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DEVS and Cellular Automata formalisms are applied to define a modelling
paradigm for cellular models. Different delay functions to specify the timing
behavior of each cell, allowing the modeler to represent the timing complex
behavior in a simple fashion. Implementation models for the formalism are
presented according with the modeler and developer points of view. As a re-
sult, efficient and cost-effective development of cellular models simulators
could be achieved.

INTRODUCTION

In recent years, a wide number of artificial systems has become commonplace
(i.e., computer networks, traffic controllers, flexible manufacturing plants, em-
bedded applications, etc.). The development cost of such systems is crucial for
their successful implementation, and their complex analysis has been attacked
using simulated models. It is well known that the use of a formal modelling
approach can produce important cost reductions. Fortunately, several modeling
paradigms have been developed.

As the specified models are analyzed through simulation, their timing infor-
mation becomes crucial. Hence, it is needed a paradigm allowing timed models,
representing the event dates in the system. The DEVS formalism (Discrete
EVent systems Specification) proposed by Bernard Zeigler [22, 19], allows this
kind of specifications. Here, the model's timing is described as a lifetime for
each state variable. DEVS  is a discrete event paradigm that allows a hierarchi-
cal and modular description of the models. Each DEVS model can be behavioral
(atomic) or structural (coupled), consisting of inputs, outputs, state variables,
and functions to compute the next states and outputs. Object Oriented ap-
proaches have been incorporated to the basic concepts [20, 21]. The paradigm
improves the security of the simulations, reducing the testing time and increas-
ing productivity.



We are interested in modelling systems that can be represented as executable
cell spaces. The Cellular Automata formalism [18] has been widely used to
describe complex systems with these characterictics. These automata evolve by
executing a global transition function that updates the state of every cell in the
space. The behavior of this function depends on the results of a function that
executes locally in each cell.

Figure 1. Sketch of a Cellular Automaton

Conceptually, these local functions are computed synchronously and in par-
allel, using the state values of the present cell and its neighbors. This discrete
time paradigm constrains the precision and efficiency of the simulated models.
Furthermore, it is usual that several cells do not need to be updated in every
step, wasting computation time. These problems can be solved using a continu-
ous time base, providing instantaneous events that can occur asynchronously at
unpredictable times. This approach was considered in [22, 19], where discrete
event cellular models were presented. Discrete event cellular models were ap-
plied in real world applications in later works [8, 23].

These ideas served as a basis for the approach presented here, which will be
called Timed Cell-DEVS. We present a summary of the efforts done in building
this approach, devoted to describe and simulate discrete event cellular models
[16, 17, 9, 11, 13, 14]. A main contribution of the work consists in adapting
delay constructions and defining them as a functional component of the model
defining each cell [7]. The extensions allow to define explicit timing for each
cell, providing a simple mechanism to define it. The specifications of the for-
malism were used to build a set of tools for modelling and simulation of cell
spaces. As a result, the approach allows a modeler to describe complex temporal
behavior avoiding the detailed mechanism used for the delays.

The article is organized as follows. First, a description of Timed Cell-DEVS
atomic models is introduced. After, coupled cell spaces are considered. Then,
several issues related with the implementation models for the formalism are
considered. Some examples are used to show implementation issues. Finally, the



improvements in the development activities obtained when this approach is used
are introduced.

TIMED CELL-DEVS ATOMIC MODELS

Timed Cell-DEVS models are defined as a space composed of individual cells
that can be lately coupled to form a complete cell space. This section presents
the specification of each cell in a space as a DEVS model with explicit delays.
Each cell is a continuous time model, defined by very simple rules and a few
parameters. Complex timing definition is overruled due to the use of delay
functions. Two kinds of constructions are employed: transport and inertial. We
introduced two kind of delays with different semantics to allow the construction
of models at two levels of accuracy. Transport delay has an anticipatory seman-
tics, that is to say that every input event is just delayed. This is an extension of
discrete event models with implicit time representation in which event are only
ordered. Inertial delays allows to represent more complex temporal behavior
because they have preemtive semantics. An event scheduled for a future time
will not neccessary executed. For example, this can of delay allows to analyse
frequency responses of systems.

An atomic cell can be formally described as:

TDC = < X, Y, I, V, θ, E, delay, d, δint, δext, τ, λ, D >

where for #Τ < ∞  ∧  T ∈ {ΝΝ, ΖΖ, R, {0,1}{0,1} } ∪ {φ};

X ⊆ T is the set of external input events;
Y ⊆ T is the set of external output events;
I = < η, µx, µy, Px, Py >. Here, η ∈ N, η < ∞  is the neighborhood's size,
     µx, µy ∈ N, µx, µy < ∞  is the number of other input/output ports, and
       ∀ j ∈ [1, η], i ∈ {X, Y}, Pj

i is a definition of a port
          (input or output respectively), with

Pj
i = { (Nj

i, Tj
i) / ∀ j ∈ [1, η+µi], Nj

i ∈ [i1, iη+µ] (port name), y Tj
i ∈ Ιi

(port type)}, where Ιi = { x / x ∈ X if X } or Ιi = { x / x ∈ Y if i = Y } ;
V ⊆ T is the set of values that can be used as state variables for the cell;
θθ is the definition of the state variables used in each cell, defined as
    θ = { (s, phase, σqueue, σ) / s ∈ V is the status value for the cell,

phase ∈ {active, passive}, σqueue = { ((v1,σ1),...,(vm,σm)) / m ∈ N ∧
   m < ∞) ∧ ∀ (i ∈ N, i ∈ [1,m]), vi ∈ V ∧ σi ∈ R0

+∪ ∞};
      and σ ∈ R0

+ ∪ ∞ } ; for transport delays, or
      θ = { (s, phase, f, σ)  / s ∈ V, phase ∈ {active, passive}, f ∈ T,

and σ ∈ R0
+ ∪ ∞ };  for inertial delays;

E ∈ Vη+µ is the set of values of input events;



delay ∈ {transport, inertial};
d ∈ R0

+, d < ∞ is the transport delay for the cell;
δδint: θ → θ is the internal transition function;
δδext: QxX → θ is the external transition function, where Q is the state values
defined as:

Q = { (s, e) / s ∈ θ x E x d; e ∈ [0, D(s)]};
ττ: E → V is the local computation function;
λλ: θ → Y is the output function; and
D: θ x E x d → R0

+ ∪ ∞, is the state's duration function.

The present definition, based on the work presented in [6], is independent of
the simulation technique used. Therefore, it allows to specify the system behav-
ior independently of the implementation details.

Figure 2. Informal description of an atomic cell.

The cell's interface is composed of a fixed number of ports (Px, Py), each
connected with a neighbor. A cell can use other inputs and outputs of the inter-
face (µx, µy) to interchange data with models outside the cell space. Each port
in the interface has a name composed by an identifier (X for input; Y for output)
and a natural number (port number). These inputs are stored in the E set, whose
values are used to compute the future state of the cell. The results obtained when
the local function ττ executes, can be deferred by using a delay function. To
allow this behavior, the cell's state variables (θθ) include the cell's present value,
the feasible future value for the cell (f), and a queue to keep track of the next
events (σσqueue), and the model's phase. The state's lifetime function D controls
the elapsed time of a cell state, and its evolution is defined by the delay func-
tions. Finally, DEVS transition (δδint, δδext) and output (λλ) functions are included.
In previous works [17, 11,6], the definition of the delay functions was presented
as DEVS models. Here, the semantics of the delay functions is presented with
detail in the Figure 3.



Each time the external transition function receives a message, the local com-
puting function uses the E inputs to obtain the new cell's value. If it is different
from the existing, the new value should be sent to the cell's influencees. Other-
wise, the neighbors cannot change and the cell remains quiescent [22, 19]. The
result is transmitted only after the completion of the delay function associated
with the cell.

δδint: σ = 0; σqueue ≠ {∅}; phase = active
____________________________________________________________

∀ i ∈  [1, m], ai ∈ σqueue, ai.σ = ai.σ - head(σqueue.σ); 
σqueue = tail(σqueue);

s = head(σqueue.v);  σ = head(σqueue.σ);

σ = 0;             σqueue = {∅};    phase = active
____________________________________________

σ = ∞  ∧   phase = passive

λ:λ:      σ = 0;
_____________

out = s;

δδext:  (s', transport) = τ(Nc); σ ≠ 0;   e = D(θ x E x d); phase=active;
___________________________________________________________

s ≠ s' ⇒ (s=s’ ∧ ∀ i ∈ [1,m] ai ∈ σqueue, ai.σ = ai.σ-e ∧ σ=σ - e;
add(σqueue,<s', d>) ∧ f = s )

(s', transport) = τ(Nc); σ ≠ 0;  e = D(θ x E x d);      phase = passive;
____________________________________________________________

s ≠ s' ⇒ ( s = s’ ∧ σ = d  ∧  phase = active   ∧  add(σqueue, <s', d>)  ∧ f = s )

(s', inertial) = τ(Nc); σ ≠ 0;  e = D(θ x E x d);   phase = passive;
____________________________________________________________

s ≠ s'  ⇒   ( s = s’   ∧   phase = active  ∧  σ = d  ∧  f = s )

(s', inertial) = τ(Nc); σ ≠ 0;    e = D(θ x E x d);   phase = active;
____________________________________________________________

s ≠ s'  ⇒   s = s’   ∧   (f ≠ s'   ⇒   σqueue = {∅} ∧ σ = d  ∧  f = s)

Figure 3. Definition of δint, δext and λ for TDC models.



The next events to be transmitted should be queued, because several external
events can arrive during a transport delay. If the changing cell is passive, it is
activated. Instead, if it is active, the values of σ stored in the queue must be
updated to reflect the elapsed time since the last event. In both cases, the exter-
nal transition function schedules an internal event after the time defined by the
delay. When the time of an internal event arrives, the first value in the queue is
sent to the output ports. The internal transition function removes the first mem-
ber of the queue recently transmitted. If the queue is not empty, the first element
will be used to schedule the internal event. Otherwise, the cell is passivated.

When inertial delays are used, the last arrived event can be preempted if a
new input arrives before the scheduled time. This only happens if the new exter-
nal value is different of that one previously stored. If both values are the same,
the new external event occurred has the same value than the previous one.

The following figure presents the behavior of both kinds of delay functions.
Let us consider a transport delay of 5 time units for a given cell. The Figure 4(a),
shows the results delayed for 5 time units. Here, the cell remains active while
there are queued values waiting to be transmitted. Oppositely, the behavior of
inertial delays can be studied by analyzing the input/output trajectories in the
figure 4(b). In this case, an inertial delay function of 5 time units is used. The
input values are delayed as in the previous case, but in the simulated time 19, the
input of the delay function changes. As this change occurs before the consump-
tion of the delay, the previous event is preempted. The input-output trajectories
are piecewise constant for this illustration, in the model, trajectories are trans-
formed in discrete event trajectories.

          
(a)  (b)

Figure 4. (a) Transport delay behavior; (b) Inertial delay behavior.



COUPLED CELL-DEVS

The atomic cell models presented previously can be coupled with others, form-
ing a multicomponent model. These are defined as a space consisting of atomic
cells connected by the neighborhood relationship. After, they can be integrated
with other Cell-DEVS or DEVS models.

When modelling a coupled cell space, two different couplings have to be
considered. First, the internal coupling defines the connection of a cell with the
neighborhood. Then, the external coupling is used to connect certain compo-
nents in a Cell-DEVS with components in other models. Therefore, we can build
complex models consisting of several submodels with different behavior using
different paradigms or abstraction levels. These models can be represented as:

GCTD =  < X, Y, Xlist, Ylist, I, η, N, {m, n}, C, B, Z, select >

where for #Τ < ∞  ∧  T ∈ {ΝΝ, ΖΖ, R, {0,1}{0,1} } ∪ {φ};

X ⊆ T is the set of external input events;
Y ⊆ T is the set of external output events;
Ylist = { (k,l) / k ∈ [0,m], l ∈ [0,n]} is the list of output coupling;
Xlist = { (k,l) / k ∈ [0,m], l ∈ [0,n]} is the list of input coupling; and
I = < Px, Py > represents the definition of the modular model interface. Here,
    for i = X | Y, Pi is a port definition (input or output respectively), where

Pi = { (N(f,g)i, T(f,g)i) / ∀ (f,g) ∈ Xlist, N(f,g)i = i(f,g)k (port name), and
T(f,g)i ∈ T (port type)};

ηη ∈ N is the neighborhood size and N is the neighborhood set, defined as
N = { (ip,jp) / ∀ p ∈ N, p ∈ [1,η] ⇒ ip, jp ∈ Z ∧  ip, jp ∈ [-1, 1] };

{m, n} ∈ N is the size of the cell space;
C defines the cell space, where C = {Cij / i ∈ [1,m], j ∈ [1,n]}, with

 Cij = < Iij, Xij, Yij, Sij, Nij, dij, δintij, δextij, τij, λij, Dij >
is a Cell-DEVS component such as those defined in section 3;
B is the set of border cells, where

• B = {∅} if the cell space is wrapped; or
• B = {Cij / ∀ (i = 1 ∨ i = m ∨  j = 1 ∨ j = n) ∧ Cij ∈ C} , where

Cij = < Iij, Xij, Yij, Sij, Nij, dij, δintij, δextij, τij, λij, Dij >
is a Cell-DEVS component, such as those defined in section 3, if the atomic
border cells have different behavior than the rest of the cell space.
Z is the translation function, defined by:
     Z: Pkl

Yq → Pij
Xq, where Pkl

Yq ∈ Ikl, Pij
Xq ∈ Iij, q ∈ [0,η] and ∀(f,g) ∈ N,

k = (i+f) mod m; l=(j+g) mod n;
         Pij

Yq → Pkl
Xq, where Pij

Yq ∈ Iij, Pkl
Xq ∈ Ikl, q ∈ [0,η] and ∀(f,g) ∈ N,

k = (i-f) mod m; l = (j-g) mod n;
select is the tie-breaking selector function, with select ⊆ mxn → mxn.



The present definition only allows bidimensional cell spaces. The formal
specification for n-dimensional spaces can be found in [11]. The coupled model
includes an interface I, built using two lists. Xlist is the group of cells where the
model's external events are received. Ylist includes the cells whose outputs will
be collected to be sent to other models. The cell space C is a coupled model
defined as a fixed size (m x n) array of atomic cells with ηη neighbors each. The
neighborhood set (N) is represented by a list defining relative position between
the neighbor and the origin cell . The present definition only allows regular
neighborhoods in adjacent cells (other kinds of neighborhoods can be found in
[11]).

Neighborhood: { (0, -1), (0,0) }
Inverse Neighborhood:
{(0,1),(0,0)}

Note: -1: left, up; 1: right, down

Pij
Y1 → Pi,j+1

X1    (1)

Pij
Y2 → Pij

X2         (2)

Pij X1 ←  Pi,j-1
Y1  (1)

Pij X2 ← Pij Y2      (2)

(a) (b) (c)

Figure 5. (a) Neighborhood definition; (b) Output ports; (c) Input ports.

The B set defines the cell's space border. If it is empty, every cell in the
space has the same behavior. The space is "wrapped", meaning that the cells in
one border are connected with those in the opposite one using the neighborhood
relationship. Otherwise, the border cells will have different behavior than those
of the rest of the model.

Finally, the Z function allows to define the coupling of cells in the model.
This function translates the outputs of the m-eth output port in cell Cij into val-
ues for the m-eth input port of cell Ckl. Each output port will correspond to one
neighbor and each input port will be associated with one cell in the inverse
neighborhood [22, 19]. The ports' names are generated using the following no-
tation: Pij

Xq refers to the q-eth input port of cell Cij, and Pij
Yq to the q-eth output

port. The cell to be coupled with is obtained by adding the cell's position with
the values of the N set.

The definition for DEVS coupled models was extended to include Cell-
DEVS, as follows:



CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select >

X is the set of input events;
Y is the set of output events;
D is an index for the components of the coupled model, and
∀i ∈ D, Mi is a basic DEVS model, where

Mi = GCCi = < Ii, Xi, Yi, Xlisti, Ylisti, ni, {m, n }i, Ni, Ci, Bi, Zi, selecti>
if the coupled model is Cell-DEVS, and

Mi = < Ii, Xi, Si, Yi, δinti, δexti, Ii >
otherwise.
Ii is the set of influencees of model i, and ∀ j ∈ Ii, and
Zij is the i to j translation function, where
    Zij: Yi → Xj if none of the models involved are Cell-DEVS, or
    Zij: Y(f,g)i → X(k,l)j, with (f,g) ∈ Ylisti, and (k,l) ∈ Xlistj if the models i

and j are Cell-DEVS.
Finally, select is the tie-break selector.

Xlist1 = { (3,1) }
Ylist1 = { (1,2), (2,2), (3,2),
(3,1) }
Xlist2 = { (1,1),(2,1),(3,1)}
Ylist2 = {∅}
Xlist3 = {(1,1)}
Ylist3 = {(2,2)}

Y(1,2)1→ X(1,1)2
Y(2,2)1→ X(3,1)2
Y(3,2)1→ X(1,1)3
Y(3,1)1→ X4
Y4→ X(3,1)1
Y(2,2)3→ X(2,1)2

         (a)      (b)                            (c)

Figure 6. Model interconnection (a) Basic models; (b) Xi and Yi lists for each model; (c)
Zij coupling.

The specifications defined in this section allows to define complete cell
spaces in a parametric fashion. A modeler only has to define the behavior for the
local computing function and the duration and kind of the delay. After, a com-
plete cell space is specified by defining the neighborhood shape, the size of the
space, and the cells chosen as inputs/outputs for the cellular model. Finally, the
connection with other models is defined using the translation lists. This ap-
proach reduces the development efforts for this kind of models, thus providing a
simple framework to develop complex cellular spaces.



IMPLEMENTATION MODELS FOR DEVS-CELLS

This section is devoted to analyze several issues related with the development of
implementation models following the conceptual framework recently intro-
duced. A tool that allows the definition of those aspects was defined in [16, 1].
This environment was built using the conceptual definitions previously studied,
and has been extended to execute n-dimensional Cell-DEVS [9].

This section presents two points of view related with the implementation
models that can be built using the tools. First, a modeler should be able to define
a conceptual model using the formal specifications previously defined. This
specification should be executable, improving model's validation and verifica-
tion. Besides, the point of view of the designer of a modeling environment is
presented. Previous existing definitions for DEVS models' simulation have been
used to define a Cell-DEVS environment.

Definition of Cell-DEVS implementation models.

The previous Cell-DEVS specifications shows that a modeler should be able to
represent three basic aspects: dimension (size and shape of the cell space), in-
fluencees and behavior.

The influencees are specified by defining the cell's neighborhood. In-
put/output ports for each cell are created following the formal definitions. The
cells are coupled applying the procedure presented earlier. When the cell space
is to be coupled with other DEVS models, the external connections are specified
using the contents of the Xilist and the Yilist sets. The specification for the in-
fluencees is completed by defining the border cells (otherwise, the cell space is
wrapped).

These aspects are defined using the following syntax:

- Components: it describes the DEVS and Cell-DEVS models integrating the
coupled model. The format is model_name@class_name. The model name
is used to allow more than one instance of the same atomic model, defined
as an existing base model.

- Out: It describes the output ports names.
- In: It describes the input ports' names.
- Link: It describes the internal and external (input and output) coupling

scheme. The format is: origin_port[@model] destination_port[@model].
The model name is optional and, if not included, it is considered as corre-
sponding to the coupled model being specified.



Cell-DEVS specifications are completed by adding the following parame-
ters:

- type: [cell | flat].
- width: INTEGER.
- height: INTEGER.
- link: in this case it must use the name of the cell space and the corre-
sponding input/output cell (Model(x,y)).
- border: [ WRAPPED | NOWRAPPED ].
- delay: [ TRASPORT | INERTIAL ].
- neighbors: Cell-DEVS_name(x1, y1), ..., Cell-DEVS_name(xn, yn).
- localTransition: It defines the description for the behavior specification
used for the local computation function.
- zone: transitionName {range1..rangen}. It associates a behavior specifica-
tion with the cells included into the rage defined by the sentence. In this
way, different ranges can provide different behavior.

The remaining parameters of the specification are related with the cell's behav-
ior. The local computing function is defined using a simple specification lan-
guage (presented in [11]), and it is translated into an internal behavior represen-
tation for the space. The functions are built as a set of logical expressions, pro-
viding results from the present state of the cell and its neighborhood. As ex-
plained earlier, the timing behavior is specified by the duration and kind of the
delay for the cell. The following figure presents a part of the specification lan-
guage used to define the local transition functions. Further details will be pre-
sented in several examples in the following section.

rule : result delay { condition }
result: Float
delay: Float
condition: The condition is a boolean expression using the
following BNF grammar:
BoolExp :=  Relexp | NOT BoolExp | BoolExp AND BoolExp | BoolExp OR
BoolExp
Relexp := IdRef | Exp OpRel Exp
Exp :=  IdRef | Exp Oper Exp
IdRef :=  CellRef  | '(' BoolExp ')'  | Constant  | Function
Constant :=  Float | Int | Bool
Function := TRUECOUNT | FALSECOUNT | UNDEFCOUNT
CellRef :=   '(' Exp ',' Exp ')'
OpRel := = | != | > | < | >= | <=
Oper := + | - | * | /   
Int := [Sign] Digit {Digit}
Float := [Sign] Digit {Digit} [. Digit {Digit} [E [Sign] Digit
{Digit} ]  ]
Bool := 0 | 1 | t | f | ?
Sign := [+] | -
Digit ::= 0 | 1 | ... | 9

Figure 7. Basic syntax of the implemented specification language.



The specification of a cellular model is translated into an executable model.
The local computing function scans the specification, verifying the logical ex-
pressions included and computing the new state value for the cell. Several errors
of the specification can be found at runtime, allowing the detection of inconsis-
tencies in the model definition:

- Ambiguous models: a cell with the same precondition can produce different
results;
- Incomplete models: no result exists for a certain precondition;
- Non-deterministic models: different preconditions are satisfied simultane-
ously. If they produce the same result, the simulation can continue, but the
modeler is notified. Instead, if different results are found, the simulation
should stop because the future state of the cell cannot be determined.

Implementation of a Cell-DEVS simulation framework.

This section includes several aspects that should be considered by the developer
of a Cell-DEVS simulation framework. This point of view will be exemplified
considering our development experiences. A generic DEVS environment was
first released [1], and it was extended to allow the simulation of timed cell
spaces (using the ideas defined in [17] and [14]). As a final step, the tool was
extended to include n-dimensional Cell-DEVS [9].

Basic structure of the tool.

The tool (called CD++) consists of a set of basic classes extending those defined
in [20]. The two base classes, Models and Processors provide the constructors
for DEVS models. The Models base class provides the basic methods to manage
DEVS models. The Atomic-Model class is used to represent the behavior of
atomic models, by using the internalFunction, externalFunction, and output-
Function methods. The CoupledModel class implements the hierarchical con-
structions. It is responsible to add and manage components, recording the de-
pendencies between them.

The Processors implement the abstract simulation mechanisms. These
classes should manage the connection between a processor with its correspond-
ing model and its parent processor. Simulators and Coordinators are specializa-
tions that manage the activation of atomic and coupled models respectively.
Root Coordinator represents the root of the processor's tree, and it is used to
start and finish the simulation. It also should manage its global aspects including
the maintenance of an ExternalEvents list and the global time (clock).

The tools follow the basic simulation mechanisms defined in [14], extending
the basic classes presented. AtomicCell is a specialization of Atomic that repre-



sents the behavior of a cell and its delay function (transport or inertial). It must
execute the local computing function (localFunction) depending on the neigh-
borhood values. It also defines the interconnection with other models (outport,
NeighborPort), and keeps the value and delay for the cell.

    

Figure 8. Basic classes defined by the tool [1].

The CoupledCell class is in charge of managing all the cells as children
models. In a cell space, all the children of a coupled model are alike. Therefore,
when the cells are created, the specified behavior is assigned to allow them and
they are linked with the models defined by the neighborhood relationship.



A CellCoordinator class, specialized in the management of cell spaces has
been defined. It is in charge of creating the set of processors associated with the
cell space. As the coupled model consists of several atomic ones (the cells), one
simulator is associated with each cell. The simulators are created and their
names defined using the parameters defined earlier. The definitions of the in-
put/output lists are used to couple the output ports in the interface of a Cell-
DEVS with the input ports in the other. The internal coupling is set up as pre-
sented earlier, and a coordinator is associated with each coupled model.

CD++ message interaction

Inter-process interaction is carried out through message passing. Each message
includes information of the source (or destination), the event simulated time, and
a content (consisting of a port and a value). Message is the base class that de-
fines the different messages. There are four different messages: * (internal
event), X (external event), Y (model’s output), and done (a model has finished
with its task).

Figure 9. Message class hierarchy.

The basic ideas of message interaction defined in [19, 20] have been ex-
tended to allow the simulation of Cell-DEVS models. When an external message
arrives, a X-message is consumed and the external transition function executed.
The local computing function is activated, and its output is delayed, scheduling
and internal transition. In this case, the imminent model will be a cell in the
space. When a *-message is received by the cell space coordinator, the imminent
cell is selected. Then, the simulator associated with that cell activates the
model's output and internal transition functions, executing the procedures pre-
sented earlier.

The simulators return done-messages and Y-messages that are converted to
new *-messages and X-messages, respectively. These messages are translated



using the coupling mechanisms previously defined. The main task of the cell
space coordinator is to translate the outputs in inputs by using the internal cou-
pling and the external lists.

Support for N-dimensional models

The real systems that can be studied using cellular models are usually repre-
sented by using models in two or three dimensions. Several theoretical problems
can be defined as cellular models with four or more dimensions. The original
version of the tool only allowed to define two-dimensional cell spaces, con-
straining its use in more general problems. An extension, following the formal
specification of [11], allowed the definition of n-dimensional models.

CD++ was implemented by storing the cell states in a two-dimensional array
of d1 . d2, where the element (x1, x2), xi ∈ [0, di -1], is in the position x1 + x2 . d1.
In an analogous fashion, N-CD++ uses an array of ΠΠi=1...n di to store the states for
the cellular automata with dimension (d1, d2, ..., dn), and in this case (x1, x2, ...,
xn) occupies the position ΣΣi=1...n  xi . ( ΠΠk=1...i-1 dk ).

The specification language was adapted to include references to cells in n-
dimensional cell spaces. The definition of zones in the cell space was extended.
Each zone now is defined by a set of cells determined by the cell range {(x1, x2,
..., xn)...(y1, y2, ..., yn)}. Using this capability, different zones into the same cel-
lular model can present different behavior.

Flat simulation of the cell spaces.

DEVS allows hierarchical module definition, and the proposed simulation
mechanism has hierarchical nature. Therefore, intermodule communication
produces a high degree of overhead, moreover in Cell-DEVS simulations con-
sisting of a large number of cells. One way to avoid this interaction (reducing
the related overhead) is by flattening the Processor's hierarchy. This is the goal
of the Flat_Coordinator class.

Here, the message passing overhead is avoided by creating a unique proces-
sor including the values for the cell space, and executing a specialized simula-
tion method [14]. Therefore, the FlatCoupledCell creates a set of cells and rec-
ords the local computing function for each one.

The FlatCoordinator is in charge of the flat execution of the cell spaces.
This coordinator is implemented as a bidimensional array of records associated
with the cell space. Each record includes information of the state, delay, and a
neighborhood list for the cell. When this approach is used, multiple intermediate
processors are eliminated, as it can be seen in the Figure 11.Each cell in theflat
simulation mechanism can use inertial or transport delays.



Figure 10. Flat models definition.

A Next-Events list records the cells scheduled to execute their transition
functions. A cells' array is used to record the present cell's space state and to
detect changes in the model. When a change is detected, the Next-Events list is
updated. The results produced by the imminent cells are stored in a New-States
list. In this way, the flow of the global transition function of the cell space can
be reproduced.

A flat coordinator starts the simulation by detecting quiescent states for the
initial state of the cell space. Non-quiescent cells (v.g., those whose state can
change) are added in the Next-Events list. When an instance of the FlatCoordi-
nator class receives a X-message, it is also inserted in this list. After, the coordi-
nator removes the first element of the Next-Events list, and it invokes the exter-
nalFunction method.

The coupled models still compute the local transition function for the desired
position, and apply the delay algorithm, changing the Next-Events list. If the cell
is in the Ylist, the coordinator will create a Y-message containing the cell state
value, and will transmit it to the upper level coordinator. When it is finished, it
sends a DoneMessage to the parent coordinator with the event date of the next
imminent child. When an internalMessage is received, the FlatCoordinator
invokes to the internalFunction method of the coupled model. If the cell state
has changed, its value is returned and the next event time for the cell is com-
puted. This one iterates through all the imminent cells, and generates their out-
put, adding all the influenced cells in the next-events list. Then, the external-
Function method is executed for all the virtual cells in this list.



(a)                                     (b)                                                (c)

(d)

Figure 11. Cell space structures. (a) Basic cell space and its neighborhood. (b) Coupling
using hierarchical coordinators. (c) Definition using flat models. (d) Coordinator's reac-
tion to messages.

DEVELOPMENT EXPERIENCES WITH CELLULAR
MODELS

This section will focus on some development experiences done with Cell-
DEVS. The first one, presented in the following figure, shows one specification
for the Life game [5] using the tool CD++. Here, the coupled model consists
only of one Cell-DEVS, called "Life". The parameters of the specification de-
fined earlier are included here: model's dimension, kind and length of the delay,
shape of the neighborhood, and the local transition function. The local function
says that a cell can have a live/dead (1/0) state. A living cell remains alive only
if it has three or four living neighbors. Otherwise, it dies. Instead, a new born
cell appears when there are exactly three living neighbors of a dead cell.



[top]
components : life

[life]
width : 10 height : 10
delay : inertial defaultDelayTime : 100
border : wrapped localtransition : life-rule
neighbors : life(-1,-1) life(-1,0) life(-1,1) life(0,-1) life(0,0)
neighbors : life(0,1) life(1,-1)  life(1,0) life(1,1)

[life-rule]
rule : 1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) }
rule : 1 100 { (0,0) = 0 and truecount = 3 }
rule : 0 100 { t }

Figure 12. Life game specification using CD++.

The following figure shows the model's execution using inertial delays. The
first row of the figure presents the execution of the model given an initial con-
figuration. Instead, the second row shows the influence of inputs to certain cells
using inertial delays. It can be seen that, for instance, a new value is inserted in
the position (8,7) in simulated time 15. Therefore, the internal events scheduled
for 20 in the cells (7, 7) and (8, 6) are preempted, and these cells die. This hap-
pens because these cells have now five living neighboring cells. Therefore, as an
inertial delay is being used, the state changes are preempted.

Time: 00:00:10:000
+--------------------+
|         *          |
|         *          |
|       *   *        |
|     * * * * *      |
| * *   *   *   * *  |
|     * * * * *      |
|       *   *        |
|         *          |
|         *          |
|                    |
+--------------------+

Time: 00:00:20:000
+--------------------+
|                    |
|       * * *        |
|     *       *      |
|   *           *    |
|   *           *    |
|   *           *    |
|     *       *      |
|       * * *        |
|                    |
|                    |
+--------------------+

Time: 00:00:30:000
+--------------------+
|         *          |
|       * * *        |
|     * * * * *      |
|   * *       * *    |
| * * *       * * *  |
|   * *       * *    |
|     * * * * *      |
|       * * *        |
|         *          |
|                    |
+--------------------+

Time: 00:00:15:000
+--------------------+
|         *          |
|         *          |
|       *   *        |
|     * * * * *      |
| * *   *   *   * *  |
|     * * * * *      |
|       *   *        |
|         *   *      |
|         *          |
|               *    |
+--------------------+

Time: 00:00:20:000
+--------------------+
|                    |
|       * * *        |
|     *       *      |
|   *   *       *    |
|   *       *   *    |
|   *           *    |
|     *              |
|       * *   *      |
|                    |
|               *    |
+--------------------+

Time: 00:00:25:00
+--------------------+
|                    |
|       * * *        |
|     *       *      |
|   *           *    |
|   *           *    |
|   *           *    |
|     *              |
|       * *          |
|                    |
|                    |
+--------------------+

Figure 13. Life game execution with inertial delays.



The following figure shows that extensions to three dimensional models can
be easily implemented. This example is an extension of the previous one, using
a population of active cells distributed in an area of 7x7x3. Likewise, extensions
to models of higher dimensions can be defined. We can see that the coupled
model is specified by the dimension, kind of delay and neighborhood (3x3x3
adjacent cells). The local function defines a new born being when the cell has
more than 9 living neighbors. A cell remains alive when the neighborhood con-
tains 8 or 10 living neighbors. Otherwise, the cell dies.

[3d-life]
type : cell dim : (7,7,3) border : wrapped
delay : transport defaultDelayTime : 100
neighbors: (-1,-1,-1) (-1,0,-1) (-1,1,-1) (0,-1,-1) (0,0,-1) ...
neighbors: (1,-1,1) (1,0,1) (1,1,1)

[3d-life-rule]
rule : 1 100 { (0,0,0) = 1 and (truecount = 8 or truecount = 10) }
rule : 1 100 { (0,0,0) = 0 and truecount >= 10 }
rule : 0 100 { t }

Figure 14. Description of a variation of the Life game.

The following figure shows the results obtained when this model is executed
(each plane separately). The execution starts with a high number of living cells,
but the execution result is not stable. The number of living cells turns to be re-
duced, and, finally, in the instant 00:00:01:000, the population is extinguished.

Time: 00:00:00:000
   0123456     0123456     0123456
  +-------+   +-------+   +-------+
 0|*      |  0|       |  0|*      |
 1|* *  **|  1|**   **|  1|  ***  |
 2| *   * |  2|   ** *|  2| * **  |
 3|       |  3|  *  **|  3|     **|
 4|  *  **|  4|  * *  |  4| *   **|
 5|  **  *|  5|   * * |  5| **  * |
 6|*  *  *|  6| *   * |  6| * ** *|
  +-------+   +-------+   +-------+

Time: 00:00:00:100
    0123456     0123456      0123456
   +-------+   +-------+    +-------+
  0| *    *|  0|**    *|   0| *    *|
  1|* *   *|  1|*     *|   1|* **  *|
  2|**  * *|  2|*    * |   2|**   **|
  3|    ***|  3|  * * *|   3|    * *|
  4|       |  4|     **|   4|       |
  5|*  *** |  5|* *** *|   5|*  ** *|
  6|       |  6| *     |   6| *  *  |
   +-------+   +-------+    +-------+

Time: 00:00:00:200
   0123456     0123456     0123456
  +-------+   +-------+   +-------+
 0|*     *|  0|      *|  0|*     *|
 1| **  * |  1| *   * |  1| **  * |
 2|    ** |  2| *    *|  2|       |
 3|*   *  |  3|*   ** |  3|*   ** |
 4|   ****|  4|   **  |  4|   ****|
 5|*  *   |  5|*  *  *|  5|*  *  *|
 6|**   **|  6|**   **|  6|**  ***|
  +-------+   +-------+   +-------+

Time: 00:00:00:900
    0123456     0123456      0123456
   +-------+   +-------+    +-------+
  0|       |  0|       |   0|       |
  1|       |  1|       |   1|       |
  2|       |  2|       |   2|       |
  3|       |  3|       |   3|       |
  4|*    * |  4|*    **|   4|*    * |
  5|       |  5|       |   5|       |
  6|       |  6|       |   6|       |
   +-------+   +-------+    +-------+

Figure 15. Execution results for the modified Life game.



The next example represents a three dimensional heat diffusion model. Each
cell contains a temperature value, computed as the average of the values of the
neighborhood. In addition, a heater is connected to the cells (2,2,1) and (3,3,0).
On the other hand, a cooler is connected to the cells (1,3,3) and (3,3,2).

[top]
components : room Heater@Generator Cooler@Generator
link : out@Heater HeatInput@room
link : out@Cooler ColdInput@room

[Heater] [Cooler]
distribution : exponential mean : 10

[room]
type : cell    dim : (4, 4, 4)          border : wrapped
delay : transport defaultDelayTime : 100
neighbors : room(-1,0,-1) room(0,-1,-1)
neighbors : room(0,0,-1) room(0,1,-1)
...
neighbors : room(0,0,-2)  room(0,0,2) room(0,2,0)
neighbors : room(0,-2,0)  room(2,0,0) room(-2,0,0)
initialvalue : 24
in : HeatInput ColdInput
link : HeatInput in@room(3,3,0) in@room(2,2,1)
link : ColdInput in@room(3,3,2)
link : ColdInput in@room(1,3,3)
localtransition : heat-rule
portInTransition : in@room(3,3,0) in@room(2,2,1) setHeat
portInTransition : in@room(3,3,2) in@room(1,3,3) setCold

[heat-rule]
Rule: {( (-1,0,-1)+(0,-1,-1)+(0,0,-1)+ (0,1,-1) + (1,0,-1) +

(-1,-1,0) + (-1,0,0) + (-1,1,0)  + (0,-1,0) +(0,0,0)+
(0,1,0)+(1,-1,0)+(1,0,0) + (1,1,0) + (-1,0,1) + (0,-1,1) +
(0,0,1)+(0,1,1)+(1,0,1)+(0,0,-2)+(0,0,2)+(0,2,0)+
(0,-2,0)+(2,0,0) + (-2,0,0) ) / 25 } 1000 { t }

[setHeat]
rule : { uniform(24,80) } 1000 { t }

[setCold]
rule : { uniform(-45,10) } 1000 { t }

Figure 16. Definition of the heat diffusion model.

Here, the upper level model is composed by three basic components: the
room, a heater and a cooler. The last two models are DEVS, defined as random
generators. The heater simulator generates a flow of temperatures between 24º C
and 80º C with uniform distribution. The cooler creates random values with
uniform distribution in the range [-45, 10]. Both generators create values every x
time units, where x has exponential distribution with mean of 10 time units. The
model representing the room is composed by a Cell-DEVS of 10x10x4 cells.
The function computes the present value for the cell as an average of the neigh-



bors. The model has two input ports (HeatInput, ColdInput) connected to the
input ports of the corresponding cells. Whenever a value is received through
these ports, the portInTransition rules are activated. Here, setHeat generates a
temperature value in the range [24, 80]. Likewise, setCold generates tempera-
tures in the range [-45, 10]. The values of the corresponding cells will be up-
dated using these functions.

                            
     (a) (b)

Figure 17. Heat diffusion model. (a) Neighborhood shape. (b) Coupling scheme.

These examples show the implementation of the formalism: the models are
specified following a formal description, and the implementation models exe-
cutes them. The hierarchical and flat simulation mechanisms produced different
execution performance for these examples. The number of messages involved in
the flat simulation is reduced because interaction only occurs between the higher
level coordinator and the Root coordinator. The following figures show the
differences for both cases. Those results were obtained for the Life game, and a
one-way traffic model, but similar behavior was obtained for most implemented
models. The test starts with more than 75% of active cells. The first test shows
the influence of increasing the size of the cell space. The second test used a
fixed size space (2500 cells), and the duration of the simulation was increased.



Figure 18. Life game and traffic model, increasing the size and simulation length.

A main goal of the new formalism was to reduce the development times for
the simulators. The results obtained were promising though the developed expe-
riences were simple prototypes used to check the use of the tools and the for-
malism. Several data were recorded relating the development times for the dif-
ferent solutions, classifying the different users and their development activities.
These results are presented following.

Figure 19. Comparison of development times for the Life game.

Figure 20. Comparison of development times for the traffic simulation.

The development activities were classified according with the experience of
the modelers, and the kinds of activities being considered. The use of the tool
was compared to the development of the same problems by hand. Several
groups of developers were analyzed, and their first and last developed applica-
tions were recorded. The maintenance times for the applications was also regis-
tered, considering development times and testing times sepparately.



It can be seen that the results obtained highly improved the development
times of the simulations. The main gains have been reported in the testing and
maintenance phases, the most expensive for these systems. It also showed per-
formance improvements for the flat models, providing speedups from 2 to 7
times in the execution for the cellular models. Ten-fold improvements could be
achieved for expert users although the tested models were simple prototypes of
simple cellular models.

Figure 21. Comparison between total development times for different applications.

PRESENT WORK

This section briefly presents a set of the results derived from the initial specifi-
cations of Cell-DEVS models.

Parallel Cell-DEVS

As stated in [2], if we call e to the elapsed time since the occurrence of an event,
a model can exist in the DEVS structure at either e=0 or e=D(s). A modeler can
use the select function to solve the conflicts of simultaneous scheduled events in
coupled models. In these cases, ambiguity arises when a model scheduled for an
internal transition receives an event. The problem here is how to determine
which of both elapsed times should be used. The select function solves the am-
biguity by choosing only one of the imminent models. This is a source of poten-
tial errors, because the serialization may not reflect the simultaneous occurrence
of events. Moreover, the serialization reduces the possible exploitation of paral-
lelism among concurrent events.



These problems were solved defining the Parallel DEVS [2]. Cell-DEVS
models could be coupled with these traditional DEVS submodels. Also, it was
proved that a bag is needed for the Cell-DEVS with zero-time transitions [12].
Considering these factors, the Cell-DEVS models were redefined to include
parallel behavior [15].

A general environment for parallel simulations was built, considering the
use of optimist/pessimist synchronization approaches. A mapping between the
Cell-DEVS simulators and these algorithms were defined, and at present, they
are being used to build a parallel extension of the tools. After, an extension to
the HLA standard will be faced. This approach will enhance the production of
results. By introducing a parallel coordinator, execution speedups of several
orders of magnitude can be achieved without touching the specifications. Fur-
thermore, a parallel implementation of each problem hand-coded could produce
ten-fold delays in the development.

Extensions to the cell's specification language

At present, several modifications were done to the specification language used
to define the cell's  behavior. The first one is related with the topology of the
cellular models. At present, the defined models include rectangular meshes.
Nevertheless, several existing cellular models have triangular or hexagonal
patterns. Therefore, the tool is being extended to run these approaches. In a first
stage, a translator is being used to define rectangular rules derived from the
triangular and hexagonal ones. Then, the extended topologies will be included in
the tool.

A set of new delay constructions has been defined [12]. These ones allow to
define complex timing behavior for inertial delays, improving the definition of
timing behavior for cellular models. These constructions are being combined
with the new definitions of parallel Cell-DEVS. The new local confluent func-
tions should be included in the specification language, allowing the modeler to
define the cell's behavior under simultaneous events. The simulation mecha-
nisms are being extended to include a theory of quantized DEVS models [23].

The specification of cellular models can be impoved using a specialized
graphical interface. The models will be defined using a graphical extension of
the specification language, and a graphical output will be defined. These tools
will be integrated in a web-based simulation framework, providing a Cell-DEVS
simulation server.

Applications

Several applications are being considered to apply Cell-DEVS models. A first
group of models are related with the definition of physical problems. The first



ones include surface tension analysis, lattice gases and studies of echological
systems. Some of the results obtained can be seen in the following figure. A
second group of applications include the analysis of crystal growth [10]. In the
latter case, different isotropies will be studied, including triangular, rectangular
and hexagonal meshes. Cellular models has also been used to create chaotic
patterns to be used in one-time-pad applications in cryptography. The kind of
pattern obtained can be seen in the following figure. The cellular models are also
being considered as fields of neurons, to be applied as a workbench to build
artificial neural networks.

  
               (a)                          (b)                        (c)

Figure 22. Surface tension models (a: initial; b: final); chaotic pattern for cryptographic
application (c).

Several multimodel applications are being faced. First, a detailed study of
development times is being extended to consider the integration of mixed DEVS
and Cell-DEVS models. The goal is to characterize the development activities
and the cost reductions in more complex applications. Also, multidimensional
models are being studied. They are being used to represent different aspects of
the same three-dimensional system as a cubic zone of a higher dimensional
space.

A final group of applications include a specification language used to define
traffic simulations as cell spaces. The streets can be defined, analyzing the traf-
fic direction, number of tracks, etc. Once the urban section is defined, the traffic
flow is automatically set up. Therefore, a modeler can concentrate in the prob-
lem to solve, instead of being in charge of defining a complex simulation sys-
tem.

A city section is specified by a set of streets connecting two crossings. The
vehicles advance in a right line (surpassing slower vehicles), up to their arrival
to a crossing. The speed of each vehicle is represented through a random trans-
port delay. Each street is represented as a sequence of segments. These represent
a section of one block of length, where every track has the same traffic direction
(one way). Consequently, to build a two-way street is necessary to define one
segment for each direction. Several models were defined, depending on the
number of lanes, their direction, and maximum speeds in the streets.



Once defined the basic behavior for a city section, different components can
be defined. These are also part of the specification language, and include defini-
tions for traffic lights, railways, men at work, street holes, transit signals, parked
cars, and so on. Finally, special behavior has been defined for special vehicles:
trucks, vans and high priority cars (ambulances, policemen, firefighters) [4, 3].

CONCLUSION

The present work presented a description for cell spaces modeling and simula-
tion. The paradigm is based on the DEVS and Asynchronous Cellular Automata
formalisms, using transport or inertial delays. These concepts allows to specify
complex behavior in a simple fashion, independently of the quantitative com-
plexity of the models.

Cell-DEVS models were described formally, considering specifications for
one cell and for general Cell-DEVS coupled models. The methods presented
allow automatic definition of cell spaces using the DEVS formalism. Integration
of multiple views for each submodel is possible, letting to combine different
models in an efficient fashion. The use of a formal approach allowed to prove
properties regarding the cellular models. It also provided a sound basis to build
simulation tools related with the formal specifications.

One of the main contributions is related with the definition of complex tim-
ing behavior for the cells in the space using very simple constructions. Transport
and inertial delays allow the modeler to make easier the timing representation of
each cell in the space.

An implementation of the paradigms was presented. The modeler and the
developer point of view were considered, allowing efficient and cost-effective
development of simulators. Two descriptions for the simulation mechanisms
were included. The first one considered a hierarchical simulation mechanism.
Subsequently, a method to flatten the hierarchical description of the cell spaces
was given.

The approach here presented also permits including a parallel coordinator,
achieving execution speedups of several orders of magnitude without changes in
the specifications. Therefore, this approach can provide important reduction in
the implementation of parallel applications for cellular models.

Finally, the formalism allow to improve the security and cost in the devel-
opment of the simulations. As shown by the experimental application results, the
formalism showed ten-fold improvements for expert developers.
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