

Modeling Computer Hardware Platforms using DEVS and HLA Simulation

Amir Saghir
Trevor Pearce

Gabriel Wainer
Department of Systems and Computer Engineering

Faculty of Engineering,
1125 Colonel By Drive, Carleton University

Ottawa, Ontario, K1S 5B6, Canada.

Key words: Discrete event simulation, DEVS, High Level
Architecture, HLA, Runtime infrastructure, RTI.

Abstract
We introduce the use of DEVS and the HLA for the devel-
opment of embedded computer systems. Modeling and
simulation can play an important role in the development of
such systems by allowing earlier feedback on component
integration. Our objective is to describe how general hard-
ware components can be modelled and integrated at a level
of abstraction that can be used by systems and software de-
velopers, and how these general models can be pro-
grammed for a specific hardware platform. The differing
focus of hardware and software development tools often
results in a significant gap in the levels of abstraction of the
resulting component models. In the proposed approach, a set
of general hardware components is designed using DEVS.
The general components are then programmed for specific
hardware components and used to simulate a specific hard-
ware platform. The hardware models interact with each
other in a simulation environment based on the HLA (High
Level Architecture). A unique feature of the resulting simu-
lation is that coupled DEVS models are not used, and as a
result, the DEVS simulation middleware can be simplified
by direct use of HLA services. The proposed approach is
verified by a case study in which an Intel 8088-based com-
puter system is modelled and simulated.

1. INTRODUCTION
The development of embedded computer systems is a

complex process. Application requirements must be imple-
mented in a combination of software and hardware compo-
nents, and delays in integrating the components can
lengthen the development lifecycle significantly. Modeling
and simulation can play an important role in the develop-
ment of such systems by allowing earlier feedback on com-
ponent integration.

When developing hardware/software platforms, it is
useful to model components at various levels of abstraction

and complexity. Hardware developers require models that
interact using digital signals and signalling protocols. Inter-
nally, the hardware components are often modelled at the
register transfer level, and in terms of individual electronic
devices and manufacturing technologies. In contrast,
software development environments attempt to minimize
the visibility of hardware details in favour of emphasizing
application-level software solutions. The differing focus of
hardware and software development tools often results in a
significant gap in the levels of abstraction of the resulting
component models. The gap can hamper simulation when
integrating components, particularly during early develop-
ment stages when feedback would be most beneficial.

The hardware/software interface is where a computer
system implementation realizes the integration of hardware
and software components. From a software perspective,
hardware models often over-specify the interface by includ-
ing signalling details associated with hardware component
interactions. It may be possible to simulate software execut-
ing at this level; however, the resulting simulation is often
too large and cumbersome to produce detailed results in
reasonable timeframes. Furthermore, locating software
flaws can be next to impossible due to the overbearing
amount of hardware detail.

Software developers would prefer a programmer’s
model of the hardware/software interface. This model is
more abstract, and views hardware at a more coarse level.
Hardware details are often reduced by assuming that bus
interactions are atomic, and therefore, the behaviours of
hardware components can be described with less concern
for signalling and circuitry implementation. Simulations at
the programmer’s model level would be larger grained than
traditional hardware simulations, and therefore less compu-
tationally expensive and less cluttered by hardware details.

Our objective is to describe how general hardware
components can be modelled and integrated at a level of
abstraction that can be used by systems and software devel-
opers, and how these general models can be programmed
for a specific hardware platform. A set of general hardware
components is designed using DEVS (Discrete Event Sys-

tems specifications) [1]. The general components are pro-
grammed for specific hardware components and used to
simulate a specific hardware platform. The hardware models
interact with each other in a simulation environment based
on the HLA (High Level Architecture) [7]. This proposed
approach is verified by a case study in which an Intel 8088-
based computer system is modelled and simulated.

This next section provides a brief introduction to DEVS
and the HLA. Section 3 describes how we model general
hardware components using DEVS, and how these models
interact with using RTI services. The case study in Section 4
shows the refinement of the general models for a simple
Intel 8088-based platform. The simulation results of the case
study are then used to verify the proposed approach.

2. DEVS and the HLA
DEVS is a well-defined modeling and simulation

framework that can express hierarchical, modular, discrete
event models. A DEVS model evolves by changes in state
variables through the occurrence of events and elapsed time.
The DEVS formalism focuses on the changes of the variable
values, and generates time segments that are piecewise con-
stant. An important aspect of the formalism is that the time
intervals are continuous. There are two types of models:
atomic (behavioural) and coupled (structural) [1]. Since
coupled models are not used in the research, they are not
discussed in any detail here.

A DEVS atomic model (AM) specifies a system’s re-
sponse to input events in terms of states, transitions, timing
constraints, and output events. An atomic model is defined
formally as:

AM = < X , S , Y , �int , �ext , �con , � , ta >
Where

X is the input events set.
S is the state set.
Y is the output events set.
�int is the internal transition function.
�ext is the external transition function.
�con is the confluent transition function
� is the output function.
ta is the time advance function.

The formal definition can be interpreted using the fol-
lowing operational rules. When an input event arrives, the

�ext function accepts the input and changes the instance vari-
able. If no further inputs arrive during a time interval speci-
fied by the ta function, then the �int function changes the
instance variable. Should an input arrive before the time
interval elapses, then the �ext function accepts the input and
changes the instance variable. The �con function resolves
situations where events occur simultaneously. �con might
specify, for example, the order in which the relevant func-
tions should be performed. The � function produces the out-
put Y from the instance variables.

Various software tools have been developed to imple-
ment the DEVS formalism, including DEVS-C++ [4],
CD++ [5] and DEVSim++ [6]. These tools provide meth-
ods to implement DEVS models and map them to a simula-
tion engine so that the DEVS atomic and coupled models
can interact with each other in a hierarchical simulation en-
vironment.

The HLA is an IEEE standard [7] for the interoperabil-
ity of component-based simulations. The HLA promotes
simulation interoperability, and encourages the reuse of
models. The HLA provides a general framework, which
defines the relationships among the components (called fed-
erates) of an HLA simulation (called a federation). The
HLA Interface Specification defines the functional interface
to the HLA RunTime Infrastructure (RTI) [8]. The RTI is a
middleware layer that provides HLA services to federates
and federations.

Previous efforts have been made to create HLA-
compliant DEVS models, and to integrate DEVS simulators
with the RTI [2]. These efforts allow re-use of the models
and simulators, but require the DEVS simulation engine as
an additional middleware layer. We propose a new distrib-
uted approach where all the hardware components are mod-
elled as DEVS atomic models, and interact with each other
using a HLA-compliant simulation engine. Although DEVS
has already been used successfully for the modeling and
simulation of hardware architectures [3], we wanted to ex-
periment with a more direct approach to the interaction of
DEVS models in an HLA simulation.

Figure 1.a) shows a general approach to modeling and
simulation using DEVS and the HLA/RTI. Two layers of
simulation middleware (e.g. the RTI and the DEVS simula-
tor) are on top of each other. The DEVS simulation layer is

DEVS formalism
(coupled or atomic)
Implementation

using DEVS tools
DEVS Simulator

... DEVS formalism
(coupled or atomic)
Implementation

using DEVS tools
DEVS Simulator

RunTime Infrastructure (RTI)

(a)

DEVS formalism

(atomic)
Implementation

using C++

DEVS formalism

(atomic)
Implementation

using C++

...
RunTime Infrastructure (RTI)

(b)

Figure 1: (a) DEVS/HLA general approach. (b) A model of the proposed solution.

required to support the execution of DEVS coupled models.
DEVS tools include complex simulation and coordination
engines in order to manage/synchronize the different com-
ponents. Such engines require additional message transla-
tion functionality to work with the RTI layer. Zeigler [2] has
shown how to adapt the DEVS-C++ tool to the HLA/RTI
structure. This is quite useful to reuse old simulations de-
veloped under the DEVS-C++ tool but suffers from the ex-
tra layer of DEVS middleware.

Figure 1(b) shows our proposed approach to model
general hardware components using DEVS, and then simu-
late compositions of components above the RTI. We use
only DEVS atomic models, and as a result, RTI services can
be used to control the models directly. By using only DEVS
atomic models, the extra layer of DEVS middleware to sup-
port coupled models is not required. Atomic models are a
simple concept, and easily reusable for future developments.

3. HARDWARE PLATFORM MODELS
Figure 2 shows a system level block diagram for a sim-

ple hardware platform simulator consisting of the Processor,
Bus controller, Memory, Interrupt Controller and Signal
Generator modules. The Processor module has been shown
divided into the: Execution Unit (EU) that is responsible for
decoding and executing all instructions, the Bus Interface
Unit (BIU) that is responsible for performing all external
bus operations, and the Control Unit (CU) that is responsi-
ble for possible processor configuration modes (e.g. the
maximum/minimum modes of the Intel 8088) and interrupt
signals from other devices. Only a single master device is
present in the system, and therefore a bus arbiter component
has not been included. The framework assumes atomic bus
cycles, hence none of the detailed signalling protocols

within a bus cycle are addressed in the component models.
Each of the modules is specified as a DEVS atomic model,
and is realized as an HLA federate. The federates collec-
tively form a federation interacting on the RTI.

As a representative organization of the modules, the
DEVS atomic model of the memory module is given below
(models of the remaining components can be found in [9]),
and shown as a state machine in Figure 3.

Memory = < X , Y , S , �int , �ext , �con , � , ta >

X – Input events

• Address bus ∈ {0…2AB_Size-1}, where AB_Size is a
natural number defined in the processor module’s pa-
rameters. To support access to all memory locations,
Memory size (MS) ≤ 2AB_Size.

• Data bus ∈ {0… 2DB_Size-1}, where DB_Size is a natu-
ral number defined in the processor module’s parame-
ters.

• Read control signal ∈ {0,1} where 1 = Read and 0 = no
operation specified.

• Write control signal ∈ {0,1} where 1 = Write and 0 =
no operation specified.

Y – Output event set

• Data bus ∈ {0… 2DB_Size-1}, where DB_Size is a natu-
ral number defined in the processor module’s parame-
ters.

• Data acknowledge signal (DTACK): informs the proc-
essor that the bus cycle has ended during an asynchro-
nous processor’s mode (e.g., Motorola 68000 series).
DTACK ∈ {0,1} where 1 = ACK and 0 = no operation.

Processor
Module

Bus Interface
Unit

(BIU)

Execution
Unit
(EU)

Control Unit
(CU)

RunTime Infrastructure (RTI)

Memory
Module

Bus Controller
Module

Interrupt
Module

Signal Generator
Module

Figure 2: System-level block diagram for a Hardware platform simulator.

Write Idle Read

�ext

�int

�ext

�int

�

Figure 3: State diagram for the DEVS model of the Memory Module

S – States

• Read state: In read state the memory module acquires
data from the memory location as addressed by the ad-
dress bus {0… 2AB_Size-1}, waits until the ta function is
elapsed and writes data to the data bus {0… 2DB_Size-1}.

• Write state: In write state the memory module writes
data, provided by the data bus {0… 2DB_Size-1}, to a
memory location which is addressed by the address bus
{0… 2AB_Size-1}. The module then waits until the ta
function is elapsed.

• Idle state: In this state the module waits for the next �ext.
The delay function associated with this state ∈ R+.

�ext – External transition function
The �ext starts with the arrival of read/write signal in the

module. In case of write signal, the �ext acquires the infor-
mation from the address and data bus. In the case of a read
signal, the �ext only acquires the information from the ad-
dress bus. As an example the state diagram for memory read
and memory write during a minimum operation mode is
shown in figure 3.

ta – Time advance function
The ta function introduces the time delay before sched-

uling the next action by the component. At this level of ab-
straction, the ta functions associated with read and write
states are equivalent to one bus cycle. Figure 3 shows an
example where the ta function is introduced in the read state
before carrying out the � function.

� – Output function
The � outputs the data on the data bus during the read

cycle. For the case of Motorola 68000 series processors the
DTACK signal is also sent out. As an example, see figure 3.

�int – Internal transition function
The �int changes the internal state from Read or Write to

the Idle state. The module stays in the Idle state until the

next �ext.

�con – Confluent transition function
The �int has higher priority than the �ext

Figure 3 represents the DEVS model for the memory
module behaviour graphically. The module stays in the Idle
state until there is an input event. The input event either
causes a transition to the Read state or the Write state. In the
Read state, the memory module gets data from the requested
memory location, waits for a time representing the memory
access time to elapse, and then performs output (�) by send-
ing data to the data bus. After sending the output, the mod-
ule uses an internal transition (�int) to return to the Idle state.
In the Write state, the module reads the address and data
buses, updates the specified memory locations, waits for a
time representing the memory access time to elapse, and
then returns to the Idle state.

4. 8088-BASED CASE STUDY
The general hardware component models were refined to
simulate a platform containing a processor (a simplified
version of Intel 8088), a basic memory unit, a bus controller
(a simplified version of Intel 8288), a basic interrupt con-
troller and a timing signal generator module. This case study
is for a synchronous platform, but no clock module is mod-
eled. Each module assumes synchronous interactions and
requests to schedule future bus events as an integral number
of clock ticks in the future. The implementation assumes
that the memory module does not introduce wait states.

The simulator was developed in sufficient detail to exe-
cute the assembly code shown in tables 1 and 2. The assem-
bled code is shown in the first column of table 1 along with
the mnemonic code and any necessary timing information
[10]. Instruction execution times are determined by taking
the number of clock cycles required per instruction plus any
time required to access the operand based on the effective
address (EA) used in addressing modes. For instance, the
EA for the indexed operand in the MOV [BX],CH instruc-
tion is 5 clocks.

During the execution of the main program, the interrupt
controller module sends interrupt signals to the processor,

Op-code
(Hex)

Program Instruc-
tions

Clock Cycle

B500 MOV CH , 0 4
BF0000 MOV DI , 0 4
B102 MOV CL , 2 4
BB0000 xyz : MOV BX , 00 4
03DF ADD BX , DI 3
882F MOV [BX] , CH 9+EA = 9+5 = 14
47 INC DI 2
02E9 ADD CH , CL 3
83C70A CMP 10 , DI 4
750D JNE xyz 4

16 (when jump executed)
F4 HLT 2

 Table 1: Main program code for the case study

Op-code
(Hex)

Program In-
structions

Clocks

53 PUSH BX 15
BB0020 MOV BX , 32 4

8A07 MOV AL , [BX] 8+EA = 8+5 = 13
FEC0 INC AL 3
8807 MOV [BX] , AL 9+EA = 9+5 = 14
5B POP BX 12
CF IRET 32

 Table 2: Interrupt routine code for the case study

resulting in the execution of the interrupt routine shown in
table 2. The processor’s interrupt behaviour includes check-
ing the interrupt flag; pushing the IP, CS and IF; sending the
interrupt acknowledge to the interrupt controller; reading the
vector type from the interrupt controller; calculating the
starting address for the interrupt routine residing in the
memory, and clearing the instruction queue. The interrupt
routine used in the case study increments a variable stored
in the memory.

The timing information for the interrupt routine is also
shown in Table 2 [10]. A time unit of the simulator is as-
sumed to be one (system) clock cycle, and one processor
bus cycle is assumed to be four clock cycles. The timing
details of the execution unit of the processor are imple-
mented to one clock cycle accuracy. Within a processor bus
cycle, the system timing details are not implemented accu-
rately. This lack of accuracy is irrelevant, since the proces-
sor control unit dictates the overall timing behaviour of the
system.

Components of the simulator are defined as HLA feder-
ates, and figure 4 shows the attributes (information) com-
municated through input and output ports of the DEVS
models of the components. For instance, the memory mod-
ule publishes data values (the Data_Memory attribute) as
outputs, to which the processor module subscribes as inputs.

The federates exchange attributes using the RTI publish
and subscribe services. When a federate publishes attribute
data, all federates subscribed to that attribute are notified.

This allows the coupling of the DEVS atomic models to be
realized using RTI services.

The memory module implementation is based on the
DEVS specification presented in Section 3. RTI services are
used to communicate events between atomic models and to
manage time advances. Therefore, the implementation does
not require a DEVS simulation engine for this support.

The memory module is passive, and responds to events
from the RTI. In the Idle state, the module has no pending
work to perform. The memory module’s δext function is ac-
tivated by the arrival of subscribed data. The function is
implemented as a case statement that performs the appropri-
ate processing based on the attribute received. For example,
suppose that the memory module is Idle when the processor
initiates a memory read operation. The processor does this
by publishing a ControlToMem_Processor attribute, which
is one of the attributes subscribed by the memory module.
The attribute includes information about whether the access
is a read or write operation, and the relevant memory ad-
dress. The memory model must not return the requested data
immediately, but must follow the bus protocol. The module
enters the Read state, and waits for one memory read bus
cycle (4 clock ticks) to lapse. Upon entering the Read state,
ta function is activated to request a time advance of 4 clock
ticks using the RTI time management services. The RTI
controls time advance among the federates, and when ap-
propriate, sends a TimeAdvanceGrant to the memory mod-
ule indicating that it has waited the requested amount of
time. The memory module responds by activating the λ

RunTime Infrastructure (RTI)

Bus Control Module
Attributes Published
MemoryRDWR_Bus
InterruptRDwrACK_Bus
Attributes Subscribed
ControlToBus_Processor
SimEnd_Processor

Memory Module
Attributes Published
Data_Memory
Attributes Subscribed
Address_Processor
Data_Processor
ControlToMem_Processor
MemoryRDWR_Bus
SimEnd_Processor

Processor Module
Attributes Published
Address_Processor
Data_Processor
ControlToBus_Processor
ControlToMem_Processor
AckToInt_Processor
SimEnd_Processor
Attributes Subscribed
Data_Memory
Data_Interrupt
INTR_Interrupt

Interrupt Module
Attributes Published
Data_Interrupt
INTR_Interrupt
Attributes Subscribed
AckToInt_Processor
INTR_Timer1
InterruptRDwrACK_Bus
SimEnd_Processor

Timer Module
Attributes Published
INTR_Timer1
Attributes Subscribed

Figure 4: Block diagram showing time publish/subscribe attributes
information

function to output data back to the processor (achieved by
publishing a Data_Memory attribute), and then the internal
transition function (δint) is activated to go back to the Idle
state.

The simulator is instrumented to log events, and the
case study was verified by comparing the theoretical values
provided by tables 1 and 2 with the logs generated by the
simulator. The execution unit is designed to reflect timing
accurately to one clock cycle. Hence, the simulation results
for the execution timing of each program instruction should
match the theoretical timing values.

The simulation was run to execute the program shown
in tables 1 and 2. The length of the simulation run included
the occurrence of a (simulated) timer interrupt. The logs of
every instruction’s execution were verified to agree with the
theoretical values, and the timer interrupt was verified to
have occurred at the correct time.

4. CONCLUSIONS & FUTURE WORK
We have presented a new DEVS/HLA approach to

model and simulate computer hardware platforms at the bus
cycle level of abstraction. DEVS is used to model general
hardware components as atomic models. The general com-
ponents are then refined for a specific hardware platform.
HLA services are used to support simulation coupling, event
communication and time management. As a result, the ge-
neric DEVS simulation engine (middleware) found in other
DEVS-based approaches is not required. An 8088-based
case study has demonstrated and verified the approach.

Ideally, the larger-grained hardware platform models
provided by the approach may yield simulation tools better
suited to the needs of systems and software developers.

Future work is progressing in many directions:
1. The level of detail in the general DEVS models is being

expanded to include: more instruction addressing
modes, multiple bus masters, and alternate architectures
such as DSP processors.

2. Tools are being developed to hide application develop-
ers from low-level details by generating the HLA ac-
cess code automatically.

3. The automatic generation of HLA-compatible signal-
ling protocols is being developed to allow the reuse of
the larger grained simulations with finer-grained signal-
ling protocols. This research is using XML representa-
tions of protocol timing diagrams to generate a more
detailed layer of interaction behaviour.

REFERENCES
[1] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Model-

ing and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic
Press. 2000.

[2] Zeigler, B.P. “Implementation of the DEVS Formalism
over the HLA/RTI: Problems and Solutions”, Simula-
tion Interoperability Workshop, March 1999. Orlando,
FL.

[3] Daicz, S.; Troccoli, A.; Wainer, G. "Experiences in
modeling and simulation of computer architectures us-
ing DEVS". In Transactions of the Society for Modeling
and Simulation International. Vol. 18, No. 4. December
2001. pp. 179-202.

[4] Zeigler, B.; Cho, H.; Lee, J.; Sarjoughian, H. "The
DEVS/HLA Distributed Simulation Environment And
Its Support for Predictive Filtering". DARPA Contract
N6133997K-0007: ECE Dept., UA, Tucson, AZ. 1998.

[5] Wainer, G. "CD++: a toolkit to define discrete-event
models". In Software, Practice and Experience. Wiley.
Vol. 32, No.3. November 2002. pp. 1261-1306.

[6] Kim, T. G. "DEVSIM++ User's Manual", CORE Lab, EE
Dept, KAIST, Taejon, Korea. 1994.

[7] IEEE standard for modeling and simulation (M&S;)
high level architecture (HLA) - Framework and Rules.
IEEE Std. 1516-2000 , Sep. 2000; Page(s): i -22

[8] IEEE standard for modeling and simulation (M&S;)
high level architecture (HLA) - Federate Interface
Specification. IEEE Std 1516.1-2000 , 2001; Page(s): 1
–467.

[9] Saghir, Amir “Computer System Modeling at the
Hardware Platform Level” M.A.Sc. Thesis. Dept. of
Systems and Computer Engineering, Carleton Univer-
sity. 2002

[10] Triebel A. Walter and Singh, Avtar “16-bit Micro-
Processors. Architecture, Software and Interface Tech-
niques.”; Prentice-Hall, Inc, Englewood Cliffs, NJ.
2001.

