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Alfa-1 is a simulated computer designed for computer organization courses. Alfa-1 and its accompanying 
toolkit allow students to acquire practical insights into developing hardware by extending existing compo-
nents. The DEVS formalism is used to model individual components and to integrate them into a hierarchy 
that describes the detailed behavior of different levels of a computer's architecture. We introduce Alfa-1 and 
the toolkit, show how to extend existing components, and describe how to use Alfa-1 for educational pur-
poses. We also explain how to assemble, link, and execute applications and how to test new extensions using-
the testing tools. 
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1. INTRODUCTION  

Computer organization courses are usually based on the description and analysis of the 
behavior of digital computers. The complexity of these is so high that they are usually 
described in layers defining different levels of abstraction. These layered descriptions 
allow greater insight when analyzing a given subsystem. In general, the following levels 
are described: 

a) digital circuits: in general, this level is described using Boolean logic; 
b) microprogramming: microprogrammed or hardwired control units are described 

using block diagrams, FPGA logic, etc.; 
c) instruction sets are described using diagrams and algorithmic descriptions;  
d) assembly language can be expressed using algorithmic descriptions and finite 

state automata (representing the assembler syntax). 
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This organization emphasizes understanding the details of the subsystems, but the com-
plex interlayer interactions are not addressed. The introduction of higher levels of ab-
straction (such as programming languages or operating systems) makes the pedagogical 
tasks even more difficult. Another consequence of this organizational structure is the 
difficulty of providing practical experience in every layer. In most cases, training is only 
provided at the level of the instruction set, resulting in courses that focus on the higher 
level of the hierarchy, and thus lose the details of the interlevel interactions. In general, 
these kinds of courses are based on the classic bibliography of the area (for instance, 
Hennessy and Patterson [1994]; Patterson [1995]; Stallings [1999]; Heuring and Jordan 
[1997]; and Tanenbaum [1999]), which present detailed behavioral descriptions of the 
underlying subsystems. These descriptions are essential in understanding the system 
concepts. Nevertheless, covering the details of each of the subsystems is not feasible.  

Consequently, students do not gain an understanding of system behavior as a whole 
nor detailed knowledge of the subsystems. They may even finish with incomplete and 
erroneous views of how a computer works, which may affect their progress in more 
advanced courses in an area (e.g., operating systems, embedded systems, computer ar-
chitectures, etc.). We decided to attack these problems using simulation tools. Our goal 
is to provide the students with means of designing hardware architectures. Full under-
standing of the behavior of the different layers and their interaction can be achieved, 
thanks to the ability to acquire practical experience with the intralayer and interlayer 
behavior. In the first stage of this project, we analyzed several tools that were built in 
order to implement computer architectures. We recognized three basic categories of 
architecture simulator tools:  

A. general-purpose tools  
B. specific-purpose tools 
C. hardware description languages 

 
The results of this study were presented in Wainer et al. [2002]. In that work, we classi-
fied our educational needs as follows: 
I.  Levels of abstraction: we need tools that allow the student to gain experience with 

the different layers described in a computer system. In particular, we need 
1. the ability to describe the multiple abstraction levels studied in computer organi-

zation courses; and  
2. the capacity to define different components using a unique approach. 
 

II. Pedagogical value: we need tools that can be used easily by students taking com-
puter organization courses. In particular, we require 
1. the possible use by students in the early stages of their careers of new tools or 

programming languages that can be programmed without extra effort in areas 
that are out of the scope of computer organization courses; 

2. a fast learning curve, due to the lack of time in one-term courses; and  
3. resources available in the  public domain. 
 

III. Modifiable models representing the architecture components, including  
1. the ability to extend the architecture to include new components; 
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2. the ability to modify existing architectures, providing students with the opportu-

nity to experience different configurations; and  
3. ease in testing changes in the architecture. 

 
IV. Study of advanced architectural facilities, including 

1. the ability to reproduce existing architectures; and  
2. the capacity to define state-of-the-art architectures. 
 

We analyzed several existing tools according to these needs and classified their advan-
tages in each of these categories. We included different examples of general- purpose 
tools, which can be applied to build any kind of processor by defining an instruction set, 
the computer organization, and its components. For instance, SimpleScalar [Burger and 
Austin 1997] allows different architectures to be defined using basic building blocks 
that can be used to model advanced architectural aspects. HASE (Hierarchical Architec-
ture design and Simulation Environment) allows users to rapidly develop and explore 
computer architectures with multiple abstraction levels [Coe et al. 1996]. SimOS is a 
general-purpose tool [Rosenblum et al. 1997] that permits different architectural details 
to be defined by providing different CPU models (including descriptions of the architec-
ture and components: caches, multiprocessor memory buses, disk drives, etc.). A large 
number of general-purpose tools are devoted to model multiprocessor simulations. 
Some examples can be found in Ikodinovic et al. [1999]; Brewer et al. [1991]; Burns et 
al. [2000]; Bedichek [1995]; Shanmugan et al. [1992]; and Hein and Dal Cin [1998]. 
None of them meet our educational requirements; instead, they are best suited for 
higher-level courses to support lectures on computer architecture.  

Another possibility is to describe the details of a given architecture using any of the 
existing hardware description languages. For instance, VHDL [Ghosh 2000] can be 
used for documentation, verification, and synthesis of large digital designs, using struc-
tural, dataflow, and behavioral methods. Verilog [Thomas and Moorby 1991] is easier 
to learn than VHDL, but lacks constructs to support system-level design (structural 
models are built from gate primitives and other modules). SDL [Mitschele-Thiel 2000] 
was developed as a description language for reactive systems, and uses extended finite 
states presented in a graphical form.  

Several of the existing tools were built for the specific purpose of emulating existing 
architectures. Some tools focus on the Intel 80x86. For instance, Augmint [Nguyen et 
al. 1996]; Virgo [Pearce 2000]; and Simx86 [Shealy et al. 1997] focus on the instruction 
set level and the assembly language level of 8086-based computers. Other environments 
are based on the MIPS architecture. MPS [Morsiani and Davoli 1999] defines RAM, 
ROM, the processor, disks, tapes, printer, and terminal. Spim [Hennessy and Patterson 
1997] implements an assembler-extended instruction set for the MIPS, omitting some of 
the complex details. Alpha processor simulators are presented in Edmonson and Reilly 
[1998], enabling developers to analyze pipelining levels and instruction-level parallel-
ism. THRsim11 [Anderson et al. 1999] emulates the Motorola 68HC11 microcontroller 
in its entirety, including memory, CPU registers, I/O ports, a timer, pulse accumulator 
registers, AD converter registers, and other standard features.  
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Table I. Comparing Architecture Simulators 

Name/Category  I II III IV 
  1 2 1 2 3 1 2 3 1 2 3 

Alpha Emulator B - - - - - - -  + + - 
Alfa-0 B - - + +  - -  - -  
CASLE B - - + +   -  - -  
CHIP B - - + +  - -  - -  
CPU-Sim B - - + +  - -  - -  
ESCAPE/DLX B + - + +  - + - - +  
HASE  A +  - -  + + + + + - 
Limes B - - - -  - -  - + - 
MPS B - - + +  - -  + -  
PROTEUS B - - - -  - -  - + - 
PROVIR B - - + +  - -  - -  
SDL C + + - - - + + + + +  
SimOS A  - - -  + + + + + - 
SimpleScalar A - - - -  + + + + + - 
SimX86 B - - + +  - -  + -  
SPIM B - -    - -  +   
Verilog C + + - - - + + + + +  
VHDL C + + - - - + + + + +  
Virgo/SimX86  B - - + +  - -  + -  
Z80/68HC11/Atari emulators B - - + +  - -  - -  

 
 
 

Other authors emulated systems based on processors that nowadays are obsolete. El 
Hajj et al. [2000] presented a method for simulating the Z80 processor using spread-
sheets. Q-Emulator [Zidlicky et al. 2002] is a software emulator of the QL Sinclair PC, 
which interprets the Motorola 68008 instructions, redirecting input and output to a Mac 
or PC video, keyboard, mouse, disks, sound hardware, and serial ports.  
A similar approach was taken in PLM [Isacovich et al. 1999]. This work was devoted to 
providing an emulator for the Atari processor, enabling Atari programs to be run on  
Intel-based computers. The CHIP (Cornell Hypothetical Instructional Processor [Ba-
baoglu et al. 1983]) emulates a PDP-11 (including dynamic memory mapping, two 
modes of processor operation, and eight interrupt priority levels). PROVIR [Bevilacqua 
et al. 2000] is based on the IBM 360 architecture (including an assembler, a debugger, 
and the kernel of an operating system). 

In our study we found that the most adequate tools, in an educational sense, are spe-
cific-purpose tools that define a fictitious computer architecture and are tailored to edu-
cational needs. CASLE [Deitz and Adams 1994] is a Web-based computer using its 
own instruction set. The interface automatically produces an optimizing compiler, as-
sembler, and architectural simulator using the specified architecture. Students can ex-
periment with the effects of changing the number of registers, instruction latencies, 
optimizations, etc. Alfa-0 [Wainer et al. 2001] and the Rudimentary Computer [Pastor   
 and Sánchez 1997] are two examples of very simple instruction set computers with 
educational purposes. These computers enable the representation of some  
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details of the datapath, microprogramming, and instruction set levels. They include a  
reduced number of registers and instructions in order to simplify the analysis of the  
problem. CPU-Sim [Skrien 1994] is a Java application that allows users to design sim-
ple processors at the microcode level and to execute programs written in machine lan-
guage. It permits assembly language programs to be written and debugged, and allows 
analysis of the state of the machine. Finally, ESCAPE [Campenhout et al. 1998] is 
based on the DLX architecture [Hennessy and Patterson 1997]. The tool enables users 
to create their own instructions, to modify the numbers of registers, and the size of im-
mediate operands, and so on. 

The results of this survey are summarized in Table I. We show a set of different 
tools, their types, and classify their features according to the categories presented previ-
ously. The '+' sign represents a tool that fulfills our goals and the '-' sign represents a 
tool that does not meet our goals. Column IV.3 shows the tools that are especially tai-
lored for studying multiprocessor architectures.  

When we analyze Table I we can see that none of the tools (which, in fact, represent 
a sample of the different kinds of existing tools) suit our needs. Many tools are strong in 
a given category but weak in others. If we analyze category I, we can see that only a few 
tools are able to represent the multiple layers required. Nonetheless, they are weak from 
the pedagogical standpoint. Tools that are strong candidates from a pedagogical per-
spective are weak from some others: they are too simple, or do not permit the underly-
ing organization to be modified. This pattern is repeated when we consider the modifi-
ability of tools. The most interesting candidates are too complex in terms of learning. 
The best choice is the ESCAPE tool, based on the DLX architecture. Nevertheless, this 
tool implements a nonexistent processor, and each of the abstraction levels are repre-
sented using different formalisms, making it more difficult to accomplish a thorough 
study of the architecture.  

We decided to build a new set of simulation tools that could meet all our goals. The 
tools can be used by anyone who has a basic knowledge of programming techniques; 
they are public domain, and have been built using public domain software. The tools 
were built to be fully understood by people who have taken an introductory course in 
computer programming. The hierarchical and discrete event nature of the problem made 
DEVS [Zeigler et al. 2000] a good choice to ease the development task. DEVS provides 
a system-theoretic framework for describing discrete event systems as a composite of 
submodels that can be simulated by abstract entities. As we will show, all of the levels 
usually described in computer organization courses can be developed using DEVS as 
the modeling framework. In DEVS theory, every existing model can be integrated into a 
hierarchy, allowing reuse of tested models (which we have done extensively in this pro-
ject).   

We started the project as a specific-purpose architecture based on a modern architec-
ture (the SPARC processor). The model-oriented nature of DEVS resulted in a set of 
components that can be integrated to define existing architectures (at present, Intel and 
DSP model architectures are being developed). Hence, we have built a general-purpose 
toolkit that is specialized as a special-purpose tool.                                                                                                   

DEVS enables a modeler to focus on the problem to be solved, as abstract simulators 
are in charge of execution. Behavioral (atomic) or structural (coupled) models can be  
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defined within a modeling hierarchy. A DEVS atomic model is described by 
 

M = < X, S, Y, δint, δext, λ, D > 
X: input events set 
S: state set 
Y: output events set 
δint: S → S,  internal transition function 
δext: QxX → S, external transition function, with Q = {(s,e)/ s ∈ S, and e ∈ [0,D(s)]} 
λ: S → Y, output function  
D: S → R0+?elapsed time function 

 
Each model uses input/output ports in the interface (defined by the X and Y sets) to 
communicate with other models. When an input external event is received in an input 
port, it activates the external transition function, which produces a change of state. The 
new state has an associated lifetime, after which the internal transition function is acti-
vated (producing a new state change). The model can generate data to be transmitted 
through the output ports. The output function, which is in charge of this task, is acti-
vated before the execution of the internal transition function.  

DEVS atomic models can be used to build coupled models. It was proven that 
DEVS coupled models are semantically equivalent to atomic models. Consequently, it is 
possible to build different semantically equivalent modeling hierarchies. A DEVS cou-
pled model is defined by 

 
CM = < X, Y, D, {Mi}, {Ii}, {Zij} > 
X: input events set 
Y: output events set 
D: index of components, and i? ∈ ?D  
Mi: basic DEVS model 
Ii: influencees of model i, and ??j ∈ ?Ii 
Zij: Yi → ?Xj , the i to j translation function 

 
Each coupled model is composed of a set of basic models (atomic or coupled) connected 
through their input/output ports. Each component is identified by an index number. The 
influencees of a model are those receiving the outputs of the model. The translation 
function transforms the outputs of a model to the inputs of others. First, we create an 
index of influencees for each model (Ii). We then define which outputs of model Mi are 
connected to inputs in model Mj by using the set of influencees. When two submodels 
have external simultaneous events, the select function prescribes which of them should 
be activated first. 

There are different tools that implement the theoretical concepts defined by the 
DEVS formalism (DEVSJava, DevsSim++, DEVS-C++, JDEVS, DEVS-Scheme, etc.). 
We used the CD++ tool, which is public domain and fits our needs [Rodriguez and 
Wainer 1999; Wainer et al. 2001; Wainer and Troccoli 2001]. In this tool, atomic mod-
els are programmed in C++, enabling users with basic programming skills to develop  
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new models. Coupled models are defined using a built-in specification language, which 
represents the model coupling scheme. The detailed design and implementation results 
of this project are presented in Wainer et al. [2002].  

In the following sections we explain how the tool can be used and modified. We also 
show how the tools were used in computer organization assignments and how to repeat  
this experience in a classroom. We organized the article according to the model's archi-
tecture and organization. Stallings [1999] states that the term computer architecture 
refers to those attributes of a system visible to a programmer, and that computer 
organization refers to the operational units and their interconnections. We start by 
describing the organizational level, focusing on the definition and modification of 
components. We then discuss the system architecture level, showing how a programmer 
can use the services provided by the computer (including examples of executable files). 
We subsequently present a set of tools devoted to improving testing, and an ongoing 
effort to building a GUI for the toolkit. Finally, we present a set of activities that can be 
carried out using the toolkit. 
 
2. THE ORGANIZATION LEVEL 

The Alfa-1 simulated computer is built as a set of interacting submodels representing 
the behavior of the architectural components. As we mentioned, Stallings [1999] defines 
computer organization as to the operational units and their interconnections that realize 
architectural specifications. Organizational attributes include those hardware details 
transparent to the programmer, such as control signals, interfaces between the computer 
and peripherals and the memory technology. The Alfa-1 processor organization is based 
in the specification of the integer unit of the SPARC processor [Sun 2001], and is shown 
in Figure 1. The processor includes 8 global registers (RegGlob, shared by every proce-
dure), and 512 organized in windows of 24 registers (RegBlock).   

The processor includes several special-purpose registers: 
 
1. PCs: there are two program counters. PC contains the address of the next in-

struction, and nPC stores the address of the next PC. If the instruction is a con-
ditional branch, nPC is assigned to PC, and nPC is updated with the jump ad-
dress.  

2. CWP (circular window pointer) is a specialized 5-bit register that marks the ac-
tive window. Every time a new procedure starts, CWP is decremented.  

3. PSR (processor status register) stores the program status.  
4. Y is used by the product and division operations. Multiplication uses 32-bit op-

erands, producing 64-bit results. The 32 most significant bits are stored in Y, 
and the remaining bits are stored in the ALU-RES register. The integer division 
operation takes a 64-bit dividend and a 32-bit divisor, producing a 32-bit result. 
The Y register stores the 32 most significant bits of the dividend. One ALU in-
put register stores the least significant bits of this number, and the other, the di-
visor. The integer result is stored in the ALU-RES register and the remainder is 
stored in the Y register.  
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Fig. 1. Organization of the integer unit [Wainer et al. 2002]. 
 

 
5. BASE and SIZE: we used a flat memory addressing scheme. The BASE register 

points to the lowest address a program can access. SIZE stores the program size, 
which represents the maximum addressable memory unit. 

6. WIM (window invalid mask) is a 32-bit register used to avoid overwriting a 
register window. When CWP is decremented (because a procedure was called), 
the WIM  bit is verified for  the new window. If it is active, an interrupt is raised 
and the service routine must store the window contents in memory. WIM usu-
ally marks the oldest window. 

7. TBR (trap base register) points to the memory address storing the location of 
trap routines. 

 
The processor was implemented using the CD++ tool. In a first stage, we specified the 
behavior of each component, analyzing inputs and outputs of the original circuits. These 
specifications allowed test cases to be derived (details of this phase can be found in 
Daicz et al. [1998]). Each subcomponent of the computer was then defined using DEVS 
as the specification formalism. Using these descriptions, each model was implemented 
in the CD++ toolkit. Each of the models can be reused in building different architec-
tures. Each model has an associated experimental framework that allows the derived test 
cases to be executed (details of this phase can be found in De Simoni et al.  
[1998]). Thirty-five different circuits were defined as DEVS atomic or coupled models 
and were integrated into the architecture. Several of these models were defined as multi-
components based in digital logic. A set of Boolean gates was included, and these mod-
els enabled us to define some of the submodels at the digital logic level. Details about 
the existing models and their various implementations can be found in Wainer et al. 
[2002]. 
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class AtomicState : public ModelState { 
public: 
 enum State { 
  active, 
  passive 
 } ; 
 
 State st; 
 AtomicState(){}; 
 virtual ~AtomicState(){}; 
 
 AtomicState& operator=(AtomicState& thisState); 
 void copyState(BasicState *); 
 int  getSize() const; 
}; 

 
Fig. 2. The AtomicState class. 

 
 
 

Finally, the main model was built as a coupled model connecting all the submodels 
defined previously. The CPU executes under the supervision of the control unit. It re-
ceives signals from the rest of the processors using 64 input bits (organized in 5 groups: 
the instruction register, the PSR, BUS_BUSY_IN, BUS_DACK_IN, and BUS_ERR). 
Its outputs are sent using 70 lines organized in 59 groups. Some of them include read-
ing/writing internal registers, activating lines for the ALU or multiplexers. In addition, 
connections with the PC, nPC, trap controller, and PSR registers are included. Finally, 
the data, address and control buses can be accessed. The control unit was defined using 
microprogramming concepts. Hence, by modifying the control unit, students can gain 
experience at the microprogramming level. 

After running the individual tests for each of the components, we executed integra-
tion tests. Integration required combining all of the components and defining their 
interactions to represent the execution flow of the computer. Execution flow tasks are 
carried out by the control unit, which, in this case, was built as a DEVS model using 
several input/output ports representing the CU lines. According to the input received, it 
issues appropriate outputs by activating the different circuits that were defined 
previously (details can be found in De Simoni et al. [1998]). Finally, a thorough 
integration test was executed; the results of this phase are presented in Section 4. 

The first step needed is to install the required tools. The instructions to do so can be 
found at  

<http://www.sce.carleton.ca/faculty/wainer/alfa-1.html>. 
 

After installing the tools successfully, different activities can be carried out. Many of 
them involve modifying or extending the existing components. To do so, atomic models 
may need to be changed, or new models may be added and integrated with existing cou-
pled models. The following section is devoted to showing how to code new models or 
modify existing ones, following the guidelines presented in Wainer and Troccoli [2001]. 
We then show how to introduce new atomic and coupled models into the simulated 
computer, which may be carried out as a course assignment. 
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2.1. Defining New Models 
In CD++, a new atomic model is created as a new class derived from the Atomic base 
class. The state of the model is composed by the variables that can be changed during a 
simulation cycle, which are defined in the AtomicState class in Figure 2.  

When creating a new atomic model, a new class derived from atomic has to be cre-
ated. Atomic is an abstract class that declares a model’s API and defines some service 
functions the user can use to write the model. The Atomic class (Figure 3) provides a set 
of services and requires a set of functions to be redefined:  
 

1. holdIn(state, Time) tells the simulator that the model will remain in the state state 
for a period time. It corresponds to the D(s) DEVS atomic function. 

2. passivate() sets the next internal transition time to infinity. The model will only 
be activated again if an external event is received. 

3. sendOutput(Time, port, BasicMsgValue*) sends an output message through the 
port. The time should be set to the current time. 

4. nextChange() returns the remaining time for the next internal transition. 
5. lastChange() returns the time since the last state change. 
6. state() returns the phase of the current model. 

 

The new class should overload the following functions: 
 

1. virtual Model &externalFunction( const ExternalMessage & ) is invoked when 
one external event arrives to a port. It corresponds to the δext function of the 
DEVS formalism. 

 
 
class Atomic : public Model { 
public: 
 virtual ~Atomic(); // Destructor 
 
protected: 
 //User defined functions. 
 virtual Model &initFunction() = 0; 
 virtual Model &externalFunction( const ExternalMessage & ); 
 virtual Model &internalFunction( const InternalMessage & ) = 0 ; 
 virtual Model &outputFunction( const CollectMessage & ) = 0 ; 
 virtual string className() const 
  
 //Kernel services 
 Time nextChange(); 
 Time lastChange(); 
 
 Model &holdIn( const AtomicState::State &, const Time & ) ; 
 Model &sendOutput(const Time &time, const Port & port , Value value) 
 Model &passivate(); 
 
 Model &state( const AtomicState::State &s ) 
 { ((AtomicState *)getCurrentState())->st = s; return *this; } 
 
}; // class Atomic 

Fig. 3. The atomic class. 



ALFA1 Educational Processor • 121 

ACM Journal of Educational Resources for Computing, Vol. 1, No. 4, December 2001. 

 

 
 

Fig. 4. A consumer/producer scheme [Zeigler et al. 2000]. 
 

 
 

2. virtual Model &internalFunction( const InternalMessage & ) corresponds to the 
δint function of the DEVS formalism. 

3. virtual Model &initFunction() is invoked by the simulator at the beginning of the 
simulation and after the model state has been initialized. 

4. virtual Model &outputFunction( const CollectMessage & ) is in charge of send-
ing all of the output events of the model. 

 

After each atomic model is defined, they can be combined into a multicomponent model. 
Coupled models are defined using a specification language especially defined for this 
purpose. The language was built following the formal definitions for DEVS coupled 
models (Figure 4). Optionally, configuration values for the atomic models can be in-
cluded. 

The [top] model always defines the coupled model at the top level. As shown in 
formal specifications presented in Section 1, four properties must be configured: com-
ponents, output ports, input ports, and links between models.  

The following syntax is used: 
 
Components: model_name1[@atomicclass1] [model_name2[@atomicclass2] ... 
This sentence is used to list the components comprising the coupled model. A cou-
pled model may include atomic models and/or other coupled models as components. 
If we include an atomic component, we must specify an instance and a class name. 
This allows a coupled model to use more than one instance of an atomic class. For 
coupled models, only the model name must be given. This model name must be de-
fined as another group in the same file. 
Out: portname1 portname2 ... enumerates the output ports of the model. This 
clause is optional because a model may not have output ports. 
In: portname1 portname2 ... enumerates the input ports. This clause is also op-
tional because a coupled model is not required to have input ports. 
Link: source_port[@model] destination_port[@model] ... describes the in-
ternal and external coupling scheme. The name of the model is optional. The model 
used by default is the coupled model currently being defined. 
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[top] 
components : Transd@Transducer Gen@Generator Consum 
Out : out 
Link : out@generator arrived@transducer 
Link : out@generator in@Consumer 
Link : out@Consumer solved@transducer  
Link : out@transducer out 
 
[Consum] 
components : Qu@Queue Proc@CPU 
in : in    out : out  
Link : in in@qu 
Link : out@qu in@Proc  
Link : out@Proc done@qu 
Link : out@Proc out 

 
Fig. 5. Example for the definition of a DEVS coupled model. 

 
 
Figure 5 shows a sample of a coupled model representing a simple consumer/pro-

ducer scheme. It consists of three models: a generator that creates data to be consumed, 
a consumer, and a transducer that measures the consumer speed. The consumer is a 
coupled model, composed of a processor and a queue to keep waiting jobs. 

At the top level of this example, the Generator influences the Transducer and the 
Consumer. The Consumer also influences the Transducer, as well as the Queue. The 
Processor influences the Consumer and the Queue influences the Processor. Finally, the 
Transducer influences the top model. These interconnections define the influence sets 
for each of the components. The influencee sets are used to define the translation func-
tions, which transfer data through the input/output ports in the models. 

2.2. Modeling at the Organization Level: A Simple Look-Aside Component 
The remainder of Section 2 shows simple examples of the educational activities that can 
be carried out at the organization level (the models developed here were built as as-
signments in a computer organization course). We show how a user can modify or 
change existing components, focusing on extending the simulator by adding compo-
nents external to the processor. 

Look-aside components (usually input/output devices) are attached to one of the bus 
slots. In order to be able to add any new component, we must know the bus protocol 
used for Alfa-1. If we analyze the descriptions in Daicz et al. [1998], we can see that the 
bus uses the lines in Table II. 

In each data transfer, we can identify an active and a passive component. All the ac-
tive components are chained by a bus grant line (BGRANT), used to receive a signal 
from the component with next higher priority and to send a signal to the component 
with next lower priority (Figure 6). The active component must take over the bus. First, 
it requests to be the next one to use the bus. If the component requesting the bus re-
ceives a 1 over the BGRANT input line, this means that none of the components with 
higher priority need the bus. Then, it sends a 0 over the BGRANT output line, telling 
the components with lower priority that it is intending to use the bus. It must then wait 
until a 0 is received over the BUSY line, meaning that the bus is no longer being used.  
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Table II. Alfa-1 Bus Lines 

Pin Name In Out Description 
Data0-31 X X Data 

A0-31 X X Address 
Clock X X Clock 

AS X X Address Strobe 
RD/WR X X Read or Write 
DTACK X X Data Acknowledge 

Err X X Error 
RESET X X Reset 

IRQ1-15 X X Interrupt Request 
Busy X X bus Busy 

 
 

 
Fig. 6. Active components BGRANT chain [Wainer et al. 2002]. 

 
 
Finally, it will send a 1 over the BUSY line to let the other components know that the 
bus is being used. 

After the bus is taken, the address to be accessed should be written to the address bus 
(A0-31). The access to memory involves two parameters. First, the active component 
chooses which 32-bit memory word will be used and sets the address on the address bus. 
The second parameter allows a 32-bit word to be split into four bytes (D0-7, D8-15, 
D16-23, D24-31) and it must be specified. The BSEL bits are used to choose the desired 
bytes: if the active component sets BSEL0, D0-7 will be addressed (BSEL1 corresponds 
to D8..15, etc.). If the active component requested a write operation (clearing RD/WR), 
the data to be written should be sent over the selected bytes of the data bus (D0-31). The 
active component will subsequently send a 1 over the AS line (letting the passive com-
ponent know that everything is set), and will wait for the DTACK line to be set (which 
means that the request has been fulfilled). If the operation is a read, the data on the D31-
0 lines is collected. The active component must now send a 0 over the AS line to finish 
the operation. Now the active component can start another operation (it still controls the 
bus) by setting BGRANT and clearing BUSY to release the bus. 

The passive component (for instance the main memory) will use a different protocol. 
It will first receive a read or write request from the active component, represented by AS 
being set. It will then receive the address (A0-31) and the bytes selected in the byte 
mask (BSEL0-3). It then verifies the memory address (which should belong to the ad- 
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Table III. Bus Lines Used by a Look-Aside Component 

Signal In Out 
RD/WR X  

AS X  
DTACK  X 

ERR  X 
D31..0 X X 

A31..0 X  

Bsel3..0 X  

 
 
dress space of the component). If a write operation is requested, the data to be written 
should be available over the selected bytes of the data bus (D0-31). It will then output or 
receive data from Data0-31, according to the action specified by the RD/WR line. When 
the request has been fulfilled, the passive component will set DTACK. Finally, the AS 
line must be cleared. 

Using this basic information about the bus lines, we show the specification and im-
plementation of a look-aside component. This very simple model can be used as an 
exercise to show how new models can be incorporated into the existing hierarchy. When 
a read operation is issued, the look-aside component will return 1s in the data bits (D31-
0) selected using the BSEL3-0 mask. If a write operation is issued, it returns an error. 
Look-aside components are attached to the bus like the memory. Table III shows the 
signals that should be used. 

This atomic model can be defined as follows: 
 
SAMPLELA = < X, S, Y, δint, δext, λ, D >. 

X =AS, RD/WR, A ∈ {0,4,…,232-1}, BSEL ∈  {0,..,24-1}; 
S = responseTime ∈ R0+; 

Y=D ∈ {0,...,232-1}, DTACK, ERR; 
 
In addition, the transition functions are described informally in Figure 7.  
As we can see, this component follows the bus specification, and is suitable for at-

tachment to the bus in order to work as a passive component. This behavior is imple-
mented on δext( ). It first senses a 1 over the AS line. The component then checks the 
address space in order to find out whether the request was for its address. In that case, it 
fills out the selected data bytes with 1’s. Finally, the component waits for the active 
component to clear the AS line. When this happens, the samplela component sends a 0 
over the DTACK line to end the communication. If we want to simulate a delay in the 
component’s response, the atomic model must wait for some time before starting with 
the next step. Thus, we call the hold_in procedure with the respective delay  
parameter. The output function λ( ) sends the signals over the output ports when needed. 
On the other hand, δint( ) performs just one operation, passivate. This means that the 
component remains inactive until a new signal arrives on any input port. 
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δext() { 
 When (1 is received in the port AS) 
  if the value on received over A31..2 is in our address space then 
   if (RD/WR=1) then 
    if (BSEL0 = 1) then D7..0 := FFh  
    if (BSEL1 = 1) then D15..8 := FFh  
    if (BSEL2 = 1) then D23..16 := FFh  
    if (BSEL3 = 1) then D31..24 := FFh  
    DTACK:=1 
   else 
    ERR:=1    
 When (0 received in the port AS) and (1 sent in the port DTACK) 
  DTACK:=0; 
 hold_in(responseTime) 
} 
 
δint() { passivate; } 
 
λ() { 
 IF (D31..0 changed) send D31..0 over the D31..0 ports 
 IF (DTACK changed) send DTACK over the DTACK port 
 IF (ERR is changed) send ERR over the ERR port 
} 

 
Fig. 7. Behavior of the samplela look-aside component. 

 
 

 

 
Fig. 8. Look-aside model interconnection. 

 
 

Figure 9 shows part of the implementation of the transition functions using the CD++ 
tool. The first lines of the externalFunction (δext( )) identify the signal that has arrived. 
Since this function activates every time an input is received, we begin by identifying 
one signal at a time. We distinguish whether we are sending a response or waiting for a 
request using the m_state variable. There are two arrays named m_ctlIn and m_ctlOut, 
containing  the  present  values  of  the  input  and  output control ports. For instance, the  
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Model & sampleLA::externalFunction( const ExternalMessage & msg) { 
  string portName; 
   unsigned long portNum; 
 unsigned i; 
 
 // Get the port name where a message arrived, and its value 
 nameNum(msg.port().name(), portName, portNum ); 
  for( i=0; i<NUM_CTL_IN_PORT; i++) 
  if ( portName == ctlInPortNames[i] ) 
   m_ctlIn[i]= bit (msg.value()); 
 
 if ( portName == string(addrInPortNames[0]) ){ 
  m_addrIn[portNum]= bit (msg.value());  } 
 if (portName == bselInPortNames[0] ) 
  m_bselIn[portNum]= bit (msg.value()); 
 if (portName == dataInPortNames[0] ) 
  m_dataIn[portNum]= bit (msg.value()); 
 if (m_ctlIn[asin] && (m_state==waiting)) {  
 
  //If someone has requested a read/write operation to the bus 
  unsigned long addrRequested = fromBits(m_addrIn,m_addrWidth); 
  if ((m_minAddrSpaceLimit <= addrRequested) &&  
         (addrRequested < m_maxAddrSpaceLimit)) { 
  if (m_ctlIn[rwin] == 0) //if its trying to write to the model 
   m_ctlOut[errout].val  = 1; //we send an error 
  else  { 
   for (unsigned long i = 0 ; i< m_bselWidth; i++) 
      if (m_bselIn[i]) 
    for (unsigned long j=0 ; j<m_byteSize ; j++) 
     m_dataOut[i*m_byteSize+j].val = 1; 
    m_ctlOut[dtackout].val = 1;    } 
  } 
  m_state = sending; 
 } else if (m_state == waiting) { 
  //If we do not receive an AS line we output 0 on dtack 
   m_ctlOut[dtackout].val = 0; 
   m_ctlOut[errout].val = 0;    
   m_state = waiting;           } 
 this->holdIn( active, m_responseTime );   
} 
 
Model & sampleLA::internalFunction( const InternalMessage & msg) { 
 this->passivate(); 
} 
 
Model & sampleLA::outputFunction( const InternalMessage & msg) { 
 //Outputting data over the ports 
 for(unsigned i=0; i<NUM_CTL_OUT_PORT; i++) 
  if (needSend(m_ctlOut[i])) 
    this->sendOutput(msg.time(),*m_ctlOutPorts[i],m_ctlOut[i].val); 
 for(unsigned i=0; i<m_dataWidth; i++){ 
  if (needSend(m_dataOut[i])) 
    this-

>sendOutput(msg.time(),*m_dataOutPorts[i],m_dataOut[i].val); 
 } 
}     

 
Fig. 9. CD++ samplela look-aside component implementation. 
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components: samplela 
 
Link : OUT_A2@bus A2@samplela 
. . . 
Link : OUT_A31@bus A31@samplela 
 
Link : OUT_DATA0@samplela IN_DATA0@cpu 
. . . 
Link : OUT_DATA31@samplela IN_DATA31@cpu 
 
Link : OUT_DATA0@cpu IN_DATA0@samplela 
. . . 
Link : OUT_DATA31@cpu IN_DATA31@samplela 
 
Link : DTACK@samplela IN_DTACK@bus 
Link : OUT_RD_WR@bus RW@samplela 
 
Link : OUT_BSEL0@bus BSEL0@samplela 
. . 
Link : OUT_BSEL3@bus BSEL3@samplela 

 
Fig. 10. The iu.ma definition in Alfa-1. 

 
 
 

[samplela] 
 
responseTime = 0:0:0:0 
minAddr =  65536 
maxAddr = 131072 

 
Fig. 11. Adding the atomic component samplela  to the ALFA1. 

 
 
rwin constant within the m_ctlIn array represents the RD/WR port; hence, m_ctlIn[rwin] 
will contain a 1 when the last input received on that port was 1. We only send data over 
the output ports if they have changed their values. Consequently, output ports 
(m_ctlOut, m_dataOut) are represented using a data type that distinguishes between the 
ones that need to be sent and the ones that do not. The needSend function is used to 
query whether a value needs to be sent. The value in the val field will be sent over the 
corresponding output port if needed. Finally, the internalFunction (δint) and the out-
putFunction (λ) are straightforward implementations of the definitions in Figure 7. Once 
successfully compiled, the simulator will be able to reference the new component using 
the samplela name. The coupled model file of the Alfa-1 simulator (iu.ma) must be 
edited in order to include the new model in the hierarchy. The lines in Figure 10 should 
be added in the [top] model: 

These definitions correspond to the bus connections of the samplela model. More 
precisely, following the original iu.ma connections, the address bus (A2-31), the BSEL  
signal, and the RD/WR are connected from the bus component to the samplela compo-
nent. The DTACK line is connected the other way around (from samplela to 
bus). The data bus (D0-31) is connected directly from and to the CPU component; this 
connection is bidirectional due to the characteristics of this bus.  



128 • Wainer et al. 

ACM Journal of Educational Resources in Computing, Vol. 1, No. 4, December 2001. 

 
The samplela model has a response delay that can be configured using the responseTime 
atomic model parameter. This argument, as well as the address space boundaries mi-
nAddr and maxAddr (lower and higher bounds, respectively) will be passed to the model 
by adding the lines in Figure 11 at the end of the iu.ma file.  

2.3. A Sample Look-Through Component 

A look-through component (usually a cache memory) is inserted between the micropro-
cessor and the bus, and it should be transparent to the other components attached to the 
bus. We will now include the specification of a very simple look-through component,  
which responds to read operations by returning 1’s in the data bits selected by BSEL. If 
a write operation is intended, an error is raised.  

Although it may seem similar to the look-aside component, this is not the case. This 
component is attached between the CPU and the bus, and it must be transparent to any 
other components when its address space its not being referenced.  

The signals handled by a look-through component can be divided into those con-
nected to the CPU and the ones connected to the bus. The lines connected to the CPU 
must react as a standard bus, whereas those connected to the bus must react as a CPU. In 
Table IV we show the input/output lines of this model, divided into the two types. 

This atomic model can be defined as follows: 
 

SAMPLELT = < X, S, Y, δint, δext, λ, D >. 

X = AS(CPU),  Busyin(CPU), Ain∈{0,...,232-1},BSELin ∈ {0,...,23-1}, RD/WRin, 

Din(CPU) ∈ {0,...,232-1}, Errin, DTACKin, BGrantin, Busyin(bus), BGrantin, 

Din(bus) ∈ {0,..,232-1}; 

S = responseTime ∈ R0+; 
Y = Errout, Dtackout, Busyout(CPU), Busyout(bus), Bgrantout, Dout(CPU) ∈ {0,...,232-

1}, RD/WRout, AS(BUS),Aout∈{0,...,232-1},BSELout ∈{0,...,23-1},Dout(BUS) 

∈{0,...,232-1}; 
 
In addition, the transition functions are described informally in Figure 12. We can 

see that these transition functions are similar to the ones in the samplela component. 
The δext() functions are the same when the address of the request is in the address space 
of the samplelt component. When the address is referencing another component, the 
samplelt component produces three state changes. First, it takes over the bus. Second, it 
forwards all of the input signals (data, address, RD/WR, AS, DTACK, ERR) from the 
CPU to the bus. Third, when the communication has ended, it releases the bus and stops 
forwarding the signals. 

The implementation of these functions using CD++ can be found in the distribution 
files of the Alfa-1 computer. We have used similar implementation techniques to those 
used in samplela. A variable named m_forwardingState is used to distinguish among the 
three forwarding states previously identified. In this case, the code that copies the input  
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Table IV. Input/Output Lines of a Look-Through Model 

  CPU Bus 
Signal In Out In/Out In Out In/Out 

Err  X  X   
Dtack  X  X   

AS X    X  
RD/WR X    X  

Busy   X   X 
Bgrant  X  X   
A31..2 X    X  

BSEL3..0 X    X  

D31..0   X   X 

 
 

Values to the output ports (which takes place if the component is forwarding signals 
between the bus and the CPU) has been moved into the external function. This way it 
will be executed only once, when it is needed. 

The look-through component must be attached between the CPU and the bus. To do 
so, we must first detach the CPU component from the bus (shown in Figure 13), and we 
must connect every line at both sides of the samplelt component (as described in Figure 
14). Assuming that the new component has been compiled into the simulator and that its 
name is samplelt, we can change the coupling scheme by editing the coupled model file 
of the Alfa-1 (iu.ma). In this case, the lines in Figure 13 should be removed from the top 
model. The lines removed from the top model should be replaced by the lines in Figure 
14. 

After defining this simple look-through component, we can model a complete cache 
memory. A cache is a small amount of fast memory that reduces the overhead in access-
ing main memory by storing the most recently used cells. Whenever the CPU needs to 
perform operations with data stored in the cached cells, the cache memory will be ac-
cessed transparently. The decision about which main memory cells should be cached 
and which should not is made dynamically. In order to enable cached memory cells to 
change as a program runs, the cache memory includes some information about its con-
tents in a directory. This index stores the main memory addresses of the cached cells. It 
also includes information to define which cells should be removed from the cache when 
we need to allocate new cells and there is no space left. There are several cache strate-
gies to translate address bus requests into cache data. The two most widely used are 
direct and associative mapping (which uses associative memory to do the.  
translation). The most common replacement strategies are the least-recently-used, least-
frequently-used, first-in-first-out, and random [Tanenbaum 1999]. The two most com-
mon strategies to  update  the  main  memory  are  to  update  every  change  to  the  
cached cells (write-through cache) or not (write-back cache). In the latter case, the cache 
memory needs to flush cached cells back to the main memory before they can be re-
placed. 

We have developed a model representing a cache memory with write-back update. It 
is implemented as an extension to the look-through component defined earlier in this 
section.  
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δext() { 
 When (1 is received in the port AS(CPU)) 
  if the value on received over Ain31..2 is in our address space 

then 
     if (RD/WRin=1) then 
     if (BSELin0 = 1) then Dout(CPU)7..0 := FFh  
     if (BSELin1 = 1) then Dout(CPU)15..8 := FFh  
     if (BSELin2 = 1) then Dout(CPU)23..16 := FFh  
     if (BSELin3 = 1) then Dout(CPU)31..24 := FFh  
     DTACKout:=1 
     else 
     ERRout:=1    
     When (0 is received in AS(CPU)) and (1 is sent in port DTACK-

out) 
         DTACKout:=0; 
  else 
   wait for BGRANT(BUS)=0 
   wait for BUSYin(BUS)=0 
   BUSYout(BUS):=1 
   start forwarding 
   wait for DTACKin(BUS)=1 
   DTACKout(CPU):=1 
   wait for AS(CPU)=0 
   AS(BUS):=0 
   BUSYout(BUS):=0 
   stop forwarding 
   DTACKout(CPU):=0 
 hold_in(responseTime) 
} 
 
δint() { passivate; } 
 
λ() { 
 IF we are forwarding 
  Dout(CPU)31..0:=Din(bus)31..0 
  Dout(bus)31..0:=Din(CPU)31..0 
  Aout31..2:=Ain31..2 
  Bselout3..0:=Bselin3..0 
  Errout:=Errin 
  Dtackout:=Dtackin 
  Asout:=Asin 
  RD/WRout:=RD/WRin 
 IF (Dout(CPU)31..0 changed) send Dout(CPU)31..0   
 IF (Dout(bus)31..0 changed) send Dout(bus)31..0   
 IF (DTACKout changed) send DTACKout  
 IF (ERRout changed) send ERRout  
} 

 
Fig. 12. Behavior of the samplelt look-through component. 

 
 

All the steps required to implement this model are included in the tool package, ena-
bling users to gain experience with cache memory models. The model is designed to be 
changed easily without reprogramming the whole model. The associative mapping 
scheme with a FIFO replacement strategy is thoroughly tested. At present, LFU, LRU, 
and random replacement strategies are provided as in-progress developments. 
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Link : OUT_DATA0@cpu IN_DATA0@mem ... 
Link : OUT_DATA31@cpu IN_DATA31@mem 
Link : AS@cpu IN_AS@bus  
Link : RD_WR@cpu IN_RD_WR@bus 
Link : A0@cpu IN_A0@bus ... 
Link : A31@cpu IN_A31@bus 
Link : BSEL0@cpu IN_BSEL0@bus ... 
Link : BSEL3@cpu IN_BSEL3@bus 

 
Fig. 13. Removing connections to define a new coupling scheme. 

 
 
 
Link : OUT_DATA0@cpu IN_DATA_CPU0@samplelt ... 
Link : OUT_DATA31@cpu IN_DATA_CPU31@samplelt 
Link : OUT_DATA0@samplelt IN_DATA_CPU0@cpu ... 
Link : OUT_DATA31@samplelt IN_DATA_CPU31@cpu 
Link : AS@cpu IN_AS@samplelt 
Link : RD_WR@cpu IN_RW@samplelt 
Link : A0@cpu IN_A0@samplelt ... 
Link : A31@cpu IN_A31@samplelt 
Link : BSEL0@cpu IN_BSEL0@samplelt ... 
Link : BSEL3@cpu IN_BSEL3@samplelt 
Link : OUT_DATA_BUS0@samplelt IN_DATA0@mem ... 
Link : OUT_DATA_BUS31@samplelt IN_DATA31@mem  
Link : AS@samplelt IN_AS@bus 
Link : OUT_RW@samplelt IN_RD_WR@bus 
Link : OUT_A0@samplelt IN_A0@bus ... 
Link : OUT_A31@samplelt IN_A31@bus 
Link : BSEL0@samplelt IN_BSEL0@bus ... 
Link : BSEL3@samplelt IN_BSEL3@bus 

 
Fig. 14. New links to connect a new component. 

 
 
 

 
Fig. 15. Cache memory atomic abstraction level. 

 
 
 

The first step to consider when defining a new component is how to design the 
model and the abstraction levels. At the highest level of abstraction, we see the cache as 
a single component interacting with the CPU and the bus. In order to achieve this behav-
ior, the model follows the standard behavior of the look-through cache previously de-
scribed. A second level of abstraction considers the internal organization of the cache. 
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Fig. 16. Cache memory structure. 
 
 
 

 
 

Fig. 17. Directory structure. 
 
 

 
We divide the component into five subcomponents connected to two interfaces: one to 
handle bus communication and the other to handle CPU communication. An internal 
memory stores cached data, and a directory stores the main memory cells being cached 
(Figure 15). A control unit coordinates the operation of the other components (Figure 
16). A third level of abstraction considers dividing the directory into three components: 
an associative memory to store the memory address of the cached memory; a replace-
ment control component; and a validity component (see Figure 17). The validity module 
recognizes which cells have been updated in main memory. 
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3. THE ARCHITECTURE LEVEL 

As explained in Section 1, Stallings [1999] defines computer architecture as those at-
tributes that have a direct impact on the logical execution of a program. Examples of 
architectural attributes include the instruction set, the number of bits used to represent 
various data types (e.g., numbers, characters), I/O mechanisms, and techniques for ad- 
dressing memory. For example, whether a computer will have a multiply instruction is 
an architectural design issue. 

The Alfa-1 architecture is based in the description of the SPARC processor [Sun 
2001]. This processor is provided with 520 integer registers divided into windows of 24 
registers each, including input, output, and local registers for each procedure. When a 
procedure starts, 16 registers are reserved (8 local and 8 for output), and the 8 output 
records of the calling procedure are used as inputs. A specialized 5-bit register, called 
CWP (circular window pointer), marks the active window in the register ring. CWP is 
decremented each time a new procedure is started. The 32-bit WIM register (window 
invalid mask, one bit per window) avoids the superposition of a window in use by an-
other procedure. When CWP is decremented, the hardware checks whether WIM is on 
the new window, and if so, an interrupt is raised. The interrupt service routine saves the 
content of the window, which will be overwritten. Usually, WIM has only a single bit set 
to 1, marking the oldest window. When that window is reached, the WIM rotates one 
unit. The processor status register includes the result of the last executed instruction. Its 
contents are interpreted as shown in Table V. 

The memory is organized using byte addressing and the Little-Endian standard to 
store integers. The processor issues a memory access operation by writing an address 
(and data, if needed) to the bus.  

As explained in the Organization section, there is a trap base register used to imple-
ment hardware and software interrupts. The register points to a memory address that 
contains the location of the trap routines. This location is organized as a table whose first 
20 bits (trap base address) store the base address of the trap table (Table VI). When an 
interrupt request is received, the number of the trap to be serviced is stored in the bits 
11..4. Therefore, the TBA points to the table position containing the address of the ser-
vice routine. The last 4 address bits are 0 to guarantee at least 16 bytes to store each 
routine. 

The computer emulates a reduced version of the instruction set level of the SPARC 
architecture. This processor uses instructions with a fixed size of 32 bits, with 8, 16, or 
32 bit operands. There are two basic Load/Store operations, classified according to the 
size and sign of their operands. Arithmetic and Boolean operations include add, and, or,  
div, mul, xor, xnor, and shift. Several jump instructions are available, including relative 
jumps, absolute jumps, traps, calls, and return from traps. Other instructions include 
changing the movement of the register window, NOPs, and read/write operations on the 
PSR. There are two execution modes: user and kernel. Certain instructions can only be 
executed in kernel mode. In addition, the base and size registers are used only when the 
program is running in user mode.  

After installing the tool, the computer is ready to run executable code for the SPARC 
processor. The first step in developing a program for execution is to write the source 
code  using  the SPARC Assembly Language [Sun 2001]. The source code must then be  
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Table V. Contents of the Processor Status Register 

Bits Content Description 
31-24 Reserved  

23 N – Negative 1 when the last operation is negative 
22 Z – Zero 1 when the last operation is zero 
21 V – Overflow 1 when the last operation is overflow 
20 C – Carry 1 when the last operation carried one bit 

19-12 Reserved  
11-8 PIL–Processor Interrupt Level Lowest interrupt number to be serviced. 

7 S – State 1= Kernel mode; 0=User mode. 
6 PS – Previous State Last mode. 
5 ET – Enable Trap 1=Traps enabled; 0=Traps disabled. 

4-0 CWP Points to the current register window. 
 

 
Table VI. Contents of the Trap Base Address Table 

Bits Content Description 
31..12 Trap base address Base address of the Trap table 
11..4 Trap Type Trap to be serviced 
3..0 Constant (0000)  

 
 

 
Fig. 18. Process of simulation from the assembler file to the memory dump. 

 
 

assembled and linked. The resulting executable file must be loaded as a memory image 
in the simulated computer’s memory. Then the simulation tool should be activated. 
Once the program has ended, the memory contents can be dumped and the memory 
values can be checked. While the simulation is executing, a detailed log file records 
component activity, allowing the analysis of changes in the state variables contained in 
the memory, processor, or bus components. Figure 18 sketches these procedures.  

The first lines in Figure 19 show parts of a program written in the SPARC Assembly 
Language. The second part (Initial Image) gives binary code generated when assembled, 
along with the  absolute  addresses  for  each  instruction or data (one word each). 
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! Partial and special copy of a string. r1 : offset over source 
! r2 : character to copy. r3 : offset over dest 
cycle: lduh [%r1+source], %r2   ! Load unsigned halfword 
  jmpl routine, %r6   ! Jump and link 
  sth %r2, [%r3+dest]    ! Delay slot 
  inc 2, %r1    ! next character 
  inc 4, %r3    ! next position over dest  
  subcc %r1, 12, %r0    
  bne cycle    ! Repeat the Cycle 6 times 
  nop 
  unimp 
routine:jmp %r6+8 
    st %r1, [%r3+dest2]    ! Delay Slot 
source: .ascii "xxxx String of text xxxx" ! Source string 
dest: .ascii "                        "   
dest2: .ascii "                        "  
   .ascii "                        "  
   .ascii "                        "  
   .ascii "                        " 
Initial Image 
Addr.  Memory Image     Interpretation 
... 
032 11000100 00010000 01100000 01001100  load character 
036 10001101 11000000 00100000 01000100   
040 11000100 00110000 11100000 01100100  save the character 
044 01000100 00000000 01100000 00000010  inc 2 to r1 
048 10000110 00000000 11100000 00000100  inc 4 to r3 
052 10000000 10100000 01100000 00001100  substract 12 to R0 
056 00010010 10111111 11111111 11111010  relative jump  
060 00000001 00000000 00000000 00000000  nop 
064 00000000 00000000 00000000 00000000  unimp 
... 
076 01111000 01111000 01111000 01111000 x x x x 
080 00100000 01010011 01110100 01110010     S t r 
084 01101001 01101110 01100111 00100000 i n g   
088 01101111 01100110 00100000 01110100 o f    T 
092 01100101 01111000 01110100 00100000 e x t  
 

096 01111000 01111000 01111000 01111000 x  x  x x 
100 00100000 00100000 00100000 00100000 
... 
Final image 
... 
076 01111000 01111000 01111000 01111000 x x x x 
080 00100000 01010011 01110100 01110010     S t r 
084 01101001 01101110 01100111 00100000 i n g   
088 01101111 01100110 00100000 01110100 o f    T 
092 01100101 01111000 01110100 00100000 e x t  
 

096 01111000 01111000 01111000 01111000 x  x  x x 
100 01111000 01111000 00100000 00100000 x x     
104 01111000 01111000 00100000 00100000 x x 
108 00100000 01010011 00100000 00100000  S     
112 01110100 01110010 00100000 00100000 t r 
   

116 01101001 01101110 00100000 00100000 i n 
 

120 01100111 00100000 00100000 00100000 g  
... 

 
Fig. 19. Execution of a simple routine. 
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This simple program makes a special copy of a string. We take two-character tokens and 
copy them to the destination string, separating each two-character token with two blank 
characters. The token copy is repeated six times. We show the translation of the binary 
code based on the specification of the instruction set of the SPARC processor. Finally, 
we show the memory (Final image) after program execution, where the values stored in 
memory have followed the instructions defined in the executable code. 

Along with the memory maps, the execution logs generated by the CD++ tool allow 
the control flow in the processor datapath to be seen. Figure 20 shows parts of the log 
file generated when the program is executed. It includes the messages interchanged 
between executing models, and each message shows its type, timestamp, value, ori-
gin/destination, and the port used for the transmission. There are five types of messages: 
I (initializes the corresponding models); * (signals a state change due to an internal 
event); X (used when an external event arrives); Y (the model’s output); and D (indi-
cates that a model is done with a task). 

The execution cycle starts by initializing the higher-level models (memory, CPU, 
etc.). When the message arrives at the CPU model, it is relayed to its lower-level com-
ponents: instruction register, PC adder, PC multiplexer, control unit, etc. When the ini-
tialization cycle has finished, the imminent model is executed. In this case, the nPC 
model is activated, transmitting the address of the next instruction. As we can see, the 
2nd and 5th bits are returned with a 1 value, meaning that the nPC value is 100100 = 36 
(as we see in Figure 20, the program starts in address 32). The value is sent to the pc-inc 
model, which adds 4 to this register. The update is finished in 10:000 time units, as the 
activation time of this model was scheduled using the circuit delay. At that moment, a 4  
value is added to the nPC, and we obtain the 3rd and 5th bits in 1 (res3 and res5); that 
is, 101000 = 40, the next PC. 

The PC is activated and the value 010000 (32) is obtained afterwards. This is the ini-
tial address of the program. The following event is the arrival of a clock tick, sent to the 
processor. The CPU schedules the next tick (in 1:00:000 time units) and transmits the 
signal’s arrival to the control unit, which activates several components: a-mux, ALU, 
Addr-mux, IR, and so on. 

We finally see, at simulated time 20:000, that the memory has returned the first in-
struction (compare the results with the bit configuration stored in address 32). The in-
struction is sent to the CPU to be stored in the instruction register and to follow with the 
execution. The rest of the instruction cycle is completed in a similar way. Following the 
log file, or connecting output models to the output lines in the processor, we are able to 
follow the execution flow for any program. 

 
 

 
Message I/00:00:00:000/Root(00) to top(01) //Initialize the higher level 
Message I/00:00:00:000/top(01) to mem(02) //components: mem-

ory,bus,CS,etc. 
Message I/00:00:00:000/top(01) to bus(03) 
... 
Message I/00:00:00:000/top(01) to dpc(65) 
Message D/00:00:00:000/mem(02)/... to top(01)   //The models reply the 

next  
Message D/00:00:00:000/bus(03)/... to top(01) //scheduled event 
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Message D/00:00:00:000/csmem(04)/... to top(01) 
Message I/00:00:00:000/cpu(05) to ir(06) //The CPU initializes  
                                                //the components 
Message I/00:00:00:000/cpu(05) to pc_add(07) 
Message I/00:00:00:000/cpu(05) to pc_mux(08) 
... 
Message */00:00:00:000/Root(00) to top(01) 
Message */00:00:00:000/top(01) to CPU(05) 
Message */00:00:00:000/cpu(05) to npc(10) // Take the nPC 
Message Y/00:00:00:000/npc(10)/out2/1.000 to CPU(05) 
Message Y/00:00:00:000/npc(10)/out5/1.000 to CPU(05) 
Message D/00:00:00:000/npc(10)/... to CPU(05) 
Message X/00:00:00:000/cpu(05)/in2/1.000 to pc_latch(11)// Send to pc-inc 
Message X/00:00:00:000/cpu(05)/op2/1.000 to pc_inc(13) // to increment 
Message X/00:00:00:000/cpu(05)/in5/1.000 to pc_latch(11) // the value

  
Message X/00:00:00:000/cpu(05)/op5/1.000 to pc_inc(13) 
Message D/00:00:00:000/pc_latch(11)/00:00:10:000 to CPU(05) // Schedule  
Message D/00:00:00:000/pc_inc(13)/00:00:10:000 to CPU(05) // activation 

of  
Message D/00:00:00:000/pc_latch(11)/00:00:10:000 to CPU(05)//pc-inc model 
... 
Message Y/00:00:00:000/pc(12)/out5/1.000 to CPU(05)  //Initial address 
Message D/00:00:00:000/pc(12)/... to CPU(05)  // 010000 = 32 
... 
Message */00:00:00:000/top(01) to CPU(05) 
Message */00:00:00:000/cpu(05) to clock(45) // Clock tick 
Message Y/00:00:00:000/clock(45)/clck/1.000 to CPU(05) 
... 
Message */00:00:00:000/top(01) to CPU(05) // Arrival to the CU and  
Message */00:00:00:000/cpu(05) to cu(43)  // activation of the components 
Message Y/00:00:00:000/cu(43)/a_mux_reg/1.000 to CPU(05) 
Message Y/00:00:00:000/cu(43)/b_mux_reg/1.000 to CPU(05) 
Message Y/00:00:00:000/cu(43)/enable_alu/1.000 to CPU(05) 
Message Y/00:00:00:000/cu(43)/addr_mux/1.000 to CPU(05) 
Message Y/00:00:00:000/cu(43)/ir_latch_en/1.000 to CPU(05) 
... 
Message */00:00:10:000/cpu(05) to pc_latch(11) 
Message D/00:00:10:000/pc_latch(11)/... to CPU(05) 
Message */00:00:10:000/cpu(05) to pc_inc(13)  // Update the nPC 
Message Y/00:00:10:000/pc_inc(13)/res3/1.000 to CPU(05) 
Message Y/00:00:10:000/pc_inc(13)/res5/1.000 to CPU(05) 
Message D/00:00:10:000/pc_inc(13)/... to CPU(05) 
... 
Message */00:00:20:001/top(01) to mem(02)//Memory returns the first inst. 
Message Y/00:00:20:001/mem(02)/dtack/     1.000 to top(01) 
Message Y/00:00:20:001/mem(02)/out_data2/     1.000 to top(01) 
Message Y/00:00:20:001/mem(02)/out_data3/     1.000 to top(01) 
... 
Message X/00:00:20:001/top(01)/in_dtack/     1.000 to bus(03) 
Message X/00:00:20:001/top(01)/in_data2/     1.000 to CPU(05) 
Message X/00:00:20:001/top(01)/in_data3/     1.000 to CPU(05) 
Message X/00:00:20:001/top(01)/in_data6/     1.000 to CPU(05) 
Message X/00:00:20:001/top(01)/in_data13/    1.000 to CPU(05) 
Message X/00:00:20:001/top(01)/in_data14/    1.000 to CPU(05) 
Message X/00:00:20:001/top(01)/in_data20/    1.000 to CPU(05) 
... 
Message X/00:00:20:001/top(01)/in_data31/     1.000 to CPU(05) 
Message D/00:00:20:001/bus(03)/00:00:00:001 to top(01)... 

 
Fig. 20. Log file of a simple routine. 
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4. TESTING ALFA-1 

Every time the simulated computer is modified, it is necessary to test the resulting 
changes. In order to improve the testing scheme, we include a testbench that can be  
applied to future modifications. The testbench consists of a set of test files and a tool 
that simplifies the detection of errors. 

We used a functional testing approach [Beizer 1990], using black-box tests for each 
of the components. This enables us to test the execution of each of the models without 
knowing their internal representation. Black-box testing implies that the selection of test 
data, as well as the interpretation of test results, are based on the functional properties of 
the software. The primary objective is to assess whether the simulated computer does 
what it is supposed to do. We have built an experimental framework, consisting of a 
data generator connected to the model to be tested, and an acceptor that contains infor-
mation about the desired output value for each one of the generated inputs. These tests 
were carried out by different groups of students that were provided with only the basic 
experimental framework, the model specification, and object code for the models. They 
were not provided with any information about the internal behavior of the models. The 
results of this testing phase were returned to the original development teams, who fixed 
the models that had problems. This is the suggested approach for any activity involving 
modifications to the existing models. 

Once individual testing is finished, integration tests must be carried out. The devel-
opers of the control unit model carried out the first tests by running sample assembly 
programs developed as initial simulation test cases. A complete set of tests  
was then built to provide future developers with a way to test external behavior. In this 
case, the simulated computer model operates on a finite number of inputs that can be 
interpreted as a binary bit stream. A complete functional test would consist of subjecting 
the program to all possible input streams, defining the desired behavior to be obtained in 
each case. For each input, the model would accept the stream and produce a correct 
outcome; accept the stream and produce an incorrect outcome; or reject the stream. Be-
cause the rejection message is itself an outcome, the problem is reduced to verifying that 
the correct outcome is produced for every input. This approach was employed for many 
of the individual components, which have a bounded number of inputs and outputs. 
Nonetheless, even a short executable program of 10 bytes in length has 280 possible 
input streams and corresponding outcomes. Hence, complete functional testing in this 
sense is impractical. For this reason, we have divided the possible inputs in classes and 
selected representatives of each class to test its behavior. If a representative for a given 
class fails a test, then an error over this class of inputs has been found.  

We chose to use the instruction set as the source of information to divide the inputs. 
We built a set of programs executing only one instruction. For example, a program us-
ing the add instruction takes two source registers and stores the result in a third. There 
are different subclasses for each class; for example, we can execute this instruction us-
ing the registers %r1, %r2, and move the result to the %r3 register. Other  
kinds of subclasses involve the use of the carry flag. Once the individual classes are 
tested, combination examples are executed to check interaction influences (Figure 21). 

We defined the following test classes according to the SPARC instruction set (we 
show some examples of each class test). 
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Fig. 21. Classes and subclasses in a simulated computer test. 
 
 

Store 
ST (STORE):  
    STREG, [ADRRESS]  ∀ REG 
MOV (MOVE) 
    MOV REGa, REGb  ∀ REGa, REGb (REGISTER TO REGISTER) 
    MOV CONST, REG   ∀ REG (MOVE A CONSTANT TO A REGISTER)  
SET 
    SET  LABEL, REG ∀ REG 
Increment, decrement, add, subtract and jumps 
INC, DEC, SUB, ADD, SUBCC, ADDCC, Bxx 
INC CONST, REG  ∀ REG, CONST={0,FFFFFFFF,..}  
DEC CONST, REG  ∀ REG, CONST={0,FFFFFFFF,..}  
ADD REG, CONST, REG  ∀ REG, CONST={0,FFFFFFFF,..}  
ADD REG, REG, REG  ∀ REG, CONST={0,FFFFFFFF,..}  
ADDCC REG, CONST, REG ∀ REG, CONST={0,FFFFFFFF,..} 
 
ADDCC REG, REG, REG  ∀ REG, CONST={0,FFFFFFFF,..} 
SUB REG, CONST, REG         ∀ REG, CONST={0,FFFFFFFF,..} 
SUB REG, REG, REG              ∀ REG, CONST={0,FFFFFFFF,..} 
SUBCC REG, CONST, REG   ∀ REG, CONST={0,FFFFFFFF,..} 
SUBCC REG, REG, REG        ∀ REG, CONST={0,FFFFFFFF,..} 
Bxx ∀ Bxx, CONST1 {<,=,>} CONST2  
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Example for each Bxx: 
   MOV CONST1, REG1 
   MOV CONST2, REG2 
   CMP REG1, REG2 
   Bxx LABEL_YES 
LABEL_NO:  MOV 0, REG3 
   BA LABEL_END  
LABEL_YES: MOV FFFFFFFF, REG3 
LABEL_END: ST REG3, [RES] 
Load and Store 
LD, ST 
LD REG, [LABEL] ∀ REG 
LD, ST  ∀ REG1, ∀ REG2, CONST en [0..n] 
 
Example for LD and ST: 
   LD REG1, [LABEL] 
   MOV CONST, REG2 
BEGIN: ST REG1, [LABEL], REG2 
   LD REG1, [LABEL], REG2 
   DEC REG2 
   CMP REG2, %G0 
   BNE BEGIN 
EXCLUSIVE OR and AND Operations 
XOR, AND, OR, ANDN, XORcc, ANDcc, ORcc, ANDNcc 
 

XOR, AND, OR, ANDN, XORcc, ANDcc, 
ORcc, ANDNcc 
 

∀ Bxx, ∀ REG1, ∀ REG2 
CONST1 {=, <>, <, >, = not } 
 CONST2 

 
Example for each OP: 

 
MOV REG1, CONST1 

   MOV REG2, CONST2 
   OP REG1, REG2 
  Bxx LABEL_YES 
LABEL_NO:  MOV REG3, 0 
   BA LABEL_END  
LABEL_YES: MOV REG3, FFFFFFFF 
LABEL_END: ST REG3, [RES] 
Shifts 
SLL, SRL, SRA ∀ REG1, ∀ REG2, CONST2 en [0..31] 
 
Example: 
MOV CONST1, REG1 
OP  REG1, CONST2, REG2 
ST  REG1, [ORIGIN] 
ST  REG2, [DESTINATION] 
MUL, MULScc, UMUL, UMULScc, DIV, DIVScc, UDIV, UDIVScc ∀ CONST1/2, REG1/2/3 
 
Example: 
MOV CONST1, REG1  
MOV CONST2, REG2 
OP  REG1, REG2, REG3 
ST  REG1, [A] 
ST  REG2, [B] 
ST  REG3, [RESULT] 
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[sth]  
! The sum between registers r1 and r2  and we keep the result in memory 
 
set 2, %r1   !Set the register r1 with 10 
set 3,   %r2   !Set the register r2 with 5 
add %r1, %r2, %r3  ! Add register r1 and r2 and store the result in r3 
st %r3, [dest]  ! Move the result to the memory 
 
unimp 
.align 4  
dest: .word FFFFFFFF  

 
Fig. 22. Add two registers and store the result in memory. 

 
 

In each of the classes we used a black-box testing approach, based on the construction 
of an oracle [Howden 1981]. An oracle is a program, process, or body of data that speci-
fies the expected outcome of a set of tests as applied to an object. We used an oracle that 
specifies whether the expected outcome for a specified input has occurred. The oracle is 
based on the execution of existing programs generated using assembly language. We 
know the results for each of these programs because we can reproduce them in a real 
processor. 

For instance, if we have the program defined in the source file in Figure 22, and we 
assemble and execute it (in a SPARC processor or in the simulated computer), the result 
obtained should be in register %r3. 

The programs belonging to each of the classes are written in assembly language 
source code, assembled, and then run in a SPARC processor; the results are stored. The 
assembled programs are then executed in Alfa-1 and the execution results compared 
with SPARC results. We generated about 100,000 assembly language source programs, 
with the corresponding expected results. Each of them includes individual operations 
and combinations of operations that test a combination of all of the proposed classes. 

For instance, to test the instruction BEQ (jump if equal), we defined examples that 
represented the BEQ class of tests. We used 279 different cases. The assembler code 
sets two registers with random values and then compares them. In this way, we can 
predict that the result is a jump to a label, the instructions located in the memory posi-
tion associated to that label will set a variable which can be checked by analyzing the 
final memory dump. 

In the example shown in Figure 23, the registers are not equal, hence, we expect a 
result of 0 at the [dest] variable in the final memory dump. In (1), the result of compar-
ing both numbers does not result in a jump, as the numbers are not equal. The following 
operation (2) loads register 10 with 0, and then executes a jump (3) to LABELEND 
where the result is stored in memory (4). 

We created a test file for each of the classes. The expected result file includes results 
using the following format: VALUE: data type, integer number. In this example, we 
include VALUE: int32, 0, meaning that we expect an int32 number with value 0 at the 
memory dump. After testing this file, the result is File:beq1.TEST OK, meaning that no 
error was found for this instruction. After running all the tests, a table was generated 
with the contents shown in Table VII. 
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set 82,  %r26    !Set the register 26 with 82 
set 543854, %r1   !Set the register 1 with 543854 
cmp %r26, %r1       !Compare the registers    
beq LABELYES    (1)  !If they are equal save the result in mem-

ory 
NOP 
LABELNO: mov 0, %r10   (2) !if the numbers are not equal save the 
                      !result in memory  
    ba LABELEND   (3)  
    NOP 
LABELYES:  mov 4294967295, %r10 !Equal set FFFF FFFFh 
LABELEND:  st %r10, [dest] (4) !Save the result in memory  
 
unimp 
 .align 4 
 value:   .ascii "VALUE:" !The tester will look for the label VALUE 

at 
                            !the memory dump 
 dest:    .word  FFFFFFFF  !Result of the test 

 
Fig. 23. Assembler File beq1.s. 

 
 

Table VII. Table Output Format for the Test Application 
 

Test 
Number 

Test 
Class  

Test Subclass (if any) Number of 
tests 

Number of suc-
cessful tests 

Bug file 

1 ADD Add with carry 100.000 100%  
  Add two negatives 100.000 100%  
  Add two positives 100.000 100%  
  Add neg and pos 100.000 100%  
  Add to zero 100.000 100%  

2 BEQ Numbers are equal 200.000 100%  
  Numbers are not equal 200.000 100%  

3 DIV Negative numbers 100.000 99% Divr1-r2.s 
… … … … … … 
N INC Force carry 100.000 100%  

  Normal inc 100.000 100%  
 
 
This procedure allowed us to find some errors in the coupled model representing the 

simulated computer. For instance, we found that the division instruction and two condi 
tional jumps were not working properly. By tracing the execution flow of the programs, 
we found the source of the errors, which were fixed in less than 8 man/hours. 

5. EXECUTION VISUALIZATION 

We have begun to develop a GUI to allow students to interact with the simulated com-
puter. The GUI will let users check the system state at any moment. In this section we 
briefly present an approach to doing so. The GUI is also a source for experimental work, 
as the definition of a GUI requires detailed knowledge of system architecture. These 
activities can be used as part of programming courses, or in any existing course on hu-
man-computer interaction.  It can also be a source for exercises in compiler design  
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Fig. 24. Dynamic process used to generate a GUI. 

 
 
 

 
 

Fig. 25. Snapshot of the GUI. 
 

 
 

courses, since parsing log files and analyzing the different circuits and lines activated at 
each moment are required. 

 Different types of graphical interfaces can be associated with each layer; for in-
stance, a debugger-like interface for the instruction set level, a diagram representing  
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the datapath at the microprogramming level, or block diagrams representing boolean 
gates at the digital logic level.  

The log files, which contain the simulation information on every level of abstraction, 
are the information source for any graphical interface. Any interface developed must be 
adaptive enough to support changes in the simulated architecture. The basic design of 
Alfa-1 includes a coupled model of the integer unit (iu.ma), defining all the components 
of the computer. Whenever we need to add a new component, we must include it in the 
iu.ma file. 

We believe that the GUI must be adapted to new simulated machines and must be 
able to display information associated with every component in the machine. As shown 
in Section 3, the simulator generates a log with messages that can be used to show how 
a program executes. Each message has a source, a destination, and a value representing 
changes over the component output lines. This information can be used to analyze the 
present state of any given component. The GUI makes two passes over the log files. In  
the first pass it automatically creates the ports and links defined for the model. In the 
second pass the GUI uses the references to the components in order to decide which 
component is activated, according to the information in the log files.  

A second level of interfacing is associated with the computer architecture. We pro-
vide a debugger-like interface, allowing interaction in a user-friendly way. Starting with 
the debugger, the user is able to study lower abstraction levels using different visualiza-
tion tools. We will provide wizard-like interfaces to help users extend the existing com-
ponents. 

6. EDUCATIONAL ACTIVITIES 

In this section we present a set of educational activities that can be carried out using the 
simulated computer. In order to achieve our goals, we have organized our course ac-
cording to the different levels provided by Alfa-1. The tool should be used as pedagogi-
cal support, as a complement to any of the existing bibliographical references. Accord-
ing to the chosen materials, teaching them could be done top-down (assembly language 
to digital logic) or bottom-up. Nonetheless, we prefer to use a middle approach, where 
we first describe the computer organization level and then move to different levels of 
abstraction. 

Once the theoretical concepts on computer organization are introduced, Alfa-1 can 
be used as a support tool, as it enables analyzing the information flow on the datapath. 
The following are some possible activities that may be carried out: 

 
1. Given an executable file consisting of only one instruction as memory image, 

students are required to identify the different components activated by the simu- 
lator  at  the  organization  level (different executable files can be provided to dif-
ferent students; for instance, the image files in the test directories could be used).  

2. Given a log file from which some lines have been deleted, students are required 
to fill in the missing lines. The log file shows the processor execution flow, and 
the missing lines correspond to the execution of an instruction at the organization 
level. 
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3. Given a complete executable file, students are required to generate an execution 

log and analyze the execution flow in the datapath by studying the circuits and 
lines that are activated. 

4. Starting with an algorithmic description of the tasks carried out by a complete 
executable file, create a log file with missing lines. Request that students fill out 
the missing parts according to the tasks performed by the executable program 
used to generate the log file. 

 
At this level, we can also propose a number of development tasks associated with 

modifications in the underlying structure of the computer organization. Some of these 
activities could include the following: 

 
1. replacing or improving existing components in order to enhance functionality; 
2. defining more detailed models of the main memory, including different interleav-

ing strategies; 
3. constructing models of input/output devices and connecting them to the system 

bus; 
4. developing a floating point unit and integrating it to the processor; 
5. defining virtual memory strategies, and developing a memory management unit 

(MMU) able to handle virtual memory requests. The MMU must be able to gen-
erate fault interrupts; 

6. implementing different replacement algorithms in the cache memory; 
7. changing the datapath structure, or modifying the number of registers or circuits 

used. Students can execute a performance analysis of the resulting architecture; 
8. improving the performance of some of the existing circuits (for instance, provid-

ing single-level atomic models that replace complex coupled ones); 
9. defining models of a cache directory using direct mapping techniques. New 

atomic and coupled models should be created by following the specifications of 
the current model. New replacements algorithms can be added by modifying the 
existing FIFO strategy. Once the different strategies are implemented, students 
can perform benchmarks to measure the performance of the new solutions (for 
instance, analyzing the hit ratio over the cached cells when running different pro-
grams). 

 
After these activities are carried out, students will know the details of the organiza-

tion layer of Alfa-1. The next steps depend on the general objectives of the course. If 
study of the digital logic level is a goal, then boolean logic concepts can  
be applied in different activities, including:  
 

1. analyzing the circuit activation: some of the circuits built using digital logic con-
cepts can be studied in the log files, enabling behavior analysis under different 
inputs; 

2. understanding boolean logic concepts: by providing incomplete log files repre-
senting some of the circuits, the students can fill out the missing lines, improving 
their skills in digital logic analysis. 
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At this level, we can also propose different development tasks, including: 
 

1. defining new atomic models representing different boolean gates than the ones in 
the toolkit. Using the new gates, students can build coupled models to redefine 
existing circuits using different combinatorial rules; 

2. extending the existing models to a lower level of abstraction. The component is 
replaced by a structural model using boolean gates (for instance, use the ALU 
model and redefine it using the ideas in the CMP model in the distribution files); 

3. analyzing the interlevel interaction: students should analyze the execution of an 
instruction and consider their interactions at both levels. In previous assignments, 
we considered only the organization level. Now we can study how the execution 
flow in the datapath is implemented at the digital logic level. This can be done 
following the detailed execution of one instruction that, in the end, activates 
some of the submodels defined using digital logic. 

 
Besides the digital logic level (which may not be included), we can consider some ac-
tivities at the microprogramming level. After facing a complete study of micropro-
gramming techniques, the CU model can be used as an example of microcoded architec-
ture. The exhaustive analysis of the input/output lines in the control unit and its internal 
behavior can be used to understand the micro-operations required to execute every in-
struction. Details of the microprogrammed architecture can be found in Daicz et al. 
[1998]. Activities at this level require the introduction of some details at the instruction 
set level, in order to make clear the use of the microinstructions carrying out processor 
execution. A very reduced set of instructions of different categories can be presented at 
this stage (for example, one arithmetic, one control flow and one data transfer) in order 
to show their implementation. 

Activities at this level can improve understanding of interlevel interactions. We first 
describe the behavior of an existing instruction and then show its implementation in 
microcode. The microinstructions activate different circuits, and produce data transfers 
at the organization level. Some of these activities are carried out at the digital logic 
level. After finishing these activities through detailed practice, the students will know 
each of these layers and their global interaction in detail. 

Some development activities that might be considered at this level include: 
 
1. modifying the control unit structure to introduce pipelining techniques. This in-

volves reorganizing the activation of subcomponents defined as executing simul-
taneous events; 

2. executing the models in parallel, using the parallel version of CD++ in order to 
reproduce instruction-level parallelism; 

3. modifying the internal structure of the CU model in order to implement equiva-
lent FPGA circuits. 

 
Every computer organization course must include different activities at the level of the 
instruction set. The most important concepts here include the definition of the existing 
instructions, registers, addressing modes, and input/output functions. These activities are 
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usually related to the definition of the assembly language level (which, in general, pro-
vides one-to-one translations from mnemonic representations into machine language). 
An important aspect to be explained at this level includes the definition of instruction 
encoding. 

Once the students know the basic concepts related to the architecture level, Alfa-1 
can support the teaching of concepts associated with this level of abstraction. Some 
possible activities include the following: 

 
1. defining applications using the SPARC assembly language in order to expose the 

details of the processor features; 
2. executing trace analysis: using an initial image of a given program and the execu-

table code for a given program, analyze changes after executing each program in-
struction. This involves changes in memory, registers, cache, and input/output 
devices; 

3. defining interrupt service routines; 
4. encoding instruction: study which circuits are activated at each step, according to 

the encoding of each instruction. 
 
At this level, we propose development tasks that involve modifying the architecture: 
 

1. implementing a MMU at the architecture level, providing virtual addressing 
schemes (paging, segmentation, demand paging, etc.); 

2. defining new instructions to select different replacement algorithms in the cache 
and the MMU; 

3. defining new instructions enabling the activation of individual circuits in the ar-
chitecture; 

4. developing input/output routines using polled loops; 
5. developing input/output routines interacting with the look-aside components, 

analyzing their execution results; and 
6. modifying the instruction set, adding new registers, modifying or adding instruc-

tions or addressing modes. 
 

Once students finish with activities at this level, they will have a detailed knowledge of 
each of the levels in a given architecture, and will be ready for more advanced studies. 
In some cases, the educators will need to address advanced activities. Alfa-1 can be used 
successfully to reach these goals; and here we show some possible advanced projects 
using this tool: 
 

1. developing an assembler and a linker that are able to generate instructions en-
coded for the SPARC processor; 

2. reusing existing components to define different architectures (i.e., Motorola, In-
tel, MIPS, etc.); 

3. implementing different input/output processors and models of the devices they 
control. Different synchronization mechanisms can be included (polling, inter-
rupts, or DMA); 

4. defining a SPARC multiprocessor architecture (tightly or loosely coupled), defin-
ing   multiple  instances  of   the  Alfa-1  top  model. This requires defining an in- 
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terconnection mechanism and an information transfer technique (shared memory, 
message passing); 

5. including advanced architectural features in the control unit (multiple stage pipe-
lining, predictive jumps, floating-point vector processors, etc.); 

6. defining a microprogramming language whose interpreter is defined as a part of 
the CU model. The CU should be modified to read microinstructions that can be 
defined in external files, and to enable students to define new instructions 
through microprogramming. Add the corresponding instructions to the instruc-
tion set and test the correct execution of the instruction. 

7. CONCLUSION                                                                                                                               

We have presented the design of a simulated computer that can be used in computer 
organization courses to analyze and understand the basic behavior of the different levels 
of a computer system. The use of DEVS allows us to have reusable models. DEVS also 
provides a uniform point of view in all layers of description, as every model developed 
is defined using a single technique. We modeled different levels of abstraction:  
digital logic, microcode, and the instruction set levels. The models can be used to study 
interaction between levels and to evaluate systems experimentally. Students can analyze 
each of the layers in detail by studying the behavior of the components belonging to the 
layers. Since the Alfa-1 simulator uses all the existing layers, system behavior as a 
whole can be studied also. Starting with the instruction level, we can analyze the activa-
tion flow in the datapath and the reaction of individual components to see how the in-
struction is carried out. 

We have achieved our goals in each of the categories explained previously: 
 
I. Levels of abstraction: we were able to describe all the levels of abstraction in the 

bibliography of the area, ranging from digital logic to the assembly language 
level. We used a unique approach (the DEVS formalism and a DEVS modeling 
tool) to achieve these goals.  

II. Pedagogical value: every component in the simulated computer was developed 
by undergraduate students in assignments of a computer organization course. The 
students took a previous course in computer programming. The learning curve 
included spending some time explaining the basic aspects of DEVS and using the 
existing toolkit to develop extensions to the original architecture. Initially, a 
group of 3rd year students of a discrete event simulation course created the formal 
specifications of the models. These specifications were then used by students in a 
2nd year computer organization course to build and test the models using the 
CD++ tool. Final integration was planned by a group of undergraduate teaching 
assistants (who also developed the control unit and the coupled model represent-
ing the system architecture shown in Figure 1). Individual and integration testing 
was also done by 2nd year students. All of the modifications shown here were de-
veloped as course assignments. The toolkit is public domain, and more details 
about the implementation, the basic tools used to develop the models, and further 
improvements can be found at  

 
<http://www.sce.carleton.ca/faculty/wainer/alfa-1.html>. 
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III. Modifiability: we started with a simple version of the simulated computer. This 

version was extended, the digital logic level was included, and high performance 
facilities (such as a cache memory) were added without any special effort. The 
implementations of the formally specified DEVS models were straightforward. 

IV.  Advanced architectural facilities: the tool is based on the description of a 
SPARC processor, one of the most powerful architectures today. The hierarchical 
definition of the tool enables the users to experiment with extensions and archi-
tectural enhancements based on the redefinition of the existing models. 

 
The use of this tool allowed the students to obtain a complete understanding of com-

puter organization. After using Alfa-1, students in upper-level courses reported higher 
success rates and detailed knowledge of the subjects. 

At present, the set of tools is being completed by including an input/output subsys-
tem. The main input/output devices, the input/output interfaces, DMA controllers, and 
channels will be simulated. Different transference techniques (polling, interrupts, DMA) 
will be considered to implement input/output electronics. Other ongoing tasks include 
finishing the definition of the graphical interface and the implementation of different 
cache management algorithms. 
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