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ABSTRACT: We present an application developed to 
visualize the results of a simulation created using the CD++ 
modeling and simulation toolkit. The tool, called 
DEVSView, allows users to create visualizations from the 
simulation log files generated by the CD++ toolkit. 
DEVSView has implicit support for DEVS and Cell-DEVS 
models, using OpenGL and the OpenGL Utility Toolkit for 
hardware accelerated rendering. DEVSView provides a 
graphical user interface and a text file format for the 
creation of visualizations. Visualizations, in DEVSView, 
consist of visual models that translate CD++ log files into 
animations. Each visual model corresponds directly to an 
atomic or coupled model from a CD++ simulation. These 
visual models contain visual states and event animations 
which are used to represent the simulation graphically. The 
user can set up the rules, to trigger state changes and event 
animations, within the GUI or in the visualization file, and 
the user can use the GUI to playback the visualization. 
Future work will include loading Maya model files for 
complex objects, and more advanced model positioning 
capabilities. 
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1. INTRODUCTION 
 
We will introduce the features of DEVSView, a 
visualization tool implemented to improve the available 
options for visualizing Discrete Event Systems Specification 
(DEVS) simulations [1] executed in the CD++ toolkit 
environment [2][3]. DEVS provides a framework for the 
construction of discrete event hierarchical models in a 
modular manner. A system modeled with DEVS consists of 
behavioural (called atomic) models and structural (called 
coupled) models. A structural model is composed of several 
atomic or coupled sub-models. The coupled models are 
composed of atomic models connected through input and 
output ports defined in their interfaces. The Cell-DEVS 

formalism extends this behaviour to enable defining cellular 
models to model systems that operate over area of space. 

CD++ is a tool to create simulations that follow the 
DEVS specifications. A new atomic model is generated by 
designing a new class derived from the Atomic class. First, 
the model must be registered using the method 
MainSimulator.registerNewAtomics(). Then, the following 
methods should be overloaded:  

• initFunction: this method is invoked at the 
beginning the simulation. It allows to define initial 
values and to execute initial functions for the 
model. When this method is executed, the value of 
sigma (next scheduled event) is set to infinite and 
the model phase to passive.  

• externalFunction: this method is invoked when an 
external event arrives from an input port.  

• internalFunction: this method is started when the 
value of sigma is zero, since an internal event has 
occurred.  

• outputFunction: this method executes before the 
internal function, allowing to provide outputs for 
the model.  

 
These methods have been built following the formal 
specifications of DEVS models. In addition, several 
primitives have been defined to allow interacting with the 
abstract simulator:  

• holdIn(state, time): it is used to define that the 
model will remain in state during time. When this 
time is consumed (sigma = 0), the model executes 
an internal transition. This function is devoted to 
implement the D (lifetime) function of the DEVS 
formal specification. 

• passivate(): the model enters in passive mode and 
it will be reactivated by an external event.  

• sendOutput(time, port, value): it sends an output 
message through the given port. 

• state(): it returns the present model phase. 
• getParameter(modelName, parameterName): it 

allows to access to the model state variables.  



Coupled models are defined using a specification 
language specially defined with this purpose. This 
specification language also follows the formal definitions 
for DEVS coupled models. Each coupled model is 
composed by a set of definitions. Optionally, configuration 
values for the atomic models can be included. Each set 
indicates the name of the model and its attributes. The [top] 
model defines the coupled model at the top level.  

Four properties must be configured: components (using 
the clause “components”), output ports (clause “out”), input 
ports (clause “in”) and links between models (clause 
“link”). The syntax is: 

• Components: It describes the models composing 
the coupled model. The syntax is: 
model_name@class_name. The name of the model 
is needed because we can use more than one 
instance of the same model. The class’ name can 
reference to either atomic or coupled models. The 
last ones should be defined in the same 
configuration file as a new group. The order used 
when the models are set defines the priority for the 
select function (that is, the execution order under 
simultaneous events). 

• Out: It defines the names of output ports.  
• In:  It defines the names of input ports. 
• Link: it describes the internal and external coupling 

schema. The syntax is: source_port[@model] 
destination_port[@model]. The name of the model 
is optional since if it is not indicated the coupled 
model being defined will be used. 

Cell-DEVS specifications are completed by adding the 
following parameters: 

- type: [cell | flat]. 
- width: INTEGER. 
- height: INTEGER. 
- link: in this case it must use the name of the cell 

space and the corresponding input/output cell 
(Model(x,y)). 

- border: [ WRAPPED | NOWRAPPED ]. 
- delay: [ TRASPORT | INERTIAL ]. 

 - neighbors: Cell-DEVS_name(x1, y1), ..., Cell-
DEVS_name(xn, yn). 

- localTransition: It defines the description for the 
behavior specification used for the local 
computation function. 

- zone: transitionName {range1..rangen}. It associates 
a behavior specification with the cells included into 
the rage defined by the sentence. In this way, 
different ranges can provide different behavior. 

 
Simulations in CD++ produce complicated results, 

and can depict interactions that occur in three 
dimensions. The results of CD++ are recorded in text 
based log files. These results sometimes require 

extensive interpretation and reconstruction to clearly see 
what is occurring during the simulation. 
 

MessageI/0:0:0:00/Root(0) for top(1) 
MessageI/0:0:0:00/top(01) for incdec(2) 
MessageD/0:0:0:00/incdec(02)/... for top(1) 
MessageD/0:0:0:00/top(01)/... for Root(0) 
MessageX/0:0:0:00/Root(0)/op0/1 for top(1) 
MessageX/0:0:0:00/top(01)/op0/1 for incdec(2) 
MessageY/0:0:05:00/incdec(02)/res0/1 for top(1) 
MessageY/0:0:05:00/incdec(02)/res1/0 for top(1) 
MessageY/0:0:05:00/incdec(02)/res2/0 for top(1) 
MessageY/0:0:05:00/incdec(02)/res3/0 for top(1) 
MessageY/0:0:05:00/incdec(02)/res4/0 for top(1) 
MessageD/0:0:0:00/incdec(02)/... for top(1) 
MessageY/0:0:05:00/top(01)/res0/1 for Root(0) 
MessageY/0:0:05:00/top(01)/res1/0 for Root(0) 
MessageY/0:0:05:00/top(01)/res2/0 for Root(0) 
MessageY/0:0:05:00/top(01)/res3/0 for Root(0) 
MessageY/0:0:05:00/top(01)/res4/0 for Root(0) 

Figure 1: DEVS simulation results in CD++. 
 
 The purpose of all DEVS visualization tools is to 

provide the capabilities to accomplish this task. CD++ log 
files contain an event per each line of the log file. Each 
event specifies: source model, destination model, time sent, 
value sent, port over which the value was sent, and event 
type. The tool uses this information and a couple of 
visualization techniques to provide the capability of 
visualizing simulations. 

CD++ was provided with different software tools to 
visualize the results of the simulations: 

• Java Applet VRML viewers [3] 
• Alias Maya 3D Software [4] 

 
These methods have some limitations. The Java applets 

use Java3D libraries and the VRML specification, both 
which are no longer actively developed. The current VRML 
viewers also lack functionality and ease of use. Alias Maya 
is an excellent tool for creating environments and objects to 
visualize simulations; however the installation size, 
workstation requirements, and licensing issues of the Maya 
software prevent it from being the optimal viewer for every 
user (moreover considering that CD++ is an open-source 
tool available for academia [5][6]. 

Although all CD++ simulations conform to the DEVS 
specifications, the results they produce often require 
different interpretation. For example, some simulations 
output values over a continuous range, while others may 
output a sequence of discrete states. Therefore visualizing 
simulation results requires a tool which provides a flexible 
methodology to visualize the various simulations 
appropriately. 

The proposed solution, the DEVSView visualization 
tool, provides several constructs to enable visualizing the 
results of DEVS simulations. The models used to create the 
simulations, are directly translated to visual models. These 
visual models each contain a visual state transition system, 



and an event animation creation system that allow the 
simulation to be visualized appropriately. DEVSView 
provides the graphical user interface to define and playback 
visualizations in three dimensions. 

The DEVSView visualization tool provides basic 
services that enable visualizations:  

1) Graphical user interface based on the OpenGL 
Utility Toolkit [7]: it includes a windowing system 
that provides buttons, text fields, list boxes, 
resizable windows, and other controls necessary for 
a GUI. The rendering of the controls is accelerated 
by OpenGL [8]. 

2) Visual state transition and event animation 
systems: the visual state transition system is a 
collection of visual states and transition rules 
defining what simulation events trigger state 
changes. The event animation system is a 
collection of rules to define which events trigger 
certain animations. 

3) Design and Implementation of an octtree scene 
database to enable efficient view culling: the visual 
models are stored in an octary space partitioning 
tree. This data structure recursively divides the 
scene extents into eight regions, which enables 
efficient algorithms for rendering scenes, object 
selection, and other frequently used scene 
operations. 

The tool was implemented using C++ and OpenGL. 
OpenGL is supported by many platforms, and is actively 
developed and extended to accommodate the advancing 
field of computer graphics. GLUT provides simple 
windowing services, and does not reduce OpenGL rendering 

performance. This approach also produces a small 
installation size, and no licensing issues. 
 
2. VISUALIZATION METHODOLOGY 
Each DEVS simulation result consists of several atomic 
and/or coupled models communicating with each other over 
input/output ports using messages, which represent events in 
the simulated system. The DEVSView tool provides a 
general method of mapping simulation results to a visual 
representation. The method and data used to map the results 
are called a Visualization in the DEVSView tool. A 
Visualization consists of a set of visual models, and a set of 
events that manipulate them. The set of events used in the 
Visualization corresponds directly to the external and output 
events from a CD++ simulation log file. A visualization 
progresses by sending these events to the visualization 
models for processing. Events are sent to both the source 
and destination models for this processing. The visual 
model’s transition rules specify how an event affects the 
visual representation of the model, and the event animation 
creation rules specify whether an event produces certain 
event animations. 

The tool can create visual representations of systems by 
parsing the log files of a CD++ simulation and creating 
visual models for each atomic and coupled model found. 
Once created, the visual models can be customized to follow 
a visual state transition system (described in 2.1) and/or 
produce animations following certain events (described in 
Section 2.2). Alternatively, the visualization models can be 
created by editing the visualization file directly. Figure 1 
shows an example visual model named pinver (Pin 
Verifier), from an ATM simulation, in its idle state. 

 

 
Figure 2: A visual model in its ‘idle’ visual state. This visual state is a cube visual state. The options for selecting the color are provided in 

the Visual state edit panel shown in the bottom left. 



Each visualization model has a: 
• Unique name 
• List of output ports 
• List of input ports 
• Information about location, orientation and size 
• List of visual states 
• List of visual state transition rules 
• List of event animation creation rules 
• Current visual state 

Cell Visualization models extend the regular models by 
adding a three dimensional array of cells. The cells store 
their own current visual state, position, orientation and size; 
but they each use the same visual states, visual state 
transition rules, and event animation rules. 

Both the visual state transition system and the event 
animation system described in 2.1 and 2.2 operate on the 
events passed to visual models as the Visualization 
progresses through simulation time. When the Visualization 
reaches the time an event occurred during the simulation, it 
is processed by both models involved in the exchange. For 
example, an event sent from an ATM model to a Customer 
model will be processed at the ATM visual model and the 
Customer visual model. 

Each event contains the following information: 
• The source visual model name 
• The destination visual model name 
• The time the event occurs 
• The port the value is sent through 
• The value sent 

The source and destination visual models use this 
information to process the event. Typically, this involves 
comparing the port and value with behavioral rules such as 
transition rules or event animation rules. These rules use the 
concept of a DEVSView Value rule to operate. A Value rule 
is a procedure which accepts a real value, typically the event 
value, and returns a Boolean indicating whether the value 
passes the rule or whether it fails. The DEVSView tool 
currently provides a couple basic value rule types to enable 
guard conditions on transition rules and conditions for 
creating event animations. 

These value rule types are: 
1) All Values:  this rule returns true for all values 

passed to it. 
2) Equals Value: this rule passes if the value passed to 

it is equal to a predetermined constant. 
3) Range of Values:  this rule passes if the value 

passed to it is greater than the lower pre-
determined constant and less than the higher 
predetermined constant. 

The pre-determined constants are entered using the user 
interface. Alternatively, the constants can be edited in the 
visualization file directly. 
 

2.1 Visual State Transition System 
The visual state transition system of the DEVSView tool 
assigns a simple state machine to each visualization model. 
The state machine consists of visual states, and transitions 
between these states, which are triggered by events in the 
simulation. The current state defines the visual appearance 
of the model in three dimensions. 

All Visual States have the following properties: 
• Unique Id (per visual model) 
• Label 
• Type 

Each visual state also implements entry and exit 
methods to setup their visual appearance according to 
various inputs. These inputs can be obtained from the event 
triggering the transition or from other variables internal to 
the visual model. The visual model specifies a position, 
scaling and orientation of the model, which a visual state 
may choose to use or ignore when rendering. A visual state 
edit panel provides the services for editing the visual state of 
the model. Depending on the visual state type, the properties 
provided for editing may change. Figure 1 showed the cube 
visual state with the color option it provides. The other 
components of the visual state system are the transition rules 
from state to state. 

Each of these transition rules has several properties: 
• Port name and direction ( Output or Input ) 
• Value rule 
• Next state 
• Unique Id ( per visual model ) 

When an event is processed by the visual model, each of 
the transition rules for the current state are evaluated to 
check if any transitions should be invoked. As well as 
transition rules for the current state, a separate list of 
transition rules, which apply for all states, are checked. 
These special types of transitions are useful for reducing the 
number of transitions required for certain state machines. A 
transition rule is invoked when the transition rule port name 
and direction match the event port name and direction, and 
the value rule passes given the event value as input. When a 
transition rule is invoked, the visual state of the model 
changes to the next state specified in the rule. In addition, 
the state change is recorded in the visual model history, so 
the transition can be reversed when the playback is reversed. 
 
2.2 Event animation system 
The event animation system allows visual models to create 
animations which visualize the processing of certain events. 
Event animations provide facilities to visualize the reasons 
why visual state transitions occur. Consider a secure login 
visual model which accepts or rejects a password, and then 
passes this information to a server visual model. Observing 
the visual state of the server visual model may show the 
server repeatedly attempting to validate a password with the 
secure login model but it will not show why the server is 



doing so. A text animation which displays ‘password 
rejected’ at the secure login visual model would clearly 
indicate the problem. Without such an animation it is 
difficult to determine why the server is repeating the login 
process. It could be timing out and resending, it could be 
validating several passwords sequentially, etc. Event 
animations solve this problem by creating animations when 
certain events occur. Event animations can be any sort of 
visual effect, and are triggered to occur when specific events 
arrive at a visual model. The only event animation currently 
provided by the tool is the text animation. A text animation 
is a three dimensional piece of text which travels from one 
location to another. 

Each visual model contains a list of event animation 
rules which contain the following information: 

• Port name and direction (Output or Input) 
• Value rule 
• Source state 
• Animation length 
• Unique Id ( per visual model ) 

When an event is processed by the visual model, the 
event animation rules are evaluated to check if any event 
animations should be created. An animation is created if the 
current visual state equals the rule source state, the rule port 
name and direction match the event port name and direction, 
and the value rule passes given the event value as input. 
Event animation rules create animations and specify their 
properties based on the event value and other variables 
internal to the visual model. After an animation is created, it 
is guaranteed to last the amount of time specified in the 
event animation rule. 
 
2.3 Octary Spatial Partitioning Data Structure 
Each visual model in the visualization has a current visual 
state and this visual state defines the graphical 
representation of the visual model. The octtree data structure 
provides a data structure for organizing the graphical 
representations by their location in space. This data structure 
recursively divides the scene into 8 regions of space and 
assigns scene nodes into the smallest region that contains 
them completely. Each region is represented by a node in 
the octtree. The initial region and one subdivision are shown 
in Figure 3. 

The reason for using an octtree data structure is that it 
provides efficient view culling and other common scene 
operations . Complex scenes require significant rendering 
time and may contain many different objects. Determining 
what objects to draw is important, since it is inefficient to 
draw every object every frame. View culling is the process 
of calculating which objects are in view and therefore 
require rendering. The octtree data structure can optimize 
the process of determining what is in view. The process 
consists of traversing the octtree, and for each node (region) 
determining whether the node is in view. If the node is out 

of view, the entire tree extending from that node can be 
culled, which potentially culls many objects with a single 
node visibility check. Conversely if the node is completely 
in view, the entire tree extending from that node is visible 
and does not require a visibility check. 
 

 
Figure 3: Octtree region division 

 
This view culling algorithm is shown in the following 

pseudo code: 
 
Let ON = the current octtree node 
Let ParentON = the parent octtree node of ON 
Let VF = the view frustum (i.e. the field of view) (See [4]) 
If ParentON intersects VF { 
 Calculate ON visibility 
 If ON is not visible { 
  Stop traversing ON 
 } 
} 
Else ParentON is completely visible { 
 ON is therefore completely visible  
} 
 
If ON is completely visible or intersects VF { 
 Draw each scene node contained in ON 
} 
If ON has children octtree nodes { 

Draw each child octtree node by repeating this 
pseudocode with ParentON = current ON, and new 
ON = child octtree node. 

} 
 
The octtree also provides the capability for efficient 

collision detection (Important for object selection), and 
distance sorting (Important for transparency). Object 
selection and transparency are features which could be 
useful for future development but are not currently being 
used. 

The DEVSView implementation of the octtree has the 
capability of assigning graphical objects to several octtree 
regions to better define the outline of the object. Consider a 



small object located at the centre of the root region. This 
object will only fit inside the root region so it must be 
assigned to that region. Therefore the small object will only 
be culled if the root is culled, despite the fact that it may 
rarely be in view. If the small object were added to the 8 
smallest regions that contain it completely, then that object 
will be culled much more efficiently by the Octtree. Figure 
4 shows the principle in two dimensions. 

 

 
Figure 4: a) the red circle is added to the smallest region that 

entirely fits it. The field of view does not cull the region so the 
circle is drawn. b) the red circle is added to the 4 smallest regions 
that contain it completely. The field of view culls the regions and 

the circle is not drawn. 
 
3. THE DEVS VISUALIZATION TOOL 

The following sections describe a couple of simulations 
visualized using the DEVSView tool. 
  
3.1 An ATM Simulation 
The ATM simulation consists of several atomic models 
interacting with each other to approximate the services 
provided by an ATM machine. The visual models were 
extracted from the simulation log file and the visual state 
machines were defined using the DEVSView user interface. 
Figure 4 shows the visual models, and the visual state 
machine interface for the cardreader model. 

The ATM simulation also provides a text animation 
which displays “Card Inserted” whenever a bank card is 
inserted. This text animation was added manually to the 
visualization file. The text animation can be seen in Figure 
5, which shows a frame from the visualization right after a 
customer arrives at the ATM. 

The visual model Root and top are always present in 
DEVS simulations; however they rarely need a visual state. 
The ATM has other visual models: auth (the authorization 
component), balancever (in charge of verifying customer’s 
balance), cardreader (to read the data from customer’s bank 
cards), cashdispenser (to deliver cash), pinver (the 
application to verify the correctness of pins typed), and 
userface  (the user’s interface). The visual states and 
transition rules for the cardreader model are shown in the 
model edit panel. The cardreader model can be in four 
states: idle, card in, card read, ejecting, for each of the 

states related to the card use. There are four transition rules 
which travel from idle to card in, card in to card read, card 
read to ejecting, and from ejecting back to card in. 

 

 
Figure 5: ATM visual models and the interface to edit the visual 

models.  
 

Figure 6 shows text animation for the ATM model, 
which reads Card Inserted, just above the cardreader 
model. Since the card was inserted, the cardreader model 
transitions to the card in state and the top model transitions 
to the customer in system state. 
 

 
Figure 6: A frame in the ATM visualization after a customer 

arrives.  



3.2 A Bouncing Ball Simulation 
This model represents a bouncing ball within a closed area. 
Each cell is represented by 5 possible states: 0, an empty 
space; 1, the object moving SW; 2, the object moving SW; 
3, the object moving NE; 4, the object moving NW. The 
following figure presents the model representation in CD++ 
 
[bouncing] 
type : cell width : 20 height : 15 
delay : transport border : nowrapped 
neighbors : (-1,-1) (-1,1)(0,0)(1,-1) (1,1) 
localtransition : move 
zone : ULcorner{ (0,0) } 
zone : URcorner { (0,19) } 
zone : BLcorner { (14,0) } 
zone : BRcorner { (14,19) } 
... 
 
[move] 
rule : 1 100 { (-1,-1) = 1 } 
rule : 2 100 { (1,-1) = 2 } 
rule : 3 100 { (-1,1) = 3 } 
rule : 4 100 { (1,1) = 4 } 
rule : 0 100 { t } 
... 
 
[ULcorner] 
rule : 1 100 { (1,1) = 4 } 
rule : 0 100 { t } 
 
[URcorner] 
rule : 3 100 { (1,-1) = 2 } 
rule : 0 100 { t } 
 
[BLcorner] 
rule : 2 100 { (-1,1) = 3 } 
rule : 0 100 { t } 
 
[esquinaDR-rule] 
rule : 4 100 { (-1,-1) = 1 } 
rule : 0 100 { t } 

Figure 7: Cell-DEVS definition for the bouncing ball 
simulation. 

 
The simulation in Figure 8 shows three balls contained 

in a 2d grid which bounce of the walls. The figure 6 shows a 
composite of the visualization during playback. The image 
shows the motion of the balls in the 2d grid. 

 

 
Figure 8: A composite of several frames in the bouncing 

ball simulation. 
 
4. CONCLUSION 
The DEVSView tool provides facilities for creating 
visualizations of CD++ simulations, which are based on the 
DEVS formalism. The tool reads CD++ simulation log files 
to create the visual models needed to visualize the 
simulation. The visual models have visual state transition 
systems which define how the simulation models are 
graphically represented during visualization. The visual 
models also have event animation rules to create animations 
when certain events occur. These constructs provide the 
methodology required to visualize DEVS or Cell-DEVS 
models. The tool provides a user interface, and file format to 
create these constructs, and several visualizations have been 
successfully created with the DEVSView tool. 

There are several important features that could 
potentially increase the utility of the DEVSView tool. The 
following is a list of several improvements to the tool that 
may prove useful. 

• An interface to scripting languages for complicated 
Value rules, Entry methods, Exit methods, and 
other state machine operations. 

• Maya 3D model loading for complex graphical 
objects 

• Environment detail objects. Terrains, Backdrops, 
etc 

• Cell model alignment and per cell position 
manipulation. With this feature, one dimensional 
cell models could be aligned to lines, 2D cell 
models could be aligned to planes, and 3D cell 
models could be aligned to containers. 

• Multiple camera views and point and click object 
selection. 

• Simulation statistics display 
• Graphical visual state machine editing 



• Interfacing to a running CD++ simulation for 
interactive simulations 

The visualization facilities of the DEVSView tool 
provide the beginnings of a powerful tool. 
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