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Abstract 
We introduce the use of DEVS and the HLA for the devel-
opment of embedded computer systems. Modeling and 
simulation can play an important role in the development of 
such systems by allowing earlier feedback on component 
integration. Our objective is to describe how general hard-
ware components can be modelled and integrated at a level 
of abstraction that can be used by systems and software de-
velopers, and how these general  models can be pro-
grammed for a specific hardware platform. The differing 
focus of hardware and software development tools often 
results in a significant gap in the levels of abstraction of the 
resulting component models. In the proposed approach, a set 
of general hardware components is designed using DEVS. 
The general components are then programmed for specific 
hardware components and used to simulate a specific hard-
ware platform. The hardware models interact with each 
other in a simulation environment based on the HLA (High 
Level Architecture). A unique feature of the resulting simu-
lation is that coupled DEVS models are not used, and as a 
result, the DEVS simulation middleware can be simplified 
by direct use of HLA services. The proposed approach is 
verified by a case study in which an Intel 8088-based com-
puter system is modelled and simulated.  

1. INTRODUCTION 
The development of embedded computer systems is a 

complex process. Application requirements must be imple-
mented in a combination of software and hardware compo-
nents, and delays in integrating the components can 
lengthen the development lifecycle significantly. Modeling 
and simulation can play an important role in the develop-
ment of such systems by allowing earlier feedback on com-
ponent integration.  

When developing hardware/software platforms, it is 
useful to model components at various levels of abstraction 

and complexity. Hardware developers require models that 
interact using digital signals and signalling protocols. Inter-
nally, the hardware components are often modelled at the 
register transfer level, and in terms of individual electronic 
devices and manufacturing technologies. In contrast, 
software development environments attempt to minimize 
the visibility of hardware details in favour of emphasizing 
application-level software solutions. The differing focus of 
hardware and software development tools often results in a 
significant gap in the levels of abstraction of the resulting 
component models. The gap can hamper simulation when 
integrating components, particularly during early develop-
ment stages when feedback would be most beneficial. 

The hardware/software interface is where a computer 
system implementation realizes the integration of hardware 
and software components. From a software perspective, 
hardware models often over-specify the interface by includ-
ing signalling details associated with hardware component 
interactions. It may be possible to simulate software execut-
ing at this level; however, the resulting simulation is often 
too large and cumbersome to produce detailed results in 
reasonable timeframes. Furthermore, locating software 
flaws can be next to impossible due to the overbearing 
amount of hardware detail.  

Software developers would prefer a programmer’s 
model of the hardware/software interface. This model is 
more abstract, and views hardware at a more coarse level. 
Hardware details are often reduced by assuming that bus 
interactions are atomic, and therefore, the behaviours of 
hardware components can be described with less concern 
for signalling and circuitry implementation. Simulations at 
the programmer’s model level would be larger grained than 
traditional hardware simulations, and therefore less compu-
tationally expensive and less cluttered by hardware details.  

Our objective is to describe how general hardware 
components can be modelled and integrated at a level of 
abstraction that can be used by systems and software devel-
opers, and how these general  models can be programmed 
for a specific hardware platform. A set of general hardware 
components is designed using DEVS (Discrete Event Sys-



 
 

tems specifications) [1]. The general components are pro-
grammed for specific hardware components and used to 
simulate a specific hardware platform. The hardware models 
interact with each other in a simulation environment based 
on the HLA (High Level Architecture) [7]. This proposed 
approach is verified by a case study in which an Intel 8088-
based computer system is modelled and simulated. 

This next section provides a brief introduction to DEVS 
and the HLA. Section 3 describes how we model general 
hardware components using DEVS, and how these models 
interact with using RTI services. The case study in Section 4 
shows the refinement of the general models for a simple 
Intel 8088-based platform. The simulation results of the case 
study are then used to verify the proposed approach.  

2. DEVS and the HLA  
DEVS is a well-defined modeling and simulation 

framework that can express hierarchical, modular, discrete 
event models. A DEVS model evolves by changes in state 
variables through the occurrence of events and elapsed time. 
The DEVS formalism focuses on the changes of the variable 
values, and generates time segments that are piecewise con-
stant. An important aspect of the formalism is that the time 
intervals are continuous. There are two types of models: 
atomic (behavioural) and coupled (structural) [1]. Since 
coupled models are not used in the research, they are not 
discussed in any detail here.  

A DEVS atomic model (AM) specifies a system’s re-
sponse to input events in terms of states, transitions, timing 
constraints, and output events. An atomic model is defined 
formally as: 

AM = < X , S , Y , �int , �ext , �con , � , ta > 
Where 

X is the input events set. 
S is the state set. 
Y is the output events set. 
�int is the internal transition function. 
�ext is the external transition function. 
�con is the confluent transition function 
� is the output function. 
ta is the time advance function. 

The formal definition can be interpreted using the fol-
lowing operational rules. When an input event arrives, the 

�ext function accepts the input and changes the instance vari-
able. If no further inputs arrive during a time interval speci-
fied by the ta function, then the �int function changes the 
instance variable. Should an input arrive before the time 
interval elapses, then the �ext function accepts the input and 
changes the instance variable. The �con function resolves 
situations where events occur simultaneously. �con might 
specify, for example, the order in which the relevant func-
tions should be performed. The � function produces the out-
put Y from the instance variables.  

Various software tools have been developed to imple-
ment the DEVS formalism, including DEVS-C++ [4], 
CD++ [5] and DEVSim++ [6].  These tools provide meth-
ods to implement DEVS models and map them to a simula-
tion engine so that the DEVS atomic and coupled models 
can interact with each other in a hierarchical simulation en-
vironment.  

The HLA is an IEEE standard [7] for the interoperabil-
ity of component-based simulations. The HLA promotes 
simulation interoperability, and encourages the reuse of 
models. The HLA provides a general framework, which 
defines the relationships among the components (called fed-
erates) of an HLA simulation (called a federation). The 
HLA Interface Specification defines the functional interface 
to the HLA RunTime Infrastructure (RTI) [8]. The RTI is a 
middleware layer that provides HLA services to federates 
and federations.  

Previous efforts have been made to create HLA-
compliant DEVS models, and to integrate DEVS simulators 
with the RTI [2]. These efforts allow re-use of the models 
and simulators, but require the DEVS simulation engine as 
an additional middleware layer. We propose a new distrib-
uted approach where all the hardware components are mod-
elled as DEVS atomic models, and interact with each other 
using a HLA-compliant simulation engine. Although DEVS 
has already been used successfully for the modeling and 
simulation of hardware architectures [3], we wanted to ex-
periment with a more direct approach to the interaction of 
DEVS models in an HLA simulation.   

Figure 1.a) shows a general approach to modeling and 
simulation using DEVS and the HLA/RTI. Two layers of 
simulation middleware (e.g. the RTI and the DEVS simula-
tor) are on top of each other. The DEVS simulation layer is 
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Figure 1: (a) DEVS/HLA general approach. (b) A model of the proposed solution. 



 
 

required to support the execution of DEVS coupled models. 
DEVS tools include complex simulation and coordination 
engines in order to manage/synchronize the different com-
ponents. Such engines require additional message transla-
tion functionality to work with the RTI layer. Zeigler [2] has 
shown how to adapt the DEVS-C++ tool to the HLA/RTI 
structure. This is quite useful to reuse old simulations de-
veloped under the DEVS-C++ tool but suffers from the ex-
tra layer of DEVS middleware.  

Figure 1(b) shows our proposed approach to model 
general hardware components using DEVS, and then simu-
late compositions of components above the RTI. We use 
only DEVS atomic models, and as a result, RTI services can 
be used to control the models directly. By using only DEVS 
atomic models, the extra layer of DEVS middleware to sup-
port coupled models is not required. Atomic models are a 
simple concept, and easily reusable for future developments.  

3. HARDWARE PLATFORM MODELS  
Figure 2 shows a system level block diagram for a sim-

ple hardware platform simulator consisting of the Processor, 
Bus controller, Memory, Interrupt Controller and Signal 
Generator modules. The Processor module has been shown 
divided into the: Execution Unit (EU) that is responsible for 
decoding and executing all instructions, the Bus Interface 
Unit (BIU) that is responsible for performing all external 
bus operations, and the Control Unit (CU) that is responsi-
ble for possible processor configuration modes (e.g. the 
maximum/minimum modes of the Intel 8088) and interrupt 
signals from other devices. Only a single master device is 
present in the system, and therefore a bus arbiter component 
has not been included. The framework assumes atomic bus 
cycles, hence none of the detailed signalling protocols 

within a bus cycle are addressed in the component models. 
Each of the modules is specified as a DEVS atomic model, 
and is realized as an HLA federate. The federates collec-
tively form a federation interacting on the RTI.  

As a representative organization of the modules, the 
DEVS atomic model of the memory module is given below 
(models of the remaining components can be found in [9]), 
and shown as a state machine in Figure 3. 

Memory = < X , Y , S , �int , �ext , �con , � , ta > 

X – Input events 

• Address bus ∈ {0…2AB_Size-1}, where AB_Size is a 
natural number defined in the processor module’s pa-
rameters. To support access to all memory locations, 
Memory size (MS) ≤ 2AB_Size. 

• Data bus ∈ {0… 2DB_Size-1}, where DB_Size is a natu-
ral number defined in the processor module’s parame-
ters.  

• Read control signal ∈ {0,1} where 1 = Read and 0 = no 
operation specified. 

• Write control signal ∈ {0,1} where 1 = Write and 0 = 
no operation specified. 

Y – Output event set 

• Data bus ∈ {0… 2DB_Size-1}, where DB_Size is a natu-
ral number defined in the processor module’s parame-
ters. 

• Data acknowledge signal (DTACK): informs the proc-
essor that the bus cycle has ended during an asynchro-
nous processor’s mode (e.g., Motorola 68000 series). 
DTACK ∈ {0,1} where 1 = ACK and 0 = no operation. 
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Figure 2: System-level block diagram for a Hardware platform simulator. 
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Figure 3: State diagram for the DEVS model of the Memory Module 



 
 

S – States 

• Read state: In read state the memory module acquires 
data from the memory location as addressed by the ad-
dress bus {0… 2AB_Size-1}, waits until the ta function is 
elapsed and writes data to the data bus {0… 2DB_Size-1}. 

• Write state: In write state the memory module writes 
data, provided by the data bus {0… 2DB_Size-1}, to a 
memory location which is addressed by the address bus 
{0… 2AB_Size-1}. The module then waits until the ta 
function is elapsed. 

• Idle state: In this state the module waits for the next �ext. 
The delay function associated with this state ∈ R+.  

�ext – External transition function 
The �ext starts with the arrival of read/write signal in the 

module. In case of write signal, the �ext acquires the infor-
mation from the address and data bus. In the case of a read 
signal, the �ext only acquires the information from the ad-
dress bus. As an example the state diagram for memory read 
and memory write during a minimum operation mode is 
shown in figure 3. 

ta – Time advance function 
The ta function introduces the time delay before sched-

uling the next action by the component. At this level of ab-
straction, the ta functions associated with read and write 
states are equivalent to one bus cycle. Figure 3 shows an 
example where the ta function is introduced in the read state 
before carrying out the � function.  

� – Output function 
The � outputs the data on the data bus during the read 

cycle. For the case of Motorola 68000 series processors the 
DTACK signal is also sent out. As an example, see figure 3. 

�int – Internal transition function 
The �int changes the internal state from Read or Write to 

the Idle state. The module stays in the Idle state until the 

next �ext.  

�con – Confluent transition function 
The �int has higher priority than the �ext 

Figure 3 represents the DEVS model for the memory 
module behaviour graphically. The module stays in the Idle 
state until there is an input event. The input event either 
causes a transition to the Read state or the Write state. In the 
Read state, the memory module gets data from the requested 
memory location, waits for a time representing the memory 
access time to elapse, and then performs output (�) by send-
ing data to the data bus. After sending the output, the mod-
ule uses an internal transition (�int) to return to the Idle state. 
In the Write state, the module reads the address and data 
buses, updates the specified memory locations, waits for a 
time representing the memory access time to elapse, and 
then returns to the Idle state.  

4. 8088-BASED CASE STUDY 
The general hardware component models were refined to 
simulate a platform containing a processor (a simplified 
version of Intel 8088), a basic memory unit, a bus controller 
(a simplified version of Intel 8288), a basic interrupt con-
troller and a timing signal generator module. This case study 
is for a synchronous platform, but no clock module is mod-
eled. Each module assumes synchronous interactions and 
requests to schedule future bus events as an integral number 
of clock ticks in the future. The implementation assumes 
that the memory module does not introduce wait states. 

The simulator was developed in sufficient detail to exe-
cute the assembly code shown in tables 1 and 2. The assem-
bled code is shown in the first column of table 1 along with 
the mnemonic code and any necessary timing information 
[10]. Instruction execution times are determined by taking 
the number of clock cycles required per instruction plus any 
time required to access the operand based on the effective 
address (EA) used in addressing modes. For instance, the 
EA for the indexed operand in the MOV [BX],CH instruc-
tion is 5 clocks. 

During the execution of the main program, the interrupt 
controller module sends interrupt signals to the processor, 

Op-code 
(Hex) 

Program Instruc-
tions 

Clock Cycle 

B500 MOV CH , 0 4 
BF0000 MOV DI , 0 4 
B102 MOV CL , 2  4 
BB0000 xyz : MOV BX , 00 4 
03DF ADD BX , DI 3 
882F MOV [BX] , CH  9+EA = 9+5 = 14 
47 INC DI 2 
02E9 ADD CH , CL 3 
83C70A CMP 10 , DI 4 
750D JNE xyz 4 

16 (when jump executed) 
F4 HLT 2 

         Table 1: Main program code for the case study 

Op-code 
(Hex) 

Program In-
structions 

Clocks 

53 PUSH BX 15 
BB0020 MOV BX , 32 4 

8A07 MOV AL , [BX] 8+EA = 8+5 = 13 
FEC0 INC AL 3 
8807 MOV [BX] , AL 9+EA = 9+5 = 14 
5B POP BX 12 
CF IRET 32 

 Table 2: Interrupt routine code for the case study 



 
 

resulting in the execution of the interrupt routine shown in 
table 2. The processor’s interrupt behaviour includes check-
ing the interrupt flag; pushing the IP, CS and IF; sending the 
interrupt acknowledge to the interrupt controller; reading the 
vector type from the interrupt controller; calculating the 
starting address for the interrupt routine residing in the 
memory, and clearing the instruction queue. The interrupt 
routine used in the case study increments a variable stored 
in the memory.  

The timing information for the interrupt routine is also 
shown in Table 2 [10]. A time unit of the simulator is as-
sumed to be one (system) clock cycle, and one processor 
bus cycle is assumed to be four clock cycles. The timing 
details of the execution unit of the processor are imple-
mented to one clock cycle accuracy. Within a processor bus 
cycle, the system timing details are not implemented accu-
rately. This lack of accuracy is irrelevant, since the proces-
sor control unit dictates the overall timing behaviour of the 
system.  

Components of the simulator are defined as HLA feder-
ates, and figure 4 shows the attributes (information) com-
municated through input and output ports of the DEVS 
models of the components. For instance, the memory mod-
ule publishes data values (the Data_Memory attribute) as 
outputs, to which the processor module subscribes as inputs. 

The federates exchange attributes using the RTI publish 
and subscribe services. When a federate publishes attribute 
data, all federates subscribed to that attribute are notified. 

This allows the coupling of the DEVS atomic models to be 
realized using RTI services.  

The memory module implementation is based on the 
DEVS specification presented in Section 3. RTI services are 
used to communicate events between atomic models and to 
manage time advances. Therefore, the implementation does 
not require a DEVS simulation engine for this support.  

The memory module is passive, and responds to events 
from the RTI. In the Idle state, the module has no pending 
work to perform. The memory module’s δext function is ac-
tivated by the arrival of subscribed data. The function is 
implemented as a case statement that performs the appropri-
ate processing based on the attribute received. For example, 
suppose that the memory module is Idle when the processor 
initiates a memory read operation. The processor does this 
by publishing a ControlToMem_Processor attribute, which 
is one of the attributes subscribed by the memory module. 
The attribute includes information about whether the access 
is a read or write operation, and the relevant memory ad-
dress. The memory model must not return the requested data 
immediately, but must follow the bus protocol. The module 
enters the Read state, and waits for one memory read bus 
cycle (4 clock ticks) to lapse. Upon entering the Read state, 
ta function is activated to request a time advance of 4 clock 
ticks using the RTI time management services. The RTI 
controls time advance among the federates, and when ap-
propriate, sends a TimeAdvanceGrant to the memory mod-
ule indicating that it has waited the requested amount of 
time. The memory module responds by activating the λ 
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Figure 4: Block diagram showing time publish/subscribe attributes 
information 



 
 

function to output data back to the processor (achieved by 
publishing a Data_Memory attribute), and then the internal 
transition function (δint) is activated to go back to the Idle 
state.  

The simulator is instrumented to log events, and the 
case study was verified by comparing the theoretical values 
provided by tables 1 and 2 with the logs generated by the 
simulator. The execution unit is designed to reflect timing 
accurately to one clock cycle. Hence, the simulation results 
for the execution timing of each program instruction should 
match the theoretical timing values.  

The simulation was run to execute the program shown 
in tables 1 and 2. The length of the simulation run included 
the occurrence of a (simulated) timer interrupt. The logs of 
every instruction’s execution were verified to agree with the 
theoretical values, and the timer interrupt was verified to 
have occurred at the correct time. 

4. CONCLUSIONS & FUTURE WORK 
We have presented a new DEVS/HLA approach to 

model and simulate computer hardware platforms at the bus 
cycle level of abstraction. DEVS is used to model general 
hardware components as atomic models. The general com-
ponents are then refined for a specific hardware platform. 
HLA services are used to support simulation coupling, event 
communication and time management. As a result, the ge-
neric DEVS simulation engine (middleware) found in other 
DEVS-based approaches is not required. An 8088-based 
case study has demonstrated and verified the approach.  

Ideally, the larger-grained hardware platform models 
provided by the approach may yield simulation tools better 
suited to the needs of systems and software developers. 

Future work is progressing in many directions: 
1. The level of detail in the general DEVS models is being 

expanded to include: more instruction addressing 
modes, multiple bus masters, and alternate architectures 
such as DSP processors. 

2. Tools are being developed to hide application develop-
ers from low-level details by generating the HLA ac-
cess code automatically.  

3. The automatic generation of HLA-compatible signal-
ling protocols is being developed to allow the reuse of 
the larger grained simulations with finer-grained signal-
ling protocols. This research is using XML representa-
tions of protocol timing diagrams to generate a more 
detailed layer of interaction behaviour.  
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