NEW TECHNIQUES FOR PARALLEL SIMULATION

OF DEVSAND CELL-DEVSMODELSIN CD++

By

Ezequiel Glinsky, B. Sc.

A thesis submitted to

The Faculty of Graduate Studies and Research

In partia fulfillment of

the requirements of the degree of

Master of Applied Science

Ottawa- Carleton Institute for Electrical and Computer Engineering
Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario
Canada

© Copyright 2004, Ezequiel Glinsky

The undersigned hereby recommends to the Faculty of Graduate Studies and Research
acceptance of the thesis
New techniquesfor parallel ssimulation
of DEVSand Cell-DEVS modelsin CD++
Submitted by Ezequiel Glinsky
In partial fulfillment of the requirements for the

Degree of Master of Applied Science

Thesis Supervisor

Dr. Gabriel Wainer

Chair, Department of Systems and Computer Engineering

Dr. Rafik A. Goubran

Carleton University

2004

ABSTRACT

DEVS is a sound forma modeling and smulation (M&S) framework based on generic
dynamic system concepts. Cell-DEVS is a formalism for cell- shaped models based on
DEVS. This work presents a new simulation technique for execution of DEV'S and Cell-
DEVS models in distributed environments. The parallel simulator is based on Time
Warp, an optimistic synchronization protocol, and developed as a hew simulation engine
for CD++, a M& S toolkit that implements DEVS and Cell-DEV S theory. The presented
technique uses a non-hierarchical approach that simplifies the structure of the simulator
and reduces the communication overhead. In order to analyze the performance of our
simulator, we introduce a synthetic benchmark to test DEVS-based simulators. The
performance anaysis shows reasonable overhead in comparison to other simulators.
Using a distributed environment, our simulator ouperforms other alternatives and

achieves considerable speedups.

ACKNOWLEDGMENTS

| want to start by thanking my supervisor, Prof. Gabriel Wainer, for his support and
guidance over the last years. Working with him has been a challenging yet rewarding
experience.

| am grateful to several people at Carleton University who helped me in many ways,
especially to Diane Berezowski, Laura Cohen, and Luc Lalande.

| have had a wonderful time with friends at the Graduate Students’ Association. | will
aways keep those people, those moments, and that organization in my heart. In
particular, | want to thank my dream team: Cathy Anstey, Glen Bornais, Robert Johnson,
Phil Robinson, and Andrea Rounce.

Thanks to those who became my closest family in Canada. My biggest gratitude goes to
Juanca and Leo for our café miron and our Argentinean friendship, and to my favourite
Chilean, Loreto. | am very grateful to many friends | met in Ottawa, especially to Abeer,
the Martino family, Thierry, José Merseguer and my unforgettable rumis Nestor and
Covy.

| am thankful to my dearest friends in Argentina: Alberto Siless, Leandro Resnik,
Lisandro Icardi, Luciano Tirantte, Martin Dragovetzky, Patricio Donato, and their
partners.

| love and admire my parents, Isabel Monzon and Gregorio Glinsky. | carry their love,
support and encouragement as a gift. Thanks to my brothers, Adrian and Fernando, who
are dways with me.

This thesis is dedicated to the love of my life, Solange Epelman.

TABLE OF CONTENTS

Page
F S I A O TSRS 1
ACKNOWLEDGMENTS ..ottt e e e nnneas v
LIST OF TABLES ... oottt sttt st s ne s VIi
LIST OF FIGURES ... ottt sttt st s sb e e nnnen s VIl
LIST OF ACRONYMS ...ttt ettt ene st seeneeneneas XI
CHAPTER 1: INTRODUCTIONcociiiiieisiisieiee st se e s s 1
100 o 11 11 11 o o S 8
1.2 TheSiS OrganiZationc.cceeieeiieiie s e et erte et sr e e sreesneeneenns 11
CHAPTER 2. DISCRETE EVENT MODELING AND SIMULATION
TECHNIQUES 12
2.1 DEVS and Parallel DEVSTOrmaliSmS.........ccccoveeiiniinierieee e 12
2.2 MOdEling Cell SPACESceeiieiecieeie ettt sreene e 19
2.3 DEVS-based tOOlKItS fOr M&Scoouiiiiieeiece e 23
2.4 ThE CD A TO0IKIT ..ottt 28
2.5 Parallel and Distributed SIMUIELION.........ccoviiiiiiiireeee e 38
2.5.1 Conservative SIMUIALION.........cccveiieeeieee e sre e 42
2.5.2 OptimistiC SIMUIBLION.........cccueiieieceese et 44
2.6 TREWArPEU T00L......ccueiiiiieieee ettt sttt s a7
CHAPTER 3: ENABLING NEW TECHNIQUES FOR PARALLEL SIMULATION
OF DEVS AND CELL-DEVSMODELSccocotiiictiieeses et 51
CHAPTER 4: OPTIMISTIC PDESOF DEVSMODELScccociiieeciee e 56
4.1 Hierarchical and Flat Simulation in CD+ ..o 58
4.2 Algorithms for Parallel and Distributed Simulation using a Flat Approach........... 66
Nt S 411U = o] SRR 67
A.2.2 Flat COOMAINGLONeeieeeieeeieeiiesieeie sttt st sbe st e sae e snee e 69
VR28C 1 \\ [0 =X @0 o o] o= o] SRR 73

4.2.4 ROOL COOPAINGLON ...t e e et e e e e e e e e e e e e eeeeeeeaeeenneeeeaeeeeaans 77

4.3 SAMPIE SCENAMNOScevveeeerieeie et e riesee sttt et te e e sseetesseesbestesseesbesnsesneensens 80
CHAPTERS5: |IMPLEMENTING THE ABSTRACT SIMULATORS..........c..cccveee..e. 87
5.1 Execution of DEVS and Cell-DEVS MOES........cccciireririiere e 98
CHAPTER 6: PERFORMANCE ANALYSIS.....ooo e 107
B.1 DEV SIOMEocveiviieieiisieiee ettt sttt sttt be st sense e enenneee 107
6.2 Performance Analysis for DEVS MOEIScccooiiiiineiiieeeeee e 113
6.3 Performance Analysis for Cell-DEVS ModelScccoceveeveeievecie e 123
CHAPTER 7: CONCLUSIONS.........ccotti e esres e s snee s 139
T L FUIUIE WOTK ...t 141
REFERENGCES ...ttt st st be e e be e e snne e e nnneneas 144

Vi

L1ST OF TABLES

Table 1. Simulation parameters

vii

L1ST OF FIGURES

Page
Figure 1: Basic entitiesin M& S and their relationships [Z&100]cccccevveveveeneccieseenee, 2
FIQUIre 2: DEV S SEMANTICS.....cueitiiieeieeieeiei ettt sre e s 14
Figure 3: Sketch of a cellular automaton [Wai00]cccecveeereeieiiereeeseese e 20
Figure 4: CD++ (a) Model hierarchy, (b) Processor hierarchy..........cccooovneiiniiiiiennne 28
Figure 5: Diagram of atomic model Controller Unitccocoviviiininineeeeseseee 31
Figure 6: Specification of atomic model Controller Unitin CD++ (part 1)cccccceeeuneee 33
Figure 7: Specification of atomic model Controller Unit in CD++ (part 2)ccccceeveenee. 34
Figure 8: Diagram of the coupled model AMS ..o 35
Figure 9: Specification of coupled model AMSin CD++ ..o 36
Figure 10: Specification of Cell-DEVS modd lifein CD++......cccoveeveececeececce e 37
Figure 11: Automated Manufacturing System partitioned in two LPS...........ccccceveiinnenne. 40
Figure 12: Violation of local causality constraint in a distributed smulation................... 41
Figure 13: Structure of LPs and simulationobjects in Warped [Mar96]...........ccccceveennne 48
Figure 14: Summary of Warped APl [Mar97].......cccceveeieiereeeseeseee e e e 49
Figure 15: Layered architecture of the CD++ optimistic Simulator.............cccccceeeeveevenenee. 56
Figure 16: New processors class hierarchy in CD++ ... 57
Figure 17: Layout of asample DEVS MOdEl...........ccooieiiieiicce e 59
Figure 18: Sample DEVS model in hierarchica CD++ (&) models, and (b) processors...59
Figure 19: Processor hierarchy using aflat approach............ccccveeeieeieccecceececce e 61
Figure 20: Model partitioned in three DIOCKS...........cooviiiiiieiie 62
Figure 21: Model partition file for CD++........ooiieececeee e 63
Figure 22: Distributed processor structure for partitioned model...........cccccoveriiiiiennnne 63
Figure 23: Sending an output to aremote SIMUIELONcccervereiieereece e 66
Figure 24: Message flow in a distributed smulation of DEVS and Cell-DEVS............... 79
Figure 25: Initialization phase in sample Cell-DEVS model...........coovirieiiiincncncnee, 81

viii

Figure 26: Collect phase in sample Cell-DEVS modelccoooeieeiecieieecece e 82

Figure 27: Straggler message received during the smulation of a Cell-DEV'S mode!84
Figure 28: Reception of a straggler message in a node coordinatorccccecevvereeennnne 85
Figure 29: State of the node coordinator after the rollback.............coovvirieieiiiiniiee 86
Figure 30: Some classes of the Warped API [Mar97]coccevievevieeveee e 88
Figure 31: UML class diagram for the new DEV S PrOCESSOIS.........ceververeerierienseeseenienns 9
Figure 32: Class diagram for messages in CD++covveeieenece e 94
Figure 33: Classes Logical Process and ParallelMainSmulatorc.cccoevveieeiieinenns 96
Figure 34: Sample CD++ @Vent file ... 99
Figure 35: flat coordinator log file for a sample Cell-DEVS modd (partid) 100
Figure 36: smulator log file for cell model 1ife(0,2) (partial)ccooeeeeieeieenenerencnine 103
Figure 37: ssimulator log file for a sample atomic model (partial)........ccccevveeeneeciennnnne. 104
Figure 38: node coordinator 1og file (Partial)ceoeieienenenireeeeeeeee e 104
Figure 39: Sample output file for aDEVS MOdEl..........cccoveieieeiieie e 105
Figure 40: Example of aLl model: (a) top level; (b) level 4. 110
Figure 41: Model file generated by DEV Stone for aLl moddccocvecvvieiecinnnnene, 110

Figure 42: Execution times for LI models in a single CPU using the optimistic
parallel simulator and other SImulation eNgineScoceveverirrenene s 116
Figure 43. Overhead incurred by the optimistic parallel simulator and other
smulation engines for L1 MOdElSccoovieiiiinireeeeese e 116
Figure 44. Execution times for HI modes in a single CPU using the optimistic
parallel ssimulator and other SIMulation eNgINEScocevererieeienerereseens 119
Figure 45. Overhead incurred by the optimistic parallel simulator and other
simulation engines for HI MOElScooiiiiieiine e 119
Figure 46:. Execution times for HO models in a single CPU using the optimistic
parallel simulator and other Simulation enginesccccccveveeeceeveeccieesieee, 120
Figure 47: Overhead incurred by the optimistic paralel smulator and other
simulation engines for HO MOEIScccocceeiiiiiiiiciececce e 121
Figure 48: Specification of Cell-DEVS moddl life in CD++........cooceviiivieieinereee 124
iX

Figure 49: Partition of 20x20 life model in 4 MachingsS...........cccccveceveevecce e 126
Figure 50: Execution times for life model (1 VS. 4 ProCESSOrS)eeveruererieereerrerenreniens 126
Figure 51: Execution speedups for life model running in 4 processors..........cccuvevveeueene. 128

Figure 52: Execution times for life model using optimistic and conservative

SIMUIBLOIS IN 4 PrOCESSOIS.....ecvveveerereesseesseaeesseessesseesseesseesesseessessssssesssenssnns 129
Figure 53: Execution times for 50x50 life model in 1 and 8 processorsccoceeveeruenne 130
Figure 54: Execution speedups for 50x50 life model running in 8 processors................ 131
Figure 55: A different partition strategy for the life mode ... 133
Figure 56: Execution times for life model using 1, 3, 4 and 5 processors..........ccocvvveeen. 133
Figure 57: Speedups for life model distributed in 3, 4 and 5 processors..........ccccceveeuee. 134
Figure 58: Execution times for Cell-DEVS model using conservative and optimistic

SIMUIELOrSiN 1 and 4 PrOCESSOISecueeireerreeiesreesteeeesseesseeeesseessesessseesseseens 135
Figure 59: Speedup obtained by the optimistic simulator in 1 and 4 processors............. 136

L1ST OFACRONYMS

AMS
API
CORBA
CVDS
DEDS
DEVS
GVT
HLA
LP
M&S
MPI
OMG
PDES
P-DEVS
UML

Automatic Manufacturing System
Application Program Interface

Common Object Request Broker Architecture
Continuous Variable Dynamic Systems
Discrete Event Dynamic Systems

Discrete Event System Specification

Global Virtual Time

High Level Architecture

Logical Process

Modeling and Simulation

Message Passing I nterface

Object Management Group

Parallel Discrete Event Simulation

Parallel Discrete Event System Specification
Unified Modeling Language

Xi

Chapter 1: INTRODUCTION

Modeling and simulation (M&S) methodologies have become essential for
understanding, analyzing and developing a wide variety of systems. In the last centuries
scientists and engineers have relied on the use of models to describe the properties of the
systems under study. Most of these models were defined with mathematical
representations, allowing mathematical analysis techniques. Nevertheless, these methods
are unsuitable for many complex artificial applications developed in the last 50 years,
such as traffic control systems, automated factories, computer architectures, or
biomedical devices. These methods are not appropriate for studying various natural
systems either, especialy when the complexity or the required level of detail is high.

The development of computers has offered aternative methods, models can be
executed using computer simulation, allowing users to experiment different conditions
under risk-free environments. M&S is adso frequently used for training and educationa
purposes, using models previously developed by experts within an application domain.
Nowadays, M&S is a well-developed, well-proven approach to problem solving, which
advances steadily as more computing power becomes available at |ess cost.

The M& S process begins with a problem that needs to be solved or understood.

Figure 1 shows the basic entitiesin M& S and their relationships, as described in [Zei00]:

Experimental frame

Source
System

behavior
database

Modeling

relation Simulation

relation

Figure 1: Basic entitiesin M& S and their relationships [Zei00]

The source system is the environment under analysis. The elements observed in
the system and the conditions under which the system is observed establish the
experimental frame. A model is an abstract representation of such system that is
constructed using the acquired data. Generally, a model includes a set of instructions,
rules, or mathematical equations to duplicate the behaviour of the actual system. A
simulator is an agent capable of executing the model’s instructions, and thus generating
the model’ s behavior.

Figure 1 shows the two fundamental relationships that connect the basic entities.
The modeling relation links the real system and the experimental frame with the model
in terms of validity. It is concerned with how well the model behaviour agrees with the

sysem behaviour under the conditions specified in the experimental frame. The

2

simulator relation links amodel and a simulator. This relation deals with how faithfully
the ssimulator executes the instructions of the model.

The separation between model and simulator enables to validate the model and to
verify the correctness of the smulator independently [Zei99b]. This distinction results in
simulation algorithms whose correctness has been rigorously established separately from
the model.

Nowadays, several formalisms coexist and are being used to model and simulate
different types of systems. In this work, we focus on the DEV S (Discrete Events systems
Specification) formalism [Zei76, Zei00], which has been proven to be a universal
formalism to represent DEDS (Discrete Event Dynamic Systems). DEV'S was originally
defined in the 1970's as a discrete-event M&S mechanism. DEVS is a sound formal
framework based on generic dynamic systems concepts that supports provably correct,
efficient, event-based simulation. The framework enables the construction of models in a
hierarchical, modular fashion, alowing component reuse and reducing development and
testing time. Parallel DEVS or P-DEVS [Cho944] is an extension to DEV S that provides
a better way to handle ssimultaneously scheduled events, while keeping all the major
properties of the original formalism. Since RDEVS eliminates serialization constraints
existing in the origina DEV S formalism, it enables more efficient execution of modelsin
parallel and distributed environmerts.

The Timed Cell-DEVS formalism [Wai98] combines cellular automata [Wol86]

with DEVS theory, allowing individual cells to be defined as basic DEVS models and

coupled together to form complete cell spaces. The formalism supports the definition of
complex cell behavior with simple constructions.

Numerous tools that implement these formalisms have been used in a variety of
industries and areas of expertise, including chemistry, biology, computer architectures,
telecommunication networks, decision support systems, military applications, and
trangportation. CD++ [Wai02] is a M&S tool that implements DEVS and Cell-DEVS
theory. CD++ was revised and extended several times, and it currently supports stand-
aone [Rod99], real-time [Gli02a], and conservative parallel simulation [Tro0la]. CD++
has been used to model a variety of applications. The propagation of forest fires has been
simulated with CD++ [Ame01] using a Cell-DEV S model. Environmental and vegetation
conditions determine spread and intensity of fire. Three main groups of parameters are
specified: vegetation type (caloric content, mineral content and density), fuel properties
(the type of vegetation is classified according to its size), and environmental parameters
(wind speed, humidity and field slope). External factors are taking into consideration for
the spread of the fire in the region, such as the influence of rain or the activity of
firefighters. The movement of robots in an industrial plant has also been studied with
CD++ [Ame01]. Robots follow predefined one-way routes at a given speed with the risk
of colliding with other robots, in which case they apply a strategy to continue their way.
When a robot reaches its destination, the carried load is delivered and the robot is taken
off the floor. In this application, a DEVS component adds new robots to the simulation.
CD++ was used to study a watershed using Cell-DEVS [Ame0Q1], based on a model

previoudy defined in [Zei96]. The equations that define the filtration of water through
4

each layer of the soil were used to specify the rules of the Cell-DEVS model. The
simulation allows the study of the accumulation of water on a region after a period of
rain. A computer processor was smulated usng a DEVS modd defined in CD++
[Wai01]. This model includes the specification of components such as memory, registers,
and control unit. The reproduction of a marine germ was studied with CD++ [Ame03].
The concentration of bacteria over time was simulated using a Cell-DEVS model. The
variation of temperature was smulated using a DEVS model. The behavior of ants aso
been studied with CD++ [Ame03]. The model analyzes how ants find an existing source
of food and carry the food back to the anthill. CD++ has been used to study the
movement of crowds in a metro station [Ame03]. The model shows how people try to
reach the doors of arailroad car. It also shows the conflict when they collide with people
trying to get out from the railroad car. Modeling and ssmulation of urban traffic has been
studied using ATLAS [Dia01]. ATLAS is a specification language to study the flow of
vehicles in a city, which gives modelers a simple means to describe intersections, streets,
and other constructions, such as railways, traffic lights and parking spaces. The flow of
cars and trucks was studied in detail in [Dav00a].

M& S has become a fundamental tool in awide variety of fields. As a result, many
of the simulated systems are becoming more and more sophisticated. As these systems
become larger and more complex, the resources provided by a single-processor machine
become, in many cases, insufficient to execute those systems. Parallel and distributed
simulation (PADS) deals with the issues introduced by distributing simulations over

multiple processors. Parallel discrete event simulation (PDES) studies the execution of
5

discrete event models in paralé or distributed computers. A PDES simulation advances
by the occurrence of events that take place at discrete points in time. Fujimoto identified
three maor research communities involved in the field of parallel and distributed
simulation [FujO1]. The first group is the high performance computing community,
whose work started in the late 1970's and 1980’'s. This group’s main concern was to
reduce execution time of applications by using multiple processors. Severa
synchronization algorithms developed by this community, such as Chandy-Misra-Bryant
[Bry77, Char9] and Time Warp [Jef85], introduced fundamental ideas that are still being
applied. The second group is the defense community, mainly interested in integrating
separate training simulations to facilitate interoperability and software reuse. The third
group is the gaming and Internet community. Their efforts are mostly focused on
developing realistic scenarios in distributed environments.
Parallel ard distributed simulation can provide four major advantages [Fuj99]:

1. Enabling execution of simulations that otherwise could not be performed.
Executing a large system after subdividing it in simpler, smaller parts enables
shorter execution times. This enables using real-time simulations to support time-
critical decision-making processes in cases where a single computer cannot
achieve the required performance. Moreover, distributed environments alow the
execution of larger, more complex simulations whose menory requirements

exceed the resources available in a single computer.

2. Geographical distribution. It is possible to distribute the execution at different
physical locations, which is particularly interesting for some applications where
data or users are not located in a central location.

3. Integrating simulators based on different platforms. Simulations can be carried
out using different computers, operating systems, and simulators.

4. Fault tolerance. When using multiple processors, it becomes possible to increase
the tolerance to faillures in a simulation; if a node fails, a surviving node may take
over and continue the execution.

Synchronization is key when executing applications in paralel and distributed
environments. A logical process (LP) is a basic entity in a simulation. An LP receives
and generates timestamped events or messages to communicate with other LPs, which
might execute in a different processor or machine. The synchronization mechanism
ensures that each LP complies the local causality constraint, which requires that events
should be processed in their timestamp order.

There are two main classes of algorithms for synchronization. Conservative
algorithms offer a pessimistic approach. They avoid violating causality constraints at all
times during the execution of a simulation. Optimistic algorithms allow some violations
to happen, but provide a mechanism to detect and recover from these situations.
Optimistic algorithms have two main advantages over conservative approaches: (i) they
enable greater degrees of parallelism, and (ii) they do not rely on applicationspecific data
to determine events that are safe to process, which is usually the case in conservative

approaches.

A different way for improving ssimulation performance and reducing execution
times deals with the structure of the smulator. Hierarchical simulation mechanisms
incur in greater overheads due to an increased number of exchanged messages that travel
up and down the entire structure. Flat ssmulation approaches have been implemented in
distributed [Kim0Oa] and stand-alone [Gli02a, Gli02d] environments, aiming to reduce
the overhead by simplifying the structure. It has been shown that flat simulation
approaches outperform the hierarchica mechanisms in virtua-time and rea-time
simulators [Gli02b, Gli02c].

A hierarchical, conservative parallel simulation mechanism has been implemented
in CD++ [TroOla). Results have shown that parallel ssmulations outperformed single-
processor simulations for both DEVS and Cell-DEVS models in CD++ [Tro01b].
However, since it implements a pessimistic synchronization mechanism, the degree of
parallelism and the corresponding speedups are bounded. Moreover, studies showing that
hierarchical approaches worsen execution performance encourage the implementation of

aflat distributed simulator.

1.1 CONTRIBUTION

This dissertation presents the design and implementation of a new technique for
optimistic smulation of Paralldd DEVS and Cel-DEVS models in distributed
environments. Our simulation methodology is based on the Parallel DEVS abstract
simulator [Cho94b] and the Time Warp synchronization mechanism [Jef85]. The Time

Warp algorithm allows simulation objects to process events optimistically, assuming

8

events sent from remote LPs will not cause rollbacks in the future. If a remote LP sends
such a message, simulation objects have to rollback optimisticaly processed events and
continue the normal execution of the model from that point.

We introduce two new classes of DEV'S processors that carry out the simulation
efficiently across multiple machines. The proposed simulation agorithms use a flat
simulation approach that €iminates the need for intermediate coordinators.
Consequently, it reduces the overhead of message passing, improving the overall
performance of the smulation.

The new simulation technique is implemented in the CD++ toolkit, and its
efficiency is measured using DEVS and Cell-DEVS models. Moreover, instead of
restricting our efforts on testing individual models, we developed DEV Stone, a synthetic
benchmark to study the performance of DEV S-based simulators. Different factors were
considered in order to create such synthetic models, which resemble real world
applications. We focused on the main factors that have a significant impact on
performance. Our benchmark supports generating models that have different structure,
size and behavior. Two parameters define the genera structure and size of a DEV Stone
model, namely depth and width. The depth of the model describes the number of levelsin
the overall structure. The width of the model specifies the number of components in each
intermediate level. DEV Stone supports three different types of models. Each model type
is characterized by the number and complexity of interconnections between inner
components. Finally, models execute different workloads that represent the real world

processes to be performed by components of the application.
9

Using DEV Stone, it is possible to assess the performance of a simulator using a
large set of models with diverse characteristics. Since the structure and behavior of the
models are known, it is aso possible to compare the performance of different simulators.
In order to obtain meaningful results, we use different types of models focusing on issues
that can impact the execution performance. For example, we study the effect of executing
models that are predominantly wide (i.e., a large number of models per level) or deep
(i.e., alarge number of levels in the modeling hierarchy). Using a heterogeneous test set,
it is possible to anayze the performance of the ssmulators under different scenarios.

The accuracy and reliability of DEV Stone relies on the automatic generation and
execution of alarge pool of diverse models, which provides arobust test set. This enables
an anaysis of performance with relation to the characteristics of a category of models of
interest. The scope of this work is the execution of medium to large size models, defined
as models composed of a minimum of 30 components. DEV Stone can be used to assess
the efficiency of DEVS simulation engines for these types of models, and it provides a
common metric to compare the results using different tools.

We conduct a performance analysis using DEV Stone to study the overhead of the
new mechanism. A comparison between its performance and other engines provided by
CD++ is provided. Although the overhead associated with synchronization tasks
implemented by our ssmulator can be considerable, it presents good performance results
when compared with more simple techniques. Based on these tests, we observed

overheads for DEVS models is in the range of 2.5% to 5%. For Cell-DEVS models, we

10

present a performance anaysis on distributed environments using models with different

size and partition strategies showing significant execution speedups.

1.2 THESIS ORGANIZATION

This work is organized as follows. Chapter 2 introduces the DEVS and Cell-
DEVS formalisms, as well as some genera concepts on parallel and distributed
simulation with special focus on Time Warp synchronization. A survey on existing
DEVS-based tools is presented. We aso review the design of the CD++ simulator and
provide some examples of DEVS and Cell-DEVS models. Chapter 3 discusses the
simulation mechanisms provided by CD++ and other tools. Then, we introduce basic
ideas about our new simulation technique. In Chapter 4, we present the design of our flat,
optimistic smulator for DEVS and Cell-DEVS. We introduce the new agorithms that
carry out distributed simulation, providing sample scenarios to better understand how
they work. Chapter 5 discusses the implementation issues related to the distributed CD++
simulator. Chapter 6 introduces a synthetic benchmark for DEVS-based tools. A
performance analysis of the new simulator that uses DEV Stone and other models is

presented. Finally, Chapter 7 provides our conclusions and future work.

11

Chapter 22 DISCRETE EVENT MODELING AND SIMULATION

TECHNIQUES

This chapter provides background information about the DEVS and Cell-DEVS
formalisms and their extensions. The two man synchronization approaches for
distributed simulation are also discussed, focusing on the optimistic alternative chosen for
this work. We survey several M& S tools based on DEV'S. Then we review the design of
the CD++ simulator and some examples of models are given. Finally, this dapter

presents Warped and MPI, which are used to implement the optimistic CD++ simulator.

2.1 DEVSAND PARALLEL DEVS FORMALISMS

Systems whose variables are discrete and where time advance is continuous are
known as DEDS (Discrete Event Dynamic Systems), as opposed to CVDS (Continuous
Variable Dynamic Systems) which, in general, can be described by differential equations.
Simulation mechanisms for DEDS systems assume that changes of state will take place
upon the occurrence of an event. Formally, an event is defined as a change of state that
occurs at a specific point of timet; T R.

DEVS (Discrete Events systems Specification) [Zei 76, Zei00], a formalism for
modeling and simulating DEDS systems, defines a way to specify systems whose states
change either upon the reception of an input event or due to the expiration of a time
delay. It alows hierarchical decomposition of the model by defining a way to couple

existing DEV'S models.
12

A real system modeled using DEV'S can be described as a composition of atomic
and coupled components. An atomic model is defined by:

M = <X’ Ya S dint, deXta I ’ ta>

where

X={(V)|pT IPorts,v T Xp} isthe set of input ports and values;
Y ={(pv)|pT OPorts,v1 Yp} is the set of output ports and values;
S is the set of sequential states,

Jot: QxX® S is the external state transition function,

whereQ={ (se) /sl S, el [0, ta(s)] } and eis the elapsed time since the last state

transition.

dit: S® S isthe interna state transition function;
[:S® Y is the output function;

ta S® Ry" U ¥ is the time advance function;

A DEVS model isinastate s Sat any given time. In the absence of external
events, it remains in that state for a lifetime defined by ta(s). A transition that occurs due
to the consumption of time indicated by ta(s) is called an internal transition. When ta(s)
time expires, the system outputs the value | (s) and then changes to a new state given by
dire(S). On the other hand, an external transition occurs due to the reception of an external
event. In this case, the external transition function determines the new state, given by
det(S, € X) Wheres s the current state, e is the time elapsed since the last transition and x

1 Xisthe externa event that has been received.

13

The time advance function can take any real value between 0 and ¥. A state for
which ta(s) = 0 is called atransient state. In contrast, if the ta(s) =¥ then sissaid to bea
passive state, in which the system will remain perpetualy unless an external event is
received.

The following figure shows the description of states and variables in DEVS

models:

y
X

11l | gl

s =Oext (8, €, X)

M (s)

s ————— 5 =%ui(s)

="

Figure 2: DEV S semantics
A DEVS coupled model is composed of several atomic or coupled submodels. It

isformally defined by:

CM =<X,Y,D,{Mq4|d1 D}, EIC, EOC, IC, select>

where
X={(EV)|pT IPorts,v1 Xp} is the set of input ports and values;
Y={(p\Vv)|pT OPorts v Yp} is the set of output ports and values;

14

D is the set of the component names, and the following constraints apply to the
components, which are also DEV'S models:
foreachdl D
Mg = (Xd, Yd, S dext , dint, deon, | , ta) isa DEV S basic structure,
where
Xa={(M)|pT IPortsv 1 Xp},
Ya = {(pv)|p T OPorts v 1 Yy}, and the couplings are subject to the following
conditions:
external input couplings (EIC) connect external inputs to component inputs, EICT {((N,
ipn), (d,ipg)) |ipnT 1Ports, dT D,ipg1 IPortss}
external output couplings (EOC) connect component outputs to external outputs, EOC |
{((d, 0pg), (N, 0pn)) | opnT OPorts, d1 D, opg1 OPorts}
internal couplings (IC) connect component outputs to component inputs, IC T {((a, op a),
(b,ipp))|a bl D,op.T OPorts,,ip,1 IPorts,}

Direct feedback loops are not allowed, i.e., no output port of a component may be
connected to an input port of the same component. Formally,
((d, opq), (e,ipg)) T IC impliesd? e

The values sent from a source port must be within the range of accepted values of
adestination port (range inclusion constraint). Formally,
" (N, ipn), (d,ipa)) T EIC: Xipn | Xipd

" ((@,0pa), (N,0pn)) T EOC : Yopal Yopn
15

" ((@,0pa), (0, ip)T 1C: Yopal Xipo.

select is the tie-breaker function, where select: subset of D ® D, such that for any
non-empty subset E, select (E)T E.

A coupled model groups severa DEVS into a compound model that can be
regarded, due to the closure property, as a new DEVS model. The closure property
guarantees that the coupling of several class instances results in a system of the same
class [Zei00]. This property allows hierarchical model construction.

In addition, each coupled model has its own input and output events, as defined
by the X and Y sets. When external events are received, the coupled model has to redirect
the inputs to one or more components. Similarly, when a component produces an output,
it may have to map it as an input to another component, or as an output of the coupled
model itself. Mapping between ports is defined by the Z function.

Multiple components can be scheduled for an internal transition at the same time
in a coupled component, and ambiguity may arise. If the first component to execute its
internal transition produces an output that maps to an externa event for another
component that is already scheduled for an internal transition, then it is not clear which
transition this second component should execute first. Two aternatives exist: to execute
the external transition first with e = ta(s) and then the internal transition, or else to
execute the internal transition first followed by the external transition withe = 0. By the
select function, the DEV'S formalism enables a smple way to solve this ambiguity. The

function defines an order over the components so that only one component of the group

16

of imminent models is allowed to have e = 0. The other imminent models are divided in
two groups. those that receive an external output from this model, and the rest. The
former will execute their externa transition functions with e = ta(s), the latter will be
imminent during the next ssmulation cycle which may require again the use of the select
function to decide which model will execute first. This strategy for tiebresking is rigid
and, in addition, it introduces seridization in the execution of components. The
seriaization introduced by this approach becomes visible when the select function has to
be used to determine the priority in which the components have to be executed. For
example, the select function is used to determine which atomic component has priority
over the rest to execute its internal transition function when many interconnected atomic
models are imminent.

Parallel DEVS or P-DEVS [Cho944] is an extension to DEVS that provides a
more flexible way of dealing with these ambiguities. Atomic models provide an
additional confluent function to specify collision behavior for events that might be
scheduled simultaneously. Since serialization constraints existing in the original DEVS
formalism are now eliminated, P-DEV S permits increased degrees of parallelism that can
be exploited in parallel and distributed environments. Consequently, Parallel DEV S was
the formalism chosen as the foundation for this work.

P-DEV'S models are described very much like DEVS models. An atomic Parallel
DEVS modd! is defined as:

M =<Xu, Y, S dext ; dint, deon, | , ta>

where
17

Xm={(V|pl IPorts,vT Xp} is the set of input ports and values;

Ym={(pV)|pl OPorts,v1 Yp} is the set of output ports and values;
S isthe set of sequential states,

dec: QX XmP® S is the externa state transition function;

din: S® S isthe internal state transition function;

don: QX XvP® S is the confluent transition function;

| :S® YyP is the output function;

ta:S® R'E ¥ is the time advance function,

withQ={(s,e)|sT S,0£ ef tas)} the set of total states.

There are two main differences between a basic DEVS and a basic Parallel DEVS
model. First, the external transition function uses a bag of events instead of a single
event. This allows multiple events to be processed simultaneously. Since external events
received by the component are added to a bag, X", externa transition functions can
combine the functionality of a number of external transitions into a single one. Second,
the model specification includes a confluent transition function (dcon). When a collision
between the internal and external functions occurs, the confluent function determines the
new state of the model.

The semantics of RDEVS are similar to those of DEVS. A basic model isin a
state s at any given time. In the absence of externa events, the model remains in that state
for alifetime period defined by ta(s). When that time expires, an internal transition takes
place; the system outputs the value | (s) and then it changes to the state specified by

18

dirS). If one or more external events E = {x1 . xn / X1 Xwu} occurs before ta(s) expires,
i.e.,, while the system isin total state (s, €) with e < ta(s), the new state will be given by
the model’s external transition function, dex(s,e,E). P-DEV'S alows a better way to deal
with collisions. External and internal transitions are in conflict when external events E are
received when e = ta(s). In such cases, the new state of the model can be given by
ded(dind(S),6,E) or din(dei(s,e,E)). Hence, modelers have a flexible way of indicating the
appropriate behavior for each model in the confluent function (deon), Which is triggered in
case of collisions.

In P-DEV'S, coupled models are defined as in DEV S without the need for a select
function. Formally, a coupled model is defined as:

CM =<X,Y,D,{Mq4|dT D}, EIC, EOC, IC>

The definitions for the set of input and output events (X and YY), components (D
and My), and couplings (EIC, EOC, and IC) follow the specifications of DEV'S coupled
models presented earlier in this chapter.

If multiple components in a coupled model are imminent, all their outputs are first
collected and mapped to their influencees. Then, the corresponding transition function is

executed for every model.

2.2 MODELING CELL SPACES
Different formalisms have been used to capture the behavior of systems that can
be represented as cell spaces. Examples of such systems can be found in many fields,

from chemistry to engineering, from physics to social sciences. Cellular Automata
19

[Wol86] is a well-known formalism that describes this type of systems. A cellular
automaton is an infinite regular n-dimensional lattice whose cells can take one finite
value. States in the lattice are updated according to a loca rule in a simultaneous,
synchronous way. The cell states change in discrete time steps using a local transition
function that considers the current state of the cell and a finite set of nearby cells (called

the neighborhood of the cell).

/

Cdl neighborhood

Figure 3: Sketch of acellular automaton [Wai00]

2.2.1 The Timed Cdll-DEVS formalism

The Timed Cell-DEVS formalism [Wai98] uses the DEV'S paradigm to define a
cell space where each cell is defined as a DEV'S atomic model. As aresult, it is possible
to build discrete event cell spaces improving their definition by making the timing
specification more expressive. A Cell-DEV S atomic model is defined in [Wai98] as:
TDC=<X,Y,I,S ?,N,d, di,det, t, ?,D >
where

Xisaset of external input events,

20

Yisaset of external output events,

| represents the model's modular interface;
Sisthe set of sequentia states for the cell;
T isthe cell state definition;

N isthe set of states for the input events;
d isthe delay for the cell;

dirtis the internal transition function;

dex is the external transition function;

t isthe loca computation function;
?isthe output function; and

D isthe state duration function.

A cdl uses a set of input values N to compute its future state, which is obtained
by applying the loca computation function t. A delay function is associated with each
cell, deferring the output of the new state to the neighbor cells. This activation of the
local computation is carried by the dey function.

After the basic behavior for a cell is defined, a complete cell space can be
constructed by building a coupled Cell-DEV S model:

GCC =< Xjiq, Yiist, I, X, Y, n, {tg,....ta}, N, C, B, Z, select >
where
Xiigt 1S the input coupling list;

Yiis 1S the output coupling list;

21

| represents the definition of the interface for the modular model;
X isthe set of external input events;
Y isthe set of external output events;
n isthe dimension of the cell space;
{t1,...,tn} is the number of cellsin each of the dimensions;
N is the neighborhood set;
C isthe cdl space;
Bisthe set of border cdlls,
Z is the trandation function; and
select is the tie-breaking function for simultaneous events.

This specification defines a coupled model composed of an array of atomic cells.
Each cell is connected to the cells defined in its neighborhood. Nevertheless, as the cell
gpace is finite, either the borders are provided with a different neighborhood than the rest
of the space, or they are wrapped (cells in one border are connected with those in the
opposite one). Finaly, the Z function defines the internal and external coupling of cellsin
the model. This function translates the outputs of mth output port in cell G; into values
for the mth input port of cell G . Each output port will correspond to one neighbor and
each input port will be associated with one cell in the inverse neighborhood. The select
function serves the same purpose as in the original DEVS models. to tiebreak among
imminent components.

The use of the select function in Cell-DEV'S introduces similar problems to those

introduced by DEV'S, namely lack of parallelism exploitation and possible inconsistency
22

with the real system. In addition, the timed Cell-DEV S has ancther restriction: only one
input can arrive from each input port. Such restriction disallows zero-delay transitions
and external DEVS models sending two simultaneous events to the same cell [Wai00].
Forbidding zero-delay transitions and the limitation of only one event per external model
isvery restrictive, and led to an extension of the formalism.

Parallel Cell-DEVS is a revision of the Cell-DEVS formalism that eliminates
such restrictions [Wai00]. The author shows two important properties. i) Parallel Cell-
DEV S models are equivalent to parallel DEVS models, and ii) closure under coupling for
paradlel Cell-DEVS modes also holds, i.e, a coupled parallel Cell-DEVS moded is
equivalent to a basic parallel Cell-DEVS mode. An implementation of Paralel Cell-

DEV S was presented in [Tro03].

2.3 DEVS-BASED TOOLKITSFORM&S

Severa tools have been implemented based on DEV'S theory and its extensions,
reflecting the level of interest fom the community. Some of the existing DEVS M&S
toolkits are listed next.

0 ADEVS [Nut04] provides a C++ library based on DEV'S, which developers can use
to build their own models, and supports integration with other simulation
environments.

0 DEVS-C++ [Ze96] is a DEVS-based modeling and simulation environment written

in C++, which implements parallel execution and supports large-scale systems.

23

DEVS-Scheme [Zei93] is a knowledge-based environment for modeling and
simulation based on the DEV S formalism, supporting real-time simulation.
DEVSGrid [Seo04], a JAVA-based simulator for Grid computing infrastructures,
was developed focusing on performance and scalability. It supports cost-based model
partitioning, remote simulator activation, and dynamic coupling resructuring.
DEVSHLA [Zei99q] is based on the High Level Architecture (HLA) [HLAOQQO]. It
was used to demonstrate how an HLA-compliant DEV'S environment could improve
the performance of large-scale distributed modeling and simulation.

DEVSCluster [KimOOb, Kim04] is a multi-threaded, CORBA-based simulator for
DEVS models that supports smulation in heterogeneous network environments.
DEVSJAVA [Sar98] is a DEVS-based modeling and simulation environment written
in Java. It provides classes for the users to implement their own DEV S models.
DEVSim++ [Kim94] is an object-oriented software to ssimulate DEV S models, which
was implemented in C++. The tool defines basic classes that can be extended by users
to define their own atomic and coupled DEV S components.

GALATEA [Dav00b] is a smulation platform that offers a language to model multi-
agent systems using an object-oriented architecture. The tool describes a real system
as a set ofinteracting agents.

JAMES [Him04] implements DEV S theory to model and simulate agent systems. The

toolkit supports software-in-the-1oop simulation to test agents in virtual environments.

24

o JDEVS [Fil02a] is a DEVS modeling and simulation environment written in Java. It

allows general purpose, component-based, object-oriented, visual simulation of
models.

PyDEVS uses the ATOMS3 tool [Del02] to construct DEV'S models and to create the
code to be executed. Models are represented as a state graph used to generate Python
code and then interpreted by PyDEVS.

SimBeams [Pra99] is a component-based software architecture based on Java and
JavaBeans. The idea is to provide a set of layered components that can be used in
model creation, result output analysis and visualization using DEVS.

The mgority of the existing toolkits support stand-alone simulation Some of

them, such as DEVS-C++, DEVS/HLA, DEVSCluster, D-DEVSIim++ [Kim96] (an

extenson to DEVSim++), and DEVSIAVA adlow distributed execution of DEVS

models. The middleware technology that enables parallel and distributed simulation

varies from tool to tool. Some of these technologies are:

o

CORBA (Common Object Request Broker Architecture) [OMGO02], an open standard
promulgated by the Object Management Group (OMG),

HLA (High Level Architecture) [HLAOQO], a standard specifically designed for
distributed simulations, and

MPI [Don96], a message passing interface standard designed for high performance
communication on parallel and distributed environments.

Some of the approaches exploit the specific paralelism existing in DEVS by

implementing a pessimistic approach. In such cases, a unique globa scheduler is in

25

charge of synchronizing al nodes, only events with identica timestamp can be
processed. As a result, the global scheduler often becomes a bottleneck that prevents
achieving higher degrees of parallelism and speedups in a smulation [Kim96]. On the
other hand, optimistic approaches give nodes more freedom to process events. In such
cases, causality errors can occur but a mechanism to detect and recover from them has to
be incorporated. Some efforts in optimistic smulation of DEV'S models are summarized
next.

DEVS-Ada/Tw [Chr90] was the first attempt to combine DEVS and Time Warp
over a multiprocessor environment. However, the implementation imposes two important
constraints. First, all models mapped in the same processor are treated as an indivisible
logical process. In case of arollback, the associated cost can be considerable because all
the information of the LP has to be restored. Second, models can be divided only at the
top level of the hierarchy, imposing a maor restriction on users when determining
partition boundaries. The second constraint makes the approach inflexible in terms of
partition strategies, as it is not possible to divide a model at lower levels of its hierarchy.
For example, a system composed by two coupled models can only be partitioned in two
processors (one machine running each coupled model), regardless of the interna structure
of its coupled models.

The Distributed Optimistic Hierarchica Simulation (DOHS) scheme combines
DEVS and Time Warp, implemented in D-DEV Sim++ [Kim96]. This aternative presents
a more general approach for distributed optimistic execution of DEVS models, while

addressing the two maor restrictions introduced by DEVS-Ada/TW: DOHS rollback
26

mechanism allows simulation objects to be rolled back individualy, and it supports
model partition at any level of the hierarchy.

DEV SCluster [Kim00b, Kim04] is an object-oriented, multi-threaded, distributed
simulator that implements a combination of Time Warp and DEVS simulation based on
the ideas presented in [Kim96]. However, instead of using the classic message passing
approach, DEVSCluster uses CORBA-based method invocation for advancing the
simulation. In [Kim04], the authors present a northierarchica approach for more
efficient distributed simulation.

A risk-free optimistic synchronization mechanism is proposed in [Zei97b],
focused on applications that interact with geographically distributed real-world
components. In this approach, only safe outputs are sent (avoiding propagation of
rollbacks to remote processors so that rollbacks can aways be kept local). This
mechanism is well suited for shared memory multiprocessor platforms, but has
limitations in distributed heterogeneous architectures.

DEVS/P2P [Che04] is an implementation of a distributed DEV'S simulator over a
layered peer-to-peer network system. The proposed agorithm does not require a
coordinator for scheduling purposes;, simulators solve synchronization issues by
themselves following a decentralized mechanism. Nodes use peer discovery functions to

find the location of remote resources.

27

2.4 THE CD++ TOOLKIT

CD++ [Rod99, Wai02, Tro03] is a M& S toolkit that implements the original and
Parallel DEVS and Cell-DEV S formalisms. The tool was built as a hierarchy of classesin
C++, where each class corresponds to a simulation entity using the basic concepts
defined in [Zei 76, Zei00].

There are two basic abstract classes: Model and Processor. The former is used to
represent the behavior of the atomic and coupled models, while the latter implements the

simulation mechanisms. Figure 4 shows the CD++ class hierarchy.

Atomic Coupled Simulator Coordinator Root

Coordinator
AtomicCell CoupledCdll | CellCoordinator |

@ (b)

Figure 4. CD++ (@) Modédl hierarchy, (b) Processor hierarchy
The Atomic class implements the behavior of an atomic component. The Coupled
class implements the mechanisms of a coupled model. For cellular models, special atomic
models are used to represent the cells. To do so, AtomicCell and CoupledCell are defined
as subclasses of Atomic and Coupled respectively. AtomicCell class extends the behavior
of the atomic models, to define the functionality of the cell space. In contrast,

CoupledCell handles a group of atomic cells.

28

A simulator object manages an associated atomic object, handling the execution
of its dint, dext; doon @nd | (S) functions. A coordinator object manages an associated
coupled object. Only one root coordinator exists in a smulation. It manages global
aspects of the simulation. It is involved with the topmost-coupled component, which has
the highest level in the modd hierarchy. Moreover, the root coordinator maintains the
global time, and it starts and stops the ssimulation process. Lastly, it receives the output
results that must be sent to the environment.

The simulation process is message driven; processors exchange messages to
advance the execution of the model. Each message contains information to identify the
sender and the receiver. A time-stamp for the message and an associated value are aso
included in the packet. Two main categories of messages exist: synchronization and
content messages. These categories consist of several types of messages.
Synchronization messages:

@ Collect message
* Internal message
done Done message
Content messages:
q External message
y Output message
Processors have internal variables to keep the time of the smulation:

L Time of last transition

29

tN

Time of next transition

and abag to store external messages.

The tool provides a specification language that allows describing coupling of

models, initial values and externa input events. Atomic models are developed under

C++, which provides a great flexibility and computing power to the modeler. Each new

atomic model must inherit from the Atomic class in order to extend their basic behavior.

New atomic modds are written in C++ and have to be derived from the class

Atomic. The methods that determine the behavior of an atomic moddl are:

(0]

initFunction, which is executed when the smulation starts, and usualy
initializes the model variables,

external Function, which is executed when an external event is received,
internalFunction, which is executed when an internal transition is
scheduled, and

outputFunction, which generates the output of the model and is executed

before the internal transition function.

CD++ provides functions that can be used from the atomic models, including:

o

holdin(state, time). It is used to specify that the model must remain in a
state for the specified time.

passivate(). When this function is called, the model entersin passive mode
(i.e., ta= ¥), and only external events can change its state.

sendOutput(p, v). This function sends an output message with a vaue of v

through the output port p.
30

o dtate(). It returns the current state of the model.

station_1A
: >
station_2A
>
station_3A
: P>
station_4A
> . .
station_display A
sensor 1A >
P direction_A
sensor _2A Controller >
: activate_A
sensor_3A > Uni t — >
P direction_display_ A
sensor_4A p
>
station_1B station_display_
> >
station_2B direction_B
> >
station_3B activate B
P> >
station_4B direction_display_B
> >
sensor 1B
P>
sensor 2B
sensor_3B >
>
sensor 4B
>

Figure 5: Diagram of atomic model Controller Unit

Figure 5 shows the scheme of an atomic model. Thisis a controller unit used in an
automated manufacturing system (AMS) built with CD++ [Gli04]. An AMS is formed by

dedicated stations that perform tasks on products being assembled, and conveyors that

31

transport the products to/from those workstations. The controller is connected to other
components: sensors, a scheduler, conveyor belts, and a digital display. Input ports (e.g.,
station 1A and sensor_2A, which are connected with the scheduler) and output ports
(e.g., station display A, which is connected to the digital display, and direction_A,
which is connected with the engine of the conveyor belt) allow the controller unit to
communicate with those components.

Figure 6 and Figure 7 show the specification of the controller unit in CD++. The
constructor of the class, ControllerUnit::ControllerUnit, creates the input and output
ports of the model. The initiaization function, initFunction, initializes some of the
controller’s variables (e.g., current station, next required station, activation of sensors,
direction of the conveyor belt) for both production lines (A and B). The external
transition function specifies the behavior of the controller unit upon the reception of
events from the sensors and the scheduler. For example, upon the activation of a sensor,
the conveyor belt A has to be stopped when the requested station is reached. The method
holdin() is called to trigger an internal transition function after the time indicated as a
parameter (in this case, since the specified time is zero, then the internal function is

executed immediately).

32

Control lerUnit::ControllerUnit

(const string &anme) : Atom c(name),
station_1A(addlnputPort("station_1A")),
station_2A(addlnputPort("station_2A")),
station_3A(addlnputPort("station_3A")),

sensor _3B(addl nput Port("sensor_3B")),
sensor _4B(addl nput Port("sensor_4B")),

station_display_A(addOutputPort("station_display A")),

di rection_di spl ay_B(addQutputPort("direction_display_B")),
{}

Model &ControllerUnit::initFunction()
{
reg_station_ A = 1;
curr_station_A = 1;
sensors_enabled A = 1;
direction_A = 0;

reg_station_B = 1;

curr_station_B =1
sensors_enabled B = 1;

}

Model &Controll erUnit::external Function
(const External Message &nsg)

{ if (sensors_enabl ed_A)
{ if(msg.port() == sensor_1A)
if (reg_station_A == 1)
{ stop_engi ne_A = 1;
Hbidln(active, VTine::Zero);
if{ meg. port() == sensor_2A)
ift nsg. port() == sensor_3A)
j..
}

Figure 6: Specification of atomic model Controller Unit in CD++ (part 1)

33

Figure 7 contains the internal and output functions for the controller unit. The
output function is executed before the interna transition function. Following the same
example, when the engine of the conveyor belt A has to be stopped, a value of O is sent
via the port activate A using the method sendOutput. The internal transition function
enables and disables the sensors depending on the values of the current and requested
stations for each production line and it passivates the model (i.e., sets the next interna

transition time to infinity).

Model &ControllerUnit::internal Function
(const Internal Message &nmsg)

{

if (!'sensors_enabled A && (req_station_A==cur_station_A))

{
}

passi vate();
return *this ;

sensors_enabled_A = 1;

}

Model &Control |l erUnit::outputFunction
(const Internal Message &mrsg)

{
..if (stop_engine_ A == 1)
sendQut put (neg.tine(), activate_A, 0)
if (stop_engine_ B == 1)
sendQut put (nsg.tine(), activate_B, 0)
}

Figure 7: Specification of atomic model Controller Unit in CD++ (part 2)

CD++ dlows users to combine multiple basic models (i.e., atomic or coupled)
into a coupled model using a specification language that follows DEVS definitions.
Using this specification language, it is possible to define external input couplings,

external output couplings and internal couplings, and components that form the model.

34

Let us continue with the previous example of the automated factory. The entire
AMS, formed by a scheduler, a controller unit, a display controller, and two conveyor
belts, can be seen as a new coupled model. This coupled modd is composed of atomic

(e.g., contraller unit) and coupled components (e.g., conveyor belt), as outlined in Figure

8.
start_A
start_B
Y Conveyor _A
Schedul er
o Engi ne
v Sensor
< Controller
Controller
Uni t
< Conveyor _B
] Engi ne
v Sensor
Di splay Controller Control | er

st at us_conveyor _A
st at us_conveyor _B

v

Figure 8: Diagram of the coupled model AMS

Figure 9 shows the specification of the AMS coupled model in CD++.

35

conmponents: conveyor_A conveyor B schedul er @chedul er

conmponent s cu@u di s@i spl ay
in . start_A start_B

out : status_conveyor_A

out : status_conveyor_B

link : start_A start _A@chedul er
link : start_B start _B@chedul er

link : sensor_l@onveyor A sensor_l@u
link : sensor_2@onveyor A sensor_2@u

ﬁk : dir_display_A@u di r _di spl ay_A@li s

i

link : status_conv_A@u status_conv_A@li s
link : dir_display_B@u di r _di spl ay_B@li s
link : status_conv_B@u status_conv_B@li s

[conveyor _A]
conponents: sb@ensorController eng@&ngi ne

in : activate direction
out : sensor_1 sensor_2 sensor_3 sensor_4
link : activate acti vate@ng

link : direction di recti on@ng
link : sensor_1@b sensor_1

link : current_pos@ng sensor_triggered@b

[conveyor _B]
conponents: sb@ensorController eng@kngi ne

Figure 9: Specification of coupled model AMS in CD++

The components for the top model follow the architecture shown in Figure 8.

Here, conveyor A and conveyor B are coupled components, whereas cu, scheduler, and

dis are atomic. The top model input ports, start A and start_B, are used to trigger the

production cycle for lines A and B. The output ports, status conveyor A and

status_conveyor B, provide information about the state of products in each line. The

keyword link defines connections between components. For example, the start_A in the

top model port is connected to the start_A port in the scheduler, and the sensor_1 port of

conveyor_belt A is connected to the port sensor_1 of the controller unit (cu).

36

Cell-DEVS modedls are also defined using a built-in specification language. Users

specify different parameters of the system such as size of the model, cell neighborhood,

type of borders (wrapped or non-wrapped), type of delay (transport or inertial), and the

rules that determine the behavior of each cell. Figure 10 shows the specification for the

popular “life” game [Gar70] as a Cell-DEVS model in CD++ [Wai02].

[top]

conponents : life
[life]

type : cell

width : 20

hei ght : 20

delay : transport
def aul t Del ayTi me : 100
border : wapped

nei ghbors : life(-1,-1) life(-1,0) life(-1,1)
nei ghbors : life(0,-1) 1ife(0,0) Ilife(0,1)
neighbors : life(1,-1) life(1,0) Ilife(1,1)

localtransition : conrad-rule
nei ghborports : val ue

[conrad-rul e]
rule : { ~value :=1; } 100 { (0,0)~value =1

and (statecount (1, ~value) = 3

or statecount(1l, ~value) = 4) }
100 { (0,0)~value =1

and (statecount(1l, ~value) < 3

or statecount(l, ~value) > 4) }
1; } 100 { (0,0)~value = 0 and statecount (1
0; } 100 { (0,0)~value = 0 and statecount (1,

rule : { ~value

1
e
—

rule : { ~value :
rule : { ~value :

~value) = 3}
~value) !'= 3}

Figure 10: Specification of Cell-DEVS modd life in CD++

This life model is defined as a 20x20 wrapped Cell-DEVS model with transport

delays and 3x3 neighborhood. The behavior of each cell is defined by the rules of the

model. Rules have the form of VALUE DELAY { CONDITION}; when the CONDITION is

satisfied, the cell state becomes VALUE and then it isDELAYed for the specified time. In

this case, the survival of a cell that is active (or alive) depends on the number of active

cells within its neighborhood. If the number of active cells, determined by

37

statecount(1,~value), is three or four the cell remains alive (specified by the first rule),
otherwise it dies (specified by the second rule). The third rule specifies that an inactive
cell becomes active if the number of active cells in its neighborhood is three. In this
model, the delay is 100 milliseconds for every rule.

CD++ provides several operations, such as Boolean (AND, OR, NOT, IMP, and
EQV), comparison (=, !=, <, >, <=, and >=), and arithmetic, as well as numerous
functions, such as trigonometric, rounding, truncation, logarithmic, minimum, and
maximum.

Nowadays, CD++ is the only simulation tool that implements Parallel Cell-
DEV S, athough there are numerous tools that support the execution of cellular automata,
for example MJCell [W0j04], Cellsprings [EII04], Trend [Cho02], SpaSim [Mor02], and
JCASIm [Fre0l1]. Some of these tools support parallel execution to reduce simulation
time. CD++ enables visualization of Cell-DEVSin 2D and 3D using different shapes and
colors to better understand the results of a ssmulation [Wai03].

The algorithms for simulator, coordinator, and root coordinator implemented in

CD++ can be found in [Tro03], and are based on those presented in [Cho94b].

25PARALLEL AND DISTRIBUTED SIMULATION

Parallel discrete event simulation (PDES) is focused on the execution of
discrete event simulations in distributed environments. In paralel and distributed
simulations, the execution of a system is subdivided in smaller, ssimpler parts that run on
different processors or nodes. Each of these subparts is a sequential simulation, which is

38

usualy referred to as a logical process (LP). A logical process groups one or more
simulation objects running in a node.

Simulator objects communicate with each other exchanging timestamped
messages or events to advance the simulation. Objects located on different LPs have to
traverse the boundaries of the LPs to interact with each other in an activity known as
inter-L P communication. Those running on the same LP can also interact with each other,
in this case without crossing the boundaries of any LP, by means of intralLP
communication.

For example, let us consider the distributed simulation of a system described
earlier: an automated manufacturing system formed by workstations, conveyor belts, and
loading and storing subsystems. Products move through the factory using the conveyor
belts. Items have to be loaded, workstations must perform actions (e.g., polishing,
varnishing, cutting, painting) on them and, lastly, completed items are stored. The
simulation of such a system is distributed across two logical processes, as outlined in
Figure 11: one to control the workstations and conveyor belts (LP;) and the other for the
loading and storing subsystems (LP>).

When an item is loaded and ready to be processed, the loading system (running on
LP,) places it on the corresponding conveyor belt (running on LP;). This event requires
inter-LP communication (shown in Figure 11 with a dashed line from Conveyor Belt to
Workstation B); a message has to be sent from LP; to LP;. In contrast, interactions among
workstations and conveyor belts require only intra-LP communication (shown in Figure

11 with a solid line). Simulation objects that interact frequently should be placed in the
39

same LP, since intraLP communication usualy requires less time than inter-LP
communication. In contrast, simulation objects that seldom interact should be placed in

different machines to take advantage of parallelism [Rao98].

LP, LP,
Wor kstation A Loadi ng System
Wrkstation B L F--- Conveyor Belt
N
Wor kstation C I Storing System

—» Intra-LP communication

----% Inter-LP communication

Figure 11: Automated Manufacturing System partitioned in two LPs

Let us extend our example. If one wants to reduce the execution times, it may
seem reasonable to concurrently execute events received on different LPs in order to
exploit parallelism. A possible scenario of two LPs processing events is shown in Figure
12. Consider two events. Egp with timestamp 200 received in LP, node and Espo with
timestamp 300 received in LP;. Suppose that there are no unprocessed events before 200
(in LP7) and before 300 (in LP1). In this situation, it might seem reasonable to process

Ezo0 and Espp. Now, suppose that the execution of Exgo in LP2 generates a new event Exso
40

with timegamp 250, which is sent to LP; (shown in Figure 12 with a dashed line from
LP, to LP;). When LP; receives the event Exso, it was already processing the event Espo
with timestamp 300. Although it was received later, the event Eso happens before Eoo
and therefore should have been processed first. For example, Eso may represent a signa

that requires immediate attention and affects the results of processing Ezgo.

Processed event

E E Unprocessed event
250 300
LP; m—> N
by
EZOO
I I I I I I I I >
100 200 300 Simulation time

Figure 12: Violation of local causality constraint in a distributed simulation

Thelocal causality constraint [Fuj99] addresses this type of situations:

Local causality constraint. A discrete-event simulation formed by logical
processes that interact by exchanging timestamped messages obeys the local causality
congtraint if and only if each LP processes events and messages in nondecreasing
timestamp order.

This brings us to a fundamental issue in parallel and distributed simulations

known as synchronization. Simulations in distributed environments rely on

41

synchronization algorithms that either avoid or deal with local causality constraints. The
goa of a synchronization algorithm is to ensure that the distributed simulation of the
system yields the same results as the sequentia case.

Notice that the synchronization mechanism does not need to guarantee that all
events are always processed in their timestamp order, but the final results must coincide
with the results obtained by sequential simulation [Fuj99].

There are two magjor classes of synchronization strategies. conservative and
optimistic. Next, we briefly describe each of them with more focus on the latter, which is

used in this work.

2.5.1 CONSERVATIVE SIMULATION

Conservative approaches, also known as pessimistic approaches, were the first
synchronization algorithms proposed for distributed simulations. The general idea behind
them is that no local causality errors shall ever happen upon processing an event. In other
words, an event is processed in a node if it can be guaranteed that no other event with
smaller timestamp will be received in the future. Therefore, a situation like the one
illustrated in Figure 12 can never happen.

The Chandy-Misra-Bryant (CMB) agorithm [Bry77, Cha79, Mis86] is a well-
known conservative algorithm developed in the late 1970s. Since the requirement
introduced by conservative algorithms introduces deadlocks, the original CMB agorithm
was extended with null messages (which are exchanged among LPs) to deal with this

situation. Null messages indicate a lower bound of the subsequent messages that will be

42

sent by an LP, and allow advancing the ssmulation, while breaking the deadlock. A well-
known problem of the CMB algorithm is that larger numbers of null messages may lead
to poor simulation performance: the communication overheads can become considerable
high.

Other conservative agorithms based on CMB detect and recover from deadlocks
[ChaBl] instead of avoiding them. A different algorithm, proposed by Chandy and
Sherman, relies on more detailed event-related information and can achieve better
performance in many cases [Cha89]. Unfortunately, newer agorithms require more
application specific datato exploit greater degrees of parallelism.

Although many conservative algorithms are currently found in real-world
applications, they have two main disadvantages [Fuj90]:

i) It is not possible to take advantage of the concurrency available in the
application, since they have to adhere to the local causality constraint at all
times.

i) The simulation program has to be specificaly designed to exploit
concurrency, leading to a complex, tedious design process. In relation to this,
smal changes in the application may worsen the performance of the
simulation in a great way, since changes may affect data used for efficient

conservative simulation.

43

2.5.2 OPTIMISTIC SIMULATION

Instead of avoiding violations to the local causality constraint, like conservative
algorithms do, optimistic algorithms alow some causality errors to occur but provide
means to recover from them, which in the end leads to correct resullts.

Optimistic approaches address the two fundamental disadvantages of conservative
algorithms:

i) They can exploit higher degrees of concurrency by advancing the simulation
optimistically. These approaches assume that causality errors will not arise. If
a causality error occurs, the optimistic algorithm has to detect and recover
from that situation.

i) Optimistic algorithms are less dependent on application specific data than
conservative approaches, leading to more flexible, transparent applications.

Time Warp [Jef85] is the most popular optimistic synchronization agorithm.
Time Warp provides a mechanism that allows LPs to recover from causality errors. An
event that is received with a timestamp smaller than one or more of the events that have
been already processed in alogical process is known as a straggler event, and represents
aviolation to the local causality constraint. Upon the reception of a straggler event, the
LP recovers from the causdlity error by undoing the effects of the events aready
processed, in an activity known as rollback.

It might be necessary to perform two actions in case of arollback. First, the state
of the object has to be restored to a time smaller or equal D the straggler’s timestamp.

Second, the process may have sent messages to other LPs in states that are now being
44

undone. Therefore, it is necessary to inform objects that those events should not be
processed (leading to potential rollbacks in those nodes if the events were aready
processed).

In relation to the first point (the restoration of previous states) Time Warp has a
mechanism that periodically stores states of the objects. There are two main techniquesin
Time Warp that deal with how to rollback state variables:

i) Copy state saving is a strategy that generates a copy of all the state variables
within the LP. In case of rollback, it is necessary to retrieve al the variables
for the required time, which can be easily accessed. In general, copy state
saving is useful for applications that often modify most of the variables.

i) Incremental state saving, in contrast, saves a copy of individual variables that
changed as a result of processing the event. This requires less memory and,
potentially, less overhead for storing state variables at each step. However, a
rollback requires going back through all the intermediate steps to retrieve all
the changes made to state variables. This strategy can be more efficient in
scenarios where variables are rarely modified.

In order to deal with messages that should not have been sent, Time Warp uses a
mechanism of negative messages or anti-messages. Jefferson borrowed the terminology
from physics, where matter and anti- matter particles annihilate each other and disappear.

When an object sends a message, a negative message is created and kept. A
negative message is a duplicate of the positive (original) message with aflag indicating it

is actually an anti-message. In case of a rollback, the LP sends anti-messages to the
45

corresponding LPs as a means of “unsending” the origina one. If the origina message
has not been processed yet in the receiving node, the anti-message simply annihilates it
and both messages are removed from the pending queue. If the original message has
already been processed in the receiving LP, the anti- message produces a rollback, which
may also generate anti- messages to be sent to other LPs.

Nevertheless, most applications often perform input/output operations that cannot
be “undone” or rolled back. Moreover, the Time Warp mechanism as described before
has vast requirements of memory for state saving purposes. Both problems are addressed
by the concept of Global Virtual Time (GVT), afundamental concept in Time Warp.

The GVT is alower bound on the time of any future rollback that might occur.
Thus, the application has a guarantee that events occurred prior to the GVT will never be
rolled back. The consequences of having a GVT are twofold. First, input/output
operations with timestamps lower than the GVT can be committed, as it is possible to
know that they will never be rolled back. Second, the state information prior to the GVT
is no longer needed, since those states will not be restored, and thus memory can be
released. The computation of the GVT is fundamenta for efficient execution of Time
Warp simulations.

Let us focus on one LP to understand how GVT can be computed. The only
activity that can trigger a rollback is the reception of a (positive or negative) message in
the past of a logical process. Events can be generated only by unprocessed or partially
processed events. Consequently, one can compute the GVT as the minimum timestamp

among all messages (positive and negative) that are unprocessed or partially processed in
46

al LPs. A more forma definition of global virtual time is provided by Fujimoto in
[Fuj99]:

The Globa Virtual Time at wallclock time T (GVTy) is defined as the minimum
time stamp among all unprocessed and partially processed messages and anti- messages in
the system at wallclock time T.

There have been modifications to the Time Warp algorithm that try to provide
better performance. For example, different mechanisms for state saving were presented in

[Ron96, Wes96], and different error-handling mechanisms are discussed in [Nic97].

2.6 THE WARPED TOOL

Warped [Mar97] is a public domain simulation kernel developed at the University
of Cincinnati, which provides an implementation of the Time Warp algorithm [Jef85].
We use the services provided by the Warped middleware to implement the optimistic
distributed simulator presented in this work. Different Time Warp optimizations are
supported in the middleware [Mar96], and the interface for the application developer
hides most of the implementation issues. Warped also provides a sequentia kernel.

Warped is written in C++ and uses the MPI message passing standard for
communication. MPI [MPI95, Don96] is a message passing interface standard designed
for high performance communication on paralel and distributed environments. MPI was
designed with three main goals. portability, efficiency and functionality.

There are commercial and public domain implementations of MPI. In this work,

we use MPICH [Gro96], a freely available implementation that has been ported to

47

different platforms, including Linux, Unix and Microsoft Windows. Figure 13 shows the
layout of how simulation objects and logical processes communicate in Warped [Mar96].
Simulation objects within the same LP exchange messages using direct communication,

whereas those running in different LPs use MPI communication services.

Simulation

Simulation

Object Simulation

Object

Simulation
Object

D O

Logical
> Logical
Process <« gica
Process

Object

Simulation
Object

Simulation
Object

Simulation
Object

Simulation
Object

<4——» MPI communication

Direct communication

Figure 13: Structure of LPs and simulation objects in Warped [Mar96]

Warped presents an application program interface (API) that allows the definition
of dmulation objects, their states, and the messages that can be exchanged by those
objects. Warped aso provides a ssimple definition of time (which can be redefined by the
user) and functions to perform consistent I/O operations.

Figure 14 shows a summary of some classes that form Warped's API.

48

class TinmeWarp {
Ti meWar p() ;
virtual ~Ti meWarp();
virtual void initialize();
virtual void finalize();
virtual void executeProcess() = 0;
Basi cEvent* get Event ();

}

class BasicState {
Basi cSt at e* copySt ate(BasicState*);

}

cl ass Basi cEvent {
int size;
Vtinme sendTi ne;
Vtime recvTi ne;
int sender;
int dest;

}

cl ass Logi cal Process {
i nt get NumObj ects();
Logi cal Process(int, int, int);
i nt get Tot al Nunber O Cbj ect s() const;
int getLPid();
voi d simul at e(VTi ne) ;
voi d cal cul at eGVT();

Figure 14: Summary of Warped APl [Mar97]

The user can define one or more types of simulation objects, which have to be
derived from a basic TimeWarp class. The TimeWarp class has three main three methods
that specify how to initialize the object (initialize), what to execute during a simulation
cycle (executeProcess), and how to finalize its execution (finalize). These objects have
states (which are also defined by the user and derived from aBasicState class) associated
with them. The kernel provides two main methods to the user: one to recelve events
(getEvent), and one to send events (sendEvent). Different events can be defined by the

user deriving them from a basic class, BasicEvent. An event always contains information

49

about its size, the time at which it was sent and received, and the address of the sender
and receiver.

The LogicalProcess class groups one or more simulation objects sharing a
GVTManager (in charge of calculating the global virtua time), a CommManager (dealing
with inter-LP communication), and a Scheduler (in charge of scheduling the events
received in the queue).

A performance analysis considering different Time Warp optimizations (such as
Lower Time Stamp First scheduling, periodic/dynamic checkpointing, and lazy
cancellation) implemented in Warped is discussed in [Rad96]. Communication overhead
affects the performance of Time Warp simulations, see [Rg98] for a discussion on
different aternatives of middleware for Warped communication and an implementation

of a new technique.

50

Chapter 3: ENABLING NEW TECHNIQUESFOR PARALLEL

SIMULATION OF DEVSAND CELL-DEVSMODELS

The widespread use of M&S in different application domains is leading to execution of
larger and more complex systems, which often trandates into more memory and
processor requirements. Higher level of detail required by some applications also impacts
on the memory and processor requirements. Furthermore, simulation results are
frequently expected in short periods of time. For example, consider the creation of virtual
worlds with human interaction, where the scenario has to evolve as fast as in real life, or
critical on-line decision-making processes where results are needed in rea-time [Fuj99].
Nowadays, several M& S tools coexist and try to respond to these needs by providing
more efficient simulation mechanisms.

Our work is focused on the design and implementation of a new simulation
technique for CD++, a M&S tool for DEVS and Cell-DEVS models. CD++ was
originaly developed as a stand-alone simulator, and later revisions provided real-time
capabilities [Gli02a, Gli02d] and alowed distributed execution of Parallel DEVS and
Parallel Cell-DEVS models [Tro0la, Tro03]. Pardlel CD++ was the first attempt to
reduce ssimulation time in CD++ by means of distributed execution of models. Distributed
simulation with Parallel CD++ has shown speedups in the execution of both DEV'S and
Cell-DEVS modds in comparison to the stand-alone simulator [TroOl1b]. Its paralel

approach is based on a pessimistic algorithm that exploits the parallelism inherent to the

51

DEV S formalism. Under that scheme, a single root coordinator acts as a global scheduler
for every node participating in the simulation. Thus, events with the same timestamp can
be processed simultaneously by those nodes.

As explained in Chapter 2, a simulation advances by the exchange of messages
between simulators (in charge of atomic models) and coordinators (in charge of coupled
models). Parallel CD++ introduced two different types of coordinators (master and slave)
to reduce inter-process communication and, therefore, to aleviate overall communication
overheads [Tro0l1a).

Most existing DEVS tools use a hierarchical simulator creating a one-to-one
correspondence between model components and simulation objects. As a result, the
smulator structure resembles the structure of the model. Since the smulation advances
by exchanging messages between simulation objects, the communication costs associated
with this structure can be considerable. Flat simulation mechanisms try to reduce the
overhead in communication costs (i.e., try to reduce the number of exchanged messages)
by smplifying the underlying simulator structure, while keeping the same model
definition and preserving the separation between model and simulator. Studies have
shown that flat simulators can outperform hierarchical mechanisms [Kim00a, Gli0O2a,
Gli02d, Kim04]. In some cases, reductions of up to 40% of execution time have been
reported [GliO2a, Gli02d]. Although the stand-alone and real-time versions of CD++
support both alternatives, the previous version of parallel CD++ [Tro01a] only supported

the hierarchical mechanism.

52

This work addresses the need for efficient, fast execution of large, complex
Paralel DEVS and Cell-DEVS models. We introduce a new technique for optimistic
distributed ssimulation of such models in CD++. The technique combines the Time Warp
synchronization mechanism and the Parallel DEVS and Cell-DEVS abstract simulators.
In our approach, the hierarchy of the smulation objects is flattened to reduce the
communication overheads.

There are two main differences when comparing our new approach with the
previous parallel smulation technique available in CD++, namely the use of a non
hierarchical mechanism, and the optimistic protocol for distributed synchronization.

The use of a non-hierarchical mechanism in our work addresses some of the
performance issues discussed in [GliO2b, Gli02c] when analyzing different simulation
techniques. Those studies have shown that the hierarchical nature of the previous Paralléel
CD++ technique results in a significant number of messages exchanged in each
simulation cycle, which ultimately worsens the performance of the simulator. The work
presented in [TroOla] presents a way to reduce the communication overheads by
introducing two specialized DEVS coordinators. However, it has been shown that the
communication overhead of the CD++ hierarchical mechanism is, in some cases, still
significantly high [Gli02b, Gli02c]. A flat ssimulation technique, which was implemented
in the dand-alone and rea-time versions of CD++ [Gli02d], outperformed the
hierarchical one for both DEVS and Cell-DEVS models [Gli02b]. Other studies aso
suggest the use of a flat simulator to reduce communication overheads and to improve

performance of DEVS simulation. The origina idea of a nonhierarchicd DEVS
53

simulator was presented in [Kim00a], along with results showing its efficiency over
hierarchical approaches. Another tool that implemented flat simulation is DEV SCluster
[KimO4]. Benchmarking experiments showed that the non-hierarchical structure used by
DEVSCluster outperformed the hierarchical mechanism implemented in D-DEV Sim++
[KimO4]. When designing DEVS/Grid [Seo04], the authors acknowledged that
coordinators become a bottleneck in hierarchical simulation approaches. Considering all
these previous results, our work proposes a non-hierarchical simulator for Paralel DEVS
and Cell-DEV'S models.

Our new simulation technique uses an optimistic synchronization protocol, as
opposed to the conservative approach implemented in Parallel CD++ [TroOla]. The
pessimistic approach exploited the specific parallelism existing n Parallel DEV'S, but
prevents from achieving higher degrees of parallelism because of its conservative nature.
Only events that have identical timestamps can be executed smultaneously in the
participating nodes. We also introduce the first implementation of an optimistic simulator
for Cel-DEVS models and the first that supports flat distributed simulation of such
models.

The Cell-DEV S formalism allows higher precision and speedups than traditional
cellular automata [Wai00], but previous work has shown thet the execution of Cell-
DEV S models can be very demanding in terms of memory and computation time [Tro03,
Glio2b]. Executing Cell-DEVS models with our simulator aims at reducing execution

time and allowing access to more memory space.

The implementation of our optimistic distributed simulator is also important when
considering other DEVS tools. In the previous chapter we surveyed many simulators
based on the DEV S formalism. A few of them have capabilities for optimistic distributed
simulation, and we pointed out limitations imposed by some of them, which we
circumvent in this work. DEVS-ADA/Tw [Chr90] introduced the first technique that
combined DEV'S and Time Warp for distributed optimistic simulation. As we discussed
earlier, DEVS-ADA/Tw is not flexible in the way that users can partition models. It is
only allowed to partition models at the topmost level of the hierarchy. Additionally, since
DEVS-ADA/Tw treats logical processes as indivisible objects, the cost of a rollback can
be significantly large. We take a different approach from simulators that implement risk-
free synchronization, such as [Zei97b], which have the additional limitation of

inapplicability in heterogeneous platforms.

55

Chapter 4. OpTIMISTIC PDESOF DEVSMODELS

The optimistic distributed ssmulator for Parallel DEV S and Cell-DEV S introduced in this
work is developed as an extension to the original CD++ tool [Rod99, Wai00, Wai02],
which supported stand-alone simulation. We follow a layered-architecture design of a
previous implementation of a conservative parallel simulator developed in CD++
[Tro014].

Figure 15 outlines the architecture of our ssimulator. The topmost layer represents
the model, which is executed by simulation algorithms implemented in CD++. The tool is
built on top of Warped [Mar97], an object-oriented middleware written in C++ that
implements Jefferson’s Time Warp synchronization algorithm [Jef85]. Warped, in turn,
uses MPICH [Gro96], a freely available implementation of MPI [MPI95, Don96], a
message passing standard for high-performance communication on paralel and

distributed environments.

M odel
CD++

Time Warp - WARPED
MPI

Figure 15: Layered architecture of the CD++ optimistic simulator
In Chapter 2, we have shown the fundamental classes implemented in the CD++

toolkit, which can be divided in two major groups. classes that inherit from the basic
56

model class, and those that inherit from the basic processor class. This reflects the clear
distinction between the model and its smulator, a fundamental advantage of the DEVS
formalism which alows users to build their models independently from the
implementation of the underlying simulator. Since we are interested in the simulation
mechanism implemented in CD++, our work takes advantage of this separation of
concerns by focusing on the processors’ class hierarchy. In contrast, al classes inheriting
from model remain unchanged from those described in Chapter 2.

Two new classes are introduced, both inheriting from the processor class: flat
coordinator and node coordinator. Additionally, we modify two existing classes,
simulator and root coordinator, which also inherit from processor. Figure 16 shows the

resulting UML class diagram for the processors.

Processor

i

Si mul at or Root Coor di nat or Fl at Coor di nat or NodeCoor di nat or

Figure 16: New processors class hierarchy in CD++
Another important difference between the class diagram shown in Figure 16 and
the one presented in Chapter 2 is the absence of two processors (coordinator and its
descendant cell coordinator) in the new hierarchy. This is a result of the new approach
implemented for flat simulation that eliminates the need for coordinators, which were

present in the hierarchical case. Before describing with more detail the design of our

57

simulator and the tasks carried out by each DEV'S processor, we analyze some factors of
the hierarchical CD++ simulator (implemented in the previous version of CD++) and the

basic ideas behind the new flat ssmulation mechanism presented in this work.

4.1 HIERARCHICAL AND FLAT SIMULATION IN CD++

The hierarchical approach implemented in CD++ was introduced in [Rod99,
Wai0(Q]. It creates a one-to-one correspondence between the model components and
DEVS processors. CD++ produces a processor structure that resembles the structure of
the model: a simulator object is created for every atomic component, and a coordinator
object is created for every coupled component. Analogously, when executing Cell-DEV S
models, a simulator is created for every cell, and a cell coordinator is created for every
Cell-DEV S modd!.

Figure 17 shows a sample DEV'S model. Top is composed by two coupled models
(Coupled #1 and #2) and two atomic models (Atomic #4 and #5). Coupled #1 and
Coupled #2 have three and two atomic models respectively. The arrows represent
interconnections between components (e.g., between Atomic #4 and #5), input ports (in_1

and in_2) and output ports (out).

58

Top
Coupl ed #1
in_1
> > Atonic #1 > Atonic #2 > Atonic #3
in_2
g > Atonic #4 Atonic #5
A 4
Coupl ed #2
out
< < < Atomi c #6 < Atonmic #7 <

Figure 17: Layout of a sample DEV'S model

Figure 18 illustrates the one-to-one correspondence between the model and

simulator components created by CD++ when the hierarchical approach is used.

Root Coor di nat or

[I I | [I | 1
| Coupl ed #1 | | Atonmic #4 | | Atomi c #5 | | Coupl ed #2 | | Coor di nat or | Si mul at or | Si mul at or | Coor di nat or
[T] [I 1
| Atomic #1 | | Atonic #2 | | Atonic #3 | | Atomic #6 | | At o c #7 | | Si nul at or | Si nul at or | Si nul at or | Si mul at or | Si nul at or

Figure 18: Sample DEVS modd in hierarchical CD++
(a) models, and (b) processors

In Figure 18, we see that the processor hierarchy is replicated based on the model
hierarchy, using coordinators instead of coupled components, and simulators instead of
atomic components. A root coordinator, in charge of synchronization, time management

and |/O operations, is added on top of the processor hierarchy.
59

The communication costs associated with the hierarchical simulator become
visible when analyzing message passing among components. For example, let us examine
what happens when an external event is received through port in_1. Firstly, the root
coordinator has to send a message to the coordinator in charge of the Top model.
Secondly, that coordinator forwards this message to the coordinator in charge of
Coupled #1, in the lower level of the hierarchy. Thirdly, that message is forwarded again
to the actual simulator in charge of Atomic #1. Then, the smulator executes the model’s
external transition function, de. A Similar phenomenon is observed if Atomic #3 sends an
output through its port connected to Atomic #7. In this case, the message has to travel
through three intermediate coordinators before reaching the final destination. The number
of intermediate coordinators can be arbitrarily high depending on the studied model, and
the corresponding overhead can be significantly large.

Based on different studies that show how flat simulation approaches can be more
efficient for DEVS and Cdl-DEVS smulation [Kim0Oa, Gli02a, Gli02d, Kim04], we
eliminate the need for coordinators using the new set of processors shown in Figure 16.
Our flat simulation strategy is based on ideas presented in [Gli02a, Gli02d] for stand-
alone ssimulation, which showed good results in terms of performance [Gli0O2b, Gli02c].
However, a more sophisticated technique is presented, since it is necessary to deal with
distributed execution of models. Figure 19 presents the processor hierarchy for this
sample model when the flat simulation is used. At this point, we suppose that only one
machine is used for its execution. The more general case with two or more processors

will be shown later.
60

Root Coor di nat or

Node Coor di nat or

Fl at Coor di nat or

Si mul at or Si mul at or Si mul at or . Si mul at or

Figure 19: Processor hierarchy using a flat approach

Figure 19 shows that a root coordinator is maintained at the top of the hierarchy,
handling I/O operations between model and environment, and starting the ssimulation.
However, root coordinator is no longer responsible of synchronization and time
management tasks. Two new processors, node coordinator and flat coordinator, are
introduced in the hierarchy. Node coordinator is now in charge of synchronization and
time management for this model, and its tasks will be described with more detail when
discussing how paralel and distributed execution is implemented. The addition of a flat
coordinator is key for alowing the execution of the mode without intermediate
coordinators, which was identified as a major source of overhead. The flat coordinator is
responsible of receiving, trandating, and sending messages between its children. In this
case, for example, the flat coordinator needs the information about external input
coupling, external output coupling, and internal coupling for Top, Coupled #1, and
Coupled #2. Thus, the flat coordinator builds a flat structure of ssmulators, and handles

all the information about the port mappings for every component in the model.

61

We can observe the difference between the communication cost of the new flat
structure and the hierarchical case. For example, when Atomic #3 sends an output through
the port connected to Atomic #7, only two messages are required with the flat approach
(instead of the four messages required for the hierarchical approach). Notice that since
the flat coordinator has all the information about ports and ports mappings, it is not
necessary to use any intermediate coordinator. This reduction in the number of
exchanged messages improves simulation performance.

So far, we have discussed the basic idea of flat smulation in a single node. We
will now study the case of flat distributed simulation using multiple processors.

First, in order to run the model over distributed processors, it is necessary to
indicate the nodes that can participate in the ssmulation. Second, one has to indicate
which components will be executed on each processor. Figure 20 shows the layout of our

sample model partitioned into three blocks O, 1, and 2), and Figure 21 shows how to

specify this partition with CD++.
1 . 0 2
Top
i [
[: [[|
Coupl ed #1 Atomc #4 Atom c #5 Coupl ed #2
[[|

Atom c #1 Atom c #2 Atom c #3 Atomi c #6 Atom c #7

Figure 20: Model partitiored in three blocks

62

0 : atomic_4 atomc_5
1: atomic_1 atomic_2 atonic_3
2 . atomic_6 atomic_ 7

Figure 21: Mode partition file for CD++

As shown in Figure 21, users only have to specify the location for atomic
components. Similarly, in Cell-DEVS models it is required to indicate the location of
every cell. This can be done by specifying the individual location for every cell or by
using ranges, following the notation used in [Tro0O1a].

During the instantiation and registration of each simulator object, simulators are
associated to the corresponding logical process. The partition, once specified at the
beginning of the simulation, is static; it is not possible to migrate simulators from one LP

to adifferent one at runtime.

Root Coor di nat or
Node Coordi nat or #0 <J Node Coordi nator #1 |_) Node Coordi nat or #2
<« <
Fl at Coordi nator #0 : Fl at Coordinator #1 H Fl at Coordinator #2
: | :
— ; [| | : ——
Sinul ator #4 Simulator #5 || Simulator #1 Sinul ator #2 Sinulator #3 |:| Sinulator #6 Simul ator #/
Processor 0 : Processor 1 Processor 2

Figure 22: Distributed processor structure for partitioned model
Figure 22 shows the processor structure of our flat distributed simulator using the
partitioning specified in Figure 21. The main node, processor 0, executes a logical

process composed by root coordinator, node coordinator #0, flat coordinator #0, and

63

simulators #4 and #5 (in charge of Atomic #4 and #5). The processor 1 is in charge of
node coordinator #1, flat coordinator #1, and simulators #1, #2 and #3. Finaly,
processor 2 executes a LP with node coordinator #2, flat coordinator #2, and simulators
#6 and #7. Node coordinators can communicate with each other using inter-LP
messaging (shown with arrows in Figure 22).

Notice that the general structure of processors running on each LP is amost
identical. An important difference, however, between the main node (processor 0) and the
other nodes is that the execution of the root coordinator always takes place in the first
one. The root coordinator isin charge of starting the simulation and interacting with the
environment. Messages received from the environment are handled by the root
coordinator and then sent to the @rresponding node coordinator. On the other hand,
when a node coordinator processes an output that must be sent back to the environment,
the output is sent to the root coordinator. Then, the root coordinator sends the output to
the environment.

We can analyze some aspects of the new message passing mechanism between
processors that results from an output sent from an atomic component, a, to another
atomic component, a. Basically, two different cases can be observed: both simulators for
a and g execute on the same logical process, or smulators for & and & execute on two
different logical processes.

We start by analyzing the first case, which is more smple. When source and
destination simulators are running on the same logical process, the flat coordinator

running in that LP takes care of the entire situation. Firstly, the source simulator sends
64

the message to its parent, a flat coordinator. Secondly, since the flat coordinator has all
the necessary information for the port mappings between those componrents, the flat
coordinator sends that output to the corresponding simulator.

The second case requires involvement of more processors. if a simulator running
on LP; has to send an output to a simulator running on LP;, it is necessary to forward this
message to the corresponding node. In such a case, the simulator begins by sending its
output to the flat coordinator. Since the flat coordinator identifies that the destination
simulator is not one of its children, it forwards the message to its parent node
coordinator. Then, the node coordinator running on LP; forwards the message to the
node coordinator running on LP;. Thisis possible because node coordinators know where
each simulator is running. Finally, the node coordinator running on LP; forwards the
message to its child, flat coordinator, which in turn sends it to the destination simulator.
This situation is shown in Figure 23. The figure shows that node coordinators perform
inter-LP communication. Notice that inter-LP communication can lead to violations to
the local causality constraint, depending on the time at local and destination LPs. More
specifically, if the timestamp of the message is smaler than the local time at the
destination LP, a rollback is triggered. A more detailed description of this situation and a

sample scenario are given in the next subsections.

65

Root Coor di nat or

3. node coordi natof sends external message to
appropriate remote;node coordinator
-

Node Coor di nat or : Node Coor di nat or
T 2.flat coordinator translates : . i
output and forwards external ¢ | 4. external message is forwarded to flat coordinator

Fl at Coor di nat or Fl at Coordi nat or

: l 5. external event is sert to destination simulator
| : | |
Si mul ator #1 Si nul ator #2 Si nul at or #3 : Si nul at or #4 Si mul at or #5 Si nul ator #6

T 1. simulator senclis output

Processor i Processor j

Figure 23: Sending an output to a remote simulator

4.2 ALGORITHMS FOR PARALLEL AND DISTRIBUTED SIMULATION USINGA
FLAT APPROACH

We describe the simulation mechanism more rigorously by presenting the
behavior of each DEV S processor, namely simulator, flat coordinator, node coordinator,
and root coordinator. These are the processors that carry out parallel and distributed
simulation using a flat mechanism for DEVS and Cell-DEV'S models. After presenting
the algorithms for each processor, we discuss different scenarios showing the flow of
messages.

Messages that can be exchanged among processors are: init (initialization
message), q (external message), y (output message), @ (collect message), * (internal

message), and done.

66

4.2.1 SSIMULATOR

A simulator is created for each atomic component or cell in the system. It is
responsible of generating the outputs and executing the transition functions of the
associated model. The agorithms for the simulator are based on those presented by

[Cho94b] with minor changes:

1 when a (init, 0) nessage is received

2 initialize nodel’s variables

3 t. =20

4 t =ta (9)

5 send (done, t) to the parent flat coordi nator
6 end when

When the initialization message is received, variables are initialized (lines 2 and
3) and the simulator informs its parent the time of the next scheduled internal transition

(line5).

1 when a (@ t) nessage is recelved
if t =ty then
y = 1(s)
send (y, t) to the parent flat coordinator

2
3
4
5 send (done, t) to the parent flat coordinator
6 else

7 rai se error

8 endif

9 end when

10

11 when a (q, t) message is received

12 add event g to the bag

13 end when

67

When asimulator receives a (@, t), it generates an output (executing the atomic’s

output function, 1) which is sent to the parent flat coordinator (lines 3 to 5). When an

external message (g, t) is received, it is simply stored in the bag of external events (line

12). These messages will be used later, when the external transition function is triggered.

1 when a (*, t) nessage IS recelved

2 case t| £t <ty

3 e =1t - t,

4 S = dyxt (S, e, bag)

5 enpty bag

6 end case

7 caset =ty and bag is enpty

8 s = dn (9)

9 end case

10 caset =ty and bag is not enpty
11 S = don (s, bag)

12 enpty bag

13 end case

14 case t >tyor t < t_

15 rai se error

16 end case

17 ty=t

18 ty =t + ta (9s)

19 send (done, ty) to parent flat coordinator
20 end when

An interna message (*, t) triggers the execution of a transition function. The

simulator executes one of the three transition functions based on t (the elapsed time since

the last scheduled transition), ty (the time of the next scheduled transition), and the bag of

external events.

68

If t <ty (lines 2 to 6), the internal transition function shall not be executed yet,
and the bag of external events must have at least one element: the external transition
function, dex, IS executed in this case. If t = & (lines 7 to 9), it is time to execute the
interna transition, di.. However, a conflict arises if the bag is not empty and t = ty (lines
10 to 13), the confluent transition d¢on hasto be executed.

In every case, after executing the corresponding transition, a done message is sent
to the parent flat coordinator indicating the next scheduled transition time (lines 17 to

19).

4.2.2 FLAT COORDINATOR

A flat coordinator has one or more children, which are the simulators running the
atomic components, and one parent, the node coordinator. The flat coordinator relies on
coupling information for the components running on this LP; it has to trandate output
events into input events. Additionaly, it synchronizes models that are imminent in this

logical process using a structure called synchronize set.

1 when a (init, 0) nmessage Is received from parent node coordi nator
t,=0
for each child sinmulator s;
send (init, 0) to child s;

2

3

4

5 end for each
6 wait until all done messages have been received
7 ty= mninumty of all conponents

8 send (done, t,) to parent node coordi nator

9

end when

69

When the initialization message is received, the flat coordinator forwards a (init,

t) to al its children to complete the initialization phase (lines 3 to 5). Using the done

messages received from them, the minimum time of next change is computed and

communicated to the parent node coordinator via a done message (lines 6 to 8).

1 when a (@ t) nessage is received from parent node coordi nator

2

3

4

5

6

7

8

9

10 el se
11

12 end if
13 end when

if t =tythen

t, =t
for each imminent child s; with mnimmty
send (@ t) to child s;
cache i in the synchronize set
end for each
wait until all done messages have been received

send (done, t) to parent node coordi nator

rai se error

When a collect message (@, t) is received, the flat coordinator forwards this

message to al its dependant simulators with minimum t (lines 3 to 7). Once al the

responses (i.e., done messages from simulators which received a collect message in this

simulation cycle) have been received (line 8), a done message is sent to the parent node

coordinator.

Smulators that have been scheduled for a transition are cached in the

synchronize set.

1 when a (y, t) nessage is received fromchild

2 if destination of y is the environment

3
4 el se
5

for

send (y, t) to parent node coordinator

each influencee j of child

70

6 q =2z (y)

7 if (j is alocal processor) then

8 send (g, t) to child j

9 cache j in the synchronize set

10 el se

11 send (g, t) to parent node coordinator
12 end if

13 end for each

14 end if

15 end when

If the destination of the output (y, t) message received in the flat coordinator is
the environment, the message has to be sent to the parent node coordinator, which will
deal with this situation (lines 2 and 3). If not, al the influencees of the message are
computed using the function Z;, and one or more (g, t) messages are sent accordingly
(lines 5 to 13). For destination processors located on the same LP, messages are sent
directly to the simulator (lines 8 and 9). Messages whose destinations are remote
simulators are sent to the parent node coordinator (line 11), which will forward them to
the corresponding LPs. Again, local components with scheduled transitions are cached in
the synchronize set. We discuss a sample scenario that describes this situation after

presenting the algorithms.

1 when a (g, t) nessage is received from parent node coordi nator

2 if destination of q nessage is local then
3 add event g to the bag

4 else

5 raise error

6 endif

7 end when

71

When an external message (q, t) is received in a flat coordinator, it is stored in a

bag of events.

1 when a (*, t) nessage is received from parent node coordi nator

2 ift £t £tythen

3 for each q 1 bag

4 for each local receiver s; of g

5 send (g, t) to s;

6 cache j in the synchronize set

7 end for each

8 end for each

9 enpty bag

10 for each i T synchronize set

11 send (*, t) to

12 end for each

13 wait until all done messages are received
14 t, =t

15 ty= mnimumty of all comnponents

16 cl ear the synchronize set

17 send (done, t,) to parent node coordi nator
18 else

19 rai se an error

20 endif

21 end when

Upon receiving an internal message (*, t), the flat coordinator sends the external
messages that are stored in the bag to the corresponding components (lines 3 to 8). All
the receivers of these external messages are added to the synchronize set. Then, an
internal message is sent to all components in the synchronize set. After all done messages
are received back from these components, the time of the next event is calculated and a

done message is sent to the node coordinator (lines 13 to 17).

72

4.2.3 NODE COORDINATOR

One node coordinator is located on each logical process and it has one child, a
flat coordinator. Node coordinators have important tasks associated to inter-LP
communication, which happens when an atomic model running in the local LP has to
send an output to another atomic nodel running in a remote LP. Additionally, a node
coordinator is in charge of advancing the smulation time in the local LP based on the
information received from the root coordinator and from its dependant flat coordinator.

The algorithms describing its behavior are described next.

1 when a (init, 0) message is received fromroot coordi nator
send (init, 0) to child flat coordinator
wait for done nessage to be received fromflat coordinator
sort queue of events by arrival tine
t =mn (tyof flat coordinator, time of first event in queue)
if t = tyof queue then

for each q in queue with tine t

send (g, t) to flat coordinator

© 00 N O 0o b~ WwN

end for each

[EnY
o

end if
send (@ t) to child flat coordinator

[EEN
[EEN

12 next - mressage-type = *
13 end when

The initialization message, sent by the root coordinator, triggers the smulation in
each logical process. An initialization message (init, 0) is sent to the flat coordinator (line
2), which in turn will forward that message to every simulator. The first simulation cycle
starts immediately after a (done, t) message is received. The time for the first collect

message is determined by the minimum between the first element in queue of external

73

events and the time of next change reported by the flat coordinator, which represents the
minimum time of next change reported by simulators (lines 3 to 5). The variable next-
message-type is used on each simulation cycle (after the reception of done messages) to

determine which type of message has to be sent (i.e., collect or internal).

1 when a (done, t) nessage is received fromchild flat coordi nator

2 i f next-nessage-type = * then

3 send (*, t) to child flat coordinator

4 next - ressage-type = @

5 else

6 t =mn (tyof flat coordinator, time of first event in queue)
7 if t >stop simulation tine then

8 stop sinulation in this LP

9 el se

10 ift =tyof first event in queue then
11 for each g in queue with tine t

12 send (g, t) to flat coordinator
13 end for each

14 end if

15 end if

16 send (@ t) to child flat coordinator

17 next - message-type = *

18 end if

19 end when

If the message to be sent isa collect (lines 6 to 17), the process is analogous to the
initialization phase. The minimum timet is computed, events with time t are sent (if there
are any), the collect message is sent (line 16) and the next message type is set to internal
(line 17). When an internal (*, t) message has to be sent to finish the current simulation

cycle, the type of the next message to be sent is set to collect (line 4).

74

1 when a (g, t) message 1s recelved

2 if destination gq is |oca

3 send (g, t) to child flat coordinator

4 else

5 dest _nc = node coordinator running atom c nodel that nust receive g
6 send (g, t) to node coordinator dest_nc

7 endif

8 end when

9

10 when a (y, t) nmessage is received fromchild flat coordinator

11 i f send-outputs-from NC

12 send output (y, t) to environnent

13 else

14 send output (y, t) to parent root coordi nator
15 end if

16 end when

An external message (g, t) can be received in a node coordinator either from
another (remote) node coordinator or from its dependant flat coordinator.

In the first case, this event must be sent to the dependant flat coordinator (line 3).
This happens when a remote atomic component sends an output through a port connected
to an atomic component executing in the local LP. As we have shown earlier, this
message is forwarded by the flat coordinator’ s algorithm to the corresponding simulator.
Notice that the timestamp t of a message received from a remote node coordinator might
be lower than the current time in this LP, which would violate the local causality
congtraint. In such a case, the LP has received an event in the past (a straggler message)
and therefore it has to recover from this incorrect state by performing a rollback. The

rollback has to bring that object back to a correct state: a state whose time is equal or

75

smaller than the time of the straggler message. In addition, the messages that were
(incorrectly) transmitted from this node coordinator have to be canceled, which means
that anti-messages have to be sent to the destination objects. We will address this
situation later with further details giving a sample scenario.

In the second case, the message must be sent to the remote LP where the
destination atomic component is running. Thus, it is necessary to determine which node
coordinator is in charge of that LP, and then the message can be sent using inter-process
communication (lines 5 and 6). Notice that this operation can cause a rollback in the
destination LP, if the time at that remote LP is greater than the local time.

When a node coordinator receives an output message from its child (lines 10 to
16), a message has to be sent to the environment. There are two ways of dealing with
outputs that have to be sent back to the environment. Our simulator uses the parameter
send-outputs-from-NC to determine whether outputs must be processed directly by the
node coordinator (line 12), or via the root coordinator (line 14). The first aternative
reduces the number of messages required to process an output (messages do not have to
travel through the root coordinator) but requires some post-processing if the outputs of
multiple node coordinators have to be merged together. The second alternative
centralizes the actual processing of outputs in the root coordinator; it does not require
any post-processing but the overhead is larger. Notice that the number of inter-LP
messages sent from node coordinators (running on machines 1 to n) to root coordinator

can be large depending on the model’ s output behavior.

76

1 when a (g, t) nessage 1s recelived from parent root coordi nator
2 add q to the sorted queue of events
3 end when

When an external event is received from the root coordinator, the event is stored
in timestamp order in the queue of events. The destination simulator for that event will
eventually receive it when that time is reached by this LP. We have shown earlier that the

time is advanced in the node coordinator upon the reception of a (done, t) message.

4.2.4 ROoOT COORDINATOR

The root coordinator is a special processor located in only one LP. It is
responsible for starting the ssimulation, dealing with externa events, and sending outputs

back to the environment.

1 for each child node coordi nator nc;
2 send (init, 0) to nc;

3 end for each

The root coordinator starts the simulation by sending initialization messages to
every node coordinator. These coordinators are located on the different logical processes

that form the simulation.

1 when a (q, t) is received fromenvironnment

2 tL =t

3 for each child node coordi nator nc; which shares LP with
4 a destination atom c nodel of g nessage

5 send (q, t) to nc;

6 end for each

7 end when

77

External events are received from the environment in the root coordinator. The
root coordinator sends an external event to node coordinators that have one or more

atomic model that should receive that message (lines 3 to 6).

1 when a (y, t) 1s received fromchild node coordi nator
2 t, =t

3 send (y, t) to environnent

4 end when

Output messages received by the root coordinator are sent back to the
environment. This code is never executed if the parameter send-outputs-from-NC is set,
as shown in node coordinator’s agorithm for processing output messages. If send-
outputsfrom-NC is not set, the root coordinator consolidates the processing of output
MeSSages.

Figure 24 summarizes the flow of messages in distributed ssimulation of Parallel
DEVS and Cdl-DEVS models using the previous algorithms. Arrows indicate the
direction of the message. The interaction between the environment and the root
coordinator, shown in Figure 24 with a dashed line, is performed in CD++ by using an
input file (for external events) and an output file (for outputs generated by the model). As
we mentioned earlier, the root coordinator is also in charge of starting the simulation
process by sending initialization messages. Although it is not shown in the diagram, the
parameter send-outputsfrom-NC allows sending outputs from the node coordinator to
the environment without relying on the root coordinator as an intermediary. Some

implementation issues associated with this are discussed | ater.

78

v

Root Coor di nat or

Limea| ty

Node Coor di nat or —r Node Coor di nat or

linit, @ q T g, y, done

Fl at Coor di nat or

linit, * @ q T y, done

Si nul at or Si mul at or

Processor i Processor |

Figure 24: Message flow in a distributed simulation of DEVS and Cell-DEVS

Instead of using files to interact with the real world, a different approach isto use
communication ports (e.g., the serial communication interface) to receive events from
and send outputs to the environment. This approach is particularly interesting when

developing models that interact with hardware components. A detailed description of this

79

aternative and some examples are given in [Gli04, Wai04] using a rea-time CD++

simulator [Gli02a].

4.3 SAMPLE SCENARIOS

To better describe the behavior of the flat distributed simulation, we introduce
different scenarios for the simulation of a sample bidimensional Cell-DEVS model. The
execution of this 10x10 model is divided in two processors, each of which executes a
rectangular area of 10x5 (i.e., 50 cells per machine).

Figure 25 shows the initidization phase for this sample model. The first
simulation cycle is started by the root coordinator, which sends an initialization message
to the node coordinators in LP 0 and 1 (messages 1 and 2). When the (init,0) message is
received in a node coordinator, it is forwarded to the flat coordinator (messages 1.1 and
2.1). Then, flat coordinators forward these messages to their simulators (messages 1.2 to
151 for processor 0 and 2.2 to 2.51 for processor 1), and simulators execute the
initialization function for each cell. After computing the time for the next change for that
cell (using its time advance function), every simulator sends a done message to its parent
flat coordinator reporting its time of next change. For example, S indicates that there is
an interna transition function to be executed at time 100 (message 1.52), whereas S
reports that there is no scheduled internal transition (message 1.53, which contains inf or
infinity, and represents that the model is in a passive state). After recelving all done
messages, the flat coordinator sends a done message to its parent node coordinator

(messages 1.103 and 2.103) with the minimum time of its components, which in this case

80

is 100 for both LPs. Having received this information, the node coordinator checks for

external messages to be sent at this point, and then it is ready to send the first collect

message.
Root Coor di nat or
2: (init,0)
ll: (init,0)
Node Coor di nat or Node Coor di nat or
ll. 1 (init,0) T 1.103: (done, 100) l2.1: (init,0) T 2.103: (done, 100)
Fl at Coor di nat or Fl at Coor di nat or
1.52: (done, 100)T1. 53: (done,inff) Tl. 102: (done, 100) TZ. 52: (done,i nf) TZ. 53: (done, 10p) T2. 102 (done, 100)
Ll.z: (init,0) l1.3: (init,0) 11A4: (init, o) lz.z: (init,0) lza: (init,0) l2.4: (init,d
S: | S | Ss Sso Ss1 | S | Ss3 S100
Processor 0 Processor 1

Figure 25: Initiaization phase in sample Cell-DEV'S model

The goal of the next phase is to collect the outputs of the imminent components.
Figure 26 shows how node coordinators start the collect phase by sending the first
message to their flat coordinators (messages 1 and 2). The flat coordinators forward a
collect message only to imminent children, i.e., to simulators whose time of next change
is the minimum (100). For example, in LP O it is sent to S; (message 1.2) but not to S,
since the latter has reported a time of next change of inf with its last done message (see
message 1.53 in Figure 25). When receiving a collect message, simulators execute their
output functions and send the result to its parent (e.g., messages 1.20 and 2.18). Although
it is not shown in the figure, the flat coordinator translates the received output messages

and sends the external messages to the corresponding loca influencees of that
81

component. In case of a remote destination and as discussed earlier, the message is sent
to the local node coordinator, which will then forward it to the corresponding remote
node coordinator. Additionally, simulators send done messages to the flat coordinator
after sending the outputs. Then, the flat coordinator sends a done message to the node

coordinator completing the collect phase.

Root Coor di nat or

Node Coor di nat or Node Coor di nat or
ll. 1: (@100) Lz. 1: (@100)
Fl at Coordi nat or Fl at Coordi nat or
T 1.20: (y, 100) Tl. 3/ (y, 100) Tz. 18 (y,1po) Tz. 33 (y, 100)
ll.Z: (@ 100) ll.lgz (@100) lz.z: (@100) | l2.17(@10)
S SZ 534 SSO S51 SSZ S7 6 Sl 00
Processor 0 Processor 1

Figure 26: Collect phase in sample Cell-DEV S model
At this point, the node coordinator is ready to send an internal message (*) to start
the next phase. This new cycle is similar to the collect phase in terms of message
exchange: the flat coordinator forwards the internal message only to simulators that have
a scheduled trangition for the current simulation time (100). Smulators execute the
internal, external, or confluent transition function according to the current time, the time

of next change and the state of the bag of events (empty or not empty), as specified in the

82

algorithms shown earlier. Done messages are sent to inform the time for the next
transition, and the node coordinator is ready to start a collect cycle again.

For the sake of smplicity, we assumed that node coordinators’ external event
gueues are empty or have events whose timestamps are greater than the local time. The
node coordinator’s algorithm, preserted earlier, describes how to dea with externa
messages that are pending to be sent.

So far, we have only considered cases where communication is performed within
the same logical process. Therefore, these scenarios adhere to the local causality
constraint at all times, since events and messages are processed in nondecreasing
timestamp order as scheduled by node coordinators. Nevertheless, as we mentioned
earlier in this chapter, node coordinators can communicate with each other. When a
component running in LP; has to send an output to a component running on LP;, a node
coordinator is in charge of sending this message using inter-LP communication. In this
case, it is possible to receive a straggler message. If the message has a timestamp greater
than the local time in the destination LP, the smulation can continue normally, which is
the more simple case. However, if the message has a timestamp earlier than the local
time, thisis a straggler message: a violation to the local causality constraint has occurred,

and arollback has to be performed. This scenario isillustrated in Figure 27.

83

to = 280 Root Coor di nat or t1 = 210

2.17: (q, 210)

Node Coor di nat or «— Node Coor di nat or
l 1. (*,280) lz: (@210) T2A16: (g, 210)
Fl at Coordi nat or Fl at Coordi nat or

TzA 15: (y,210)

ll.l: (*, 280) l 2.1 (@210) Lzz: (@210) | l2.14(@21

=

S1 S Sas So Ss1 S2 S7e S100

Processor 0 Processor 1

Figure 27: Straggler message received during the smulation of a Cell-DEV S model

Figure 27 shows the events that lead to the reception of a straggler message in
processor 0. The local time at processor 0, to, is 280 and t; is 210. In processor O, the node
coordinator has sent an internal message, which is being forwarded by the flat
coordinator to S§; (messages 1 and 1.1). At the same time, in LP 1 the node coordinator
has sent a collect message (message 2), which after being forwarded (message 2.1 to
2.14) results in an output from a S, (message 2.15) that has to be sent to S. This
message is forwarded as an external message, g, from the flat coordinator (2.16) to the
node coordinator. Then, the node coordinator in processor 1 forwards it to the node
coordinator in processor 0 (message 2.17) because that is where S is being executed. At
the moment of receiving the externa message in the destination node coordinator, one
can see that the timestamp of the message, 210, is smaler than the time at the loca

processor, ty = 280. This straggler message (2.17) triggers a rollback in processor 0.

84

In case of arollback, different tasks have to be performed. These tasks are mainly
carried out by the Time Warp agorithm implemented by Warped (as discussed in
Chapter 2), and allow the simulation to recover from aloca causality violation. Figure 28
shows the state of the node coordinator’s input, state, and output queues at the moment

of receiving a straggler message with timestamp 210.

210

190 M / 240] 280 M 330
»

Input queue > > >
tN = 240 | tN =280 | otN=2
State queue tL = 170 Pl tL =190 tL = 240
\ \ \‘ |:| processed event
(@ 190) (@ 240) (*,280) I:I unprocessed event
Output queue

Figure 28: Reception of a straggler message in a node coor dinator

Firstly, the state of the node coordinator has to be restored to a previous state
where the time is equal to or smaller than 210, which is the straggler’s timestamp. Thisis
possible because Time Warp stores the previous states of simulation objects. Figure 28
shows that, in this case, the object has to restore its state back to time 190. Secondly, the
node coordinator has to send anti- messages to other objects that had received messages
from it in states that are now being rolled back (i.e., messages sent a times 240 and 280).
A negative message is a duplicate of the origina one with a flag indicating it is actually

an anti-message. This mechanism propagates the rollback to the corresponding
85

simulation objects. Figure 29 depicts the node coordinator’s queues after the rollback

was compl eted.

190 - 210 240 |- 280 |- 330
Input queue > > >

| I | I | I

tN = 240 tN = 240
State queue tL = 170 P tL = 190

\ I:I processed event

(@190) I:I unprocessed event

Output queue

Figure 29: State of the node coordinator after the rollback

After al the states were rolled back and the negative messages were sent, the
node coordinator can return to process the events, starting by the one that caused the

rollback.

86

Chapter 5. IMPLEMENTING THE ABSTRACT SIMULATORS

This chapter presents some implementation issues of the new distributed CD++
simulator, which is built on top of the Warped middieware (version 1.02) [Mar97].
Warped and MPICH [Gro96], its underlying communication layer implementing the MPI
protocol [MPI95, Don96], are written in C++ and were compiled with open source GNU
C++ compiler, g++, version 2.9x.

To understand the implementation of our ssimulator over Warped, it is necessary
to examine Warped's application program interface with more detail, as we extended
many of these classes. The interface is based on Jefferson’s work on Time Warp [Jef85]
and provides several basic definitions of classes that deal with simulation objects, states,
events, and logical processes.

Four of the fundamental classes that form Warped's APl are shown in Figure 30
along with some of their methods and variables. The figure shows the basic class
definitions for simulation objects, states for simulation objects, and events that can be

exchanged by simulation objects. It also shows part of the Logical Process class.

87

class TinmeWarp {
Ti meWar p() ;
virtual ~Ti meWarp();
virtual void initialize();
virtual void finalize();
virtual void executeProcess() = 0;
voi d saveState();
virtual void rollback(VTine);
voi d rol | backFi | eQueues(VTi ne);
VTi me cal cul ateM n();
voi d i nput Gecol | ect (VTi ne) ;
voi d stateGecol | ect (VTi ne);
voi d out put Ccol | ect (VTi ne) ;
voi d sendEvent (BasicEvent *);
Basi cEvent * get Event ();

}

class BasicState {
Basi cState();
virtual ~BasicState();
Basi cEvent * i nput Pos;
Cont ai ner <Basi cEvent >* out put Pos;
virtual BasicState& operator=(BasicStateg&);
Basi cSt at e* copyState(BasicState*);
}

cl ass Basi cEvent {
int size;
int sender;
int dest;
Vtime sendTi ng;
Vtinme recvTine;

}

cl ass Logical Process {
Logi cal Process(int, int, int);
regi st er oj ect (Ti meWar p) ;
i nt get NumObj ects();
i nt get Tot al Nunber O Obj ect s() ;
int getLPid();
voi d al | Regi stered();
voi d sinul ate(VTi ne);
voi d cal cul at eLGVT();
voi d cal cul at eGVT();

Figure 30: Some classes of the Warped API [Mar97]

TimeWarp is the basic class provided by Warped that defines data and methods
needed for every simulation object to participate in a smulation. The three main methods
that determine the behavior of simulation objects are initialize, finalize and

executeProcess. The method initialize is called once at the beginning of the smulation
88

for every object. The method executeProcess contains code to be performed every time a
smulation object is scheduled for execution, i.e., when it has an event ready to be
processed. From the moment when executeProcess is called until its execution is
completed, no other object can be under execution on the same bgical process. The
method finalize is executed for each simulation object at the end of the simulation, and it
is usualy used to release allocated memory, collect statistics, etc. The method saveState
is called automatically by the Warped kernel to save the current state of an object. This
method is triggered by the logical process at the end of each smulation cycle to store
information that might be needed later in case of rollbacks. In case of receiving a
straggler message with a timestamp t, rollback(t) is called to rollback this object to a
previous time (which is equal or prior to the specified time t). This method restores the
state of the object and sends the necessary anti- messages. rollbackFileQueues performs a
rollback on the files associated with this smulation object. The method calculateMin
reports the minimum time of the unprocessed events, and is used to compute the global
virtual time. Garbage collection in the input, queue, and output queues is performed by
the methods inputGcollect, stateGceollect, and outputGceollect, respectively. Using the
time specified as a parameter, these methods invalidate the states and events and release
the memory associated with them. getEvent and sendEvent are used for receiving and
sending messages and will be discussed with more detail |ater.

The state of a simulation object is defined by an instance of the basic Warped
class BasicSate (or by a user-defined class that inherits from it). The state of an object

contains the information that can change in each simulation cycle, including pointers to
89

input and output queues (inputPos and outputPos). Methods to determine whether two
events are equivalent (using operator =) and a to create a copy of this state (copyState)
are also provided.

Simulator objects communicate by exchanging messages, which belong to the
class BasicEvent or to one of its subclasses. A valid message must contain, at least,
information about its size, source, destination, local time at source, and timestamp (i.e.,
the time at which it should be processed). The timestamp of the message must be greater
or equal to the local time.

LogicalProcess is the class that groups the simulation objects that execute in the
same machine. To create a new logical process, it is necessary to specify the total number
of objects in the simulation, the number of simulation objects to be handled on this LP,
and the number of LPs participating in the smulation. The method
register Object(TimeWarp) is used to define which objects are running on this LP, and the
method allRegistered indicates that every component has been registered. allRegistered is
used to determine if every simulation object has an associated LP. The method
simulate(VTime) starts the execution of this logical process. If a parameter is specified,
the simulation stops when the GVT is greater than the specified time; otherwise, the
simulation runs until completion. getNumObjects, getTotal Number OfObjects and getLPid
are methods that report basic information about the LP, namely number of local
simulation objects, total number of simulation objects, and id associated with this LP.
calculateLGVT is used to compute the local global virtua time at the end of each

simulation cycle. It is calculated by a GVTManager as the minimum time reported by
90

simulation objects. calculateGVT is used to compute the global virtua time, and is also

handled by the class GVTManager.

Figure 31 shows the new class diagram of the DEV'S processors along with some

of their main methods that implement the algorithms described in Chapter 4.

Ti meVar p

Processor

Ti meWar p()

~Ti neVar p()
initialize()
finalize()

execut eProcess()
saveState()

rol | back(VTi me)

rol | backFi | eQueues()
cal cul ateM n()

i nput Geol | ect (VTi e)
stateCGcol | ect (VTi ne)
out put Geol | ect (VTi ne)
sendEvent ()

get Event ()

47

Processor ()
~Processor ()

execut eProcess()
next Change()

next Change(VTi ne)

| ast Change()

| ast Change(VTi ne)
nodel ()

recei ve(initMg)
recei ve(doneMsg)
recei ve(col | ect Msg)
recei ve(ext ernal Msg)
recei ve(internal Msg)

send(ini t Msg, dest)
send(doneMsg, dest)
send(internal Msg, dest)

wrl telog()
rol | backCheck()

1

Si nul at or

Root Coor di nat or

Fl at Coor di nat or

NodeCoor di nat or

initialize()
receive(initMg)
recei ve(internal Msg)
recei ve(ext ernal Msg)
recei ve(col | ect Msg)

initialize()
rootlnitialize()

recei ve(out put Message)
events()

addExt er nal Event (Mti me
, port,val ue)

initialize()
addLocal Dependant s()
recei ve(inithMsg)
recei ve(doneMsg)
recei ve(internal Msg)
recei ve(col | ect Msg)
recei ve(ext ernal Msg)
recei ve(out put Msg)
cal cul at eNext Change()
synchroni zeLi st ()
events()

initialize()

st opTi ne(VTi ne)
events()

get Par ent NC()
receive(initMg)
recei ve(doneMsg)
recei ve(ext ernal Msg)
recei ve(out put Msg)
sendCQut sFr omNC()

Figure 31: UML class diagram for the new DEV'S processors

We defined processor as an abstract class that inherits from Warped TimeWarp
class. processor provides basic functionality and data that are common to al DEVS

processors in the application. It defines the methods initialize executeProcess and

91

finalize as well as other methods and variables. It dso defines some methods (e.g.,

receive(initMsg), receive(doneMsg)) that have to be redefined by its subclasses, as we

will show next. In general, processor includes the definition of:

a)

b)

d)

f)

send methods (e.g., send(initMsg,dest), send(doneMsg,dest)), for sending each
type of message. Send methods defined by CD++ use, in turn, the method
sendEvent defined by Warped in the TimeWarp class.

time management methods (e.g., timeNext(), timeLast(), timeNext(VTime),
timeLast(VTime)), which are used to report and update the time of next scheduled
change, time of last change, etc., associated with this processor.

initialize, finalize, and some debugging methods (e.g., writeLog()), which perform
tasks that are common to all processors. Some of these tasks include opening and
closing log files for the associated simulation object, writing in those log files,
and printing the processor’ s name and identification.

executeProcess(), which is the method that defines the behavior of any DEVS
processor, as explained later.

rollbackCheck(), which is called in the receive method, and checks for straggler
messages (i.e., whether the timestamp of the received message is smaller than the
time at this processor), and

some basic variables, such as model associated to this processor, processor’s
parent, id and descriptors.

The method executeProcess of the processor class is common to every DEVS

processor, and therefore it is not redefined by any of its subclasses.

92

processor.executeProcess() is in charge of getting the first event in the queue of events
(using the method getEvent, which is defined by the Warped kernel), logging the
necessary information, and calling the corresponding receive method based on the
message type. The receive method casts the event to its correct type using an enumerated
field, messageType, which will be described later when we discuss the definition of
messages.

The receive methods for each DEV'S processor are the actual implementation of
the algorithms presented in Chapter 4. These methods describe what to do in case of the
reception of a message. For example, the receive (initMessage) method of a flat
coordinator follows the algorithm presented earlier. First, it sends initialization messages
to al of its children (using the method send(initMessage,dest)). Second, it has to wait
until all done messages are received from its dependant simulators. nodeCoordinator
keeps track of the number of done messages it has received using the method
doneCount(). Findly, it determines and updates the time of next change (using
nextChange(VTime), implemented in processor) and sends this value to its parent node
coordinator (using send(doneMsg,dest), aso implemented in processor). The receive
(initMessage) method defined for simulator, in contrast, initializes the model variables,
computes the next time for the next transition (using the time advance function, ta) and
sends a done message to its parent, which is a flat coordinator. Since a simulator has
access to the definition of its associated atomic model, it is possible for it to execute its

functions (e.g., interna transition function, time advance function).

93

In addition to the different DEV'S processors that we discussed, we defined states
and events associated with those processors, which extend Warped basic classes.

We defined a class for the basic state of a DEVS processor, ProcessorState,
which inherits fom the Warped class BasicSate shown in Figure 30. ProcessorState
defines basic time-related data, such as the time of last change and time of next change. It
stores data that represents the object’ s state and can change at each simulation cycle. The
simulator also associates to its own state the value of associated atomic component,

defined as AtomicSate.

Basi cEvent

sign

al readyProcessed
sendTine |recvTine
eventide |...

Basi cEvent ()
~Basi cEvent ()

si ze()
1

TWvessage

msgType

TWvessage()
~TWessage()
si ze()

get MsgType()

1

i ni t Message

out put Message

ext er nal Message

doneMessage

get Message()

port
val ue

port
val ue

next Change

get Message()

94

get Message()

get Message()

Figure 32: Class diagram for messages in CD++

Figure 32 shows the corresponding class diagram for message-related classes. We
defined classes for messages that are exchanged by the processors. initMessage,
internalMessage, externalMessage, outputMessage, collectMessage, and doneMessage.
All of theminherit from our class TWMessage, which in turn inherits from Warped class
BasicEvent.

Warped guarantees that every TimeWarp simulation object (which in our
application means every instantiation of any DEV'S processor) includes an input queue,
an output gueue, and a state queue. The input queue holds the events that the object has to
process (possibly, some that have already been processed are also kept). The output
gueue holds events generated and sent by this simulation object. In case of arollback, the
object’s output queue is used to issue negative messages as specified by Jefferson’s Time
Warp algorithm, as described in Chapter 2. As demonstrated in [Jef85], anti- messages
can only be sent for messages whose timestamps are later than the globa virtua time.
Therefore, messages with timestamps that are earlier than or equal to GVT can be
deleted. The state queue holds previous states for this TimeWarp object. Smilarly, the
state queue only has to keep states whose timestamps are later than the GVT, so that in
case of arollback that state can be recovered.

We mentioned that LogicalProcessis one of the fundamental classes defined by
Warped. Figure 33 shows a class diagram for ParallelMainSmulator, which extends the
basic LogicalProcess outlined in Figure 30. ParallelMainSmulator is the class that

implements logical processes in our application.

95

Logi cal Process

schedul er
conmuni cat i onManager
GVTManager

si mArr ay

Par al | eMai nSi nul at or

Logi cal Process()
~Logi cal Process()
get Nuntbj ect s()
get Tot al NuntOf Qbj ()
print Confi gl nfo()
printStats()

regi sterObject()

| oader

r oot Coor di nat or
nodeCoor di nat or

f 1 at Coor di nat or
nodeCoor di nat or Li st

Paral | el Mai nSi mul ator ()
~Par al | el Mai nSi nul at or ()
run()

| oadMbdel s()

set upLP()

| oadPorts()

simul ate() | oadConponent s()
cal cul at eLGVT() :OangdEI()
cal cul at eGVT() oadLi nks()

al | Regi stered()

| oadMachi nes()

nodel Partition()

get Machi nel ()

| oadExt er nal Event s()
showEvent s()
showMbdel Partition()

Figure 33: Classes Logical Process and ParallelMainSimul ator

At the beginning of a distributed CD++ simulation, one instance of
ParallelMainSmulator is set up on each machine. Each ParallelMainSmulator groups
the simulation objects running on this logical process. a node coordinator, a flat
coordinator, one or more simulators and, in the case of the main machine (i.e., processor
0), aroot coordinator. The ParallelMainSmulator is in charge of creating the structure
of DEV'S processors as shown in the previous chapter. To do so, ParallelMainS mulator
calls the method Logical Process.register Object(p) for each DEV'S processor p that runs

on this node. After every object is registered, Logical Process.allRegistered() is executed.

96

Simulation objects sharing a ParallelMainSmulator also share its GVTManager
(in charge of calculating the global virtual time), CommManager (dealing with inter-LP
communication), and Scheduler (in charge of scheduling the events received in the
gueue). More information on these classes can be found in [War04].

Each ParallelMainSmulator can access information about the root coordinator
(which may be running locally —if this is the main machine- or remotely), the node
coordinator and the flat coordinator running on this processor. In addition, information
about al node coordinators can be accessed through a nodeCoordinatorList. Local
simulation objects can be accessed directly via Logical Process.simArray.

ParallelMainSmulator has several methods to load all the information about the
models (e.g., loadPorts(), loadComponents(), loadModel(), loadLinks()) and about the
machines and model partition (loadMachines(), model Partition()).

Warped provides different functions for manipulating elements in their queues
(e.g., garbage collection, finding and inserting an element). A garbage collection
mechanism is triggered by the kernel to release memory allocated by states and events
that are no longer valid. For more information on these Warped features, see [War04].

Output files generated by an application based on Warped need to use a special
Warped class, FileQueue, to perform output operations. At the beginning of the
execution, the application has to inform the number of files that will be created. When
using FileQueue, information is physically written to the file only when it is safe to do so

(i.e.,, when it is impossible to have a rollback for that data). Uncommited data can be

97

rolled back by Warped if necessary. Warped kernel is in charge of flushing and closing
physical files and deallocating memory.

There are two types of files written by CD++ as the ssmulation advances, which
use the FileQueue mechanism provided by Warped: output files and log files.

Outputs generated by the model are written by CD++ in the output file. When we
described the algorithms of root coordinator and node coordinator in the previous
chapter, we discussed two different alternatives for generating models outputs (see
parameter send-outputsfrom-NC in the node coordinator’s algorithms and
sendOutsFromNC() in Figure 31)

One approach is to make root coordinator handle all outputs to be sent to the
environment. Thus, node coordinators forward their outputs to root coordinator, which
acts as an intermediator. A different possibility is to have node coordinators sending
outputs directly to the environment. These two alternatives are implemented in CD++
with a FileQueue object in the root coordinator or with a FileQueue object for each node

coordinator to handle outpuits.

5.1 EXECUTION OF DEVSAND CELL-DEVSMODELS

Users must define different files to run DEVS and Cell-DEVS models in CD++.
The minimum information that has to be specified is the model and its partition. For
DEVS models, atomic and coupled models have to be defined. Atomic models are
written in C++, whereas coupled models are specified using a built-in language. Cell-
DEV S models are written using a built-in language, which allows specifying the size and

98

structure of the cell space, connection with other existing DEVS models, type of delay,
neighborhood, border and rules for each cell (or region of cells). A partition file is used to
specify how models will be distributed across the machines that participate in the
smulation.

As we discussed earlier, our new simulator does not modify any class of the
CD++ modd hierarchy from the one that was introduced by [TroOla]. Therefore, DEVS
and Cell-DEVS models written for the previous version of paralel CD++ can be
executed with our simulator without modifications. DEVS models written for other
versions of the tool require minimum modifications in order to be executed by the new
smulator.

Users can specify other optiona information. When running a Cell-DEV'S model,
users can indicate the initial values for the cells, and log files to store the debugging of
the moddl’s rules. For DEVS and Cell-DEVS models, it is possible to specify externdl
events that will be received by the model in an event file. External events are received via
the model’s input ports and times are written in the hours: minutes: seconds: milliseconds
format. A sample event file is shown in Figure 34. For example, the first line shows an

external event arriving at 00:00:04:000 via port in_1 with avalue of 1.

00: 00: 04: 000 _ in 1 1
00:00:12: 000 in_2 1
00: 00: 27: 000 in_1 21

00: 00: 53: 000 in_2 10

Figure 34: Sample CD++ event file

CD++ simulation messages can be logged either for debugging purposes or for

99

studying the internal behavior of the simulator. Users can specify only a subset of
messages to be logged (e.g., it is possible to record only output, external, and done

messages, while omitting initialization, internal, and collect messages).

3/ L/ 1 [/ 00:00:00: 000 / NodeCoordinator(450) / Fl at Coordi nator(454)

3/ L/ D/ 00:00:00:000 / life(0,0)(26) / 00:00:00: 000 / Fl atCoordinator (454)
3/ L/ D/ 00:00:00:000 / life(0,1)(27) / 00:00:00:000 / Fl atCoordi nator (454)
3/ L/ D/ 00:00:00:000 / life(0,2)(28) / 00:00:00: 000 / FlatCoordinator(454)
3/ L/ D/ 00:00:00:000 / life(0,3)(29) / 00:00:00: 000 / Fl atCoordinator(454)
3/ L/ D/ 00:00:00:000 / life(0,4)(30) / 00:00:00:000 / FlatCoordinator (454)
3/ L/ D/ 00:00:00:000 / life(4,4)(45) /00:00:00: 000/ Fl at Coordi nator (454)
3/ L/ @/ 00:00:00: 000 / Parall el NodeCoordi nat or (450) / Fl at Coordi nat or (454)
3/ L/ Y/ 00:00:00:000 7/ life(0,0)(26) / out / 0.000 / FlatCoordi nator(454)
3/ L/ D/ 00:00:00:000 / life(0,0)(26) / 00:00:00: 000 / FlatCoordinator (454)
3/ L/ Y/ 00:00:00:000 / life(0,1)(27) / out / 0.000 / Fl atCoordi nator (454)
3/ L/ D/ 00:00:00:000 / life(0,1)(27) / 00:00:00:000 / Fl atCoordi nator (454)
3/ L/ Y/ 00:00:00:000 / life(0,2)(28) / out / 0.000 / FlatCoordi nator(454)
3/ L/ D/ 00:00:00:000 / life(0,2)(28) / 00:00:00: 000 / FlatCoordinator (454)
3/ L/ Y/ 00:00:00:000 / life(0,3)(29) / out / 0.000 / FlatCoordi nator (454)
3/ L/ D/ 00:00:00:000 / life(0,3)(29) / 00:00: 00: 000 / Fl atCoordi nator (454)
3/ L/ Y/ 00:00:00:000 / life(0,4)(30) / out / 0.000 / FlatCoordi nator(454)
3/ L/ D/ 00:00:00:000 / life(0,4)(30) / 00:00:00: 000 / FlatCoordinator(454)
3/ L/ Y/ 00:00:00:000/ life(1,0)(31) / out / 0.000 / FlatCoordi nator(454)
3/ L/ D/ 00:00:00:000 / life(1,0)(31) / 00:00:00: 000 / Fl atCoordi nator (454)
3/ L/ * [/ 00:00:00:000 / Parall el NodeCoordi nat or (450) / Fl at Coor di nat or (454)
3/ L/ D/ 00:00:00:000 / life(0,0)(26) / ... I/ FlatCoordinator(454)

3/ L/ D/ 00:00:00:000 / life(0,1)(27) / ... | FlatCoordinator(454)

3/ L/ D/ 00:00:00:000 / life(0,2)(28) / 00:00:00:100 / Fl at Coordi nat or (454)
3/ L/ D/ 00:00:00:000/ life(0,3)(29) / [Fl at Coor di nat or (454)

3/ L/ D/ 00:00:00:000 / life(0,4)(30) / ... /| FlatCoordinator(454)

3/ L/ D/ 00:00:00:000 / life(1,0)(31) / 00:00:00:100 / Fl at Coordi nator (454)
3/ L/ D/ 00:00:00:000 / life(1,1)(32) / | Fl at Coor di nat or (454)

3/ L/ D/ 00:00:00:000 / life(1,2)(33) / ... [FlatCoordinator(454)

3/ L/ D/ 00:00:00:000 / life(1,3)(34) / 00:00:00:100 / Fl at Coordi nator (454)
3/ L/ D/ 00:00:00:000 / life(1,4)(35) / 00:00:00:100 / FlatCoordi nator (454)
3/ L/ D/ 00:00:00:000 / life(4,4)(45) / 00:00: 00: 100 / Fl at Coordi nat or (454)
3/ L/ @/ 00:00:00:100 / NodeCoordinator(450) / Fl atCoordi nator (454)

3/ L/ Y/ 00:00:00:100 / life(0,2)(28) / out / 1.000 / FlatCoordi nator(454)
3/ L/ D/ 00:00:00:100 / life(0,2)(28) / 00:00:00:000 / FlatCoordinator (454)
3/ L/ Y/ 00:00:00:100 / life(1,0)(31) / out / 1.000 / Fl atCoordi nat or (454)
3/ L/ D/ 00:00:00:100 / life(1,0)(31) / 00:00:00:000 / FlatCoordinator(454)
3/ L/ / 00: 00: 00: 100 / NodeCoordi nat or (450) / Fl at Coor di nat or (454)

3/ L/ / 00:00:00:100 / life(0,2)(28) / [Fl at Coor di nat or (454)

Figure 35: flat coordinator log file for a sample Cell-DEV S model (partial)

100

Figure 35 shows an example of a log file generated by a flat coordinator during
the execution of a bidimensiona Cell-DEVS model called “life”. The execution of this
model is distributed across 4 machines, each of which runs a 5x5 area of the model. Log
files keep track of the messages received by each processor participating in the
simulation. In Figure 35, we see some of the messages received by a flat coordinator.
Every entry in the log file includes: the machine in which the DEV'S processor is running
(in this case, 3), the type of message L for local, which indicates that the source is
running in the same LP, or R for remote, which indicates an inter-LP message),
timestamp, and some information about the message (e.g., time of next transition for a
done message, or port and value for an output message). The file aso gives information
about the processor ids of source and destination of the message.

The first line in Figure 35 shows a (local) initialization message received by flat
coordinator (with id 454) at time 00:00:00:000 from its parent node coordinator (with id
450). As we described in the previous chapter, a flat coordinator responds to an
initialization message by forwarding it to all its children (this is not shown in Figure 35
but in each simulator’s log file, where the messages are received). Once the initialization
function is executed for every cell, these simulators send done (D) messages informing
the time of next change, as shown in the following lines (done messages at time
00:00:00:000 received from life(0,0)(26) to life(4,4)(45)).

After all done messages are received, the flat coordinator reports its time of next
change (00:00:00:000) to its parent (which is not shown in Figure 35 but in node

coordinator’s log file), completing the initialization phase for the flat coordinator.
101

After the initialization phase is completed, Figure 35 shows the beginning of a
collect (@) phase by a message received at time 00:00:00:000 from node coordinator.
This message is forwarded to simulators. Then, simulators respond with output (Y)
messages (which contain a port, out, and a value associated to that port, in this case 1.000
or 0.000) and done messages.

Following the collect phase, an internal (*) message at time 00:00:00:000 is
received at flat coordinator from node coordinator. As described by flat coordinator’s
algorithm, this message is forwarded to the corresponding simulators. Their responses
report the time for their next internal transition. For example, life(0,0) and life(0,1)
inform that they do not have a scheduled internal transition (this is informed in the log
file by a“...” in the field for time of next transition, which represents inf or infinity as
discussed in Chapter 4). On the other hand, life(0,2) reports that it has a internal transition
scheduled in 100 ms. These messages complete the simulation cycle for time
00:00:00:000. Subsequently, a new collect message is received at time 00:00:00:100 and
the process described earlier is repeated.

The log file for the simulator running life(0,2) is shown in Figure 36. It shows the

messages for one of the simulators that interact with the flat coordinator shown in Figure

35.

102

/ 00:00: 00: 000 / FlatCoordinator(454) / life(0,2)(28)
/ 00: 00: 00: 000 / Fl at Coordi nator(454) / 1ife(0,2)(28)
/ 00:00: 00: 000 / Fl at Coordi nator (454) / in_value / 0.000

wWww
-~
| i
~
xXQ

3/ L/ * [00:00:00:000 / FlatCoordinator(454) / life(0,2)(28)
3/ L/ @/ 00:00:00:100 / Fl atCoordinator(454) / life(0,2)(28)
3/ L/ X/ 00:00:00:100 / FlatCoordinator(454) / in_value / 0.000

3/ L/ */ 00:00:00:100 / FlatCoordinator(454) / 1ife(0,2)(28)

/ @/ 00:00:00:200 / FlatCoordinator(454) / life(0,2)(28)
/ X/ 00:00:00:200 / FlatCoordinator(454) / in_value / 0.000

3/ L/ */ 00:00:00:200 / FlatCoordinator(454) / 1ife(0,2)(28)

Figure 36: ssimulator log file for cell model life(0,2) (partia)

The first line in Figure 36 shows the initidlization message received at time
00:00:00:000 from flat coordinator, which triggers the initialization function for this cell.
The simulator responds by sending a done message with the time of next change, which
can be seen in the fourth line in Figure 35. The second line in Figure 36 shows the
reception of a collect message at time 00:00:00:000, which triggers the execution of the
output function for this cell. The output and done messages sent by life(0,2) are received
by the flat coordinator, and can be seen in Figure 35. Then, an internal message is
received by the simulator, which triggers the internal transition function for this model.
Then, a new simulation cycle starts with the reception of a collect message at time
00:00:00:100, repeating the previous process.

We have discussed the log files generated by Cell-DEVS models. Log files
generated by DEVS model are very similar. For example, Figure 37 shows a log file

generated by a simulator in charge of an atomic model called rtc4.

103

2/ L/ 1 / 00:00:00:000 / FlatCoordinator(22) / rtc4(01)
2/ L/ @/ 00:00:00:000 / FlatCoordinator(22) / rtc4(01)
2/ L/ * | 00:00:00:000 / FlatCoordinator(22) / rtc4(01)
2/ L/ @/ 00:00:08:000 / FlatCoordinator(22) / rtc4(01)
2/ L/ * / 00:00:08:000 / FlatCoordinator(22) / rtc4(01)
2/ L/ @/ 00:00:15:000 / FlatCoordinator(22) / rtc4(01)
2/ L/ * [/ 00:00:15:000 / FlatQoordinator(22) / rtc4(01)

Figure 37: ssmulator log file for a sample atomic model (partial)

Messages received by this simulator (whose id is 01) are shown in Figure 37,
starting with ainitialization message from flat coordinator. This message triggers the
initialization function for the associated atomic model, rtc4, and a done message is sent to
its parent, FlatCoordinator(22), informing the time of next change. This done message,
which is registered in the flat coordinator’s log file, indicates that the model has an
internal transition function scheduled for time 00:00:00:000. Then, collect and internal
messages are received, completing the ssmulation cycle for this time. The next simulation
cycle starts again with a collect message at 00:00:08:000, followed by an internal
message.

Figure 38 shows a log file for a node coordinator in charge of LP O during a

simulation distributed in 3 processors.

O/ L/ I / 00:00:00:000 /Root Coordi nat or (00) / NodeCoor di nat or (21)

0O/ L/ D/ 00:00:00: 000 /Fl at Coordi nator(24)/00: 00: 00: 000/ NodeCoor di nat or (21)
0/ L/ D/ 00:00:00: 000 /Fl at Coordi nator(24)/00: 00: 00: 000/ NodeCoor di nat or (21)
O/ L/ D/ 00:00:00: 000 /Fl at Coordi nat or (24)/00: 00: 00: 100/ NodeCoor di nat or (21)
O/ L/ D/ 00:00:00: 100 /Fl at Coor di nat or (24)/ 00: 00: 00: 000/ NodeCoor di nat or (21)
0O/ L/ D/ 00:00:00: 100 /Fl at Coor di nat or (24)/00: 00: 00: 400/ NodeCoor di nat or (21)
1/ R/ X/ 00:00:00:150 / NodeCoordi nator(22)/in_port_1/0.000

Figure 38: node coordinator log file (partial)

104

Figure 38 shows the messages received in a node coordinator (whose id is 21)
from other DEVS processors. An initialization message from the root coordinator is
received at time 00:00:00:000. After forwarding this message, the corresponding done
message from flat coordinator (line 2). Then, the node coordinator receives done
messages in relation to the collect and internal messages sent at time 00:00:00:000 and
equivalent messages for time 00:00:00:100. At time 00:00:00:150, an external message is
received from a sibling node coordinator (its id is 22) from machine 1. The second field
of the message indicates that it is a remote nessage, and its port (n_port 1) and vaue
(0.000) are included in the log.

Log files generated by Cell-DEV'S models can be used to visualize the results of
the simulation. CD++ supports 2D and 3D visualization using different shapes and colors
to represent each cell. For more information on how to visualize Cell-DEVS models in
CD++, see[Wai03].

We described the log files generated by Cell-DEVS and DEV'S models, which
show the messages exchanged by DEVS processors. In addition to log files, as we
discussed earlier, CD++ models can generate a file that registers all the outputs sent to

the environment, as shown next.

00: 00: 08: 000 out
00: 00: 15: 000 out
00: 00: 48: 000 out
00: 01: 03: 000 out
00: 01:17: 000 out

abwWNPEF

Figure 39: Sample output file for a DEVS model

105

Figure 39 shows an output file generated by a sample DEVS model. The output
file indicates the time, port, and value of each output. For example, the first line
represents an output generated at time 00:00:08:000 through the output port out with a

vaue of 1.

106

Chapter 6 PERFORMANCE ANALYSIS

In this chapter, we introduce a new synthetic benchmark devoted to automate the
evauation of DEV S-based simulation approaches called DEV Stone. DEV Stone assists
the task of analyzing the performance of a simulator by generating models with different
size, complexity and behavior, resembling different kinds of real world applications. We
use DEV Stone to analyze the overhead of our new simulator, comparing it with other
engines supported by CD++. Then, we analyze the performance of our simulator for Cell-

DEVS modedls.

6.1 DEVSTONE

Analyzing the performance of a simulation engine can be a very complex task.
Users can create a wide variety of models with different structures, levels of complexity
and degrees of interaction. Most studies of simulation techniques are focused on specific
tools. For instance in [Tro01b], the authors presented performance studies of Cell-DEVS
models in a paralel smulation environment. In [Zei96], the authors focused on a
watershed model to show performance improvements in paralel and distributed
architectures. A comparison of performance issues for two particular simulators
(DEVSCluster and D-DEVSim++) is given in [Kim04]. DEVS was shown to be more
efficient than the continuous counterparts when simulating natural [Zei97a], and artificia

systems, such as a photovoltaic system [Fil02b]. However, those studies do not provide a

107

thorough analysis for the execution of models with different characteristics, neither do
they give a common metric to compare results among different DEV'S simulators.

Instead of limiting our effort solely to testing individual models, we developed a
synthetic benchmark to aid not only this but also future initiatives in the area, as ongoing
developments intended to improve DEVS simulators aso require a way to assess
performance. We introduce the DEV Stone benchmark, a synthetic model generator that
automatically creates models according to our goals. Its accuracy relies on the execution
of alarge pool of models to provide a robust test set. DEV Stone generates models with
different size, complexity and behavior, resembling different kinds of rea world
applications. Hence, it is possible to analyze the efficiency of a simulation engine with
relation to the characteristics of a category of models of interest. The tool can be used to
assess the efficiency of DEVS simulation engines, and it provides a common metric to
compare the results using different tools.

We focus in the aspects of the models that have impact on performance, namely
size of the model and the workload carried out in the transition functions. A DEV Stone
generator produces models using the following parameters:

o type: different structure and interconnection schemes between the components.
0 depth: the number of levelsin the modeling hierarchy.

0 width: the number of components in each intermediate coupled model.

0 interna transition time: the execution time spent by internal transition functions.

0 externa transition time: the execution time spent by external transition functions.

108

In general, being d the depth and w the width, we build a coupled model with d
levels in the hierarchy, al of which consist of w-1 atomic nodels, with the exception of
the lowest level of the hierarchy, in which a coupled component is composed of a single
atomic model. In addition, internal and external transition functions are programmed to
execute a fixed amount of time specified by the user. In both transition functions we
consume CPU clocks by running Dhrystones [Wei84]. The Dhrystone synthetic
benchmark uses published statistics on the use of programming language features, and it
is available for different programming languages (Ada, C++, Java, Pascal, etc.).
Dhrystone code consists of a mix of instructions using integer arithmetic; therefore, it isa
good choice for analyzing models like DEVS in which state variables have discrete
values.

DEV Stone uses three different types of models with variations in their internal
and external structure:

o LI models, with alow level of interconnections for each coupled model
0 HI models with a high level of input couplings, and
o HO models with high level of coupling and numerous outputs.

In L1 models, every coupled component includes only one input and one output
port. Figure 40 shows a sample LI model, in which we have four layers of coupled
components, each containing three submodels. The arrows represent input and output
ports, solid-white boxes represent coupled components and shaded-gray boxes represent
atomic components. The Coupled Component #0 in Figure 2 (a) consists of one coupled

and two atomic components. The lower levels in the hierarchy (Coupled Component #1,
109

Coupled Component #2) use the same interna structure. Coupled Component #3 is a

“leaf” model, which contains one atomic child (#7).

Coupled Component #(

i in ut
Ul Coupled Component#1 |out [GU Coupled Component #3

in in in Atomic Component #7 out out
Atomic Component #1 —» » (at the last level — level 4) » >
(at level 1)
in AtMi(calCIO;So]'_‘)m#Q
@ (b)
Figure 40: Example of aLl model: (a) top level; (b) level 4
[top]
conponents: conp0 conp0l1@At om conpO02@At om
out : out
in: in

link : in in@onp0

link : in in@onp0l1
link : in in@onp02
link : out@onpO out

[conpO]

conponents : conpl conpll@\t om conpl2@\t om
out : out

in: in

link : in in@onpl

link : in in@onpll

link : in in@onpl2

link : out@onmpl out

[conp01]

preparation : 00:00: 00: 000
intDelay : 0

extDelay : O

[conp02]

preparation : 00:00:00: 000
intDelay : 0

extDelay : 0O

Figure 41: Model file generated by DEV Stone for a LI model

110

Figure 41 shows the model file associated with such model, which is generated by
DEV Stone. As we discussed earlier, coupled models are entirely defined in thisfile (their
components, internal coupling, etc.). Although atomic components require a separate
C++ file, a section of the model file is used to define their preparation time, and two
parameters (intDelay and extDelay) that determine the internal and externa transition
time.

As we know the model structure and the time spent by each component in
executing trandition functions, we can compute the execution time for the model
anaytically. First, we devise the number of atomic and coupled models in the structure,
which can be derived from the composition of the model type. In L1 models of depth d
and width w, we have d coupled models with w-1 atomic components each (except for the
leaf, with only one atomic component). Consequently, the total number of atomic
componentsis:

Atomic Models = (width — 1) * (depth—1) + 1

Since we have a predefined interconnection pattern, we can anticipate the
message routes triggered by an external event and the time spent in transition functions.
L1 models forward external events to each atomic component and to lower levels in the
model hierarchy. Each external event triggers the atomic’s externa transition function
and, subsequently, an internal transition is scheduled. Thus, the number of internal and

external transition functions to be triggered is:

Internal Transitions = # Atomic Models (D)

External Transitions = # Atomic Models

111

HI models have the same number of atomic components, but more
interconnections. Each atomic component k connects its output to the input port of
component k+1 (with the exception of one last atomic component on each level, which
does not have any output port). Therefore, there are more messages exchanged upon the
reception of an external event, and the associated overhead grows accordingly. In a
model with depth d, and width w, we have,

Atomic Models= (w—1) * (d—1) + 1
#Internal Transitions= S =1 . wy i * (d=1)+ 1 (2)

#External Transitions= S =1 _wyi * (d=1)+ 1

Each coupled model forwards the external events to its w-1 atomic children and
also to its coupled child. This process of forwarding messages is repeated in each coupled
component except for the leaf component, which forwards the messages to its single
atomic child.

HO models have the same number of atomic and coupled components, but
coupled models have two input and two output ports in each level. The second input port
in the coupled component is connected to its first atomic component. That atomic model
connects its output to the second output of its parent. The increased number of
interconnections results in the execution of more transition functions after the model
issues its output, and consequently generates more overhead. For this model type we

have,

112

Atomic Models= (w—1) * (d—1) + 1
#Internal Transitions= S =1 . wy i * (d=1)+ 1 3)

#External Transitions= S =1 .w.yi * (d=1)+ 1

Coupled components forward each external event to their w-1 atomic children and
also to their coupled child. This process is repeated for each coupled model until the leaf
component receives the event, which is forwarded to its single atomic component.

DEVStone can be used in any simulator with capabilities for defining and
executing Dhrystone code. We can use single-layered models for comparison with tools
with non-hierarchical structure. Likewise, if the chosen modeling technique does not
support the execution of internal transitions, we can compare the simulators by building a

DEV Stone in which the execution time for interna transitions is zero.

6.2 PERFORMANCE ANALY SIS FOR DEVS MODELS

CD++ supports different simulation techniques, some of which were discussed
earlier in this work. The origina verson of CD++ provides a stand-alone engine for
execution on a single processor [Rod99, Wai02]. In [Tro01a, Tro03], a parallel version of
the toolkit was presented. It uses a conservative synchronization protocol, as opposed to
the simulation technique based on an optimistic synchronization protocol introduced in

this work.

113

Our first goa is to determine the overhead of the new simulation engine. To
analyze its overhead, we use our DEV Stone synthetic benchmark. Moreover, we compare
the overhead of the new engine with the overhead of the previous implementations.

The advantages of taking this approach are twofold. First, the execution of these
experiments allows us to test the usefulness of the DEV Stone benchmark. Second, we
can test our new simulator thoroughly, and compare the results with engines that have
shown good performance results for DEV'S and Cell-DEV S execution [Gli02b, Tro0O1b].

The following tests compare the overhead of three simulators: (i) origina, (ii)
paralel smulator with conservative protocol, and (iii) our new simulator, which
implements parallel simulation using an optimistic protocol. In addition, we compare the
execution results with the theoretical execution time for each type of model, computed as
in equation (4).

[(# External Transitions* TimelnExternal Transition) +
Total theoretical time = (# Internal Transitions* Timelninternal Transition) | * 4

Number OfExtEvents

In this set of experiments, we are focused on measuring the overhead of the new
simulator and comparing the results with other (stand-alone and parallel) engines. Thus,
these simulations are executed on a dedicated single-processor machine. All models were
executed using 10 externa events, each of them triggering a known number of external
and internal transition functions defined by equations (1), (2), and (3). Table 1 shows the

parameters we used for different tests, including model type, structure and time spent on

114

components per level).

Table 1: Simulation parameters

transition functions (e.g., model E is of HI type, it is composed of 3 levels, and has 6

Simulation Model Depth Width dint et
Type

A LI 3 10 50 ms 50 ms
B LI 10 50 ms 50 ms
C LI 5 50 ms 50 ms
D LI 10 10 50 ms 50 ms
E HI 3 6 50 ms 50 ms
F HI 6 3 50 ms 50 ms
G HI 5 5 50 ms 50 ms
H HI 6 6 50 ms 50 ms
I HO 3 6 100 ms Oms

J HO 6 3 Oms 100 ms
K HO 5 5 50 ms 50 ms
L HO 6 6 50 ms 50 ms

The experiments were executed in a single processor, allowing us to measure the
pure overhead incurred by our simulator, and enabling comparisons not only with the
other parallel (conservative) smulator but also with the origina (stand-alone) simulation
engine.

In order to better understand the influence of the tools in the total execution time,
we also measured the percentage of overhead. The overhead is computed as the ratio

between theoretical and actual execution time.

115

The following figures show the execution times and the associated overheads
grouped by model type: Figure 42 and Figure 43 (L1 models), Figure 44 and Figure 45

(HI models) and Figure 46 and Figure 47 (HO models).

90000

80000 H

70000 H

60000 H
= O Stand-alone CD++
E 50000 7| |m Conservative mechanism
qg) 40000 | | [OOptimistic mechanism
a O Theoretical

30000 H

20000 - — — ||

0 - T T T

A B C D

Figure 42: Execution times for LI modelsin a single CPU
using the optimistic parallel simulator and other simulation engines

4.50%
4.00%
3.50%
3.00% []
2.50% - B
2.00% =
1.50% A
1.00% - =
0.50% - =
0.00% - T T T =

O Stand-alone CD++
m Conservative mechanism

Overhead

O Optimistic mechanism

Figure 43: Overhead incurred by the optimistic parallel simulator
and other smulation engines for LI models

116

Figure 42 shows the execution times for LI models, which belong to the most
simple type of models generated by DEV Stone. We can measure the difference between
the theoretical execution time (which only comprises time required to execute the
Dhrystone code in the internal and external transitions) and the execution time for each
engine. As a result of the relatively simple structure of models A, B, C, and D, the
differences are small; in al cases, the differences fall in the range of 270 to 2110 ms. As
expected, the smallest difference between theoretical and execution time is observed
when executing model A (with a structure of 3x10), which is the smallest and most
simple model in the test set. The overhead for executing such a model is 1.40% (for the
stand-alone version), 2.61% (for the conservative paralel version) and 3.06% (for the
optimistic parallel version). On the other hand, the largest overheads are observed for
model D (10x10), which contains more than 80 models in its structure. For model D, the
overhead for each simulator is 1.10%, 2.95%, and 2.51%, respectively. In al cases the
overhead is kept below 5%.

For al LI models, the stand-alone outperforms both parallel alternatives. For
models B, C, and D, the optimistic engine outperforms the conservative one, whereas for
model A the conservative engine outperforms the optimistic one. However, we believe
that the results obtained for the optimistic smulator are very promising in terms of
performance. As we mentioned earlier, these simulations are executed in a single
processor, and therefore it was expected that the stand-alone engine would outperform
the optimistic approach. Moreover, we discussed that the implementation of the

optimistic ssimulator is more complex and has more tasks that take place at each
117

simulation cycle (e.g., associated with the synchronization mechanism and the
mechanism for saving states, input, and output queues). Although the overhead associated
with those tasks can be considerable, the optimistic simulator still outperformed the
conservative ssimulator for models B, C, and D. This is a consequence of the reduction in
communication overhead incurred by the flat approach (implemented in the optimistic
simulator) over the hierarchical case (implemented in the conservative simulator). As we
discussed in Chapter 4, the flat ssimulator transforms the hierarchical structure of a DEVS
model into a more simple, flat structure of DEV S processors. We discussed the potential
for reducing the rumber of messages exchanged in the flat mechanism by comparing
both approaches. The execution of models B, C, and D show that the performance gains
of using a flat simulator outweigh the increased overhead associated with the optimistic
simulator. This is not the case for model A, where the hierarchical, conservative engine
still performs better than the flat, optimistic engine. We believe this is a consequence of
the structure (3x10) of model A. Its structure is wide (10) but not very deep (3 levels),
and therefore the reduction in messages exchanged when using aflat approach is not that

important. A more detailed discussion on these topics is given later.

118

120000

100000 =

80000 o
- O Stand-alone CD++
E - B Conservative mechanism
o 60000 — — o)
£ O Optimistic mechanism
- O Theoretical

40000 — -

20000 T — =

0 ' T T T

Figure 44: Execution times for HI models in a single CPU
using the optimistic parallel simulator and other ssimulation engines

5.00%
4.50% —
4.00% —
3.50% —
3.00% — | @ Stand-alone CD++
2.50% — — | @ Conservative mechanism
2.00% A — — — |O Optimistic mechanism
1.50% A — — —
1.00% - — — —
0.50% A — — —
0.00% - . . L

Overhead

Figure 45: Overhead incurred by the optimistic parallel simulator
and other simulation engines for HI models

Figure 44 and Figure 45 illustrate the results for executing HI models, which are
more complex than LI models. As we mentioned before, HI models have more

interconnections between inner components, which results in more transitions functions
119

to be executed. In these cases, we observe results that are similar to those obtained for L1
models. Differences between theoretical and actual execution times fall in the range of
500 to 5130 ms, and overheads are in the range of 1.59% to 4.62%. In general we see that
the stand-alone simulator, whose overhead is 2.65% in the worst case (model H, 6x6),
outperforms both parallel alternatives for al HI models. The optimistic engine
outperforms the conservative simulator for models F, G, and H, whereas the opposite is
observed for model E. As we discussed for LI models, the flat simulator implemented in
the optimistic engine outweighs, in some cases, the increased overhead associated with its
more complex implementation. However, this is not the case for model E, whose

structure is wide, but not very deep.

120000

100000 u

80000 —

O Stand-alone CD++
| Conservative mechanism

60000 T o N .
O Optimistic mechanism

Time (ms)

O Theoretical
40000 1 -

20000 A — u

0 T T T

Figure 46: Execution times for HO models in asingle CPU
using the optimistic parallel simulator and other simulation engines

120

6.00%
5.00%
O Stand-alone CD++
o |
= 4.00%
Q @ Conservative
5 3.00% — mechanism
>
o » 000 O Optimistic mechanism
. 0 7 | [
1.00% A — —
0.00% T T T L
J K L

Figure 47: Overhead incurred by the optimistic parallel ssmulator
and other ssmulation engines for HO models

Finaly, Figure 46 and Figure 47 show the execution times and associated
overhead of HO models, which have the most complex structure generated by DEV Stone.
The results illustrate the same trend shown earlier for LI and HI models. In this case, the
models are more complex, execute more transition functions and generate more outputs.
Consequently, the simulators have to perform more tasks and more messages are
exchanged, which leads to larger differences. The differences between theoretica and
actual execution times are in the range of 670 ms for the smallest mode (I) and 5490 ms
for the largest one (L). The stand-alone simulator also provides the best performance in
al cases. The conservative ssimulator outperforms the optimistic one for models I, K, and
L, whereas the reverse holds for model J. The structure for model J is fairly deep (6
levels) and not very wide (3 models per level). As we discussed for previous cases (e.g.,
models A and E), as a result of the more simple structure used by the flat mechanism to

121

simulate this model, the optimistic smulator outperforms the hierarchical, conservative
one for executing model J.

The execution of LI, HI, and HO models gives us information about the execution
performance for our new simulator, and a comparison with the previous alternatives
available in CD++. In general, we see that the stand-alone simulator outperforms both
paralel aternatives. This is a consequence of the more simple architecture and
implementation of the stand-alone engine. As we have discussed earlier in this work, the
paralel smulators are built on top of two layers of middleware (Warped and MPI). The
use of these middleware associates more overhead at execution time, in particular for
message passing. In addition, there is an overhead associated with the optimistic
simulator. When the optimistic simulator is used, as we discussed in Chapter 4 and 5, the
simulation objects save states, and input and output events to allow recovering from
potential rollbacks in the future. The time spent on these tasks has an impact on the
overall performance of the optimistic simulator.

We tried to reduce the communication overhead of the new simulator by
implementing a flat approach. Our flat approach uses a flattened structure of DEVS
processors to simulate the model, instead of a hierarchical structure which is usually more
complex. In Chapter 4, we discussed the reduction in communication costs by comparing
the number of exchanged messages incurred by our flat simulator with the number of
messages exchanged by a hierarchical mechanism. Some of the results presented in this
section substantiate our previous analysis. Although the optimistic ssmulator incurs in

more overhead (associated with its more complex synchronization mechanism), in some
122

cases it still outperforms the conservative approach. More specifically, the new flat,
optimistic simulator outperforms the conservative simulator for models B, C, D, F, G, H
and J. On the other hand, for models A, E, I, K and L, the conservative engine
outperforms the optimistic one despite the hierarchical approach, although the differences
are relatively small. These experiments show that the gains obtained by using a flat
approach compensate, and in some cases outweigh, the increased the overhead associated
with the implementation of the optimistic simulator.

So far, we have studied the overhead incurred by the new flat, optimistic
simulator using different DEVS models. Using DEVStone, we have compared its
performance with other simulators whose performance has been analyzed and deemed
appropriate [GliO2b, Tro01b]. Although in some cases it presented more overhead than
other tools, the optimistic synchronization mechanism has the potential for enabling

speedups in distributed environments.

6.3 PERFORMANCE ANALY SIS FOR CELL-DEVS MODELS

We studied the performance of our new simulator using a Cell-DEVS model
based on the life game [Gar70]. This popular game consists of a bidimensional lattice of
cells. Based on a simple set of rules, cells can live, die, or multiply. Figure 48 shows the

definition of the model in CD++.

123

[top] _
conponents : life

[life]

type : cell

width : 20

hei ght : 20

del ay : transport
defaul t Del ayTime : 100
border : wapped

nei ghbors : life(-1,-1) life(-1,0) life(-1,1)
nei ghbors : life(0,-1) life(0,0) Ilife(O,1)
nei ghbors : life(1,-1) life(1,0) life(l,1)

localtransition : conrad-rule
nei ghborports : val ue

[conrad-rul e]
rule : { ~value

I
[y
-

100 { (0,0)~value =1
and (statecount(1l, ~value) = 3
or statecount(1, ~value) = 4) }

rule : { ~value : =0; } 100 { (0,0)~value =1

and (statecount(1l, ~value) < 3

or statecount(1l, ~value) > 4) }
rule : { ~value :=1; } 100 { (0,0)~value = 0 and statecount(1l, ~value) = 3}
rule : { ~value :=0; } 100 { (0,0)~value = 0 and statecount(1, ~value) != 3}

Figure 48: Specification of Cell-DEVS mode life in CD++

Figure 48 shows the definition of the model as a 20x20 wrapped Cell-DEVS
model with transport delays and 3x3 neighborhood. As described in Chapter 2, the
behavior of each cell is defined by the rules of the model (see the section conrad-rule),
which have a fixed form of VALUE DELAY {CONDITION}. If the CONDITION is
satisfied, the cell state becomes VALUE and then it is DELAYed for the specified time.
The survival of a cell depends on the number of active cells within its neighborhood. If
the number of active cells, determined by statecount(1,~value), is three or four, then the
cel remains aive (specified by the first rule), otherwise it dies (specified by the second

rule). The third rule specifies that an inactive cell becomes active if the number of active

124

cells in its neighborhood is three. In this model, the delay is 100 milliseconds for every
rule.

We executed the life game using different cell spaces: 16x16 (256 cells), 20x20
(400 cells), 25x25 (625 cells) and 30x30 (900 cells). The initial configuration of cells for
each model was randomly generated.

We have experienced some problems when straggler messages are received by a
simulation object during the execution of DEVS and Cell-DEVS models. More
specificaly, the simulation aborts during the rollback mechanism triggered after a
straggler message is detected in the destination. We have identified the code of the
Warped middleware that triggers this incorrect finaization of the simulation. Although
thisis out of the scope of this work, we are working to find a solution to fix this problem
in the middleware. In order to carry out the experiments that allow distributing the
simulation in more than one processor, and to enable a performance analysis of our new
simulator, the following models are designed avoiding inter-LP communication. Since
message exchange between LPs does not happen, it is not possible to receive straggler
messages. Consequently, rollbacks are not possible and the simulation can finish without
errors.

First, the models were executed on one and four machines. We used simple
rectangular partitions for the distributed case. Figure 49 depicts the partition used for the
20x20 life model, where each machine executes a region of 10x10 (100 cells). Analogous

partitions were used for the other cell spaces.

125

(0,0) (0, 19

[[
| |
Machi ne O Machi ne 1
(10, 10)
[[
| |
Machi ne 2 Machi ne 3
(19, 0) (19, 19)

Figure 49: Partition of 20x20 life model in 4 machines

Figure 50 illustrates the execution times for the different configurations used for

the life modd!.
100
80 _
g /
@ 60
)]
£ 40 —
[o—/‘:'//'/
20 —
O T T T
256 400 625 900
Number of cells
—— 1 processor —s— 4 processors |

Figure 50: Execution times for life model (1 vs. 4 processors)

126

Figure 50 shows that, in all cases, the distributed execution of the model
outperformed the execution in a single processor. The execution time for the model
running on one processor varies from 30.7 to 90.8 seconds depending on the size of the
model. On the other hand, when running the model in parallel on 4 machines, the
execution time is smaller (between 18.1 and 47.5 seconds); in some cases, the optimistic
simulator alows to reduce the execution time in ~50%. Moreover, Figure 50 shows that,
as the size of the model increases, the slope for of the 4processor smulations is less
steep than the one for 1-processor simulations.

Recall from Chapter 4 and 5 that when using the distributed ssmulator presented
in this work, scheduling of events and synchronization tasks are distributed among the
node coordinators that participate in the simulation. When the simulation is executed on
asingle processor, one node coordinator and one flat coordinator handle the execution of
al the cells in the model. Then it is that single node coordinator which centralizes all
synchronization tasks and event scheduling for the entire model. Moreover, for the
smallest model executed in this test, the flat coordinator may have to schedule messages
(e.g., internal, collect) for up to 256 cells at every ssimulation cycle. Notice that the exact
number of messages to be transmitted at each simulation cycle depends on the number of
active cells in the model.

In contrast, when executing the model in n machines, a node coordinator and a
flat coordinator are created on each logical process. Thus, each node coordinator handles

synchronization tasks and scheduling of events for its own LP, and each flat coordinator

127

isin charge of the group of cells running locally. For the largest model shown in Figure
50, its node coordinator and flat coordinator handles 225 cells.
Figure 51 shows the execution speedup obtained by running the model in 4

processors. The execution speedup for n processors is measured as follows.

execution timein 1 processor

Speedup = _ (5)
execution time in n processors

2.5
2 . —
2 15
o
(0]
S
a1
0.5
0 T T T
256 400 625 900
Number of cells

Figure 51: Execution speedups for life model running in 4 processors

Figure 51 shows that the factor of speedup falls between 1.55 and 1.95 when
distributing the execution of the life model among 4 processors using this partitioning
approach. In these cases, we observe that the increase in computing power obtained by
using multiple machines is affected by the communication costs of synchronizing the

128

simulation. Moreover, the communication costs are more noticeable because the
simulations are executed over a relatively slow network. The processors are connected
viaa 10 Mbit hub, which limits the simultaneous transfers rate to 10 Mbits per second. In
addition, since these models are relatively small and do not have numerous active cells,
the performance gains obtained by distributing these simulations are limited.

Figure 52 shows a comparison between our parallel simulator and the previous
conservative simulator [TroOla, Tro03] for different configurations of 30x30 (ife 1-4)

and 40x40 (life 5-8) models using 4 machines.

120

100

80

Time (sec)
D
o
|

20 A

0 T T T T T T T
Lifel Life2 Life3 Life4 Life5 Life6 Life7 Life8

@ Conservative mechanism B Optimistic mechanism

Figure 52: Execution times for life model
using optimistic and conservative simulators in 4 processors

Figure 52 shows that the optimistic simulator outperforms the conservative

simulator for al configurations of 30x30 and 40x40 life models. In the configuration

129

labeled as life 5 (a 30x30 model), most of the 900 cells are active in the first cycles of the
simulation. In cases like this, we observe the the largest difference in execution times:
108 seconds for the conservative mechanism, 44 seconds for the optimistic one. In
general, the difference is a result of the performance gains obtained not only by
distributing the simulation in multiple processors but aso by distributing the scheduling
tasks in multiple node coordinators.

We are interested in analyzing the performance of our simulator for larger Cell-
DEVS. The following figures show the execution times and speedups for different
configurations of the life model with a cell space of 50x50 (i.e., 2500 cells). The
differences among these configurations (labeled as life A, B, C, and D in Figure 53 and

Figure 54) are the initial values used for the cells.

350

300

250

200

150

Time (sec)

100 —

gn = = N =

Life A Life B Life C Life D

|I:I 1 processor B 8 processors |

Figure 53: Execution times for 50x50 life model in 1 and 8 processors

130

Life A Life B Life C Life D

Figure 54: Execution speedyps for 50x50 life model running in 8 processors

The execution times for these cases are significantly reduced when we distributed
the smulation in 8 processors instead of using a single processor. In general, the
distributed aternative achieves speedup factors in the range of 3.62 to 5.31, depending on
the initial configuration.

When a 50x50 model is executed on a single processor, only one logical process
is created. Hence, a single instance of a flat coordinator is in charge of the 2500
simulators participating in the ssimulation, and a single node coordinator isin charge of
scheduling tasks for the entire model. Using a single machine for executing a Cell-DEV S
model with this size results in a significant amount of memory needed to store data
associated with the ssimulation (e.g., list of imminent components, port mapping for each
model, pointers to each simulation object). But, more importantly, the execution of a

131

model with 2500 cells in a single processor has an impact on the time consumed for
accessing this information. For example, consider the time required to update the list
imminent components (i.e.,, models that are scheduled for a transition), which is
maintained by a single flat coordinator. Similarly, consider the time consumed when
retrieving the information associated with a simulator object (e.g., when a flat simulator
has to find the destination of an output). In contrast, the distribution of this model in 8
machines allows a smaller structure associated with each logical process participating in
the simulation. Each logical process has an associated flat coordinator and node
coordinator that are in charge of 312 simulators. Figure 53 and Figure 54 show that
distributing the ssimulation of a large model in 8 machines allows significant execution
speedups.

A different partitioning approach is used for the following tests. The life model is
executed in 1, 3, 4 and 5 processors using the same cell spaces (16x16, 20x20, 25x25,
and 30x30). The idea of this partition approach is to divide the model in horizonta

rectangles, as shown in Figure 55 for a 30x30 model partitioned among 3 machines.

132

(0, 0) (0, 29)

B
- Machine O
(10,0 10, 29)
B
B Machi ne 1
(20,0 20, 29)
B
B Machi ne 2
(29, 0) (29, 29)

Figure 55: A different partition strategy for the life model

Figure 56 illustrates the execution times for the different configurations of the life

model using 1, 3, 4, and 5 processors. Figure 57 illustrates the execution speedups.

100

. //
)
N2>
) ra
g - ——+ e
= v

20 E—— G

O T T T
256 400 625 900
Number of cells
—— 1 processor —8— 3 processors 4 processors 5 processors

Figure 56: Execution times for life model using 1, 3, 4 and 5 processors

133

2,5
2 A —"
o
o 1
wn
0,5
0 T :
256 400 625 900

Number of cells

—&— 3 processors —8—— 4 processors — —A— — 5 processors

Figure 57: Speedups for life model distributed in 3, 4 and 5 processors

Figure 56 shows that the steepest slope is associated with one-processor
executions. Distributing the simulation in 3, 4, or 5 processors reduces the execution time
regardless of the size of the model. Figure 57 shows that the execution speedups for 3, 4
and 5 processors is gpproximately 1.4-2.1. As we discussed earlier, this speedup factor is
a result of distributing a Cell-DEVS model that does not have numerous active cells.
Therefore, the increase in computing power obtained by using more machinesis, in some
cases, outweighed by the communication costs of having to synchronize many logical
processes. This factor becomes more noticeable when the simulations are executed in a
relatively dow network like the one we used for these experiments. As we discussed
before, the computers are connected using a 10Mbit hub which limits the simultaneous
data transfer to 10 Mbits per second. For example, using 3 or 4 machines provides better

performance than using 5 machines for the model with 625 cells. The best configuration

134

is hard to determine based on these runs. In some cases the minimum execution time was
achieved by using 5 processors (256 and 400 cells), while in other cases it was achieved
by 3 processors (900 cells) or 4 processors (625 cells).

The following set of tests uses a sample Cell-DEVS model to study the
performance of models whose cells change frequently. The rules defining the behavior
are simple: the current value of a cell changes from 0 to 1, and from 1 to O, alternating at
each simulation cycle. These rules produce changes for every cell at every simulation
cycle. We execute models with 400 and 900 cells, using two different initia

configurations for each case, labeled in Figure 58 as models 1 to 4.

200
180 —
160
140
120
100
80
60
40 +

~ 1 I rﬁ 1 T

Model 1 Model 2 Model 3 Model 4
(20x20) (20x20) (30x30) (30x30)

@ cons. 1 processor

W optim. 1 processor

—] O cons. 4 processors

Time (sec)

O optim. 4 processors

Figure 58: Execution times for Cell-DEV S model using conservative and optimistic
simulatorsin 1 and 4 processors

Figure 58 shows that the simulation in 4 processors using the optimistic simulator

achieves the best performance for all these cases. The conservative ssmulator distributed

135

in 4 machines outperforms its single-processor counterpart. The optimistic simulator
running on a single machine achieves almost the same performance as the conservative
simulator running on 4 processors, which shows the increased communication costs of
the latter alternative and the good performance achieved by our smulator. Figure 59
shows the speedup of the optimistic simulator distributed in 1 and 4 processorsin relation

to the conservative simulator for the 20x20 and 30x30 models.

10
9 A
8 »
/ —e— 20x20 model, cons.
7 1 processor
/ —a— 30x30 model, cons.
o 6 1 processor
>
2 & / —A— 20x20 model, cons.
o / 4 processors
0og 30x30 model, cons.
/ 4 processors
3

2 _—
1 y <
0 |

1 4

of processors

Figure 59: Speedup obtained by the optimistic simulator in 1 and 4 processors

136

Figure 59 illustrates the speedups obtained by our smulator using 1 and 4
processors in relation with the conservative simulator. The figure shows that the
execution of the optimistic ssmulator in 1 processor allows significant speedups (2.91 for
20x20 models, 3.17 for 30x30 models) in comparison to the conservative simulator
running on a single processor. The speedup factor obtained by executing the simulation in
4 machines using the optimistic approach instead of the equivalent partitioning for the
conservative approach is approximately 2.45 for 20x20 and 30x30 models. The execution
of the model using our approach in 4 processors enables speedup factors of up to 9.15 in
comparison to the execution in a single-processor using the pessimistic technique.
Although the execution of both 20x20 and 30x30 models using the pessimistic approach
in 4 processors outperforms our simulator executing in 1 processor, it is only by a
relatively small fraction (the speedup factor is .82-.86), showing the good performance of
our smulator.

Other tests could be executed to better analyze the performance of the new
simulator once some of the issues with Warped are solved. Some of these experiments
include:

o0 Execution of life model using configurations that are more (or less) prone to
having rollbacks in the participating nodes. This would alow determining the
impact on performance of executing models where rollbacks are more (or
less) frequent.

o Execuion of Cell-DEVS models where the interaction between neighboring

cells is frequent. For example, a model of bacteria reproduction (discussed in
137

[Ame03]) allows studying the propagation of a marine germ over a surface.
The rules that describe the concentration of bacteria require frequent
interaction with the neighborhood and would enable a characterization of
performance for similar models.

Execution of Cell-DEVS models where there is seldom interaction between
neighboring cells. The behavior of people in a metro station, described in
[Ame03], has these characteristics. As it was suggested earlier, this would
allow a characterization of performance for similar models.

Execution of a complex DEVS mode, for example the automated
manufacturing system (AMS) described in [Gli0O4], using a distributed
environment. We could define different partitions and determine their impact

on the performance of the simulations.

138

Chapter 7. CONCLUSIONS

This dissertation introduces a new flat smulation technique for Parallel DEVS and Cell-
DEVS based on Time Warp, a well-known optimistic synchronization protocol. Our
efforts address the need for efficient, fast execution of models using parallel and
distributed simulation.

We propose an optimistic distributed mechanism that enables achieving higher
degrees of parallelism than previous efforts, which only allowed exploiting parallelism
that was inherent to the DEV'S formalism. In the previous parallel version of the CD++
tool, synchronization tasks were in charge of a unique DEV S processor, root coordinator.
Analogous approaches are implemented by other conservative simulators. In general, the
centralization of all scheduling tasks creates a bottleneck in root coordinator and limits
the degree of paralelism. Under our proposed approach, scheduling tasks are distributed
on the logical processes; each node coordinator is in charge of the scheduling tasks for
the local simulation objects. Node coordinators advance the simulation optimistically,
assuming that there will be no straggler events. In case of detecting a violation to the
local causality constraint, a rollback mechanism allows recovering from it.

The simulation approach we propose is carried out by four DEVS processors,
namely simulator, flat coordinator, node coordinator, and root coordinator. Our design
takes into consideration previous studies showing the impact of communication among

processors on the overall performance of the simulator. We propose a flat smulation

139

mechanism, as opposed to the hierarchical mechanism implemented by other versions of
CD++ and other tools. Our design eliminates the need for intermediate coordinators by
transforming the hierarchical structure of the model into a more simple, nont hierarchical
one. As aresult, fewer messages have to be exchanged and, therefore, the communication
overheads are reduced.

Evaluating the performance of simulation engines can be a very complex task.
Instead of limiting our effort solely to testing individual models, we developed
DEV Stone, a synthetic benchmark to aid not anly this but also future initiatives in the
area, as ongoing developments intended to improve DEV'S simulators aso require a way
to assess their performance. DEV Stone is a synthetic model generator that automatically
creates models which resembl e real-world applications.

We used DEV Stone to study the performance of our new CD++ simulator, and to
compare its overhead with other engines supported by the tool. The use of DEV Stone
provided a common metric that made the comparisons straightforward. Moreover, less
time had to be spent in developing models, and a larger batch of such models could be
executed with less effort. Thus, it is easier to study the performance of the tool for many
models with different characteristics.

DEVStone can be used in any smulator with capabilities for defining and
executing Dhrystone code. We can use single-layered models for comparison with tools
with nonthierarchical structures. Likewise, if the chosen modeling technique does not
support the execution of internal transitions, we can compare the simulators by building a

DEV Stone in which the execution time for internal transitionsis zero.
140

Using DEV Stone, we compared the overhead of our new technique with the
overhead of previous implementations. Although the overhead associated with
synchronization tasks implemented by our smulator can be considerable, it still
outperformed previous alternatives for some models in single-processor executions. This
is a consequence of the flat mechanism implemented in our engine that outweighs, in
some cases, the increased overhead associated with its more complex implementation.
More importantly, we showed that when executing different types of DEVS models, the
overhead is reasonable small (2.5%-5%).

We showed that the execution times for a particular Cell-DEVS modd can be
reduced using distributed ssimulation. Different model sizes where considered, ranging
from 256 to 2500 cells. The execution of the model in a distributed environment allowed
achieving Dbetter performance than stand-alone execution. Using distributed
environments, our simulator outperforms other alternatives and achieves considerable

Speedups.

7.1 FUTURE WORK
There are several topics of interest for future research, which include:
0o Working to solve the problems associated with the rollback mechanism
associated with the Warped middleware. As we discussed in Chapter 6, we
have experienced problems when receiving straggler messages in a simulator

object during the execution of DEVS and Cel-DEVS modes. We have

141

identified the code that forces the simulation to stop and, although this is out
of the scope of our work, we are working to solve this problem.

In terms of performance, the impact of using different parameters for the Time
Warp protocol has yet to be determined. For example, the use of a dynamic
cancellation strategy could lead to better performance, as suggested in
[Rad96]. Dynamic cancellation techniques allow LPs to decide at runtime
which cancellation strategy (i.e., lazy cancellation or aggressive cancellation)
should be used, based on execution statistics.

Extensions to the types of models created by DEV Stone. Our first goal with
DEV Stone was to analyze and compare the performance of simulators running
on a single processor. Our synthetic benchmark can be extended to generate
models that could be easily partitioned across multiple processors. A simple
approach is to generate a model with n coupled models in its top level. This
would allow a straightforward partition into n machines. The internal structure
of the coupled comporents could be based on the types of models already
developed in this work.

Analysis of different partition strategies. The choice of how to partition a
model has an effect on its performance in parallel environments, as suggested
in [TroO1lb]. In many cases, determining the best partition for DEVS and
Cell-DEVS models is not obvious. Having a characterization of severa
models and the best aternatives to partition each of them can help users

decide how to distribute the execution of new models.
142

0 Support for a dynamic partitioning mechanism. In relation to the previous
point, dynamic partitioning mechanisms could be implemented in CD++.
Dynamic partitioning allows modifying at runtime the partition used for the
model. More specifically, this strategy could allow migrating a simulator
running on a logical process where the load is heavy, to a different logical
process where the load is lighter.

o Further analysis of simulator performance using a faster computer network.
The performance analysis presented in this work was carried out on a
relatively slow network, where the communication between machines is
limited to atotal of 10 Mbits per second. It would be interesting to execute the
experiments in a faster network (e.g., using a 100-Mbit switch) for further
analysis of the communication overheads, and comparison with current

results.

143

REFERENCES

[Ame0l1] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of complex physical systems
using Cell-DEVS.” Proceedings of the 34th Annual Simulation Symposium. Seattle, WA.
USA. 2001.

[Ame03] Ameghino, J.; Wainer, G.; Glinsky, E. “Applying Cell-DEVS in Models of
Complex Systems.” Proceedings of the Summer Computer Simulation Conference.
Montreal, QC. Canada. 2003.

[Bry77] Bryant, RE. Simulation of Packet Communication Architecture Computer
Systems. Massachusetts Institute of Technology, Cambridge, MA. USA. 1977.

[Cha79] Chandy, K.; Misra, J. “Distributed Simulation: A Case Study in Design and
Verification of Distributed- Programs.” |EEE Transactions on Software Engineering, pp.
440-452. 1979.

[ChaB81] Chandy, K.; Misra, J. Asynchronous distributed simulation via a sequence of
distributed systems. ACM Transactions on Computer Systems. 3(1), pp. 63-75. 1981.

[Cha89] Chandy, K.; Sherman, R. “The Conditional Event Approach to Distributed
Simulation” Proceedings of the Distributed Simulation Conference. Miami, FL. USA.
1989.

[Che04] Saehoon Cheon, Chungman Seo, Sunwoo Park, Bernard P. Zeigler, “Design and
Implementation of Distributed DEVS Simulation in a Peer to Peer Network System.”
Advanced Simulation Technologies Conference — Design, Analysis, and Simulation of
Distributed Systems Symposium. Arlington, USA. 2004.

[Cho94a] Chow, A.C.; Zeigler, B.P. “Parallel DEVS: A paralel, hierarchical, modular
modeling formalism.” Proceedings of the Winter Computer Simulation Conference.
Orlando, FL. USA. 1994,

[Cho94b] Chow, A.C.; Kim, D.C.; Zeigler, B.P. “Abstract Simulator for the parallel
DEVS formalism.” Al, Simulation, and Planning in High Autonomy Systems.
Gainesville, FL. USA. 1994.

[Cho02] Chou, H-H.; Huang, W.; Reggia, J. “The Trend cellular automata programming
environment for artificial life, parallel computing, and simulation research” Transactions
of the Society for Modeling and Smulation International. vol. 78(2), pp. 59-75. 2002.

[Chr90] Christensen, E.R. Hierarchical optimistic distributed simulation: combining
DEVSand Time Warp. PhD Thesis, University of Arizona. 1990.

144

[Dav00a] Davidson, A.; Wainer, G. “Specifying truck movement in traffic models using
Cdl-DEVS.” Proceedings of the 33rd IEEE/SCS Annua Simulation Symposium.
Washington DC, USA. 2000.

[Dav00b] Davila, J.; Uzcagegui, M. “GALATEA: A multi-agent, simulation platform.”
Proceedings of the International Conference on Modeling, Simulation and Neurd
Networks. Mérida, Venezuela. 2000.

[Del02] de Lara, J.; Vangheluwe, H. “ATOM3: A Tool for Multi-Formalism Modeling
and Meta-Modeling.” European Joint Conferences on Theory And Practice of Software.
Grenoble, France 2002.

[Dia0dl] Diaz, A.; Véazquez, V., Wainer, G. “Application of the ATLAS language in
models of urban traffic.” Proceedings of the Annual Simulation Symposium. Sedttle,
WA. USA. 2001.

[Don96] Dongarra, J. et a. MPI: The Complete Reference. The MIT Press. 1996.

[EIlO4] Elliott, J. M. G. “Cellsprings.” Available via: <http://jmge.net/javalcsprings/>.
[Accessed August, 2004.]

[Fil02a] Filippi, JB.; Bernardi, F.; Delhom, M. “The JDEVS environmental modeling
and simulation environment” Proceedings of the the IEMSS 02 Conference on Integrated
Assessment and Decision Support. Lugano, Switzerland. 2002.

[Fil02b] Filippi, JB.; Chiari, F.; Bisgambiglia, P. “Using JDEVS for the modeling and
simulation of natural complex systems.” Proceedings of the Al, Simulation and Planning
Conference. Lisbon, Portugal. 2002.

[FreOl] Freiwald, U.; Weimar, JR. “JCASm - a Java system for smulating cellular
automata” Theoretical and Practical Issues on Cellular Automata (ACRI 2000), S.
Bandini and T.Worsch (eds), Springer Verlag, London. 2001.

[Fuj90] Fujimoto, R. M. 1990. Parallel Discrete Event Simulation. Communications of
the ACM, 33(10):31-53.

[Fuj99] Fujimoto, R.M. Parallel and Distribution Smulation Systems. Wiley. 1999.

[FujO1] Fujimoto, R.M. “Parallel and Distributed Simulation Systems.” Proceedings of
the Winter Computer Simulation Conference. Phoenix, AZ. USA. 2001.

[Gar70] Gardner M. The fantastic combinations of John Conway’s new solitaire game
“Life.” Scientific American. vol. 23(4). pp. 120-123. 1970.

[GliO2a] Glinsky, E.; Wainer, G. “Definition of Rea-Time smulation in the CD++
toolkit.” Proceedings of the Summer Computer Simulation Conference. San Diego, CA.
USA. 2002.

[GliO2b] Glinsky, E.; Wainer, G. “Performance anadysis of DEVS environments.”
Proceedings of Al Simulation and Planning. Lisbon, Portugal. 2002.

145

[Gli02c] Glinsky, E.; Wainer, G. “Performance Analysis of Real-Time DEVS Models.”
Proceedings of the Winter Computer Simulation Conference. San Diego, CA. USA.
2002.

[Gli02d] Glinsky, E.; Wainer, G. “Definition of Real Time Simulation in the CD++
toolkit.” Master’s thesis. Departamento de Computacién. Facultad de Ciencias Exactas y
Naturales. Universidad de Buenos Aires. Argentina. 2002.

[Gli04] Glinsky, E.; Wainer, G. “Real- Time CD++: an Environment for Modeling and
Simulation of Hybrid Hardware/Software Systems.” Accepted for publication in
Proceedings of the Winter Computer Simulation Conference. Washington DC, USA.
December, 2004.

[Gro96] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. “A high-performance, portable
implementation of the MPI message-passing interface standard.” Parallel Computing.
vol. 22, pp. 789-828. 1996.

[Him04] Himmelspach, J.; Uhrmacher, A.M “A Component-Based Simulation Layer for
JAMES.” Proceedings of the 18th Workshop on Paralel and Distributed Simulation
(PADS). Kufstein, Austria. 2004.

[HLAOO] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) — Framework and Rules. IEEE Std. 1516-2000. September, 2000.

[Jef85] Jefferson, D.R. “Virtual time.” ACM Transactions on Programming Languages
and Systems. vol. 7(3), pp. 404-425. July, 1985.

[Kim94] Kim, T.G. “DEVSim++. C++ based Simulation with Hierarchical Modular
DEVS Models.” User’'s Manual CORE Lab, EE Dept, KAIST, Tagjon, Korea. 1994,

[Kim96] Kim, K.H.; Seong, Y.R.; Kim, T.G.; Park, K.H. “Distributed Simulation of
Hierarchica DEVS Models. Hierarchical Scheduling Locally and Time Warp Globally”
Transactions of the Society for Modeling and Smulation International. vol. 13(3), pp.
135-154. 1996.

[Kim00a] Kim, K.; Kang W.; Sagong, B.; Seo, H. “Efficient Distributed Simulation of
Hierarchicd DEVS Models: Transforming Model Structure into a Non-Hierarchical
One.” Proceedings of the 33rd Annual Simulation Symposium. Washington DC, USA.
2000.

[KimQOOb] Kim, K.; Kang, W. “A CORBA-Based Distributed Simulation Methodology
for Hierarchica DEVS.” IASTED Internationa Conference on Applied Informatics.
Innsbruck, Austria. 2000.

[Kim04] Kim, K.; Kang, W. “CORBA-Based, Multi-threaded Distributed Simulation of
Hierarchical DEV S Models: Transforming Model Structure into a Northierarchical One.”
International Conference on Computational Science and Its Applications (ICCSA).
Assis, Italy. 2004.

146

[Mar96] Martin, D.; McBrayer, T.; Wilsey, P. “WARPED: Time Warp Simulation
Kerne for Analysis and Application Development.” Proceedings of the 29th Hawaii
International Conference on System Sciences. 1996.

[Mar97] Martin, D.; McBrayer, T.; Radhakrishan, R.; Wilsey, P. “Time Warp Parallel
Discrete Event Simulator.” Technical report. Computer Architecture Design Laboratory.
University of Cincinnati. USA. 1997.

[Mor02] Moreno, N.; Ablan, M.; Tonella, G. “SPASIM: A Software to Simulate Cellular
Automata.” Procedings of the Conference on Integrated Assessment and Decision
Support (IEMSS). Lugano, Switzerland. 2002.

[MPI95] Message Passing Interface Forum. MPI: A Message-Passing Interface standard
(version 1.1). Technica report. Available via: <http://www.mpi-forum.org>. [Accessed
August, 2004].

[Nic97] David M. Nicol and Jason Liu “The dark side of risk.” Proceedings of the
Workshop on Paralel and Distributed Simulation (PADS). Lockenhaus, Austria. 1997.

[NutO4] Nutaro, J ADEVS website. Available via
<http://www.ece.arizona.edu/~nutaro/>. [Accessed May, 2004]

[OMGO02] Object Management Group. The common object request broker: architecture
and specification. Revision 3.0. OMG Technical report 2002-06-01, 492 Old Connecticut
Path, Framingham, MA. USA.

[Pra99] Praehofer, H.; Sametinger, J.; Stritzinger, A. “Discrete Event Simulation using
the JavaBeans Component Model.” Proceedings of International Conference On Web-
Based Modeling & Simulation. San Francisco, CA. USA. 1999.

[Rad96] Radhakrishnan, R.; McBrayer, T.J.; Subramani, K.; Chetlur, M.; Balakrishnan,
V., Wilsey, PA. “A Comparative Anaysis of Various Time Warp Algorithms
Implemented in the WARPED Simulation Kernel.” Proceedings of the Annua
Simulation Symposium, pp. 107-116. New Orleans, LA. USA. 1996.

[Ra98] Rajasekaran, U. K. V. Improving the communication subsystem performance of
warped. Master's thesis, University of Cincinnati, November 1998.

[Ra098] Rao, D.M.; Thondugulam, N.V.; Radhakrishnan, R.; Wilsey, P.
“Unsynchronized paralel discrete event simulation.” Proceedings of the Winter
Computer Simulation Conference. Washington DC, USA. 1998.

[Ron96] Ronngren, R.; Liljenstam, M.; Montagnat, J.; Ayani, R. “Transparent
Incremental State Saving in Time Warp Parallel Discrete Event Simulation.” Proceedings
of the 10th ACM/IEEE/SCS Workshop on Parallel and Distributed Simulation.
Philadelphia, PA. USA. May, 1996.

[Rod99] Rodriguez, D.; Wainer, G. “New extensions to the CD++ tool.” Proceedings of
the Summer Computer Simulation Conference. Chicago, IL. USA. 1999.

147

[Sar98] Sarjoughian, H.S.; Zeigler, B.P. “DEVSIAVA: Basis for a DEVS-based
collaborative M& S environment.” Proceedings of the International Conference on Web-
Based Modeling and Simulation. vol. 5, pp. 29-36. San Diego, CA. USA. 1998.

[Seo04] Seo, C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Implementation of Distributed
high-performance DEVS Simulation Framework in the Grid Computing Environment.”
Advanced Simulation Technologies conference (ASTC). Arlington, VA. USA. 2004.

[Tro0la] Troccoli, A.; Wainer, G. “CD++, a tool for simulating Parallel DEVS and
Parallel Cell DEVS models.” Technical report. Departamento de Computacion, Facultad
de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina. 2001.

[TroO1lb] Troccoli, A.; Wainer, G. “Performance results of paradlel Cell-DEVS
execution.” Proceedings of the Summer Computer Simulation Conference. Orlando, FL.
USA. 2001.

[Tro03] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-DEVS.” Proceedings of
the Annual Simulation Symposium. Washington DC, USA. 2003.

[Wal98] Wainer, G.; Giambiasi, N. “Specification, modeling and simulation of timed
Cell-DEVS spaces.” Technical Report n.: 98-007. Departamento de Computacion.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.
1998.

[Wai00] Wainer, G.; “Improved cellular models with parallel Cell-DEVS.” Transactions
of the SCS. vol 17 (2). June 2000.

[Wai0l] Wainer, G.; S. Daicz, S.; De Simoni, L.; Wasserman, D. “Using the ALFA-1
simulated processor for educational purposes.” ACM Journal on Educational Resources
in Computing. vol. 1(4), pp. 111-151. December 2001.

[Wai02] Wainer, G. “CD++: atoolkit to develop DEVS models.” Software - Practice and
Experience. vol. 32, pp. 1261-1306. 2002.

[Wai03] Wainer, G., Chen, W. “A Framework for Remote Execution and Visualization
of Cell-DEVS Models.” Transactions of the Society for Modeling and Smulation
International. vol. 79 (11), pp. 626-647. November, 2003.

[Wai04] Wainer, G., Glinsky, E. “Model- Based Development of Embedded Systems with
RT-CD++.” IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Work-in-Progress session. Toronto, ON. Canada. 2004.

[War04] Warped: A Time Warp Simulation Kernel. Warped Documentation for version
1.0. Available via <www.ececs.uc.edu/~paw/warped/>. [Accessed September, 2004.]

[Wei84] Weicker, R. P. “Dhrystone: A synthetic systems programming benchmark.”
Communications of the ACM, volume 27, pp. 1013-1030, 1984.

148

[Wes96] Darrin West, Kiran Panesar, Kiran Panesar. “Automatic Incremental State
Saving.” Proceedings of the 10th ACM/IEEE/SCS Workshop on Parallel and Distributed
Simulation. Philadelphia, PA. USA. May, 1996.

[Wol86] Wolfram, S. Theory and applications of cellular automata. Advances Series on
Complex Systems. World Scientific. Singapore. 1986.

[W0j04] Wojtowicz, J. “1D and 2D Cdlular Automata explorer.” Available via
<http://psoup.math.wisc.edu/mcell/>. [Accessed September, 2004.]

[Zei76] Zeigler, B. Theory of Modeling and Smulation. Wiley. 1976.

[Ze193] Zeigler, B.P.; Kim, J. “Extending the DEV S-scheme knowledge-based simulation
environment for real-time event-based control.” |EEE Transactions on Robotics and
Automation. vol. 9 (3), pp. 351-356. 1993.

[Zei96] Zeigler, B.; Moon, Y.; Kim, D. “DEVS-C++: A High Performance Modeling and
Simulation Environment.” 29th Hawaii International Conference on System Sciences
(HICSS96) Volume 1: Software Technology and Architecture. Hawaii, USA. 1996.

[Zei974] Zeigler, B.; Maoon, Y.; Kim, D.; Bal, G. “The DEVS Environment for High
Performance Modeling and Simulation” |EEE Computational Science and Engineering.
val. 4 (3), pp. 61 -71. 1997.

[Zei97b] Zeigler, B.P.; Kim, D.; Praehofer, H. “DEVS Formalism as a Framework for
Advanced Distributed Simulation.” Proceedings of the International Workshop on
Distributed Interactive Simulation and Real- Time Applications. Eilat, Isragl. 1997.

[Ze199a] Zeigler, B.P.; H.S. Sarjoughian, “ Support for Hierarchical Modular Component-
based Model Construction in DEVS/HLA.” Simulator Interoperability Workshop. 1999.

[Zei99b] Zeigler, B.P. “A Theory-based Conceptual Terminology for M&S VV&A.”
Proceedings of the Simulation Interoperability Workshop. Orlando, FL. USA. 1999.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and Smulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.
2000.

149

