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ABSTRACT

The CD++ toolkit was developed in order to impleinéime theoretical concepts specified by the DEVS
formalism. The tool allows the execution of both\l¥E and Cell-DEVS models. In this work, we present a
synthetic model generator that produces DEVS masigidar to those that exist in the real world. Wotough
testing has been carried out using the differemukition techniques provided in the toolkit, whiemploy a
virtual time approach. This work presents the didin and implementation of a real time simulatr.such
simulations, events must be handled timely and tiovestraints can be stated and validated accosdifige new
simulation technique allows the interaction betwdenmodel and its surrounding environment. Adddidy, a
non-hierarchical simulation approach is presentetiatroduced to CD++ in order to reduce the comuoation
overhead. The experiments showed that the neweffiadt simulation technique is more efficient thaa th
hierarchical one.
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1. INTRODUCTION

1.1 Introduction to simulation

Simulation is a powerful tool for analyzing and understandegwide variety of complex systems. The
simulation process begins with a problem to beesblor understood, such as urban traffic, networfopmance
or the spread of a virus through a group of c8isobserving theeal system, different entities are identified. A
model is an abstract representation of such systemgtainstructed accordingly. The execution of the ehaxdl
carried out by asimulator. The simulator consists of a computer system glxatutes the instructions of that
model to generate its behavior. Finally, the olgdimesults are compared to those of the real system
validation. Usually, the modeler is interested inlyoa few aspects of the real system. Consequeatiy,
experimental frame is defined to bound the scope of the model, comghaxf a limited set of circumstances
under which the real system is being studied [ZeZ&500].

Experimental frame

behaviol
database

Modeling

relation . .
Simulation

relation

Figure 1: The basic entities and their relationstgfZei00]
The basic entities are linked by two relations (03i
g  modeling relationLinks the real system and the model. It defines @it the model represents the system
or entity being modeled. Generally, a model carctresidered valid if the data generated by the madetes

with the data produced by the real system in thregmental frame of interest.

g  simulation relation:Links the model and the simulator. It represents Faithfully the simulator is able to
carry out the instructions of the model.

Different formalisms exist to model and simulatalrend artificial systems. Among the&EVS [Zei76, Zei00]
is a widely used formalism, which is describedha hext section.
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1.2 Introduction tothe DEVSformalism

Systems whose variables are discrete and where d@@wance is continuous are known REDS (Discrete
Event Dynamic Systems), as opposed t&€VDS (Continuous Variable Dynamic Systems) described by
differential equations. Simulation mechanisms f&I% systems assume that changes of state willpialce at
discrete points of time, upon the occurrence oéeent. Formally, aevent is defined as a change of state that
occurs at a specific point of tinte] R.

DEVS (Discrete EVents Systems Specification) [Zei760dE a formalism for modeling and simulating DEDS
systems, defines a way to specify systems whosessthange either upon the reception of an inpemteor due
to the expiration of a time delay. It allows hietsical decomposition of the model by defining a wayouple
existing DEVS models.

A real system modeled using DEVS can be descrikesl @mposition cahtomicandcoupledcomponents. An
atomicmodel is defined by:

M=< X, S; Yéinta 6ext, /\! ta>

where
X is theset of external events
Y is theset of internal events
S is theset of sequential states

dexe Qx X = S s theexternal state transition function

where Q ={(s,e)¢$0S el [0,ta(s)] } and eis the elapsed time since the last state

transition.
On. S-S is theinternal state transition functign
AMSoS Y is theoutput function

ta: S— Ry’ U s thetime advance functign

A DEVS model is in a state[] Sat any given time. In the absence of external eyéntemains in that state for
a lifetime defined bya(s). A transition that occurs due to the consumptibtime indicated bya(s) is called an
internal transition. Whenta(s) time expires, the system outputs the val(® and then changes to a new state
given byd,«(s). On the other hand, amternal transition occurs due to the reception of an external evarthis
case, the external transition function determihesrniew state, given (s, e, ¥ wheres s the current state,

is the time elapsed since the last transitionxaidX is the external event that has been received.

The time advance function can take any real value between 0 @ndh state for whichta(s) = 0 is called a
transient state. In contrast, if thaa(s) = « thens is said to be passive state, in which the system will remain
perpetually unless an external event is received.

The following figure shows the description of staéed variables in DEVS models:
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[ , — Il

s =Oext (s, €, X)

A(s)

s ——— $=0n (9

=

Figure 2: DEVS Semantics

A DEVS coupled modek composed of several atomic or coupled submottétsformally defined by:
CM = <Xeei Yserr D, {M}, {Ii}, {Z;j},select>

where
D Is aset of components

for eachi in D,
M; is abasic DEVS componef(ite. a coupled or atomic model);

for eachi inD U { self },

l; is theset of influenceesf i (i.e. models that can be influenced by outputs of

modeli);
for eachj inI;,
Z is thei-to-j output-input translatiorfunction
select is thetie-breakerfunction;

This structure is subject to the constraints thaefch in D,
Mi=<X, VY, S, ,8int Oiexs Ai, t& > is a DEVS model

l; is a subset dD U { self}, i is not inl;.

Zseir, i Xself = X

Ziser Yi = Y self

Zi,j: Yi — Xj

8
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select subset of D D
such that for any non-empty subset E, select{E)

A coupled modefroups several DEVS into a compound model thatearegarded, due to the closure property,
as a new DEVS model. This allows hierarchical maedelstruction.

In addition, eacttoupled modehas its own input and output events, as definethby.s and Y sets. When
external events are received, the coupled modetcheedirect the inputs to one or more componesitsilarly,
when a component produces an output, it may hawgoit as an input to another component, or asugout of
the coupled model itself. Mapping between porteiined by the function.

Note that multiple components can be scheduledaforinternal transition at the same time in a cadiple
component, and therefore ambiguity may arise. dffttst component to execute its internal transifiwoduces
an output that maps to an external event for amotleenponent that is already scheduled for an iatern
transition, then it is not clear which transitidnistsecond component should execute first. Tworateres exist:
to execute the external transition first wéthr ta(s) and then the internal transition, or else to etethe internal
transition first followed by the external transitisvith e = 0. By theselectfunction, the DEVS formalism solves
this ambiguity. The function defines an order other components so that only one component of thapyof
imminent models is allowed to haee= 0. The other imminent models are divided in two guthose that
receive an external output from this model, and th&t. The former will execute their external tiios
functions with e = ta(s), the latter will be immmeduring the next simulation cycle which may requagain the
use of the select function to decide which modélexecute first.

1.3 Introduction to the Cell-DEVS for malism
1.3.1 Cellular Automata

Cellular Automataare used to describe real systems that can besesyiesl as a cell space. A cellular automaton
is an infinite regulam-dimensional lattice whose cells can take onedinidlue. The states in the lattice are
updated according to a local rule in a simultanesmg synchronous way. The cell states change anedéstime
steps as dictated by a local transition functiongithe present cell state and a finite set of Imgaells (called
the neighborhood of the cell).

Cell neighborhoo

Figure 3: Sketch of a cellular automaton [Wai00]
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The Timed Cell-DEVS formalism [Wai98] uses the DEW&radigm to define a cell space where each cell is
defined as a DEVS atomic model. As a result, piassible to build discrete event cell spaces impiptheir
definition by making the timing specification maepressive.

1.3.2 The Timed Cell-DEVSformalism
Cell-DEVS defines a cell as DEVS atomic model. Al-OEVS atomic model is defined by [Wai98]:

TDC:<X3Y3 lasaeaNadaéintuanbTa}VaD>

where
X is a set of external input events;
Y is a set of external output events;
I represents the model's modular interface;
S is the set of sequential states for the cell;
o is the cell state definition;
N is the set of states for the input events;
d is the delay for the cell;
Oint is the internal transition function;
Oext is the external transition function;
T is the local computation function;
A is the output function; and
D is the state duration function.

A cell uses a set of input values N to computefitsire state, which is obtained by applying thealoc
computation function. A delay function is associated with each celfedéng the output of the new state to the
neighbor cells. This activation of the local corgiiatn is carried by th&,,; function.

After the basic behavior for a cell is defined, anplete cell space can be constructed by buildicgupled
Cell-DEVS model:

GCC =< X1, Yisu I, X, Y, n, {t,....t}, N, C, B, Z, select >
where

Kiist is the input coupling list;

Yiist is the output coupling list;

I represents the definition of the interface fa thodular model;

10
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X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;

{t4,....4} is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells;

z is the translation function; and

select is the tie-breaking function for simultaneousreage

This specification defines a coupled model compasfean array of atomic cells. Each cell is connedte the
cells defined in its neighborhood. Neverthelesshascell space is finite, either the borders aowided with a
different neighborhood than the rest of the spacahey arewrapped(cells in one border are connected with
those in the opposite one). Finally, théunction defines the internal and external coupli cells in the model.
This function translates the outputs of m-th oufpait in cell G into values for the m-th input port of cel,C
Each output port will correspond to one neighbad aach input port will be associated with one aelthe
inverse neighborhood. The select function servessttime purpose as in the original DEVS modelsetodak
among imminent components.

1.4 Introduction to the CD++ toolkit

CD++ implements DEVS and Cell-DEVS theory, allowing tthefinition and simulation of models using the
specification described in the previous sectionsd®, Wai0l]. The tool was built as a hierarchlasses in
C++, each of them corresponds to a simulationyensiing the basic concepts defined in [Zei76, Zgi00

Two basic abstract classes existodel and Processor The former is used to represent the behaviohef t
atomic and coupled models, while the latter implets¢he simulation mechanisntsgure 4 shows the CD++
class hierarchy.

Model Processc

Atomic Coupled Simulator Coordinator Root
Coordinato

AtomicCell CoupledCe| | CellCoordinatc |

(@) (b)

Figure 4: CD++ (a) Model hierarchy, (b) Processordnrarchy

11
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The Atomic class implements the behavior of an atomic compwon€&he Coupled class implements the
mechanisms of a coupled model. For cellular modgplscial atomic models are used to represent the €e do
so, AtomicCelland CoupledCellare defined as subclassesfddmicand Coupledrespectively AtomicCell class
extends the behavior of the atomic models, to defre functionality of the cell space. In contr&iupledCell
handles a group of atomic cells.

A simulatorobject manages an associated atomic object, hgnitiénexecution of it§;, Oex aNdA(S) functions.

A coordinatorobject manages an associated coupled object. @elyoot coordinatorexists in a simulation. It
manages global aspects of the simulation. It i®lired with the topmost-coupled component, which thes
highest level in the model hierarchy. Moreover, rihet coordinatormaintains the global time, and it starts and
stops the simulation process. Lastly, it receitesautput results that must be sent to the enviesm

The simulation process is message driven; it iedasn the message exchange among processors. Eashga
contains information to identify theenderand thereceiver A time-stampfor the message and an associated
value are also included in the packet. Two main categooemessages exisynchronization and content
messages. These categories are consisted of sgymralof messages.

Synchronization messages.

@ Collect message
* Internal message
done Done message

Content messages.

q External message

y Output message
In addition, gorocessoihas internal variables to keep the time of the Kitman:

t Time of last transition

tn Time of next transition
and abagto store external messages.

The tool provides a specification language thaivesl describing coupling of models, initial valuesl a&xternal
input events. Additionally, atomic models are depeld under C++, which provides a great flexibilitgd
computing power to the modeler. Each new atomicehaulist inherit from thé\tomicclass in order to extend
their basic behavior.

Lastly, for Cell-DEVS model execution, CD++ allowlgfining size and structure of the cell space aad i
connection with other existing DEVS models, typalefay, neighborhood, border and initial statecfach cell.

This work is organized as follows. Chapter 2 introgk the simulation techniques available in the €Bolkit.

Furthermore, a synthetic model generator is deeslopnd presented. Finally, a performance analyfstheo
simulation techniques is provided. Chapter 3 intice$ a real-time extension to the CD++ toolkit,le/l@hapter
4 presents the testing of such simulator. In oremprovide better performance, a flattened simulaso
introduced in Chapter 5. Benchmark experimentscarged out using this new flattened approach edixth
chapter. Chapter 7 provides conclusions aboutwbik. An appendix presents tools developed to suppe
CD++ project.

12
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2. PERFORMANCE ANALYSIS OF DIFFERENT SIMULATION
TECHNIQUES

This chapter presents the available simulationrtiegkes in the CD++ toolkit. In addition, a new sytic model
generator is presented. Furthermore, a thorougfonpesince analysis is provided in order to charaaethe
overhead incurred by each technique.

2.1 Description of the available smulation techniquesin CD++
Currently, the CD++ toolkit supports two differagproaches to simulate DEVS and Cell-DEVS models.

The available distributions are tbeiginal stand-alone versiofRod99] and theparallel version[Tro0l1a]. The
former is a one-processor simulation technique. latter allows the execution of simulations on strithuted
environment. In this section, both techniques aptagned with more detail.

2.1.1 Original stand-alone simulator

The original stand-alone simulatdiRod99] can be used when the simulation is executehly one processor.
This is the simplest version of the CD++ toolkidasimulates both DEVS and Cell-DEVS models. It basn
used on a variety of models including: traffic,dst fires, robot movement and watershed simuldiome00a]
among others.

2.1.2 Paralle ssimulator

Eventually, the execution of more complex modetpinees a computing power that a stand-alone complates
not provide. Nevertheless, this computing power rapbtained by parallel and distributed systems.

Not only Cell-DEVS models, but also DEVS models meaguire this approach. The parallel version oftta
was developed using the Parallel DEVS [Cho94] aadhlel Cell-DEVS [Wai00], which are revisions dfet
DEVS and Cell-DEVS formalisms respectively.

When the parallel simulator [Tro01a] is invokednalyronization between processes is needed. Fabiflgx
the parallel simulator was designed as a layeretitacture application. The topmost layer impleraettte
abstract simulator. The middle layer carries outchyonization between processes and the lowest layi@
charge of the communications between the CPUs.nildleware is provided by the Warped project [M3r97
which supports two different synchronization pratisc TimeWarp kerneprovides the optimistic protocol. On
the other handNoTime kerneimplements an unsynchronized protocol. Both profare supported by the
parallel version of the CD++ toolkit.

When distributed simulation is invoked, Warped u&Bl for the message passing. The complete layered
architecture is shown below.

13
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MODEL

Parallel CD++

WARPED

MPI

Figure 5: Parallel CD++ layered structure

The parallel CD++ version supports not only disttédudl, but also stand-alone execution. In the |aitese, the
MPI layer is not needed.

2.2 Synthetic model generator

The performance testing of a simulator tool is ligumvery complex task. To make the analysis ef different
DEVS simulation tools easier and more accuratgnthetic experimental frame has been developed.

In order to perform a thorough study of the ovedseiacurred by each simulation technique, the stittmodel
generator must be able produce a wide variety afaiso The produced models must be similar to thes dinat
are studied in the real world.

To characterize a model, one should consider diffeaspects of its shape and behavior. Some omthst
important characteristics aneumber of levels in the model hierarchy, numbeatomic components, number of
coupled components, total size, number of intereotions between componerasdworkload in internal and
external transitions

The synthetic generator produces models of difteseapes and behaviors using the following paransiete
g model_type:ithis parameter allows us to choose among diffepeetiefined interconnections between
the model components. The amount of messages &Wadtva simulation is related to the number and
type of links between the components.

g depth:determines the number of levels of the modelimgdrchy.

g width: determines the number of children each intermediatipled component has. Along with depth,
it establishes the size of the model.

g #intdhrystonesindicates the execution time to be consumed inirtternal transition function, which
simulates code to be executed.

g #extdhrystonesindicates the execution time to be consumed inetiernal transition function, which
simulates code to be executed.

As stated in Chapter 1, an atomic model has twoced functions: the external transition and rimaé
transition functions. The former executes whenareexternal event arrives through an input pore THiter is
executed before the model changes its state.

We used the Dhrystone benchmark [Wei84] to genedifferent workload in both transition functions.
Dhrystone code is a synthetic benchmark intendelsetoepresentative for system (integer) programmiing

14
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#intdhrystonesand #extdhrystoneparameters allow the execution of time-consumindecmside the internal
and external transition, according to the numbeanitifseconds specified.

2.2.1 Type-1models

This model type has a small number of interconnestibetween components. As a result, this charstiter
allows the performance analysis in presence ofalsmamber of messages exchanged.

2.2.1.1 Sample Type-1 model

The following is a sample Type-1 model generateith Wie tool. The width used here is three; hertueretare
three components per level. The height used instisple is fourFigure 6 shows the top model, which is the
first and topmost-coupled component describedérhikrarchy.

TOP (Coupled Component #0)
in in oul out
> Coupled Component #1 o
in
—P> Atomic Component #1
(at level 1)
in Atomic Component #2
—> (at level 1)

Figure 6: Top model (type 1)

The arrows indicate the existing input and output ports inhedepicted modelBoxesdenote the different
components in the modekolid-white boxesepresent coupled components athded-gray boxesepresent
atomic components.

The Top model(Coupled Component #@onsists of one coupled component (labele€aspled Component
#1) and two atomic ones (labeledA®mic Component #dndAtomic Component #2&s shown above.

Coupled Component #Is depicted below. It has the same internal strecias theTop model(Coupled
Component #0and therefore contains one coupled mod&bupled Component #2and two atomic ones
(Atomic Component #8ndAtomic Component #4

15
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Coupled Component #1
in in Coupled Component #2 |out out
> >
I—nb Atomic Component #3
(at level 2)
in Atomic Component #4
=P (at level 2)

Figure 7: Coupled Component #1 (type 1)

Likewise, Coupled Component #&2so repeats this structure, and accordingly dasmt@oupled Component #3
andAtomic Components #nd#6.

Coupled Component #2
in in Coupled Component #3 |out out
g >
in
—p» Atomic Component #5
(at level 3)

in -

Atomic Component #6
—> (at level 3)

Figure 8: Coupled Component #2 (type 1)

Lastly, Coupled Component #8 simpler than those shown above. It has onlyatamic child (#7) connected to
its output port, regardless of the specified width.

Coupled Component #3

in in Atomic Component #7 oui out
—p—p (atthe last level —level 4)  ——p1—P

Figure 9: Coupled Component #3 (type 1)

Figure 9shows a much more simple model because the clingsgt was four for this model, and therefore this
is the last coupled component in the hierarchy.

16
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2.2.1.2 Characteristics of Type-1 models
To measure the time involved upon the receptioaroéxternal event, we have to take into accounhtimsber
of internal and external functions being execufés value is determined by the number of atomimponents
in the obtained model.
In general, given a specifiedi depth andv width, we end up having coupled components witl-1 atomic
components inside each coupled one (except fomtiermost coupled model in the hierarchy, whichydrds
one atomic component).
Consequently, the total number of atomic componiergsmodel generated by the tool is:

# Atomic Models = (width — 1) * (depth—-1) + 1
In the above example, whenédth = 3 anddepth= 4, we have 7 atomic models:

# Atomic Models=(3-1)*(4-1)+ 1%

Now, we can calculate how many atomic componemsrerated model has. Then, we also know the nuofber
transition functions to be executed upon the récemif an external event.

In addition, all the atomic components spend aagedmount of time executing Dhrystone code inekiernal
and internal transitions. Recall that this timespecified by thetintdhrystonesand#extdhrystoneparameters
described before.
Using the previous data, now we can measure thegpant upon of the reception of an external efeenfype-
1 models. We must multiply the number of internad &xternal transitions to be executed by the amoiutime
spent in each transition function to obtain thalttitme needed to process a single incoming evertiis kind of
models, each atomic component receives one inpuggmh external event. Consequently, the numbexktefnal
and internal transitions to be executed is equdécnumber of existing atomic components. Thus,

# Internal Transitions = # Atomic Models

# External Transitions = # Atomic Models

Time spent per external event = [ (# External Transitions * TimelnExternalTransitia ) +
(# Internal Transitions * TimelnInternalTransition) ]

This information is essential to carry out the parfance analysis.

2.2.2 Type-2models
Model type 2has more interconnections between the compondngsah coupled model. The inner atomic

components are interconnected; therefore, thesegieater number of messages interchanged in kirede of
models and the overhead grows accordingly.

2.2.2.1 Sample Type-2 model

The following is a sample model with four levelsd&pth and a width of four components (as explalmefdre,
we have in this case four components per levetetiof which are atomic and the remaining one ipleal).

The Top model{Coupled Component #@s shown below.

17
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TOP (Coupled Component #0)

in in Coupled Component #1 |oul oul
> >—>
in oul
—P> Atomic Component #1
(at level 1)

¢in

in oul
P! Atomic Component #2
(at level 1)
) ¢ in
n
P Atomic Component #3
(atlevel 1)

Figure 10: Top model (type 2)

The figure shows the greater number of conneciimeemparison with Type-1 modelSoupled Component #1
is also formed by three atomic components and oopled modelCoupled Component #2yhe same structure
can be found inCoupled Component #that is composed bygoupled Component #Neither Coupled
Component #Inor Coupled Component #®&ill be shown here because of its similarity togd components
shown before.

Finally, Coupled Componen#3 is quite simple, because it is the last couglethponent in the obtained
hierarchy.

Coupled Component #3

in in Atomic Component #10 out out
—Pp——Pp (atthe last level —level 4) +—— pt———Pp

Figure 11: Coupled Component #3 (type 2)

2.2.2.2 Characteristics of Type-2 models

The number of both atomic and coupled componentypga-2 models and those of type-1 models are equal
Then, given a specified depth andwv width, we obtaind coupled components witlv-1 atomic components
inside each coupled component (except for theclagpled model which only includes one atomic congm)

The total number of atomic components in a modeegated by the tool is:

# Atomic Models = (width — 1) * (depth—-1) + 1

18
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However, the interconnections in Type-2 models raoethe same as those in Type-1 models. Therefoee,
number of internal and external transition alséedsf from the previous type.

When an external event is received, it is transmitthrough the input port to thtep model and to all its
components. Similarly, the inner-coupled componegtimnsmit the event accordingly.

Additionally, each time an atomic component semi®uatput, another atomic component receives itutinaits
input port.

As we can see, the number of internal and extéraasitions executed upon the reception of an patavent is
much greater in Type-2 models. Thus,

# Internal Transitions = =1 w.)i *(d-1) +1
# External Transitions =2 =1 w.yi *(d—1) +1
In the above example,
# Atomic Models=(4-1)*(4-1)+1%0
and,
# Internal Transitions =% =1 . 4.)i* (4 -1)+1=18+1 =19

# External Transitions = j=; . 43)i *(4-1)+1=18+1 =19

2.2.3 Type-3models
Type-3 models are comparable to Type-2 models,sbate differences exist. This new kind of model also

connects the outputs of its inner atomic compongntmn auxiliary output, thus generating even nuvwerhead
in the simulation due to the message exchange.

2.2.3.1 Sample Type-3 model

The topmost component of a model with a depth of &md a width of four is depicted below.
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TOP (Coupled Component #0)
in n q
— T Coupled Component #1 | oul out
inaux  E—
oul
in Atomic Component #1 }O_Utﬁj )
Y (atlevel 1)
¢ in
oul
in Atomic Component #2
—p (atlevel 1)
_ ¢ in
n
L Atomic Component #3
(atlevel 1)

Figure 12: Top model (type 3)

TheCoupled Component #4& very similar to théop model

Coupled Component #1
In In
: »  Coupled Component #1 | oul out
inaux >
inaux in out outaus
P Atomic Component #4 P
(at level 1)
. ¢ in
In out
—P Atomic Component #5
(at level 1)
. ¢ in
In
P Atomic Component #6
(at level 1)

Figure 13: Coupled Component #1 (type 3)
Coupled Component #2peats the structure shown in @eupled Components #1

Finally, Coupled Component #8 a simple component and contains only one ataomgponent:
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Coupled Component #3

in in Atomic Component #10 out out
— - » (at the last level — level 4) >

Figure 14: Coupled Component #3 (type 3)

2.2.3.2 Characteristics of Type-3 models

Type-3 models have even more interconnections Tlype-2 models. In this case, not only auxiliaryunports
but also auxiliary output ports generate more ozadin message exchange among components.

The difference between Type-2 and Type-3 modeisdsnclusion of these auxiliary ports. Then, thenber of
both coupled and atomic components per model renthénsame as in Type-2:

# Atomic Models = (width — 1) * (depth— 1) + 1
# Internal Transitions = =1 wpi*(d-1)+1
# External Transitions = =  w.g)i * (d—-1) + 1
Hence, in the previous example,
# Atomic Models=(4-1)*(4-1)+1=10
# Internal Transitions = =1 . 4)i *(4-1)+1=18+1=19

# External Transitions = =; , 4)i*(4-1)+1=18+1=19

2.3 Performance analysis

Thorough testing was developed to analyze the sitmuberformance under different conditions. Thalysis
compares the overhead obtained when using thesolipversions of the toolkit:

g Original stand-alone CD++ simulator

g Parallel CD++ simulator withNoTime(unsynchronized) kernel

g Parallel CD++ simulator witlimeWarp(optimistic) kernel
Recall that the parallel version supports not opdyallel but also stand-alone simulation. All thesting
developed in this work is carried out in stand-aldashion. Results on parallel performance areyaedlin

[TroO1b].

The layers involved in each technique in stand-@lerecution are shown in the next figure. The MBkt,
which is stripped in the chart, is not used whamdtalone execution is performed with the paraii@ulator.
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MODEL MODEL
MODEL
Parallel CD++ Parallel CD++
Original CD++
Warped — NoTime Kernel Warped — TimeWarp Kernel
MPI MPI
(a) (b) (0)

Figure 15: Comparison of the layers involved in (&yriginal CD++, (b) Parallel CD++ with NoTime kerrig
and (c) Parallel CD++ with TimeWarp optimistic keeh

Models with different shapes and sizes have beeaergéed in order to simulate diverse model chariatits
and workloads.

2.3.1 Test notes

The testing described in this chapter was perforrmedhe RADS Laboratory, Systems and Computing
Engineering Department, Carleton University (Otta®@anada). The testing was run on #igha measurement
network with Pentium computers with 128 MB of RAM.

The installed operating system wRed Hat Linux 6.2

2.3.2 DEVSmodels

Different shapes and behaviors of DEVS models wested. We used sample models created with thaetynt
generator in order to exemplify some of the obtdiresults.

Thetheoretical execution tim®r a given simulation does not include any ovedhétis basically the sum of all
time spent in internal and external transitiona#ding this simulation.

Total theoretical time = [ (# External Transitions * TimelnExternalTransitia ) +
(# Internal Transitions * TimelnInternalTransition)] *
NumberOfEvents

This value is shown in the charts and is comparét the obtained execution times for each simutatio
technique that includes the associated overhead.

2.3.2.1 Type-1 models

Table 1 presents the parameters used in the siomgatwhich are labeled with capital letters, aheirt
associated values.
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Simulation Model Type Depth Width Internal External
Transition Transition
A 1 3 10 50 ms 50 ms
B 1 10 3 50 ms 50 ms
C 1 5 5 50 ms 50 ms
D 1 10 10 50 ms 50 ms
Table 1: Simulation parameters (Type-1 models)

The experiments have been performed with a worklmfa@l0 external events per simulation. The nextrig
shows the execution times for each technique arahwarison of results.

90000 3000
80000 -
2500 =
70000 = —~
g
60000 — =3 =
—_ @ Original CD++ g 2000
@
£ 50000 [~| |m Parallel NoTime = —
° o 1500 [ |@ Original CD++
£ 40000 || |OParallel TimeWarp g
= O Theoretical o | | |m Parallel NoTime
30000 = & 1000
£
20000 - a O Parallel
500 | TimewWarp
10000 — =
0 . . L1 0+ L
A B (e} D A B C D
(@ (b)

Figure 16: Performance results on Type-1 Models) @xecution times for Type-1 DEVS models, (b)
Difference between experiments and theoretical time

Figure 16 (a)shows the different execution times for Type-1 mledising the available simulation techniques.
The theoretical time is included for comparisbigure 16 (b)shows the difference between execution time and
theoretical time.

The amount of overhead is measured by subtradimthieoretical time from the execution time anddiing that
by the execution time itself, that is:
Overhead (%) = (executionTime — theoreticalTime)
executionTime

The next figure presents the overhead incurredcaloh abstract simulator.
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As we can see, each technique induces a differmrhead to the simulation. The charts show thabtiginal
CD++ technique is the one that executes with minimoverhead. When executing the parallel abstract

5,00%

4,50%

4,00%
3,50%

3,00% -
2,50% -
2,00% -
1,50% -
1,00% -+
0,50% -
0,00% -

Overhead (%)

@ Original CD++
| Parallel NoTime

O Parallel
TimeWarp

Figure 17: Overhead incurred by the abstract simtdas for Type-1 models

simulator, the NoTime kernel adds less overhea titva TimeWarp kernel.

2.3.2.2 Type-2 models

Table 2 presents the parameters used in the siongadnd their associated values for Type-2 models.

The experiments have been performed with a worktddd external events per simulation. The follogvfigure

Simulation Model Type Depth Width Internal External
Transition Transition
E 2 3 6 50 ms 50 ms
F 2 6 3 50 ms 50 ms
G 2 5 5 50 ms 50 ms
H 2 6 6 50 ms 50 ms
Table 2: Simulation parameters (Type-2 models)

shows the obtained results.

120000

100000

80000

60000

Time (ms)

40000

20000

0

| 1l

@ Original CD++

m Parallel NoTime

O Parallel TimeWarp
O Theoretical

Figure 18 (a)shows the different execution times for Type-2 gledising the available simulation techniques,
while Figure 18 (b)shows the difference between the execution tintetlagoretical time.

Figure 19 presents the overhead incurred by easthaah simulator for Type-2 models.

@)
Figure 18: (a) Execution times for Type-2 DEVS mdde
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Difference time (ms)

1000 A
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(b) Difference between experiments and theoretitale
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Figure 19: Overhead incurred by the abstract simtdas for Type-2 models

Again, the chart shows that the original CD++ tégha is the one that executes with minimum overhgéiden
executing the parallel abstract simulator, the Mud kernel adds less overhead than the TimeWargkern

2.3.2.3 Type-3 models

Table 3 presents the parameters used in the siongaind their associated values for Type-3 models.

Simulation Model Type Depth Width Internal External
Transition Transition
I 3 3 6 100 ms 0ms
J 3 6 3 O0ms 100 ms
K 3 5 5 50 ms 50 ms
L 3 6 6 50 ms 50 ms
Table 3: Simulation parameters (Type-3 models)

The experiments have been performed with a worktddd external events per simulation. The follogvfigure
shows the obtained results.

120000 7000
[
100000 - 6000 [ T
£ 5000 =
80000 = ~
—_ @ Original CD++ qu
é m Parallel NoTime = 4000 || [@ Original CD++
S 60000 = ©
£ O Parallel TimeWarp o 3000 || .
= . S B Parallel NoTime|
O Theoretical =
40000 — (]
£ 2000 A = |0 Parallel
a TimeWarp
20000 I 1000 [
ol L [ 0 =
| J K L J K L
(@ (b)

Figure 20: (a) Execution times for Type-3 DEVS mdde
(b) Difference between experiments and theoretitale

Figure 20 (a)shows the different execution times for Type-3 gledising the available simulation techniques,
while Figure 20 (b)shows the difference between the execution tintetlagoretical time.

Lastly, Figure 21presents the stable overhead incurred by eachaabsimulator for Type-3 models.
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Figure 21: Overhead incurred by the abstract simtdas for Type-3 models

2.3.2.4 Models without workload in transition functions

In the previous sections, test cases executedeliffeanges of workload in their internal and exéétransition

functions. Time consuming Dhrystone code was usetesemble instructions to be executed in both atom
transition functions. This section studies a défartype of model.

These test cases were also produced with our gimthedel generator. However, there is no Dhrystooge to
be executed in the external and internal transfiimctions. Therefore, all the execution time cepe@nds to the

overhead incurred by the different simulation téghas under study. The following table shows thiéedént
model parameters.

Simulation Model Type Depth Width Internal External
Transition Transition
M 1 5 10 0 ms 0 ms
N 1 10 5 O0ms O0ms
O 1 8 8 O0ms O0ms
P 1 10 10 0 ms 0 ms
Q 3 5 10 0 ms 0 ms
R 3 10 5 O0ms O0ms
S 3 8 8 O0ms O0ms
T 3 10 10 0 ms 0 ms
Table 4: Simulation parameters for models withoubrkload

Experiments have been performed with a workloatio®f0 external events per simulation. Again, thet figure
shows the execution times for each technique ierai@ compare the obtained results.
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Figure 22: Execution times for pure-overhead simtian for (a) Type-1 models, (b) Type-3 models

In summary, these test cases show the executiendirsimulations that do not execute any Dhrystoue at all
in their internal and external transition functioiifie presented results illustrate the time consuamecarrying
on the simulation in presence of a considerablatifyeof external events. Actually, since all theseution time
is consumed by the simulator in all these cases;gbulting overhead in every case is 100%.

2.4 Conclusions about performance analysis

We have developed a synthetic benchmarking todldtia be applied to DEVS environments to analyze-€D
performance easily and thoroughly. Different typésnodels were tested automatically, showing thatoan
execute models paying a small cost in terms ofgesiag overhead.

As we have shown, each simulation technique hassociated overhead that depends on the sizehdpe and
the behavior of the simulated model. We found #van with medium and large-scale models, the simnl@an
be carried out properly and the obtained overhsad & manageable size and remains stable. ThaalrigD++
tool executes with minimum overhead and thereforis ian appropriate tool when stand-alone execuson
adequate. The NoTime kernel outperforms the Timg\Karnel when using the parallel simulator.
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3. REAL-TIME EXTENSION TO THE CD++ TOOLKIT

In the previous chapter, simulation techniqueslakitg in CD++ have been analyzed. It has been shibana
relatively small overhead is paid when executing toi large-scale models. The performance analyss/ead
that a real-time extension to the tool was feasible

3.1 Virtual time simulation approach

The existing techniques in the CD++ toolkit empéoyirtual timeapproach. The methodology is useful for non-
interactive simulation. This strategy advancesttime disregarding any real clock attached to tmeukition
mechanism and periods of inactivity are skippedhegytool. In contrast to @eal timesimulation, it is useless to
connect inputs and outputs to the environment whenmirtual timesimulation is performed, because the time in
the simulation framework does not evolve at theesapeed as within its surroundings.

In order to execute a simulation using theual time approach, CD++ maintains a variable in which theent
simulation timeis stored and updated. Again, note that this vaduot linked at all to any physical clock. The
update of that variable is performed by the sinwlass follows. When the simulation starts, sifmulation time

is initialized to zero. Then, the imminent eveirg.(the event with the earliest time of occurrencejdmputed
and thesimulation timeis advanced accordingly in order to process thanevOnce it has been processed
completely, the new imminent event is computed, shmaulation timeis advanced and the new event is
processed. This cycle of advancing siraulation timeand processing the imminent event is repeated niduel
execution ends when ttggmulation timereaches thatop timeindicated by the user, or else when there are no
more pending events.

The execution of a model using thietual time approach with the CD++ toolkit is illustrated iretfollowing
example.

3.1.1 Samplemodel simulation using virtual time

Figure 23shows a top-model that is formed by two coupled poments, four input ports and four output ports.
Each inner-coupled component is composed of twlsiratomic models. An atomic component is linkedht®
environment through one input port and one output 3 he workload that is executed in each compowaries
from one atomic component to another. The followiggre shows the entire model structure.
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COUPLED MODEL #01 (TOP MODEL)

COUPLED MODEL #02

INO1 ouTol
— PP ATOMIC MODEL #01 — >

INO2 ouT02
— PP ATOMIC MODEL #02 — >

COUPLED MODEL #03

INO3 ouTo3
— P ATOMIC MODEL #03 >

INO4 ouTo4
— P ATOMIC MODEL #04 >

Figure 23: Sample model

External events can be received by the model thr@ny of its input ports. This information is supgl by the
user in theevent file, where times are written in tH®urs:minutes:seconds:milliseconfismat. An event file
for this sample model is shown below.

event tinme i nput port val ue
00:00:05:000 in01 il
00:01:28:100 in02 L
00:18:21:000 in03 L
00:31:15:500 in04 il
00:45:30:200 in02 il
01:05:00:500 in01 il
02:15:00:900 in04 L
05:50:30:200 in03 il

Figure 24: Sample event file for the given modeling the virtual time approach

CD++ executed the previous model with this evdat Dnce the simulation has ended, results caoiedfin an
output file. The next figure shows the obtairedput file, illustrating how time evolves when the virtuahé
approach is used in a simulation.
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actual out put out put tine out put port val ue

time (physical (simul ati on-

or wall -cl ock time)

time)

00:00:00:060 00:00:05:000 outOl 1
00:00:00:130 00:01:28:100 out02 L
00:00:00:230 00:18:21:000 out03 L
00:00:00:320 00:31:15:500 out04 L
00:00:00:390 00:45:30:200 out02 L
00:00:00:430 01:05:00:500 out0l L
00:00:00:520 02:15:00:900 out04 L
00:00:00:620 05:50:30:200 out03 L

Figure 25: Output file using the virtual time appixch

The first column indicates thghysical timgi.e. wall-clock tim@ at which the output has been sent. It is the time
elapsed since the beginning of the simulation et@tuThe simulation-timeassociated to each message is
shown in the second column. Thatput portand theassociated valu¢hat has been sent are exhibited in the
third and fourth columns respectively.

For instance, the first line describes an outpat serough porbut01with a value ofl. That output has been
performed at thesimulation time 00:00:05:0Q0but the correspondinghysical timeat that moment was
00:00:00:060

Recall that, when theirtual time approach is used, all periods of inactivity areppkid, which leads to the
particularity shown above when executing a model.conclusion, we can see clearly that events ate no
processed at their actual scheduled times.

3.2 Real-time simulation approach

Modifications have been developed in order to all@al-time simulation in the CD++ toolkit. A reahe

system is defined as a system whose correctnesndemot only on the logical results of computatlmut also
on the time at which the results are produced [Bt&8a96]. If a system delivers the correct ansafter a
certain deadline, it could be regarded as an uesséa response. Consequently, a real-time simulatest

handle events in a timeliness fashion where timesitaints can be stated and validated. These naturés
would allow interaction between the simulator ahd surrounding environment. Therefore, inputs cdagd
received by ports connected to real input deviceh @s sensors, timers, thermometers or even diéted

from human interaction. Similarly, outputs could &ent through output ports connected to deviceb sisc
motors, transducers, gears, valves or any othepopent.

3.2.1 Timeadvancein the simulation process

In order to implement the real-time extension te tholkit, advance of the simulation-clock musttieel to the
wall-clock (.e. physical time). To do so, theot coordinatorhas been modified to provide this functionality.

The root coordinator,inheriting from thecoordinatorclass in the processor hierarchy in CD++ (see Ghélpt
for further details), manages the time advancegatha execution of a simulation. In addition, itésponsible of
starting each new simulation cycle by issuing tberasponding message. When thieual time approach was
used, the messages were immediately generated esmichbg theroot coordinatorto initiate the new cycle.
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Nevertheless, when theal-time simulation is performed, the coordinator must waitil the physical time
reaches the next event time to initiate the nevlecyk new simulation cycle can be started due to:

g the reception of aaxternal eventor
g the consumption of time indicated ta(s)

Evidently, periods of inactivity are not skipped time real-time extension. The simulation procesaaias
quiescent while these periods are being experientestead of forcing a time advance up to the next
programmed event and thus anticipating the exetuifoa programmed task, theot coordinatorexpects the
scheduled time to be reached and only then stagtsnéw simulation cycle. Hence, messages intereuhng
between processors are sent, ideally, at theirahstheduled time. However, this ideal timely pssieg of
events may not be obtained if the incurred overltEggptades performance greatly.

3.2.2 Adding deadlinesin thereal time model execution

Timeliness along a simulation is a substantial proypin the real time approach. When a model iadpexecuted
using this technique, it is usually important te&eck different time constraints along the simulatiBarticularly,
the time at which an event has been completelygssed is a meaningful measure of success.

Typically, a model has to react to an external evéthin a given time to produce an output in ortiesolve a
given problem. For instance, in case of havingrsaeindicating dangerous overheat, an energy plegds to
shut down a part of its system within given perddime.

A way to indicate a deadline time for an externadré is provided in the real time extension of tibelkit. The
new extended format of tlewent file is illustrated in the next figure.

event tinme associ at ed i nput port associ at ed val ue
deadl i ne out put port
hh:mm:ss:mseg hh:mm:ss:mseg  port name port name numeric|value

Figure 26: Format of the event file in the real timextension

As we can see, not only @ssociated deadlinbut also aroutput portmust be indicated in the new event file.
Thus, the simulator can check whether the physice meets the associated deadline when sendiroytot
through the associated port. Once the executionfiheshed, both successful and unsuccessful dezsllare
stored for further study of the simulation process.

3.2.3 Sample model simulations using the new real time appr oach

A real time simulation is exemplified using the mbgdreviously shown. The new event file is illustcin the
next figure.
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event tine associ at ed i nput associ at ed val ue
deadl i ne port out put port
00:00:05:000  0p:00:05:020 in01 out0l1 1
00:01:28:100  0p:01:29:000 in02 out02 1
00:18:21:000 00:18:21:050 in03 out03 1
00:31:15:500  0p:31:15:540 in04 out04 1
00:45:30:200  00:45:30:270 in02 out02 1
01:05:00:500  0[1:05:01:500 in01 out0l1 1
02:15:00:900  0R:15:00:980 in04 out04 1
05:50:30:200  05:50:30:350 in03 out03 1

Figure 27: Sample event file for the given modeling the real time approach
The file exhibits not only event times, but alseittassociated deadline information for each exteenent. For
example, the result for the event arrived at tBBe00:05:000through the input poiin01 must be sent before
00:00:05:020through the output podutOl This states that the model must react to thengéxesnt in less than
20 milliseconds.

Now, the toolkit prints thectual output timethesimulation-timeand theassociated deadlinfor each event in
theoutput file.

Additionally, in theresultcolumn one of these two values is obtained:
succeeded if actual output time < associated deadline

not succeeded if actual output time > associated deadline

The following figure shows the corresponding outfiletfor the executed model.

actual output |output tine Associ at ed result out put val ue
tinme (simul ation- deadl i ne port

(physi cal or time)

wal | - cl ock

tinme)

00:00:05:060 00j00:05:000 00:00:05:020 not succeeded out0l 1
00:01:28:070 00{01:28:100 00:01:29:000 succeeded out02 1
00:18:21:090 00{18:21:000 00:18:21:050 not succeeded out03 1
00:31:15:580 00j31:15:500 00:31:15:540 not succeeded out04 1
00:45:30:270 00{45:30:200 00:45:80:270 succeeded out02 1
01:05:00:560 01]05:00:500 01:05:01:500 succeeded out01 1
02:15:00:980 02{15:00:900 02:15:00:980 succeeded out04 1
05:50:30:290 05{50:30:200 05:50:30:350 succeeded out03 1

Figure 28: Output file using the real time approach

The result in the first column shows thetual timeat which the output has been sent, that is theclatk value
at that time (the time elapsed since the beginpinthe simulation execution). The second colummshthe
simulation timeat which this output has been scheduled, whilethivd column shows thassociated deadline
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time for the given event. It is possible to check whethe deadline has been mieé(the actual output time
the associated deadline) looking at the fourth moluFinally, theoutput portand the obtainedalueare shown
in the remaining columns.

For instance, the first line in the output file alsoa deadline that has not been met in the execulibe
associated time constraint was set Gi:00:05:02Q while the actual output time wa80:00:05:060
Consequentlynot succeedets printed in that line, along with the output pottO1and the value that has been
transmitted. On the other hand, the second linavstam event whose deadline that has been sucdessatil It
was sent by the simulator @:01:28:070while its associated deadline wa01:29:000 In this particular case,
five out of eight events have been processed om tim

3.2.3.1 Alarm-clock sample model

Different types of models can be executed with ileev real-time extension CD++. An alarm clock model
[Jac01] has been used to analyze the real-timeradmts under the new simulation approach. Thisehodn be
thought of as a part of a more complex system. Meel, which has an important component of time, is
presented here.

ALARM CLOCK

i |
| [
I HOURS
| [= |
|
5 [’ REGISTER |
TIME_SET | : & 5 4 TIME_OF_DAY | DISPLAY
e
L N : bt DRIVER | DISPLAYED_TIME
AaRMSET | B | - | |
i = || MINUIED | i
| |
L REGISTER | }
HOURS I S i |
| |
MINUTES | !
e . |
|
ALARM_ON | | TIME TIME_MATCH ! !
"‘ : COMPARATOR : ;
SNOOZE Lo 4 BUZZER ' ‘
| | .
| ! P DRIVER | | | | BUZZER
Lo | |
| |
L ALARM BUZER | \
[ TIME I \
1 : REGISTER ALARM_TIME | |
| [ |
| |
| |

Figure 29: Alarm-clock conceptual model [Jac01]

The entire model has three levels in the hierar@ime top level is thdLARM CLOCK It has six input signals
representing the push buttons and switch positioatsexist in the real system. The input pdiVIE_SETis used

in combination wittHOURSandMINUTESto set the time of day. Similarly, the input pAtARM_SETis used

in conjunction withHOURSand MINUTESto set the desired alarm time. The buzzer sound& ARM_ONis
set and the actual timed. time of day) is equal to the alarm tim8NOOZEstops the buzzer for a period of 10
minutes after which the buzzer will automaticalbuad again ifALARM_ONis set. The model has two output
ports:DISPLAY_TIMErepresents the four-digit display, whB&JZZER_ONepresents the output of the buzzer
speaker.
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The top model can be subsequently decomposedublevels. The first sublevel consists of three congmts:
the TIME_REGISTERwhich holds and automatically increments the tirhelay, theALARM_CONTROLLER
which holds the alarm time and decides whethebtlezer should be turned on or off. The third congmtris an
atomic component namd&lSPLAY_DRIVERwhich determines ifime of dayor alarm timemust be displayed.

The second sublevel consists of five different atontomponents. TheHOURS_ REGISTERand
MINUTES_REGISTERespectively hold the hours and minutes that make the time of day. The
TIME_COMPARATORoOmpares the current time with the alarm timedtect a match and potentially sound the
buzzer. TheALARM_TIME_REGISTERolds the alarm time. Finally, ti®UZZER_DRIVERIecides when the
buzzer needs to be activated or deactivated.

The following is an excerpt from the output fileoduced by the simulation of the alarm clock.

act ual out put tine out put port val ue
out put time | (sinulation-
(physi cal or time)
wal | - cl ock
time)

00:01:00:000 00:01:00:000 DISPLAY_TIME 00:01
00:02:00:000 00:02:00:000 DISPLAY_TIME 00:02
00:03:00:000 00:03:00:000 DISPLAY_TIME 00:03

() () () ()
00:30:00:000 00:30:00:000 DISPLAY_TIME 00:30
00:30:00:000 00:30:00:000 BUZZER_ON 1
00:31:00:000 00:31:00:000 DISPLAY_TIME 00:31
00:32:00:000 00:32:00:000 DISPLAY_TIME 00:32
00:32:45:500 00:32:45:500 BUZZER_ON 0
00:33:00:000 00:33:00:000 DISPLAY_TIME 00:33
00:34:00:000 00:34:00:000 DISPLAY_TIME 00:34
00:35:00:000 00:35:00:000 DISPLAY_TIME 00:35
00:36:00:000 00:36:00:000 DISPLAY_TIME 00:36
00:37:00:000 00:37:00:000 DISPLAY_TIME 00:37
00:38:00:000 00:38:00:000 DISPLAY_TIME 00:38
00:39:00:000 00:39:00:000 DISPLAY_TIME 00:39
00:40:00:000 00:40:00:000 DISPLAY_TIME 00:40
00:41:00:000 00:41:00:000 DISPLAY_TIME 00:41
00:42:00:000 00:42:00:000 DISPLAY_TIME 00:42
00:42:45:500 00:42:45:500 BUZZER_ON 1
00:43:00:000 00:43:00:000 DISPLAY_TIME 00:43

() () () ()

Figure 30: Output file excerpt - Execution of thelarm-clock [Jac01] in real-time

Figure 30shows results obtained after the execution of theraclock using the real-time approach. Generally,
we can see that as time passes, the actual tiol#ased through thBISPLAY_TIMEport which resembles the
usual digital display of an alarm clock. In additionformation about the buzzer alarm is obtainethe output
file.

The buzzer is turned on @0:30:00:000and this is naotified through the output pBWZZER_ONat that time.
The time still evolves normally and the actual tim@btained through tHeISPLAY_TIMEport. The user turns
off the buzzer a00:32:45:50Q where theBUZZER_ONissues &. Recall that the buzzer can be deactivated
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using theSNOOZEbutton, but the alarm will buzz again after areigleriod of ten minutes. Hence, at time
00:42:45:500the buzzer is turned on again, when the outputRIdZZER_ONssues 4.

It is important to point out that actual output-#isnare equal to their corresponding simulation ginfenis fact
shows that delays are remarkably small all alomgsimulation of this alarm clock. Therefore, suthuation
could meet easily the deadlines imposed by the user

3.2.3.2 Vending machine sample model

Moreover, a vending machine model [Li01] has beeadufor further analysis of the real-time extension
CD++,

The simulated vending machine is similar to thesotteat exist in some cafeterias. Different itema ba
purchased by inserting the sufficient amount of eyoand then selecting the appropriate button tpedise the
desired product. The machine returns the correcuaimof change, keeps track of how many items lmen
dispensed and informs out-of-stock products tactistomer.

VENDING MACHINE

1 [ s s 1
COIN_IN ! COIN i 0
—+®» COLLECTOR |—» SERVICE o
! ! CONTROLLER L
ITEM_IN ! A L P T Co
, ITEM —p Con
! SELECTOR o VENDING Vo
! L CONTROLLER ! ! !
: i i 11 ITEM_OUT
REQUEST_IN ! Vo .
—» CHANGE —> | e
! MAKER L Lo
CHANGE_OUT | o P
s D — ¥
! ITEM '
ouT : BALANCE ! PROCESSOR L
4T DISPLAY |4 — '

Figure 31: Vending machine conceptual model [Li01]

The system is composed of several atomic comporfardsin collector anitem selectara change makera
balance display anitem processoland others) and coupled componentsdavice controllerand avending
controllerinside of it).

The model has three input ports. Coins are insdthesligh theCOIN_IN port, items are selected through the
ITEM_IN port and change is requested through REEQUEST_INport. The output ports are used as follows:
ITEM_OUT is used to dispense the produc®UT resembles the balance display of the machine and
CHANGE_OUTis used for the returned coins.

The following figure shows a sample event file floe vending machine model. Here, a customer indéfesent
amounts of money and requests a particular iteradlirees are imposed to each incoming event.
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event tine associ at ed i nput associ at ed val ue
deadl i ne port out put port
00:00:10:000  0p:00:12:500 COIN_IN ouT 0.25
00:00:15:000  0p:00:17:500 COIN_IN ouT 1.00
00:00:20:000  0p:00:25:500 COIN_IN ouT 0.25
00:00:25:000  0p:00:30:000 ITEM[IN ITEN_OUT 28
(..) () () (..) ()

Figure 32: External event file - Vending machine [Q1]

For instance, the first quarter is received throtlghCOIN_IN port at time00: 00:10:000 and the associated
output is expected through the p@UT before 00:00:10:250 Then, a dollar .00 is received at time
00:00:15:00Q and so on. Finally, the item 28 is selectedra& 60:00:25:000

act ual output tine | output port val ue
output tinme | (sinmulation-
(physi cal or tine)
wal | - cl ock

tine)
00:00:12:010 00:00:12:000 ouT 0.25
00:00:17:010 00:00:17:000 ouT 1.25
00:00:22:010 00:00:22:000 ouT 1.50
00:00:28:020 00:00:28:000 ITEM_OUT 28
00:00:30:010 00:00:30:000 ouT 0.00

(-.)) (-.)) (-.)) (-.))

Figure 33: Output file excerpt - Execution of theemding machine in real-time [Li01]

The previous figure shows the corresponding oufifrit The balance display is updated through@éT port,
two seconds after each coin is inserted. The &8s dispensed through tHiEEM_OUT port at time00:28:000
Events are processed on time, and small differecaerse observed between thessage timand theactual
time (i.e. wall-clock time) at which they have been produced.

3.3 Conclusions about the real-time extension in CD++

We have provided a means to execute models irtimalusing the CD++ toolkit. A real-time simulatidiffers
in different aspects from the existing techniques used a virtual-time approach. A comparison betwirtual
timeandreal timeapproaches is summarized in the following table.
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Virtual time approach Real time approach
Previously available in the CD++ Implemented in this work
toolkit
Periods of inactivity are skipped During periodsratctivity the

simulator remains quiescent

=

Events are not processed based|@imulation is tied to the physical clog
physical time but only on simulated so events can be processed at their

time indicated scheduled time
Forbids a link between simulator A link between simulator and
and environment environment is feasible

Timing constraints do not exist Deadlines can lsoeiated to events.
Timeliness can be tested and analyzed.

Table 5: Comparison between both simulation apprbeas

As we have shown, timeliness is an essential ananimgful characteristic of real time simulations. duch
cases, whether a given deadline is met dependsvenad factors:

q Overhead of the toolthe execution of the simulation mechanism affedts bverall
performance. Usually, this overhead becomes laagdhe size of the model increases, mainly
because the time spent by exchanging messages qumanagsors.

g Workload in atomic componentthe more workload that has to be executed in rialeand
external transition functions, the more time ttamneeded to complete the execution of the
corresponding code

g Associated deadlinesf the associated deadline for a given event iy wight, then it is not
likely to be met. On the contrary, a loosened et deadline is likely to be met more easily
in a simulation.

The first factor,overhead of the topls intrinsically involved with the simulation press. It has to be minimized
to allow a wide range of models to be executed gngpsing the real time simulation toolkit. Thesed factor,
workload in atomic componentsaries from one model to another and dependshercharacteristics of the
models under execution. Finally, thesociated deadlinmfluences the success of meeting a given deadiime
they are imposed by the user.

The next chapter provides a performance analydiseo€D++ real time simulator.
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4. PERFORMANCE ANALYSISOF THE REAL TIME SIMULATOR

This chapter analyzes the real time performanci@fCD++ toolkit. A thorough testing process isrigat out
using different kinds of models.

4.1 Introduction

Recall from the previous chapters that a real tsmaulator must be able to interact with a surrongdi
environment. Timing correctness requirements ipa time system arise because of the physical itrgfaihe
controlling systems’ activities upon its environrhdB8ta88]. Therefore, it is imperative to ensurdiraely
processing of events in our simulation. A thorotegting must be carried out on the real time sitoul order
to understand its limitations and weaknesses. 3étsion studies the results of several simulaticsiisg the real
time extension of the CD++ toolkit.

For each real time simulation, essential data atimiexecution is stored for further analysis. Tihnfermation
includes:

g Number of missed deadlinesepresents the number of deadlines that have inexsed along the entire
execution of a model. A deadlinergssed if its response timés greater than itassociated deadline

g Worst-case response timeepresents the maximum time between the arrivahodvent and the output
that the model produces in response, in the esitinalation process.

A wide set of models are tested in order to defineurately the performance of the real time sinoulander
different scenarios.

4.2 Test parameters

Different parameters are taken into account toyaeah given test case. These parameters are:

g Model size:it can be subsequently dividednmmber of components per lexadnumber of levels in
the model hierarchy

a Number of interconnections between componentkis parameter describes the complexity and
characteristics of the existing interconnectionshim model. This information is obtained by the edod
type when the synthetic generator is being used.

g Workload in transition functions:the number of milliseconds that have to be spetténinternal and
external transition functions.

g Number of external eventgdhe number of external events that are receiveapaloe entire simulation.

g Inter-event period:the period between an event and the following dihdescribes the frequency of
event arrival.

g Associated deadlinethe deadline that has been associated to eacmiimgoevent. For instance, a
deadline of 50 milliseconds means that the outputh event has to be issued within 50 milliseconds
after the event arrival.

The first three parameters are intrinsically relate the model itself. They correspond to the dfeci
characteristics of each model.
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On the other hand, the last three parameters wodved with the simulation scenario under which thedel is
being executed. They are not related to the mduetl{o the constraints imposed by the user theassociated
deadling and the environment¢.thenumber of external everamdinter-event perioyl

In the testing process, a wide set of parameterssad to analyze several cases of interest.

4.3 Test notes

The testing described in this chapter was performedhe ParDEVS Laboratory, Departamento de
Computacién, Facultad de Ciencias Exactas y Nasy&lniversidad de Buenos Aires. All simulationsevein
on aCompagq ProLiant 16080de, consisting of a Pentium Il 450MHz processithh %12 MB of RAM, 512-KB
second-level ECC cache and 100-MHz GTL Bus.

The installed operating system w@aldera OpenLinux

4.4 Test cases

Models are created with the synthetic generatorsehimplementation was described in Chapter 2. Testdts
show both thepercentage of succeasd theworst-case response tinfier each case. The former is obtained as
follows,

Percentage of success = (_(number of events — nuofilneissed deadlines ) * 100
number of events

On the other hand, theorst-case respondameis obtained as follows.
Worst-case response time = max, (s, ..., i)
wherer; is the response time for th¢h event, andN is thenumber of event®r the given simulation.

The experiments have been grouped in differengoaies that are described in the following subsesti
4.4.1 Varying number of levelsin the hierarchy

4.4.1.1 Models without workload in the transition functions

Here, models have a fixed number of componentdgyed, but the number of levels in the hierarchg. the
depththat the model has) varies. In first place, Typaddels are employed. These models have a smallerumb
of interconnections between their components.

Each execution receives 100 incoming events anideal finter-event period of 30 milliseconds. Neitlibe
external transition function nor the internal triéina function executes workload (time consumingd€p
Deadlines are imposed at 60 milliseconds afteetrent arrival. Actually, all events would be prazes on time
if the simulator did not add any overhead to thecexion.

The following is an excerpt from the event file dse these experiments. It has 100 lines in tatag line for
each incoming event.
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event tine associ at ed i nput associ at ed Val ue

deadl i ne port out put port
00:00:05:000  00j00:05:060 in ot 1
00:00:05:030  00j00:05:090 in olit 1
00:00:05:060  00j00:05:120 in olit 1
00:00:05:090  00j00:05:150 in ot 1

(..) () (..) (..) ()

00:00:34:940  00j00:35:000 in olit 1
00:00:34:970  00j00:35:030 in ot 1

Figure 34: Sample event file for the given modeling the real time approach

For instance, the first event arrives throughithport at time00:00:05:000and its output must be issued though
the out port before00:00:05:060 The second event arrives 30 milliseconds late®0200:05:03Q whereas its

associated deadline ®9:00:05:090 and so on.

The following table summarizes all the informatmorresponding to the first test.

Simulation par ameter Associated value
Number of components per level 5 components
Number of levelsin the hierarchy (Depth) 4 to 12 levels
Model type Type-1
Workload in internal transition function 0 ms
Workload in external transition function 0ms
Number of external events 100 events

I nter-event period 30 ms
Associated deadlines 60 ms
Number of atomic components in the obtained 13 to 45
models

Number of coupled components in the obtained 3to 11
models

Table 6: Simulation parameters — Varying depth (nber of levels in the hierarchy), Type-1 models
The total number of atomic and coupled componentdso included in the table to provide more infation
about the executed models. These values are cothpsiteg the information about the synthetic modsiagator
provided in Chapter 2. In this particular case,dmse of the parameters that have been used anficggadue

to the varying depth, we have obtained models withnge of 13 to 45 atomic components and 3 toolupled
ones. Deeper models have not only more atomic coemie but also more coupled components in their
structures.

Once the execution is over, we take into accoumhtimber of deadlinethat have been meit€. the events that
have been entirely processed before their assdctiadlines) and theumber of missed deadlingsorder to
measure thpercentage of succefs each simulation, as it was explained before.

Moreover, recall that CD++ stores th@rst-case response tinte enable a more comprehensive study of the
real time performance. This value is also showténcharts.
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Notice that if theworst-case response time smaller or equal than thassociated deadlindor a given
simulation, then theaumber of missed deadlinés zero. This means that all events have been ciaipl
processed before their associated deadlines, anefdine we achieve a success of one hundred percent

The following figure shows the corresponding chéstssome Type-1 models.

% of success in Type-1 models Worst-case response time in Type-1 models
100 _ 2000
£l £ 1800 |
80 2 1600
o 70 = 1400
8 60 2 1200
S s0 N %1000
S 40 2 800
S 30 @ 600
20 2 400
10 e —— 2 200
0 " : - - 2 o
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
Depth Depth
(a) (b)

Figure 35: Real time execution of Type-1 modelsiwitarying depth
(a) Percentage of success, (b) Worst-case resptinse

Figure 35 (a)shows the percentage of success on Type-1 modwla depth is variable. In these cases, the
number of levels ranges from 4 to 12. Generallgpde models have worse response times due toldnger
size and increased complexity. Specifically, aaezble number of deadlines are lost when the depmtlght or
more in this particular case. The same phenomeanrbe observed when we analyze the worst-casensspo
times in these models with variable depth.

The second set of experiments shows a similar foasEype-3 models. Chapter 2 has shown that thesdels,
with more interconnections between their componerts much more complex. Consequently, both thehexasl
and the number of executed transition functions gaemtly increased. Because of this, we have rdlake
frequency of the incoming events. Now, the inteergvperiod is 40 milliseconds. The associated deesll
remain unchanged from the previous experiment.

The following table shows the associated parameters
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Now we have obtained models with a range of 13tatd8mic components and 3 to 8 coupled ones.

Simulation par ameter Associated value
Number of components per level 5 components
Number of levelsin the hierarchy 4 10 9 levels
M odel type Type-3
Workload in internal transition function 0ms
Workload in external transition function 0ms

Number of external events 100 events
Inter-event period 40 ms
Associated deadlines 60 ms
Number of atomic components in the obtained | 13 to 33
models

Number of coupled components in the obtained | 3 to 8

models

Table 7:

The following charts show the obtained resultstii@se models.

Simulation parameters — Varying depth (&% in the hierarchy), Type-3
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The results are similar to those of Type-1 modétsvever, the results are not as successful asédfoilype-3
experiments, deeper models show a remarkable Berea response times, and therefore a low percemiag
success is achieved even with a lower frequencgveht arrival. The same fact will be observed iheot

Figure 36: Real time execution of Type-3 modelsiwitarying depth

1000
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Depth
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(a) Percentage of success, (b) Worst-case resptinse

experiments further in this work.

4.4.1.2 Models with workload in the transition functions

As a final study of models with varying depth, Hetient series of tests are presented here. I tieslels, time-

consuming code is executed in their transition fions.

The following Type-1 models execus® millisecond®f workload in the internal and external transitafrtheir
atomic components. The time-consuming Dhrystones ¢édei84] executed in the functions resembles tiec

that would be executed in a simulated model.

The table shows all the parameters that have bssh u
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Simulation par ameter Associated value
Number of components per level 4 components
Number of levelsin the hierarchy 10 to 14 levels
M odel type Type-1
Workload in internal transition function 50 ms
Workload in external transition function 50 ms

Number of external events 100 events
Inter-event period 5000 ms
Associated deadlines 2000 ms
Number of atomic components in the obtained | 28 to 40
models

Number of coupled components in the obtained | 9 to 13
models

Table 8: Simulation parameters — Varying depth (&% in the hierarchy) with workload, Type-1

The following figures show the obtained resulteiathe execution of these simulations. Note thmgddition,
both the theoreticglercentage of succeasd theoreticalvorst-case response tinaege shown in the charts. The
theoretical results are simply the sum of all iheetspent in executing the workload that is foumdhie internal
and external transition functions. Neither the éead incurred by the simulator nor any other factbat may
affect simulation performance are included in theoretical results. The series with the lab@mulated
correspond to the real-time execution of these spdmd therefore include all the overhead incuirethe
simulations.

% of success in Type-1 models Worst-case response time in Type-1 models
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Figure 37: Real time execution of Type-1 modelsiwitarying width and workload
(a) Percentage of success, (b) Worst-case resptinse

Figure 37 (a)shows thepercentage of succefsr Type-1 models with varying depth. The assedadeadlines
are imposed at 2000 milliseconds after the ar@fdhe event. A success of 100% is achieved icadks, with
the exception of one last case, which has 14 lendlse hierarchy and does not meet any deadline.

Figure 37 (b)shows theworst-case response tinfer this type of models with time-consuming codetlire
transition functions. These results are much moeammgful than those described in the previousisest
because they allow a comparison between the sietulabdels and the theoretical cases. If we comibase
experiments in which workload is executed in theerimal and external transition, we can see thairtberred
overhead is bounded. It remains nearly stable efvehe depth is increased. The difference betwesn t
theoretical worst-case response tiard thesimulated worst-case response tiimguite small.
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4.4.2 Varying number of components per level

4.4.2.1 Models without workload in the transition functions

The previous subsection showed different modelssetdepth was variable and width was fixed. Thevalig
cases show models in which the depth is fixed thertwidth {.e. number of components per level) varies. These
models do not execute workload in their transitionctions. Larger models are used in these expeatsnéll
parameters are described in the next table.

Table 9:

Simulation parameter

Associated value

Number of components per level

15 to 20 component

Number of levelsin the hierarchy

3 levels

M odel type

Type-3

Workload in internal transition function

0ms

Workload in external transition function

0ms

Number of external events

100 events

Inter-event period

200 ms

Associated deadlines

340 ms

Number of atomic components in the obtained
models

29to 39

Number of coupled components in the obtained
models

Simulation parameters — Varying width (cgmonents per level), Type-3

Now we have obtained models with a range of 299%t@t®mic components. Due to the fixed depth, thaber
of coupled components is constant. Wider modelsh winore components per level, have more atomic
components in their structures.

The following figure shows the obtained resultstfeese models.
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Figure 38: Real time execution of Type-3 modelshwitarying width

(a) Percentage of success, (b) Worst-case resptinse

Figure 38illustrates how component width can affect perfange in a simulation. In this case, deadlines are
more likely to be missed when the number of comptmper level is 17 or more.
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4.4.2.2 Models with workload in the transition functions

As we have shown before, it is interesting to stilyexecution of models whose internal and extéraasition
functions execute time-consuming code. The follgwable describes the series of tests executed here

Simulation par ameter Associated value
Number of components per level 8 to 12 components
Number of levelsin the hierarchy 4 levels

M odel type Type-1
Workload in internal transition function 100 ms
Workload in external transition function 100 ms
Number of external events 100 events
Inter-event period 10000 ms
Associated deadlines 3400 ms
Number of atomic components in the obtained 22 to 34
models

Number of coupled components in the obtained 3
models

Table 10:  Simulation parameters — Varying width oponents per level) with workload, Type-1

Again, thetheoretical series is also included in the charts. It showsdbal results, where overhead is not taken
into account. In contrast, tlsemulated series shows the obtained results using the toolkit
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Figure 39: Real time execution of Type-1 modelsiwitarying width and workload
(a) Percentage of success, (b) Worst-case resptinse

Figure 39 (a)illustrates thepercentage of succefsr models with varying width and workload exealia the
transition functions. The results are very simidarthose described before when the depth was lariab

Figure 39 (b)shows theworst-case response tinfier this type of models. Again, these results ateimmore
meaningful than those described in experiments dbatot execute any workload. They allow the conspar
between the simulated models and the theoretic@scaoreover, the charts show that the incurreathmad is
quite small, remaining nearly stable even for weige models with more than 30 atomic componenthdair
structures.

4.4.3 Varying number of componentsin the structure

The previous experiments have shown simulationgavtiepth and width were variable. The analysis gizan
case was independent from the others.
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Here, we analyze the simulation of models takirtg imccount the number of components in their strest
These experiments show the execution of differenes of models:

g Type-1models with varyinglepth
g Type-1models with varyingvidth
g Type-3models with varyinglepth
g Type-3models with varyingvidth

The goal is to compare the execution results fehegries, examining the obtained results. Thenpeters are
shown in the next table.

Simulation par ameter Associated value
M odel type Type-1 and Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Inter-event period 20 ms
Associated deadlines 1000 ms
Number of atomic components in the obtained 25 to 50
models

Number of coupled components in the obtained 510 10
models

Table 11:  Simulation parameters — Comparison of net&lwith varying depth and width

The results can be observed in the next charts.ntihegber of components is variable because for ezmiel,
either the depth or the width is variable.
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Figure 40: Real time comparison of models with varg depth and width
(a) Percentage of success, (b) Worst-case resptinse

Figure 40 (a)shows thepercentage of succedsr Type-1 and Type-3 models when depth is varianld the
width is fixed, and also when the width is variabled the depth is fixedrigure 40 (b)illustrates thevorst-case
response timéor each case.
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Generally, the previous charts illustrate thahd& humber of components is increased, deadlinesare likely
to be missed and therefore thercentage of successreduced. This is because the number messagdschte
perform the simulation grows in relation to theesand complexity of the model.

Particularly, the figures show that it is hardersimulate Type-3 models when the number of compisnen
increases due to their complex structure, in commparwith the equivalent (and more simple) Type-ddsis.
Consequently, thevorst-case response timage remarkably increased for Type-3 models.

Type-3 models have a larger number of interconaesfiand, consequently, the overhead introducedsniak
harder to complete the entire simulation cycleiomet

Under these conditions, when a Type-1 model haactile components in its structure, more than 90grd of
success can be achieved. Alternatively, less tBape2cent of the deadlines are met for Type-3 nsodith 40
components in their structures.

4.4.4 Varyinginter-event periods and associated deadlines

All previous cases have studied variations to treels themselves. A different approach is analyzect,
where the shape and behavior of the models remahamged but the scenario in which they are exdaste
modified. Different inter-event periods.€. the frequency of event arrivals) are employed. eqaently, we
simulate external events that arrive at a diffefgate to the model, and analyze the behavior obitinelator
under such circumstances. Furthermore, the imgagrging the associated deadlines is also tested.

4.4.4.1 Varying inter-event periods

Events can arrive at a different pace, dependinghensurrounding environment. In the first expeninehe
inter-event periods varies from 20 to 180 milliseds. Consequently, we can simulate events arrairtifferent
pace along a simulation. Each simulation recei@ eixternal events from the environment. These raxpats
do not execute workload in the atomic transitiomctions. Parameters are shown in the next table.

Simulation par ameter Associated value
Number of components per level 5 components
Number of levelsin the hierarchy 5 levels

M odel type Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Inter-event period 20 to 180 ms
Associated deadlines 1000 ms
Number of atomic components in the obtained 50
models

Number of coupled components in the obtained 7
models

Table 12:  Simulation parameters — Varying inter-eugperiod , Type-3

The following figure illustrates the obtained rasdbr these models.
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Figure 41: Real time execution of Type-3 modelstwitarying inter-event periods
(a) Percentage of success, (b) Worst-case resptinse

Figure 41 shows that larger inter-event periods result oratgrepercentages of success. When the intervals
between events become greater than 180 millisecdhessimulator meets all the associated deadfimethe
execution.

On the other hand, when the frequency of eventalris extremely high, thevorst-case response timbsecome
much longer. This situation occurs because exaglgssmall inter-event times do not allow the sinoiato
process all the messages involved with the evebéefre the arrival of the next event,;eWhen this situation
arises, queued unprocessed messages are accumwatkdherefore the simulation presents an evident
degradation of performance. The degradation ofoperdnce can be noticed by observing therst-case
responsdime for a given simulation. Here, a simulationhnininter-event perioaf 20 millisecondsesults in a
worst-case response tinoé 15260 milliseconddn contrast, when thater-event periods 180 millisecondsthe
worst-case response tinereduced t@0 milliseconds

4.4.4.2 Varying the associated deadlines for models without workload

In the following simulations, Type-2 models are éogpd and inter-event periods remain stable. Hdre,
associated deadlines vary from 0 to 1800 millisésohese cases show how the strictness of deadiffects
the percentage of success

Simulation par ameter Associated value
Number of components per level 7 components
Number of levelsin the hierarchy 10 levels

M odel type Type-2
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Inter-event period 50 ms
Associated deadlines 0 - 1800 ms
Number of atomic componentsin the obtained 55
models

Number of coupled componentsin the obtained 9
models

Table 13:  Simulation parameters — Varying associhieadlines, Type-2
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The following figure shows the obtained resultstf@se models.

% of success in Type-2 models Worst-case response time in Type-2 models
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Figure 42: Real time execution of Type-3 modelsiwitarying associated deadlines
(a) Percentage of success, (b) Worst-case resptnse

Figure 42 (a)shows how the strictness of the deadlines candmpa thepercentage of succe$sr a given
simulation. Extremely tight timing constraints dotrallow the simulator to meet those deadlinesime.t As
deadlines become more relaxed, plegcentage of successcorrespondingly increased because constraists ar
more likely to be met.

In contrastFigure 42 (b)shows thatvorst-case response timemmain constant, regardless of variations on the
associated deadline time. Actually, these experisngimow that the response time for an event isatedkto the
timing constraint it might have.

4.4.4.3 Varying the associated deadlines for models with workload

The previous test cases, where the associatedimesdlbere variable, are repeated here for models wi
workload in their transition functions. Type-3 mtwlare employed and, again, inter-event periodaiestable.
The associated deadlines vary from 1000 to I#itseconds.

Simulation par ameter Associated value
Number of components per level 6 components
Number of levelsin the hierarchy 5 levels

M odel type Type-3
Workload in internal transition function 50 ms
Workload in external transition function 50 ms
Number of external events 100 events
Inter-event period 50 ms
Associated deadlines 1000 — 1160 ms
Number of atomic componentsin the obtained 21
models

Number of coupled componentsin the obtained 4
models

Table 14:  Simulation parameters — Varying associtdeadlines with workload, Type-3

The following figure shows the obtained resultstfoese models that include workload in their atotraasition
functions.
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% of success in Type-3 models Worst-case response time in Type-3 models
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Figure 43: Real time execution of Type-2 modelsiwitarying associated deadlines and workload
(a) Percentage of success, (b) Worst-case resptins

Figure 43 (a)shows that when the associated deadline is appately greater than 1100 milliseconds we can
achieve 100% of success in our simulation, meetihtipe associated deadlines.

As we have stated earlier in this sectiBigure 43 (b)illustrates that thevorst-case response timemains stable
regardless of the associated deadline. In additiue, chart shows that when we execute models tiritle-
consuming code in their transition functions, theurred overhead is relatively small and it does aftect
seriously theworst-case response times

4.4.4.4 Combination of inter-event period times and associated deadlines

The previous subsections have studied how the émxyuof event arrival and the strictness of thestraints can
affect the simulation of a given model separately.

The following charts combine the previous experitaeand provide further information about the sirtiala
under different scenarios.

Percentage of Success under different scenarios Worst-case response time under different scenarios

% of success
Worst-case response time (ms)

80
Inter-event period time

Inter-event period (ms)

» time (ms)
1000 Associated deadline time (ms)

Associated deadline time (ms)

(a) (b)

Figure 44: Real time execution of Type-3 models endlifferent scenarios
(a) Percentage of success, (b) Worst-case resptinse

These chartshow the obtained results after the execution eérse simulations performed under a combination
of different frequencies of event arrival and diffiet strictness on the imposed deadlines.

Figure 44illustrates not only the favorable impact of gezahter-event period timeg €. lower frequencies of
events), but also greater associated deadlire2¢ess strict constraints).
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Even with deadlines that are not very strict (1@@illiseconds) if the inter-event period is 20 nsiéiconds, only
20% of the deadlines are met. As deadlines becoare relaxed, the percentage of success is corrdsmin
increased because constraints are more likely tadderegardless of the frequency of events.

Furthermore, we can point out that with fair coastts and frequencies, simulation results are carifeor
example, when a simulation is executed using 60isetonds in deadlines and 60 milliseconds betwsamt
arrivals, a success of 77% is achieved. If the s&meguency of events is received by a simulatiorosenh
deadlines are 800 milliseconds, then the succels30i%.

4.45 Varyingworkload in transition functions

We have shown how the variation of several parametay affect the results of real time model execufThis
subsection describes the effect of executing differworkload on the transition functions, while tbther
parameters remain unchanged.

Atomic models can execute time-consuming code ih lieeir internal and external transition functioRecall
from Chapter 2 that our synthetic model generatodpces Dhrystone code [Wei84] to resemble reaklead
that would be executed by the atomic components.

Firstly, we executed simulations using differentrkoad in the internal transition functions. Théldwing table
summarizes the parameters used to run simulatidgh<Ovto 250 milliseconds in the internal transitiminctions.

Simulation parameter Associated value
Number of components per level 4 components
Number of levelsin the hierarchy 4 levels
M odel type Type-3
Workload in internal transition function 0-250 ms
Workload in external transition function 0 ms
Number of external events 50 events
Inter-event period 5000 ms
Associated deadlines 5000 ms
Number of atomic componentsin the obtained 10
models

Number of coupled componentsin the obtained 3
models

Table 15:  Simulation parameters — Varying time spém internal transition functions

The results are shown below:
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Figure 45: Real time execution of Type-3 modelsiwitarying time in internal transition functions
(a) Percentage of success, (b) Worst-case resptinse

As the workload in the internal transition functogrows, thepercentage of successreduced, especially when
the time-consuming code is 100 milliseconds or mAdkditionally, theworst-case response timase evidently

increased, because of the time that has to be spemtecuting the atomic transition functions.

Secondly, we executed simulations using differemikoad in the external transition functions.

Table 16:

Simulation parameter Associated value
Number of components per level 4 components
Number of levelsin the hierarchy 4 levels
M odel type Type-3
Workload in internal transition function 0ms
Workload in external transition function 0-250 ms
Number of external events 100 events
Inter-event period 10000 ms
Associated deadlines 1000 ms
Number of atomic componentsin the obtained 10
models
Number of coupled componentsin the obtained 3
models

Simulation parameters — Varying time spém external transition functions

The results are shown in the next figure:
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Figure 46: Real time execution of Type-3 modelstwitarying time in external transition functions
(a) Percentage of success, (b) Worst-case resptinse

Figure 46shows analogous results to the ones obtained uaiying time in internal transition functions.

Lastly, we executed simulations using different kl@ad in both transition functions. The first modies not
execute workload in the internal transition funatioeither in the external transition function. Tezond model
executes 50 milliseconds in the internal transifiorction and 50 milliseconds in the external tigmis function.
The third case executes 100 milliseconds in eaanbtifan, and so on. Finally, the sixth model exesW280
milliseconds in each transition function.

Table 17:

The next figure shows the results for these experim

Simulation parameter

Associated value

Number of components per level

4 components

Number of levelsin the hierarchy

4 levels

M odel type

Type-3

Workload in internal transition function

0-250 ms

Workload in external transition function

0-250 ms

Number of external events

100 events

Inter-event period

10000 ms

Associated deadlines

1000 ms

models

Number of atomic componentsin the obtained

10

models

Number of coupled componentsin the obtained

Simulation parameters — Varying time spéminternal and external transition functions
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Figure 47: Real time execution of Type-3 modelstwitarying time in internal and external transition
functions (a) Percentage of success, (b) Worstecessponse time

Again, the charts are quite similar to those illatetd above. Here, theorst-case response timase greatly
increased because of the large amount of coddédisaio be executed in both transition functions.

4.45.1 Combination of results for variable time in transition functions

The following chart shows the previous results ciomt) in two charts in order to provide a comparidonis
possible to observe thgercentage of successid worst-case response tinfer executions with time in the
internal transition function, in the external traios function, and in both functions conjointly.
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Figure 48: Real time execution of Type-3 modelsiwitarying time in their transition functions
(a) Percentage of success, (b) Worst-case resptinse

The figures show propgrercentages of succesten the workload time per function is 0 or 50 isdtonds, in
spite of the place where the time-consuming codeeiag executed. In contrast, a noticeable redadtiothe
percentage of success observed in all cases when the time in the iiansfunctions is increased to 100

milliseconds.

In general, as the workload in the transition fiord grows, thepercentage of success reduced in all the

experiments.

Additionally, Figure 48 (b)shows that thevorst-case response timaee evidently increased, because of the time

that has to be spent on executing the atomic tiansfunctions. When the workload is executed irthbo
transition functions, thevorst-case response tingedoubled.
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4.4.6 Execution of large-scale models

Sometimes, models may have much larger sizes tivee tmployed in the previous subsections. Ountiote is
to provide a testing analysis that includes suple$yof models. The following cases show some sanufleery

large models.

4.4.6.1 Type-1 large models

The first experiments employed Type-1 simple madEfe parameters are as follows,

Simulation

Simulation par ameter Al B1 C1 D1
Number of components per 100 components 150 components 200 components 400 components
level
Number of levels in the 100 levels 75 levels 50 levels 25 levels
hierarchy
Model type Type-1 Type-1 Type-1 Type-1
Workload in internal 0 ms 0 ms 0 ms 0 ms
transition function
Workload in  external 0 ms 0 ms 0 ms 0 ms
transition function
Number of external events 20 events 20 events 20 events 20 events
I nter-event period 1000 ms 1000 ms 1000 ms 1000 ms
Associated deadlines 1000 ms 1000 ms 1000 ms 1000 ms
Number of atomic 9802 11027 9752 9577
componentsin the obtained
models
Number of coupled 99 74 49 24
componentsin the obtained
models

Table 18:  Simulation parameters — Large models (€yp)

It is important to point out that the obtained Tylenodels have approximately ten thousand compernertheir
structures. Therefore, the overhead needed to @arrythe simulation is greatly increased. Becausthis
characteristic, not only the frequencies of evanéslower but also the associated deadlines esestgst.
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Figure 49: Real time execution of large-scale Tyfianodels:
(a) Percentage of success, (b) Worst-case resptinse

Figure 49 shows the results for large Type-1 modeMlorst-case response timase relatively small if we
consider the model size. However, Type-1 modelsvarg simple, and models that are more complex rest
simulated to provide further results about execugierformance.

4.4.6.2 Type-3 large models

The previous testing has been repeated with muchk ommplex models, which belong to the Type-3 graype
to their increased number of interconnections,ahesdels execute many more internal and exteraasition
functions in response to an incoming event (seepteha2 for further details). Consequently, the rvids
between events are increased and the associatdlihdsare noticeable less strict.

Simulation

Simulation par ameter A3 B3 C3 D3
Number of components per 100 components 150 components 200 components 400 components
level
Number of levels in the 100 levels 75 levels 50 levels 25 levels
hierarchy
Model type Type-3 Type-3 Type-3 Type-3
Workload in internal 0ms 0ms 0ms 0ms
transition function
Workload in  external 0ms 0 ms 0 ms 0 ms
transition function
Number of external events 5 events 5 events 5 events 5 events
I nter-event period 5000 ms 5000 ms 5000 ms 5000 ms
Associated deadlines 5000 ms 5000 ms 5000 ms 5000 ms
Number of atomic 9802 11027 9752 9577
componentsin the obtained
models
Number of coupled 99 74 49 24
componentsin the obtained
models

Table 19:  Simulation parameters — Large models (€yp)

The obtained results are shown in the next figure.
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Figure 50: Real time execution of large-scale Typanodels:
(a) Percentage of success, (b) Worst-case resptinse

Figure 50illustrates thepercentages of succeand theworst-case response timdmt result from the execution
of large-scale Type-3 models. Lower frequencies bss$ restrictive deadlines allowed the models ¢o b
executed, even though percentages of success simohee times are far from being optimal. Resultsvstiat

the overhead incurred by simulating these compdege models becomes much more noticeable, especiall
when the models are very deég.(the number of levels in the hierarchy is high)gBelation of performance is
an undesirable consequence of the execution of #ne¢semely large and complex models.

The worst-case response times are larger than &xpeessentially because of queued messages thatilhr
pending from previous external events. When a ndareal event is received in this situation, thes tesponse
is greatly delayed due to the increased numberessages that still have to be processed by thdagonulf the
simulation receives events with lower frequenicg. the inter-event period is larger), then better oase times
can be achieved.

This phenomenon of accumulating unprocessed messzge occur on any kind of model. However, large
complex models are more prone to experiencing thesiglems.

4.5 Conclusionsabout performance analysisusing thereal time simulator

The real time extension of the toolkit was testsithgi a wide variety of models. We executed smadiclioom and
large models to show the behavior and limitatioisC®++ under several circumstances. Different model
complexities have been used.

Moreover, different timing constraints and envir@mts have been studied. The impacts of both tlygémrcy of
event arrival and the strictness of the associd¢edilines have been analyzed.

The analysis shows adequate performance on moss$,caith response times that are quite reasonabléhé
executed models. Nevertheless, missed deadlinep@ordresponse times may occur if the tool expegsran
important degradation of performance.

We have shown that performance degradation is secpuence of extremely large (or complex) modetsires,
excessive high frequency on event arrivals or imenatd strictness on the imposed deadlines. Patiguthe
accumulation of unprocessed messages is an esdeotar that affects performance when the freqyeotc
event arrival is high.

Performance degradation that results from the dimcwf large and complex models is inherent to the
simulation methodology. As we have explained beftine simulation technique is based on the exchafge
messages between simulators and coordinators. Hesage-passing process may impact on the execution
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performance, mainly if the model structure is taarge or complex. The next chapter describes the
implementation of a flattened simulation mechanismeduce the performance degradation in such cases
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5. FLATTENED SIMULATION TECHNIQUE

Earlier, in Chapter 2, we provided an in-depth wsial of the simulator performance using theual time
approach. Additionally, the previous section ddmalia thorough testing of tiheal timeextension. Even though
results are appropriate in most cases, it is dasita provide a more efficient simulator.

We explained that eeal timesimulation usually interacts with its surroundinmyeonment, and the system must
deliver an answer before a certain deadline. Wherekecution performance becomes poor, responsastdae
produced on time and therefore deadlines are migsatbre efficient real time simulator would all@ghieving
better results on more complex scenarios.

Not only thereal time approach, but also thartual time approach can take advantages of a more efficient
simulator. Recall that when thertual time approach is employed, inactivity periods are skibpEherefore,
virtual time simulations can evolve faster, and even fasterooms might be obtained if a more efficient
simulator is provided. In conclusion, a reductidrih@ execution simulation time can also beneft tiser of the
virtual timetechnique.

First, we explain the problems that may arise wifienhierarchical simulation approach is employedtet, the
design and implementation of a new flattened sitoulis presented.

5.1 Problemsof thehierarchical ssimulation approach

The previous sections showed appropriate execu#snlts on most cases. Nevertheless, as the sde an
complexity of models grows, a reduction of perfoneebecomes more noticeable. The main reasonifolots

of performance is the overhead incurred by the @&xgh of messages between simulators and coordinator
which serves as a basis for carrying out the sitiaula

Recall from the first chapter the concordance betwaodels and DEVS processors that is shown iméxe
figure:

Model Processc

Atomic Coupled Simulator Coordinator Root
Coordinato

AtomicCell CoupledCel | CellCoordinatc |

(@) (b)

Figure 51: CD++ (a) Model hierarchy, (b) Processhrerarchy

Figure 51 (a)shows the classes that are involved with the at@nd coupled components in DEVS and Cell-
DEVS modelsFigure 51 (b)shows the classes that are involved with the sitiar technique.

When a DEVS model is executed, aimulatorobject is created for eagtomiccomponent. On the other hand,
onecoordinatorobject is created for eacloupledcomponent in the hierarchy. The same idea holdsnah@ell-
DEVS model is executed. In this case,siaulator object is created for each existing cell, whereas a
CellCoordinatoris created for each Cell-DEVS model.
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The function of asimulatoris to manage its associatatbmic component. It executes thgy, ey and A(S)
functions. In contrast, eoordinatorobject manages an associatedipledcomponent and the port mapping of
its inner components.

In addition to the components described above,roaecoordinatoris created to manage global aspects of the
simulation. It is directly involved with the topmesoupled component, which has the highest levéhénmodel
hierarchy. Theoot coordinatormaintains the global time, and it starts and stbpssimulation process. Lastly, it
receives the output results that must be senttetivironment.

The following figure shows a sample model with & fmponents:

Coupled Model # 1 (TOP)

\ 4

\ 4

Atomic P Atomic — Atomic
Model # 1 Model # 2 Model # 3

4
A

Coupled Model # 2 4

A4 A

Atomic Atomic » >

Model # 4 Model # 5
l

Figure 52: Sample model structure

The figure shows a sample model whose topmost coemidias three atomic submodeisofmic Models #1#2
and#3) and one coupled modeC¢upled Model #2 The inner-coupled component is formed by twarato
componentsAtomic Models #4and#5).

The following figure shows the model hierarchy d@hd corresponding processor hierarchy obtainedDr+C
when the hierarchical simulation is used.

Root Coordinator

Coordinator #
[ 1 | |

! I I | | Coordinator # | l Simulator # ‘ l Simulator # ! ‘ l Simulator # !
| Coupled Model # | l Atomic Model # l l Atomic Model # & l l Atomic Model # { l
— ———
[ Atomic Model #: | [ Atomic Model # | l Simulator # - ‘ l Simulator # ! ‘
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Figure 53: Hierarchical simulation approach: (a) Exmple of a model hierarchy,
(b) Associated processor hierarchy obtained in theample

The figure shows that the model hierarchy is ratleplicated in the processor hierarchy, ustogrdinators
instead ofcoupledcomponents, ansimulatorsinstead ofatomiccomponents. It also shows theot coordinator
added on top of the hierarchy.

Each time theoot coordinatorhas to schedule an event to lowermost simula®imflators #4and #5), the
overhead incurred by message passing can be coatsieleFirstly, theoot coordinatorhas to send a message to
the Coordinator #1 Secondly, th€oordinator #2forwards this message to t8emulators #4and#5. Only then,
the simulators are able to execute the transitiomctfon of their associated atomic models. A simila
phenomenon is produced if ttgmulator #5sends an output through a port connecte8imulator #3 The
number of intermediate coordinators can be arliigrhigh depending on the studied model.
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As we have pointed out before, the simulation psede message driven; it is based on the messaparge
amongsimulators coordinatorsand theroot coordinator Messages contain information to identify gender
and thereceiver A time-stamdor the message and an associa@deare also included in the packet.

The following table illustrates the number of siatoks and coordinators created for some sample Is)oated
the number of messages involved with the processirgsingle external event, along with other patams in
hierarchical simulations.

Simulation
Simulation par ameter Al A3 B1 B3
Number of components per 100 components 100 components 150 components 150 components
level
Number of levels in the 100 levels 100 levels 75 levels 75 levels
hierarchy
Model type Type-1 Type-3 Type-1 Type-3
Number of atomic 9802 9802 11027 11027
components
Number of simulators 9802 9802 11027 11027
Number of coupled 99 99 74 74
components
Number of coordinators 99 99 74 74
Number of root- 1 1 1 1
coordinators
Number of messages 79220 3484718 89416 2958468
exchanged to process a
single external event

Table 20:  Examples employing a hierarchical simuiat approach

ModelsAl (Type-1) andA3 (Type-3) have the same number of atomic and coupetponents; therefore they
have an equal number simulatorsandcoordinators They only differ in the number of interconnecgamithin
their inner components, which is given by tledel type This difference results in the remarkably incezhs
guantity of messages needed to process a singi¢ ieve3.

If modelsB1 (Type-1) andB3 (Type-3) are compared, the same differences cabberved.

When the simulated models are larger, the numbatashicandcoupledcomponents is increased. Then, as we
have shown, the number aimulators and coordinators grows accordingly. Due to the message-passing
technique among processors, the incurred overheadsgwith the number of existing simulators and
coordinators, and the degradation of performancernes noticeable.

Table 20shows that almost 90000 messages have to be exahamgrder to entirely process a single event in
these Type-1 models, whereas up to 3500000 arergel in similar Type-3 models.

The new simulation technique addresses this prolilgmeducing the number of messages exchangecein th
simulation process.

5.2 Implementation of the flattened simulation technique

The main problem to be resolved is the overheadried by message passing among processors. Tooowerc
this issue, a new flattened simulation techniqus imgplemented in the CD++ toolkit. The approacltaied

61



Definition of Real Time Simulation in the CD++ tédl- Ezequiel J. Glinsky

flattenedin contrast to thehierarchical one previously explained. A similar development @her DEVS
simulator can be found in [KimOQ].

The DEVS formalism separates the model from thaadatbstract simulator. The new flattened simul&tmps
this important property, so only the simulation hmeuism is revised. Then, the model class hieraishy
unchanged. On the other hand, the DEVS processoarbhy is extended. A neflattened coordinatothat
inherits from theprocessoiclass is created. The complete class hierarchyoiais in the next figure.

Model Processc
Atomic Coupled Simulator Coordinator Root Flattened
Coordinato Coordinato
v v v
AtomicCell CoupledCe CellCoordinatc
(@) (b)

Figure 54; CD++ (a) Model hierarchy (unchanged)
(b) Extended processor hierarchy (includes the nelattened Coordinator)

Figure 54 shows the extended processor hierarchy with thve Flattened Coordinato{shaded box) that is
derived fromProcessoiclass.

The new technique creates only two processors ¢éocut® a simulation. The first processor is the lusoet
coordinatorthat still manages global aspects of the simulatfithe second processor that is created is the new
flattened coordinatgr which was designed to perform the taskssimfulators and coordinators No other
processor is created in order to carry out the Isitiaun.

The following table shows the processors that am®lved in a non-hierarchical simulation using g@me
sample models than before.
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Simulation
Simulation par ameter Al A3 B1 B3
Number of components per 100 components 100 components 150 components 150 components
level
Number of levels in the 100 levels 100 levels 75 levels 75 levels
hierarchy
Model type Type-1 Type-1 Type-3 Type-3
Number of atomic 9802 9802 11027 11027
components
Number of smulators 0 0 0 0
Number of coupled 99 99 74 74
components
Number of coordinators 0 0 0 0
Number of root- 1 1 1 1
coordinators
Number of flattened 1 1 1 1
coordinators

Table 21:

Examples employing a flattened simulatiapproach

Table 21shows that when the flattened simulation approaalséd, the number simulatorsand coordinators
is zero regardless of the numberabmic and coupledcomponents in the models. However, dlstened

coordinatoris created to provide the complete functionalitylbimulatorsandcoordinators

To execute a flattened simulation using neitherrdimators nor simulators, the following items hdween

resolved:

q Due to the absence ofsamulatorlinked to eactatomicmodel, now thdlattened coordinatoexecutes
the &, Oext andA(S) functions for eachtomiccomponent. It also stores the information abouttithe
of next transitior(ty), time of last transitior{t,) and theexternal eventthat are queued for eaakomic

component.

q Theflattened coordinatomust transform the hierarchical structure of theleldo a flattened structure
in order to reduce the overhead incurred by mesgagging. The resulting non-hierarchical structsire
used by the flattened coordinator.

g Due to the absence of the usual coordinators, hevildttened coordinator maps the ports for aliréto
and coupled components in the model hierarchy. Tthencomponent links are handled by flattened
coordinator, which forwards the events as needed.

g Theflattened coordinatomust receive and send messages directly with thiecaordinator in order to
carry out the simulation process.

If we simulate the model described in the previsulssection (seEigure 52 using the flattened approach, the
resulting hierarchy is remarkably simplified ande tbverhead incurred by message passing is sigmifica
reduced. Both the model and the processor hieesare shown in the next figure.

63



Definition of Real Time Simulation in the CD++ tédl- Ezequiel J. Glinsky

Coupled Model # l Root Coordinator l
[ [ 1
l Coupled Model # l ‘ Atomic Model # : ‘ ‘ Atomic Model # ¢ ‘ ‘ Atomic Model # : N
l Flattened Coordinator l
I
‘ Atomic Model # ‘ ‘ Atomic Model # ! ‘ ________ L | | | |
| Atomicdata# 1 | Atomic@ata# | | Atomicdata# | | Atomicdatad4 i | Atomicdata’5 |
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Figure 55: Flattened simulation approach.
(a) Example of a model hierarchy, (b) Associatedpessor hierarchy

When the flattened simulation technique is use@, d@ssociated processor hierarchy is greatly siglif
Messages are exchanged only betweenrdwt coordinator and theflattened coordinatqr the only two
processors that are created in the new hierardhg.dbtted boxes represent titemic data which are objects
created to store the information about each atomaidel. Theflattened coordinatoupdates thatomic dataand
handles the execution of th@nsitionandoutput functiongor each atomic component without any intermediate
processor.

5.3 Conclusions about the flattened simulation technique

The existing techniques in CD++ use a hierarctsgallation approach. The design and implementatiothe
new flattened coordinatopresented in this chapter allows the executiorimofigtions using a non-hierarchical
approach.

The reduction of messages when the flattened apprisaused can boost performance results, espeaiain
the incurred overhead is related to the model aimk complexity. The new flattened technique camde not
only for virtual timebut also forreal timesimulation on DEVS and Cell-DEVS models.

The next chapter presents a comparison betwedtattemed and hierarchical approaches using tiothal time
andreal time
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6. PERFORMANCE ANALYSISOF THE FLATTENED SIMULATOR

In order to assess the efficiency of the new flatbapproach, we present an analysis of the dexglsimulator.
Not only DEVS but also Cell-DEVS models are exedute

The results obtained by means of the flattened laiimuare compared with those obtained with theahnahical
approach.

Analysis of bothreal time and virtual time simulations are provided, using not only synthdiicgenerated
models but also existing ones from the CD++ library

6.1 Test notes

The testing described in this chapter was performedhe ParDEVS Laboratory, Departamento de
Computacioén, Facultad de Ciencias Exactas y Nasyélniversidad de Buenos Aires. All simulationsevein
on aCompagq ProLiant 16080de, consisting of a Pentium Il 450MHz processitihh %12 MB of RAM, 512-KB
second-level ECC cache and 100-MHz GTL Bus.

The installed operating system w@aldera OpenLinux

6.2 Virtual time execution analysis

In this subsection, executions of both flattened hierarchical techniques are compared using thaalitime
simulation. The main goal of the new flattened datar in virtual time simulations is to reduce teecution
time, providing the results faster than the usparaach.

6.2.1 Synthetically generated DEVS models

This subsection provides a comparison of the fieilieand hierarchical techniques using the synthmetidel
generator.

6.2.1.1 Varying number of levels in the hierarchy

The first series of models have a fixed numberashgonents per level, and a variable number of ¢eiwrethe
hierarchy ¢epth.

6.2.1.1.1 Models without workload in the transition functions

Firstly, models will not execute workload in th&iansition functions. Therefore, overhead is coregamore
easily. The following table shows the parametersesponding to this test.
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Simulation parameter Associated value
Number of components per level 8 components
Number of levelsin the hierarchy (Depth) 10 to 14 levels
M odel type Type-1 and Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Number of atomic components in the obtained 73 t0 92
models

Number of coupled components in the obtained 9to 13
models

Table 22:  Simulation parameters — Varying depth, Byt and Type-3 models without workload

The following figure shows the obtained executiones for each simulation technique in Type-1 an@erg
models.

Execution times in Type-1 modes with varying depth Execution times in Type-3 modes with varying depth
1200 4500
4000
1000 — "
/ 3500 ——
. 800 —— — 3000 —
0
E E 2500 . .
o 600 —-— ° —=— Hierarchical
£ simulation £ 2000
= 400 = 1500
Flattened 1000 Flattened
i simulation
200 500
0 " 0
10 11 12 13 14 10 11 12 13 14
Depth Depth

Figure 56: Execution time for hierarchical and flaened simulations
with varying depth, without workload, (a) Type-1 mels, (b) Type-3 models

Figure 56 shows the execution time for Type-1 and Type-3 n®desing both the hierarchical and flattened
simulators. In these experiments, the width isdijxthe depth is variable and there is no workloathe atomic
transition functions.

For instance, a Type-1 model wiflD levels of deptlis executed in 700 milliseconds using the hieraahi
approach, whereas only 320 milliseconds are neemlexXecute the same model using the flattened appro
Analogous results can be observed in Type-3 models.

When the depth is increased, the difference betweehierarchical and flattened execution time bez®more
noticeable. Clearly, the flattened simulator oufipens the hierarchical simulator in all the perfedn
experiments.

6.2.1.1.2 Models with workload in the transition functions

The previous examples provided a comparison betlh@aarchical and flattened simulation of modeltheut
overhead. Here, the models have workload in thainsition functions. Consequently, we can meashee t
overhead in cases that execute code in their atoomponents.

The simulation parameters are as follows.
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Simulation parameter Associated value
Number of components per level 6 components
Number of levelsin the hierarchy (Depth) 10 to 14 levels
M odel type Type-1
Workload in internal transition function 50 ms
Workload in external transition function 50 ms
Number of external events 100 events
Number of atomic components in the obtained 46 to 66
models
Number of coupled components in the obtained 9to 13
models

Table 23:  Simulation parameters — Varying depth,pe¢r1 models with workload

The following chart shows the execution time fortthimulation techniques. In addition, the theaasti
execution timeés included in the chart. As we have explainediearthetheoretical execution timir a given
simulation does not include any overhead at alk the sum of all time spent in executing interauadi external
transition functions all along this simulationclin be measured as follows,

Total theoretical time = [ (# External Transitions * TimelnExternalTransitio ) +
(# Internal Transitions * TimelnInternalTransition)] *
NumberOfEvents

The theoretical timecan be compared with the obtained execution tirmed®dth the hierarchical and flattened
simulation techniques. Moreover, the differenceswben the theoretical and the execution time fothea
technique are described in an additional chart.
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Figure 57: Type-1 models with varying depth and \iwad
(a) Execution times, (b) Difference between expeeimts and theoretical execution times

Figure 57 (a)shows that the execution times employing bothhikearchical and flattened approaches are very
similar to the theoretical execution time. The wodkd executed in the transition functions remarkaftreases
the total execution time, which reduces the impét¢he overhead incurred by both simulators.

However, Figure 57 (b)shows the difference between the theoretical di@tuime and each simulation
technique. The execution times for the flattenediutitions are lower than the execution times fag th
hierarchical simulations.

Furthermore, it is possible to measure plagcentage of overheadcurred by each simulation technique. It is
computed by subtracting the theoretical time fréma é€xecution time and dividing that by the executine
itself, that is:
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Overhead (%) = (executionTime — theoreticalTime)
executionTime

The following figure presents the overhead inculrgaach simulation technique.

Percentage of Overhead in Type-1 models with workload

—a— Hierarchical
0.2 simulation

Flattened
0.1 simulation

Percentage of Overhead (%)
o
N
(52

0,05

10 11 12 13 14
Depth

Figure 58: Percentage of overhead incurred by hiechical and flattened simulators
in Type-1 models with varying depth and workload

In general, these executions show a relatively Isovarhead. Particularly, the figure illustrateattthe overhead
incurred by the flattened simulator is lower thhe overhead incurred by the hierarchical one.

In models with workload like those executed in tudsection, the proposed flattened technique gesvibetter
performance results and outperforms the existirgahtchical technique.

6.2.1.2 Varying number of components per level

These models have a fixed number of componentearhterarchy, but a variable number of componests p
level {width). The execution of models with and without worklda analyzed.

6.2.1.2.1 Models without workload in the transition functions

We start running models that do not execute worklioatheir transition functions. Therefore, onlyeokead is
executed in these cases. The following table sttbe/parameters that have been employed.
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Simulation parameter

Associated value

Number of components per level

6 to 10 components

models

Number of levelsin the hierarchy (Depth) 8 levels

M odel type Type-1 and Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Number of atomic components in the obtained 36 to 64
models

Number of coupled components in the obtained 7

Simulation parameters — Varying width, fig-1 and Type-3 models without workload

The following figure shows the obtained executiomes for each simulation technique.

Figure 59: Execution time for hierarchical and flaened simulations
with varying width, without workload, (a) Type-1 rdels, (b) Type-3 models
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Figure 59 (a)and(b) show that the flattened simulator outperforms tieeanchical simulator in all the executed
Type-1 and Type-3 cases in which the width wasalde. When the models become larger, the difference

between the hierarchical and the flattened appraciore evident.

6.2.1.2.2 Models with workload in the transition functions

In addition, experiments have been performed usipmge-3 models with workload in their atomic trarmsit
functions. The table shows all the parameters.
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Simulation parameter Associated value
Number of components per level 5 to 9 components
Number of levelsin the hierarchy (Depth) 7 levels

M odel type Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Number of atomic components in the obtained 2510 49
models

Number of coupled components in the obtained 6

models

Table 25:  Simulation parameters — Varying width, §g-3 models with workload

The following charts show the execution times fothbtechniques, and the difference between therewpsts
and the theoretical results.
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Figure 60: Type-3 models with varying width and vikoad
(a) Execution times, (b) Difference between expeeimis and theoretical execution times

The following figure shows the percentages of ogathincurred by each simulation technique.
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Figure 61: Percentage of overhead incurred by hiechical and flattened simulators
in Type-3 models with varying width and workload

The figure shows that the overhead remains stainlbdth simulation techniques. Actually, the ovexthenight
be reduced because of the increased amount of eeafldxecuted in the transition functions of langerdels.
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The flattened approach outperforms the hierarchiggdroach in all these experiments. The use oftre
hierarchical approach can reduce the overhead% Hterefore providing better execution times.

6.2.1.3 Large Type-1 models

As we have explained earlier, models may have nlacer sizes than those employed in the previous
subsections. The following cases show some sarophessy large models.

Simulation
Simulation par ameter Al Bl C1
Number of components per 100 components 200 components 400 components
level
Number of levels in the 100 levels 50 levels 25 levels
hierarchy
Model type Type-1 Type-1 Type-1
Workload in internal 50 ms 50 ms 50 ms
transition function
Workload in  external 50 ms 50 ms 50 ms
transition function
Number of external events 100 events 100 events 100 events
Number of atomic 9802 9752 9577
componentsin the obtained
models
Number of coupled 99 49 24
componentsin the obtained
models

Table 26:  Simulation parameters — Large models (€yp)

The obtained Type-1 models have almost ten thouatordic components in their structures. Consequethid
overhead needed to carry out the simulation isidersble.

The following charts show the execution times fothbhierarchical and flattened simulators, anddifierence
between the experiments and the theoretical results

Execution times in large Type-1 models with workload Difference between theoretical and execution times
in large Type-1 models with workload
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Figure 62: Large Type-1 models with workload
(a) Execution times, (b) Difference between expeeimis and theoretical execution times

These simulations take a long time to be execuidé@. model Al, for instance, took more than 90000000
milliseconds (approximately 27 hours) to be enfimtecuted. However, the differences between tber#tical
execution time and the experiments are quite sthesk; than 97790 milliseconds (approximately oneutei and
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37 seconds) if the hierarchical simulator is used lass than 50920 milliseconds (approximately édords) if
the flattened simulator is used.

The following figure shows the percentages of ogathincurred by each simulation technique in tHasge
models.
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Figure 63: Percentage of overhead incurred by hiechical and flattened simulators
in Large Type-1 models with workload

Even though the execution times are considerahke,obtained overheads are quite small. In all cabes
flattened simulator is more efficient than the afehical simulatorFigure 63 shows that the overheads are
reduced in almost 50% in these large Type-1 moakén the flattened technique is employed.

6.2.1.4 Large Type-3 models

The previous section studied the execution of largee-1 models. As we have explained earlier inpiéma2,
Type-1 models are simple and have a small numbéntefconnections between components. Type-3 mpdels
which have a larger number of interconnections betwcomponents, are more complex and are analyzbdsi
subsection.

Simulation par ameter D3 E3 F3 G3
Number of components per 20 components 40 components 50 components 30 components
level

Number of levels in the 40 levels 20 levels 50 levels 50 levels
hierarchy

Model type Type-3 Type-3 Type-3 Type-3
Workload in internal 50 ms 50 ms 50 ms 50 ms
transition function

Workload in  external 50 ms 50 ms 50 ms 50 ms
transition function

Number of external events 50 events 50 events 50 events 50 events
Number of atomic 742 742 2402 1422
componentsin the obtained

models

Number of coupled 39 19 49 49
componentsin the obtained

models

Table 27:  Simulation parameters — Large models (€yg)
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Notice that Type-3 models are more complex thanetip@ivalent Type-1 models. Consequently, the messag
passing needed to carry out these simulationsrisiderable and even greater than in Type-1 expetsne

The next figures show the execution times for tmithulators, and the difference between the expetisnand
the theoretical results.

Execution times in Type-3 models with workload Difference between theoretical and execution times
in Type-3 models with workload
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Figure 64: Large Type-3 models with workload
(a) Execution times, (b) Difference between expeeimis and theoretical execution times

The difference between the theoretical and the @t time is smaller when the flattened simulai®r
employed. In all cases, the flattened techniquedee efficient and provides better execution times.

The following figure shows the percentages of ogathincurred by each simulation technique in thasge
Type-3 models.
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Figure 65: Percentage of overhead incurred by hiechical and flattened simulators
in Large Type-3 models with workload

Again, the overhead is smaller for the flattenedusator in all the experiments. Approximately a 50%athe

overhead can be reduced if the non-hierarchichinigae is employed to simulate these synthetiggiyerated
models.

6.2.2 Existing DEVSmodels

The previous subsection showed the execution dhstioally generated models. In addition, it ihetsting to
show the performance of the different simulatorscexing existing DEVS models.
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Previous works have formed an extensive librarpBVS models to be executed in CD++ [Ame00a, AmeQQb,
Rod99]. Not only simple atomic models, but alsoyveomplex coupled models can be found in the ljorar
[Wai02].

This section analyzes the execution of such madeRD++ using both the hierarchical and flattenidusators
in virtual time.

The following table describes briefly some of tlxe@ited models.

Simulation
M ODEL Alarm Clock Elevator GPT FSM
Brief description A digital alarm clock| An elevator with The typical A Moore finite state
with display, alarm, | floor buttons to pusl | Generator-Processc| machine constructe i
buzzer and snooze It has a door, a Transducer model | with a base library
control unit and an | with a queue to buffi{ available in CD++.
engine. processes.
Number of coupled 3 3 1 1
components (appr ox.)
Number of atomic 8 4 4 4
components (appr ox.)
I nterconnection Medium Light-medium Light Light
complexity

Table 28:  Existing models executed in virtual tinegisting in the CD++ library [Wai02]

The models have a different amount of workload ¢oelxecuted in the transition functions of theirnaito
components. In addition, a different interconnattimmplexity is found in each case. It can be mgdras the
qguantity and the type of interconnections amongitimer components of the model. The table provides
approximate measure of this complexity.

Execution times using existing DEVS models
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Figure 66: Execution time for existing DEVS models
using hierarchical and flattened simulators

In all the cases shown in the figure above, thewtken time for DEVS models is reduced when thédlzed
simulator is used. The next figure shows the pesaggn of time reduction achieved by the non-hieraegh
approach.
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Percentage of Time Reduction when using the Flattened Simulator

% of time reduction
@
3

30

20

N

0+ T T

Alarm Clock Elevator GPT FSM
Model

Figure 67: Percentage of time reduction using thattened approach
for existing DEVS models

The percentages of time reduction depend on the DEddel that is being simulated. In thlarm Clock we
have obtained up to 40% of reductions in the executme. On the other hand, thkénite State Machindas
shown time reductions of 10% approximately.

6.2.3 Existing Cell-DEVS models

There are several Cell-DEVS models existing inGiie++ library [Wai02]. The available models inclufteest
fires, life game, heat diffusion, robot movememipaies of ants and watershed analysis, amongotRer more
information about Cell-DEVS models, see [Ame00a,eQ0b, Wai02].

It is possible to combine more than one Cell-DE&ponent to form a new model. In addition, DEVS eied
can also be linked to Cell-DEVS models.

The flattened simulator allows the execution of[©#VS models in a non-hierarchical fashion. Theaxion
of non-hierarchical simulations of Cell-DEVS modebn be particularly interesting. Usually, becaaté¢he
large number of messages exchanged between thairnalhtors and the coordinator, the amount of tireeded
to perform cellular model simulations can be exggniong.

An analysis of the execution time of several caliuhodels is provided in this subsection.

6.2.3.1 Life game

The popular life game can be simulated as a CeN®Hnodel [Ame00a, Ame00b]. In such system, each
position represents a cell, which can be eitheddweaalive. The following figure compares the exemutime
for both hierarchical and flattened simulations g different model sizes.
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Execution times for Life game
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Figure 68: Execution time for Life game in CD++ [ArD0a]
using hierarchical and flattened techniques

In every case, the flattened approach outperfoimashierarchical one. The following figure illustatthe
percentage of time reduction obtained when théefied simulator is used.
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Figure 69: Percentage of time reduction using thiattened approach
for Life game in CD++

The previous figure shows that employing the nardrchical simulator can reduce the execution tiinthe
Life model up to 15%.

6.2.3.2 Other Cell-DEVS models

There is a wide set of models existing in the CDredel library [Wai02]. They can be executed, medifor
even combined to form new DEVS models. Some ofethm®viously developed models are used here to
compare the performance of the different simulatiechniques. The following is a brief descriptiohsoch
models:

g Thewatershed model represents a hydrology system built as a cell spare00a]. It is represented as
small cells organized in several layers (air, stgfevater, soil, ground water, and bedrock). Thefai
input is partially retained by vegetation, and itast infiltrates gradually in the layers.

a A model ofparticles of gas has been simulated using Cell-DEVS. The model sitesl fluids of gas
moving in different directions. The collision ofrtiales is also defined.

g A heat diffusion model studies the spread of heat in a surface [@inpQA Cell-DEVS model
represents the surface itself. It is also compadet heat generator and a cold generator, botherht
specified as DEVS models.

g A colony of ants has been defined as a Cell-DEVS model. Differetd arist in the same space, trying
to find food with random patterns of movement.
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q

A substance classifier is formed by one DEVS and two Cell-DEVS modelssudbstance generator
places a given amount of substance intquauecomponent. Aclassifier takes the substance and
measures its purity. Then, the product is clasbifigfirst-classor second-class

The movement of sharksin the sea can be simulated as a Cell-DEVS modshakk moves following
a certain pattern, and may also have contact wwitdler fishes to eat in the area.

The classicabubble sort algorithm can be analyzed using a Cell-DEVS moitethis model, each cell

represents a numeric value in an array of fixed.sthe entire space can be ordered comparing each
cell with its neighbors.

Binary linear automata have been defined as Cell-DEVS models. They cowdist series of very
simple rules over their neighbors.

These models have been executed using both thardtigral and flattened simulators. The followingufie
shows the execution times for each simulation teglausing the described models.

Time (ms)

450000
400000
350000
300000
250000 -
200000 - B Hierarchical
150000 +
100000 +
50000 -

Execution times for Cell-DEVS simulations

simulation

O Flattened

04 simulation
Watershed  Particles of Heat diffusion  Colony of Substance  Movement of Bubble Sort Linear

gas Ants classifier Sharks Automata
Model

Figure 70: Execution time for Cell-DEVS models
using hierarchical and flattened techniques

The previous figure illustrates that the executiome is reduced when the flattened simulator is leygal. The
following figure shows the percentage of time reaaucwhen the new approach is used.
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Percentage of Time Reduction when using the Flattened Simulator
for Cell-DEVS simulations
25

20

15

uf]llllll[

Watershed  Particles of Heat diffusion  Colony of Substance  Mowement of Bubble Sort Linear
gas Ants classifier Sharks Automata

Model

% of time reduction

Figure 71: Percentage of time reduction using thattened approach
for Cell-DEVS models

These samples provide meaningful results. The rsdulle several complexities in their structured, models
with different workload have been executed. Theuctidns in execution time range from 5% to 15%

approximately.

6.3 Real time execution analysis

In this subsection, real-time executions of bodttéined and hierarchical simulators are comparesheSnodels
that have been tested in Chapter 4 are executad agjag the non-hierarchical approach in ordesnalyze its

efficiency.

6.3.1 Varying number of levelsin the hierarchy without workload

The first experiments show the results that arainbtl with varying depth in Type-3 models withowritoad.

The following table summarizes the information esponding to this test.
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Simulation parameter Associated value
Number of components per level 9 components
Number of levelsin the hierarchy (Depth) 6 to 15 levels
M odel type Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Inter-event period 20 ms
Associated deadlines 20 ms
Number of atomic components in the obtained 41 to 113
models

Number of coupled components in the obtained 5to 14
models

Table 29:  Parameters for comparison between hietdioal and flattened approaches

Varying depth, Type-3 models without workload

The per centages of success and thewor st-case response times are compared for both techniquéattenedand
hierarchical

% of success in Type-3 models Worst-case response time in Type-3 models
100 —Av\ —_— 3500
90 \ 3000 A
80 /
9 70 \\ 2500 /
2 —~
g 6 | N £ 2000 —
2 50 —=— Hierarchical o /./ —=— Hierarchical
5 40 \ simulation £ 1500 simulation
] 30 \ = 1000 /
20 \ Flattened / F_Iamlengd
simulation simulation
10 L\.\.‘- 500 /
0 - - - - - - - - o - -————— -
6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15
Depth Depth
(@) (b)

Figure 72: Comparison of real-time executions usifigerarchical and flattened techniques with varying
depth. (a) Percentage of success, (b) Worst-caspanrse time

The figure shows clearly that thitattened simulationoutperforms the hierarchical simulation in these
experiments. Particularly, Type-3 models with sal/depths 7 to 13) are executed witth00% of success using
theflattened simulationwhile the use of thhierarchical approachachieves less thatb% of success under the
same conditions. Theorst-case response timase greatly reduced when using the flattened ajgproa

6.3.2 Varying number of levelsin the hierarchy with workload

The previous models did not execute workload inrttransition functions. The following experimertudies
models with time-consuming code in the transitiomctions.

In addition, the frequency of events depends onsthecture of each model. The time between eventach

case considers the theoretical time that is nestol@rocess a single event. For example, if therdtaal time

needed to entirely process a single event is 100i3enonds, then the inter-event period is 1000isaiconds.

In contrast, if the time needed to entirely procsgvent is 1600 milliseconds, then the periodben events is
1600 milliseconds. Thus, the environment for eacklehdepends on the model itself.
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Simulation parameter Associated value
Number of components per level 4 components
Number of levelsin the hierarchy (Depth) 410 10 levels

M odel type Type-1
Workload in internal transition function 50 ms
Workload in external transition function 50 ms
Number of external events 10 events
Inter-event period Theoretical executiol

time for a single ever t

(500 to 2800
milliseconds)

Number of atomic components in the obtained 10to 28
models

Number of coupled components in the obtained 3t09
models

Table 30: Parameters for comparison between hietdoal and flattened approaches
Varying depth, Type-1 models with workload

The following figure shows the theoreticabrst-case response timas we have explained earlier in this work,
the theoretical results are simply the sum of ladl time spent in executing the workload that isntbin the
internal and external transition functions. Neittie overhead incurred by the simulator nor angmofhctors
that may affect simulation performance are inclushetthetheor etical results.

Worst-case response time in Type-1 models with workload

2500
2000 /
1500 —a— Hierarchical
/ simulation
1000 - Flattened
/ simulation

500 * —e— Theoretical

Time (ms)

Figure 73: Comparison of worst-case execution timging hierarchical and flattened techniques
Type-1 models with variable depth and workload

Figure 73shows that the use of the flattened simulationriegle provides better response times. In deeper
models, the difference between the hierarchicalfatigtned simulators becomes more noticeable.

6.3.3 Varying number of components per levelsin the hierarchy without workload

The previous experiments have analyzed models wiegth was variable. The following table summarites
parameters used to test models where the widtariahle. There is no workload executed in thesegxents.
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The following charts illustrate the obtained resdittr these Type-3 models without workload.

Simulation parameter Associated value
Number of components per level 5 to 11 components
Number of levelsin the hierarchy (Depth) 6 levels

M odel type Type-3
Workload in internal transition function 0 ms
Workload in external transition function 0 ms
Number of external events 100 events
Inter-event period 30 ms
Associated deadlines 30 ms
Number of atomic components in the obtained 21to 51
models

Number of coupled components in the obtained 5

models

Table 31:

Parameters for comparison between hietdoal and flattened approaches
Varying width (components per level), Type-3 models

6000
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3000

Time (ms)

2000

1000

Worst-case response time in Type-3

% of success in Type-3 models

e 90

—=— Hierarchical

simulation

% of success
@
S

Flattened 30
simulation 20

—=— Hierarchical
simulation

Flattened
simulation

(b)

Figure 74: Comparison of real-time executions usimderarchical and flattened techniques with varying
width. (a) Percentage of success, (b) Worst-caspoase time

Figure 74shows that the flattened simulator outperformsttieearchical one, providing better response times
and greater percentages of success. The use ofotirierarchical simulator allows the executionlayer
models with better performance results.

6.3.4 Varying number of components per levelsin the hierarchy with workload

These experiments have a fixed depth and a vanyingber of components per level with workload. Agdaire
frequency of events depends on the structure dfi eaadel. Hence, the time between events is equéigo
theoretical time that is needed to process a sevgeat.
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Simulation parameter Associated value
Number of components per level 3 to 10 components
Number of levelsin the hierarchy (Depth) 7 levels

M odel type Type-1
Workload in internal transition function 50 ms
Workload in external transition function 50 ms
Number of external events 10 events
Inter-event period Theoretical executiol

time for a single ever t

(650 to 1850
milliseconds)

Number of atomic components in the obtained 13to 37
models

Number of coupled components in the obtained 6
models

Table 32: Parameters for comparison between hietdoal and flattened approaches

The next figure shows the theoreticabrst-case response time addition to the hierarchical and flattened
results to compare the results.

Worst-case response time in Type-1 models with workload

2100 —=— Hierarchical

simulation
Lo / /

Flattened

/-//./ simulation
1100 —e— Theoretical

Time (ms)

Figure 75: Comparison of worst-case execution timsing hierarchical and flattened techniques
Type-1 models with variable width and workload

Figure 75shows a comparison of both simulation approachesim the flattened technique outperforms the
hierarchical one, obtaining lowerorst-case response timesall the experiments.

6.4 Conclusions about the performance of the flattened ssmulator

We have conducted a thorough testing of the netteflad simulator, comparing the results with tholseined
using the hierarchical simulator. Both syntheticglnerated models and existing models from the €library
were executed. The experiments inclugigtlial timeandreal timemodel execution.

When thevirtual time approach is used, in most cases the flattened afomuls more efficient and reduces the
simulation time. On the other hand, when tbal timeapproach is used, the flattened simulator provinktser
response times and greater percentages of success.

Not only DEVS but also Cell-DEVS models have begecated employing the new simulation technique. iVhe
the flattened simulator is used, the processocttre is more simple and, usually, more effective.
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The use of the non-hierarchical simulator redubesniumber of messages exchanged in the simulatomegs.
This reduction of overhead leads to better perfoeaesults. In general, we have shown that theflagtened
simulator outperforms the hierarchical one.
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7. CONCLUSIONS

Testing the performance of a simulator is usualyey complicated task. We have developed a syintheidel
generator to facilitate the testing phase. The pootiuces DEVS models that are similar to thosstiexj in the
real world. Models with different sizes and shapas be easily generated. To emulate several degfees
complexity in their structures, three different égpof models have been defined. In addition, jpassible to
determine a given workload to be executed in tlenat transition functions. The workload is Dhrystorode
that resembles the tasks to be performed by thmiaimomponents.

A thorough testing has been carried out on diffesémulation techniques provided in the CD++ toblRihe
performance of each simulator has been charadtieritke overhead incurred by the different simukatisr
bounded and the performance is appropriate in casts. The obtained results have shown the paigsitfil
developing a real time extension to the toolkit.

The real time extension to the toolkit has beeiragtdeveloped. In such extension, events mushdreled
timely and time constraints can be stated and atddl accordingly. The real time simulator ties dadeance of
the simulation-time to a wall-clock time.€. physical time). Consequently, these new featuresldvallow
interaction between the simulator and the surragnénvironment. The new real time simulator hastiested
and analyzed.

The benchmark experiments have shown good resultsad time executions. We have studied the peagendf
success and worst-case response times under diffeoenarios. Several properties of the model asd i
environment have been analyzed. Some weaknessedfan pointed out in the analysis of the toolciigally

on the execution of extremely large models. The sags-passing process may impact on the execution
performance, mainly if the model structure is taoge or complex. Even though the performance degjcad
was small, it was desirable to provide more efficienot only in real time but also in virtual tinsenulations.
Thus, a new flattened simulator has been pres¢atedercome the described problems.

The flattened simulator transforms the hierarchitalcture of a model to a flattened structureriteo to reduce
the overhead incurred by the message passing asiontators and coordinators. The resulting nonarigrical

structure is more simple and more effective. The-hierarchical approach can be applied not onlyCf&vVS

but also for Cell-DEVS simulations.

A thorough testing has been performed to the fietle simulator. In most cases, the flattened tecieniq
outperforms the hierarchical technique.
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APPENDIX A - WEB GRAFLOG: AN APPLET TO VISUALIZE THE
RESULTSOF CELL-DEVSSIMULATIONS

This appendix describes a support tool developedstamlize the result of Cell-DEVS simulations. Tégplet
and the complete user’'s manual can be found in(@]ai

A.1Introduction

CD++ allows the execution of both DEVS and Cell-DEYhodels. It is particularly interesting to visaalithe
results of a Cell-DEVS simulation. Several Cell-DEWhodels have been simulated using the toolkith s&c
urban traffic, forest fires, colonies of ants, robmvement and watershed simulation [Ame00a].

A.2 Obtaining alog fileusing CD++
In order to view the results of a Cell-DEVS simidat first we have to store the results of suctcaken.

Once a Cell-DEVS simulation has been successfieijopmed, the results can be obtained lagafile. The log
file stores all the messages (or a certain typéhein) that are exchanged along the simulation psoc€he
following table shows a sample execution of the ehddre.ma up to the simulation tim@2:00:00:000 In
addition, the fileFire.log has been specified to store the resulting messages.

/home/user/cd++> Jcd++ -mFire.ma -t02:00:00:000 —| > Fire.log

Table 33:  Execution of a sample Cell-DEVS simulatio

In order to visualize the results of a Cell-DEV&slation, onlyY-message6.e. output messages) are needed.
The following table exemplifies the use of the flag, to obtain only a certain type of messages simulation.
This alternative can reduce the execution time.

/home/user/cd++> Jcd++ -mFire.ma -t02:00:00:000 —LY —| > Fire.log

Table 34:  Execution of a sample Cell-DEVS simulati@btaining only Y-messages

A sample log file for theForest Fire model [Ame00a] is provided in the following figuras a result of the
execution of the previous command.
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Msg: 0/L /Y /00:00:00:000 / forestfire(0,0)(02) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,1)(03) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,2)(04) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,3)(05) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,4)(06) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,5)(07) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,6)(08) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,7)(09) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /00:00:00:000 / forestfire(0,8)(10) /out/  0.00000 / forestfire(01)
Msg: 0/L /Y /01:58:32:139 / forestfire(28,24)(8 66)/ out / 119.53579 / forestfire(01)
Msg: 0/L /Y /01:58:41:812 / forestfire(13,2)(39 4) / out / 119.69699 / forestfire(01)
Msg: 0/L /Y /01:58:41:812 / forestfire(29,18)(8 90)/ out / 119.69699 / forestfire(01)
Msg: 0/L /Y /01:58:57:569 / forestfire(2,2)(64) /out/119.95962 / forestfire(01)
Msg: 0/L /Y /01:58:57:569 / forestfire(27,27)(8 39)/ out / 119.95962 / forestfire(01)
Msg: 0/L /Y /01:59:40:578 / forestfire(28,10)(8 52)/ out / 120.67636 / forestfire(01)

Table 35:  Sample log file

For further information about the execution of diatiwns with the toolkit, refer to thED++ User's Manual
[Wai02].

A.3 Converting alog fileusing Drawlog
We have shown how to log the messages in a spidifee when a simulation is performed. Thrawlog
application converts these messages in a successatrixes stored in a plain-text file. Drawlaga part of the

CD++ toolkit.

The following table shows how to obtain such plexifile using Drawlog.

/home/user/cd++> .Jdrawlog -mFire.ma -cForestFire -IFire.log -f1 > o utput.drw

Table 36:  Execution of Drawlog using a sample loigef

The following table shows an excerpt of the obtdinetput file, after the execution of the previmesnmand.
The file is a succession of plan-text matrixes ol each coordinate represents the value of thatca given
moment in the simulation.

Time: 00:00:00:000

0000 0000 0.00 0.00 0.000 .. 0.000
0000 0000 0.000 0.000 0.000 . 0,000
0.000 0.000 0.000 0.000 0.000 . 0.000

Time: 01:59:40:578

0.000 0.000 0.000 117.399 108.871 .. 91.813
0.000 0000 0.000 114.415 105.887 .. 88.829
0000 0000 119.960 111.431 102.902 . 85.845
0.000 0.000 0.000 0.000 0.000 . 0.000

Table 37:  Execution of Drawlog using a sample loigef
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The previous table shows an excerpt of the fil¢ hgroduced by Drawlog. It shows only a partfud tnitial
and final configurations of cells in the model.

Further information about the use of Drawlog caridamd in theCD++ User’'s Manual

A.4Visualizing theresults graphically

Theweb-based Graflog, which belongs to the CD++ toolkit, has been dewet to visualize the results of Cell-
DEVS simulations. It can be run with any Java-eedblveb browser, like Netscape or Microsoft Internet
Explorer. An alternative command-line Graflog canrbon under DOS [Ame0O0b].

The following is a snapshot of the web-based Ggadipplication.

Frame H ]

Dutput file: -choose file- b2, fils: -chooze file-

Play Chooge OUTPUT file |
Choose b file Chaoose Intervals + Colors || Show Grid
[ Show Values Low Speed || Step by 1 =

]

Figure 76: Snapshot of the Web-based Graflog apgation

The main goal of the Graflog applet is to displagpdnically the results of a Cell-DEVS simulationhg a Cell-
DEVS model is simulated, each cell can take diffex@lues along the execution. For instance inad tigfusion

model, each cell represents the temperature ofjythah coordinate. Alternatively, in a gas diffusimodel, each
cell can represent the amount of gas in that Spauliice. The Graflog applet employs the outpuhefDrawlog

application, described earlier in this appendix.

First, we have to specify the color that will regeat each interval of values. For example, letarssicder a
simulation that can take only two possible valugsind1. Then, it is possible to represent a valué afith
black and a value ofL with white However, cells usually take many different valuesa simulation.
Additionally, the state of a cell can be represénitéth real numbers. Therefore, several intervald eolors
might be chosen by the user in Graflog. Each imstienas an associated color that can be chosentfremalette
(or entering the RGB composition of the desiredol

The following figure shows the screen where intlrean be defined and colors can be chosen.
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Figure 77: Choosing intervals and associated colamsVeb Graflog

The color palette and intervals can be saved tle.adnce each interval has an associated colocamechoose

the outputand modelfiles that contain the rest of the information ne@do display a Cell-DEVS simulation.
Usually, these files have the extensiahsv and.marespectively. Theutput fileused by Graflog is the result of
the execution of the Drawlog application. Tinedel fileis the information used to execute the simulatigth w
CD++ in the first step.

The following figure shows a sample series of rissoibtained with the web-based Graflog.

Figure 78: Sample series of results obtained wittettoolkit — Forest fire model [Ame00a]

The user can play, pause and repeat the visualizafiresults. In addition, several aspects ofdisplay can be
modified, such as the speed and the step increment.

A.5 Summary of the process

The simulation of Cell-DEVS models can be visuaizsing the CD++ toolkit. Different application®iin the
toolkit are used to subsequently format the restihe following figure summarizes the steps neddedsualize
such a simulation.
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Execution o LOG Execution o Converted Execution of VISUALIZATION
CD++ —® FILE [ Drawlog —®| Plain-text % Web Graflog — OF RESULTS
simulation (-log) File
tool (.drw)

Figure 79: How to visualize the results of a CellHYS simulation using the CD++ toolkit

The completésraflog User’'s Manuatan be found in [Wai02].
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