
Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

2002

Definición de Simulación en

Tiempo Real en CD++

Tesis de Licenciatura en Ciencias de la Computación

Autor

Ezequiel J. Glinsky

Director

Dr. Gabriel Wainer

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

3

Table of Contents

ABSTRACT __ 5

1. INTRODUCTION ___ 6
1.1 Introduction to simulation ___ 6
1.2 Introduction to the DEVS formalism __ 7
1.3 Introduction to the Cell-DEVS formalism __ 9

1.3.1 Cellular Automata___9
1.3.2 The Timed Cell-DEVS formalism ___10

1.4 Introduction to the CD++ toolkit __ 11

2. PERFORMANCE ANALYSIS OF DIFFERENT SIMULATION TECHNIQUES______________ 13
2.1 Description of the available simulation techniques in CD++ ______________________________ 13

2.1.1 Original stand-alone simulator __13
2.1.2 Parallel simulator __13

2.2 Synthetic model generator __ 14
2.2.1 Type-1 models __15
2.2.2 Type-2 models __17
2.2.3 Type-3 models __19

2.3 Performance analysis __ 21
2.3.1 Test notes __22
2.3.2 DEVS models ___22

2.4 Conclusions about performance analysis __ 27

3. REAL-TIME EXTENSION TO THE CD++ TOOLKIT ___________________________________ 28
3.1 Virtual time simulation approach __ 28

3.1.1 Sample model simulation using virtual time__28
3.2 Real-time simulation approach __ 30

3.2.1 Time advance in the simulation process ___30
3.2.2 Adding deadlines in the real time model execution ____________________________________31
3.2.3 Sample model simulations using the new real time approach_____________________________31

3.3 Conclusions about the real-time extension in CD++ _____________________________________ 36

4. PERFORMANCE ANALYSIS OF THE REAL TIME SIMULATOR________________________ 38
4.1 Introduction ___ 38
4.2 Test parameters __ 38
4.3 Test notes__ 39
4.4 Test cases __ 39

4.4.1 Varying number of levels in the hierarchy ___39
4.4.2 Varying number of components per level__44
4.4.3 Varying number of components in the structure_______________________________________45
4.4.4 Varying inter-event periods and associated deadlines __________________________________47
4.4.5 Varying workload in transition functions __51
4.4.6 Execution of large-scale models ___55

4.5 Conclusions about performance analysis using the real time simulator _____________________ 57

5. FLATTENED SIMULATION TECHNIQUE __ 59
5.1 Problems of the hierarchical simulation approach ______________________________________ 59

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

4

5.2 Implementation of the flattened simulation technique ___________________________________ 61
5.3 Conclusions about the flattened simulation technique ___________________________________ 64

6. PERFORMANCE ANALYSIS OF THE FLATTENED SIMULATOR _______________________ 65
6.1 Test notes__ 65
6.2 Virtual time execution analysis __ 65

6.2.1 Synthetically generated DEVS models __65
6.2.2 Existing DEVS models __73
6.2.3 Existing Cell-DEVS models __75

6.3 Real time execution analysis __ 78
6.3.1 Varying number of levels in the hierarchy without workload_____________________________78
6.3.2 Varying number of levels in the hierarchy with workload _______________________________79
6.3.3 Varying number of components per levels in the hierarchy without workload________________80
6.3.4 Varying number of components per levels in the hierarchy with workload __________________81

6.4 Conclusions about the performance of the flattened simulator ____________________________ 82

7. CONCLUSIONS__ 84

8. REFERENCES ___ 85

APPENDIX A - WEB GRAFLOG: AN APPLET TO VISUALIZE THE RESULTS OF CELL-DEVS
SIMULATIONS __ 87

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

5

ABSTRACT

The CD++ toolkit was developed in order to implement the theoretical concepts specified by the DEVS
formalism. The tool allows the execution of both DEVS and Cell-DEVS models. In this work, we present a
synthetic model generator that produces DEVS models similar to those that exist in the real world. A thorough
testing has been carried out using the different simulation techniques provided in the toolkit, which employ a
virtual time approach. This work presents the definition and implementation of a real time simulator. In such
simulations, events must be handled timely and time constraints can be stated and validated accordingly. The new
simulation technique allows the interaction between the model and its surrounding environment. Additionally, a
non-hierarchical simulation approach is presented and introduced to CD++ in order to reduce the communication
overhead. The experiments showed that the new flattened simulation technique is more efficient than the
hierarchical one.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

6

1. INTRODUCTION

1.1 Introduction to simulation

Simulation is a powerful tool for analyzing and understanding a wide variety of complex systems. The
simulation process begins with a problem to be solved or understood, such as urban traffic, network performance
or the spread of a virus through a group of cells. By observing the real system, different entities are identified. A
model is an abstract representation of such system that is constructed accordingly. The execution of the model is
carried out by a simulator. The simulator consists of a computer system that executes the instructions of that
model to generate its behavior. Finally, the obtained results are compared to those of the real system for
validation. Usually, the modeler is interested in only a few aspects of the real system. Consequently, an
experimental frame is defined to bound the scope of the model, composed of a limited set of circumstances
under which the real system is being studied [Zei76, Zei00].

Experimental frame

Source
System

behavior
database

Model

Simulator

Modeling
relation

Simulation
relation

Figure 1: The basic entities and their relationships [Zei00]

The basic entities are linked by two relations [Zei00]:

q modeling relation: Links the real system and the model. It defines how well the model represents the system
or entity being modeled. Generally, a model can be considered valid if the data generated by the model agrees
with the data produced by the real system in the experimental frame of interest.

q simulation relation: Links the model and the simulator. It represents how faithfully the simulator is able to
carry out the instructions of the model.

Different formalisms exist to model and simulate real and artificial systems. Among these, DEVS [Zei76, Zei00]
is a widely used formalism, which is described in the next section.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

7

1.2 Introduction to the DEVS formalism

Systems whose variables are discrete and where time advance is continuous are known as DEDS (Discrete
Event Dynamic Systems), as opposed to CVDS (Continuous Variable Dynamic Systems) described by
differential equations. Simulation mechanisms for DEDS systems assume that changes of state will take place at
discrete points of time, upon the occurrence of an event. Formally, an event is defined as a change of state that
occurs at a specific point of time ti ∈ R.

DEVS (Discrete EVents Systems Specification) [Zei76, Zei00], a formalism for modeling and simulating DEDS
systems, defines a way to specify systems whose states change either upon the reception of an input event or due
to the expiration of a time delay. It allows hierarchical decomposition of the model by defining a way to couple
existing DEVS models.

A real system modeled using DEVS can be described as a composition of atomic and coupled components. An
atomic model is defined by:

M = < X, S, Y, δint, δext, λ, ta >

where

X is the set of external events;

Y is the set of internal events;

S is the set of sequential states;

δext: Q x X → S is the external state transition function;

where Q = { (s,e) / s ∈ S, e ∈ [0, ta(s)] } and e is the elapsed time since the last state
transition.

δint: S → S is the internal state transition function;

λ: S → Y is the output function;

ta: S → R0
+ U ∞ is the time advance function;

A DEVS model is in a state s ∈ S at any given time. In the absence of external events, it remains in that state for
a lifetime defined by ta(s). A transition that occurs due to the consumption of time indicated by ta(s) is called an
internal transition. When ta(s) time expires, the system outputs the value λ(s) and then changes to a new state
given by δint(s). On the other hand, an external transition occurs due to the reception of an external event. In this
case, the external transition function determines the new state, given by δext(s, e, x) where s is the current state, e
is the time elapsed since the last transition and x ∈ X is the external event that has been received.

The time advance function can take any real value between 0 and ∞. A state for which ta(s) = 0 is called a
transient state. In contrast, if the ta(s) = ∞ then s is said to be a passive state, in which the system will remain
perpetually unless an external event is received.

The following figure shows the description of states and variables in DEVS models:

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

8

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 2: DEVS Semantics

A DEVS coupled model is composed of several atomic or coupled submodels. It is formally defined by:

CM = <Xself, Yself, D, {Mi}, {I i}, {Zij},select >

where

D Is a set of components;

for each i in D,

Mi is a basic DEVS component (i.e. a coupled or atomic model);

for each i in D U { self },

I i is the set of influencees of i (i.e. models that can be influenced by outputs of
model i);

for each j in I i,

Zi, j is the i-to-j output-input translation function

select is the tie-breaker function;

This structure is subject to the constraints that for each i in D,

M i = <Xi, Yi, Si, , δi int, δi ext, λ i, tai > is a DEVS model

I i is a subset of D U { self }, i is not in I i.

Zself, j: Xself → X j

Zi,self: Yi → Yself

Zi,j: Yi → X j

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

9

select: subset of D → D

 such that for any non-empty subset E, select (E) ∈ E.

A coupled model groups several DEVS into a compound model that can be regarded, due to the closure property,
as a new DEVS model. This allows hierarchical model construction.

In addition, each coupled model has its own input and output events, as defined by the Xself and Yself sets. When
external events are received, the coupled model has to redirect the inputs to one or more components. Similarly,
when a component produces an output, it may have to map it as an input to another component, or as an output of
the coupled model itself. Mapping between ports is defined by the Z function.

Note that multiple components can be scheduled for an internal transition at the same time in a coupled
component, and therefore ambiguity may arise. If the first component to execute its internal transition produces
an output that maps to an external event for another component that is already scheduled for an internal
transition, then it is not clear which transition this second component should execute first. Two alternatives exist:
to execute the external transition first with e = ta(s) and then the internal transition, or else to execute the internal
transition first followed by the external transition with e = 0. By the select function, the DEVS formalism solves
this ambiguity. The function defines an order over the components so that only one component of the group of
imminent models is allowed to have e = 0. The other imminent models are divided in two groups: those that
receive an external output from this model, and the rest. The former will execute their external transition
functions with e = ta(s), the latter will be imminent during the next simulation cycle which may require again the
use of the select function to decide which model will execute first.

1.3 Introduction to the Cell-DEVS formalism

1.3.1 Cellular Automata

Cellular Automata are used to describe real systems that can be represented as a cell space. A cellular automaton
is an infinite regular n-dimensional lattice whose cells can take one finite value. The states in the lattice are
updated according to a local rule in a simultaneous and synchronous way. The cell states change in discrete time
steps as dictated by a local transition function using the present cell state and a finite set of nearby cells (called
the neighborhood of the cell).

Cell neighborhood

Figure 3: Sketch of a cellular automaton [Wai00]

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

10

The Timed Cell-DEVS formalism [Wai98] uses the DEVS paradigm to define a cell space where each cell is
defined as a DEVS atomic model. As a result, it is possible to build discrete event cell spaces improving their
definition by making the timing specification more expressive.

1.3.2 The Timed Cell-DEVS formalism

Cell-DEVS defines a cell as DEVS atomic model. A Cell-DEVS atomic model is defined by [Wai98]:

7'&� ���;��<��,��6�� ���1��G��δint, δext�� ��� ���'�!

where

X is a set of external input events;

Y is a set of external output events;

I represents the model's modular interface;

S is the set of sequential states for the cell;

 is the cell state definition;

N is the set of states for the input events;

d is the delay for the cell;

δint is the internal transition function;

δext is the external transition function;

 is the local computation function;

 is the output function; and

D is the state duration function.

A cell uses a set of input values N to compute its future state, which is obtained by applying the local
computation function . A delay function is associated with each cell, deferring the output of the new state to the
neighbor cells. This activation of the local computation is carried by the δext function.

After the basic behavior for a cell is defined, a complete cell space can be constructed by building a coupled
Cell-DEVS model:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

where

Xlist is the input coupling list;

Ylist is the output coupling list;

I represents the definition of the interface for the modular model;

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

11

X is the set of external input events;

Y is the set of external output events;

n is the dimension of the cell space;

{t1,...,tn} is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells;

Z is the translation function; and

select is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells. Each cell is connected to the
cells defined in its neighborhood. Nevertheless, as the cell space is finite, either the borders are provided with a
different neighborhood than the rest of the space, or they are wrapped (cells in one border are connected with
those in the opposite one). Finally, the Z function defines the internal and external coupling of cells in the model.
This function translates the outputs of m-th output port in cell Cij into values for the m-th input port of cell Ckl .
Each output port will correspond to one neighbor and each input port will be associated with one cell in the
inverse neighborhood. The select function serves the same purpose as in the original DEVS models: to tiebreak
among imminent components.

1.4 Introduction to the CD++ toolkit

CD++ implements DEVS and Cell-DEVS theory, allowing the definition and simulation of models using the
specification described in the previous sections [Rod99, Wai01]. The tool was built as a hierarchy of classes in
C++, each of them corresponds to a simulation entity using the basic concepts defined in [Zei76, Zei00].

Two basic abstract classes exist: Model and Processor. The former is used to represent the behavior of the
atomic and coupled models, while the latter implements the simulation mechanisms. Figure 4 shows the CD++
class hierarchy.

Processor

Simulator Coordinator Root
Coordinator

CellCoordinator

Model

Atomic Coupled

AtomicCell CoupledCell

(a) (b)

Figure 4: CD++ (a) Model hierarchy, (b) Processor hierarchy

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

12

The Atomic class implements the behavior of an atomic component. The Coupled class implements the
mechanisms of a coupled model. For cellular models, special atomic models are used to represent the cells. To do
so, AtomicCell and CoupledCell are defined as subclasses of Atomic and Coupled respectively. AtomicCell class
extends the behavior of the atomic models, to define the functionality of the cell space. In contrast, CoupledCell
handles a group of atomic cells.

A simulator object manages an associated atomic object, handling the execution of its δint, δext and λ(s) functions.
A coordinator object manages an associated coupled object. Only one root coordinator exists in a simulation. It
manages global aspects of the simulation. It is involved with the topmost-coupled component, which has the
highest level in the model hierarchy. Moreover, the root coordinator maintains the global time, and it starts and
stops the simulation process. Lastly, it receives the output results that must be sent to the environment.

The simulation process is message driven; it is based on the message exchange among processors. Each message
contains information to identify the sender and the receiver. A time-stamp for the message and an associated
value are also included in the packet. Two main categories of messages exist: synchronization and content
messages. These categories are consisted of several types of messages.

 Synchronization messages:

@ Collect message

* Internal message

done Done message

 Content messages:

q External message

y Output message

In addition, a processor has internal variables to keep the time of the simulation:

tL Time of last transition

tN Time of next transition

and a bag to store external messages.

The tool provides a specification language that allows describing coupling of models, initial values and external
input events. Additionally, atomic models are developed under C++, which provides a great flexibility and
computing power to the modeler. Each new atomic model must inherit from the Atomic class in order to extend
their basic behavior.

Lastly, for Cell-DEVS model execution, CD++ allows defining size and structure of the cell space and its
connection with other existing DEVS models, type of delay, neighborhood, border and initial state for each cell.

This work is organized as follows. Chapter 2 introduces the simulation techniques available in the CD++ toolkit.
Furthermore, a synthetic model generator is developed and presented. Finally, a performance analysis of the
simulation techniques is provided. Chapter 3 introduces a real-time extension to the CD++ toolkit, while Chapter
4 presents the testing of such simulator. In order to provide better performance, a flattened simulator is
introduced in Chapter 5. Benchmark experiments are carried out using this new flattened approach in the sixth
chapter. Chapter 7 provides conclusions about this work. An appendix presents tools developed to support the
CD++ project.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

13

2. PERFORMANCE ANALYSIS OF DIFFERENT SIMULATION
TECHNIQUES

This chapter presents the available simulation techniques in the CD++ toolkit. In addition, a new synthetic model
generator is presented. Furthermore, a thorough performance analysis is provided in order to characterize the
overhead incurred by each technique.

2.1 Description of the available simulation techniques in CD++

Currently, the CD++ toolkit supports two different approaches to simulate DEVS and Cell-DEVS models.

The available distributions are the original stand-alone version [Rod99] and the parallel version [Tro01a]. The
former is a one-processor simulation technique. The latter allows the execution of simulations on a distributed
environment. In this section, both techniques are explained with more detail.

2.1.1 Original stand-alone simulator

The original stand-alone simulator [Rod99] can be used when the simulation is executed in only one processor.
This is the simplest version of the CD++ toolkit and simulates both DEVS and Cell-DEVS models. It has been
used on a variety of models including: traffic, forest fires, robot movement and watershed simulation [Ame00a]
among others.

2.1.2 Parallel simulator

Eventually, the execution of more complex models requires a computing power that a stand-alone computer does
not provide. Nevertheless, this computing power may be obtained by parallel and distributed systems.

Not only Cell-DEVS models, but also DEVS models may require this approach. The parallel version of the tool
was developed using the Parallel DEVS [Cho94] and Parallel Cell-DEVS [Wai00], which are revisions of the
DEVS and Cell-DEVS formalisms respectively.

When the parallel simulator [Tro01a] is invoked, synchronization between processes is needed. For flexibility,
the parallel simulator was designed as a layered architecture application. The topmost layer implements the
abstract simulator. The middle layer carries out synchronization between processes and the lowest layer is in
charge of the communications between the CPUs. The middleware is provided by the Warped project [Mar97],
which supports two different synchronization protocols. TimeWarp kernel provides the optimistic protocol. On
the other hand, NoTime kernel implements an unsynchronized protocol. Both protocols are supported by the
parallel version of the CD++ toolkit.

When distributed simulation is invoked, Warped uses MPI for the message passing. The complete layered
architecture is shown below.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

14

MODEL

Parallel CD++

WARPED

MPI

Figure 5: Parallel CD++ layered structure

The parallel CD++ version supports not only distributed, but also stand-alone execution. In the latter case, the
MPI layer is not needed.

2.2 Synthetic model generator

The performance testing of a simulator tool is usually a very complex task. To make the analysis of the different
DEVS simulation tools easier and more accurate, a synthetic experimental frame has been developed.

In order to perform a thorough study of the overheads incurred by each simulation technique, the synthetic model
generator must be able produce a wide variety of models. The produced models must be similar to the ones that
are studied in the real world.

To characterize a model, one should consider different aspects of its shape and behavior. Some of the most
important characteristics are: number of levels in the model hierarchy, number of atomic components, number of
coupled components, total size, number of interconnections between components, and workload in internal and
external transitions.

The synthetic generator produces models of different shapes and behaviors using the following parameters:

q model_type: this parameter allows us to choose among different predefined interconnections between
the model components. The amount of messages involved in a simulation is related to the number and
type of links between the components.

q depth: determines the number of levels of the modeling hierarchy.

q width: determines the number of children each intermediate coupled component has. Along with depth,
it establishes the size of the model.

q #intdhrystones: indicates the execution time to be consumed in the internal transition function, which
simulates code to be executed.

q #extdhrystones: indicates the execution time to be consumed in the external transition function, which
simulates code to be executed.

As stated in Chapter 1, an atomic model has two associated functions: the external transition and internal
transition functions. The former executes whenever an external event arrives through an input port. The latter is
executed before the model changes its state.

We used the Dhrystone benchmark [Wei84] to generate different workload in both transition functions.
Dhrystone code is a synthetic benchmark intended to be representative for system (integer) programming. The

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

15

#intdhrystones and #extdhrystones parameters allow the execution of time-consuming code inside the internal
and external transition, according to the number of milliseconds specified.

2.2.1 Type-1 models

This model type has a small number of interconnections between components. As a result, this characteristic
allows the performance analysis in presence of a small number of messages exchanged.

2.2.1.1 Sample Type-1 model

The following is a sample Type-1 model generated with the tool. The width used here is three; hence, there are
three components per level. The height used in this sample is four. Figure 6 shows the top model, which is the
first and topmost-coupled component described in the hierarchy.

in

 TOP (Coupled Component #0)

in in Coupled Component #1

Atomic Component #1
(at level 1)

Atomic Component #2
(at level 1)

out out

in

in

Figure 6: Top model (type 1)

The arrows indicate the existing input and output ports in each depicted model. Boxes denote the different
components in the model. Solid-white boxes represent coupled components and shaded-gray boxes represent
atomic components.

The Top model (Coupled Component #0) consists of one coupled component (labeled as Coupled Component
#1) and two atomic ones (labeled as Atomic Component #1 and Atomic Component #2) as shown above.

Coupled Component #1 is depicted below. It has the same internal structure as the Top model (Coupled
Component #0) and therefore contains one coupled model (Coupled Component #2) and two atomic ones
(Atomic Component #3 and Atomic Component #4).

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

16

in

 Coupled Component #1

in in Coupled Component #2

Atomic Component #3
(at level 2)

Atomic Component #4
(at level 2)

out out

in

in

Figure 7: Coupled Component #1 (type 1)

Likewise, Coupled Component #2 also repeats this structure, and accordingly contains Coupled Component #3
and Atomic Components #5 and #6.

in

 Coupled Component #2

in in Coupled Component #3

Atomic Component #5
(at level 3)

Atomic Component #6
(at level 3)

out out

in

in

Figure 8: Coupled Component #2 (type 1)

Lastly, Coupled Component #3 is simpler than those shown above. It has only one atomic child (#7) connected to
its output port, regardless of the specified width.

 Coupled Component #3

in in Atomic Component #7
(at the last level – level 4)

out out

Figure 9: Coupled Component #3 (type 1)

Figure 9 shows a much more simple model because the chosen height was four for this model, and therefore this
is the last coupled component in the hierarchy.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

17

2.2.1.2 Characteristics of Type-1 models

To measure the time involved upon the reception of an external event, we have to take into account the number
of internal and external functions being executed. This value is determined by the number of atomic components
in the obtained model.

In general, given a specified d depth and w width, we end up having d coupled components with w-1 atomic
components inside each coupled one (except for the innermost coupled model in the hierarchy, which only has
one atomic component).

Consequently, the total number of atomic components in a model generated by the tool is:

Atomic Models = (width – 1) * (depth – 1) + 1

In the above example, where width = 3 and depth = 4, we have 7 atomic models:

Atomic Models = (3 – 1) * (4 – 1) + 1 = 7

Now, we can calculate how many atomic components a generated model has. Then, we also know the number of
transition functions to be executed upon the reception of an external event.

In addition, all the atomic components spend a certain amount of time executing Dhrystone code in the external
and internal transitions. Recall that this time is specified by the #intdhrystones and #extdhrystones parameters
described before.

Using the previous data, now we can measure the time spent upon of the reception of an external event for Type-
1 models. We must multiply the number of internal and external transitions to be executed by the amount of time
spent in each transition function to obtain the total time needed to process a single incoming event. In this kind of
models, each atomic component receives one input per each external event. Consequently, the number of external
and internal transitions to be executed is equal to the number of existing atomic components. Thus,

Internal Transitions = # Atomic Models

External Transitions = # Atomic Models

Time spent per external event = [(# External Transitions * TimeInExternalTransition) +
(# Internal Transitions * TimeInInternalTransition)]

This information is essential to carry out the performance analysis.

2.2.2 Type-2 models

Model type 2 has more interconnections between the components of each coupled model. The inner atomic
components are interconnected; therefore, there is a greater number of messages interchanged in these kinds of
models and the overhead grows accordingly.

2.2.2.1 Sample Type-2 model

The following is a sample model with four levels of depth and a width of four components (as explained before,
we have in this case four components per level, three of which are atomic and the remaining one is coupled).

The Top model (Coupled Component #0) is shown below.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

18

in

 TOP (Coupled Component #0)

in in Coupled Component #1

Atomic Component #1
(at level 1)

Atomic Component #3
(at level 1)

out out

in

in
in

out

Atomic Component #2
(at level 1)

in
in

out

Figure 10: Top model (type 2)

The figure shows the greater number of connections in comparison with Type-1 models. Coupled Component #1
is also formed by three atomic components and one coupled model (Coupled Component #2). The same structure
can be found in Coupled Component #2 that is composed by Coupled Component #3. Neither Coupled
Component #1 nor Coupled Component #2 will be shown here because of its similarity to those components
shown before.

Finally, Coupled Component #3 is quite simple, because it is the last coupled component in the obtained
hierarchy.

in

 Coupled Component #3

in in Atomic Component #10
(at the last level – level 4)

out out

Figure 11: Coupled Component #3 (type 2)

2.2.2.2 Characteristics of Type-2 models

The number of both atomic and coupled components in type-2 models and those of type-1 models are equal.
Then, given a specified d depth and w width, we obtain d coupled components with w-1 atomic components
inside each coupled component (except for the last coupled model which only includes one atomic component).

The total number of atomic components in a model generated by the tool is:

Atomic Models = (width – 1) * (depth – 1) + 1

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

19

However, the interconnections in Type-2 models are not the same as those in Type-1 models. Therefore, the
number of internal and external transition also differs from the previous type.

When an external event is received, it is transmitted through the input port to the top model and to all its
components. Similarly, the inner-coupled components retransmit the event accordingly.

Additionally, each time an atomic component sends an output, another atomic component receives it through its
input port.

As we can see, the number of internal and external transitions executed upon the reception of an external event is
much greater in Type-2 models. Thus,

Internal Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

External Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

In the above example,

Atomic Models = (4 – 1) * (4 – 1) + 1 = 10

and,

Internal Transitions = Σ (i=1 .. 4-1) i * (4 – 1) + 1 = 18 + 1 = 19

External Transitions = Σ (i=1 .. 4-1) i * (4 – 1) + 1 = 18 + 1 = 19

2.2.3 Type-3 models

Type-3 models are comparable to Type-2 models, but some differences exist. This new kind of model also
connects the outputs of its inner atomic components to an auxiliary output, thus generating even more overhead
in the simulation due to the message exchange.

2.2.3.1 Sample Type-3 model

The topmost component of a model with a depth of four and a width of four is depicted below.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

20

in

in

 TOP (Coupled Component #0)

 in in
Coupled Component #1

Atomic Component #1
(at level 1)

Atomic Component #3
(at level 1)

out out

in

in

in

out

Atomic Component #2
(at level 1)

in
in

out

inaux

outaux

Figure 12: Top model (type 3)

The Coupled Component #1 is very similar to the top model:

in

in

 Coupled Component #1

in in

Coupled Component #1

Atomic Component #4
(at level 1)

Atomic Component #6
(at level 1)

out out

in

in
in

out

in
in

out

inaux

inaux

outaux

Atomic Component #5
(at level 1)

Figure 13: Coupled Component #1 (type 3)

Coupled Component #2 repeats the structure shown in the Coupled Components #1.

Finally, Coupled Component #3 is a simple component and contains only one atomic component:

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

21

in

 Coupled Component #3

in in Atomic Component #10
(at the last level – level 4)

out out

Figure 14: Coupled Component #3 (type 3)

2.2.3.2 Characteristics of Type-3 models

Type-3 models have even more interconnections than Type-2 models. In this case, not only auxiliary input ports
but also auxiliary output ports generate more overhead in message exchange among components.

The difference between Type-2 and Type-3 models is the inclusion of these auxiliary ports. Then, the number of
both coupled and atomic components per model remains the same as in Type-2:

Atomic Models = (width – 1) * (depth – 1) + 1

Internal Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

External Transitions = Σ (i=1 .. w-1) i * (d – 1) + 1

Hence, in the previous example,

Atomic Models = (4 – 1) * (4 – 1) + 1 = 10

Internal Transitions = Σ (i=1 .. 4-1) i * (4 – 1) + 1 = 18 + 1 = 19

External Transitions = Σ (i=1 .. 4-1) i * (4 – 1) + 1 = 18 + 1 = 19

2.3 Performance analysis

Thorough testing was developed to analyze the simulator performance under different conditions. The analysis
compares the overhead obtained when using the following versions of the toolkit:

q Original stand-alone CD++ simulator

q Parallel CD++ simulator with NoTime (unsynchronized) kernel

q Parallel CD++ simulator with TimeWarp (optimistic) kernel

Recall that the parallel version supports not only parallel but also stand-alone simulation. All the testing
developed in this work is carried out in stand-alone fashion. Results on parallel performance are analyzed in
[Tro01b].

The layers involved in each technique in stand-alone execution are shown in the next figure. The MPI layer,
which is stripped in the chart, is not used when stand-alone execution is performed with the parallel simulator.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

22

MODEL

Original CD++

(a) (b) (c)

MODEL

Parallel CD++

Warped – NoTime Kernel

MODEL

Parallel CD++

Warped – TimeWarp Kernel

MPI MPI

Figure 15: Comparison of the layers involved in (a) Original CD++, (b) Parallel CD++ with NoTime kernel,
and (c) Parallel CD++ with TimeWarp optimistic kernel

Models with different shapes and sizes have been generated in order to simulate diverse model characteristics
and workloads.

2.3.1 Test notes

The testing described in this chapter was performed at the RADS Laboratory, Systems and Computing
Engineering Department, Carleton University (Ottawa, Canada). The testing was run on the Alpha measurement
network, with Pentium computers with 128 MB of RAM.

The installed operating system was Red Hat Linux 6.2.

2.3.2 DEVS models

Different shapes and behaviors of DEVS models were tested. We used sample models created with the synthetic
generator in order to exemplify some of the obtained results.

The theoretical execution time for a given simulation does not include any overhead. It is basically the sum of all
time spent in internal and external transition all along this simulation.

Total theoretical time = [(# External Transitions * TimeInExternalTransition) +
(# Internal Transitions * TimeInInternalTransition)] *
NumberOfEvents

This value is shown in the charts and is compared with the obtained execution times for each simulation
technique that includes the associated overhead.

2.3.2.1 Type-1 models

Table 1 presents the parameters used in the simulations, which are labeled with capital letters, and their
associated values.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

23

Simulation Model Type Depth Width Internal
Transition

External
Transition

A 1 3 10 50 ms 50 ms
B 1 10 3 50 ms 50 ms

C 1 5 5 50 ms 50 ms
D 1 10 10 50 ms 50 ms

Table 1: Simulation parameters (Type-1 models)

The experiments have been performed with a workload of 10 external events per simulation. The next figure
shows the execution times for each technique and a comparison of results.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

A B C D

Ti
m

e
(m

s)

Original CD++

Parallel NoTime

Parallel TimeWarp

Theoretical

(a)

0

500

1000

1500

2000

2500

3000

A B C D
D

if
fe

re
n

ce
 ti

m
e

(m
s)

Original CD++

Parallel NoTime

Parallel
TimeWarp

(b)

Figure 16: Performance results on Type-1 Models. (a) Execution times for Type-1 DEVS models, (b)
Difference between experiments and theoretical time

Figure 16 (a) shows the different execution times for Type-1 models using the available simulation techniques.
The theoretical time is included for comparison. Figure 16 (b) shows the difference between execution time and
theoretical time.

The amount of overhead is measured by subtracting the theoretical time from the execution time and dividing that
by the execution time itself, that is:

Overhead (%) = (executionTime – theoreticalTime)
executionTime

The next figure presents the overhead incurred by each abstract simulator.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

24

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

5,00%

A B C D

O
ve

rh
ea

d
 (

%
)

Original CD++

Parallel NoTime

Parallel
TimeWarp

Figure 17: Overhead incurred by the abstract simulators for Type-1 models

As we can see, each technique induces a different overhead to the simulation. The charts show that the original
CD++ technique is the one that executes with minimum overhead. When executing the parallel abstract
simulator, the NoTime kernel adds less overhead than the TimeWarp kernel.

2.3.2.2 Type-2 models

Table 2 presents the parameters used in the simulations and their associated values for Type-2 models.

Simulation Model Type Depth Width Internal
Transition

External
Transition

E 2 3 6 50 ms 50 ms
F 2 6 3 50 ms 50 ms

G 2 5 5 50 ms 50 ms
H 2 6 6 50 ms 50 ms

Table 2: Simulation parameters (Type-2 models)

The experiments have been performed with a workload of 10 external events per simulation. The following figure
shows the obtained results.

0

20000

40000

60000

80000

100000

120000

E F G H

T
im

e
(m

s)

Original CD++

Parallel NoTime

Parallel TimeWarp

Theoretical

(a)

0

1000

2000

3000

4000

5000

6000

7000

E F G H

D
if

fe
re

nc
e

ti
m

e
(m

s)

Original CD++

Parallel NoTime

Parallel
TimeWarp

(b)

Figure 18: (a) Execution times for Type-2 DEVS models,
(b) Difference between experiments and theoretical time

Figure 18 (a) shows the different execution times for Type-2 models using the available simulation techniques,
while Figure 18 (b) shows the difference between the execution time and theoretical time.

Figure 19 presents the overhead incurred by each abstract simulator for Type-2 models.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

25

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

E F G H

O
ve

rh
ea

d
 (

%
)

Original CD++
Parallel NoTime

Parallel Warped

Figure 19: Overhead incurred by the abstract simulators for Type-2 models

Again, the chart shows that the original CD++ technique is the one that executes with minimum overhead. When
executing the parallel abstract simulator, the NoTime kernel adds less overhead than the TimeWarp kernel.

2.3.2.3 Type-3 models

Table 3 presents the parameters used in the simulations and their associated values for Type-3 models.

Simulation Model Type Depth Width Internal
Transition

External
Transition

I 3 3 6 100 ms 0 ms
J 3 6 3 0 ms 100 ms

K 3 5 5 50 ms 50 ms
L 3 6 6 50 ms 50 ms

Table 3: Simulation parameters (Type-3 models)

The experiments have been performed with a workload of 10 external events per simulation. The following figure
shows the obtained results.

0

20000

40000

60000

80000

100000

120000

I J K L

T
im

e
(m

s)

Original CD++

Parallel NoTime

Parallel TimeWarp

Theoretical

(a)

0

1000

2000

3000

4000

5000

6000

7000

I J K L

D
iff

er
en

ce
 t

im
e

(m
s)

Original CD++

Parallel NoTime

Parallel
TimeWarp

(b)

Figure 20: (a) Execution times for Type-3 DEVS models,
(b) Difference between experiments and theoretical time

Figure 20 (a) shows the different execution times for Type-3 models using the available simulation techniques,
while Figure 20 (b) shows the difference between the execution time and theoretical time.

Lastly, Figure 21 presents the stable overhead incurred by each abstract simulator for Type-3 models.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

26

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

I J K L

O
ve

rh
ea

d
 (

%
)

Original CD++
Parallel NoTime

Parallel Warped

Figure 21: Overhead incurred by the abstract simulators for Type-3 models

2.3.2.4 Models without workload in transition functions

In the previous sections, test cases executed different ranges of workload in their internal and external transition
functions. Time consuming Dhrystone code was used to resemble instructions to be executed in both atomic
transition functions. This section studies a different type of model.

These test cases were also produced with our synthetic model generator. However, there is no Dhrystone code to
be executed in the external and internal transition functions. Therefore, all the execution time corresponds to the
overhead incurred by the different simulation techniques under study. The following table shows the different
model parameters.

Simulation Model Type Depth Width Internal
Transition

External
Transition

M 1 5 10 0 ms 0 ms
N 1 10 5 0 ms 0 ms

O 1 8 8 0 ms 0 ms
P 1 10 10 0 ms 0 ms

Q 3 5 10 0 ms 0 ms
R 3 10 5 0 ms 0 ms

S 3 8 8 0 ms 0 ms
T 3 10 10 0 ms 0 ms

Table 4: Simulation parameters for models without workload

Experiments have been performed with a workload of 1000 external events per simulation. Again, the next figure
shows the execution times for each technique in order to compare the obtained results.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

27

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

M N O P

T
im

e
 (m

s) Original CD++

Parallel NoTime

Parallel TimeWarp

(a)

0

10000

20000

30000

40000

50000

60000

Q R S T

T
im

e
 (m

s) Original CD++

Parallel NoTime

Parallel TimeWarp

(b)

Figure 22: Execution times for pure-overhead simulation for (a) Type-1 models, (b) Type-3 models

In summary, these test cases show the execution time of simulations that do not execute any Dhrystone code at all
in their internal and external transition functions. The presented results illustrate the time consumed on carrying
on the simulation in presence of a considerable quantity of external events. Actually, since all the execution time
is consumed by the simulator in all these cases, the resulting overhead in every case is 100%.

2.4 Conclusions about performance analysis

We have developed a synthetic benchmarking tool that can be applied to DEVS environments to analyze CD++
performance easily and thoroughly. Different types of models were tested automatically, showing that we can
execute models paying a small cost in terms of processing overhead.

As we have shown, each simulation technique has an associated overhead that depends on the size, the shape and
the behavior of the simulated model. We found that even with medium and large-scale models, the simulation can
be carried out properly and the obtained overhead is of a manageable size and remains stable. The original CD++
tool executes with minimum overhead and therefore it is an appropriate tool when stand-alone execution is
adequate. The NoTime kernel outperforms the TimeWarp kernel when using the parallel simulator.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

28

3. REAL-TIME EXTENSION TO THE CD++ TOOLKIT

In the previous chapter, simulation techniques available in CD++ have been analyzed. It has been shown that a
relatively small overhead is paid when executing mid to large-scale models. The performance analysis showed
that a real-time extension to the tool was feasible.

3.1 Virtual time simulation approach

The existing techniques in the CD++ toolkit employ a virtual time approach. The methodology is useful for non-
interactive simulation. This strategy advances the time disregarding any real clock attached to the simulation
mechanism and periods of inactivity are skipped by the tool. In contrast to a real time simulation, it is useless to
connect inputs and outputs to the environment when the virtual time simulation is performed, because the time in
the simulation framework does not evolve at the same speed as within its surroundings.

In order to execute a simulation using the virtual time approach, CD++ maintains a variable in which the current
simulation time is stored and updated. Again, note that this value is not linked at all to any physical clock. The
update of that variable is performed by the simulator as follows. When the simulation starts, this simulation time
is initialized to zero. Then, the imminent event (i.e. the event with the earliest time of occurrence) is computed
and the simulation time is advanced accordingly in order to process that event. Once it has been processed
completely, the new imminent event is computed, the simulation time is advanced and the new event is
processed. This cycle of advancing the simulation time and processing the imminent event is repeated. The model
execution ends when the simulation time reaches the stop time indicated by the user, or else when there are no
more pending events.

The execution of a model using the virtual time approach with the CD++ toolkit is illustrated in the following
example.

3.1.1 Sample model simulation using virtual time

Figure 23 shows a top-model that is formed by two coupled components, four input ports and four output ports.
Each inner-coupled component is composed of two simple atomic models. An atomic component is linked to the
environment through one input port and one output port. The workload that is executed in each component varies
from one atomic component to another. The following figure shows the entire model structure.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

29

 COUPLED MODEL #01 (TOP MODEL)

COUPLED MODEL #02

COUPLED MODEL #03

ATOMIC MODEL #01

ATOMIC MODEL #02

ATOMIC MODEL #03

ATOMIC MODEL #04
IN04

IN01

IN02

IN03

OUT04

OUT02

OUT03

OUT01

Figure 23: Sample model

External events can be received by the model through any of its input ports. This information is supplied by the
user in the event file, where times are written in the hours:minutes:seconds:milliseconds format. An event file
for this sample model is shown below.

event time input port value

00:00:05:000 in01 1

00:01:28:100 in02 1

00:18:21:000 in03 1

00:31:15:500 in04 1

00:45:30:200 in02 1

01:05:00:500 in01 1

02:15:00:900 in04 1

05:50:30:200 in03 1

Figure 24: Sample event file for the given model using the virtual time approach

CD++ executed the previous model with this event file. Once the simulation has ended, results can be found in an
output file. The next figure shows the obtained output file, illustrating how time evolves when the virtual time
approach is used in a simulation.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

30

actual output
time (physical
or wall-clock

time)

output time
(simulation-

time)

output port value

00:00:00:060 00:00:05:000 out01 1

00:00:00:130 00:01:28:100 out02 1

00:00:00:230 00:18:21:000 out03 1

00:00:00:320 00:31:15:500 out04 1

00:00:00:390 00:45:30:200 out02 1

00:00:00:430 01:05:00:500 out01 1

00:00:00:520 02:15:00:900 out04 1

00:00:00:620 05:50:30:200 out03 1

Figure 25: Output file using the virtual time approach

The first column indicates the physical time (i.e. wall-clock time) at which the output has been sent. It is the time
elapsed since the beginning of the simulation execution. The simulation-time associated to each message is
shown in the second column. The output port and the associated value that has been sent are exhibited in the
third and fourth columns respectively.

For instance, the first line describes an output sent through port out01 with a value of 1. That output has been
performed at the simulation time 00:00:05:000, but the corresponding physical time at that moment was
00:00:00:060.

Recall that, when the virtual time approach is used, all periods of inactivity are skipped, which leads to the
particularity shown above when executing a model. In conclusion, we can see clearly that events are not
processed at their actual scheduled times.

3.2 Real-time simulation approach

Modifications have been developed in order to allow real-time simulation in the CD++ toolkit. A real time
system is defined as a system whose correctness depends not only on the logical results of computation, but also
on the time at which the results are produced [Sta88, Sta96]. If a system delivers the correct answer after a
certain deadline, it could be regarded as an unsuccessful response. Consequently, a real-time simulator must
handle events in a timeliness fashion where time constraints can be stated and validated. These new features
would allow interaction between the simulator and the surrounding environment. Therefore, inputs could be
received by ports connected to real input devices such as sensors, timers, thermometers or even data collected
from human interaction. Similarly, outputs could be sent through output ports connected to devices such as
motors, transducers, gears, valves or any other component.

3.2.1 Time advance in the simulation process

In order to implement the real-time extension to the toolkit, advance of the simulation-clock must be tied to the
wall-clock (i.e. physical time). To do so, the root coordinator has been modified to provide this functionality.

The root coordinator, inheriting from the coordinator class in the processor hierarchy in CD++ (see Chapter 1
for further details), manages the time advance along the execution of a simulation. In addition, it is responsible of
starting each new simulation cycle by issuing the corresponding message. When the virtual time approach was
used, the messages were immediately generated and sent by the root coordinator to initiate the new cycle.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

31

Nevertheless, when the real-time simulation is performed, the coordinator must wait until the physical time
reaches the next event time to initiate the new cycle. A new simulation cycle can be started due to:

q the reception of an external event, or

q the consumption of time indicated by ta(s)

Evidently, periods of inactivity are not skipped in the real-time extension. The simulation process remains
quiescent while these periods are being experienced. Instead of forcing a time advance up to the next
programmed event and thus anticipating the execution of a programmed task, the root coordinator expects the
scheduled time to be reached and only then starts the new simulation cycle. Hence, messages interchanged
between processors are sent, ideally, at their actual scheduled time. However, this ideal timely processing of
events may not be obtained if the incurred overhead degrades performance greatly.

3.2.2 Adding deadlines in the real time model execution

Timeliness along a simulation is a substantial property in the real time approach. When a model is being executed
using this technique, it is usually important to check different time constraints along the simulation. Particularly,
the time at which an event has been completely processed is a meaningful measure of success.

Typically, a model has to react to an external event within a given time to produce an output in order to solve a
given problem. For instance, in case of having a sensor indicating dangerous overheat, an energy plant needs to
shut down a part of its system within given period of time.

A way to indicate a deadline time for an external event is provided in the real time extension of the toolkit. The
new extended format of the event file is illustrated in the next figure.

event time associated
deadline

input port associated
output port

value

hh:mm:ss:mseg hh:mm:ss:mseg port name port name numeric value

Figure 26: Format of the event file in the real time extension

As we can see, not only an associated deadline but also an output port must be indicated in the new event file.
Thus, the simulator can check whether the physical time meets the associated deadline when sending an output
through the associated port. Once the execution has finished, both successful and unsuccessful deadlines are
stored for further study of the simulation process.

3.2.3 Sample model simulations using the new real time approach

A real time simulation is exemplified using the model previously shown. The new event file is illustrated in the
next figure.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

32

event time associated
deadline

input
port

associated
output port

value

00:00:05:000 00:00:05:020 in01 out01 1

00:01:28:100 00:01:29:000 in02 out02 1

00:18:21:000 00:18:21:050 in03 out03 1

00:31:15:500 00:31:15:540 in04 out04 1

00:45:30:200 00:45:30:270 in02 out02 1

01:05:00:500 01:05:01:500 in01 out01 1

02:15:00:900 02:15:00:980 in04 out04 1

05:50:30:200 05:50:30:350 in03 out03 1

Figure 27: Sample event file for the given model using the real time approach

The file exhibits not only event times, but also their associated deadline information for each external event. For
example, the result for the event arrived at time 00:00:05:000 through the input port in01 must be sent before
00:00:05:020 through the output port out01. This states that the model must react to the given event in less than
20 milliseconds.

Now, the toolkit prints the actual output time, the simulation-time and the associated deadline for each event in
the output file.

Additionally, in the result column one of these two values is obtained:

 succeeded if actual output time ��associated deadline

 not succeeded if actual output time > associated deadline

The following figure shows the corresponding output file for the executed model.

actual output
time
(physical or
wall-clock
time)

output time
(simulation-
time)

Associated
deadline

result output
port

value

00:00:05:060 00:00:05:000 00:00:05:020 not succeeded out01 1

00:01:28:070 00:01:28:100 00:01:29:000 succeeded out02 1

00:18:21:090 00:18:21:000 00:18:21:050 not succeeded out03 1

00:31:15:580 00:31:15:500 00:31:15:540 not succeeded out04 1

00:45:30:270 00:45:30:200 00:45:30:270 succeeded out02 1

01:05:00:560 01:05:00:500 01:05:01:500 succeeded out01 1

02:15:00:980 02:15:00:900 02:15:00:980 succeeded out04 1

05:50:30:290 05:50:30:200 05:50:30:350 succeeded out03 1

Figure 28: Output file using the real time approach

The result in the first column shows the actual time at which the output has been sent, that is the wall-clock value
at that time (the time elapsed since the beginning of the simulation execution). The second column shows the
simulation time at which this output has been scheduled, while the third column shows the associated deadline

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

33

time for the given event. It is possible to check whether the deadline has been met (i.e. the actual output time ��
the associated deadline) looking at the fourth column. Finally, the output port and the obtained value are shown
in the remaining columns.

For instance, the first line in the output file shows a deadline that has not been met in the execution. The
associated time constraint was set at 00:00:05:020, while the actual output time was 00:00:05:060.
Consequently, not succeeded is printed in that line, along with the output port out01 and the value that has been
transmitted. On the other hand, the second line shows an event whose deadline that has been successfully met. It
was sent by the simulator at 00:01:28:070 while its associated deadline was 00:01:29:000. In this particular case,
five out of eight events have been processed on time.

3.2.3.1 Alarm-clock sample model

Different types of models can be executed with the new real-time extension CD++. An alarm clock model
[Jac01] has been used to analyze the real-time constraints under the new simulation approach. This model can be
thought of as a part of a more complex system. The model, which has an important component of time, is
presented here.

Figure 29: Alarm-clock conceptual model [Jac01]

The entire model has three levels in the hierarchy. The top level is the ALARM CLOCK. It has six input signals
representing the push buttons and switch positions that exist in the real system. The input port TIME_SET is used
in combination with HOURS and MINUTES to set the time of day. Similarly, the input port ALARM_SET is used
in conjunction with HOURS and MINUTES to set the desired alarm time. The buzzer sounds if ALARM_ON is
set and the actual time (i.e. time of day) is equal to the alarm time. SNOOZE stops the buzzer for a period of 10
minutes after which the buzzer will automatically sound again if ALARM_ON is set. The model has two output
ports: DISPLAY_TIME represents the four-digit display, while BUZZER_ON represents the output of the buzzer
speaker.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

34

The top model can be subsequently decomposed into sublevels. The first sublevel consists of three components:
the TIME_REGISTER which holds and automatically increments the time of day, the ALARM_CONTROLLER
which holds the alarm time and decides whether the buzzer should be turned on or off. The third component is an
atomic component named DISPLAY_DRIVER, which determines if time of day or alarm time must be displayed.

The second sublevel consists of five different atomic components. The HOURS_REGISTER and
MINUTES_REGISTER respectively hold the hours and minutes that make up the time of day. The
TIME_COMPARATOR compares the current time with the alarm time to detect a match and potentially sound the
buzzer. The ALARM_TIME_REGISTER holds the alarm time. Finally, the BUZZER_DRIVER decides when the
buzzer needs to be activated or deactivated.

The following is an excerpt from the output file produced by the simulation of the alarm clock.

actual
output time
(physical or
wall-clock

time)

output time
(simulation-

time)

output port value

00:01:00:000 00:01:00:000 DISPLAY_TIME 00:01

00:02:00:000 00:02:00:000 DISPLAY_TIME 00:02

00:03:00:000 00:03:00:000 DISPLAY_TIME 00:03

(…) (…) (…) (…)

00:30:00:000 00:30:00:000 DISPLAY_TIME 00:30

00:30:00:000 00:30:00:000 BUZZER_ON 1

00:31:00:000 00:31:00:000 DISPLAY_TIME 00:31

00:32:00:000 00:32:00:000 DISPLAY_TIME 00:32

00:32:45:500 00:32:45:500 BUZZER_ON 0

00:33:00:000 00:33:00:000 DISPLAY_TIME 00:33

00:34:00:000 00:34:00:000 DISPLAY_TIME 00:34

00:35:00:000 00:35:00:000 DISPLAY_TIME 00:35

00:36:00:000 00:36:00:000 DISPLAY_TIME 00:36

00:37:00:000 00:37:00:000 DISPLAY_TIME 00:37

00:38:00:000 00:38:00:000 DISPLAY_TIME 00:38

00:39:00:000 00:39:00:000 DISPLAY_TIME 00:39

00:40:00:000 00:40:00:000 DISPLAY_TIME 00:40

00:41:00:000 00:41:00:000 DISPLAY_TIME 00:41

00:42:00:000 00:42:00:000 DISPLAY_TIME 00:42

00:42:45:500 00:42:45:500 BUZZER_ON 1

00:43:00:000 00:43:00:000 DISPLAY_TIME 00:43

(…) (…) (…) (…)

Figure 30: Output file excerpt - Execution of the Alarm-clock [Jac01] in real-time

Figure 30 shows results obtained after the execution of the alarm clock using the real-time approach. Generally,
we can see that as time passes, the actual time is obtained through the DISPLAY_TIME port which resembles the
usual digital display of an alarm clock. In addition, information about the buzzer alarm is obtained in the output
file.

The buzzer is turned on at 00:30:00:000 and this is notified through the output port BUZZER_ON at that time.
The time still evolves normally and the actual time is obtained through the DISPLAY_TIME port. The user turns
off the buzzer at 00:32:45:500, where the BUZZER_ON issues a 0. Recall that the buzzer can be deactivated

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

35

using the SNOOZE button, but the alarm will buzz again after an idle period of ten minutes. Hence, at time
00:42:45:500 the buzzer is turned on again, when the output port BUZZER_ON issues a 1.

It is important to point out that actual output-times are equal to their corresponding simulation times. This fact
shows that delays are remarkably small all along the simulation of this alarm clock. Therefore, such simulation
could meet easily the deadlines imposed by the user.

3.2.3.2 Vending machine sample model

Moreover, a vending machine model [Li01] has been used for further analysis of the real-time extension in
CD++.

The simulated vending machine is similar to the ones that exist in some cafeterias. Different items can be
purchased by inserting the sufficient amount of money and then selecting the appropriate button to dispense the
desired product. The machine returns the correct amount of change, keeps track of how many items have been
dispensed and informs out-of-stock products to the customer.

COIN
COLLECTOR

ITEM
SELECTOR

CHANGE
MAKER

BALANCE
DISPLAY

OUT

REQUEST_IN

ITEM_IN

CHANGE_OUT

COIN_IN
 SERVICE

CONTROLLER

VENDING
CONTROLLER

ITEM
PROCESSOR

ITEM_OUT

VENDING MACHINE

Figure 31: Vending machine conceptual model [Li01]

The system is composed of several atomic components (a coin collector, an item selector, a change maker, a
balance display, an item processor and others) and coupled components (a service controller and a vending
controller inside of it).

The model has three input ports. Coins are inserted through the COIN_IN port, items are selected through the
ITEM_IN port and change is requested through the REQUEST_IN port. The output ports are used as follows:
ITEM_OUT is used to dispense the products, OUT resembles the balance display of the machine and
CHANGE_OUT is used for the returned coins.

The following figure shows a sample event file for the vending machine model. Here, a customer inserts different
amounts of money and requests a particular item. Deadlines are imposed to each incoming event.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

36

event time associated
deadline

input
port

associated
output port

value

00:00:10:000 00:00:12:500 COIN_IN OUT 0.25

00:00:15:000 00:00:17:500 COIN_IN OUT 1.00

00:00:20:000 00:00:25:500 COIN_IN OUT 0.25

00:00:25:000 00:00:30:000 ITEM_IN ITEM_OUT 28

(…) (…) (…) (…) (…)

Figure 32: External event file - Vending machine [Li01]

For instance, the first quarter is received through the COIN_IN port at time 00: 00:10:000, and the associated
output is expected through the port OUT before 00:00:10:250. Then, a dollar (1.00) is received at time
00:00:15:000, and so on. Finally, the item 28 is selected at time 00:00:25:000.

actual
output time
(physical or
wall-clock

time)

output time
(simulation-

time)

output port value

00:00:12:010 00:00:12:000 OUT 0.25

00:00:17:010 00:00:17:000 OUT 1.25

00:00:22:010 00:00:22:000 OUT 1.50

00:00:28:020 00:00:28:000 ITEM_OUT 28

00:00:30:010 00:00:30:000 OUT 0.00

(…) (…) (…) (…)

Figure 33: Output file excerpt - Execution of the vending machine in real-time [Li01]

The previous figure shows the corresponding output file. The balance display is updated through the OUT port,
two seconds after each coin is inserted. The item 28 is dispensed through the ITEM_OUT port at time 00:28:000.
Events are processed on time, and small differences can be observed between the message time and the actual
time (i.e. wall-clock time) at which they have been produced.

3.3 Conclusions about the real-time extension in CD++

We have provided a means to execute models in real-time using the CD++ toolkit. A real-time simulation differs
in different aspects from the existing techniques that used a virtual-time approach. A comparison between virtual
time and real time approaches is summarized in the following table.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

37

Virtual time approach Real time approach

Previously available in the CD++
toolkit

Implemented in this work

Periods of inactivity are skipped During periods of inactivity the
simulator remains quiescent

Events are not processed based on
physical time but only on simulated

time

Simulation is tied to the physical clock,
so events can be processed at their

indicated scheduled time

Forbids a link between simulator
and environment

A link between simulator and
environment is feasible

Timing constraints do not exist Deadlines can be associated to events.
Timeliness can be tested and analyzed.

Table 5: Comparison between both simulation approaches

As we have shown, timeliness is an essential and meaningful characteristic of real time simulations. In such
cases, whether a given deadline is met depends on several factors:

q Overhead of the tool: the execution of the simulation mechanism affects the overall
performance. Usually, this overhead becomes larger as the size of the model increases, mainly
because the time spent by exchanging messages among processors.

q Workload in atomic components: the more workload that has to be executed in internal and
external transition functions, the more time that is needed to complete the execution of the
corresponding code

q Associated deadlines: if the associated deadline for a given event is very tight, then it is not
likely to be met. On the contrary, a loosened (relaxed) deadline is likely to be met more easily
in a simulation.

The first factor, overhead of the tool, is intrinsically involved with the simulation process. It has to be minimized
to allow a wide range of models to be executed properly using the real time simulation toolkit. The second factor,
workload in atomic components, varies from one model to another and depends on the characteristics of the
models under execution. Finally, the associated deadline influences the success of meeting a given deadline, and
they are imposed by the user.

The next chapter provides a performance analysis of the CD++ real time simulator.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

38

4. PERFORMANCE ANALYSIS OF THE REAL TIME SIMULATOR

This chapter analyzes the real time performance of the CD++ toolkit. A thorough testing process is carried out
using different kinds of models.

4.1 Introduction

Recall from the previous chapters that a real time simulator must be able to interact with a surrounding
environment. Timing correctness requirements in a real time system arise because of the physical impact of the
controlling systems’ activities upon its environment [Sta88]. Therefore, it is imperative to ensure a timely
processing of events in our simulation. A thorough testing must be carried out on the real time simulator in order
to understand its limitations and weaknesses. This section studies the results of several simulations using the real
time extension of the CD++ toolkit.

For each real time simulation, essential data about the execution is stored for further analysis. This information
includes:

q Number of missed deadlines: represents the number of deadlines that have been missed along the entire
execution of a model. A deadline is missed if its response time is greater than its associated deadline.

q Worst-case response time: represents the maximum time between the arrival of an event and the output
that the model produces in response, in the entire simulation process.

A wide set of models are tested in order to define accurately the performance of the real time simulator under
different scenarios.

4.2 Test parameters

Different parameters are taken into account to analyze a given test case. These parameters are:

q Model size: it can be subsequently divided in number of components per level and number of levels in
the model hierarchy.

q Number of interconnections between components: this parameter describes the complexity and
characteristics of the existing interconnections in the model. This information is obtained by the model
type when the synthetic generator is being used.

q Workload in transition functions: the number of milliseconds that have to be spent in the internal and
external transition functions.

q Number of external events: the number of external events that are received along the entire simulation.

q Inter-event period: the period between an event and the following one. It describes the frequency of
event arrival.

q Associated deadline: the deadline that has been associated to each incoming event. For instance, a
deadline of 50 milliseconds means that the output for an event has to be issued within 50 milliseconds
after the event arrival.

The first three parameters are intrinsically related to the model itself. They correspond to the specific
characteristics of each model.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

39

On the other hand, the last three parameters are involved with the simulation scenario under which the model is
being executed. They are not related to the model, but to the constraints imposed by the user (i.e. the associated
deadline) and the environment (i.e. the number of external events and inter-event period).

In the testing process, a wide set of parameters are used to analyze several cases of interest.

4.3 Test notes

The testing described in this chapter was performed in the ParDEVS Laboratory, Departamento de
Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. All simulations were run
on a Compaq ProLiant 1600 node, consisting of a Pentium II 450MHz processor with 512 MB of RAM, 512-KB
second-level ECC cache and 100-MHz GTL Bus.

The installed operating system was Caldera OpenLinux.

4.4 Test cases

Models are created with the synthetic generator whose implementation was described in Chapter 2. Tests results
show both the percentage of success and the worst-case response time for each case. The former is obtained as
follows,

Percentage of success = (number of events – number of missed deadlines) * 100
number of events

On the other hand, the worst-case response time is obtained as follows.

Worst-case response time = max (r1, r2, …, rN)

where r i is the response time for the i-th event, and N is the number of events for the given simulation.

The experiments have been grouped in different categories that are described in the following subsections.

4.4.1 Varying number of levels in the hierarchy

4.4.1.1 Models without workload in the transition functions

Here, models have a fixed number of components per level, but the number of levels in the hierarchy (i.e. the
depth that the model has) varies. In first place, Type-1 models are employed. These models have a small number
of interconnections between their components.

Each execution receives 100 incoming events and a fixed inter-event period of 30 milliseconds. Neither the
external transition function nor the internal transition function executes workload (time consuming code).
Deadlines are imposed at 60 milliseconds after the event arrival. Actually, all events would be processed on time
if the simulator did not add any overhead to the execution.

The following is an excerpt from the event file used in these experiments. It has 100 lines in total, one line for
each incoming event.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

40

event time associated
deadline

input
port

associated
output port

Value

00:00:05:000 00:00:05:060 in out 1

00:00:05:030 00:00:05:090 in out 1

00:00:05:060 00:00:05:120 in out 1

00:00:05:090 00:00:05:150 in out 1

(…) (…) (…) (…) (…)

00:00:34:940 00:00:35:000 in out 1

00:00:34:970 00:00:35:030 in out 1

Figure 34: Sample event file for the given model using the real time approach

For instance, the first event arrives through the in port at time 00:00:05:000 and its output must be issued though
the out port before 00:00:05:060. The second event arrives 30 milliseconds later, at 00:00:05:030, whereas its
associated deadline is 00:00:05:090, and so on.

The following table summarizes all the information corresponding to the first test.

Simulation parameter Associated value

Number of components per level 5 components

Number of levels in the hierarchy (Depth) 4 to 12 levels

Model type Type-1

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 30 ms

Associated deadlines 60 ms

Number of atomic components in the obtained
models

13 to 45

Number of coupled components in the obtained
models

3 to 11

Table 6: Simulation parameters – Varying depth (number of levels in the hierarchy), Type-1 models

The total number of atomic and coupled components is also included in the table to provide more information
about the executed models. These values are computed using the information about the synthetic model generator
provided in Chapter 2. In this particular case, because of the parameters that have been used and specifically due
to the varying depth, we have obtained models with a range of 13 to 45 atomic components and 3 to 11 coupled
ones. Deeper models have not only more atomic components but also more coupled components in their
structures.

Once the execution is over, we take into account the number of deadlines that have been met (i.e. the events that
have been entirely processed before their associated deadlines) and the number of missed deadlines in order to
measure the percentage of success for each simulation, as it was explained before.

Moreover, recall that CD++ stores the worst-case response time to enable a more comprehensive study of the
real time performance. This value is also shown in the charts.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

41

Notice that if the worst-case response time is smaller or equal than the associated deadline for a given
simulation, then the number of missed deadlines is zero. This means that all events have been completely
processed before their associated deadlines, and therefore we achieve a success of one hundred percent.

The following figure shows the corresponding charts for some Type-1 models.

% of success in Type-1 models

0

10

20

30

40

50

60

70

80

90

100

4 5 6 7 8 9 10 11 12

Depth

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-1 models

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 5 6 7 8 9 10 11 12

Depth

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 35: Real time execution of Type-1 models with varying depth
(a) Percentage of success, (b) Worst-case response time

Figure 35 (a) shows the percentage of success on Type-1 models when depth is variable. In these cases, the
number of levels ranges from 4 to 12. Generally, deeper models have worse response times due to their larger
size and increased complexity. Specifically, a noticeable number of deadlines are lost when the depth is eight or
more in this particular case. The same phenomenon can be observed when we analyze the worst-case response
times in these models with variable depth.

The second set of experiments shows a similar case for Type-3 models. Chapter 2 has shown that these models,
with more interconnections between their components, are much more complex. Consequently, both the overhead
and the number of executed transition functions are greatly increased. Because of this, we have relaxed the
frequency of the incoming events. Now, the inter-event period is 40 milliseconds. The associated deadlines
remain unchanged from the previous experiment.

The following table shows the associated parameters.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

42

Simulation parameter Associated value

Number of components per level 5 components

Number of levels in the hierarchy 4 to 9 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 40 ms

Associated deadlines 60 ms

Number of atomic components in the obtained
models

13 to 33

Number of coupled components in the obtained
models

3 to 8

Table 7: Simulation parameters – Varying depth (levels in the hierarchy), Type-3

Now we have obtained models with a range of 13 to 33 atomic components and 3 to 8 coupled ones.

The following charts show the obtained results for these models.

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

4 5 6 7 8 9

Depth

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-3 models

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 5 6 7 8 9

Depth

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 36: Real time execution of Type-3 models with varying depth
(a) Percentage of success, (b) Worst-case response time

The results are similar to those of Type-1 models. However, the results are not as successful as before. In Type-3
experiments, deeper models show a remarkable increase on response times, and therefore a low percentage of
success is achieved even with a lower frequency of event arrival. The same fact will be observed in other
experiments further in this work.

4.4.1.2 Models with workload in the transition functions

As a final study of models with varying depth, a different series of tests are presented here. In these models, time-
consuming code is executed in their transition functions.

The following Type-1 models execute 50 milliseconds of workload in the internal and external transition of their
atomic components. The time-consuming Dhrystone code [Wei84] executed in the functions resembles the code
that would be executed in a simulated model.

The table shows all the parameters that have been used.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

43

Simulation parameter Associated value

Number of components per level 4 components

Number of levels in the hierarchy 10 to 14 levels

Model type Type-1

Workload in internal transition function 50 ms

Workload in external transition function 50 ms

Number of external events 100 events

Inter-event period 5000 ms

Associated deadlines 2000 ms

Number of atomic components in the obtained
models

28 to 40

Number of coupled components in the obtained
models

9 to 13

Table 8: Simulation parameters – Varying depth (levels in the hierarchy) with workload, Type-1

The following figures show the obtained results after the execution of these simulations. Note that, in addition,
both the theoretical percentage of success and theoretical worst-case response time are shown in the charts. The
theoretical results are simply the sum of all the time spent in executing the workload that is found in the internal
and external transition functions. Neither the overhead incurred by the simulator nor any other factors that may
affect simulation performance are included in the theoretical results. The series with the label simulated
correspond to the real-time execution of these models, and therefore include all the overhead incurred in the
simulations.

% of success in Type-1 models

0

10

20

30

40

50

60

70

80

90

100

10 11 12 13 14

Depth

%
 o

f
su

cc
es

s

Simulated

Theoretical

(a)

Worst-case response time in Type-1 models

0

500

1000

1500

2000

2500

10 11 12 13 14

Depth

T
im

e
(m

s)

Simulated

Theoretical

(b)

Figure 37: Real time execution of Type-1 models with varying width and workload
 (a) Percentage of success, (b) Worst-case response time

Figure 37 (a) shows the percentage of success for Type-1 models with varying depth. The associated deadlines
are imposed at 2000 milliseconds after the arrival of the event. A success of 100% is achieved in all cases, with
the exception of one last case, which has 14 levels in the hierarchy and does not meet any deadline.

Figure 37 (b) shows the worst-case response time for this type of models with time-consuming code in the
transition functions. These results are much more meaningful than those described in the previous sections
because they allow a comparison between the simulated models and the theoretical cases. If we compare these
experiments in which workload is executed in the internal and external transition, we can see that the incurred
overhead is bounded. It remains nearly stable even if the depth is increased. The difference between the
theoretical worst-case response time and the simulated worst-case response time is quite small.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

44

4.4.2 Varying number of components per level

4.4.2.1 Models without workload in the transition functions

The previous subsection showed different models whose depth was variable and width was fixed. The following
cases show models in which the depth is fixed, but the width (i.e. number of components per level) varies. These
models do not execute workload in their transition functions. Larger models are used in these experiments. All
parameters are described in the next table.

Simulation parameter Associated value

Number of components per level 15 to 20 components

Number of levels in the hierarchy 3 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 200 ms

Associated deadlines 340 ms

Number of atomic components in the obtained
models

29 to 39

Number of coupled components in the obtained
models

2

Table 9: Simulation parameters – Varying width (components per level), Type-3

Now we have obtained models with a range of 29 to 39 atomic components. Due to the fixed depth, the number
of coupled components is constant. Wider models, with more components per level, have more atomic
components in their structures.

The following figure shows the obtained results for these models.

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

15 16 17 18 19 20

Width

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-3 models

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

15 16 17 18 19 20

Width

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 38: Real time execution of Type-3 models with varying width
 (a) Percentage of success, (b) Worst-case response time

Figure 38 illustrates how component width can affect performance in a simulation. In this case, deadlines are
more likely to be missed when the number of components per level is 17 or more.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

45

4.4.2.2 Models with workload in the transition functions

As we have shown before, it is interesting to study the execution of models whose internal and external transition
functions execute time-consuming code. The following table describes the series of tests executed here.

Simulation parameter Associated value

Number of components per level 8 to 12 components

Number of levels in the hierarchy 4 levels

Model type Type-1

Workload in internal transition function 100 ms

Workload in external transition function 100 ms

Number of external events 100 events

Inter-event period 10000 ms

Associated deadlines 3400 ms

Number of atomic components in the obtained
models

22 to 34

Number of coupled components in the obtained
models

3

Table 10: Simulation parameters – Varying width (components per level) with workload, Type-1

Again, the theoretical series is also included in the charts. It shows the ideal results, where overhead is not taken
into account. In contrast, the simulated series shows the obtained results using the toolkit.

% of success in Type-1 models

0

10

20

30

40

50

60

70

80

90

100

8 9 10 11 12

Width

%
 o

f
su

cc
es

s

Simulated

Theoretical

(a)

Worst-case response time in Type-1 models

0

500

1000

1500

2000

2500

3000

3500

4000

8 9 10 11 12

Width

T
im

e
(m

s)

Simulated

Theoretical

(b)

Figure 39: Real time execution of Type-1 models with varying width and workload
 (a) Percentage of success, (b) Worst-case response time

Figure 39 (a) illustrates the percentage of success for models with varying width and workload executed in the
transition functions. The results are very similar as those described before when the depth was variable.

Figure 39 (b) shows the worst-case response time for this type of models. Again, these results are much more
meaningful than those described in experiments that do not execute any workload. They allow the comparison
between the simulated models and the theoretical cases. Moreover, the charts show that the incurred overhead is
quite small, remaining nearly stable even for very wide models with more than 30 atomic components in their
structures.

4.4.3 Varying number of components in the structure

The previous experiments have shown simulations where depth and width were variable. The analysis of a given
case was independent from the others.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

46

Here, we analyze the simulation of models taking into account the number of components in their structures.
These experiments show the execution of different series of models:

q Type-1 models with varying depth

q Type-1 models with varying width

q Type-3 models with varying depth

q Type-3 models with varying width

The goal is to compare the execution results for each series, examining the obtained results. The parameters are
shown in the next table.

Simulation parameter Associated value

Model type Type-1 and Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 20 ms

Associated deadlines 1000 ms

Number of atomic components in the obtained
models

25 to 50

Number of coupled components in the obtained
models

5 to 10

Table 11: Simulation parameters – Comparison of models with varying depth and width

The results can be observed in the next charts. The number of components is variable because for each model,
either the depth or the width is variable.

Percentage of Success in different models

0

20

40

60

80

100

25 30 35 40 45 50

Number of Components
 in the Model

%
 o

f s
u

cc
es

s

Variable depth Type-1
models

Variable width Type-1
models
Variable depth Type-3
models

Variable width Type-3
models

(a)

Worst-case response time in different models

0

2000

4000

6000

8000

10000

25 30 35 40 45 50

Number of Components
 in the Model

T
im

e
(m

s)

Variable depth Type-1
models

Variable width Type-1
models
Variable depth Type-3
models

Variable width Type-3
models

(b)

Figure 40: Real time comparison of models with varying depth and width
 (a) Percentage of success, (b) Worst-case response time

Figure 40 (a) shows the percentage of success for Type-1 and Type-3 models when depth is variable and the
width is fixed, and also when the width is variable and the depth is fixed. Figure 40 (b) illustrates the worst-case
response time for each case.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

47

Generally, the previous charts illustrate that if the number of components is increased, deadlines are more likely
to be missed and therefore the percentage of success is reduced. This is because the number messages needed to
perform the simulation grows in relation to the size and complexity of the model.

Particularly, the figures show that it is harder to simulate Type-3 models when the number of components
increases due to their complex structure, in comparison with the equivalent (and more simple) Type-1 models.
Consequently, the worst-case response times are remarkably increased for Type-3 models.

Type-3 models have a larger number of interconnections, and, consequently, the overhead introduced makes it
harder to complete the entire simulation cycle on time.

Under these conditions, when a Type-1 model has 40 active components in its structure, more than 90 percent of
success can be achieved. Alternatively, less than 20 percent of the deadlines are met for Type-3 models with 40
components in their structures.

4.4.4 Varying inter-event periods and associated deadlines

All previous cases have studied variations to the models themselves. A different approach is analyzed here,
where the shape and behavior of the models remain unchanged but the scenario in which they are executed is
modified. Different inter-event periods (i.e. the frequency of event arrivals) are employed. Consequently, we
simulate external events that arrive at a different pace to the model, and analyze the behavior of the simulator
under such circumstances. Furthermore, the impact of varying the associated deadlines is also tested.

4.4.4.1 Varying inter-event periods

Events can arrive at a different pace, depending on the surrounding environment. In the first experiment, the
inter-event periods varies from 20 to 180 milliseconds. Consequently, we can simulate events arriving at different
pace along a simulation. Each simulation receives 100 external events from the environment. These experiments
do not execute workload in the atomic transition functions. Parameters are shown in the next table.

Simulation parameter Associated value

Number of components per level 5 components

Number of levels in the hierarchy 5 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 20 to 180 ms

Associated deadlines 1000 ms

Number of atomic components in the obtained
models

50

Number of coupled components in the obtained
models

7

Table 12: Simulation parameters – Varying inter-event period , Type-3

The following figure illustrates the obtained results for these models.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

48

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180

Inter-event period (ms)

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-3 models

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20 40 60 80 100 120 140 160 180

Inter-event period (ms)

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 41: Real time execution of Type-3 models with varying inter-event periods
 (a) Percentage of success, (b) Worst-case response time

Figure 41 shows that larger inter-event periods result on greater percentages of success. When the intervals
between events become greater than 180 milliseconds, the simulator meets all the associated deadlines for the
execution.

On the other hand, when the frequency of event arrival is extremely high, the worst-case response times become
much longer. This situation occurs because excessively small inter-event times do not allow the simulator to
process all the messages involved with the event ek before the arrival of the next event, ek+1. When this situation
arises, queued unprocessed messages are accumulated, and therefore the simulation presents an evident
degradation of performance. The degradation of performance can be noticed by observing the worst-case
response time for a given simulation. Here, a simulation with an inter-event period of 20 milliseconds results in a
worst-case response time of 15260 milliseconds. In contrast, when the inter-event period is 180 milliseconds, the
worst-case response time is reduced to 20 milliseconds.

4.4.4.2 Varying the associated deadlines for models without workload

In the following simulations, Type-2 models are employed and inter-event periods remain stable. Here, the
associated deadlines vary from 0 to 1800 milliseconds. These cases show how the strictness of deadlines affects
the percentage of success.

Simulation parameter Associated value

Number of components per level 7 components

Number of levels in the hierarchy 10 levels

Model type Type-2

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 50 ms

Associated deadlines 0 - 1800 ms

Number of atomic components in the obtained
models

55

Number of coupled components in the obtained
models

9

Table 13: Simulation parameters – Varying associated deadlines, Type-2

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

49

The following figure shows the obtained results for these models.

% of success in Type-2 models

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800

Associated deadline (ms)

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-2 models

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000 1200 1400 1600 1800

Associated deadline (ms)

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 42: Real time execution of Type-3 models with varying associated deadlines
(a) Percentage of success, (b) Worst-case response time

Figure 42 (a) shows how the strictness of the deadlines can impact on the percentage of success for a given
simulation. Extremely tight timing constraints do not allow the simulator to meet those deadlines on time. As
deadlines become more relaxed, the percentage of success is correspondingly increased because constraints are
more likely to be met.

In contrast, Figure 42 (b) shows that worst-case response times remain constant, regardless of variations on the
associated deadline time. Actually, these experiments show that the response time for an event is unrelated to the
timing constraint it might have.

4.4.4.3 Varying the associated deadlines for models with workload

The previous test cases, where the associated deadlines were variable, are repeated here for models with
workload in their transition functions. Type-3 models are employed and, again, inter-event periods remain stable.
The associated deadlines vary from 1000 to 1160 milliseconds.

Simulation parameter Associated value

Number of components per level 6 components

Number of levels in the hierarchy 5 levels

Model type Type-3

Workload in internal transition function 50 ms

Workload in external transition function 50 ms

Number of external events 100 events

Inter-event period 50 ms

Associated deadlines 1000 – 1160 ms

Number of atomic components in the obtained
models

21

Number of coupled components in the obtained
models

4

Table 14: Simulation parameters – Varying associated deadlines with workload, Type-3

The following figure shows the obtained results for these models that include workload in their atomic transition
functions.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

50

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

1000 1040 1080 1120 1160

Associated deadline (ms)

%
 o

f
su

cc
es

s

Simulated

Theoretical

(a)

Worst-case response time in Type-3 models

0

200

400

600

800

1000

1200

1000 1040 1080 1120 1160

Associated deadline (ms)

T
im

e
(m

s)

Simulated

Theoretical

(b)

Figure 43: Real time execution of Type-2 models with varying associated deadlines and workload
(a) Percentage of success, (b) Worst-case response time

Figure 43 (a) shows that when the associated deadline is approximately greater than 1100 milliseconds we can
achieve 100% of success in our simulation, meeting all the associated deadlines.

As we have stated earlier in this section, Figure 43 (b) illustrates that the worst-case response time remains stable
regardless of the associated deadline. In addition, this chart shows that when we execute models with time-
consuming code in their transition functions, the incurred overhead is relatively small and it does not affect
seriously the worst-case response times.

4.4.4.4 Combination of inter-event period times and associated deadlines

The previous subsections have studied how the frequency of event arrival and the strictness of the constraints can
affect the simulation of a given model separately.
The following charts combine the previous experiments and provide further information about the simulation
under different scenarios.

0 200
400

600
800

1000
20

40

60

80
0

10
20
30
40
50

60

70

80

90

100

%
 o

f s
uc

ce
ss

Associated deadline time (ms)

Inter-event period
time (ms)

Percentage of Success under different scenarios

(a)

0 200 400 600 800
1000

20

600

1000

2000

3000

4000

5000

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 ti
m

e
(m

s)

Associated deadline time (ms)

Inter-event period time
(ms)

Worst-case response time under different scenarios

(b)

Figure 44: Real time execution of Type-3 models under different scenarios
(a) Percentage of success, (b) Worst-case response time

These charts show the obtained results after the execution of several simulations performed under a combination
of different frequencies of event arrival and different strictness on the imposed deadlines.

Figure 44 illustrates not only the favorable impact of greater inter-event period times (i.e. lower frequencies of
events), but also greater associated deadlines (i.e. less strict constraints).

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

51

Even with deadlines that are not very strict (1000 milliseconds) if the inter-event period is 20 milliseconds, only
20% of the deadlines are met. As deadlines become more relaxed, the percentage of success is correspondingly
increased because constraints are more likely to be met, regardless of the frequency of events.

Furthermore, we can point out that with fair constraints and frequencies, simulation results are correct. For
example, when a simulation is executed using 600 milliseconds in deadlines and 60 milliseconds between event
arrivals, a success of 77% is achieved. If the same frequency of events is received by a simulation whose
deadlines are 800 milliseconds, then the success is 100%.

4.4.5 Varying workload in transition functions

We have shown how the variation of several parameters may affect the results of real time model execution. This
subsection describes the effect of executing different workload on the transition functions, while the other
parameters remain unchanged.

Atomic models can execute time-consuming code in both their internal and external transition functions. Recall
from Chapter 2 that our synthetic model generator produces Dhrystone code [Wei84] to resemble real workload
that would be executed by the atomic components.

Firstly, we executed simulations using different workload in the internal transition functions. The following table
summarizes the parameters used to run simulations with 0 to 250 milliseconds in the internal transition functions.

Simulation parameter Associated value

Number of components per level 4 components

Number of levels in the hierarchy 4 levels

Model type Type-3

Workload in internal transition function 0-250 ms

Workload in external transition function 0 ms

Number of external events 50 events

Inter-event period 5000 ms

Associated deadlines 5000 ms

Number of atomic components in the obtained
models

10

Number of coupled components in the obtained
models

3

Table 15: Simulation parameters – Varying time spent in internal transition functions

The results are shown below:

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

52

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Time in internal transition function (ms)

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-3 models

0

50000

100000

150000

200000

250000

0 50 100 150 200 250

Time in internal transition function (ms)

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 45: Real time execution of Type-3 models with varying time in internal transition functions
(a) Percentage of success, (b) Worst-case response time

As the workload in the internal transition functions grows, the percentage of success is reduced, especially when
the time-consuming code is 100 milliseconds or more. Additionally, the worst-case response times are evidently
increased, because of the time that has to be spent on executing the atomic transition functions.

Secondly, we executed simulations using different workload in the external transition functions.

Simulation parameter Associated value

Number of components per level 4 components

Number of levels in the hierarchy 4 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0-250 ms

Number of external events 100 events

Inter-event period 10000 ms

Associated deadlines 1000 ms

Number of atomic components in the obtained
models

10

Number of coupled components in the obtained
models

3

Table 16: Simulation parameters – Varying time spent in external transition functions

The results are shown in the next figure:

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

53

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Time in external transition function (ms)

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-3 models

0

50000

100000

150000

200000

250000

0 50 100 150 200 250

Time in external transition function (ms)

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 46: Real time execution of Type-3 models with varying time in external transition functions
(a) Percentage of success, (b) Worst-case response time

Figure 46 shows analogous results to the ones obtained using varying time in internal transition functions.

Lastly, we executed simulations using different workload in both transition functions. The first model does not
execute workload in the internal transition function, neither in the external transition function. The second model
executes 50 milliseconds in the internal transition function and 50 milliseconds in the external transition function.
The third case executes 100 milliseconds in each function, and so on. Finally, the sixth model executes 250
milliseconds in each transition function.

Simulation parameter Associated value

Number of components per level 4 components

Number of levels in the hierarchy 4 levels

Model type Type-3

Workload in internal transition function 0-250 ms

Workload in external transition function 0-250 ms

Number of external events 100 events

Inter-event period 10000 ms

Associated deadlines 1000 ms

Number of atomic components in the obtained
models

10

Number of coupled components in the obtained
models

3

Table 17: Simulation parameters – Varying time spent in internal and external transition functions

The next figure shows the results for these experiments:

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

54

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Time in internal and external transition functions (ms)

%
 o

f
su

cc
es

s

(a)

Worst-case response time in Type-3 models

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 50 100 150 200 250

Time in internal and external transition functions (ms)

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 47: Real time execution of Type-3 models with varying time in internal and external transition
functions (a) Percentage of success, (b) Worst-case response time

Again, the charts are quite similar to those illustrated above. Here, the worst-case response times are greatly
increased because of the large amount of code that has to be executed in both transition functions.

4.4.5.1 Combination of results for variable time in transition functions

The following chart shows the previous results combined in two charts in order to provide a comparison. It is
possible to observe the percentage of success and worst-case response time for executions with time in the
internal transition function, in the external transition function, and in both functions conjointly.

Percentage of Success in models with varying
transition times

0

20

40

60

80

100

0 50 100 150 200 250

Workload time (ms) per function

%
 o

f
su

cc
es

s Varying time in
internal function

Varying time in
external function

Varying time in both
functions

 (a)

Worst-case response times in models with varying
transition times

0

100000

200000

300000

400000

500000

0 50 100 150 200 250

Workload time (ms) per function

T
im

e
(m

s)

Varying time in internal
function

Varying time in
external function

Varying time in both
functions

(b)

Figure 48: Real time execution of Type-3 models with varying time in their transition functions
(a) Percentage of success, (b) Worst-case response time

The figures show proper percentages of success when the workload time per function is 0 or 50 milliseconds, in
spite of the place where the time-consuming code is being executed. In contrast, a noticeable reduction in the
percentage of success is observed in all cases when the time in the transition functions is increased to 100
milliseconds.

In general, as the workload in the transition functions grows, the percentage of success is reduced in all the
experiments.

Additionally, Figure 48 (b) shows that the worst-case response times are evidently increased, because of the time
that has to be spent on executing the atomic transition functions. When the workload is executed in both
transition functions, the worst-case response time is doubled.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

55

4.4.6 Execution of large-scale models

Sometimes, models may have much larger sizes than those employed in the previous subsections. Our intention is
to provide a testing analysis that includes such types of models. The following cases show some samples of very
large models.

4.4.6.1 Type-1 large models

The first experiments employed Type-1 simple models. The parameters are as follows,

 Simulation

Simulation parameter A1 B1 C1 D1

Number of components per
level

100 components 150 components 200 components 400 components

Number of levels in the
hierarchy

100 levels 75 levels 50 levels 25 levels

Model type Type-1 Type-1 Type-1 Type-1

Workload in internal
transition function

0 ms 0 ms 0 ms 0 ms

Workload in external
transition function

0 ms 0 ms 0 ms 0 ms

Number of external events 20 events 20 events 20 events 20 events

Inter-event period 1000 ms 1000 ms 1000 ms 1000 ms

Associated deadlines 1000 ms 1000 ms 1000 ms 1000 ms

Number of atomic
components in the obtained
models

9802 11027 9752 9577

Number of coupled
components in the obtained
models

99 74 49 24

Table 18: Simulation parameters – Large models (Type-1)

It is important to point out that the obtained Type-1 models have approximately ten thousand components in their
structures. Therefore, the overhead needed to carry out the simulation is greatly increased. Because of this
characteristic, not only the frequencies of events are lower but also the associated deadlines are less strict.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

56

% of success in large models

0

10

20

30

40

50

60

70

80

90

100

A1 B1 C1 D1

Model

%
 o

f
su

cc
es

s

(a)

Worst-case response time in large models

0

500

1000

1500

2000

2500

3000

A1 B1 C1 D1

Model

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 49: Real time execution of large-scale Type-1 models:
(a) Percentage of success, (b) Worst-case response time

Figure 49 shows the results for large Type-1 models. Worst-case response times are relatively small if we
consider the model size. However, Type-1 models are very simple, and models that are more complex must be
simulated to provide further results about execution performance.

4.4.6.2 Type-3 large models

The previous testing has been repeated with much more complex models, which belong to the Type-3 group. Due
to their increased number of interconnections, these models execute many more internal and external transition
functions in response to an incoming event (see Chapter 2 for further details). Consequently, the intervals
between events are increased and the associated deadlines are noticeable less strict.

 Simulation

Simulation parameter A3 B3 C3 D3

Number of components per
level

100 components 150 components 200 components 400 components

Number of levels in the
hierarchy

100 levels 75 levels 50 levels 25 levels

Model type Type-3 Type-3 Type-3 Type-3

Workload in internal
transition function

0 ms 0 ms 0 ms 0 ms

Workload in external
transition function

0 ms 0 ms 0 ms 0 ms

Number of external events 5 events 5 events 5 events 5 events

Inter-event period 5000 ms 5000 ms 5000 ms 5000 ms

Associated deadlines 5000 ms 5000 ms 5000 ms 5000 ms

Number of atomic
components in the obtained
models

9802 11027 9752 9577

Number of coupled
components in the obtained
models

99 74 49 24

Table 19: Simulation parameters – Large models (Type-3)

The obtained results are shown in the next figure.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

57

% of success in large models (Type-3)

0

10

20

30

40

50

60

70

80

90

100

A3 B3 C3 D3

Model

%
 o

f
su

cc
es

s

(a)

Worst-case response time in large models (Type-3)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

A3 B3 C3 D3

Model

W
o

rs
t-

ca
se

 r
es

p
o

n
se

 t
im

e
(m

s)

(b)

Figure 50: Real time execution of large-scale Type-3 models:
(a) Percentage of success, (b) Worst-case response time

Figure 50 illustrates the percentages of success and the worst-case response times that result from the execution
of large-scale Type-3 models. Lower frequencies and less restrictive deadlines allowed the models to be
executed, even though percentages of success and response times are far from being optimal. Results show that
the overhead incurred by simulating these complex large models becomes much more noticeable, especially
when the models are very deep (i.e. the number of levels in the hierarchy is high). Degradation of performance is
an undesirable consequence of the execution of these extremely large and complex models.

The worst-case response times are larger than expected, essentially because of queued messages that are still
pending from previous external events. When a new external event is received in this situation, then the response
is greatly delayed due to the increased number of messages that still have to be processed by the simulator. If the
simulation receives events with lower frequency (i.e. the inter-event period is larger), then better response times
can be achieved.

This phenomenon of accumulating unprocessed messages can occur on any kind of model. However, large
complex models are more prone to experiencing these problems.

4.5 Conclusions about performance analysis using the real time simulator

The real time extension of the toolkit was tested using a wide variety of models. We executed small, medium and
large models to show the behavior and limitations of CD++ under several circumstances. Different model
complexities have been used.

Moreover, different timing constraints and environments have been studied. The impacts of both the frequency of
event arrival and the strictness of the associated deadlines have been analyzed.

The analysis shows adequate performance on most cases, with response times that are quite reasonable for the
executed models. Nevertheless, missed deadlines and poor response times may occur if the tool experiences an
important degradation of performance.

We have shown that performance degradation is a consequence of extremely large (or complex) model structures,
excessive high frequency on event arrivals or immoderate strictness on the imposed deadlines. Particularly, the
accumulation of unprocessed messages is an essential factor that affects performance when the frequency of
event arrival is high.

Performance degradation that results from the execution of large and complex models is inherent to the
simulation methodology. As we have explained before, the simulation technique is based on the exchange of
messages between simulators and coordinators. The message-passing process may impact on the execution

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

58

performance, mainly if the model structure is too large or complex. The next chapter describes the
implementation of a flattened simulation mechanism to reduce the performance degradation in such cases.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

59

5. FLATTENED SIMULATION TECHNIQUE

Earlier, in Chapter 2, we provided an in-depth analysis of the simulator performance using the virtual time
approach. Additionally, the previous section described a thorough testing of the real time extension. Even though
results are appropriate in most cases, it is desirable to provide a more efficient simulator.

We explained that a real time simulation usually interacts with its surrounding environment, and the system must
deliver an answer before a certain deadline. When the execution performance becomes poor, responses cannot be
produced on time and therefore deadlines are missed. A more efficient real time simulator would allow achieving
better results on more complex scenarios.

Not only the real time approach, but also the virtual time approach can take advantages of a more efficient
simulator. Recall that when the virtual time approach is employed, inactivity periods are skipped. Therefore,
virtual time simulations can evolve faster, and even faster outcomes might be obtained if a more efficient
simulator is provided. In conclusion, a reduction of the execution simulation time can also benefit the user of the
virtual time technique.

First, we explain the problems that may arise when the hierarchical simulation approach is employed. Later, the
design and implementation of a new flattened simulator is presented.

5.1 Problems of the hierarchical simulation approach

The previous sections showed appropriate execution results on most cases. Nevertheless, as the size and
complexity of models grows, a reduction of performance becomes more noticeable. The main reason for this loss
of performance is the overhead incurred by the exchange of messages between simulators and coordinators,
which serves as a basis for carrying out the simulation.

Recall from the first chapter the concordance between models and DEVS processors that is shown in the next
figure:

Processor

Simulator Coordinator Root
Coordinator

CellCoordinator

Model

Atomic Coupled

AtomicCell CoupledCell

(a) (b)

Figure 51: CD++ (a) Model hierarchy, (b) Processor hierarchy

Figure 51 (a) shows the classes that are involved with the atomic and coupled components in DEVS and Cell-
DEVS models. Figure 51 (b) shows the classes that are involved with the simulation technique.

When a DEVS model is executed, one simulator object is created for each atomic component. On the other hand,
one coordinator object is created for each coupled component in the hierarchy. The same idea holds when a Cell-
DEVS model is executed. In this case, a simulator object is created for each existing cell, whereas a
CellCoordinator is created for each Cell-DEVS model.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

60

The function of a simulator is to manage its associated atomic component. It executes the δint, δext and λ(s)
functions. In contrast, a coordinator object manages an associated coupled component and the port mapping of
its inner components.

In addition to the components described above, one root coordinator is created to manage global aspects of the
simulation. It is directly involved with the topmost-coupled component, which has the highest level in the model
hierarchy. The root coordinator maintains the global time, and it starts and stops the simulation process. Lastly, it
receives the output results that must be sent to the environment.

The following figure shows a sample model with a few components:

 Coupled Model # 1 (TOP)

Atomic
Model # 1

Atomic

Model # 2

Atomic
Model # 3

Coupled Model # 2
Atomic

Model # 4

Atomic
Model # 5

Figure 52: Sample model structure

The figure shows a sample model whose topmost component has three atomic submodels (Atomic Models #1, #2
and #3) and one coupled model (Coupled Model #2). The inner-coupled component is formed by two atomic
components (Atomic Models #4 and #5).

The following figure shows the model hierarchy and the corresponding processor hierarchy obtained in CD++
when the hierarchical simulation is used.

 Coupled Model # 1

Coupled Model # 2 Atomic Model # 1 Atomic Model # 2 Atomic Model # 3

Atomic Model # 4 Atomic Model # 5

Coordinator # 1

Coordinator # 2 Simulator # 1 Simulator # 2 Simulator # 3

Simulator # 4 Simulator # 5

Root Coordinator

(a) (b)

Figure 53: Hierarchical simulation approach: (a) Example of a model hierarchy,
(b) Associated processor hierarchy obtained in the example

The figure shows that the model hierarchy is rather replicated in the processor hierarchy, using coordinators
instead of coupled components, and simulators instead of atomic components. It also shows the root coordinator
added on top of the hierarchy.

Each time the root coordinator has to schedule an event to lowermost simulators (Simulators #4 and #5), the
overhead incurred by message passing can be considerable. Firstly, the root coordinator has to send a message to
the Coordinator #1. Secondly, the Coordinator #2 forwards this message to the Simulators #4 and #5. Only then,
the simulators are able to execute the transition function of their associated atomic models. A similar
phenomenon is produced if the Simulator #5 sends an output through a port connected to Simulator #3. The
number of intermediate coordinators can be arbitrarily high depending on the studied model.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

61

As we have pointed out before, the simulation process is message driven; it is based on the message exchange
among simulators, coordinators and the root coordinator. Messages contain information to identify the sender
and the receiver. A time-stamp for the message and an associated value are also included in the packet.

The following table illustrates the number of simulators and coordinators created for some sample models, and
the number of messages involved with the processing of a single external event, along with other parameters in
hierarchical simulations.

 Simulation

Simulation parameter A1 A3 B1 B3

Number of components per
level

100 components 100 components 150 components 150 components

Number of levels in the
hierarchy

100 levels 100 levels 75 levels 75 levels

Model type Type-1 Type-3 Type-1 Type-3

Number of atomic
components

9802 9802 11027 11027

Number of simulators 9802 9802 11027 11027

Number of coupled
components

99 99 74 74

Number of coordinators 99 99 74 74

Number of root-
coordinators

1 1 1 1

Number of messages
exchanged to process a
single external event

79220 3484718 89416 2958468

Table 20: Examples employing a hierarchical simulation approach

Models A1 (Type-1) and A3 (Type-3) have the same number of atomic and coupled components; therefore they
have an equal number of simulators and coordinators. They only differ in the number of interconnections within
their inner components, which is given by the Model type. This difference results in the remarkably increased
quantity of messages needed to process a single event in A3.

If models B1 (Type-1) and B3 (Type-3) are compared, the same differences can be observed.

When the simulated models are larger, the number of atomic and coupled components is increased. Then, as we
have shown, the number of simulators and coordinators grows accordingly. Due to the message-passing
technique among processors, the incurred overhead grows with the number of existing simulators and
coordinators, and the degradation of performance becomes noticeable.

Table 20 shows that almost 90000 messages have to be exchanged in order to entirely process a single event in
these Type-1 models, whereas up to 3500000 are exchanged in similar Type-3 models.

The new simulation technique addresses this problem by reducing the number of messages exchanged in the
simulation process.

5.2 Implementation of the flattened simulation technique

The main problem to be resolved is the overhead incurred by message passing among processors. To overcome
this issue, a new flattened simulation technique was implemented in the CD++ toolkit. The approach is called

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

62

flattened in contrast to the hierarchical one previously explained. A similar development for other DEVS
simulator can be found in [Kim00].

The DEVS formalism separates the model from the actual abstract simulator. The new flattened simulator keeps
this important property, so only the simulation mechanism is revised. Then, the model class hierarchy is
unchanged. On the other hand, the DEVS processor hierarchy is extended. A new flattened coordinator that
inherits from the processor class is created. The complete class hierarchy is shown in the next figure.

Processor

Simulator Coordinator Root
Coordinator

CellCoordinator

Model

Atomic Coupled

AtomicCell CoupledCell

(a) (b)

Flattened
Coordinator

Figure 54: CD++ (a) Model hierarchy (unchanged)
(b) Extended processor hierarchy (includes the new Flattened Coordinator)

Figure 54 shows the extended processor hierarchy with the new Flattened Coordinator (shaded box) that is
derived from Processor class.

The new technique creates only two processors to execute a simulation. The first processor is the usual root
coordinator that still manages global aspects of the simulation. The second processor that is created is the new
flattened coordinator, which was designed to perform the tasks of simulators and coordinators. No other
processor is created in order to carry out the simulation.

The following table shows the processors that are involved in a non-hierarchical simulation using the same
sample models than before.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

63

 Simulation

Simulation parameter A1 A3 B1 B3

Number of components per
level

100 components 100 components 150 components 150 components

Number of levels in the
hierarchy

100 levels 100 levels 75 levels 75 levels

Model type Type-1 Type-1 Type-3 Type-3

Number of atomic
components

9802 9802 11027 11027

Number of simulators 0 0 0 0

Number of coupled
components

99 99 74 74

Number of coordinators 0 0 0 0

Number of root-
coordinators

1 1 1 1

Number of flattened
coordinators

1 1 1 1

Table 21: Examples employing a flattened simulation approach

Table 21 shows that when the flattened simulation approach is used, the number of simulators and coordinators
is zero regardless of the number of atomic and coupled components in the models. However, one flattened
coordinator is created to provide the complete functionality of all simulators and coordinators.

To execute a flattened simulation using neither coordinators nor simulators, the following items have been
resolved:

q Due to the absence of a simulator linked to each atomic model, now the flattened coordinator executes
the δint, δext and λ(s) functions for each atomic component. It also stores the information about the time
of next transition (tN), time of last transition (tL) and the external events that are queued for each atomic
component.

q The flattened coordinator must transform the hierarchical structure of the model to a flattened structure
in order to reduce the overhead incurred by message passing. The resulting non-hierarchical structure is
used by the flattened coordinator.

q Due to the absence of the usual coordinators, now the flattened coordinator maps the ports for all atomic
and coupled components in the model hierarchy. Then, the component links are handled by the flattened
coordinator, which forwards the events as needed.

q The flattened coordinator must receive and send messages directly with the root coordinator in order to
carry out the simulation process.

If we simulate the model described in the previous subsection (see Figure 52) using the flattened approach, the
resulting hierarchy is remarkably simplified and the overhead incurred by message passing is significantly
reduced. Both the model and the processor hierarchies are shown in the next figure.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

64

 Coupled Model # 1

Coupled Model # 2 Atomic Model # 1 Atomic Model # 2 Atomic Model # 3

Atomic Model # 4 Atomic Model # 5

 Root Coordinator

Flattened Coordinator

Atomic data #1 Atomic data #2 Atomic data #3 Atomic data #4 Atomic data #5

(a) (b)

Figure 55: Flattened simulation approach.
(a) Example of a model hierarchy, (b) Associated processor hierarchy

When the flattened simulation technique is used, the associated processor hierarchy is greatly simplified.
Messages are exchanged only between the root coordinator and the flattened coordinator, the only two
processors that are created in the new hierarchy. The dotted boxes represent the atomic data, which are objects
created to store the information about each atomic model. The flattened coordinator updates the atomic data and
handles the execution of the transition and output functions for each atomic component without any intermediate
processor.

5.3 Conclusions about the flattened simulation technique

The existing techniques in CD++ use a hierarchical simulation approach. The design and implementation of the
new flattened coordinator presented in this chapter allows the execution of simulations using a non-hierarchical
approach.

The reduction of messages when the flattened approach is used can boost performance results, especially when
the incurred overhead is related to the model size and complexity. The new flattened technique can be used not
only for virtual time but also for real time simulation on DEVS and Cell-DEVS models.

The next chapter presents a comparison between the flattened and hierarchical approaches using both virtual time
and real time.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

65

6. PERFORMANCE ANALYSIS OF THE FLATTENED SIMULATOR

In order to assess the efficiency of the new flattened approach, we present an analysis of the developed simulator.
Not only DEVS but also Cell-DEVS models are executed.

The results obtained by means of the flattened simulator are compared with those obtained with the hierarchical
approach.

Analysis of both real time and virtual time simulations are provided, using not only synthetically generated
models but also existing ones from the CD++ library.

6.1 Test notes

The testing described in this chapter was performed in the ParDEVS Laboratory, Departamento de
Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. All simulations were run
on a Compaq ProLiant 1600 node, consisting of a Pentium II 450MHz processor with 512 MB of RAM, 512-KB
second-level ECC cache and 100-MHz GTL Bus.

The installed operating system was Caldera OpenLinux.

6.2 Virtual time execution analysis

In this subsection, executions of both flattened and hierarchical techniques are compared using the virtual time
simulation. The main goal of the new flattened simulator in virtual time simulations is to reduce the execution
time, providing the results faster than the usual approach.

6.2.1 Synthetically generated DEVS models

This subsection provides a comparison of the flattened and hierarchical techniques using the synthetic model
generator.

6.2.1.1 Varying number of levels in the hierarchy

The first series of models have a fixed number of components per level, and a variable number of levels in the
hierarchy (depth).

6.2.1.1.1 Models without workload in the transition functions

Firstly, models will not execute workload in their transition functions. Therefore, overhead is compared more
easily. The following table shows the parameters corresponding to this test.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

66

Simulation parameter Associated value

Number of components per level 8 components

Number of levels in the hierarchy (Depth) 10 to 14 levels

Model type Type-1 and Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Number of atomic components in the obtained
models

73 to 92

Number of coupled components in the obtained
models

9 to 13

Table 22: Simulation parameters – Varying depth,Type-1 and Type-3 models without workload

The following figure shows the obtained execution times for each simulation technique in Type-1 and Type-3
models.

Execution times in Type-1 modes with varying depth

0

200

400

600

800

1000

1200

10 11 12 13 14

Depth

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(a)

Execution times in Type-3 modes with varying depth

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 11 12 13 14

Depth

T
im

e
(m

s)
Hierarchical
simulation

Flattened
simulation

(b)

Figure 56: Execution time for hierarchical and flattened simulations
with varying depth, without workload, (a) Type-1 models, (b) Type-3 models

Figure 56 shows the execution time for Type-1 and Type-3 models, using both the hierarchical and flattened
simulators. In these experiments, the width is fixed, the depth is variable and there is no workload in the atomic
transition functions.

For instance, a Type-1 model with 10 levels of depth is executed in 700 milliseconds using the hierarchical
approach, whereas only 320 milliseconds are needed to execute the same model using the flattened approach.
Analogous results can be observed in Type-3 models.

When the depth is increased, the difference between the hierarchical and flattened execution time becomes more
noticeable. Clearly, the flattened simulator outperforms the hierarchical simulator in all the performed
experiments.

6.2.1.1.2 Models with workload in the transition functions

The previous examples provided a comparison between hierarchical and flattened simulation of models without
overhead. Here, the models have workload in their transition functions. Consequently, we can measure the
overhead in cases that execute code in their atomic components.

The simulation parameters are as follows.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

67

Simulation parameter Associated value

Number of components per level 6 components

Number of levels in the hierarchy (Depth) 10 to 14 levels

Model type Type-1

Workload in internal transition function 50 ms

Workload in external transition function 50 ms

Number of external events 100 events

Number of atomic components in the obtained
models

46 to 66

Number of coupled components in the obtained
models

9 to 13

Table 23: Simulation parameters – Varying depth, Type-1 models with workload

The following chart shows the execution time for both simulation techniques. In addition, the theoretical
execution time is included in the chart. As we have explained earlier, the theoretical execution time for a given
simulation does not include any overhead at all. It is the sum of all time spent in executing internal and external
transition functions all along this simulation. It can be measured as follows,

Total theoretical time = [(# External Transitions * TimeInExternalTransition) +
(# Internal Transitions * TimeInInternalTransition)] *
NumberOfEvents

The theoretical time can be compared with the obtained execution times for both the hierarchical and flattened
simulation techniques. Moreover, the differences between the theoretical and the execution time for each
technique are described in an additional chart.

Execution times in Type-1 models with workload

450000

500000

550000

600000

650000

700000

10 11 12 13 14

Depth

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

(a)

Difference between theoretical and execution times
in Type-1 models with workload

0

100

200

300

400

500

600

700

800

900

1000

10 11 12 13 14

Depth

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(b)

Figure 57: Type-1 models with varying depth and workload
(a) Execution times, (b) Difference between experiments and theoretical execution times

Figure 57 (a) shows that the execution times employing both the hierarchical and flattened approaches are very
similar to the theoretical execution time. The workload executed in the transition functions remarkably increases
the total execution time, which reduces the impact of the overhead incurred by both simulators.

However, Figure 57 (b) shows the difference between the theoretical execution time and each simulation
technique. The execution times for the flattened simulations are lower than the execution times for the
hierarchical simulations.

Furthermore, it is possible to measure the percentage of overhead incurred by each simulation technique. It is
computed by subtracting the theoretical time from the execution time and dividing that by the execution time
itself, that is:

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

68

Overhead (%) = (executionTime – theoreticalTime)
executionTime

The following figure presents the overhead incurred by each simulation technique.

Percentage of Overhead in Type-1 models with workload

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

10 11 12 13 14

Depth

P
er

ce
n

ta
g

e
o

f
O

ve
rh

ea
d

 (
%

)
Hierarchical
simulation

Flattened
simulation

Figure 58: Percentage of overhead incurred by hierarchical and flattened simulators
in Type-1 models with varying depth and workload

In general, these executions show a relatively small overhead. Particularly, the figure illustrates that the overhead
incurred by the flattened simulator is lower than the overhead incurred by the hierarchical one.

In models with workload like those executed in this subsection, the proposed flattened technique provides better
performance results and outperforms the existing hierarchical technique.

6.2.1.2 Varying number of components per level

These models have a fixed number of components in the hierarchy, but a variable number of components per
level (width). The execution of models with and without workload is analyzed.

6.2.1.2.1 Models without workload in the transition functions

We start running models that do not execute workload in their transition functions. Therefore, only overhead is
executed in these cases. The following table shows the parameters that have been employed.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

69

Simulation parameter Associated value

Number of components per level 6 to 10 components

Number of levels in the hierarchy (Depth) 8 levels

Model type Type-1 and Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Number of atomic components in the obtained
models

36 to 64

Number of coupled components in the obtained
models

7

Table 24: Simulation parameters – Varying width, Type-1 and Type-3 models without workload

The following figure shows the obtained execution times for each simulation technique.

Execution times in Type-1 modes with varying width

0

100

200

300

400

500

600

700

800

6 7 8 9 10

Width

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(a)

Execution times in Type-3 modes with varying width

0

500

1000

1500

2000

2500

3000

3500

6 7 8 9 10

Width

T
im

e
(m

s)
Hierarchical
simulation

Flattened
simulation

(b)

Figure 59: Execution time for hierarchical and flattened simulations
with varying width, without workload, (a) Type-1 models, (b) Type-3 models

Figure 59 (a) and (b) show that the flattened simulator outperforms the hierarchical simulator in all the executed
Type-1 and Type-3 cases in which the width was variable. When the models become larger, the difference
between the hierarchical and the flattened approach is more evident.

6.2.1.2.2 Models with workload in the transition functions

In addition, experiments have been performed using Type-3 models with workload in their atomic transition
functions. The table shows all the parameters.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

70

Simulation parameter Associated value

Number of components per level 5 to 9 components

Number of levels in the hierarchy (Depth) 7 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Number of atomic components in the obtained
models

25 to 49

Number of coupled components in the obtained
models

6

Table 25: Simulation parameters – Varying width, Type-3 models with workload

The following charts show the execution times for both techniques, and the difference between the experiments
and the theoretical results.

Execution times in Type-3 models with workload

0

500000

1000000

1500000

2000000

2500000

5 6 7 8 9

Width

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

(a)

Difference between theoretical and execution times
in Type-3 models with workload

0

500

1000

1500

2000

2500

3000

5 6 7 8 9

Width

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(b)

Figure 60: Type-3 models with varying width and workload
(a) Execution times, (b) Difference between experiments and theoretical execution times

The following figure shows the percentages of overhead incurred by each simulation technique.

Percentage of Overhead in Type-3 models with workload

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

5 6 7 8 9

Width

P
er

ce
n

ta
g

e
o

f
O

ve
rh

ea
d

 (
%

)

Hierarchical
simulation

Flattened
simulation

Figure 61: Percentage of overhead incurred by hierarchical and flattened simulators
in Type-3 models with varying width and workload

The figure shows that the overhead remains stable for both simulation techniques. Actually, the overhead might
be reduced because of the increased amount of workload executed in the transition functions of larger models.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

71

The flattened approach outperforms the hierarchical approach in all these experiments. The use of the non-
hierarchical approach can reduce the overhead in 50%, therefore providing better execution times.

6.2.1.3 Large Type-1 models

As we have explained earlier, models may have much larger sizes than those employed in the previous
subsections. The following cases show some samples of very large models.

 Simulation

Simulation parameter A1 B1 C1

Number of components per
level

100 components 200 components 400 components

Number of levels in the
hierarchy

100 levels 50 levels 25 levels

Model type Type-1 Type-1 Type-1

Workload in internal
transition function

50 ms 50 ms 50 ms

Workload in external
transition function

50 ms 50 ms 50 ms

Number of external events 100 events 100 events 100 events

Number of atomic
components in the obtained
models

9802 9752 9577

Number of coupled
components in the obtained
models

99 49 24

Table 26: Simulation parameters – Large models (Type-1)

The obtained Type-1 models have almost ten thousand atomic components in their structures. Consequently, the
overhead needed to carry out the simulation is considerable.

The following charts show the execution times for both hierarchical and flattened simulators, and the difference
between the experiments and the theoretical results.

Execution times in large Type-1 models with workload

95500000

96000000

96500000

97000000

97500000

98000000

98500000

A1 B1 C1

Model

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

(a)

Difference between theoretical and execution times
in large Type-1 models with workload

0

20000

40000

60000

80000

100000

120000

A1 B1 C1

Model

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(b)

Figure 62: Large Type-1 models with workload
(a) Execution times, (b) Difference between experiments and theoretical execution times

These simulations take a long time to be executed. The model A1, for instance, took more than 90000000
milliseconds (approximately 27 hours) to be entirely executed. However, the differences between the theoretical
execution time and the experiments are quite small; less than 97790 milliseconds (approximately one minute and

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

72

37 seconds) if the hierarchical simulator is used and less than 50920 milliseconds (approximately 51 seconds) if
the flattened simulator is used.

The following figure shows the percentages of overhead incurred by each simulation technique in these large
models.

Percentage of Overhead in large Type-1 models
with workload

0

0,02

0,04

0,06

0,08

0,1

0,12

A1 B1 C1

Model

P
er

ce
n

ta
g

e
o

f
O

ve
rh

ea
d

 (
%

)

Hierarchical
simulation

Flattened
simulation

Figure 63: Percentage of overhead incurred by hierarchical and flattened simulators
in Large Type-1 models with workload

Even though the execution times are considerable, the obtained overheads are quite small. In all cases, the
flattened simulator is more efficient than the hierarchical simulator. Figure 63 shows that the overheads are
reduced in almost 50% in these large Type-1 models when the flattened technique is employed.

6.2.1.4 Large Type-3 models

The previous section studied the execution of large Type-1 models. As we have explained earlier in Chapter 2,
Type-1 models are simple and have a small number of interconnections between components. Type-3 models,
which have a larger number of interconnections between components, are more complex and are analyzed in this
subsection.

Simulation parameter D3 E3 F3 G3

Number of components per
level

20 components 40 components 50 components 30 components

Number of levels in the
hierarchy

40 levels 20 levels 50 levels 50 levels

Model type Type-3 Type-3 Type-3 Type-3

Workload in internal
transition function

50 ms 50 ms 50 ms 50 ms

Workload in external
transition function

50 ms 50 ms 50 ms 50 ms

Number of external events 50 events 50 events 50 events 50 events

Number of atomic
components in the obtained
models

742 742 2402 1422

Number of coupled
components in the obtained
models

39 19 49 49

Table 27: Simulation parameters – Large models (Type-3)

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

73

Notice that Type-3 models are more complex than the equivalent Type-1 models. Consequently, the message
passing needed to carry out these simulations is considerable and even greater than in Type-1 experiments.

The next figures show the execution times for both simulators, and the difference between the experiments and
the theoretical results.

Execution times in Type-3 models with workload

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

D3 E3 F3 G3

Model

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

(a)

Difference between theoretical and execution times
in Type-3 models with workload

0

50000

100000

150000

200000

250000

300000

350000

D3 E3 F3 G3

Model

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(b)

Figure 64: Large Type-3 models with workload
(a) Execution times, (b) Difference between experiments and theoretical execution times

The difference between the theoretical and the execution time is smaller when the flattened simulator is
employed. In all cases, the flattened technique is more efficient and provides better execution times.

The following figure shows the percentages of overhead incurred by each simulation technique in these large
Type-3 models.

Percentage of Overhead in Type-3 models with workload

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

D3 E3 F3 G3

Model

P
er

ce
n

ta
g

e
o

f
O

ve
rh

ea
d

 (
%

)

Hierarchical
simulation

Flattened
simulation

Figure 65: Percentage of overhead incurred by hierarchical and flattened simulators
in Large Type-3 models with workload

Again, the overhead is smaller for the flattened simulator in all the experiments. Approximately a 50% of the
overhead can be reduced if the non-hierarchical technique is employed to simulate these synthetically generated
models.

6.2.2 Existing DEVS models

The previous subsection showed the execution of synthetically generated models. In addition, it is interesting to
show the performance of the different simulators executing existing DEVS models.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

74

Previous works have formed an extensive library of DEVS models to be executed in CD++ [Ame00a, Ame00b,
Rod99]. Not only simple atomic models, but also very complex coupled models can be found in the library
[Wai02].

This section analyzes the execution of such models in CD++ using both the hierarchical and flattened simulators
in virtual time.

The following table describes briefly some of the executed models.

 Simulation

MODEL Alarm Clock Elevator GPT FSM

Brief description A digital alarm clock
with display, alarm,
buzzer and snooze.

An elevator with
floor buttons to push.

It has a door, a
control unit and an

engine.

The typical
Generator-Processor-

Transducer model
with a queue to buffer

processes.

A Moore finite state
machine constructed
with a base library
available in CD++.

Number of coupled
components (approx.)

3 3 1 1

Number of atomic
components (approx.)

8 4 4 4

Interconnection
complexity

Medium Light-medium Light Light

Table 28: Existing models executed in virtual time existing in the CD++ library [Wai02]

The models have a different amount of workload to be executed in the transition functions of their atomic
components. In addition, a different interconnection complexity is found in each case. It can be regarded as the
quantity and the type of interconnections among the inner components of the model. The table provides an
approximate measure of this complexity.

Execution times using existing DEVS models

0
10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Alarm Clock Elevator GPT FSM

Model

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

Figure 66: Execution time for existing DEVS models
using hierarchical and flattened simulators

In all the cases shown in the figure above, the execution time for DEVS models is reduced when the flattened
simulator is used. The next figure shows the percentage of time reduction achieved by the non-hierarchical
approach.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

75

Percentage of Time Reduction when using the Flattened Simulator

0

10

20

30

40

50

60

70

80

90

100

Alarm Clock Elevator GPT FSM

Model

%
 o

f
ti

m
e

re
d

u
ct

io
n

Figure 67: Percentage of time reduction using the flattened approach
for existing DEVS models

The percentages of time reduction depend on the DEVS model that is being simulated. In the Alarm Clock, we
have obtained up to 40% of reductions in the execution time. On the other hand, the Finite State Machine has
shown time reductions of 10% approximately.

6.2.3 Existing Cell-DEVS models

There are several Cell-DEVS models existing in the CD++ library [Wai02]. The available models include forest
fires, life game, heat diffusion, robot movement, colonies of ants and watershed analysis, among others. For more
information about Cell-DEVS models, see [Ame00a, Ame00b, Wai02].

It is possible to combine more than one Cell-DEVS component to form a new model. In addition, DEVS models
can also be linked to Cell-DEVS models.

The flattened simulator allows the execution of Cell-DEVS models in a non-hierarchical fashion. The execution
of non-hierarchical simulations of Cell-DEVS models can be particularly interesting. Usually, because of the
large number of messages exchanged between the cell simulators and the coordinator, the amount of time needed
to perform cellular model simulations can be extremely long.

An analysis of the execution time of several cellular models is provided in this subsection.

6.2.3.1 Life game

The popular life game can be simulated as a Cell-DEVS model [Ame00a, Ame00b]. In such system, each
position represents a cell, which can be either dead or alive. The following figure compares the execution time
for both hierarchical and flattened simulations employing different model sizes.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

76

Execution times for Life game

0

20000

40000

60000

80000

100000

120000

140000

100 400 1600 6400

Number of Cells in the Model

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

Figure 68: Execution time for Life game in CD++ [Ame00a]
using hierarchical and flattened techniques

In every case, the flattened approach outperforms the hierarchical one. The following figure illustrates the
percentage of time reduction obtained when the flattened simulator is used.

Percentage of Time Reduction when using the Flattened Simulator
for Life game

0

5

10

15

20

25

100 400 1600 6400

Number of Cells in the Model

%
 o

f
ti

m
e

re
d

u
ct

io
n

Figure 69: Percentage of time reduction using the flattened approach
for Life game in CD++

The previous figure shows that employing the non-hierarchical simulator can reduce the execution time of the
Life model up to 15%.

6.2.3.2 Other Cell-DEVS models

There is a wide set of models existing in the CD++ model library [Wai02]. They can be executed, modified or
even combined to form new DEVS models. Some of these previously developed models are used here to
compare the performance of the different simulation techniques. The following is a brief description of such
models:

q The watershed model represents a hydrology system built as a cell space [Ame00a]. It is represented as
small cells organized in several layers (air, surface water, soil, ground water, and bedrock). The rainfall
input is partially retained by vegetation, and the rest infiltrates gradually in the layers.

q A model of particles of gas has been simulated using Cell-DEVS. The model simulates fluids of gas
moving in different directions. The collision of particles is also defined.

q A heat diffusion model studies the spread of heat in a surface [Ame00b]. A Cell-DEVS model
represents the surface itself. It is also composed of a heat generator and a cold generator, both of them
specified as DEVS models.

q A colony of ants has been defined as a Cell-DEVS model. Different ants exist in the same space, trying
to find food with random patterns of movement.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

77

q A substance classifier is formed by one DEVS and two Cell-DEVS models. A substance generator
places a given amount of substance into a queue component. A classifier takes the substance and
measures its purity. Then, the product is classified as first-class or second-class.

q The movement of sharks in the sea can be simulated as a Cell-DEVS model. A shark moves following
a certain pattern, and may also have contact with smaller fishes to eat in the area.

q The classical bubble sort algorithm can be analyzed using a Cell-DEVS model. In this model, each cell
represents a numeric value in an array of fixed size. The entire space can be ordered comparing each
cell with its neighbors.

q Binary linear automata have been defined as Cell-DEVS models. They consist of a series of very
simple rules over their neighbors.

These models have been executed using both the hierarchical and flattened simulators. The following figure
shows the execution times for each simulation technique using the described models.

Execution times for Cell-DEVS simulations

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Watershed Particles of
gas

Heat diffusion Colony of
Ants

Substance
classifier

Movement of
Sharks

Bubble Sort Linear
Automata

Model

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

Figure 70: Execution time for Cell-DEVS models
using hierarchical and flattened techniques

The previous figure illustrates that the execution time is reduced when the flattened simulator is employed. The
following figure shows the percentage of time reduction when the new approach is used.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

78

Percentage of Time Reduction when using the Flattened Simulator
for Cell-DEVS simulations

0

5

10

15

20

25

Watershed Particles of
gas

Heat diffusion Colony of
Ants

Substance
classifier

Movement of
Sharks

Bubble Sort Linear
Automata

Model

%
 o

f
ti

m
e

re
d

u
ct

io
n

Figure 71: Percentage of time reduction using the flattened approach
for Cell-DEVS models

These samples provide meaningful results. The models have several complexities in their structures, and models
with different workload have been executed. The reductions in execution time range from 5% to 15%
approximately.

6.3 Real time execution analysis

In this subsection, real-time executions of both flattened and hierarchical simulators are compared. Some models
that have been tested in Chapter 4 are executed again using the non-hierarchical approach in order to analyze its
efficiency.

6.3.1 Varying number of levels in the hierarchy without workload

The first experiments show the results that are obtained with varying depth in Type-3 models without workload.
The following table summarizes the information corresponding to this test.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

79

Simulation parameter Associated value

Number of components per level 9 components

Number of levels in the hierarchy (Depth) 6 to 15 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 20 ms

Associated deadlines 20 ms

Number of atomic components in the obtained
models

41 to 113

Number of coupled components in the obtained
models

5 to 14

Table 29: Parameters for comparison between hierarchical and flattened approaches
Varying depth, Type-3 models without workload

The percentages of success and the worst-case response times are compared for both techniques: flattened and
hierarchical.

% of success in Type-3 models

0

10

20

30

40

50

60

70

80

90

100

6 7 8 9 10 11 12 13 14 15

Depth

%
 o

f
su

cc
es

s

Hierarchical
simulation

Flattened
simulation

(a)

Worst-case response time in Type-3 models

0

500

1000

1500

2000

2500

3000

3500

6 7 8 9 10 11 12 13 14 15

Depth

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(b)

Figure 72: Comparison of real-time executions using hierarchical and flattened techniques with varying
depth. (a) Percentage of success, (b) Worst-case response time

The figure shows clearly that the flattened simulation outperforms the hierarchical simulation in these
experiments. Particularly, Type-3 models with several depths (7 to 13) are executed with 100% of success using
the flattened simulation, while the use of the hierarchical approach achieves less than 15% of success under the
same conditions. The worst-case response times are greatly reduced when using the flattened approach.

6.3.2 Varying number of levels in the hierarchy with workload

The previous models did not execute workload in their transition functions. The following experiment studies
models with time-consuming code in the transition functions.

In addition, the frequency of events depends on the structure of each model. The time between events in each
case considers the theoretical time that is needed to process a single event. For example, if the theoretical time
needed to entirely process a single event is 1000 milliseconds, then the inter-event period is 1000 milliseconds.
In contrast, if the time needed to entirely process an event is 1600 milliseconds, then the period between events is
1600 milliseconds. Thus, the environment for each model depends on the model itself.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

80

Simulation parameter Associated value

Number of components per level 4 components

Number of levels in the hierarchy (Depth) 4 to 10 levels

Model type Type-1

Workload in internal transition function 50 ms

Workload in external transition function 50 ms

Number of external events 10 events

Inter-event period Theoretical execution
time for a single event

(500 to 2800
milliseconds)

Number of atomic components in the obtained
models

10 to 28

Number of coupled components in the obtained
models

3 to 9

Table 30: Parameters for comparison between hierarchical and flattened approaches
Varying depth, Type-1 models with workload

The following figure shows the theoretical worst-case response time. As we have explained earlier in this work,
the theoretical results are simply the sum of all the time spent in executing the workload that is found in the
internal and external transition functions. Neither the overhead incurred by the simulator nor any other factors
that may affect simulation performance are included in the theoretical results.

Worst-case response time in Type-1 models with workload

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10

Depth

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

Figure 73: Comparison of worst-case execution time using hierarchical and flattened techniques
Type-1 models with variable depth and workload

Figure 73 shows that the use of the flattened simulation technique provides better response times. In deeper
models, the difference between the hierarchical and flattened simulators becomes more noticeable.

6.3.3 Varying number of components per levels in the hierarchy without workload

The previous experiments have analyzed models whose depth was variable. The following table summarizes the
parameters used to test models where the width is variable. There is no workload executed in these experiments.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

81

Simulation parameter Associated value

Number of components per level 5 to 11 components

Number of levels in the hierarchy (Depth) 6 levels

Model type Type-3

Workload in internal transition function 0 ms

Workload in external transition function 0 ms

Number of external events 100 events

Inter-event period 30 ms

Associated deadlines 30 ms

Number of atomic components in the obtained
models

21 to 51

Number of coupled components in the obtained
models

5

Table 31: Parameters for comparison between hierarchical and flattened approaches
Varying width (components per level), Type-3 models

The following charts illustrate the obtained results for these Type-3 models without workload.

Worst-case response time in Type-3

0

1000

2000

3000

4000

5000

6000

5 6 7 8 9 10 11

Width

T
im

e
(m

s)

Hierarchical
simulation

Flattened
simulation

(a)

% of success in Type-3 models

0

10

20

30

40
50

60

70

80

90
100

5 6 7 8 9 10 11

Width

%
 o

f
su

cc
es

s

Hierarchical
simulation

Flattened
simulation

(b)

Figure 74: Comparison of real-time executions using hierarchical and flattened techniques with varying
width. (a) Percentage of success, (b) Worst-case response time

Figure 74 shows that the flattened simulator outperforms the hierarchical one, providing better response times
and greater percentages of success. The use of the non-hierarchical simulator allows the execution of larger
models with better performance results.

6.3.4 Varying number of components per levels in the hierarchy with workload

These experiments have a fixed depth and a varying number of components per level with workload. Again, the
frequency of events depends on the structure of each model. Hence, the time between events is equal to the
theoretical time that is needed to process a single event.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

82

Simulation parameter Associated value

Number of components per level 3 to 10 components

Number of levels in the hierarchy (Depth) 7 levels

Model type Type-1

Workload in internal transition function 50 ms

Workload in external transition function 50 ms

Number of external events 10 events

Inter-event period Theoretical execution
time for a single event

(650 to 1850
milliseconds)

Number of atomic components in the obtained
models

13 to 37

Number of coupled components in the obtained
models

6

Table 32: Parameters for comparison between hierarchical and flattened approaches

The next figure shows the theoretical worst-case response time in addition to the hierarchical and flattened
results to compare the results.

Worst-case response time in Type-1 models with workload

600

1100

1600

2100

2600

3100

3 4 5 6 7

Width

T
im

e
(m

s)

Hierarchical
simulation
Flattened
simulation
Theoretical

Figure 75: Comparison of worst-case execution time using hierarchical and flattened techniques
Type-1 models with variable width and workload

Figure 75 shows a comparison of both simulation approaches. Again, the flattened technique outperforms the
hierarchical one, obtaining lower worst-case response times in all the experiments.

6.4 Conclusions about the performance of the flattened simulator

We have conducted a thorough testing of the new flattened simulator, comparing the results with those obtained
using the hierarchical simulator. Both synthetically generated models and existing models from the CD++ library
were executed. The experiments included virtual time and real time model execution.

When the virtual time approach is used, in most cases the flattened simulator is more efficient and reduces the
simulation time. On the other hand, when the real time approach is used, the flattened simulator provides better
response times and greater percentages of success.

Not only DEVS but also Cell-DEVS models have been executed employing the new simulation technique. When
the flattened simulator is used, the processor structure is more simple and, usually, more effective.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

83

The use of the non-hierarchical simulator reduces the number of messages exchanged in the simulation process.
This reduction of overhead leads to better performance results. In general, we have shown that the new flattened
simulator outperforms the hierarchical one.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

84

7. CONCLUSIONS

Testing the performance of a simulator is usually a very complicated task. We have developed a synthetic model
generator to facilitate the testing phase. The tool produces DEVS models that are similar to those existing in the
real world. Models with different sizes and shapes can be easily generated. To emulate several degrees of
complexity in their structures, three different types of models have been defined. In addition, it is possible to
determine a given workload to be executed in the atomic transition functions. The workload is Dhrystone code
that resembles the tasks to be performed by the atomic components.

A thorough testing has been carried out on different simulation techniques provided in the CD++ toolkit. The
performance of each simulator has been characterized. The overhead incurred by the different simulators is
bounded and the performance is appropriate in most cases. The obtained results have shown the possibility of
developing a real time extension to the toolkit.

The real time extension to the toolkit has been entirely developed. In such extension, events must be handled
timely and time constraints can be stated and validated accordingly. The real time simulator ties the advance of
the simulation-time to a wall-clock time (i.e. physical time). Consequently, these new features would allow
interaction between the simulator and the surrounding environment. The new real time simulator has been tested
and analyzed.

The benchmark experiments have shown good results on real time executions. We have studied the percentage of
success and worst-case response times under different scenarios. Several properties of the model and its
environment have been analyzed. Some weaknesses have been pointed out in the analysis of the tool, specifically
on the execution of extremely large models. The message-passing process may impact on the execution
performance, mainly if the model structure is too large or complex. Even though the performance degradation
was small, it was desirable to provide more efficiency not only in real time but also in virtual time simulations.
Thus, a new flattened simulator has been presented to overcome the described problems.

The flattened simulator transforms the hierarchical structure of a model to a flattened structure in order to reduce
the overhead incurred by the message passing among simulators and coordinators. The resulting non-hierarchical
structure is more simple and more effective. The non-hierarchical approach can be applied not only for DEVS
but also for Cell-DEVS simulations.

A thorough testing has been performed to the flattened simulator. In most cases, the flattened technique
outperforms the hierarchical technique.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

85

8. REFERENCES

[Ame00a] Ameghino, J.; Wainer. G. “Application of the Cell-DEVS paradigm using N-CD++”. In Proceedings
of the SCS Summer Multiconference on Computer Simulation. Vancouver, Canada. 2000.

[Ame00b] Ameghino, J.; Wainer. G. “Modelling complex cellular models using N-CD++”. Master’s thesis.
Departamento de Computación. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.
Argentina. 2000. (in Spanish).

[Cho94] Chow, A.; Ziegler, B. “Parallel DEVS: A parallel, hierarchical, modular modeling formalism”. In
Winter Simulation Conference Proceedings. SCS, Orlando, USA. 1994.

[Cho98] Cho, S. M.; Kim, T. G.; “Real-Time DEVS simulation: concurrent time-selective execution of combined
RT-DEVS and interactive environment”. 1998 Summer Computer Simulation Conference, pp. 410-415. Reno,
Nevada, USA. 1998.

[Cho00] Cho, S. M.; Kim, T. G.; “Real-Time Simulation Framework Based on RT-DEVS Formalism”. In
Proceedings of the International Conference on Information Systems, Analysis and Synthesis. Orlando, USA.
2000.

[Jac01] Jacques, C. “Modelling and simulation of an alarm clock in CD++”. Internal report. Department of
Sciences and Computer Engineering, Carleton University. Ottawa, ON, Canada. 2001.

[Kim00] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Efficient Distributed Simulation of Hierarchical DEVS
Models: Transforming Model Structure into a Non-Hierarchical One”. In Proceedings of the 33rd Annual
Simulation Symposium. Washington DC, USA. 2000.

[Li01] Li, L. “Modelling and simulation of an vending machine in CD++”. Internal report. Department of
Sciences and Computer Engineering, Carleton University. Ottawa, ON, Canada. 2001.

[Mar97] Martin, D.; McBrayer, T.; Radhakrishan, R.; Wilsey, P. “Time Warp Parallel Discrete Event
Simulator”. Technical report. Computer Architecture Design Laboratory. University of Cincinnati. USA. 1997.

[Rod99] Rodriguez, D.; Wainer, G. “New extensions to the CD++ tool”. In Proceedings of SCS Summer
Multiconference on Computer Simulation. Chicago, USA. 1999.

[Sta88] Stankovic J.; “Misconceptions about real time computing: A serious problem for next generation
systems”. IEEE Computer, Vol. 21, No. 10, pp. 10-19, October 1988.

[Sta96] Stankovic J.; “Strategic Directions in Real-Time and Embedded Systems”. ACM Computing Surveys,
50th Anniversary Issue, Vol. 28, No. 4, pp. 751-763, December, 1996.

[Tro01a] Troccoli, A.; Wainer, G. “CD++, a tool for simulating Parallel DEVS and Parallel Cell DEVS models”.
Technical report. Departamento de Computación, Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires. Argentina. 2001.

[Tro01b] Troccoli, A.; Wainer, G. "Performance results of parallel Cell-DEVS execution". In 2001 Summer
Computer Simulation Conference. Orlando, USA. 2001.

[Wai98] Wainer, G.; Giambiasi, N. "Specification, modeling and simulation of timed Cell-DEVS spaces".
Technical Report n.: 98-007. Departamento de Computación. Facultad de Ciencias Exactas y Naturales.
Universidad de Buenos Aires. Argentina. 1998.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

86

[Wai00] Wainer, G.; “Improved cellular models with parallel Cell-DEVS”. Transactions of the SCS. June 2000.

[Wai01] Wainer, G.; Barylko, A.; Beyoglonian, J. “Experiences with DEVS modeling and simulation”. In
IASTED Journal on Modeling and Simulation. March 2001.

[Wai02] Wainer, G. “Cell-based discrete event simulation”. Available via:
<http://www.sce.carleton.ca/faculty/wainer/wbgraf> [accessed May 20, 2002]

[Wei84] Weicker, R. P. “Dhrystone: A synthetic systems programming benchmark”. In Communications of the
ACM, volume 27, pages 1013-1030, 1984.

[Zei76] Zeigler, B. Theory of Modeling and Simulation. Wiley. 1976.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press. 2000.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

87

APPENDIX A - WEB GRAFLOG: AN APPLET TO VISUALIZE THE
RESULTS OF CELL-DEVS SIMULATIONS

This appendix describes a support tool developed to visualize the result of Cell-DEVS simulations. The applet
and the complete user’s manual can be found in [Wai02].

A.1 Introduction

CD++ allows the execution of both DEVS and Cell-DEVS models. It is particularly interesting to visualize the
results of a Cell-DEVS simulation. Several Cell-DEVS models have been simulated using the toolkit, such as
urban traffic, forest fires, colonies of ants, robot movement and watershed simulation [Ame00a].

A.2 Obtaining a log file using CD++

In order to view the results of a Cell-DEVS simulation, first we have to store the results of such execution.

Once a Cell-DEVS simulation has been successfully performed, the results can be obtained in a log file. The log
file stores all the messages (or a certain type of them) that are exchanged along the simulation process. The
following table shows a sample execution of the model Fire.ma up to the simulation time 02:00:00:000. In
addition, the file Fire.log has been specified to store the resulting messages.

/home/user/cd++> ./cd++ -mFire.ma -t02:00:00:000 –l > Fire.log

Table 33: Execution of a sample Cell-DEVS simulation

In order to visualize the results of a Cell-DEVS simulation, only Y-messages (i.e. output messages) are needed.
The following table exemplifies the use of the –L flag, to obtain only a certain type of messages in a simulation.
This alternative can reduce the execution time.

/home/user/cd++> ./cd++ -mFire.ma -t02:00:00:000 –LY –l > Fire.log

Table 34: Execution of a sample Cell-DEVS simulation obtaining only Y-messages

A sample log file for the Forest Fire model [Ame00a] is provided in the following figure, as a result of the
execution of the previous command.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

88

Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,0)(02) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,1)(03) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,2)(04) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,3)(05) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,4)(06) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,5)(07) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,6)(08) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,7)(09) / out / 0.00000 / forestfire(01)
Msg: 0 / L / Y / 00:00:00:000 / forestfire(0,8)(10) / out / 0.00000 / forestfire(01)

…

Msg: 0 / L / Y / 01:58:32:139 / forestfire(28,24)(8 66)/ out / 119.53579 / forestfire(01)
Msg: 0 / L / Y / 01:58:41:812 / forestfire(13,2)(39 4) / out / 119.69699 / forestfire(01)
Msg: 0 / L / Y / 01:58:41:812 / forestfire(29,18)(8 90)/ out / 119.69699 / forestfire(01)
Msg: 0 / L / Y / 01:58:57:569 / forestfire(2,2)(64) / out / 119.95962 / forestfire(01)
Msg: 0 / L / Y / 01:58:57:569 / forestfire(27,27)(8 39)/ out / 119.95962 / forestfire(01)
Msg: 0 / L / Y / 01:59:40:578 / forestfire(28,10)(8 52)/ out / 120.67636 / forestfire(01)

Table 35: Sample log file

For further information about the execution of simulations with the toolkit, refer to the CD++ User’s Manual
[Wai02].

A.3 Converting a log file using Drawlog

We have shown how to log the messages in a specified file when a simulation is performed. The Drawlog
application converts these messages in a succession of matrixes stored in a plain-text file. Drawlog is a part of the
CD++ toolkit.

The following table shows how to obtain such plan-text file using Drawlog.

 /home/user/cd++> ./drawlog -mFire.ma -cForestFire -lFire.log -f1 > o utput.drw

Table 36: Execution of Drawlog using a sample log file

The following table shows an excerpt of the obtained output file, after the execution of the previous command.
The file is a succession of plan-text matrixes in which each coordinate represents the value of the cell at a given
moment in the simulation.

Time: 00:00:00:000
 0.000 0.000 0.000 0.000 0.000 … 0.000
 0.000 0.000 0.000 0.000 0.000 … 0.000
 … … … … … … …
 0.000 0.000 0.000 0.000 0.000 … 0.000

…

Time: 01:59:40:578
 0.000 0.000 0.000 117.399 108.871 … 91.813
 0.000 0.000 0.000 114.415 105.887 … 88.829
 0.000 0.000 119.960 111.431 102.902 … 85.845
 … … … … … … …
 0.000 0.000 0.000 0.000 0.000 … 0.000

Table 37: Execution of Drawlog using a sample log file

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

89

The previous table shows an excerpt of the file that is produced by Drawlog. It shows only a part of the initial
and final configurations of cells in the model.

Further information about the use of Drawlog can be found in the CD++ User’s Manual.

A.4 Visualizing the results graphically

The web-based Graflog, which belongs to the CD++ toolkit, has been developed to visualize the results of Cell-
DEVS simulations. It can be run with any Java-enabled web browser, like Netscape or Microsoft Internet
Explorer. An alternative command-line Graflog can be run under DOS [Ame00b].

The following is a snapshot of the web-based Graflog application.

Figure 76: Snapshot of the Web-based Graflog application

The main goal of the Graflog applet is to display graphically the results of a Cell-DEVS simulation. When a Cell-
DEVS model is simulated, each cell can take different values along the execution. For instance in a heat diffusion
model, each cell represents the temperature of that given coordinate. Alternatively, in a gas diffusion model, each
cell can represent the amount of gas in that specific place. The Graflog applet employs the output of the Drawlog
application, described earlier in this appendix.

First, we have to specify the color that will represent each interval of values. For example, let us consider a
simulation that can take only two possible values; 0 and 1. Then, it is possible to represent a value of 0 with
black, and a value of 1 with white. However, cells usually take many different values in a simulation.
Additionally, the state of a cell can be represented with real numbers. Therefore, several intervals and colors
might be chosen by the user in Graflog. Each interval has an associated color that can be chosen from the palette
(or entering the RGB composition of the desired color).

The following figure shows the screen where intervals can be defined and colors can be chosen.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

90

Figure 77: Choosing intervals and associated colors in Web Graflog

The color palette and intervals can be saved to a file. Once each interval has an associated color, we can choose
the output and model files that contain the rest of the information needed to display a Cell-DEVS simulation.
Usually, these files have the extensions .drw and .ma respectively. The output file used by Graflog is the result of
the execution of the Drawlog application. The model file is the information used to execute the simulation with
CD++ in the first step.

The following figure shows a sample series of results obtained with the web-based Graflog.

t = 2

t = 4

t = 6

t = 10

t = 24

t = 36

Figure 78: Sample series of results obtained with the toolkit – Forest fire model [Ame00a]

The user can play, pause and repeat the visualization of results. In addition, several aspects of the display can be
modified, such as the speed and the step increment.

A.5 Summary of the process

The simulation of Cell-DEVS models can be visualized using the CD++ toolkit. Different applications from the
toolkit are used to subsequently format the results. The following figure summarizes the steps needed to visualize
such a simulation.

Definition of Real Time Simulation in the CD++ toolkit - Ezequiel J. Glinsky

91

Execution of
CD++

simulation
tool

LOG
FILE
(.log)

Execution of
Drawlog

Converted
Plain-text

File
(.drw)

Execution of
Web Graflog

VISUALIZATION
OF RESULTS

Figure 79: How to visualize the results of a Cell-DEVS simulation using the CD++ toolkit

The complete Graflog User’s Manual can be found in [Wai02].

