
A Model-Driven Technique for Development of
Embedded Systems Based on the DEVS
formalism

Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Department of Systems and Computer Engineering. Carleton University. 4456
Mackenzie Building. 1125 Colonel By Drive. Ottawa, ON. K1S 5B6. CANADA.
gwainer@sce.carleton.ca

Summary. The development of embedded systems with real-time constraints has
received the thorough study of the software engineering community in the last 20
years. Despite these efforts, most existing methods are still hard to scale up for
large systems, or they require expensive testing efforts. We propose a model-driven
method to develop this kind of applications based on DEVS, a formal technique orig-
inally created for modeling and simulation of discrete event systems. This approach
combines the advantages of a simulation-based approach with the rigor of a formal
methodology. We will explain how to use this framework to incrementally develop
embedded applications, and to seamlessly integrate simulation models with hard-
ware components. The use of this methodology shortens the development cycle and
reduces its cost, improving quality and reliability of the final product. Our approach
does not impose any order in the deployment of the actual hardware components,
providing flexibility to the overall process. The use of DEVS improves reliability (in
terms of logical correctness and timing), enables model reuse, and permits reducing
development and testing times for the overall process.

1 Introduction

Embedded real-time software construction has usually posed interesting chal-
lenges due to the complexity of the tasks executed. Most methods are either
hard to scale up for large systems, or require a difficult testing effort with
no guarantee for bug-free software products. Formal methods have showed
promising results; nevertheless, they are difficult to apply when the complex-
ity of the system under development scales up. Instead, systems engineers have
often relied on the use of modeling and simulation (M&S) techniques in order
to make system development tasks manageable. Construction of system mod-
els and their analysis through simulation reduces both end costs and risks,
while enhancing system capabilities and improving the quality of the final
products. M&S let users experiment with “virtual” systems, allowing them to

2 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

explore changes, and test dynamic conditions in a risk-free environment. This
is a useful approach, moreover considering that testing under actual operating
conditions may be impractical and in some cases impossible.

M&S methodologies and tools have provided means for cost-effective va-
lidity analysis for real-time embedded systems [SER00, LDNA03]. M&S-based
testing is a popular technique, which is widely used for the early stages of a
project; however, when the development tasks switch towards the target envi-
ronment, the early models and simulation artifacts are often abandoned. We
propose a Model-driven framework to develop embedded systems based on
the DEVS (Discrete Event systems Specification) formalism [ZKP00]. DEVS
provides a formal foundation to M&S that proved to be successful in different
complex systems. This approach combines the advantages of a simulation-
based approach with the rigor of a formal methodology. Another advantage of
using DEVS is that different existing techniques (Bond Graphs, Cellular Au-
tomata, Partial Differential Equations, Queuing models, etc.) have been suc-
cessfully transformed into DEVS models. DEVS theory has evolved since the
early 1970’s, providing a generic framework to model discrete-event systems.
Many existing techniques that have been widely used for the development of
embedded and Real-Time systems, has been also mapped into DEVS models.
Many state-based approaches, such as Verilog [KKK01], VHDL [MW05], Petri
Nets [JW02] and Timed Petri Nets, Timed Automata [GPC03], State Charts
[BV03] and Finite State Machines [ZW03] have their DEVS equivalents. This
permits sharing information at the level of the model, and different submod-
els can be specified using different techniques, while keeping independence at
the level of the execution engine. In this way, we count with a mathematical
framework that can be used to describe different modeling techniques and
prove properties about general aspects of the system, while having a general
method for sharing model information using different approaches, and being
able to apply the right technique to each part of the application development
process.

CD++ [Wai02] is a M&S software that implements DEVS theory with ex-
tensions to support real-time model execution [GW02a]. CD++ was used as
the base for our development, building on previous research focused on real-
time applications with hardware-in-the-loop [LPW03]. We will discuss how to
use this framework to incrementally develop embedded applications, and to
seamlessly integrate simulation models with hardware components. Initially,
we develop models entirely in CD++, and we replace them with hardware
surrogates at later stages of the process. Our approach does not impose any
order in the deployment of the actual hardware components, providing flexi-
bility to the overall process. The use of DEVS improves reliability (in terms
of logical correctness and timing), enables model reuse, and permits reducing
development and testing times for the overall process. Consequently, the de-
velopment cycle is shortened, its cost reduced, and quality and reliability of
the final product is improved.

Model Driven Development of Embedded Systems 3

2 Background

The DEVS formalism [ZKP00] is a M&S framework based on dynamic sys-
tems theory. DEVS is an increasingly accepted framework for understanding
and supporting the activities of modeling and simulation. DEVS is a sound
formal framework based on generic dynamic systems, including well defined
coupling of components, hierarchical, modular construction, discrete event ap-
proximation of continuous systems and support for repository reuse. A real
system modeled with DEVS is described as a composite of submodels, each
of them being behavioral (atomic) or structural (coupled). A DEVS atomic
model is informally described in Figure 1.

Fig. 1. Informal description of an atomic model.

A DEVS atomic model is formally described as:

M = < X, S, Y, δint, δext, λ, ta >

Each atomic model is seen as having an interface consisting of input (X)
and output (Y) ports. Every state (S) in the model is associated with a time
advance (ta) function, which determines the duration of the state. The model
will be in the state s during ta time units. The time advance is a function in
the domain of the Real positive numbers (including zero and infinity). Once
this time is consumed, an internal transition is triggered. This involves two
actions: first, the model execution results are spread through the model’s out-
put ports by activating the output function (λ). Then, the internal transition
function (δint) is fired, producing a state change. Input external events are
collected in the input ports, which have room for only one input, and are
cleared after immediately after being processed. The input ports will only
receive input events for the current event time, and the external transition
function (δext) specifies how to react to those inputs.

A DEVS coupled model is composed by several atomic or coupled sub-
models, as seen in Figure 2.

4 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Fig. 2. Informal description of a coupled model.

Coupled models are defined as a set of basic components (atomic or cou-
pled), which are interconnected through the model’s interfaces. The model’s
coupling defines how to convert the outputs of a model into inputs for the
others, and to inputs/outputs to the exterior of the model. A DEVS coupled
model is formally defined by:

CM = < X, Y, D, {M d | d ∈ D}, EIC, EOC, IC, select >

A coupled model groups several DEVS into a compound model that can
be regarded, due to the closure property, as a new DEVS model. A coupled
model is composed by a set (D) of basic models (i.e., atomic or coupled) inter-
connected through their interfaces (X,Y). When external events are received,
the coupled model has to redirect the inputs to one or more components.
Similarly, when a component produces an output, it may have to map it as
an input to another component, or as an output of the coupled model itself.
Mapping between ports is defined by the EIC, EOC and IC sets, which define
how to convert the outputs of a model into inputs for others. EIC defines how
external inputs are routed to the subcomponents; EOC defines how outputs of
internal subcomponents are routed outside the coupled model, and IC takes
care of the internal couplings. select is the tiebreaker function, which defines
an order over the components.

3 The CD++ Toolkit

CD++ [Wai02] is a modeling tool that was defined using the specifications
presented in the previous section, and the basic execution techniques intro-
duced in [ZKP00]. The toolkit includes facilities to build DEVS models. DEVS
Atomic models can be programmed and incorporated onto a class hierarchy
programmed in C++. Coupled models can be defined using a built-in speci-
fication language. CD++ is built as a class hierarchy of models related with
processing entities. DEVS Atomic models can be programmed and incorpo-
rated onto the Model basic class hierarchy using C++. A new atomic model is

Model Driven Development of Embedded Systems 5

created as a new class that inherits from the Atomic base class. Atomic is an
abstract class that declares a model’s API and defines some service functions
the user can use to write the model.

Defining models in C++ provides the users with flexibility to define the
model’s behavior. Nevertheless, a non-experienced user can have difficulties
in defining models using this approach. Graphical specification also improves
the interaction with stakeholders and users during system specification, while
allowing the modeler to think about the problem in a more abstract way.
Therefore, we have used an extended graphical notation to allow defining
atomic model’s behavior [WCD01, CDW04].

Each model is defined by a unique identifier, and states are represented by
vertices (bubbles) in a directed graph. Each bubble includes an identifier and
a state lifetime.

Fig. 3. An atomic model defined as a DEVS graph.

Figure 3 shows a simple atomic model defined in CD++ using this no-
tation. The model includes three states: A, B and C. Dotted lines represent
internal transitions, while full lines define external transitions. In this case,
if the model is in state A and it receives an external event through the rep
input port (shown in the left panel), the any function is evaluated. If the re-
sult of this evaluation is 1, the model changes to the state B. While in B, the
model waits its lifetime to be consumed. It then executes the output function,

6 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

which will send the value of the intermediate state variable counter through
the output port ok. After that, the internal transition function executes, and
the model changes to the state C.

Each of the elements in the graphical notation is converted into an ana-
lytical representation. This notation can be used both to check validity of the
model, and to run these models in CD++ [WCD01].

[modelname] defines the atomic or coupled model name, which will be used
subsequently. Model states are declared as: state: state1 state2 ...

States are associated to a time advance value. This attribute are initialized
with the name of the object and the list of valid attributes for that object, as
follows: state1 : time-expression

One of the states must be declared as the initial state of the model: initial:
statename

Then, I/O ports are declared either as follows:
in : inport1 inport2 ...
out : outport1 outport2 ...
Temporary variables are declared by:
var : var1 var2 var3 ...
In addition, they can be optionally initialized as:.
var1 : value1
var2 : value2
The internal transitions use the following syntax:
int : source destination [outport!value]* ({ (action;)* })?
External transitions are defined using the following notation:
ext : source destination EXPRESSION ({ (action;)* })?
Once an atomic model is defined, it can be combined with others into a

multicomponent model using a specification language specially defined with
this purpose. The user must define the coupling information, and CD++ will
generate an analytical specification that can be used for execution. The cou-
pled model at the higher level is always named [top]. Four properties must be
configured: components, output ports, input ports and links between models.
The following syntax is used:

Components: name1[@atomicClass1] name2 ...
Out: portname1 portname2 ...

enumerates the model’s output ports (optional clause).
In: portname1 portname2 ...

enumerates the input ports (optional clause).
Link: source[@model] destination[@model]

describes the internal and external coupling scheme. If the name of the model
is not included, the default will be the coupled model currently being defined.

Figure 4 shows a sample coupled model describing an Ethernet switch
presented in [WGM05].

The top model here is composed of three coupled models (server1, server2,
and client) and one atomic component (eth, an instance of EthernetSwitch).
client is composed by two atomic components (clientNet and hsclient) and one

Model Driven Development of Embedded Systems 7

components: server1 server2 client eth@EthernetSwitch

in: eth_enable eth_disable

in: hss1_start hss1_stop hss2_start hss2_stop

...

out: packets status

link: server_out@serv1 in1@eth

link: out1@eth server_in@serv1

...

[eth]

delay: 00:00:01:000

node_1: 1 node_2: 2 node_3: 3

[client]

components: WSclient clientNet@Network

components: hsclient@HSClient

in: hs_start hs_stop client_in

out: client_out

link: hs_start start@hsclient

...

Fig. 4. Definition of the Ethernet DEVS coupled model in CD++.

coupled component (WSclient). The input and output ports define the model’s
interface, and the links between components define the model’s coupling. The
input ports in the top model (e.g., eth enable, eth disable, hss1 start) are used
to activate and deactivate the Ethernet switch, server nodes, and client. The
output ports (e.g., status, packets) are used to inform the progress in the
system.

Models developed in CD++ are independent from the engine in charge of
driving their execution. At present, CD++ is able to execute models in single
processor, parallel or real-time mode. The execution engine uses model’s spec-
ifications, and it builds one object to control each component in the model
hierarchy. These objects communicate using message passing, and they are
called processors. There are different types of processors according to the
activity they carry out: simulators are specialized in atomic models (exe-
cuting its associated functions), coordinators manage coupled models, and
the root coordinator controls global execution aspects (time, start/stop,
interfacing with the environment, etc.).

RT-CD++ [GW02a] uses the real-time clock to trigger the processing of
discrete events in the system. Thus, the same models used for simulation can
be later used for execution in real-time. Figure 5 outlines the processor’s hi-
erarchy generated by RT-CD++ to execute the model. The root coordinator
created at the top level manages the interaction with the experimental frame
that tests the model receiving inputs (via eth enable, eth disable, hss1 start,
etc.), and returns outputs (via status and packets). The root coordinator ex-
changes messages with its children. Coordinators are created to handle the

8 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Fig. 5. RT-CD++ execution scheme.

coupled models server1, server2, client, etc. Simulators are created to handle
the components eth (which inherits from the atomic EthernetSwitch), client-
Net (from atomic Network), hsclient (from atomic HSClient), drvserv1 (from
atomic Driver), etc.

Model execution is triggered by the real-time clock using the time of the
external events. When the root coordinator receives a new event, it forwards
the message to the corresponding processor. Timing constraints (deadlines)
can be associated to each external event. When the processing of an event
is completed, the root coordinator checks if the deadline has been met. In
this way, we can obtain performance metrics (number of missed deadlines,
worst-case response time).

We thoroughly tested the execution performance of RT-CD++ [GW02b],
using DEVStone, a synthetic benchmark we created to study the performance
of DEVS-based simulators [GW05]. We conducted performance analysis us-
ing DEVStone to study the overhead of the real-time engine in CD++. These
studies showed that models with more than 50 components execute with an
overhead below 2%. For larger models (over 200 components), the overhead
incurred by the tool is below 3%, which is reasonable considering the com-
plexity of the tools.

Model Driven Development of Embedded Systems 9

4 Incremental development of a DEVS simulation model

In this section, we show how to develop incrementally a model based on sim-
ple components. The application executes in a simulated environment (i.e.,
all of the components remain executing in a virtual world). We have built
a simulation model integrating components of a Radar system [MW04]. The
first stage in the definition of this example consisted on building a model to
examine the synchronization effects between radar receivers and transmitters.
When using a scanning radar receiver, the interception of radar signals can be
severely limited if the scan rate of the receiver becomes synchronized with a
radar transmitter. Every effort must be made to generate a receiver scan pat-
tern that limits this effect, as it seriously degrades the Probability of Intercept
(POI) for the receiver.

Synchronization occurs when a particular transmitter sends out radar
pulses periodically, with the receiver scheduled to scan periodically in such
a manner that the receiver is never “listening” when the transmitter is trans-
mitting. This can lead to the transmitter not being detected by the receiver,
even though it may be transmitting. The sequential operation of the receiver
that defines the tuned-frequency, listening-time, azimuth, and beam width are
specified by a “scan pattern”. Receivers can communicate with each other,
with each receiver notifying the other receivers about radar transmitters that
have been detected. Each receiver is connected to a simple communications
bus, and it maintains a tracking table containing all the information about the
currently known transmitters. In order to analyze the behavior or this system,
we built a DEVS model, whose structure is the one presented in Figure 6.

Fig. 6. Structure of the Radar Tx/Rx model.

The first step was to identify and define each one of the model components.
Once identified, a DEVS atomic model was built for each subcomponent.
Following, we exemplify the definition of one of these models by showing the

10 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Tracking Table atomic model. The Tracking Table model is responsible for
maintaining the list of transmitters that are “known” to the local receiver.

Tracking Table = < S, X, Y, δint, δext, ta, λ >

S = { Receive Update From Bus, Wait, New Signal Detected,
Send Update To Bus, Notify New Freq }

X = { signal props, bus receive freq, bus receive id }
Y = { bus send freq, bus send id, new freq }
δint = { δint(Receive Update From Bus) = Notify New Freq,
δint(Notify New Freq) = Wait,
δint(New Signal Detected) = Send Update To Bus,
δint(Send Update To Bus) = Wait }
δext= { δext(Wait, signal props) = New Signal Detected,
δext(Wait,bus receive freq) = Receive Update From Bus }
ta = { ta(Receive Update From Bus) = UPDATE TIME,
ta(New Signal Detected) = PROCESS TIME,
ta(Send Update To Bus) = BUS TIME,
ta(Notify New Freq) = NOTIFY TIME }
λ(S) = {λ(New Signal Detected) = (bus send freq,bus send id),
λ(Receive Update From Bus) = new freq }
This model evolves through different states (S): Receive an update from

the bus, wait, detection of a new signal, transmission of an update to the
bus, or notification of a new frequency. The model changes from one state
to the other by executing the transition functions. As seen in the external
transition (δext), from a wait state, the tracking table receives information
from either the local receiver (signal props, one of the external input events)
or the communication bus (receive freq). If the local receiver detects a new
signal, the signal is appended to the local tracking table, and an update is
sent over the bus for use by any remote tracking tables. If the local tracking
table receives an update from the bus, it appends the information to the local
tracking table and notifies the local receiver. The Tracking Table then returns
to a wait state.

Each of the models were built using CD++ and thoroughly tested, and
they performed as described in their conceptual model specifications [MW04].
A problem with the specification of the network receiver was revealed while
testing (the tracing of the signals that are received by the network receivers
became very difficult when numerous signals are transmitted, and the receivers
start to share information).

The use of the formal specification defining the atomic and coupled model
behavior was very useful in debugging the models when they were imple-
mented. The iterative procedure of updating the formal specification, then
updating the implementation was quite efficient. Following these iterations
resulted in the models matching the specifications. Once this stage was com-
pleted, a Coupled Model was built, integrating all of the systems’ components.
The description of this model can be found in Figure 7.

Model Driven Development of Embedded Systems 11

[top]

components: tr1@Transmitter tr2@Transmitter

tr3@Transmitter netrx1 netrx2

out: notify1 notify2 notify3

Link: pulse_out@tr1 ext_signal@netrx1

Link: pulse_out@tr1 ext_signal@netrx2

...

[netrx1]

components: tt1@Tracking_Table rx1@Scanning_Receiver

in: ext_signal brf brid

out: notify bs_id bs_freq

Link: ext_signal ext_signal@rx1

Link: brf bus_receive_freq@tt1

Link: brid bus_receive_id@tt1

...

Link: bus_send_freq@tt1 bs_freq

...

Fig. 7. Coupled model definition: Radar Tx/Rx.

The various atomic models contained in the previously defined coupled
model were tested using different scenarios. Table 1 shows the result of the
testing scenario for the network with a transmitter. In this case, the transmit-
ter sends out pulses at 24kHz, Pulse width of 5 ms, Pulse interval of 40 ms.
Bus Message at t=20 ms. Receiver listening between 22kHz and 25kHz. As
we can see in the figure, the receiver gets a signal from the transmitter every
40 ms, and a bus message at t=20ms. The bus message is ignored because it
is not within the listening range of the receiver (19 kHz and the receiver is
listening from 22 to 25 kHz). Note that the model does not queue received
pulses or bus messages. For each pulse received by the local transmitter, a bus
message is generated after a delay of 15 ms. The bus message stays active for
40ms.

During this phase, we were able to detect a problem with the specification
of the network receiver: the signal information received by the bus was sent
to the scanning receiver, which treated it like an external signal (thus causing
a second bus transmission). The specification was corrected so that signal
information is not re-sent over the bus.

Another component of the application describes the behavior of a simple
vehicle, which seeks a target. As showed in Figure 8, the seeker acts to steer
a vehicle towards a specified position in global space. This behavior adjusts
the vehicle so that its velocity is radially aligned towards the target.

Using the hierarchy of motion behaviors defined in [Rey03], the “Action
Selection” of the seek behavior is specified by dictating the destination loca-
tion.

The model components specify the Desired Velocity of the vehicle. The
model rules detail the discrete motion that was implemented to simulate the

12 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Table 1. Testing scenario: network with transmitter.

Events Outputs

00:00:20 brf 19000
00:00:20 brid 3

00:00:001 notify 1
00:00:016 bs id 1
00:00:016 bs freq 24000
00:00:026 bs id 0
00:00:026 bs freq 0
00:00:041 notify 0
00:00:081 notify 1
00:00:096 bs id 1
00:00:096 bs freq 24000
00:00:106 bs id 0
00:00:106 bs freq 0
00:00:121 notify 0

Fig. 8. Informal behavior of the Seek model.

effect of a desired velocity on a vehicle. Multiple combinations of actual and
desired velocity could result in the same destination for a vehicle. The model
was completely implemented in CD++ following the previous rule specifica-
tions, and it and first tested using a single vehicle, with different initial ve-
locities and different desired velocities. After all the rules were implemented,
all possible velocities were tested in all possible desired velocities. Following
that, collisions were tested using multiple vehicles.

Figure 9 displays the two state variables employed in the definition of the
model. The left-hand plane (mostly white) displays the current location and
velocity of the three vehicles. The right-hand plane describes the “desired
velocity vector field” of the vehicles. The “desired location” for all three vehi-
cles is the center of the plane, and the “desired velocity vectors” steer them to
that point. As we can see, the three vehicles enter from the top-right corner
of the plane, and they stop when they cannot move any closer to the “desired
location”.

The final stage of development consisted in showing how to provide inter-
operation of these models by allowing interaction between the components.
This interaction is done at the level of the model, independently of the ex-
ecution engine chosen (i.e., simulated, real-time or parallel), as the models

Model Driven Development of Embedded Systems 13

Fig. 9. Three vehicles seeking the desired location.

only communicate at the level of their interfaces. Let us consider, for in-
stance, the existence of a new model, Radar. The radar model is prepared
to scan a cell space according to a given frequency. Figure 10 shows how to
integrate this new model with the two other models defined earlier in this
section. These three models were built independently, but they can be easily
integrated thanks to the definition of DEVS interfaces.

Fig. 10. Multimodel integration.

The Transmitter/Receiver model is used to start radar scanning activ-
ities. Upon activation, the Radar will scan the field defined by the Seeker

14 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

model defined earlier, and will generate two outputs: a reception signal for
the Transmitter/Receiver, and a number of Operator Messages according to
the values received in the field. The Seeker model advances independently of
the execution of the radar, because these models are built as discrete-event
specifications, and each subcomponent progresses according its own internal
time base. Our top model is now integrated by the three original components.
The model produces outputs that can be used by the Radar model. We have
defined a zone in which the cells will generate outputs (by using the out-rule
definition). Finally, the Tx-Rx model, defined earlier in Figure 6, includes two
new input/output ports in order to provide interaction with the Radar model.
This model is not defined in the file, as it has been defined as a DEVS atomic
models, and we just need to define the coupling between this model and the
remaining components.

5 Hybrid Applications: an automated factory model

We will now show how to incrementally build an application with components
in hardware and simulated modules. The model here represents an automated
manufacturing system (AMS) for a factory floor. The AMS is composed by
dedicated stations that perform tasks on products being assembled, and con-
veyor belts transporting the products to/from the workstations. The produc-
tion cycle is organized by a scheduler, which will define the actions to be
carried out according to the type of piece being assembled. The scheduler
determines which station (e.g., painting, baking, storage) should receive and
work on the product.

Fig. 11. Layout of the AMS.

Model Driven Development of Embedded Systems 15

Figure 11 shows the physical layout of the AMS, which consists of four
stations and two conveyor belts to transport the products (A and B). We
started by modeling and simulating the entire system in CD++ based on the
layout presented in this figure. The system, shown in Figure 12, is composed
by two coupled (conveyors) and three atomic components (a controller, a
scheduler, and a display). Each conveyor is formed by two atomic models (an
engine and a sensor controller).

Fig. 12. Scheme of the AMS (entirely in CD++).

The control unit receives events from the environment, and forwards them
to the remaining components of the system, using the previously defined cou-
pling scheme. The display controller handles the digital display (showing infor-
mation about the pieces in each conveyor belt), based on the signals received
from the controller unit. The controller receives input signals from sensors
and the scheduler, and determines where to dispatch each piece activating the
engines of the conveyor belts. The scheduler stores information about which
stations have to work on a specific product.

Most of the logic of the Controller Unit is located in the external transi-
tion function, which handles the incoming events. Events received via ports
station ij represent that the product in conveyor belt j has to be sent to
station i. Events received on sensor ij indicate that the product in conveyor
j has reached station i, thus, we can schedule the next internal transition
function to activate/deactivate the engine of the corresponding conveyor (via

16 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

direction j and activate j). It can also signal the display controller when the
conveyor belt starts moving or a product reaches a new station (via direc-
tion display j and station display j). Users can define the activation time for
the engine, customizing its timing behavior.

Different experimental frames were applied to this model, allowing the
analysis of different scenarios. We started by analyzing the behavior of each
submodel independently (using the specifications for their physical counter-
parts) and then, we conducted integration tests. Initially, we run several ex-
periments using the simulation engine. This permitted to identify some logi-
cal errors, which were fixed at this stage. Later, we repeated the tests under
the real-time execution engine. This permitted to detect problems with the
model’s timing constraints in runtime. Once fixed, these models were ready
to become the actual software components of the application, running in real-
time. Figure 13 shows a sample event file for one of such experiments in the
real-time environment.

Time Deadline In-port Out-Port Value

00:09:100 00:09:300 sta_3A activate_A 1

00:12:500 00:12:700 sensor_2A sta_disp_A 1

00:17:500 00:17:700 sensor_3A sta_disp_A 1

00:35:100 00:35:300 sta_4B activate_B 1

...

Fig. 13. Experimental frame for the AMS Controller Unit

Initially, a piece is placed in station 1 of each conveyor belt and there are
no pending events. The first event represents an activity scheduled for product
A in station 3. The event occurs at time 00:09:100, and the simulator receives
it via input port sta 3A. As a result, we expect to turn on the conveyor belt
in less than 200 ms to transport the product. The second event in the list
represents the activation of sensor 2A (i.e., the product in belt A has reached
the second station). In this case, we expect an output via port sta disp A
before 00:12:700, informing the arrival of the product to that station. The
value of 1 represents activation of sensors and scheduling of tasks in stations.
Figure 14 shows the outputs generated by the real-time simulator for this
experiment.

As we can see, the deadlines were met in every case. For example, the
first event met its deadline, activating the engine of conveyor belt A at time
00:09:110 in the correct direction (the value 1 via port direction A indicates
that the belt will move forward). The third output is the result of activating
the sensor at the second station in belt A, and the following one represents
the product reaching the third station at time 00:17:510. The fifth line shows
that the conveyor belt has stopped after product A has reached station 3.

Model Driven Development of Embedded Systems 17

Time Deadline Out-port Value

00:09:110 direction_A 1

00:09:110 00:09:300 activate_A 1

00:12:510 00:12:700 sta_disp_A 2

00:17:510 00:17:700 sta_disp_A 3

00:17:510 direction_A 0

00:35:110 direction_B 1

00:35:110 00:35:300 activate_B 1

...

Fig. 14. Outputs generated by the AMS Controller Unit.

The last two lines show the initial activity that generates scheduling a job in
station 4 for product B.

We used different experimental frames to thoroughly test this model, and
once satisfied with its behavior, we progressively started to replace simulated
components with their hardware counterparts. The first step was to replace the
scheduler model, and to execute it on the microcontroller. The microcontroller
generates the events to the simulated model, indicating that a product has
to be sent to a given station. The remaining components are not changed.
Figure 15 shows the CD++ coupled model specification for this version of the
system.

components: conveyor_A conveyor_B scheduler

cu@CU dis@Display

in : sta_1A sta_2A sta_3A sta_4A

in : sta_1B sta_2B sta_3B sta_4B

out : status_conv_A

out : status_conv_B

link : sta_1A sta_1A@cu

link : sta_2A sta_2A@cu

...

[conveyor_B]

components: sb@SensorController eng@Engine

...

Fig. 15. CD++ model: scheduler in hardware

Here, conveyor A and conveyor B are coupled components, whereas cu
and dis are atomic. The top model input ports are used to receive events
from the scheduler now running in the external board. Replacing a CD++
component with its counterpart running in the external devices is straightfor-
ward, since the model interfaces are not changed (an option in the executable
engine will establish that a particular model is running in an external device).
Likewise, testing this model only requires reusing the previously defined ex-

18 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

perimental frames. As the scheduler model was built using the hardware spec-
ifications for the actual system, and the interfaces of the submodels do not
change, the transition is transparent. Figure 16 shows the output of a sample
execution of this model. The results obtained are the same as before, regard-
less of the use of a hardware surrogate.

Time Out-port Value

00:08:170 status_conv_A 2

00:19:540 status_conv_A 3

00:30:130 status_conv_B 2

00:35:140 status_conv_B 3

...

Fig. 16. Outputs for example shown in Figure 15

In this case, events generated by the scheduler running on the board are
sent to CD++. These events trigger the same activities in the model as in the
simulated environment. In Figure 16, status conv A and status conv B show
that the products in both belts are transported to the corresponding stations.

After conducting extensive tests, we also moved the display controller to
the microcontroller. The value displayed on the digital display (which is up-
dated by the model running in CD++), represents the current station for each
product. The display controller and the scheduler were combined in a single
application following the previous model specifications. By simply activating
the execution engine specifying that the display controller is running in a
hardware surrogate, we are able to execute the new application without any
modifications. Every time the models activate the output ports status conv A
and status conv B, the display controller on the board is activated, showing
on the LCD the current location of each product as shown in Figure 17.

Time Out-port Value

00:27:410 status_conv_A 2

00:33:180 status_conv_A 3

00:34:390 status_conv_B 2

01:10:690 status_conv_A 2

01:15:170 status_conv_A 1

...

Fig. 17. Outputs for previous example

The first two lines of the Figure 17 show the product in conveyor A moving
from the first to the third station. The third line shows the product in conveyor
B moving to station 2 at time 00:34:390. After station 3 finished its work on
product A, the product reaches to station 1 at time 01:15:170. When the

Model Driven Development of Embedded Systems 19

external display controller receives new data, it displays the value (i.e., the
current position of the product in that belt) on the LCD display, and then
waits for more data.

The final step was to implement the complete AMS on the microcontroller.
Figure 18 shows the scheme for this experimental frame, in which only the
engines of the conveyor belt are still simulated in CD++.

Fig. 18. Controller unit implemented in hardware.

The model does not require any modification, and the model executing in
the microcontroller feeds the input ports activate and direction in Figure 15.

Figure 19 shows the events generated by the model running in the micro-
controller, which represents setting the direction, activation and deactivation
of the conveyor belt engines A and B.

Figure 20 shows the activation and deactivation of the belts when the
requests are received, which is the result of the activity in the microcontroller.
The values issued by the port result A and result B represent that the belt is
activated to move forward (1), reverse (2), or deactivated (0).

6 Development improvements

The time required to develop models in RT-CD++ is a major concern, given
that time-to-market is generally a crucial factor. Component reuse is an es-

20 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

Time Port Value

00:06:120 direction_A 1

00:06:130 activate_A 1

00:15:930 activate_A 0

00:56:800 direction_B 2

00:56:810 activate_B 1

01:01:130 activate_B 0

...

Fig. 19. Event log generated by the engines model

Time Out-port Value

00:06:130 result_A 1

00:15:930 result_A 0

00:56:810 result_B 2

01:01:130 result_B 0

01:22:720 result_B 2

...

Fig. 20. Outputs for the model in Figure 18

sential aim of our approach. In the development of the AMS, we reused a
controller unit that was implemented for an elevator control system in a pre-
vious prototype application. We also reused a prototype of a painting station,
which mimics the procedure needed to paint pieces placed on its working area
(following a predefined sequence).

We conducted experiments in the classroom, asking students with different
experience in the area to build the AMS system using different approaches.
Table 2 summarizes the results of this study.

Table 2. Comparing development times for the AMS application.

Beginners Experts
Manual CD++ Combined Manual CD++ Combined

Prototype 40 m/h 24 m/h 64 m/h 32 m/h 12 m/h 44 m/h

Test 28 m/h 10 m/h 38 m/h 22 m/h 4 m/h 26 m/h

of bugs 17 2 9 2

Average
Time to Fix

20 min 7 min 18 min 5 min

The study was conducted with two groups of students: beginners and ex-
perts. Different teams were given the same application to develop, both man-
ually and using CD++. The first line shows the average time (in man/hours)
taken by the teams to complete the prototype. As we can see, building the
application using CD++ always improved when compared building the same
application in manually (using a C++ compiler). This is due to the clear sepa-

Model Driven Development of Embedded Systems 21

ration of concerns of the DEVS models: the students only needed to build the
models, not paying attention to any issues related to executing those models.
In the worst case (beginners), building the application using CD++ was a 40%
faster. The main reason for this is related with the second, third and fourth
lines. It is much easier to detect and fix errors using a DEVS-based approach.
Likewise, the number of errors found was considerably smaller (mainly due to
the reason it is easy to decompose models up to the right level of abstraction,
which eases finding and fixing errors).

In the third column, we added the time taken to develop the application
using both approaches combined (which result in higher quality software).
That is, we use a simulation tool (like CD++) to learn about the system, and
then use the knowledge gained by the simulation the experience to build the
application manually. If we compare this approach against the use of a tool
like CD++ and the application of the DEVS methodology, we obtain higher
gains (27% of the original time, in the case of an expert user of CD++). In
our case, we are able to move from the simulated world into the real-time
application without changing one line of code: the application developed in
CD++ and run under the simulation runtime can be later used to run the
actual application by just activating the real-time execution engine.

Note that, in this study, we did not take into consideration maintenance
costs, which, in any long term project, take a large percentage of the resources
spent in the development cycle. Reducing the testing time would improve
greatly maintenance, and modifying models is much simpler than focusing on
the application from scratch. Simultaneously, it is easy to locate the sources
for modification (anything related to reaction to external events should be
placed in the external transition function; internal state changes in the internal
transitions; and outputs in the output function).

7 Conclusion

M&S techniques offer significant support for the design and test of complex
embedded real-time applications. We showed the use of DEVS as the basis for
Model-Driven development of these systems. The use of different experimen-
tal frameworks permitted us to analyze the model execution in a simulated
environment, checking the model’s behavior and timing constraints within a
risk-free environment. The integration of hardware components into the sys-
tem was straightforward. Testing and maintenance phases are highly improved
due to the use of a formal approach like DEVS for modeling the system’s be-
havior. The experiments were carried out using CD++, a DEVS tool that has
been built following DEVS formal definitions.

DEVS provides a sound methodology for developing discrete-event applica-
tions, which can be easily applied to improve the development of real-time em-
bedded applications. These advantages include secure, reliable testing, model

22 Gabriel A. Wainer, Ezequiel Glinsky, and Peter MacSween

reuse, and the possibility of building models with different resolution at dif-
ferent levels of abstraction. Model execution is automatically verifiable, as the
execution, processors are built following the formal specifications of DEVS.
Hence, the developer only needs to focus on the model under development.
The transition from simulated models to the actual hardware counterparts
can be incremental, incorporating deployed models into the framework when
they are ready.

Relying on experimental frameworks facilitates testing in a cost-effective
manner, allowing users to build and reuse test frames for each submodel of
the system. Since the DEVS formalism is closed under coupling, models can
be decomposed in simpler versions, always obtaining equivalent behavior. Fi-
nally, the semantics of models are not tied to particular interpretations, thus
existing models can be reused. Likewise, model’s functions can be reused by
just associating them with new models as needed. For instance, we are now
building an extension to the examples presented here that will handle 10 con-
veyors and 20 stations. Extending the model here presented requires modifying
only the external transition function in the Controller Unit, and defining a
new coupled model including the new stations, while keeping the remaining
methods unchanged.

8 Acknowledgements

This work has been partially supported by NSERC (National Science and En-
gineering Research Council of Canada), IRIS (Institute for Research on Intel-
ligenet Systems, PRECARN, Canada), and the Intel IXA University program.

References

[BV03] S. Borland and H. Vangheluwe. Transforming statecharts to DEVS. In
Proceedings of the SCS Summer Computer Simulation Conference, 2003.

[CDW04] G. Christen, A. Dobniewski, and G. Wainer. Modeling state-based DEVS
models in CD++. In Proceedings of MGA, Advanced Simulation Tech-
nologies Conference 2004 (ASTC’04), 2004.

[GPC03] N. Giambiasi, J.L. Paillet, and F. Chane. From timed automata to DEVS
models. In Proceedings of the SCS Winter Simulation Conference, 2003.

[GW02a] E. Glinsky and G. Wainer. Definition of real-time simulation in the
CD++ toolkit. In Proceedings of the SCS Summer Computer Simula-
tion Conference, 2002.

[GW02b] E. Glinsky and G. Wainer. Performance analysis of real-time DEVS
models. In Proceedings of the SCS Winter Simulation Conference, 2002.

[GW05] E. Glinsky and G. Wainer. A benchmarking technique for studying per-
formance of DEVS modeling and simulation environments. Technical Re-
port SCE-05-01, Dept. of Systems and Computer Engineering. Carleton
University, 2005. Submitted for publication.

Model Driven Development of Embedded Systems 23

[JW02] C. Jacques and G. Wainer. Using the CD++ DEVS toolkit to develop
petri nets. In Proceedings of the SCS Summer Computer Simulation
Conference, 2002.

[KKK01] J-K. Kim, Y.G. Kim, and T.G. Kim. DHMIF: DEVS-based hardware
model interchange format. In Proceedings of the European Simulation
Symposium, 2001.

[LDNA03] A. Ledeczi, J. Davis, S. Neema, and A. Agrawal. Modeling methodology
for integrated simulation of embedded systems. Proceedings of 7th IEEE
International Conference on Engineering of Computer Based Systems,
13(1):82–103, 2003.

[LPW03] L. Li, T. Pearce, and G. Wainer. Interfacing real-time DEVS models with
a DSP platform. In Proceedings of the Industrial Simulation Symposium,
2003.

[MW04] P. MacSween and G. Wainer. On the construction of complex models us-
ing reusable components. In Proceedings of SISO Spring Interop-erability
Workshop, 2004.

[MW05] S. Mehta and G. Wainer. Modeling hybrid hardware description lan-
guages in DEVS. Technical Report SCE-05-02, Dept. of Systems and
Computer Engineering. Carleton University, 2005. Submitted for publi-
cation.

[Rey03] C. W. Reynolds. Steering behaviors for autonomous characters,
http://www.red.com/cwr/steer/gdc99. Checked on December 2, 2003.

[SER00] S. Schulz, T.C. Ewing, and J.W. Rozenblit. Discrete event system spec-
ification (DEVS) and statemate statecharts equivalence for embedded
systems modeling. In Proceedings of 7th IEEE International Conference
on Engineering of Computer Based Systems, 2000.

[Wai02] G. Wainer. CD++: a toolkit to develop DEVS models. Software - Practice
and Experience, 32:1261–1302, 2002.

[WCD01] G. Wainer, G. Christen, and A. Dobniewski. Defining DEVS models with
the CD++ toolkit. In Proceedings of the European Simulation Sympo-
sium, 2001.

[WGM05] G. Wainer, E. Glinsky, and Peter MacSween. A model-driven technique
for development of embedded systems based on the devs formalism. Tech-
nical Report SCE-05-03, Dept. of Systems and Computer Engineering.
Carleton University, 2005.

[ZKP00] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of
Modeling and Simulation. Academic Press, Inc., 2000.

[ZW03] T. Zheng and G. Wainer. Implementing finite state machines using the
CD++ toolkit. In Proceedings of the SCS Summer Computer Simulation
Conference, 2003.

Index

atomic model, 1

CD++, 1
coupled model, 1

DEVS, 1
DEVS Graph, 1
discrete-event modeling, 1

embedded systems, 1

experimental frame, 1

incremental development, 1

model-driven development, 1
modeling and simulation, 1
multimodel, 1

real-time, 1

