
HARDWARE IN THE LOOP SIMULATION USING REAL-TIME CD++

Lidan Li
Gabriel A. Wainer

Trevor Pearce
Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, ON, K1S5B6, Canada
Email: {lidan, pearce, gwainer}@sce.carleton. ca

KEYWORDS
DEVS formalism, real-time simulation, CD++.

ABSTRACT

 Modeling and simulation tools have been used for helping
in the early stages of hardware/software systems design.
The DEVS formalism is a technique that enables
hierarchical description of discrete event models that can be
used for this task. The CD++ tool enables the description of
discrete event models based on the DEVS formalism, and
we have used it to provide hardware-in-the-loop simulation
using the CODEC of a DSP board. First, a DEVS model
was built using the real-time version of CD++ to simulate
the behavior of the CODEC together with a test program
using the CODEC. Next, the actual CODEC was deployed
as a hardware prototype to replace the CD++ model,
integrating the prototype into the original DEVS
component. The real -time data communication between the
CD++ model and the DSP board was explored in detail. As
a result, we are now able to study models in a simulated
environment, and to execute them in a hardware surrogate.
The hierarchical nature of DEVS permitted to do this
without modifying the original models, providing the base
for enhanced system development in embedded platforms.

INTRODUCTION

 In the early stage of the design of embedded systems,
software and hardware are designed independently. The
software development team is waiting for the hardware
prototypes to be available; however, the hardware
development team is waiting for the software environment
for hardware prototype verification and testing. It is
difficult to decide the trade-offs between the hardware and
software solutions in terms of system performance
requirements (time, power consumption) and probably
delays the product design cycle. In addition, there are few
interactions between hardware and software, which restrict
the exploration of solutions where some functionality could
migrate between both components (Berge 1997). With the
emerging of the specific components (I/O, DSP, ASIC,
FPGA), a mixed-system design is more efficient to realize
specific applications, such as signal processing or
telecommunications. The user can test the functionality of
the hardware in a very early stage. This is economically

efficient, and shortens the product development cycle and
time-t o-market period.

 The DEVS (Discret e EVents Systems specifications)
formalism for modeling and simulation (Zeigler. Praehofer
and Kim 2000) provides a framework for the construction
of hierarchical models in a modular fashion, allowing
model reuse, reducing development and testing time. The
hierarchical and discrete event nature of DEVS makes it a
good choice to achieve an efficient product development
test. DEVS are timed models, which also enables us to
define timing properties for the models under development.
Each DEVS model can be built as a behavioral (atomic) or
a structural (coupled) model. A DEVS atomic model is
described as:

M = <X, S, Y, δint, δext, λ, D >

X: the input events set
S: the state set
Y: the output events set
δint : internal transition function
δext : external transit ion function
λ: output function
D: the elapsed time

A DEVS coupled model is formed by configuring several
atomic models or coupled models:

CM = < X, Y, D, {M i}, {Ii}, {Zij} , select >

X: the set of input events
Y: the set of output events
D: an index of components, each i∈ D
M i: a basic DEVS model, where Mi = < Ii, Xi, Si, Yi, δinti,
δexti , tai >
Ii: the set of influencees of model I, each j ∈ Ii
Zij: the i to j translation function
Select: the function prescribes which atomic model should
be activated first under simultaneous events.

 The CD++ environment (Wainer 2002) is a tool built to
implement the DEVS and Cell-DEVS theory. The toolkit
has been built as a set of independent software pieces, each
of them independent of the operating environment chosen.
The defined models are built as a class hierarchy, and each

of them is related with a simulation entity that is activated
whenever the model needs to be executed. New models can
be incorporated into this class hierarchy by writing DEVS
models in C++, overloading the basic methods representing
DEVS specifications: external transitions, internal
transitions and output functions. CD++ employs a virtual
time simulation approach (Rodríguez and Wainer 1999),
which allows skipping periods of inactivity. The abstract
simulation technique enables defining and using different
simulation engines without affecting existing models. The
recent real -time extension (Glinsky and Wainer 2002)
enables simulation advancing based on the wall-clock,
making the simulation process to be quiescent between
events. The model being executed must react to external
event in a timely fashion. This means when an external
event arrives, the model should react within a predefined
deadline, and return a result before that time. The real-time
extension of the toolkit allows associating deadline with
external events.

 We show how to gradually incorporate hardware
prototypes into a simulated environment using the real-time
version of CD++ toolkit (Glinsky and Wainer 2002). The
hardware prototype employed is a CODEC (a device
performing A/D and D/A operations) embedded in a Digital
Signal Processor (DSP) board (Analog Devices 2000). The
block diagram in figure 1 below is the 2189M EZ-KITLITE
DSP Board (Analog Devices 2000) and some major
components used.

Figure 1: Scheme of the Analog Devices 2189M EZ-

KITLITE Evaluation Board

THE APPLICATION MODEL

 The prototype was designed in two stages. In the first
stage, we built a set of DEVS atomic models using the real-
time version of CD++. Figure 2 shows the test A
experimental frame built in CD++, which was used to test
the behavior of the CODEC model.

 The test A experimental frame includes five atomic
models. They are clock , control, CODEC, analog signal
generator and display. A brief description of the these
atomic models is given below:

• Clock: generates control signals with a predefined

period.

• Control: distinguishes the incoming signal. If a
command signal is received, it will invoke the CODEC
atomic model.

• CODEC: simulates the behavior of the CODEC.
• Analog signal generator: generates an analog signal.
• Display: updates the results from the CODEC model

and displays them.

Figure 2: Test A, Experimental Frame Conceptual Model

 The detailed definition of these models can be found in
(Li, Pearce and Wainer 2002), but we will focus in the
description of the CODEC model. Later, we will show its
implementation using the available hardware. The CODEC
model is responsible for translating an analog signal into an
output digital signal. Figure 3 shows the CODEC DEVS
atomic model used in our example.

CODEC = <X, Y, S, δext, δint, λ, D>

X = { ControlIn ∈ N+, AnalogIn ∈ R }
Y = { DigitOut ∈ BinaryStream }
S = { AnalogIn ∈ R } ∪ { ControlIn = 1 }

δext (s, e, x){
 If ControlIn //check which port is signaling

 case: port = ControlIn
 if control = 1, //start signal conversion
 analog_data = X.AnalogIn;
 digital_data = convert (analog.data);
 holdIn (active, time);
 else
 passivate(); // wait for the next event

 //if AnalogIn signals
 case: port = AnalogIn
 passivate(); // wait for the next event
}
δint (s, e) {
 passivate();
}
λ (s) {
 send digital_data to DigitOut;
}

Figure 3: CODEC Model Conceptual Definition

 When an event arrives at ControlIn and its value equals to
1, the CODEC atomic model starts analog to digital signal
conversion using the analog received in the AnalogIn port.
When the signal conversion completes, the CODEC sends
all results using the DigitOut port. The analog signal is a
stream of floats and the digital signal is a stream of binary

strings. Please see the table 1 for a sample analog->digital
conversion. The Analog generator is an atomic model and
all it does is to randomly generate float representation of
the analog signal.

Table 1: Analog to Digital Conversion

Analog Input (voltage) Digital Output
0 0000
0.2 0001
0.4 0010
0.6 0011
0.8 0100

 The test A coupled model is built to test the behavior of
the software version of the CODEC. Figure 4 is the
simulation output of the test A experimental frame.
According to the figure, the first digital signal is obtained at
time 00:00:40:708 through the signal output port. Its
associated value is 0001 (here we use binary strings
representing the digital signal value). At the time
00:00:41:608, another digital signal is arrived at ground
output port and its value is 0000. All digital signals are
processed successfully through the software CODEC
model.

Wall Clock Time Result Output Port Value
00:00:40:708 succeeded signal 0001
00:00:41:008 succeeded signal 0110
00:00:41:308 succeeded signal 0011
00:00:41:608 succeeded ground 0000
00:00:41:900 succeeded signal 1010
…

Figure 4: Output of Test A Experimental Frame

INTRODUCING HARDWARE-IN-THE-LOOP

 The application model we built in the previous section
was reused when we replaced the model for the CODEC by
the actual hardware. The new experimental frame (figure 5)
was built to support interaction with the real CODEC on the
board, and existing atomic models were reused. A clock
model generates periodic signals to awake the control
model. Then the control model will invoke the TCL model,
which is in charge of initializing the CODEC and start the
conversion. When the CODEC finishes the conversion, the
dataTransfer model will acquire these data and send them
to the control model. Finally, the DataTransfer model will
feed the data to the display model. A brief description of
the new atomic models is given following:

• TCL: invokes and opens the VisualDSP debugger

system. Once the debugger system is opened, the
different TCL files needed for A/D and D/A access can
be invoked to obtain samples and regenerate the analog
signal.

• DataTransfer: reads the digital samples and sends
them back to the control model. In addition, the data
will be written back to the board for display if the DAC
is working.

Figure 5: Test B Experimental Frame Conceptual Model
with Hardware-in-the-loop

 Figure 6 shows the CD++ coupled model definition of the
Test B experimental frame. The first line in the figure
defines the Top model, which includes four atomic models
and one coupled model. The Out port represents two output
ports: signal, ground, and the links describe the internal and
external coupled schema. The similar configurations are
specified for each of the atomic models in the Test B
experimental frame conceptual model.

 The [top] model always defines the coupled model at the
top level. As showed in the formal specifications presented
earlier, four properties must be configured:
• Components: describes the models integrating a

coupled model. The syntax is modelName@className,
allowing more than one instance of the same model
using different names. The class name reference to
either atomic or coupled models (which should be
defined in the same configuration file).

• Out: it defines the names of output ports.
• In: it defines the names of input ports.
• Link: it describes the internal and external coupling

scheme. The syntax is: source_port[@model]
destination_port[@model]. The name of the
model is optional and, if it is not indicated, the coupled
model being defined is used.

[top]
components : clock@Clock control tcl@TclCycle
display@DisplayCycle DataTransfer@FileTransferCy
Out : ground signal
Link : out@clock in@control
Link : out@control in@tcl
Link : out@tcl start@transfer
Link : out@transfer in@display
Link : ground@display ground
Link : signal@display signal

[control]
components : queue@Queue central@ControlCycle
In : in
Out : out data_out
Link : in in@queue
Link : out@queue in@central
Link : data_out@central done@queue
…

Figure 6: CD++ Coupled Model Specification for Source

Code for Test B

IMPLEMENTATION

 The system was designed using two components: one
running in a PC/Workstation, and another on the DSP
board. See figure 7.

Figure 7: A High-level Architecture of the Simulation

 The CD++ test experimental frame communicates with
the board through the IDE software, and a built-in TCL
script controls the debugger operation. The IDE uses serial
communication to access the ADSP chip memory on the
DSP board. In the board, a talkthrough program is loaded
by the IDE, which invokes the CODEC, stores the digital
samples in a circular buffer, and sends the data back to the
CODEC for output. When the samples are available, the
TCL control script gets them and makes them available for
CD++ as new external events. The interaction between the
components is depicted in Figure 7. There are three
cooperating subsystems in the simulation, the DSP board,
the IDE and CD++. The DSP board subsystem acquires an
analog signal from a 15MHZ function/waveform generator,
and digitizes it through an A/D of the CODEC. These
digital samples are saved in a predefined location in the
DSP chip memory. In addition, the CODEC D/A writes
these digital samples back to reproduce the analog signal,
and displays them in a digital oscilloscope.

 An important issue raised was how to achieve the
system’s deadline. The real-time CD++ simulator uses the
wall-clock to determine when to execute the next event. In
this case, when the TCL model invokes the IDE
application, we need time to reset the board. The solution is
to let the model to wait for the hardware to start. During
this period, the model will remain in the active state, and
after that, it will generate an internal transition, recording
the physical time it takes to this action. Another issue is to
ensure that the model is ready to start a new read cycle, and
that will depend on the speed for reading. The clock model
will generate the read command according to the following
diagram (Figure 8):

Figure 8: Clock Timing Diagram

 Figure 8 shows that at time 0:0:1:0, the model st arted to
read data from the board memory. After 9 time units, the
model finished reading the data. The clock model will
record this time, and then it will issue the next command at
time 0:0:11:0 to start another cycle.

 Displaying the analog signal on the real-time digital
oscilloscope is another difficult issue. Due to the limitation
of the current IDE debugger, only 256 sample points can be
written back at a time. These digital points went through the
D/A and displayed on the oscilloscope. The following
digital pictures show a 1 KHz sine waveform on the scope.

Figure 9: Digital Pictures of 1 KHz Sin Waveform

 The top is the input signal in sine waveform; the bottom
image is the output from the simulation. Since the output
signal is instantaneous, the display of the output signal is
caught by freezing the screen. After adjusting the scale of
the signal, we can read that the frequency is 1 KHz, which
means the output signal is correct (in the picture they seem
to be different, because the digital oscilloscope does not
have enough signals to acquire in order to auto-set the
display).

TEST EXAMPLES

 Different tests were conducted to evaluate the software
and hardware components, as well as the program as a
whole (refer to Test B conceptual frame) to examine the
correctness and performance of the simulation.

 1) Examining the A/D functionality of the CODEC. At
initialization, the clock atomic model generated a control
signal to start the control atomic model at time
00:00:00:040. The control model then invokes the TCL

model to start the IDE application and to load the TCL
script. After pressing the reset button on the DSP board, the
talkthrough program is loaded into the DSP board. At the
same time, the dataTransfer atomic model is hold in the
sleep state and is waiting for the data to be generated by the
CODEC on the DSP board. Upon receipt of the converted
digital data, the dataTransfer model will take these data and
send them back to the control model. Finally, through a
display atomic model, these samples will be updated and
stored in a bin. After one simulation cycle, the clock will
generate the next command. The simulation can be
terminated by a preset simulation time or manually.

 The following execution results show that all the signal
conversions are successful and the values are obtained.
These results match with those of the test A experimental
frame and the differences in the value column represent a
difference in the format and the analog waveform used.

Wall clock time results Output Port value
00:00:40:708 succeeded signal 0.50391
00:00:41:008 succeeded signal -1.00000
00:00:41:308 succeeded signal -0.97546
00:00:41:608 succeeded ground 0.03967
00:00:41:900 succeeded signal -1.00000
…
00:06:51:210 succeeded signal 0.99997
00:06:51:210 succeeded ground 0.03894

Figure 10: Output of Test Model

 2) D/A functionality of the CODEC was added into the
simulation cycle. The purpose of this test is to verify the
correctness of the digital samples obtained from the
previous testing case.

CONCLUSION

 We presented how to achieve hardware-in-the-loop
simulation of discrete event models based on the DEVS
formalism. The real -time data communication between the
CD++ model and the DSP board was explored in detail. As
a result, we are now able to study models in a simulated
environment, and to execute them in a hardware surrogate.
The hierarchical nature of DEVS permitted to do this
without modifying the original models, providing the base
for enhanced system development in embedded platforms.

 This is the first version of the CD++ simulation platform
that employs an actual piece of hardware in the simulation
loop. The hardware has been successfully introduced into
the CD++ simulation platform. Different test examples and
results were described to verify the correctness of the
approach. The future development could be done towards
making large systems and exploring different ways of
hardware/software communications to further enhance and
formalizing real-time simulation using CD++.

REFERENCES

Analog Devices, 2000. “ADSP-2189M EZ-KIT Lite Evaluation

System Manual”.

Analog Devices, 2000. “AD73322 data sheet”. Analog Devices
T echnical Staff.

Analog Devices, 2000. “ADSP-218x DSP Hardware Reference”.
Analog Devices, 2000. “VisualDSP User’s Guide for ADSP-21xx

DSPs”.
Berge, J.M. 1997. “Hardware/Software Co-Design and Co -

Verification”. Kluwer Academic Publishers.
Glinsky, E.; Wainer, G. 2002. "Performance Analysis of Real-

Time DEVS models". In Proceedings of 2002 Winter
Simulation Conference. San Diego, U.S.A.

Li, L.; Pearce, T.; Wainer, G. 2002."An experience in hardware-
software codesign using the DEVS formalism". Technical
Report SCE-12-02, Department of Systems and Computer
Engineering, Carleton University.

Rodríguez, D.; Wainer, G. 1999. "New Extensions to the CD++
tool". In Proceedings of 31st SCS Summer Computer
Simulation Conference. Chicago, U.S.A.

Wainer, G. "CD++: a toolkit to define discrete-event models".
2002. In Software, Practice and Experience. Wiley. Vol. 32,
No.3. pp. 1261-1306.

Zeigler, B.; Praehofer, H.; Kim, T. 2000. “Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems”. Academic Press.

BIOGRAPHIES

Lidan Li is a M.A.Sc. student in the Department of Systems
and Computer Engineering (SCE) at Carleton University.
She received her B. Eng. degree (1998) from Shanghai
University, Shanghai, China.

Gabriel Wainer received a M.Sc. (1993) and a Ph.D. (1998,
summa cum laude) in Computer Sciences from the
Universidad de Buenos Aires (Argentina) and Université
d'Aix-Marseille III (France). He is Assistant Professor in
the SCE Department, Carleton University. He was Assistant
Professor at the Universidad de Buenos Aires, Argentina, a
visiting research scholar at ACIMS, University of Arizona
and LSIS/CNRS (Marseille, France). He is author of two
books and numerous articles on Discrete-Event simulation
and real-time systems. He is Associate Editor of the
Transactions of SCS. Prof. Wainer was a member of the
Board of Directors and he is the chair of Standards
Committee of the SCS. He is Associate Director of the
Ottawa Center of The McLeod Institute of Simulation
Sciences, and the coordinator of an international group on
DEVS standardization.

Trevor Pearce completed both a B.Eng. (with High
Distinction, 1982) and a M.A.Sc. (1986) in Electrical
Engineering at Carleton University, and a Ph.D. in 1994, at
Queen's University with the Department of Computing and
Information Science. He has been an Assistant Professor at
Carleton University, in the SCE Department since 1995,
and has served a term as the Associate Chair for
Undergraduate Studies. He is researching embedded
systems develop ment methods based on modeling and
simulation, real-time simulation, and distribuited simulation
based on the High Level Architecture (HLA). At Carleton,
he is a member of the RADS Lab, and a founding member
of the Embedded Systems Group. He is a member of OC-
MISS, and the founding Chair of the Standards Activities
Committee for SISO Canada.

