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Abstract: We present experimental results on the use of 
M/CD++, a Modelica compiler built on CD++. CD++ is 
an implementation of the DEVS formalism, a method 
originally created for Modeling and Simulation of dis-
crete-event systems. We combined DEVS with quantiza-
tion techniques, and created a toolkit that can be used for 
analysis of electrical systems using Modelica notations. 
This approach makes easier the integration of continuous 
and discrete event systems within the same environment. 
In order to prove the feasibility of the approach, we com-
pare the results obtained by M/CD++ with those of a 
commercial tool (Dymola), showing promising results. 
 
1. INTRODUCTION 
 
In [1], we presented the design and implementation of 
M/CD++, a tool based on Modelica [2] and CD++ [3], a 
modeling and simulation tool implementing DEVS the-
ory. Modelica is an object-oriented language created for 
modeling physical systems, designed to support library 
development and model exchange. Models in Modelica 
are mathematically described by differential, algebraic 
and discrete equations. Modelica includes different librar-
ies of standard components providing ODEs, block dia-
grams, and electrical and mechanical models. M/CD++ 
allows the creation of dynamic systems belonging to the 
electrical domain. 
 
Although most existing simulation tools find solutions for 
continuous systems by finding approximate solutions to 
the equations representing the systems [4] (which are 
based on discretization of time), in the last few years, dif-
ferent efforts tried to simulate continuous systems under 
the discrete event paradigm. This presents some advan-
tages over discrete time simulation, including reduction 
of the number of calculations for a given accuracy [5] and 
seamless integration of complex systems composed by 
both continuous time and discrete events. These solutions 
are based on the DEVS (Discrete Event Specification) 
formalism [6]. The idea of this method, called Quantized 
Systems theory (Q-DEVS), is to provide quantization of 
the state variables obtaining a discrete event approxima-
tion of the continuous system [7]. The state variables of 
the system are thus converted into a piecewise constant 

function via a quantization function [7]. The Quantized 
State System (QSS) method [8] is an extension to Q-
DEVS with hysteresis , a general method for integration 
of ODEs using discrete event theory.  
 
M/CD++ permits creating electrical circuits specified us-
ing Modelica standard notation, which are subsequently 
translated into Bond Graphs [9], which are used to check 
for algebraic loops and singularities (elements that have 
discontinuities; e.g. diodes). Then, we generate an opti-
mized BG corresponding to the electrical circuit, which, 
in turn, is used to generate a DEVS model specification 
according to the rules used by CD++. In order to evaluate 
the simulation results obtained with M/CD++, test cases 
were created, and their results were evaluated using Dy-
mola [10], a commercial simulation toolkit with full sup-
port of the Modelica language. The idea about using Dy-
mola was to compare the results given by M/CD++ with 
those calculated by an existing and proven physical sys-
tems simulation tool with Modelica support. We will pre-
sent an introduction to the facilities available in the tool 
(further details can be found in [1]), and will discuss the 
results obtained when creating diffe rent electrical circuits, 
studying the error obtained when compared to Dymola. 
 
2. BACKGROUND 
 
The continuous behavior of dynamic systems is usually 
described in terms of Differential Algebraic Equations 
(DA Es), Ordinary Differential Equations (ODEs) and 
Partial Differential Equations (PDEs). Dynamic systems 
simulation based on these formalisms is mainly accom-
plished numerically solving the set of differential equa-
tions describing the system and finding consistent initial 
conditions [1][2]. In recent years, there have been numer-
ous efforts focusing on how to model complex physical 
system via system decomposition. The idea is to divide 
the system into a number of smaller subsystems inter-
faced by distinct connections, and some of the techniques 
use Object-oriented modeling to promote models specifi-
cation in a more natural way. Object orientation permits 
decreasing the abstraction gap between the real system 
and the representation model, and allows the develop-
ment and reusability of models within a hierarchical con-



struction process [9][11]. Numerous of these concepts 
were adopted and applied to the design of a new family of 
modeling and simulation tools for continuous systems 
modeling. Modelica [2] is one of such languages.  
 
Figure 1 presents an example of an electrical circuit 
specified using Modelica’s electrical library: 
 
model circuit 
  Mode-
lica.Electrical.Analog.Sources.PulseVoltage 
V(V=200, period=1, width=10); 
  Modelica.Electrical.Analog.Basic.Capacitor 
C(C=200); 
  Modelica.Electrical.Analog.Basic.Resistor 
R(R=1.5); 
  Modelica.Electrical.Analog.Basic.Inductor 
I(L=40); 
  Modelica.Electrical.Analog.Basic.Ground Gnd; 
 equation  
  connect(V.p, R.p); 
  connect(R.n, I.p); 
  connect(R.n, C.p); 
  connect(I.n, V.n); 
  connect(C.n, V.n); 
  connect(C.n, Gnd.p); 
 end circuit; 

Figure 1. Modelica specification of a sample circuit. 
 
In [1] we presented the design and implementation of 
M/CD++, a tool to construct continuous systems based on 
Modelica, using DEVS as the underlying formalism. 
M/CD++ permits simulating electrical circuit models like 
the one in Figure 1 by implementing a subset of Mode-
lica’s language specification. M/CD++ models are con-
verted into Bond Graphs (BG), which are subsequently 
translated into DEVS [6]. DEVS has been used recently 
for continuous systems simulation by different research 
teams [5][7][8][12][13][14][15][16] [17]. In these arti-
cles, it has been shown that discrete event methods in 
general and DEVS in particular, present several advan-
tages (which are the ones we considered when we created 
M/CD++): 
• Computational time reduction: for a given accuracy, 

the number of calculations can decrease 
• Hierarchical modular modeling 
• Seamless integration with models defined with other 

modeling techniques mapped to DEVS 
• Simulation of discrete time models: can be seen as 

particular cases of discrete event methods 
• Hybrid systems modeling: the discrete event para-

digm provides the theory to develop a uniform ap-
proach to model and simulate systems with continu-
ous and discrete components. 

Most of these techniques are based on Q-DEVS [7], 
whose main idea is to represent continuous signals by the 
crossing of an equal spaced set of boundaries. This ap-
proach requires a fundamental shift in thinking about the 
system as a whole. Instead of determining what value a 
dependant variable will have (its state) at a given time, 
we must determine at what time the variable will enter a 

given state. QSS (Quantized State Systems) [8][12] is an 
extension to Q-DEVS, which introduces the concept of 
hysteresis for Q-DEVS. In [8] it was proved that differen-
tial equation systems can be approximated by legitimate 
DEVS models with QSS; the addition of hysteresis in the 
quantizer removes the problem of the possible infinite 
number of transitions performed by a model in a finite 
time interval greater than zero [12], and the existence of a 
minimum time interval between events constitutes a suf-
ficient condition to obtain legitimate mo dels [8]. 

 
CD++ is a toolkit that implements DEVS theories [3]. 
Atomic models are implemented using a built-in 
specification language [18] or in C++, adding flexibility 
and construction power to the developer. New atomic 
models extend the behavior of the basic atomic model 
and they must inherit from the Atomic class, provided by 
the tool. Coupled models are described in a configuration 
file using a specification language provided by the tool. 
The file includes information about the components, the 
coupling and the input and output ports associated to the 
model. CD++ also enables the user to define coupled 
models by using a built-in specification language that 
follows DEVS formal specifications.  
 
M/CD++ allows simulating dynamic systems in the elec-
trical domain using CD++. M/ CD++ contains language 
support for a subset of Modelica v2.1  [2], including the 
components needed to allow electrical circuits construc-
tion provided by the Modelica Electrical library. Electri-
cal circuit simulation capabilities are based on the im-
plementation of QSS concepts: the resulting CD++ model 
represents the equations system associated to the electri-
cal circuit that has to be solved. Based on QSS and Quan-
tized Bond Graph theories, we constructed Atomic mo d-
els that were added to CD++, approximating numerically 
the solution using a discrete event approach. The objects 
defined in the Modelica Electrical library and supported 
on M/CD++ are: Modelica.Electrical.Analog.Basic: 
Ground, .Resistor, .Conductor, .Capacitor, .Inductor; 
Modelica.Electrical.Analog.Ideal: .IdealTransformer, 
.IdealGyrator; Modelica.Electrical.Analog. 
Sources:ConstantVoltage, .StepVoltage, .SineVoltage, 
.PulseVoltage, .ConstantCurrent, .StepCurrent, 
.SineCurrent and.PulseCurrent. 
 
3. M/CD++  SIMULATION ERROR ANALYSIS  
 
In this section it will be presented several test cases exe-
cuted using M/CD++, providing some examples to assess 
the precision of the toolkit. It will also be shown the error 
analysis performed over the generated results. As men-
tioned in the Introduction, we created the different cir-
cuits using Dymola, and compared the results to compare 
the error obtained with M/CD++. We used Dymola ver-
sion 5.1b, whose simulator, Dymosim, provides a number 
of different integration methods for the simulation of dy-



namic systems. It includes fixed and variable step-size al-
gorithms, many of them of fixed order, and others with 
order variation during the simulation. Most integration 
methods available have a variable step-size algorithm. 
The integration step-size is chosen in such a way that the 
local estimated error is smaller than the desired maximum 
local error, defined via the relative and absolute toler-
ances. Then, integration method and relative tolerance are 
parameters that can be specified on the simulation setup. 
 
The objective of this work was not to carry out a detailed 
performance study, moreover considering CD++ is an 
open-source project developed by graduate students, and 
Dymola is a very advanced commercial tool. Likewise, 
M/CD++ is the first implementation of our tool (devel-
oped by one person only) and it does not contain any op-
timizations. The goal of our work was to achieve the ob-
jectives analyzed in section 1, which are mostly related to 
provide a mechanism for interfacing discrete-event and 
continuous models in a seamless way, permitting execut-
ing the solution in different environment (including real-
time and parallel simulators that CD++ is provided with). 
Nevertheless, in many cases the performance we achieved 
is equivalent or better than the one by Dymola. 
 
The integration methods used on Dymosim, to solve the 
systems described by the test cases on this chapter, were 
DASSL and Euler. DASSL is a variable step-size and vari-
able order (1-5) algorithm [19][20]. It is used to integrate 
DAE and ODE systems. Euler is a fixed step-size first 
order algorithm intended for real time simulation. 
 
In order to compare the trajectories obtained with 
M/CD++ and those calculated by Dymola, the interpola-
tion of the related curves has to be performed. Then, 
M/CD++ states trajectories are linearly interpolated with 
the Dymola states trajectories through 
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In our case, f
~

corresponds to the interpolated M/CD++ 

state trajectory and df  to the Dymola state trajectory. 
Then, the relative error between trajectories can be calcu-
lated as: 
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where mcdf corresponds to the state trajectory calculated 
by M/CD++. 

3.1 Example 3.1 

On this example, the electrical circuit shown on Figure 5 
is simulated. Two test cases were executed for this model. 
Test cases have a variation of the integration method used 
on Dymola, in order to compare the results with M/CD++ 
calculated trajectories.  

 

model example3.1 
  Modelica.Electrical.Analog.Basic.Capacitor Ca-
pacitor1(C=30); 
  Modelica.Electrical.Analog.Basic.Resistor Re-
sistor1; 
  Modelica.Electrical.Analog.Basic.Inductor In-
ductor1(L=40); 
  Modelica.Electrical.Analog.Basic.Inductor In-
ductor2; 
  Modelica.Electrical.Analog.Basic.Capacitor Ca-
pacitor2(C=30); 
  Modelica.Electrical.Analog.Basic.Inductor In-
ductor3; 
  Modelica.Electrical.Analog.Basic.Inductor In-
ductor4(L=80); 
  Modelica.Electrical.Analog.Basic.Capacitor Ca-
pacitor3(C=40); 
  Modelica.Electrical.Analog.Basic.Ground 
Ground1; 
  Mode-
lica.Electrical.Analog.Sources.ConstantCurrent 
ConstantCurrent1; 
equation 
  connect(Capacitor1.p, Inductor2.p); 
  connect(Resistor1.p, Inductor2.p); 
  connect(Inductor1.p, Inductor2.p); 
  connect(Capacitor2.p, Inductor2.n); 
  connect(Inductor3.n, Capacitor3.p); 
  connect(Inductor3.n, Inductor4.p); 
  connect(Capacitor1.n, Resistor1.n); 
  connect(Resistor1.n, Inductor1.n); 
  connect(Capacitor3.n, Inductor4.n); 
  connect(Inductor2.n, Inductor3.p); 
  connect(Capacitor2.n, Capacitor3.n); 
  connect(ConstantCurrent1.p, Inductor2.p); 
  connect(Inductor1.n, ConstantCurrent1.n); 
  connect(ConstantCurrent1.n, Capacitor2.n); 
  connect(Ground1.p, Capacitor3.n); 
end example3; 

Figure 2 – Modelica code for circuit on example 3.1 

 
Figure 3– Electrical circuit Example 3.1 

 
We simulated this model circuit using the DASSL inte-
gration method on Dymola, for 60 seconds of simulated 
time, with 500 intervals and a tolerance of 0.0001. We 
compared the results obtained with a QSS DEVS model 
implemented by M/CD++, using the following parame-
ters for each of the components: 
 

Component Quantum Hysteresis window 
Capacitor1 0.0005 0.00025 
Capacitor2 0.0001 0.00005 
Capacitor3 0.0001 0.00005 
Inductor1 0.0001 0.00005 
Inductor2 0.0005 0.00025 
Inductor3 0.001 0.0005 
Inductor4 0.0001 0.00005 



The following figures show the error for the capacitor 
(C1) and the state trajectories for the inductor (I1) on 
M/CD++ and Dymola for the given parameters: 
 

 Relative error average 
Curve Case 3.1 Case 3.2 

Capacitor1.v (C1.v) 0.28 % 0.288 % 
Inductor2.i (I2.i) 3.33 % 1.28 % 

 

Relative error between interpolated C1.v on 
MCD++ and C1.v on Dymola (case 3.1)
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Figure 4. (a) Relative error M/CD++ vs. Dymola for v. 

on C1 (b) M/CD++ and Dymola for current on I1  
 
Figure 7 (a) shows the relative error curve for voltage on 
capacitor C1. Figure 7 (b) shows the trajectories for the 
current on inductor I1. It can be seen that M/CD++ ap-
proximates the model trajectories well, and that the rela-
tive error is constrained (below 0.5%). Larger relative er-
rors are obtained for points near to zero, given the fixed 
quantum size used through the entire simulation (if we 
see the formula we used to compute the relative error in 
section 3, we are dividing the difference between the exe-

cution of both models by f
~

(xj); when this value tends to 
zero, the relative error grows, as we see in the crossing 
zero areas). 

3.2 Example 3.2 
This example just changed the simulation of the Example 
3.1 circuit using the Euler integration method on Dymola. 
The simulation time is 60 seconds, and we used an inte-
gration step of 0.01, with a tolerance of 0.0001. We com-
pare the results of the model with the same quantum 

size/hysteresis window presented for Example 3.1, per-
mitting us to compare the results with a more traditional 
integration algorithm. 
 
The following figure show the error between the 
capacitor (C1) and inductor (I1) state trajectories on 
M/CD++ and Dymola for the given simulation 
parameters: 
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Figure 5 – Simulation results for test case 3.2. Relative 

error for current on I1 
 

Figure 8 shows how the relative error is still small, and 
the larger relative error is for values near to zero, al-
though this value was reduced when using a fixed step-
size integration method on Dymola, as the Euler algo-
rithm. The following table shows the Relative error aver-
ages for test cases on Example 3.1  circuit.  
 
As we can see, although we are using a fundamentally 
different approach (a discrete-event simulator for con-
tinuous systems models), the amount of the error, while 
compared with well-established numerical methods is re-
duced. As showed in [13] (and as we will discuss in sec-
tion 3.5), these values can be even improved by choosing 
a smaller quantum size for the Q-DEVS version. 

3.3 Example 3.3 

In this case, we implemented the electrical circuit on Fig-
ure 9. Two test cases were executed for this model vary-
ing the integration method used on the simulation with 
Dymola. 



 
Figure 6 – Electrical circuit of example 3.3 

 
Initially, we simulated Example 3.3 circuit using the 
DASSL integration method on Dymola. The simulation 
time was 30 seconds, and we used 500 intervals at a pre-
cision of 0.0001. The following table presents the pa-
rameters used for the DEVS models running in M/CD++. 
 

Component Quantum Hysteresis window 
Capacitor1 0.0001 0.00005 
Capacitor2 0.001 0.0005 
Inductor1 0.0005 0.00025 
Inductor2 0.0008 0.0002 
 
The following figures show the error, for the current 
trajectory on the ideal transformer, between M/CD++ and 
Dymola for the given simulation parameters. 
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IdealTransformer1.i1 curves comparison
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Figure 7 – (a) Relative error: between current on the 
ideal transformer (b) Current curves comparison.  

 
Figure 11 (a)  shows the relative error, between M/CD++ 
and Dymola, on the ideal transformer input current. State 
trajectories on the system where calculated on Dymola 

using the DASSL integration method. Again, we can see 
that the approximation is very accurate (the difference be-
tween the curves obtained is indistinguishable). 

3.4 Example 3.4 
In this case, we repeated the studies carried out in Exa m-
ple 3.3, but using the Euler integration method on Dy-
mola, using an integration step of 0.005, and a tolerance 
of 0.0001. The following figures show the error, for the 
current trajectories on the ideal transformer (input and 
output flow), between M/CD++ and Dymola for the given 
simulation parameters. A similar error to the one 
produced on the previous case is given using the Euler 
integration method on Dymola, with a step size equal to 
0.005. Results can be seen on Figure 12 (a) and (c). 
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IdealTransformer1.i1 curves comparison
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Relative error between IT.i2 on MCD++ and IT.i2 interpolated 

by Dymola (case 4.2)
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IdealTransformer1.i2 curves comparison
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Figure 8– (a) (b) Error comparison for current i1 (flow 
out) on the ideal transformer (c) (d) Error for current i2 

(flow in) on the ideal transformer 
 
The following table shows the relative error averages we 
found for test cases on Example 3.4  circuit.  
 

 Relative error average 
Curve Case 4.1 Case 4.2 

IdealTransformer1.i1 0.61 % 0.62 % 

3.5 Example 3.5 

The electrical circuit on Figure 13 is simulated on this 
example. Two test cases were executed for this model 
varying the quantization parameters used for state trajec-
tories on M/CD++. 

 
Figure 9– Electrical circuit of example 3.5 

 
Simulation of the Example 5 circuit using the DASSL in-
tegration method on Dymola, for 15 seconds. Again, we 
used 500 intervals with a precision of 0.0001. The follow-
ing figure shows the parameters for M/CD++ simulations. 

Component Quantum Hysteresis window 
Capacitor1 1.60 0.5 
Capacitor2 1.60 0.5 
Capacitor3 1.60 0.5 
Inductor1 0.50 0.10 
Inductor2 0.50 0.10 
Inductor3 0.50 0.10 

 
The following figures show the error, for the state 
trajectories on capacitor (C1) and inductor (I1), between 
M/CD++ and Dymola for the given simulation 
parameters: 

Relative error between C1.v on MCD++ and C1.v interpolated 
by Dymola (case 5.1)

0.00%

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%
0.00 5.00 10.00 15.00 20.00

Time (sec)

R
el

at
iv

e 
er

ro
r 

(%
)

Capacitor1.v curves comparison

0.00E+00
5.00E+01
1.00E+02
1.50E+02
2.00E+02
2.50E+02
3.00E+02
3.50E+02
4.00E+02
4.50E+02
5.00E+02

0.00 5.00 10.00 15.00 20.00

Time (sec)

C
ap

ac
it

o
r1

.v
MCD++ interpolated by Dymola MCD++

 
Relative error between I1.i on MCD++ and I1.i interpolated by 

Dymola (case 5.1)
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Figure 10– (a), (b) Error  for voltage curve on C1 

(c) (d) Error for current curve on I1 
 
This test case was simulated using the DASSL method on 
Dymola. Figure 15 (a) and (b) show the higher relative 
errors on the zero crosses for state trajectories on capaci-
tor1  and inductor1 . Next test case will show how de-



creasing the quantum size will produce more accurate re-
sults. 

3.6 Example 3.6 
We simulated the circuit of Example 3.5 circuit using the 
DASSL integration method on Dymola and decreasing 
the quantum and hysteresis window size on M/CD++ 
simulation. The following table shows the new simulation 
parameters for M/CD++ simulations. 
 

Component Quantum Hysteresis window 
Capacitor1 0.65 0.01 
Capacitor2 0.60 0.01 
Capacitor3 0.70 0.01 
Inductor1 0.25 0.01 
Inductor2 0.20 0.01 
Inductor3 0.20 0.01 

 
Relative error between C1.v on MCD++ and C1.v interpolated 

by Dymola (case 5.2)
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Relative error between I1.i on MCD++ and I1.i interpolated by Dymola 

(case 5.2)
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Figure 11– (a) (b) Error for voltage curve on C1 

(c) (d) Error for current curve on I1 
 
The following table shows the relative error averages for 
all the test cases executed on Example 3.5  circuit. 
 

 Relative error average 
Curve Case 5.1 Case 5.2 

Capacitor1.v 3.84 % 1.37 % 
Inductor1.i 17.13 % 6.04 % 

 
4. CONCLUSION 
 
The DEVS formalism is a method defined for modeling 
and simulation of discrete event systems. During the last 
years the DEVS theory has evolved, and it was recently 
upgraded in order to permit simulation of continuous and 
hybrid systems. We introduced a tool for modeling and 
simulation of continuous systems based on DEVS. Mod-
els are described using Modelica, a modular and acausal 
standard specification language for physical systems 
modeling. Examples of model simu lation with their exe-
cution results are included. The simulation results gener-
ated by M/CD++ were compared with those produced by 
a complex physical system simulation environment with 
Modelica support called Dymola. Several test cases were 
executed using both toolkits, varying the quantization pa-
rameters used on M/CD++ and the integration methods 
utilized by Dymola. 
 
It was shown that a higher relative error is obtained for 
values near to zero on a trajectory. This is related with the 
fixed quantum size used by the quantization function over 
a state trajectory, and the formulas used for computing 
the relative error. Then, for smaller values, greater differ-
ences are given. An approach to improve the simulation 
results could be developed using an adaptive quantization 
function, ma king the quantum vary according to the tra-
jectory evolution.  Promising results on dynamic quanti-
zation can be found in [21] and [16]. 
 
On the examples, it was also shown how accurate results 
could be obtained reducing the quantum and hysteresis 
window size. It is important to have in mind that 
M/CD++ approximates the system solution based on the 



QSS method, which uses a simple first order integration 
approach. Most of the results produced by M/CD++ were 
contrasted with results generated using a higher order and 
variable step-size integration method, DASSL. It was 
shown that, in general, choosing adequate quantization 
parameters produce accurate solutions and decrease error. 
 
In the long term, we want to attack the development of 
hybrid systems based on the DEVS forma lism and its ex-
tensions, building libraries to make easy to use comp o-
nents developed on top of DEVS modeling tools. One of 
the benefits is that for a given accuracy, the number of 
transitions can be reduced, decreasing the execution time 
of simulations. Discrete time models can be simulated 
under discrete event paradigm, thus allowing the devel-
opment of a simulation environment for complex sys-
tems, modeled as hybrid systems, where all paradigms 
merge (continuous time, discrete time, and discrete 
event). 
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