
Experimental results on the implementation of Modelica using DEVS modeling and simulation

Mariana C. D’Abreu

Computer Science Department
Universidad de Buenos Aires

 Pabellón I, Ciudad Universitaria
(1428) Buenos Aires, ARGENTINA

Gabriel A. Wainer

Dept. of Systems and Computer Engineering.
Carleton University

1125 Colonel By Drive.
Ottawa, ON, K1S 5B6, CANADA

Abstract: We present experimental results on the use of
M/CD++, a Modelica compiler built on CD++. CD++ is
an implementation of the DEVS formalism, a method
originally created for Modeling and Simulation of dis-
crete-event systems. We combined DEVS with quantiza-
tion techniques, and created a toolkit that can be used for
analysis of electrical systems using Modelica notations.
This approach makes easier the integration of continuous
and discrete event systems within the same environment.
In order to prove the feasibility of the approach, we com-
pare the results obtained by M/CD++ with those of a
commercial tool (Dymola), showing promising results.

1. INTRODUCTION

In [1], we presented the design and implementation of
M/CD++, a tool based on Modelica [2] and CD++ [3], a
modeling and simulation tool implementing DEVS the-
ory. Modelica is an object-oriented language created for
modeling physical systems, designed to support library
development and model exchange. Models in Modelica
are mathematically described by differential, algebraic
and discrete equations. Modelica includes different librar-
ies of standard components providing ODEs, block dia-
grams, and electrical and mechanical models. M/CD++
allows the creation of dynamic systems belonging to the
electrical domain.

Although most existing simulation tools find solutions for
continuous systems by finding approximate solutions to
the equations representing the systems [4] (which are
based on discretization of time), in the last few years, dif-
ferent efforts tried to simulate continuous systems under
the discrete event paradigm. This presents some advan-
tages over discrete time simulation, including reduction
of the number of calculations for a given accuracy [5] and
seamless integration of complex systems composed by
both continuous time and discrete events. These solutions
are based on the DEVS (Discrete Event Specification)
formalism [6]. The idea of this method, called Quantized
Systems theory (Q-DEVS), is to provide quantization of
the state variables obtaining a discrete event approxima-
tion of the continuous system [7]. The state variables of
the system are thus converted into a piecewise constant

function via a quantization function [7]. The Quantized
State System (QSS) method [8] is an extension to Q-
DEVS with hysteresis , a general method for integration
of ODEs using discrete event theory.

M/CD++ permits creating electrical circuits specified us-
ing Modelica standard notation, which are subsequently
translated into Bond Graphs [9], which are used to check
for algebraic loops and singularities (elements that have
discontinuities; e.g. diodes). Then, we generate an opti-
mized BG corresponding to the electrical circuit, which,
in turn, is used to generate a DEVS model specification
according to the rules used by CD++. In order to evaluate
the simulation results obtained with M/CD++, test cases
were created, and their results were evaluated using Dy-
mola [10], a commercial simulation toolkit with full sup-
port of the Modelica language. The idea about using Dy-
mola was to compare the results given by M/CD++ with
those calculated by an existing and proven physical sys-
tems simulation tool with Modelica support. We will pre-
sent an introduction to the facilities available in the tool
(further details can be found in [1]), and will discuss the
results obtained when creating diffe rent electrical circuits,
studying the error obtained when compared to Dymola.

2. BACKGROUND

The continuous behavior of dynamic systems is usually
described in terms of Differential Algebraic Equations
(DA Es), Ordinary Differential Equations (ODEs) and
Partial Differential Equations (PDEs). Dynamic systems
simulation based on these formalisms is mainly accom-
plished numerically solving the set of differential equa-
tions describing the system and finding consistent initial
conditions [1][2]. In recent years, there have been numer-
ous efforts focusing on how to model complex physical
system via system decomposition. The idea is to divide
the system into a number of smaller subsystems inter-
faced by distinct connections, and some of the techniques
use Object-oriented modeling to promote models specifi-
cation in a more natural way. Object orientation permits
decreasing the abstraction gap between the real system
and the representation model, and allows the develop-
ment and reusability of models within a hierarchical con-

struction process [9][11]. Numerous of these concepts
were adopted and applied to the design of a new family of
modeling and simulation tools for continuous systems
modeling. Modelica [2] is one of such languages.

Figure 1 presents an example of an electrical circuit
specified using Modelica’s electrical library:

model circuit
 Mode-
lica.Electrical.Analog.Sources.PulseVoltage
V(V=200, period=1, width=10);
 Modelica.Electrical.Analog.Basic.Capacitor
C(C=200);
 Modelica.Electrical.Analog.Basic.Resistor
R(R=1.5);
 Modelica.Electrical.Analog.Basic.Inductor
I(L=40);
 Modelica.Electrical.Analog.Basic.Ground Gnd;
 equation
 connect(V.p, R.p);
 connect(R.n, I.p);
 connect(R.n, C.p);
 connect(I.n, V.n);
 connect(C.n, V.n);
 connect(C.n, Gnd.p);
 end circuit;

Figure 1. Modelica specification of a sample circuit.

In [1] we presented the design and implementation of
M/CD++, a tool to construct continuous systems based on
Modelica, using DEVS as the underlying formalism.
M/CD++ permits simulating electrical circuit models like
the one in Figure 1 by implementing a subset of Mode-
lica’s language specification. M/CD++ models are con-
verted into Bond Graphs (BG), which are subsequently
translated into DEVS [6]. DEVS has been used recently
for continuous systems simulation by different research
teams [5][7][8][12][13][14][15][16] [17]. In these arti-
cles, it has been shown that discrete event methods in
general and DEVS in particular, present several advan-
tages (which are the ones we considered when we created
M/CD++):
• Computational time reduction: for a given accuracy,

the number of calculations can decrease
• Hierarchical modular modeling
• Seamless integration with models defined with other

modeling techniques mapped to DEVS
• Simulation of discrete time models: can be seen as

particular cases of discrete event methods
• Hybrid systems modeling: the discrete event para-

digm provides the theory to develop a uniform ap-
proach to model and simulate systems with continu-
ous and discrete components.

Most of these techniques are based on Q-DEVS [7],
whose main idea is to represent continuous signals by the
crossing of an equal spaced set of boundaries. This ap-
proach requires a fundamental shift in thinking about the
system as a whole. Instead of determining what value a
dependant variable will have (its state) at a given time,
we must determine at what time the variable will enter a

given state. QSS (Quantized State Systems) [8][12] is an
extension to Q-DEVS, which introduces the concept of
hysteresis for Q-DEVS. In [8] it was proved that differen-
tial equation systems can be approximated by legitimate
DEVS models with QSS; the addition of hysteresis in the
quantizer removes the problem of the possible infinite
number of transitions performed by a model in a finite
time interval greater than zero [12], and the existence of a
minimum time interval between events constitutes a suf-
ficient condition to obtain legitimate mo dels [8].

CD++ is a toolkit that implements DEVS theories [3].
Atomic models are implemented using a built-in
specification language [18] or in C++, adding flexibility
and construction power to the developer. New atomic
models extend the behavior of the basic atomic model
and they must inherit from the Atomic class, provided by
the tool. Coupled models are described in a configuration
file using a specification language provided by the tool.
The file includes information about the components, the
coupling and the input and output ports associated to the
model. CD++ also enables the user to define coupled
models by using a built-in specification language that
follows DEVS formal specifications.

M/CD++ allows simulating dynamic systems in the elec-
trical domain using CD++. M/ CD++ contains language
support for a subset of Modelica v2.1 [2], including the
components needed to allow electrical circuits construc-
tion provided by the Modelica Electrical library. Electri-
cal circuit simulation capabilities are based on the im-
plementation of QSS concepts: the resulting CD++ model
represents the equations system associated to the electri-
cal circuit that has to be solved. Based on QSS and Quan-
tized Bond Graph theories, we constructed Atomic mo d-
els that were added to CD++, approximating numerically
the solution using a discrete event approach. The objects
defined in the Modelica Electrical library and supported
on M/CD++ are: Modelica.Electrical.Analog.Basic:
Ground, .Resistor, .Conductor, .Capacitor, .Inductor;
Modelica.Electrical.Analog.Ideal: .IdealTransformer,
.IdealGyrator; Modelica.Electrical.Analog.
Sources:ConstantVoltage, .StepVoltage, .SineVoltage,
.PulseVoltage, .ConstantCurrent, .StepCurrent,
.SineCurrent and.PulseCurrent.

3. M/CD++ SIMULATION ERROR ANALYSIS

In this section it will be presented several test cases exe-
cuted using M/CD++, providing some examples to assess
the precision of the toolkit. It will also be shown the error
analysis performed over the generated results. As men-
tioned in the Introduction, we created the different cir-
cuits using Dymola, and compared the results to compare
the error obtained with M/CD++. We used Dymola ver-
sion 5.1b, whose simulator, Dymosim, provides a number
of different integration methods for the simulation of dy-

namic systems. It includes fixed and variable step-size al-
gorithms, many of them of fixed order, and others with
order variation during the simulation. Most integration
methods available have a variable step-size algorithm.
The integration step-size is chosen in such a way that the
local estimated error is smaller than the desired maximum
local error, defined via the relative and absolute toler-
ances. Then, integration method and relative tolerance are
parameters that can be specified on the simulation setup.

The objective of this work was not to carry out a detailed
performance study, moreover considering CD++ is an
open-source project developed by graduate students, and
Dymola is a very advanced commercial tool. Likewise,
M/CD++ is the first implementation of our tool (devel-
oped by one person only) and it does not contain any op-
timizations. The goal of our work was to achieve the ob-
jectives analyzed in section 1, which are mostly related to
provide a mechanism for interfacing discrete-event and
continuous models in a seamless way, permitting execut-
ing the solution in different environment (including real-
time and parallel simulators that CD++ is provided with).
Nevertheless, in many cases the performance we achieved
is equivalent or better than the one by Dymola.

The integration methods used on Dymosim, to solve the
systems described by the test cases on this chapter, were
DASSL and Euler. DASSL is a variable step-size and vari-
able order (1-5) algorithm [19][20]. It is used to integrate
DAE and ODE systems. Euler is a fixed step-size first
order algorithm intended for real time simulation.

In order to compare the trajectories obtained with
M/CD++ and those calculated by Dymola, the interpola-
tion of the related curves has to be performed. Then,
M/CD++ states trajectories are linearly interpolated with
the Dymola states trajectories through

0||)().(

||
)()(

)(
~

11
1

1
>−∧<=<=+−

−
−

= ++
+

+
iiijiidij

ii

idid
j xxxxxxfxx

xx
xfxf

xf

In our case, f
~

corresponds to the interpolated M/CD++

state trajectory and df to the Dymola state trajectory.
Then, the relative error between trajectories can be calcu-
lated as:

∑ −
=

j j

jmcdj

xf
xfxf

e
|)(~|

|)()(~|

where mcdf corresponds to the state trajectory calculated
by M/CD++.

3.1 Example 3.1

On this example, the electrical circuit shown on Figure 5
is simulated. Two test cases were executed for this model.
Test cases have a variation of the integration method used
on Dymola, in order to compare the results with M/CD++
calculated trajectories.

model example3.1
 Modelica.Electrical.Analog.Basic.Capacitor Ca-
pacitor1(C=30);
 Modelica.Electrical.Analog.Basic.Resistor Re-
sistor1;
 Modelica.Electrical.Analog.Basic.Inductor In-
ductor1(L=40);
 Modelica.Electrical.Analog.Basic.Inductor In-
ductor2;
 Modelica.Electrical.Analog.Basic.Capacitor Ca-
pacitor2(C=30);
 Modelica.Electrical.Analog.Basic.Inductor In-
ductor3;
 Modelica.Electrical.Analog.Basic.Inductor In-
ductor4(L=80);
 Modelica.Electrical.Analog.Basic.Capacitor Ca-
pacitor3(C=40);
 Modelica.Electrical.Analog.Basic.Ground
Ground1;
 Mode-
lica.Electrical.Analog.Sources.ConstantCurrent
ConstantCurrent1;
equation
 connect(Capacitor1.p, Inductor2.p);
 connect(Resistor1.p, Inductor2.p);
 connect(Inductor1.p, Inductor2.p);
 connect(Capacitor2.p, Inductor2.n);
 connect(Inductor3.n, Capacitor3.p);
 connect(Inductor3.n, Inductor4.p);
 connect(Capacitor1.n, Resistor1.n);
 connect(Resistor1.n, Inductor1.n);
 connect(Capacitor3.n, Inductor4.n);
 connect(Inductor2.n, Inductor3.p);
 connect(Capacitor2.n, Capacitor3.n);
 connect(ConstantCurrent1.p, Inductor2.p);
 connect(Inductor1.n, ConstantCurrent1.n);
 connect(ConstantCurrent1.n, Capacitor2.n);
 connect(Ground1.p, Capacitor3.n);
end example3;

Figure 2 – Modelica code for circuit on example 3.1

Figure 3– Electrical circuit Example 3.1

We simulated this model circuit using the DASSL inte-
gration method on Dymola, for 60 seconds of simulated
time, with 500 intervals and a tolerance of 0.0001. We
compared the results obtained with a QSS DEVS model
implemented by M/CD++, using the following parame-
ters for each of the components:

Component Quantum Hysteresis window
Capacitor1 0.0005 0.00025
Capacitor2 0.0001 0.00005
Capacitor3 0.0001 0.00005
Inductor1 0.0001 0.00005
Inductor2 0.0005 0.00025
Inductor3 0.001 0.0005
Inductor4 0.0001 0.00005

The following figures show the error for the capacitor
(C1) and the state trajectories for the inductor (I1) on
M/CD++ and Dymola for the given parameters:

 Relative error average
Curve Case 3.1 Case 3.2

Capacitor1.v (C1.v) 0.28 % 0.288 %
Inductor2.i (I2.i) 3.33 % 1.28 %

Relative error between interpolated C1.v on
MCD++ and C1.v on Dymola (case 3.1)

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

0.00 20.00 40.00 60.00 80.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Inductor1.i curves comparison (case 3.1)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Time (sec)

In
d
u
ct

o
r1

.i

MCD++ interpolated by Dymola MCD++

Figure 4. (a) Relative error M/CD++ vs. Dymola for v.

on C1 (b) M/CD++ and Dymola for current on I1

Figure 7 (a) shows the relative error curve for voltage on
capacitor C1. Figure 7 (b) shows the trajectories for the
current on inductor I1. It can be seen that M/CD++ ap-
proximates the model trajectories well, and that the rela-
tive error is constrained (below 0.5%). Larger relative er-
rors are obtained for points near to zero, given the fixed
quantum size used through the entire simulation (if we
see the formula we used to compute the relative error in
section 3, we are dividing the difference between the exe-

cution of both models by f
~

(xj); when this value tends to
zero, the relative error grows, as we see in the crossing
zero areas).

3.2 Example 3.2
This example just changed the simulation of the Example
3.1 circuit using the Euler integration method on Dymola.
The simulation time is 60 seconds, and we used an inte-
gration step of 0.01, with a tolerance of 0.0001. We com-
pare the results of the model with the same quantum

size/hysteresis window presented for Example 3.1, per-
mitting us to compare the results with a more traditional
integration algorithm.

The following figure show the error between the
capacitor (C1) and inductor (I1) state trajectories on
M/CD++ and Dymola for the given simulation
parameters:

Relative error between C1.v on MCD++ and
C1.v interpolated by Dymola (case 3.2)

-0.20%

0.00%
0.20%

0.40%
0.60%

0.80%
1.00%

1.20%
1.40%

0.00 20.00 40.00 60.00 80.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Relative error between I1.i on MCD++ and I1.i
interpolated by Dymola (case 3.2)

0.00%

0.00%

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%

1000.00%

0 10 20 30 40 50 60 70

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Figure 5 – Simulation results for test case 3.2. Relative

error for current on I1

Figure 8 shows how the relative error is still small, and
the larger relative error is for values near to zero, al-
though this value was reduced when using a fixed step-
size integration method on Dymola, as the Euler algo-
rithm. The following table shows the Relative error aver-
ages for test cases on Example 3.1 circuit.

As we can see, although we are using a fundamentally
different approach (a discrete-event simulator for con-
tinuous systems models), the amount of the error, while
compared with well-established numerical methods is re-
duced. As showed in [13] (and as we will discuss in sec-
tion 3.5), these values can be even improved by choosing
a smaller quantum size for the Q-DEVS version.

3.3 Example 3.3

In this case, we implemented the electrical circuit on Fig-
ure 9. Two test cases were executed for this model vary-
ing the integration method used on the simulation with
Dymola.

Figure 6 – Electrical circuit of example 3.3

Initially, we simulated Example 3.3 circuit using the
DASSL integration method on Dymola. The simulation
time was 30 seconds, and we used 500 intervals at a pre-
cision of 0.0001. The following table presents the pa-
rameters used for the DEVS models running in M/CD++.

Component Quantum Hysteresis window
Capacitor1 0.0001 0.00005
Capacitor2 0.001 0.0005
Inductor1 0.0005 0.00025
Inductor2 0.0008 0.0002

The following figures show the error, for the current
trajectory on the ideal transformer, between M/CD++ and
Dymola for the given simulation parameters.

Relative error between IT.i1 on MCD++ and IT.i1 interpolated
by Dymola (case 4.1)

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

1000.0000%

0 5 10 15 20 25 30 35

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

IdealTransformer1.i1 curves comparison

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

Time (sec)

Id
ea

lT
ra

n
sf

o
rm

er
1.

i1

MCD++ interpolated by Dymola MCD++

Figure 7 – (a) Relative error: between current on the
ideal transformer (b) Current curves comparison.

Figure 11 (a) shows the relative error, between M/CD++
and Dymola, on the ideal transformer input current. State
trajectories on the system where calculated on Dymola

using the DASSL integration method. Again, we can see
that the approximation is very accurate (the difference be-
tween the curves obtained is indistinguishable).

3.4 Example 3.4
In this case, we repeated the studies carried out in Exa m-
ple 3.3, but using the Euler integration method on Dy-
mola, using an integration step of 0.005, and a tolerance
of 0.0001. The following figures show the error, for the
current trajectories on the ideal transformer (input and
output flow), between M/CD++ and Dymola for the given
simulation parameters. A similar error to the one
produced on the previous case is given using the Euler
integration method on Dymola, with a step size equal to
0.005. Results can be seen on Figure 12 (a) and (c).

Relative error between IT.i1 on MCD++ and IT.i1 interpolated
by Dymola (case 4.2)

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

10.00000%

100.00000%

1000.00000%

10000.00000%

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

IdealTransformer1.i1 curves comparison

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

Id
ea

lT
ra

n
sf

o
rm

er
1.

i1

MCD++ interpolated by Dymola MCD++

Relative error between IT.i2 on MCD++ and IT.i2 interpolated

by Dymola (case 4.2)

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

10.00000%

100.00000%

1000.00000%

10000.00000%

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

IdealTransformer1.i2 curves comparison

-0.35
-0.30

-0.25
-0.20
-0.15
-0.10
-0.05

0.00
0.05
0.10
0.15

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Time (sec)

Id
ea

lT
ra

n
sf

o
rm

er
1.

i2

MCD++ interpolated by Dymola MCD++

Figure 8– (a) (b) Error comparison for current i1 (flow
out) on the ideal transformer (c) (d) Error for current i2

(flow in) on the ideal transformer

The following table shows the relative error averages we
found for test cases on Example 3.4 circuit.

 Relative error average
Curve Case 4.1 Case 4.2

IdealTransformer1.i1 0.61 % 0.62 %

3.5 Example 3.5

The electrical circuit on Figure 13 is simulated on this
example. Two test cases were executed for this model
varying the quantization parameters used for state trajec-
tories on M/CD++.

Figure 9– Electrical circuit of example 3.5

Simulation of the Example 5 circuit using the DASSL in-
tegration method on Dymola, for 15 seconds. Again, we
used 500 intervals with a precision of 0.0001. The follow-
ing figure shows the parameters for M/CD++ simulations.

Component Quantum Hysteresis window
Capacitor1 1.60 0.5
Capacitor2 1.60 0.5
Capacitor3 1.60 0.5
Inductor1 0.50 0.10
Inductor2 0.50 0.10
Inductor3 0.50 0.10

The following figures show the error, for the state
trajectories on capacitor (C1) and inductor (I1), between
M/CD++ and Dymola for the given simulation
parameters:

Relative error between C1.v on MCD++ and C1.v interpolated
by Dymola (case 5.1)

0.00%

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%
0.00 5.00 10.00 15.00 20.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Capacitor1.v curves comparison

0.00E+00
5.00E+01
1.00E+02
1.50E+02
2.00E+02
2.50E+02
3.00E+02
3.50E+02
4.00E+02
4.50E+02
5.00E+02

0.00 5.00 10.00 15.00 20.00

Time (sec)

C
ap

ac
it

o
r1

.v
MCD++ interpolated by Dymola MCD++

Relative error between I1.i on MCD++ and I1.i interpolated by

Dymola (case 5.1)

0.00%

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%

1000.00%

10000.00%

0.00 5.00 10.00 15.00 20.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Inductor1.i curves comparison

-150

-100

-50

0

50

100

150

0.00 5.00 10.00 15.00 20.00

Time (sec)

In
d

u
ct

o
r1

.i

MCD++ interpolated by Dymola MCD++

Figure 10– (a), (b) Error for voltage curve on C1

(c) (d) Error for current curve on I1

This test case was simulated using the DASSL method on
Dymola. Figure 15 (a) and (b) show the higher relative
errors on the zero crosses for state trajectories on capaci-
tor1 and inductor1 . Next test case will show how de-

creasing the quantum size will produce more accurate re-
sults.

3.6 Example 3.6
We simulated the circuit of Example 3.5 circuit using the
DASSL integration method on Dymola and decreasing
the quantum and hysteresis window size on M/CD++
simulation. The following table shows the new simulation
parameters for M/CD++ simulations.

Component Quantum Hysteresis window
Capacitor1 0.65 0.01
Capacitor2 0.60 0.01
Capacitor3 0.70 0.01
Inductor1 0.25 0.01
Inductor2 0.20 0.01
Inductor3 0.20 0.01

Relative error between C1.v on MCD++ and C1.v interpolated

by Dymola (case 5.2)

0.00%

0.00%

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%
0.00 5.00 10.00 15.00 20.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Capacitor1.v curves comparison

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

4.00E+02

4.50E+02

0.00 5.00 10.00 15.00 20.00

Time (sec)

C
ap

ac
ito

r1
.v

MCD++ interpolated by Dymola MCD++

Relative error between I1.i on MCD++ and I1.i interpolated by Dymola

(case 5.2)

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0.00 5.00 10.00 15.00 20.00

Time (sec)

R
el

at
iv

e
er

ro
r

(%
)

Inductor1.i curves comparison

-150

-100

-50

0

50

100

150

0.00 5.00 10.00 15.00 20.00

Time (sec)

In
d

u
ct

o
r1

.i

MCD++ interpolated by Dymola MCD++

Figure 11– (a) (b) Error for voltage curve on C1

(c) (d) Error for current curve on I1

The following table shows the relative error averages for
all the test cases executed on Example 3.5 circuit.

 Relative error average
Curve Case 5.1 Case 5.2

Capacitor1.v 3.84 % 1.37 %
Inductor1.i 17.13 % 6.04 %

4. CONCLUSION

The DEVS formalism is a method defined for modeling
and simulation of discrete event systems. During the last
years the DEVS theory has evolved, and it was recently
upgraded in order to permit simulation of continuous and
hybrid systems. We introduced a tool for modeling and
simulation of continuous systems based on DEVS. Mod-
els are described using Modelica, a modular and acausal
standard specification language for physical systems
modeling. Examples of model simu lation with their exe-
cution results are included. The simulation results gener-
ated by M/CD++ were compared with those produced by
a complex physical system simulation environment with
Modelica support called Dymola. Several test cases were
executed using both toolkits, varying the quantization pa-
rameters used on M/CD++ and the integration methods
utilized by Dymola.

It was shown that a higher relative error is obtained for
values near to zero on a trajectory. This is related with the
fixed quantum size used by the quantization function over
a state trajectory, and the formulas used for computing
the relative error. Then, for smaller values, greater differ-
ences are given. An approach to improve the simulation
results could be developed using an adaptive quantization
function, ma king the quantum vary according to the tra-
jectory evolution. Promising results on dynamic quanti-
zation can be found in [21] and [16].

On the examples, it was also shown how accurate results
could be obtained reducing the quantum and hysteresis
window size. It is important to have in mind that
M/CD++ approximates the system solution based on the

QSS method, which uses a simple first order integration
approach. Most of the results produced by M/CD++ were
contrasted with results generated using a higher order and
variable step-size integration method, DASSL. It was
shown that, in general, choosing adequate quantization
parameters produce accurate solutions and decrease error.

In the long term, we want to attack the development of
hybrid systems based on the DEVS forma lism and its ex-
tensions, building libraries to make easy to use comp o-
nents developed on top of DEVS modeling tools. One of
the benefits is that for a given accuracy, the number of
transitions can be reduced, decreasing the execution time
of simulations. Discrete time models can be simulated
under discrete event paradigm, thus allowing the devel-
opment of a simulation environment for complex sys-
tems, modeled as hybrid systems, where all paradigms
merge (continuous time, discrete time, and discrete
event).

REFERENCES

[1] D’Abreu, M.; Wainer, G. “M/CD++: modeling con-

tinuous systems using Modelica and DEVS”. Pro -
ceedings of MASCOTS 2005. Atlanta, GA. 2005.

[2] Modelica Language Specification, version 2.1,
http://www.modelica.org March 2004.

[3] Wainer, G. CD++: a toolkit to define discrete-event
models. Software, Practice and Experience. Wiley.
Vol. 32, No. 3. pp. 1261-1306. 2002.

[4] Press, W.H.; Flannery B.P.; Teukolsky, S.A.; Ve t-
terling, W.T. 1986. Numerical Recipes. Cambridge
University Press, Ca mbridge

[5] Zeigler, B.P., "Continuity and Change (Activity) are
Fundamentally Related in DEVS Simulation of Con-
tinuous Systems", LNCS, Vol. 3397/2005, Springer-
Verlag, NY, pp. 1-17.

[6] Zeigler, B; Kim, T; Praehofer, H. “Theory of Mod-
eling and Simulation”. Academic Press. New York,
2000.

[7] Zeigler, B. DEVS. “Theory of Quantization”.
DARPA Contract N6133997K-007: ECE Dept., Uni-
versity of Arizona, Tucson, AZ, 1998.

[8] Kofman, E. “Discrete Event Based Simulation and
Control of Continuous Systems”. PhD’s thesis. Uni-
versidad Nacional de Rosario, Argentina. August
2003.

[9] Åström, K. J; Elmqvist, H.; Mattsson, S. E. “Evolu-
tion of continuous-time modeling and simulation”.
The 12th European Simulation Multiconference,
ESM'98, Manchester, UK, 1998.

[10] Dynasim Laboratories. “Dymola”. [online]. Avail-
able online via:
http://www.dynasim.com/dymola.htm [Accessed
June 13 2004]

[11] Cellier, F.E.; Elmqvist, H. “Automated formula ma-
nipulation supports object-oriented continuous-

system modeling” IEEE Control Systems, 13(2), pp.
28-38, April 1993.

[12] Kofman, E.; Junco, S. “Quantized State Systems. A
DEVS Approach for Continuous System simulation”.
Transactions of the SCS, 18(3), pp. 123-132, 2001.

[13] D'Abreu, M.; Wainer G. “Defining hybrid system
models using DEVS quantization techniques”. Pro-
ceedings of the Winter Simulation Conference. New
Orleans, LA. U.S.A., 2003.

[14] Wainer, G., B.P. Zeigler, “Experimental Results of
Timed Cell-DEVS Quantization, AI and Simulation,”
AIS 2000, pp. 203-208, Tucson, AZ, March 2000.

[15] James J. Nutaro, Bernard P. Zeigler, R. Jamma-
lamadaka, S. Akerkar. “Discrete Event Solution of
Gas Dynamics within the DEVS Framework”. Inter-
national Conference on Computational Science , pp.
319-328, 2003.

[16] Jean-Sébastien Bolduc and Hans Vangheluwe.
Mapping ODEs to DEVS: Adaptive Quantization.
Summer Computer Simulation Conference, pp. 401-
407. Montréal, Canada. 2003.

[17] Giambiasi, N.; Escude, B.; Ghosh, S. “GDEVS: A
Generalized Discrete Event Specification for Accu-
rate Modeling of Dynamic systems”. Transactions of
the SCS, 17(3) pp. 120-134, 2000.

[18] G. Christen, A. Dobniewski, G. Wainer. "Modeling
State-Based DEVS Models CD++". MGA, Advanced
Simulation Technologies Conference 2004. Arling-
ton, VA. U.S.A. 2004.

[19] L. R. Petzold. A description of DASSL: A differen-
tial/algebraic system solver, in IMACS Trans. Scien-
tific Co mputing Vol. 1, R. S. Stepleman et al., eds.,
North-Holland, Amsterdam, 1993, pp. 65-68.

[20] K. E. Brenan, S. L. Campbell and L. R. Petzold.
Numerical Solution of Initial-Value Problems in Dif-
ferential Algebraic Equations, Elsevier, North Hol-
land, New York, N.Y., 1989.

[21] G. Wainer, B. Zeigler. "Experimental results of
Timed Cell-DEVS quantization". Proceedings of
AIS'2000 Artificial Intelligence, Simulation and
Planning. Tucson, Arizona. U.S.A. 2000.

