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Abstract
The CD++ toolkit was developed in order to implement the
theoretical concepts specified by the DEVS formalism. The
existing simulation technique available in CD++ employs a
virtual time approach. This work presents the definition and
implementation of real-time simulation to the toolkit and
ties the model execution to a wall-clock attached to the
system (physical time). The new simulation technique
allows the interaction between the model and its
surrounding environment. Time constraints can be easily
imposed by the user to the simulated system. A non-
hierarchical simulation approach is also presented and
introduced to CD++ to reduce the communication overhead.
The new flattened simulation technique allows a more
effective execution when the real-time approach is used.
These recent enhancements are detailed and tested here.

INTRODUCTION

The DEVS (Discrete EVents Systems specifications)
formalism [Ziegler et al., 2000] provides a framework for
the construction of hierarchical models in a modular
fashion, allowing model reuse and reducing development
and testing time. DEVS models can be executed using
abstract simulation mechanisms independent of the model
itself. Models are built using a set of basic models called
atomic, which can be combined to form coupled ones. A
DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, D >

Here, X is the input events set, S is the state set, and Y
is the output events set. There are also several functions: δδint

manages internal transitions, δδext external transitions, λλ the
outputs, and D  the elapsed time.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

Here, X is the set of input events, and Y is the set of
output events. D is an index of components, and for each i
∈ D, Mi is a basic DEVS model, where Mi = < Ii, Xi, Si, Yi,
δinti, δexti, tai >. Ii is the set of influencees of model i. For
each j ∈ Ii, Zij is the i to j translation function.

The CD++ toolkit [Rodriguez and Wainer 1999,
Wainer et al., 2001] implements DEVS theory. A
specification language allows the creation of coupled
models, the initial configuration for the atomic models, and
the creation of external events to be used during the
simulation. Lately the CD++ tool has been enhanced to
support parallel simulation [Troccoli and Wainer 2001] and
this work presents the real-time enhancements.

DEVS provides the advantages of a discrete event
approach in terms of execution performance. Discrete event
models evolve in continuous time. Events are instantaneous
and can occur asynchronously at unpredictable times. DEVS
simulators can be seen as hierarchical schedulers of events
that activate the corresponding submodels. The schedules
allow skipping periods of inactivity in the simulation.
Nevertheless, explicit synchronization of the components is
required, which involves a certain amount of overhead to be
paid. Performance analysis of CD++ has been recently
developed [Glinsky and Wainer 2002], and the study shows
that the implementation of a real-time technique in CD++ is
feasible.

We have implemented an extension of the simulation
algorithms, which enable the system to execute DEVS
models in Real-Time. In the following sections, we will
present these extensions.



CD++ REAL-TIME SIMULATION

Virtual-time Simulation

The existing techniques in the CD++ toolkit employ a vir-
tual-time approach. The methodology is useful for non-
interactive simulation. This strategy advances the time dis-
regarding any real clock attached to the simulation mecha-
nism and periods of inactivity are skipped by the tool. In
contrast to a real-time simulation, it is useless to connect
inputs and outputs to the environment when the virtual-time
simulation is performed, because the time in the simulation
framework does not evolve at the same speed as within its
surroundings.

In order to execute a simulation using the virtual time
approach, CD++ maintains a variable in which the current
simulation time is stored and updated. Again, note that this
value is not linked at all to any physical clock. The update
of that variable is performed by the simulator.

Simulation Mechanism

The simulation in CD++ is carried out by Processors that
drive the simulation by exchanging messages. Two types of
Processors exist:

1. Simulators: drive the simulation of atomic models,
and

2. Coordinators: drive the execution of coupled
components and coordinate the activities of all
their dependant children.

A simulator object manages an associated atomic
object, handling the execution of its δint (internal transition
function), δext (external transition function) and λ (output
function). A coordinator object manages an associated
coupled object.

Only one root coordinator exists in a simulation. It
manages global aspects of the simulation. It is involved with
the topmost-coupled component, which has the highest level
in the model hierarchy. Moreover, the root coordinator
maintains the global time, and it starts and stops the
simulation process. Lastly, it receives the output results that
must be sent to the environment.

Due to the hierarchical nature of the DEVS formalism,
the message passing between simulators and coordinators
usually consumes an important amount of time during the
simulation.

The Flattened Simulation Technique

The overhead that results from the exchange of messages
between processors could be minimized if the hierarchy is
properly flattened. Therefore, the number of messages can
be reduced accordingly [Kim et al., 2000]. It is important to
conserve the usual model definition, execution, and the
separation between models and processors.

Here, we introduce a flattened coordinator to provide a
flattened simulation technique in CD++. This new processor
is unique all across the processors’ hierarchy and replaces
all the usual coordinators and simulators existing in a
hierarchical approach. Now, the flattened coordinator is in
charge of different tasks that include the simulation of all
the existing atomic components. Besides this, it carries out
all the scheduling and port mapping among its children.

The following figure shows a sample model with a few
components:
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Figure 1. Sample model

The figure shows a sample model whose topmost
component has three atomic submodels (Atomic Models #1,
#2 and #3) and one coupled model (Coupled Model #2).
That inner-coupled component is formed by two atomic
components (Atomic Models #4 and #5).

The corresponding model hierarchy for the depicted
sample is shown below:
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Figure 2. Hierarchical models’ hierarchy

The processor hierarchy corresponding to this example
is shown in the following figure.
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Figure 3. Processors’ hierarchy (hierarchical approach)

As we can observe in Figure 3, whenever the root
coordinator has to schedule an event to lowermost
simulators (Simulators #4 and #5) the overhead incurred by
message passing can be considerable. The same



phenomenon is produced if the Simulator #5 sends an output
through a port connected to Simulator #3. The number of
intermediate coordinators can be arbitrarily high depending
on the studied model.

If we simulate the model shown using the flattened
approach, the resulting hierarchy is remarkably simplified
and the overhead incurred by message passing is
significantly reduced.
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Figure 4. Processors’ hierarchy (flattened approach)

In order to carry out the simulation properly using this
new strategy, now the flattened coordinator has to store
information concerning the atomic models he handles.
Information about ports, links, time of next event, time of
the last event processed as well as the queue of pending
events must be saved.

Real-time Simulation
Modifications have been developed to allow real-time
simulation in the CD++ toolkit. A real time system is de-
fined as a system whose correctness depends not only on the
logical results of computation, but also on the time at which
the results are produced [Stankovic 1988]. If a system deliv-
ers the correct answer after a certain deadline, it could be
regarded as an unsuccessful response. Consequently, a real-
time simulator must handle events in a timeliness fashion
where time constraints can be stated and validated. These
new features would allow interaction between the simulator
and the surrounding environment. Therefore, inputs could
be received by ports connected to real input devices such as
sensors, timers, thermometers or even data collected from
human interaction. Similarly, outputs could be sent through
output ports connected to devices such as motors, transduc-
ers, gears, valves or any other component.

The root coordinator manages the advance of time
along the simulation. When the virtual-time approach was
used, the messages were immediately generated by the root
coordinator to initiate a new simulation cycle. Alternatively,
when the real-time simulation is performed, the coordinator
must wait until the physical time reaches the next event time
to initiate the new cycle. A new simulation cycle can be
started due to:

q The reception of an external event, or

q The consumption of time indicated by ta(s)

In the real-time extension of the toolkit, periods of in-
activity are not skipped. The simulation process remains
quiescent while these idle periods are being experienced.
The root-coordinator expects the scheduled time to be
reached and only then starts the new simulation cycle.

Typically, a model has to react to an external event
within a given time to produce an output in order to solve a
given problem. For this reason, a way to indicate a deadline
time for an external event is provided in the real-time exten-
sion of the toolkit. When a model is executed, the simulator
is able to check whether the deadlines are being met.

EXECUTION EXAMPLES

The testing phase included models generated with a
synthetic generator [Glinsky and Wainer 2002] specially
designed to measure the overhead incurred by the simulator.
Different sizes, shapes and workloads have been used to
produce models to test the new approach.

The following figure shows one of the simulated sample
models:
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Figure 5. Simulated sample model

The model shown includes two coupled models, four
input ports and four output ports. Both inner-coupled
components are composed of two simple atomic models.
Each atomic component is linked to the environment
through one input port and one output port. The workload
executed in each component varies from one atomic
component to another.

Timeliness along a simulation is a substantial property in
the real-time approach. When a model is being executed
using this technique, it is usually important to check time
constraints along the simulation. Particularly, the time at
which an event has been completely processed is a
meaningful measure of success.



Let us consider that the model must react to external
events within a given deadline. We have provided a means
to include this information in an external event file, which
includes a number of events to be executed by the real-time
environment. Each event arrives through a given input port
with a given value. In addition, not only an associated
deadline but also an output port must be indicated in the
same event file. Thus, the simulator can check whether the
physical time meets the associated deadline when sending
an output through the associated port. Once the execution
has finished, both successful and unsuccessful deadlines are
stored for further study of the simulation process.

The following is a sample of such event file:

event_time associated in_port out_port value
deadline

00:05:000 00:05:600 in01  out01 1
00:09:000 00:09:400 in02  out02 2
00:15:500 00:16:200 in03  out03 3
00:19:000 00:19:700 in04  out04 4

Figure 6. Sample event file in a real-time simulation

Figure 6 shows that the first event arrives at time
00:05:000 through the input port in01, and the expected
output should be received through the output port out01
before its deadline time, 00:05:600. This states that the
model must react to the given event in 600 milliseconds or
less.

The second event arrives at time 00:09:000 via the
input port in02. The expected output should be received on
port out02 before time 00:09:400, hence the model must
react in 400 milliseconds or less, and so on.

The simulator also keeps track of the number of missed
deadlines and the worst-case response time throughout the
execution, for further analysis. The number of missed
deadlines represents the number of deadlines that have been
missed along the entire execution of a model. On the other
hand, the worst-case response time represents the maximum
time between the arrival of an event and the output that the
model produces in response, in the entire simulation
process.

Once the simulation is completed, the obtained output
file includes the associated deadline for each output and the
actual time (i.e. wall-clock time) in which the outputs have
been produced.

For each event, in the result column it is possible to
obtain one of the following values:

Succeeded: if actual output time � associated dea dline
Not succeeded: if actual output time > associated deadline

The next figure shows the corresponding output file for
the executed sample model.

output associated result out_port value
time deadline

00:05:500 00:05:600 succeeded out01 1
00:09:300 00:09:400 succeeded out02  2
00:17:100 00:16:200 not succ. out03 3
00:19:900 00:19:700 not succ. out04 4

Figure 7. Sample output file in a real-time simulation

In the previous example, the results informed after the
four processed events are:

• Two events have been processed on time (“suc-
ceeded”)

• Two events have not been processed on time (“not
succeeded”)

• The worst-case response time is 1600 milliseconds
(corresponds to the output produced at 00:17:100
whereas the external event was received at time
00:15:500)

Alarm-clock Sample
An alarm clock model [Jacques, 2001] has been used to
analyze the real-time constraints under the new approach.
The model has an important component of time and it is
briefly presented here.

 

    
Figure 8. Alarm clock conceptual model [Jacques, 2001]

The model has three levels.  The top level is the
ALARM CLOCK.  It has six input signals representing the
push buttons and switch positions that exist in the real
system.  TIME_SET is used in combination with HOURS
and MINUTES to set the time of day.  ALARM_SET is used
in conjunction with HOURS and MINUTES to set the
desired alarm time. The buzzer will sound if ALARM_ON
is set at that time.  SNOOZE stops the buzzer for a period of
10 minutes after which the buzzer will automatically sound
again if ALARM_ON is set.  The model also has two
outputs: DISPLAY_TIME represents the four-digit display
while BUZZER_ON represents the output of the buzzer
speaker.



The following is an excerpt from the output file
produced by the simulation of the alarm clock.

actual message port value
time time

01:00:000 01:00:000 DISPLAY_TIME 00:01
02:00:000 02:00:000 DISPLAY_TIME 00:02
03:00:000 03:00:000 DISPLAY_TIME 00:03
...
30:00:000 30:00:000 DISPLAY_TIME 00:30
30:00:000 30:00:000 BUZZER_ON 1
31:00:000 31:00:000 DISPLAY_TIME 00:31
32:00:000 32:00:000 DISPLAY_TIME 00:32

Figure 9. Excerpt from the output file of the alarm clock

As time passes, the actual time is obtained through the
DISPLAY_TIME port. Furthermore, the buzzer is turned on
at 00:30 and this is notified through the BUZZER_ON  port.

It is important to point out that actual output-times are
equal to their corresponding message-times. This fact shows
that delays are remarkably small all along the simulation.
Therefore, such simulation can meet the deadlines imposed
by the user.

Vending Machine Sample
Moreover, a vending machine model [Li, 2001] has been
used for further analysis of the real-time extension in CD++.

The simulated vending machine is similar to the ones
that exist in some cafeterias. Different items can be pur-
chased by inserting sufficient amount of money and then
selecting the appropriate button to dispense it. The machine
returns the correct amount of change, keeps track of how
many items have been dispensed and informs out-of-stock
products to the customer.
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Figure 10. Vending machine conceptual model [Li, 2001]

The system includes several atomic components (a coin
collector, an item selector, a change maker, a balance dis-
play, an item processor and others) and coupled components
(a service controller and a vending controller inside of it).

The model has three input ports. Coins are inserted
through the COIN_IN port, items are selected through the
ITEM_IN port and change is requested through the RE-

QUEST_IN port. The output ports are used as follows:
ITEM_OUT is simulates the dispensed product, OUT re-
sembles the balance display of the machine and
CHANGE_OUT is used for the returned coins.

The following figure shows a sample event file, where a
customer inserts different amounts of money and requests a
particular item.

event  assoc.     in_port    assoc.    value
time      deadline            out_port

00:10:000 00:12:500  COIN_IN   OUT        0.25
00:15:000 00:17:500  COIN_IN   OUT        1.00
00:20:000 00:22:500  COIN_IN   OUT        0.25
00:25:000 00:30:000  ITEM_IN   ITEM_OUT   28
...

Figure 11. Sample event file - Vending machine

For instance, the first quarter is received through the
COIN_IN port at time 00:10:000, and the associated output
is expected through the port OUT before 00:10:250. Then a
dollar (1.00) is received at time 00:15:000, and so on. Fi-
nally, the item 28 is selected at time 00:25:000.

actual      message      port          value
time        time

00:12:010   00:12:000    OUT           0.25
00:17:010   00:17:000    OUT           1.25
00:22:010   00:22:000    OUT           1.50
00:28:020   00:28:000    ITEM_OUT      28
00:30:010   00:30:000    OUT           0.00
...

Figure 12. Output file - Vending machine

Figure 12 shows the corresponding output file. The
balance display is updated through the OUT port, two
seconds after each coin is inserted. The item 28 is dispensed
through the ITEM_OUT port at time 00:28:000. Events are
processed on time, and small differences can be observed
between the message time and the actual time (wall-clock
time) at which they have been produced.

Several executions have been performed using these
and many other conceptual models. The results showed that
the delays due to message passing are bounded, and the
overhead is minimized when the flattened approach is used.

Timeliness is an essential and meaningful characteristic
of real time simulations. In such simulations, whether a
given deadline is met depends on different factors:

q Overhead of the tool: the execution of the simulation
mechanism affects the overall performance. Usually,
this overhead becomes larger as the size of the model
increases, mainly because the time spent by exchanging
messages among processors.

q Workload in atomic components: the more workload
that has to be executed in internal and external



transition functions, the more time that is needed to
complete the execution of the corresponding code

q Associated deadlines: if the associated deadline for a
given event is very tight, then it is not likely to be met.
On the contrary, a loosened (relaxed) deadline is more
likely to be met in a simulation.

The first factor, overhead of the tool, is intrinsically
involved with the simulation process. It has to be minimized
to allow a wide range of models to be executed properly
using the real time simulation toolkit. The flattened
simulation approach can achieve better results on
performance because of the reduction of message exchange.

The second factor, workload in atomic components,
varies from one model to another and depends on the
characteristics of the models under execution.

Finally, the associated deadline influences the success
of meeting a given deadline, and they are imposed by the
user.

CONCLUSION

The real-time simulation has been successfully introduced to
the CD++ toolkit. The proposed extension allows the
interaction between the model and its surrounding
environment. If such simulation is executed with the
flattened technique, the communication delays incurred are
minimized and therefore the real-time execution can be
carried out properly. Several examples have been tested and
analyzed using this technique and the results show that we
are able to effectively develop real-time models for
interactive simulations.
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