
Advanced Visualization of DEVS and Cell-DEVS Models in CD++/Maya

Ayesha Khan
Gabriel A. Wainer

Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada
amkhan2@connect.carleton.ca, gwainer@sce.carleton.ca

ABSTRACT: CD++ is a modeling and simulation tool that was created to study complex systems by using a discrete-
event cell-based approach. It was successfully employed to define a variety of models for complex applications using a
cell-based approach. In order to improve model validation and analysis, we introduced a 3D visualization engine,
which is based on the Maya 3D visualization tool and its scripting language. The application allows virtual worlds to
be developed using the Maya visualization environment, and permits interaction with DEVS models built in CD++. The
result is an enhanced simulation environment, which permits improved experimentation. We discuss how these two
applications interact, and how models defined earlier in CD++ can interoperate with advanced visualizations built
based on Maya 3D models.

1. Introduction

At present, a large number of modeling and simulation
techniques and tools have been developed to deal with
complex systems. A technique that is gaining popularity
in recent years is called Discrete Event Systems
Specification (DEVS) [1], a framework for the
construction of discrete-event hierarchical modular
models, allowing for model reusing. In DEVS, basic
models (atomic) are specified as black boxes, and they
can be integrated together forming a hierarchical
structural model (coupled). Cell-DEVS [2] extended the
DEVS formalism allowing the simulation of discrete-
event cellular models. The approach extends traditional
Cellular Automata (CA) [3] defining each cell in a cell
space as a DEVS atomic model and the space as a DEVS
coupled model, including a flexible way of defining the
timing of each cell.

We developed an environment, called CD++ [4], which
implements DEVS and Cell-DEVS theories. CD++
enabled us to solve successfully a variety of complex
problems [5, 6, 7]. CD++ also provides remote access to a
high performance DEVS simulation server. The end user
tools were organized as a simulation client applied to the
CD++ simulator. Using these facilities, the users can now
develop and test their models in local workstations, and
submit them to be simulated in a remote CD++ server
executing in a high performance platform. Then, they can
receive, visualize and analyze the results on a local
computer, improving model definition and execution.

Visualization tools are crucial in helping to understand
better the behavior of these systems. CD++ was recently
provided with facilities for 2D and 3D visualization using

VRML and Java [8]. This 3D GUI enables sophisticated
visualization of Cell-DEVS models only, and DEVS
models can only be visualized in 3D; thus we have
focused on new extensions that can be applied to both
DEVS and Cell-DEVS. The interface here presented is
based on the Maya modeling environment [9]. We will
show how advanced DEVS models can be visualized
using Maya facilities, giving a few examples of
application, which permit discussing interoperability of a
M&S tool based on DEVS and an advanced generic
visualization environment like Maya.

Figure 1: CD++ server architecture

2. DEVS, Cell-DEVS and CD++

A real system modeled with DEVS is described as a
composite of sub-models, each of them being behavioral

atomic) or structural (coupled). A DEVS atomic model
can be informally described as in Figure 2.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 2: Informal Description of an Atomic Model

Each atomic model can be seen as having an interface
consisting of input (x) and output (y) ports to
communicate with other models. Every state (s) in the
model is associated with a time advance (ta) function,
which determines the duration of the state. Once the time
assigned to the state is consumed, an internal transition is
triggered. At that moment, the model execution results are
spread through the model’s output ports by activating an
output function (λλλλ). Then, an internal transition function
(δδδδint) is fired, producing a local state change. Input
external events (those events received from other models)
are collected in the input ports. An external transition
function (δδδδext) specifies how to react to those inputs, using
the current state (s), the elapsed time since the last event
(e) and the input value (x).

A DEVS coupled model is composed of several atomic or
coupled sub-models, as in Figure 3.

Figure 3: Informal Description of a Coupled Model

Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the
models’ interfaces. The models’ coupling defines how to
convert the outputs of a model into inputs for the others,
and how to handle inputs/outputs from/to external models.

Cell-DEVS has extended the DEVS formalism, allowing
the implementation of cellular models with timing delays.
A cellular model is a lattice of cells holding state
variables and a computing apparatus, which is in charge
of updating the cell state according to a local rule. This is
done using the present cell state and those of a finite set of

nearby cells (called its neighborhood). Each cell is
defined as a DEVS atomic model, and it can be later
integrated to a coupled model representing the cell space.
Each cell uses N inputs to compute its next state. These
inputs, which are received through the model's interface,
activate a local computing function (ττττ). A delay (d) can
be associated with each cell. The state (s) changes can be
transmitted to other models, but only after the
consumption of this delay.

Once the cell behavior is defined, a coupled Cell-DEVS
can be created by putting together a number of cells
interconnected with their neighbors. A Cell-DEVS model
is informally presented in Figure 4.

Figure 4: Description of a Cell-DEVS coupled model.

CD++ [4] is an M&S toolkit that implements DEVS and
Cell-DEVS theory. Atomic models can be defined using a
state-based approach (coded in C++ or an interpreted
graphical notation), while coupled and Cell-DEVS
models are defined using a built-in specification language.
We will show the basic features of the tool through an
example of application: a model of a car factory, which
tries to coordinate different warehouses and assembly
lines to make sure their productivity levels are suitable.
The factory only manufactures one type of car and each
sub-factory manufactures only one type of auto part. Each
sub-factory sends its completed component to the Final
Assembly Sub-factory where the automobile is assembled
[10].

The model is defined as a DEVS coupled model, using all
of the different components in the factory: four sub-
factories devoted to manufacture different parts of a car
(Chassis, Body, Transmission Case and Engine), and a
warehouse devoted to the final Assembly. To make an
automobile, only one of each component is needed (i.e. 1
Chassis + 1 Body + 1 Transmission Case + 1 Engine). To
make an Engine we need four Pistons and one Engine
Body (i.e. 4 Piston + 1 Engine Body = 1 Engine) [10].
The structure of this model is depicted in Figure 5. In
order to build this application, we need to define and
develop each of the atomic models depicted in Figure 5.

Figure 5: The auto factory layout [10].

Model EngineAssem::EngineAssem(const string
&name):Atomic(name), in_piston(addInputPort(
"in_piston")), in_engineBody(addInputPort(
"in_engineBody")), done(addInputPort("done")),
out(addOutputPort("out")), manufacturingTime(
0, 0, 10, 0) { } // Model constructor

Model &EngineAssem::externalFunction(const
ExternalMessage &msg) {
 if(msg.port() == in_piston) {

// parts received one by one
 elements_piston.push_back(1) ;
 if(elements_piston.size() == 1 &&

 elements_engineBody.size()>=1)
 holdIn(active, manufacturingTime);
 //pushback if more than 1 received
 for(int i=2;i<=msg.value;i++)
 elements_piston.push_back(1) ;
 }

 if(msg.port() == in_engineBody) {
 elements_engineBody.push_back(1) ;
 if(elements_engineBody.size() == 1 &&
 elements_piston.size()>=1)
 holdIn(active, manufacturingTime);
 //pushback if more than 1 received
 for(int i=2;i<=msg.value;i++)
 elements_engineBody.push_back(1) ;
 }

 if(msg.port() == done) {
 elements_piston.pop_front() ;
 elements_engineBody.pop_front() ;
 if(!elements_piston.empty() &&
 !elements_engineBody.empty())
 holdIn(active, manufacturingTime);
 }
}

Model &EngineAssem::internalFunction(const
InternalMessage &) { passivate(); }

Model &EngineAssem::outputFunction(const
InternalMessage &msg) {
 sendOutput(msg.time(), out, elements.front());
}

Figure 6: Engine Assembly Line in CD++

As showed in Figure 6, we have defined each component
as a DEVS atomic model, and implemented it using
CD++. The model in Figure 6 represents the behavior of
the Engine Assembly warehouse model. We start by
defining EngineAssem as a subclass of the Atomic model
class, and we also include the definition of the I/O ports
needed by the model (in_piston and in_engineBody,
which are used to receive the required parts). The out port
is an output port used for assembled engines, while done
is a feedback port we use when an engine is ready (in that
way, we can check if there are enough stock of
components, and we can start building a new engine as
soon as one of them leaves the warehouse).

Most of the logic of the model is located in the external
transition (δext). This function determines what to do with
the incoming parts. If a piston is received, is stocked until
the number of pistons needed is available. The next
internal event (δint) is scheduled by the holdIn method,
which implements the time advance function (ta). When
the time indicated by the variable manufacturingTime
expires, the output function (λ) generates a ready part.
The internal transition function simply passivates the
model (i.e., sets the next internal transition time to
infinity), waiting for the next part to come from other
parts of the factory.

Once every atomic model in the hierarchy is defined (as
in Figure 6), we can build a coupled model following the
model architecture presented in Figure 5. Figure 7
presents the definition of such a model in CD++. The top
model here is composed of one coupled models
(engineSubFact) and four atomic components (chassis, an
instance of the Chassis atomic model; body an instance of
the Body atomic model; trans, an instance of the
Trans[mission] model, and finalAssem[bly]). The
engineSubFact contains three components, as showed in
Figure 5. The input and output ports define the model’s

interface, and the links between components define the
model’s coupling, following the structural description in
Figure 5.

[top]
components : chassis@Chassis body@Body
trans@Trans finalAssem@FinalAssem engineSubFact
out : out
in : in
Link : in in@chassis
Link : in in@body
Link : in in@trans
Link : in in@engineSubFact
Link : out@finalAssem out
Link : out@finalAssem done@finalAssem
Link : out@chassis in_chassis@finalAssem
Link : out@chassis done@chassis
Link : out@body in_body@finalAssem
Link : out@body done@body
Link : out@trans in_trans@finalAssem
Link : out@trans done@trans
Link : out@engineSubFact in_engine@finalAssem

[engineSubFact]
components : piston@Piston engineBody@EngineBody
engineAssem@EngineAssem
out : out
in : in
Link : in in@piston
Link : in in@engineBody
Link : out@piston in_piston@engineAssem
Link : out@piston done@piston
Link : out@engineBody in_engineBody@engineAssem
Link : out@engineBody done@engineBody
Link : out@engineAssem out
Link : out@engineAssem done@engineAssem

Figure 7: Specification of a Coupled Model in CD++

Once this model is completely defined, we can execute it
within a given experimental framework, and analyze the
simulation results, which are provided in a log file with
the format shown in Figure 8.

X/00:000/top/in/2 to chassis
X/00:000/top/in/2 to body
X/00:000/top/in/2 to trans
X/00:000/top/in/2 to enginesubfact
D/00:000/chassis/02:000 to top
D/00:000/body/02:000 to top
D/00:000/trans/02:000 to top
X/00:000/enginesubfact/ in/2 to piston
X/00:000/enginesubfact/ in/2 to enginebody ...
Y/02:000/chassis/out/1 to top
D/02:000/chassis/... to top
X/02:000/top/done/1 to chassis
X/02:000/top/in_chassis/1 to finalass ...
*/02:000/top to enginesubfact
*/02:000/enginesubfact to enginebody
Y/02:000/enginebody/out/1 to enginesubfact
D/02:000/enginebody/... to enginesubfact
X/02:000/enginesubfact/done/1 to enginebody
X/02:000/in_enginebody/1 to engineassem
D/02:000/enginebody/02:000 to enginesubfact
D/02:000/engineassem/02:000 to enginesubfact ...

Figure 8: Excerpt from the auto factory log file.

In this figure, we can see that at 01:000, a purchase order
arrives, and it is transmitted to the factory (X-messages).
According to the manufacturing time, we receive outputs
(Y-messages) from each of the components. By analyzing
the log file, we can see the activation of the different parts
in the plant, and each of the elements involved in the
manufacturing simulation.

CD++ also includes an interpreter for Cell-DEVS models.
The model specification includes the definition of the size
and dimension of the cell space, the shape of the
neighborhood and borders, as presented in figure 3. The
cell’s local computing function is defined using a set of
rules with the form: POSTCONDITION DELAY
{PRECONDITION}. These indicate that when the
PRECONDITION is satisfied, the state of the cell will
change to the designated POSTCONDITION, whose
computed value will be transmitted to other components
after consuming the DELAY. If the precondition is false,
the next rule in the list is evaluated until a rule is satisfied
or there are no more rules. Figure 9 shows the definition
of a very simple example.

[life]
size: (20,20) delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0)
(0,1) (1,-1) (1,0) (1,1)
localtransition : new-life-rule

[new-life-rule]
Rule: 1 10 {(0,0)=1 and (truecount=3 or

truecount=4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 9: Definition of the Life game.

The rules in this example say that a cell remains active
when the number of active neighbors is 3 or 4 (truecount
indicates the number of active neighbors) using a
transport delay of 10 ms . If the cell is inactive ((0,0) =
0) and the neighborhood has 3 active cells, the cell
activated (represented by a value of 1 in the cell). In every
other case, the cell remains inactive (t indicates that
whenever the rule is evaluated, a True value is returned).

In [11], we presented a definition of maze-solving
algorithms using Cell-DEVS and their implementation
using CD++. When these rules are processed, the
simulation results show the algorithm effectively blocking
off every dead-end path in the maze. Every free cell that
is accessible from only one direction must be a dead end,
therefore cannot be part of the solution, and is therefore
turned into a wall cell. The simulation repeats this
procedure until the system is stable and all the cells are
wall cells except for the cells that form the solution to the
maze. In the case where there is no solution to the maze,
all the cells become wall cells [11].

Figure 10 shows an excerpt from a draw file generated
from CD++ log files, showing a simple maze in a 20x20
cellular array solving itself. As we can see, studying the
simulation results based on these notations can be error-

prone and cumbersome, more so for a specialist without
much experience in computer programming. Instead, the
provision of a graphical environment can improve the
results obtained, as discussed in the following sections.

Figure 10: Three instances from the maze model draw file.

3. Visualization of 3D Models in MAYA

Maya [9] is a powerful application for three dimensional
modeling and animation, using special effects and
rendering. It allows one to create digital imagery, three
dimensional animation and visual effects. The Maya
software interface is fully customizable and it allows
users to extend their functionality within Maya by
providing access to the Maya Embedded Language
(MEL). Using MEL, programmers can tailor the user
interface to their needs and to add in-house tools. Since
MEL is recognized by embedded web browsers, MEL
commands can also be issued form a webpage. Maya’s
modeling and animation tools were used to create three-
dimensional environments for Cell-DEVS and DEVS
models. To do that, the user must use Maya facilities to
create visual scene files, while an application written in
MEL permits to create a user interface that allows CD++
log files to interact with Maya, and to visualize the
corresponding model in a 3D visual environment. This
instantiates a MEL script specific to a particular model,
and animates the three-dimensional world (scene file) in
accordance with the CD++ log file. Figure 11 shows the
relationships between these procedures.

The logFileAnimator method acts as an interface
requesting the user to select a particular model, as showed
in Figure 12. The user has two choices after providing the
required information, the “Print File Contents” button will
instantiate readFile and the “Animate” button will
instantiate animator. The readFile method locates and
opens the file corresponding to the file name provided for

the express purpose of reading it and printing the contents
to the Script Editor Window in Maya, as showed in
Figure 13. In this way, the user can analyze the detailed
results found in the log files.

Figure 11: Architecture of the visualization environment

The animator method instantiates the animation
procedure for that particular model, associating CD++
simulation results with graphic scenes defined in Maya.
Each instance of the animation procedure opens the log
File, reads it and stores pertinent information, which is
then used to animate the objects in the three dimensional
scene opened. All the information pertaining to a
particular object from the log file is used to animate that
same object in the scene file.

The translateTime method is in charge of accurately
following the log File, and making the animation to match
time with the time present in the simulation log.

Figure 12: The logFileAnimator dialogue box.

Figure 13: The Script Editor Window displays the contents of the log file.

The maFileReader method is called by MEL to obtain the
initial state values of each cell for Cell-DEVS models.
This procedure parses the coupled model files and stores
the initial state values of each cell. Then it animates the
scene file for time 00:00:00:000 accordingly.

We have applied the toolkit to different modeling
examples, including the two presented in the previous
section. Figure 14 shows the visual results of the Maze
model, when we apply our new visualization
environment. As we can see, the visual results impact the
understanding of the maze-solving technique when
compared with the previous results.

Figure 14: Perspective View of the maze model.

Likewise, Figure 15 shows an animation snapshot
obtained when executing a 3D version of the Factory
model Figure 15 a) shows the visual results of the model
at time 02:000, in which the log file presented in Figure 8
shows that the three sub-factories have generated outputs
(chassis, body and transmission). Reviewing Figure 8, we
can see Y-messages (representing outputs) from the

chassis and body models. These are represented as parts
leaving the warehouses, and being directed to the
assembly factory. At time 02:000 all three outputs start
moving towards the Final Assembly sub-factory. Figure
15 b) shows the result at 04:000 (when three more parts
are ready to be assembled, and the parts previously
arrived at 02:000.

(a)

(b)

Figure 15: Rendered View of the auto factory animation (a) 02:000 (b) 04:000.

We also employed these facilities for the visualization of
models of virtual cells. In [12], we developed a model of
glycolysis, the sequence of reactions occurring in the cells
that permit to break down one glucose molecule into two
molecules of pyruvate. There are ten steps in glycolysis
that result in the production of Nicotinamide adenine
dinucleotide (NADH) and Adenosine TriPhosphate (ATP)
[13]. Each step in the sequence is controlled by a specific
enzyme. The glycolysis sequence can be divided into two
phases, where in the first phase glucose is converted into
two Glyceraldehyde-3-Phosphate molecules (GDP), and
in the second phase two pyruvate molecules.

Each step in the glycolysis pathway was defined as a
DEVS atomic model specification, which was used to

analyze basic properties of the models. Afterwards, each
model was implemented in CD++, and tested separately.
Once every model was thoroughly tested, a coupled
model was built, connecting all the sub-models previously
defined, each representing a step. Different simulation
experiments were conducted [12]. Figure 16 shows the
visual results of the execution of two of the steps. Figure
16 a) shows the end of Glycolysis step 1, where two
Alpha-Gluco-Phospate (G-6-P) and two Adenosine
DiPhosphate (ADP) are formed. Figure 16 b) shows step
6, which begins at the appearance of 3 molecules of
Nicotinamide Adenine Dinucleotide (NAD+).

(a)

(b)

Figure 16: Glycolisis model (a) step 1 (b) step 6.

A related model was focused on the Krebs Cycle, a
sequence of enzyme-catalyzed reactions in the cell.
Glycolysis and Krebs cycle are two major stages in the
process of the metabolism of glucose. Glycolysis is the
first stage and breaks down glucose to Pyruvate, where as
the Krebs Cycle is the second stage. Each turn of this
cycle produces two molecules of carbon dioxide and eight
atoms of hydrogen [12].

 In this case, we also defined the behavior of each stage as
a DEVS atomic model specification, reproducing the
behavior of inputs and outputs observed for each step.
Figure 17 shows a snapshot one of the reactions in the
Krebs Cycle Animation done in CD++/Maya: the
formation of Acetyl CoA, and the production of Carbon
dioxide and NADH as byproducts.

Figure 17: The Krebs Cycle: Acetyl CoA is formed.

We also defined an advanced visualization model of
evacuation. These models that could predict and present
the results of human beings evacuating structures, such as
buildings, ships and houses etc, during an emergency
[14]. This model is based on a cellular automata model
for ship evacuation [15]. We will show how the results of
our visualization environment facilitate and ease the
interpretation of the simulation results.

In this model, the rules calculate the shortest distance of
each cell to the nearest exit and assign people randomly to
the cells. The basic idea was to simulate the behavior and
movement of every single person involved in the
evacuation process. We used two planes: one for the floor
plan of the structure and the people moving, and the other
for orientation to an exit. Each cell in the grid represents
0.4 m2 (one person per cell). The orientation layer
contains information that serves to guide persons towards
emergency exits. We assigned a potential distance to an
exit to every cell of this layer. The persons will move for
the room trying to minimize the potential of the cell in
which they are. The Cell-DEVS model characterizes a
person's behavior: a normal person goes to the closest
exit; a person in panic goes in opposite direction to the
exit. People move at different speeds; if the way is
blocked, people can decide to move away and look for
another way.

In figure 18 the state value “1” represents walls or
obstacles, and the state value “2” represents exits. The
even state values are occupied cells and the odd ones are
empty cells. Each state value also represents the shortest

direction to the exit. Eventually all cells become empty as
people leave the structure.

Figure 18: An Excerpt from a Ship Evacuation draw file.

As seen in figure 18 this visualization of the simulation
results is complex to interpret and understand. When
these results are integrated into the new visualization
engine, the results become easier to observe. Figure 19
illustrates the results obtained through Maya. Compare
figure 18 with Figure 19 a), which shows the same state
than the one presented in Figure 18, and the beginning of
the animation at time 00:00:00:000. Figure 19 b) shows
people moving towards the exits and evacuating the
building at time 00:00:03:000.Then in figure 19 c) we
observe the animation at time 00:00:03:200, and finally in
figure 19 d) at time 00:00:06:000 the building is empty.

(a)

(b)

(c)

(d)

Figure 19: The Ship Evacuation Model at time (a) 00:00:00:000 (b) 00:00:03:000 (c)00:00:03:200 and (d) 00:00:06:00

Figure 20: A close up at time 00:00:05:240

In Figure 20 we show a close up view of the ship
evacuation animation at time 00:00:05:240 when only
four people are left in the building.

4. Conclusion

Simulation is becoming increasingly important in the
analysis and design of complex systems. CD++ is a tool
for the simulation of complex physical systems that can
be used to simulate a variety of models. To facilitate the
users to use the CD++ simulator, we extended its design
to provide a number of services. The 3D visualization
GUI enables sophisticated visualization of DEVS and
Cell-DEVS models. To better understand the results, the
user can select shapes to represent a node in the 3D space,
select different colors, shapes, edit scenes, etc. The
current facilities have highly improved the use of the
previously existing tools, thus enhancing the analysis
experience of the modelers using the toolkit.

The approach relies on the use of DEVS methodology and
it is supported by the use of CD++, a DEVS tool that has
been built following the formal definitions of DEVS
models. The use of DEVS enables proving the correctness
of the simulation engines and permits to model the
problem even by a non-computer science specialist. The
high level language of CD++ reduces the algorithmic
complexity for the modeler while allowing complex
cellular timing behaviors. DEVS allows independence of
the simulator, the models developed, the experiment
conducted and the visual engine, while maintaining unity
in the model specification and tool interoperation.

Acknowledgments

This work has been partially supported by NSERC
(National Science and Engineering Research Council of
Canada), and it was developed within Carleton University
Immersive Media Lab (http://www.cims.carleton.ca),
directed by Prof. Michael Jemtrud, who provided support
for this work.

References

[1] B. Zeigler; T. Kim; H. Praehofer: "Theory of

Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems"
Academic Press, 2000.

 [2] G. Wainer; N. Giambiasi: "Timed Cell-DEVS:
modeling and simulation of cell spaces " In "Discrete
Event Modeling & Simulation: Enabling Future
Technologies" Springer-Verlag, 2001.

[3] T. Toffoli: "Occam, Turing, von Neumann, Jaynes:
How much can you get for how little? (A conceptual

introduction to cellular automata)" Proceedings of
ACRI'94, 1994.

[4] G. Wainer: "CD++: a toolkit to define discrete-event
models" Software, Practice and Experience, Wiley,
Vol. 32, No.3. pp. 1261-1306, November 2002.

[5] J. Ameghino; A. Troccoli; G. Wainer: "Modeling and
simulation of complex physical systems using Cell-
DEVS" In Proceedings of 34th IEEE/SCS Annual
Simulation Symposium,. Seattle, U.S.A, 2001.

[6] G. Wainer: “Modeling and simulation of complex
systems with Cell-DEVS” Accepted for publication
in Proceedings of the Winter Simulation Conference,
Washington, DC. IEEE Press, 2004.

[7] J. Ameghino; G. Wainer: “Application of the Cell-
DEVS formalism for modeling cell spaces” In
Proceedings of AIS’2004, Jeju Island, Korea,
Lecture Notes in Computer Science, 2004.

[8] G. Wainer and W. Chen. "A framework for remote
execution and visualization of Cell-DEVS models".
Simulation. Vol. 79, pp. 626-647. November 2003.

[9] ALIAS Corp. "Maya 6 Features in Detail,” [Online
document], 2004, [cited 2004 Oct. 25], Available:
http://www.alias.com/eng/products-
services/maya/file/maya6_features _in_detail.pdf

[10] W. Sun: “A model of a car manufacturing plant”,
Internal Report (available on-line:
http://www.sce.carleton.ca/faculty/wainer/wbgraf),
Department of Systems and Computer Engineering,
Carleton University, 2001.

[11] K. Lam; G. Wainer: "Modeling of maze-solving
problems using Cell-DEVS". K. Lam, G. Wainer, In
Proceedings of the 2003 SCS Summer Computer
Simulation Conference. Montreal, QC, Canada, 2003.

[12] R. Djafarzadeh; G. Wainer; T. Mussivand:
“Modeling and simulation of cellular metabolism and
energy production by mitochondria”, Accepted for
publication. DEVS workshop; SpringSim. San Diego,
CA. 2004.

[13] B. Alberts; D. Bray; J. Lewis; M. Raff; K. Roberts; J.
Watson: “Molecular Biology of the cell”, Third
Edition, Garland Publishing, 1994.

[14] J. Ameghino, G. Wainer. “Using Cell-DEVS for
modeling complex cell spaces”. Proceedings of 13th
International Conference on AI, Simulation, and
Planning in High Autonomy Systems, AIS 2004, Jeju
Island, Korea. LNCS Vol. 3397. 2004.

[15] J. R. Weimar: “Cellular automata model for ship
evacuation”, Internal Report (available online:
http://www.jweimar.de/jcasim/schiff1.html),
Institut für Informationssysteme, Technische
Universität Braunschweig.

