

Cell-DEV S models coupling and interfaces

G.A. Wainer

model schedules an internal transition with zero time, and
Lemma2(b) isvalid.

A second problem for the defined Cell-DEVS is related to
the desired behavior for parallelism. In this case, thefollowing
approach was used: the occurrence of external simultaneous
events for a given cell is treated by the local computing func-
tion. Whenever an external event arrives, it isstored in theinput
set for the cell. Therefore, simultaneous models will transmit
their generated values in parallel, which will be stored in the
input set. If an event occurs simultaneously with an internal
scheduled event, theinternal transition functionisactivated prior
to the external transition (asin the E-DEV S formalism [13]).

One fina problem of the previous formalism is related to
the collision handling. In most cases, a collision is controlled
because the local computing functions use the values obtained
through each input port, and it has been shown that they cannot
have more than onevalue. Instead, if zero-time delaysor smul-
taneous eventsare considered, the user cannot manage the model
behavior.

Theformalism should be as general as possible, to allow the
modelling of any kind of n-dimensional cell spaces. Hence, the
prohibition of zero-time delays istoo restrictive. Even when it
was shown that Cell-DEVS behaves uniformly thanks to the
interface definition, abag-DEV Sisneeded for the cases of zero-
timetransitions. In addition, the Cell-DEV Smodel s can be coupled
with traditional DEV S submodels. All the factors considered in
this section were taken into account, resulting in a redefinition
of the Cell-DEV Sformalism. Thefollowing section will present
the main changes introduced to meet the stated goals.

3. Parallel Cell-DEVS

This section defines a new approach to using the concepts of
confluent transition function explained earlier. Other extensions
allow the management of complex delay behavior that was not
previously possible. The first part of this section explains the
definition of atomic models, and then coupled models are de-
fined. Thedelay behavior will beusedinthefollowing sections
to introduce complex timing for the cells.

3.1 Atomic Models
A pardld Cell-DEV S atomic model can be formally defined as:

TDC=< Xb, Yb, I, S, 9, N, d, 6int, 6ext, 6con, T, Tcon,)\, D>

The contents of a model are similar to those presented in Sec-
tion 1. A detailed specification can be found in the Appendix,
but most components have not changed. Two confluent functions
have been added: d¢gn and T ¢gn. |n addition, the external tran-
sition and output functions have been changed to handle input/
output bags (Xb and Yb) for each cell. The external transition
function activatesthelocal computation, whoseresult isdelayed
using one of both kinds of constructions: transport or inertial
delays. The output function executes prior to theinternal transi-
tion function, transmitting the present values to other models.
The it function isin charge of keeping the valuesfor atrans-
port delay. Figure 7 shows a sketch of the contents of each cell.

oqueue [T | =]
NN td
~ :: T/ N
:‘ H T con
. id

N

S s f

1 O O

Figure7. Cell'sdefinition

The present definition changes the semantics of the delay
functions. Originally, only onekind of delay of agiven duration
was related to each cell. Now, the local transition function will
return the type and length of the delay, and the cell’s outputs
will be delayed accordingly. Thisredefinition allowsto include
complex timing behavior, aswill be seenin Section 5. The con-
fluent transition function dqqp, is activated when there are colli-
sions between internal and external events. It must activate the
confluent local transition function T ¢gn, Whose goal isto ana-
lyzethe present valuesfor theinput bags, and to provide aunique
set of input valuesfor the cell. Inthisway, the cell will compute
the next state by using the values chosen by the modeler. The
semantics for the transition functions are defined in the Appen-
dix.

In this case, the external transition function activatesthe lo-
cal computation, whoseresult isdelayed using one of both kinds
of constructions. The output function, which executes prior to
theinternal transition function, isin chargeto transmit the present
values to other models. This is done after the execution of a
delay function, carried out by the internal transition.

In case of a collision, the confluent transition function
chooses members from the bag, and updates the inputs for the
cell. Then it deletes the unnecessary members of the bag. Be-
cause ¢ = 0, an internal transition function is scheduled imme-
diately. The modeler should define the behavior for the T¢gn
function in each cell, thus alowing the definition for this be-
havior under collisions.

3.2 Formal Specification of Generic Coupled Cell-DEVS
Models

A parallel Cell-DEVS coupled model can be represented
as:

GCC = < Xligt, Ylist, I, X, Y, n, {t1,...tn}, N, C, B, Z >

All the model’s contents for this case have been defined in Sec-
tion 1. The main changeisthat C is acell space, with C = { C,,
[cOl DCC: < lC’ XC’ YC’ SC' NC’ dC' aintc, ae)(tc, 6conc, Te,
TeoncA e, De>}, whereCisaparale Cell-DEV Satomic model,
and| ={ (i1,-.»in)/ (kKON Qi O[1,t]) VkO[L n]}. That

Volume 17, No.2 TRANSACTIONS 77

June TRANSACTIONS 2000

is, each cell in the space is a parallel Cell-DEVS atomic cell
using the d¢on and T¢gon functions to avoid collisions. Hence,
the select function has disappeared. A detailed definition can be
foundin[2].

DEV S coupled models have been redefined to include base
models that can be seen as cell spaces. Therefore, a coupled
DEV S model will be defined as:

CM =<1, X,Y,D,{Md}, {Id}, {Zqj} >

| = < PX, PY> represents the interface of the modular model.
Here, V jO[1,n],i O{X, Y}, Pji isadefinition of aport (input
or output, respectively) where:

Ri={ (N, Tj1) /VjO[L], MON, p<w),
Nji O [i1, im] (port name), y Tji = port type};

X isthe external input events set;

Y isthe external output events set

D O N isanindex for the components of the coupled model,
and

My isaDEVSbasic model V d O D O {self}, where:

Mg = GCCq=<lg, Xg, Yg, Xlistq, Ylistg, nq,
{t1,--+tn}d: Ng, Cd, Bd, Z4 >

is a General Coupled Cell-DEVS as those defined in Section
3.2, for cellular models, and:

Mg =<lq, Xg» Yg» Sy Ointy, Oexty, Ocong» Dy >
otherwise.

| g isthe set of modelsinfluenced by themodel d,and V j O
lg,d0D,Ig0OD 0O {self},d Oy,

Zj isthetrandation function from d to j, where

Zsgif j Yself — Xj if none of the implied models is Cell-
DEVS, or

Zsdf - Y(C)salf — X(C2)j, with (c1) O Ylisty, and (c2) O
Xlistj if any of the models self or j isa GCC;

Zd sdf: Yd —» Xgdf if none of the implied modelsis Cell-
DEVS, or

Zd sdf: Y(c1)dg - X(co)saf, With (cq) O Ylisty, and (cp) O
Xlistgyf if any of the modelsd or self isa GCC;

Zgj:Yd - X if noneof theimplied modelsis Cell-DEVS, or
Zgj:Y(C1)d — X(c2)j, with (cg) U Ylisty, and (c2) U Xlist; if
any of the modelsd or j isa GCC.

In[15], it has been shown the equival ence between the par-
allel Cdl-DEVSmodelsand paralel DEVS models. In addition,

78 TRANSACTIONS Volume 17, No. 2

the closure under coupling has been proved, showing that a
coupled Cell-DEV SisaDEV Sisequivalent to an atomic DEVS.
Hence, the models can be integrated into a DEV'S hierarchy.
These results are summarized in the following propositions,
which will not be proven here.

Lemma 3
Parallel Cell-DEVS models are equivalent to paralel DEVS
models.

Lemma 4

Closure under coupling for parallel Cell-DEVS models: a
coupled parallel Cell-DEV'S model is equivalent to abasic par-
alel Cell-DEVS model.

4. Céel-DEVS Spaces Simulation

A Cell-DEV Smodel can be mapped onto an executabl e specifi-
cation that can be simulated using an abstract mechanism. This
is achieved by using a set of specialized Processors that drive
the simulation process (asit was originally defined in Zeigler's
works). The so called Coordinators are associated with the ac-
tivities of the hierarchical coupled models. The others, called
Smulators, are associated with the atomic model’s activation.

In[9], an environment for Cell-DEV S modelling and simu-
lation was built. It is defined as a class hierarchy of modelsand
processors, and it has been redefined to include parallel mod-
éls. This new strategy should allow the simulation of parallel
Cell-DEVS,; therefore, the original agorithms were changed,
using the strategies defined in [12]. The main components of
processorsin this hierarchy are included in Figure 8.

In Cell-DEV S spaces, the coupled models are composed by
several atomic cells, each associated with one simulator. The
model’s parameters (as specified in the previous section) are
used to create the simulators and to define their names. The
internal coupling is set up using the previous definitions, and a
coordinator is associated with the coupled model.

The coordinators for the standard DEV S models follow the
procedures defined in [12] based on theinterchange of different
messages. Instead, a new procedure has been defined for the
simulatorsfor cell spaces. The paralldl processorsincludeasyn-
chronization mechanism based on the use of a specialized mes-
sage, caled the “ @-message.” When one of these arrives at a
coordinator, all the models scheduled for the present simulated
time (called theimminent) are activated. Their output valuesare
collected into y-messages, and these are translated using the Zg;
function. New input messages (x-messages) are created, and their
values are inserted into the input bags of the corresponding
models. When the synchronization phase finishes, the resulting
imminent models are executed by sending an *-message to their
simulators.

Figure 9 shows a sketch of the procedure executed by the
simulators. (Note that the present mechanism only includesthe
basic behavior of the simulator.)

The imminent model will be acell in the space. Therefore,
the cell’s coordinators should have alist of imminent children to
detect it. Each simulator linked with an imminent cell activates

G.A. Wainer

Processor
~Parent

~TimeOfLastEvent

~TimeOfNextEvent
~ChangeDateOfEvent()
~VerifDateOfEvent()

/

E 3

Coordinator

Root-Coor dinator

Simulator ~Children ~WaitList —Chi ~WaitLi
Phase ~e ~Sigma ~StopList ~EventList EQL?_E? ~|\5A\/,2,t1|{|1ist51
~ReactionToMsg(type) ~ReactionToMsg(type) ~Clock
: ~Translate() ~ReactionToMsg(type)
. Flat-Coordinator
CeII-S|muIator_ ~Cells ~Neighbors
Phase_ ~e ~Sigma ~New-State
~ReactionToM sg(type) ~Next Events
~ReactionToM sg(type)
Parallel-Coordinator
~Processors ~Type
~Processor_mapping
~Input_links ~LVT
~Output_links ~GVT
~Map_tasks()
~Transmit_message()
~Create_link()
~Receive_message()
N\

Optimist_Par_C Pessimist Par C
~Detect_rollback_freq() ~Lookahead()
~Cancellation_type ~Deadlock_det_mech
~Transmit_Message() ~Recovery()
~Execute_Message ~Execute_message()
~Next_Events List ~Lock()
~Compute_GVT() ~Unlock()

\~Rollback() Y N /

Figure 8. Class hierarchy for parallel Cell-DEV S processors

the model’s output and internal transition functions, activating
the local computation. Conseguently, the @-message produces
an output of the selected model, whose result is sent to the parent
coordinator. The model’sbehavior upon arrival of an external mes-
sage is simple: a g-message carrying the input value is queued
into the bag corresponding to the input port receiving the message.

The main activity isdriven by the *-message. The simulator
activates the external transition function if the external event
arrives prior to the scheduled internal transition. Instead, if the
message arrives simultaneously with theinternal event, two dif-
ferent actions should betaken. If there are several eventsqueued

into the bag, the dgn function should be activated to decide
which messages will be used as inputs for the local transition.
This decision depends on the behavior defined by the user by
coding the T ¢gpy function. Then, the internal transition function
is executed with correct input values.

Thesimulatorsreturn done-messagesand y-messagesthat will
be trandlated to new @-messages, *-messages and g-messages,
respectively. The coordinators translate the messages by using
the cell coupling previously defined. In this case, the arrival of
the @-message produces a set of @-messages that are sent to
the lower level processors (in this case, the cell’s simulators).

Volume 17, No.2 TRANSACTIONS 79

June TRANSACTIONS 2000

The upper level coordinator isinformed when all the imminent
children have received the message. The behavior of the coor-
dinators can be defined as seen in Figure 10.

Thereaction for y-messagesisdifferent than the one obtained
in other DEVS models. In this case, the output messages are
sent to the neighbors, or to other models (in this case, using the
Ylist). Here, the only task to execute when a new y-message is
received isto queueit into the input bag of the cell. Finaly, the
*-messageisin charge of the transmission of the messagesto the
lower-level coordinators, and to synchronize the activity of the
@-messages.

The standard coordinator should be modified, because now
it isin charge of manipulating the mapping between the Xlist
and Ylist. Therefore, the code for the simulator should use the
new definition for the Zg; function as seen in Figure 11.

As can be seen, the coordinators for cell spaces have a dif-
ferent behavior than that defined for standard DEV S models,
becausethey haveto executethe Zgj functionin adifferent way.
The coordinators now behave differently when detecting the
message destinations, asthey are composed of acell and amodel

Cell_Simulator() {
Receive(message, port);

Case message of:
(@, 1): y=A(s);

send (y, t) to the parent coordinator;
(g, t): add qto the bag associated with the input port;

(*,t): tOJthtn] O e=t—tl; s=dext(s € bag);
if (t=tn)
bag# {1} 0 N =3con(s, N, d, bag); bag ={0};
$=dint(s, N, d);
th=t;
t=tn=tl + D(s);

send (done, t) to the parent coordinator;

}

Figure9. Simulation mechanism for acell

Cell_Coordinator () {

Receive(message, port);
Case message of:
(@,t): V imminent child (Xq,...,Xp)
send (@, t) to (X1,...Xn);
wait (done, t) V imminent child;

tl=t;

(y,t): sender: cel (Y1,...,Yn)
add (X1,...,Xp) in SYNGC;
(q,t): Destination: Cell (X1,...,Xp)
(*,t): VvV qObagof cel (Xq,....Xp)
send (g, t) to (X1,...,.Xp);

empty bag of the cell (X4,...,Xp);

wait al (done, tn);
th=t;

empty SYNC;

add (X1,...,Xp) inthe SYNC set;

send (done, t) to the parent coordinator;

YV (X1,....Xp) I (X1,....Xp) belongs to the neighborhood of (Y3,...,Yp)
send (y, t) to the cell (X1,....Xp);

if ((Y1,.-,Yn) O Ylist of the coupled model) then send (y, t) to the parent coordinator;

add g to the bag of cell (X4,...,.Xp);

add (X1,...,Xp) tothe SYNC set;

Y (Y1,...Yn) O SYNC send (*, t) t0 (Y1,...Y);

tn = minimum of all thereceived tn's;

send (done, t) to the parent coordinator;

Figure 10. Cell spaces coordinators

80 TRANSACTIONS Volume 17, No.2

G.A. Wainer

influencesj of childi
if jisaCell-DEVS model then
V (X1, Xp) O Xlistj, (Yq,...,Yn) O Yligt
y =vaueof cdl (Y4,...,Yn)
send (y, t) to the cell (X1,...,Xp) of the model |

Figure 11. Modification to the standard coordinator

name. The model name is used by the high-level coordinators
and the cell position is employed by the cell space coordinator.
The behavior for the root coordinator is the same that the de-
fined for other Parallel-DEV S models, that is:

t = tn of the topmost coordinator

whilet # oo
send (@, t) to the topmost coordinator
wait until (done, t) is received from it
send (*, t) to the topmost coordinator
wait until (done, tn) isreceived from it

In [1], aflat simulation mechanism was defined, allowing
the reduction of intermodul e interaction and the overhead pro-
duced by the simulation mechanism. A flat simulator isimple-
mented as a bidimensional array of records associated with the
cell space. Each record includes information of the state and
delay for the cell and a neighborhood list to record the cell’s
influencesfor the cell space. Using thisapproach, the hierarchi-
cal message interaction is not needed, because the multiple pro-
cessors are eliminated. This simulation mechanism has been
redefined for parallel Cell-DEV S models, and its definition can
befoundin [15].

5. Cel’'sDelay Behavior

The behavior for the cell delays was presented in [1, 2]. Origi-
nally, each cell had afixed kind and duration for the delay func-
tions. Nevertheless, as shown in Section 3, this behavior was ex-
tended so each rule of the local function is allowed to activate

the delay. This section analyzes the behavior of the delay func-
tions under normal execution and under collisions.

5.1 Cell’'s Timing Basic Behavior

The behavior of transport delays allows reflecting the straight-
forward propagation of signalsover lines of infinite bandwidth.
They allow the modeling of variable commuting time for each
cell with anticipatory semantics (every scheduled event is ex-
ecuted). Instead, inertial delays provide apreemptive semantics
to represent that a state change needs an amount of energy to be
provided to the system. In these cases, the scheduled eventsrep-
resenting the system state changes cannot be executed dueto a
too-small interval between two inputs. These delays allow the
analysis of the limit response frequency of the systems|[7].

L et usconsider atransport delay of fivetimeunitsfor agiven
cell. Theinput/output trajectories depicted in Figure 12(a) show
the behavior of the delay function. It can be seen that the results
aredelayed for fivetime units, and the cell remains active while
there are queued values waiting to be transmitted. In contrast,
the behavior for atomic cellswith inertial delaysis presentedin
the input/output tragjectories of Figure 12(b). In thiscase, anin-
ertial delay function of fivetime unitsisused. Theinput values
aredelayed asin the previous case, but at the simulated time 19,
the input value changed before the consumption of the delay,
and the previousinput is preempted. At the smulated time 15, a
transition to the state zero has occurred. This external event
schedules an internal event for simulated time 20. In that mo-
ment, the cell should send the state change produced as an out-
put. Instead, a new external event arrives before the consump-
tion of the delay, representing that the zero value was not kept
during the delay. Therefore, this state change is preempted, and
the previous state (1) is restored.

These constructions have been taken from the domain of cir-
cuit modeling. Nevertheless, they are useful for representing
different phenomena. For instance, the transport delay can be
used to represent the speed of a car in atraffic simulation (the
inverse of the delay length). In addition, an inertial delay could
represent carsarriving to acrossing. Let ussupposethat acar is
waiting to get into a crossing from the left. This cell checks if

input

v

14 16 t

10 15 19 21 t

(@)

input

v

5 1519 35 39 45 t

o] | |

10 19 24 39 44 50 t
(b)

v

Figure 12. (@) Transport delay behavior; (b) inertial delay behavior

Volume 17, No.2 TRANSACTIONS 81

June TRANSACTIONS 2000

thereisacar in the crossing or in the street to theright. If there
isno car in either cell, astate changewith inertial delay is sched-
uled. If the delay is consumed, the event is transmitted and the
crossing receivesthe car. Instead, let us supposethat a high-speed
car arrives from the right prior to the consumption of the delay.
The neighborhood of the left cell has changed, and the local
function must be computed. Since the previous state of the cell
has changed, the scheduled event representing advance to the
crossing is preempted.

5.2 Combined Delay Functions

Thedefinitions presented in Section 3.1 allow theinclusion of a
combination between transport and inertial delays. The behav-
ior for each of them isthe same asthat defined originally. That
is, if atransport delay is activated, the valueistransmitted only
after the delay (the oqueue is used to keep the value). Instead,
an inertial delay is used to transfer the value only if it is kept
during thewhole length of the delay. Several combined behav-
iorswill beincluded in the following paragraphs.

a. Transport/Inertial Delays

Figure 13 presents several behaviors that can be achieved
by using different delay functions, and the results obtained un-
der collisions. It shows an example of execution for an atomic
binary cell with acombination between transport and inertial de-
lays. The basic behavior is that, if an inertial delay is not ac-
complished and several values are waiting at the end of atrans-
port delay, they are preempted.

It is supposed that the local computing function activates de-
lays of different kinds and durations, depending on the simu-
lated time of occurrence for each event. Initially, the cell usesa
transport delay of 17 time units. Between 50 and 60, and from
90 to 100, an inertial delay of six time unitsis considered. The
values obtained from 60 to 70 will be delayed using an inertial

delay of nine time units. Finally, a transport delay of 25 time
unitsis applied under collisions.

Theinput trajectories represent inputs to the delay function.
This function reactsto the inputs by sending the outputs shown
in the figure. The execution details of the model are presented
in Tablel. Each line of this table shows the state for the cell.
Thelines marked with a“*” symbol represent the execution of
the internal transition functions. The lines marked with a “!”
symbol (arrows in the figure) represent preemption. Each col-
umn represents a different state variable. First, we include the
time advance (t), present state and computed state (s, s). Then
the model’s phase (Active or Passive), next scheduled time (o)
and elapsed time for the model (€), are presented. Finaly, the
feasible future value for the cell (), the kind of delay (trans-
port or inertial), and the queue of scheduled events (oqueue)
are defined. In several cases, we show the values of the state
variables before and after the execution of the corresponding
transition functions (x/y).

The delay function receives external events at instants 30
and 40, and they are delayed for 17 time units. These values are

X1

1

0 IR

V.4 30 40 5863 727782879297 t

1

0 | .
! 47 57 63 97 t

Figure 13. Input/output trgjectories for combined transport/inertial delays

Table 1. Execution sequence of the previous trgjectories

t S s p o e f d 0 queue
... 0 0 P
30 | 01 1 A 17 0 1 tr. | (1,17)
40 | 1/0 0 A 7 10 0 tr. | (4,7),(0,17)
* 47 0 0 A |010|17/0| O (0,10)
* 57 1 1 P | O | 10/0| O
58 | 0/1 1 A 6 0 1 in.
! 63 | 1/0 0 A 1/9 5 10 | in.
* 72 0 0 P | O/ 0 0
72 | 01 1 A 25 0 1 tr. | (1,25)
77 | 10 0 A 20 5 0 tr. | (1,20), (0,25)
82 | 01 1 A 15 5 1 tr. | (1,15), (0,20), (1,25)
87 | 1/0 0 A 10 5 0 tr. | (1,10), (0,15), (1,20), (0,25)
92 | 011 1 A 5/6 | 5/0 1 in. | (1,5), (0,10), (1,15), (0,20), (1,25)
! 97 | 10 0 A 1/6 4 10 | in.
* 103 | 0/0 0 P 00 7 0

82 TRANSACTIONS Volume 17, No.2

G.A. Wainer

Table 2. Execution sequence of the previous trgjectories

t s p o e f d O queue
0 0 P
77 | 10 0 A 20 5 0 tr. | (1,20), (0,25)
82 | 0/1 1 A 15 5 1 tr. | (1,15), (0,20), (1,25)
87 | 10 0 A 10 5 0 tr. | (1,10), (0,15), (1,20), (0,25)
92 | 01 1 A 5/6 | 5/0 1 in. | (1,5),(0,10), (1,15), (0,20), (1,25)
! 97 | 10 0 A 1/6 4 10 | in. | (1,1),(0,6)
* 98 | 0/1 1 A 0/5 | 10 0 in. | (0,5
* 103 | 10 0 P O/ | 5/0 0
X14 X114
1 1
ol [LIII] of [[[][] _
Y. 4 72 77 8287 92 97 t Y. 4 72 77 8287 92 97 t
1 1
0 1 0 L[]
9798103 t 9798 113118123 t

Figure 14. Input/output tragjectories for selective preemption

Figure 15. Input/output trajectories for selective preemption

Table 3. Execution sequence of the previous trgjectories

t s p o e f d O queue
0 0 P
77 1/0 0 A 20 5 0 tr. | (1,20), (0,25)
82 | 0/1 1 A 15 5 1 tr. | (1,15), (0,20), (1,25)
87 1/0 0 A 10 5 0 tr. | (1,10), (0,15), (1,20), (0,25)
92 | 01 1 A 5/6 | 5/0 1 in. | (1,5),(0,10), (1,15), (0,20), (1,25)
! 97 1/0 0 A 1/6 4 10 | in. | (1,2),(1,12), (0,16), (1,21)
* 98 | 0/1 1 A | 010 | 10 1 in. | (1,10), (0,15), (1,20)
* 108 | V1 1 A 0/5 | 10/0 1 in. | (0,5), (1,10
* 113 | 1/0 0 A 0/5 | 5/0 0 in. | (1,5
* 118 | 0/1 1 A 0/5 | 5/0 0 in.
* 123 | 10 1 P 0/ | 5/0 0

stored in the o queue, and they are transmitted when the trans-
port delay isconsumed. At simulated time 58, theinput event is
retarded using an inertial delay of six time units. Asin instant 63,
the input changes from 1 to 0, the value is not kept during the
delay, and it is preempted. In addition, a collision is shown at
instant 72. The transition that occurred at instant 63 was delayed
using ninetime units. Asin the same simulated time an external
transition is activated, the confluent transition function is ex-
ecuted, thelocal transition function is carried out, and its result
is deferred using a transport delay of 25 time units. Finally, at
simulated time 92, an external event occurs. The previous val-
ueswere delayed using atransport delay of 25 time units. Here,

theinertial delay is activated prior to the output of the previous
transport delays. As the value is not kept during six time units,
preemption occurs at instant 97, and the o queue is emptied.

b. Inertial Delayswith Selective Preemption

Two new constructions related to the execution of inertial
delay functionswere added. They are devoted to selectively pre-
empt queued eventsfor inertial delays. The preempt-last(n) and
preempt-first(n) constructs will select the last/first n eventsin
the queue, and they will be preempted when anew event arrives
prior to the delay consumption.

Volume 17, No.2 TRANSACTIONS 83

June TRANSACTIONS 2000

Table 4. Execution sequence for the previous trajectories

t S s p o e f d O queue
0 0 P
30 | 01 1 A 10 0 1 tr. | (1,10)
* 40 1 1 A O/ | 10/0| 1
42 | 1/0 0 A 5 0 0 tr. | (0,5)
* 47 0 0 A 0O/ | 5/0 0
50 | 01 1 A 10 0 1 tr. | (1,10)
56 | 1/0 0 A 4 6 0 tr. | (1,4), (0,5)
* 60 0 0 A 0/1 4 1 (0,2)
* 61 0 0 P 00 1 0
X14 X1 4
1 1
"] 0 I
Y. & 30 42 5056 t Y. 4 30 42 5056 t
1 1
ol [] 0 1.
40 47 6061t 60 66 t

Figure 16. Input/output trajectories for rise/fall delays

Figure 17. Input/output trajectories for direct preemption

Table 5. Execution sequence for the previous trajectories

t S s p o e f d o queue
... 0 0 P
30 | 01 1 A 10 0 1 tr. | (1,10)
! 40 | 1/0 0 A O/cc | 10/0| 1
42 | 10 0 A 5 0 0 tr. | (0,5)
! 47 0 0 A 0/ec0 | 5/0 0
50 | 0/1 1 A 10 0 1 tr. | (1,10)
56 | 1/0 0 A 4 6 0 tr. | (1,4), (0,5
* 60 | 0/1 1 A 0/1 4 1 (0,6)
* 66 | 1/0 0 P 00 6 0

Figure 14 analyzes the behavior for such construction. The
input/output trajectories of the previous example were consid-
ered, andinthiscase, at smulatedtime 97, aninertial delay using
the preempt-last(3) function is executed.

In this example, the inertial delay is not accomplished, and
the last three events are preempted, reflecting the transmission
of thefirst ones.

The second construction introduced i sthe preempt(start, end)
behavior. In this case, the modeler can choose the individual
eventsto preempt when an event arrives. Figure 15 presentsthe
execution flow for the previous example. In thiscaseit is con-
sidered that when the preemption occurs, the preempt(2, 2)func-
tion isused.

84 TRANSACTIONS Volume 17, No.2

In this case, as the value is not maintained during the six
time units of the transport delay, it can be seen that the internal
event scheduled for simulated time 103 is preempted. There-
fore, the behavior is equivalent to having alonger sequence of
the previous scheduled value.

c. Inertial/Transport Delays

As showed previoudly, if an inertial delay is activated after the
reception of several eventsusing transport delays, every queued
event is preempted. The opposite combination does not intro-
duce any change from the standard behavior. If the value pro-
duced by atransition function is delayed using an inertial delay
function, and in the meantime a new external event arrives, it

G.A. Wainer

can preempt the previous value. This will happen only if the
new value is different from the origina one, as shown in Sec-
tion 5.1. The remaining events will be delayed using the trans-
port delay.

d. Rise/Fall Delays

In[6], the Rise-Fall delay functionis presented asaway to pro-
vide adifferent timing behavior according to the result obtained
when aBoolean functionisexecuted. Inthiscase, adelay length
is used when arise occurs (0-1 transition), whereas a different
oneischosenfor afall (1-0transition). Thisbasic behavior was
extended, providing different delays associated with rules ap-
plied by acell. In the following example, the cell uses atrans-
port delay of 10 time units for a 01 transition, and a delay of
five time units for 1/0 transitions, asis shown in Figure 16.

e. Direct Preemption

A final behavior that can be applied to acell isto provide direct
preemption to theinputs of the delay functions. In this case, we
want to represent that a cell changes its present state, but the
value is not sent to the neighboring cells. In the following ex-
ample, the cell uses atransport delay of 10 time units, and the
first inputs will be directly preempted. This construction is
equivalent to an inertial delay of zero time.

5.3 Example: Representation of an Ecomodel

In this section, we will analyze the use of the new constructions
using an example of an ecological system. It presentsthe combi-
nation between afield of antsand afire diffusion model. The cell
space represents the movements of ants in the ground, and it
allowsrepresenting fire or rain inthe cells. If the fire spreadsto
acdl withants, theantsdie. Instead, if it rains, thefire extinguishes.
The model usesa 3 x 3 neighborhood. The execution results of
the standard model are presented in Figure 18(a) and 18(b). We
can see the movement of the ants (represented as light dots) in
the ground. The ants move at random, using atransport delay of
500 ms. These movements can be seen in the lower part of Fig-
ure 18(a) and (b), which representsthe model’ s advance after 500
ms. We have also introduced several cellswith fire (dark dots),
and we can seethat the ants passing through them have died (this
can be seen, for instance, in the lower left part of the figure).
The new constructions are useful to represent complex tim-
ing conditions that could not be represented in the previous

specifications. For instance, Figure 18(c) and 18(d) show the
application of therise/fall delay construction. Thesefiguresaso
represent the model’s advance after 500 ms. After 10 seconds,
thefirecellsintroduced in Figure 18(a) and 18(b) have expanded,
obtaining the present configuration. This behavior has been ac-
complished using avariable delay for each cell, according toits
present state. The ant movement delay (500 ms) represents the
speed of the ants in the ground. Instead, the fire spreads more
slowly (adelay of five seconds). Thisis shown in Figure 18(d),
where the fire remains fixed in several cells while some ants
have moved. For instance, we can seethat there aretwo cellsin
the middle-left containing antsthat cannot move dueto thefire.
Nevertheless, thefireisnot invading those cellsdueto the length
of the delay used. In addition, we have introduced the influence
of rain, showing some cells where the previous existing fires
have disappeared.

Thesedelay construction could be also used, for instance, in
a heat diffusion model, where each cell will compute its future
state by averaging the present values of the neighbors. The rise/
fall delay construction can be used to represent that heat spreads
faster than cold. Therefore, the hot cells can use a small delay,
whilst the colder onesuse alarger one. If this construction were
not available, rules that are more complex should have been
used to define the variable delay. For instance, when fireis de-
tected in the ecomodel, severa intermediate states representing
the passage of fire should be used. Each intermediate state would
represent the consumption of the delay associated with the ant
movement (500 ms), and the fire status woul d rise after passing
10 intermediate states. As can be seen, thisinvolves more com-
plex rules and waste of computation time.

A similar situation occurs when the combination of trans-
port/inertial delaysis allowed. Let us suppose that we want to
model the following case: three ants arrive at a cell, and then
the cell changesto a “rain” state. The combined construction
can be used asfollows. A transport delay of 20 unitsis used for
the arrival of each ant, and an inertial delay of 10 time unitsis
used for the change to rain. In thisway, if afire condition oc-
curs before the consumption of the delay, the arrival of the ants
and the wet state are not transmitted to the neighboring cells.
The antsthat did not leave the cell die, and the rain state is not
sent. Instead, if the inertial delay finishes before the fire, the
antsand therain will spread to the neighbors. This combination
was not allowed in the original specifications, and this kind of
situation could not be easily modeled. Oneway to representitis

b
|

(a) — 2:000 s.

(b) — 2:500 s.

(c)-11:500s

(d)-12:000s

Figure 18. Execution of a simple Ecomodel

Volume 17, No.2 TRANSACTIONS 85

June TRANSACTIONS 2000

to include awider neighborhood. In this case, we could detect
the presence of fire in far cells, and in that case, activate an
alternative rule turning on an intermediate state variable. This
value reflects that fire is approaching, and another rule should
avoid the diffusion of the wet state and the ants. Again, thein-
troduction of several complex rulesintroduces a higher amount
of computation time. Moreover, when the neighborhood sizeis
increased, overhead is introduced due to the need of to keep a
more complex datastructure. In addition, alarger neighborhood
produces activation of other cells, activating them even when
they are quiescent.

Now, let us consider that a cell receives fire after the intro-
duction of two ants. A transport delay of two time unitsis used
for theant arrival, and aninertial delay of fivetime unitsisused
for the fire. We could include arule such that, if at instant four
of theinertial delay the rain arrives at the cell, the fire is pre-
empted using preempt_last(1). Therefore, thearrival of both ants
is still recorded, and their existence in the present cell istrans-
mitted to the neighbors. Instead, if the inertial delay finishes,
the fire spreads and the arrival of the antsis not recorded. The
original constructions would preempt all the previous events,
loosing both ants. In this case, a larger neighborhood would
have helped to detect the arrival of fire by looking to a greater
distance, asin the previous case.

Finally, a cell could be provided with direct preemption of
the inputs to represent, for instance, the transmission of the
present content of a cell only when the number of antsin each
cell is a multiple of five. Each input of an ant is directly pre-
empted, except when amultipleisreached. Thisbehavior could
not be achieved in any way using the original constructions,
because every time a state variable changes, the neighbors are
informed after the delay consumption.

6. Conclusion

Thiswork presented an extension of the Cell-DEV S paradigm,
allowing the parallel execution of the models. To do so, the be-
havior under collisions was defined accurately. In this case, the
user is in charge of defining the cell behavior under simulta-
neous events. A simulation mechanism related to this kind of
model was presented, and anew extension to the flat coordina-
tion mechanism was devel oped.

The formalism enables the specification of complex cell-
shaped models. In thisway, the construction of thesimulatorsis
improved, enhancing their safety and development costs. Be-
sides, the parallel execution allows performance improvements
without adding extra costsin devel opment or maintenance. Paral-
lel implementation of these models could not be achieved inthe
original definitions. Instead, this new approach introduces mod-
elsthan can be executed correctly in parallel environments. The
use of aformal specification based on the DEV S formalismim-
provesthe vaidation of the specifications. An accurate semantics
was defined, allowing one to ensure the validity of the models.

The formal specification of the delaysfor Cell-DEV S mod-
els was extended, in such a way that the modeler could define
complex behavior using simple constructions. These construc-
tions are useful in different domains, including digital circuit
design, prediction of the behavior in ecological systems, analysis

86 TRANSACTIONS Volume 17, No.2

of traffic in urban populations, etc.

Combined delay behavior was alowed, depending on the
rules executed by each cell. The combination of both behaviors
canimprovethe definition of these complex models. These new
constructions allow the reduction of the sizes of the needed
neighborhoods, and the complexity of the rules involved for
each cell. They aso introduce a simple definition of complex
timing behavior that was not allowed in the original definitions,
or wastoo difficult to devel op. Consequently, performance gains
and reductions in the development times can be achieved.

At present, a mapping between parallel Cell-DEV S models
and the parallel simulation environment wasdefined, and isunder
implementation. In this way, a tool to run complex n-dimen-
sional Cell-DEV S modelswith timing delays will be available.
This tool will reduce development costs of the application (as
was proven for the two-dimensional binary case), and efficient
execution will be achieved using a parallel framework.

7. Acknowledgments

| would like to thank the anonymous referees and Dr. Bernard
Zeigler for their comments on this article. Thiswork was partialy
funded by ANPCY T Project 11-04460 and UBACY T Projects
TX04 and IW10.

8. References

[1] Wainer, G. and Giambiasi, N. “ Specification, Modeling and Simu-
lation of Timed Cell-DEV S Spaces.” Technical Report No. 98-
007, Departamento de Computacion, Facultad de Ciencias
Exactasy Naturales, Universidad de Buenos Aires, 1998.

[2] Wainer, G. “Discrete-Events Cellular Models with Explicit De-
lays.” PhD Thesis, Université d Aix-Marseille [11, 1998.

[3] Zeigler, B. Theory of Modeling and Smulation, First Edition,
Wiley, 1976.

[4] Zeigler, B. Multifaceted Modelling and Discrete Event Smula-
tion, Academic Press, 1984.

[5] Wolfram, S. Theory and Applicationsof Cellular Automata. \ol.1,
Advances Series on Complex Systems, World Scientific,
Singapore, 1986.

[6] Giambiasi, N. and Miara, A. “SILOG: A Practical Tool for Digi-
tal Logic Circuit Simulation.” Proceedings of the 16th D.A.C.,
San Diego, 1976.

[7] Ghosh, S. and Giambiasi, N. “On the Need for Consistency be-
tween the VHDL Language Constructions and the Underlying
Hardware Design.” Proceedings of the 8th European Smula-
tion Symposium, Vol. 1, Genoa, Italy, pp 562-567, 1996.

[8] Barylko, A., Beyoglonian, J. and Wainer, G. “GAD: A Genera
Application DEVS Environment.” Proceedings of IASTED
Applied Modelling and Smulation ' 98, Hawaii, 1998.

[9] Barylko, A., Beyoglonian, J. and Wainer, G. “CD++: A Tool to
Develop Binary Cell-DEVS Models’ (in Spanish). Proceed-
ings of the XXII Latin-American Conference on Informatics,
Quito, Ecuador, 1998.

[10] Rodriguez, D. and Wainer, G. “New Extensions to the CD++
Tool.” In Proceedings of the SCS Summer Computer Smula-
tion Conference, San Diego, 1999.

[11] Fujimoto, R. “Parallel Simulation of Discrete Events.” Commu-
nications of the ACM, Vol. 33, No. 10, pp 30-53, 1990.

G.A. Wainer

[12] Chow, A. and Zeigler, B. “Abstract Simulator for the Parallel [14] Gardner, M. “The Fantastic Combinations of John Conway’s New

DEV SFormalism.” Proceedings of the Winter Smulation Con- Solitaire Game ‘Life.’” Scientific American, Vol. 23, No. 4,
ference, 1994. pp120-123, April 1970.

[13] Chow, A. and Zeigler, B. “Revised DEVS: A Pardlel, Hierarchi- [15] Wainer, G. “Definition of Parallel Cell-DEV'S Spaces.” Techni-
cal, Modular Modeling Formalism.” Technical Report, Univer- cal Report No. 98-021, Departamento de Computacion, Facultad
sity of Arizona, 1994. de Ciencias Exactasy Naturales, Universidad de BuenosAires,

1998.

Appendix

A parallel Cell-DEV S atomic model can be formally defined as:
TDC=< X, Y, |, S, 9, N, d, 6int, 6ext, 6con, T, Tcon,)\, D>

Inthiscase, #T < O TO{N,Z,R,{0,1}} O{¢};
XOT;
YOT,
I =<n, X W, P, P> Here,n ON,n <o isthe neighborhood's size; pX, ¥ O N, pX, WY < oo isthe number of other input/
output ports; and V j O [1,n],i O{X, Y}, Pji isadefinition of a port (input or output, respectively), with Pji ={(Nji, Tji)/V i
O[1,n+ui], NjiO[ig,in+y] (portname),y Tj' O 1 (port type)}, wherelj = {x/x O Xif X} or lj={x/xOYifi=Y};
sSOT;
6 ={ (s, phase, oqueue, f, @) /
s [0 Sisthe status value for the cell,
s [Sisan intermediate status value for the cell;
phase O { active, passive},
oqueue ={ (((v1,01),-,(Vm,Om)) /MONOm<o) OV (iON,i O[1,m]),vi DSOoj ORy" o };
fOT,; and
o ORy o };
N O S+,
d ORp*, d < oo
dint: 6 - S
Sext: QxXb - 8,Q={(s,€)/sd0xNxd;ed[0,D(9]};
dcon: xXb - S;
T: N - Sx/{inertial, transport} x d;
Teon: XPxN - Sx {inertial, transport} x d;
A:S - Yb: and
D:8xNxd - Ry o .

Volume 17, No.2 TRANSACTIONS 87

June TRANSACTIONS 2000

The semantics definition for the transition functions is defined as follows (note that tail/head/add represent the methods used to
manage the elements of alist):

dint:
0=0; oqueue z {[0}; phase = active

VY i0 [1, m], g Ooqueue, §.0 = §.0 — head (0 queue.o); oqueue = tail (cqueue);
s = head (ogqueue.v); o = head (oqueue.o);

0=0; oqueue ={0}; phase = active

0=oc [phase=passive

(s, transport) = T(Ng); o #0; e=D(0x N xd); phase = active;

s#s [0 (s=s OV ilO[1lm]adoqueug ai.c =aj.0—e [0 0 =0 —¢, add(oqueue, <s,d>) Of =s)

(s, transport) = T(Ng); 0 %£0; e=D(0xNxd); phase = passive;

s#zs 0 (s=s 0O o=d O phase=active O add(oqueue, <s,d>) Of =s)

(s, inertial) = T(Np); s#£0; e=D(0x N xd); phase = passive;

szs 0 (s=s 0O phase=active 0 o=d Of=s)

(s, inertial) = T(Ng); 0 %£0; e=D(0xNxd); phase = active;

s#s 0 s=5 0O (f#zs 0O oqueue={0} 0o=d Of=y)

6con:
Ng; Xb; e=00 e=D(@xNxd);

N¢ = Teon(XP); c=0; Xb=Xb_{X/e=0};

88 TRANSACTIONS Volume 17, No.2

T.A. Sidani and A.J. Gonzalez

Volume 17, No.2 TRANSACTIONS 89

