
S I M U L AT I O N
NEWS EUROPE

Journal on Developments and
Trends in Modelling and Simulation

Special Issue

Volume 16 Number 2 September 2006, ISSN 0929-2268

ARGESIM

SNE

Special Issue

Parallel and Distributed

Simulation Methods

and Environments

bbb

++ Editorial - Content +++
SN

E
16

/2
,

Se
pt

em
be

r
20

06

Content

Editorial SNE Special Issue Parallel and Distributed
Simulation Methods and Environments;
T. Pawletta, S. Pawletta ... 2

Call for SNE Special Issue 2007 Verification and
Validation in Modelling and Simulation; S. Wenzel ... 3

Overview about the High Level Architecture for

Modelling and Simulation and Recent

Developments; S. Straßburger ... 5

Lookahead Computation in G-DEVS/HLA Environ-

ment; G. Zacharewicz, C. Frydman, N. Giambiasi ... 15

Parallel Simulation Techniques for DEVS/Cell-DEVS

Models and the CD++ Toolkit; G. Wainer, E. Glinsky ... 25

SCE based Parallel Processing and Applications in

Simulation; R. Fink, S. Pawletta, T. Pawletta, B. Lampe ... 37

HLA Applied to Military Ship Design Process;

C. Stenzel, S. Pawletta, R. Ems, P. Bünning ... 51

Co-simulation of Matlab/Simulink with AMS Designer

in System-on-Chip Design; U. Eichler, U. Knöchel,

S. Altmann, W. Hartong, J. Hartung ... 57

Parallel Computation in Blood Flow Simulation using

the Lattice Boltzmann Method; S. Wassertheurer,

D. Leitner, F. Breitenecker, M. Hessinger, A. Holzinger ... 64

ARGESIM Benchmark on Parallel and Distributed

Simulation; F. Breitenecker, G. Höfinger,

R. Fink, S. Pawletta, T. Paletta, ... 69

SNE Editorial Board

Felix Breitenecker (Editor-in-Chief), Vienna Univ. of

Technology, Felix.Breitenecker@tuwien.ac.at
Peter Breedveld, University of Twenty, Div. Control

Engineering, P.C.Breedveld@el.utwente.nl
Francois Cellier, ETH Zurich, Inst. f. Computational

Science / University of Arizona, fcellier@inf.ethz.ch,

Russell Cheng, Fac. of Mathematics / OR Group, Univ.

of Southampton, rchc@maths.soton.ac.uk
Rihard Karba, University of Ljubljana, Fac. Electrical

Engineering, rihard.karba@fe.uni-lj.si

David Murray-Smith, University of Glasgow,

Fac. Electrical & Electronical Engineering;

d.murray-smith@elec.gla.ac.uk
Horst Ecker, Vienna Univ. of Technology.

Inst. f. Mechanics, Horst.Ecker@tuwien.ac.at
Thomas Schriber, University of Michigan, Business School

schriber@umich.edu
Sigrid Wenzel, University of Kassel, Inst. f. Production

Technique and Logistics, S.Wenzel@uni-kassel.de

Guest Editors Special Issue Parallel and
Distributed Simulation Methods and Environments
Thorsten Pawletta, pawel@mb.hs-wismar.de
Sven Pawletta, s.pawletta@et.hs-wismar.de

Res. Group Computational Engineering and Automation,

Wismar University, 23952 Wismar, Germany

WWW.MB.HS-WISMAR.DE/cea

SNE Contact

SNE-Editors / ARGESIM

c/o Inst. f. Analysis and Scientific Computation

Vienna University of Technology

Wiedner Hauptstrasse 8-10, 1040 Vienna, AUSTRIA

Tel + 43 - 1- 58801-10115 or 11455, Fax - 42098

sne@argesim.org; WWW.ARGESIM.ORG

Dear readers,
We are glad to present the first SNE Special Issue - a Special Issue on ‘Parallel and Distributed Simulation Methods and Envi-
ronments’. The idea for special issues was born in ASIM, the German Simulation Society. As there was and as there still is a
need for state-of-the-art publications in topics of modelling and simulation, ASIM first tried to publish monographs on this
subject. But publication of such books showed disadvantages: too slow production time, too high costs, and lack of publication
issues. ASIM, seeking for alternatives, contacted ARGESIM with the idea of SNE Special Issues - while ARGESIM itself thought
on Special Issues, because of lack in publication space in the regular SNE issues. Now, one year after the first contact, we can
present the first Special Issue, edited by Thorsten & Sven Pawletta from University Wismar, Germany.
The editorial policy of SNE Special Issues is to publish high quality scientific and technical papers concentrating on state-of-the-art
and state-of-research in specific modeling and simulation oriented topics in Europe, and interesting papers from the world wide
modeling and simulation community. This Special Issue ‘Parallel and Distributed Simulation Methods and Environments’ (SNE
16/2), will be sent to all ASIM members - together with the regular SNE 16/1 (SNE 46), and sample copies will be sent to other
European Simulation Societies; furthermore, it is available on basis of an individual subscription of SNE - SNE Special Issues are
open for everybody, for publication and subscription (not only for ASIM). We think also on Special Issues publishing selected
papers from EUROSIM conferences.
We hope, you enjoy this Special Issue, which presents state-of-the-art in parallel and distributed simulation, from theory with lookahead
formulas via implementation with HLA and other systems to applications in ship desgin and blood flow simulation.
It is planned to publish a SNE Special Issue each year, for 2007 a Special Issue on ‘Verification and Validation’ (Guest Editor
Sigrid Wenzel, University Kassel) is scheduled (SNE 17/2). I would like to thank all people who helped in managing this first
Special Issue, especially the Guest Editors, Thorsten and Sven Pawletta from Wismar University.

Felix Breitenecker, Editor-in-Chief SNE; Felix.Breitenecker@tuwien.ac.at

Editorial Info - Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).

Scope: Development in modelling and simulation, benchmarks on modelling

and simulation, membership info for EUROSIM and Simulation Societies.

Editor-in-Chief: Felix Breitenecker, Inst. f. Analysis and Scientific

Computing, Mathematical Modelling and Simulation, ,

Vienna University of Technology, Wiedner Hauptstrasse 8-10,

1040 Vienna, Austria; Felix.Breitenecker@tuwien.ac.at
Layout: A. Breitenecker, ARGESIM TU Vienna / Linz;

Anna.Breitenecker@liwest.at

Printed by: Grafisches Zentrum TU, Wiedner Hauptstr. 8-10, A-1040, Wien

Publisher: ARGESIM and ASIM

ARGESIM, c/o Inst. for Analysis and Scientific Computation, TU Vienna,

Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria, and

ASIM (German Simulation Society), c/o Wohlfartstr. 21b, 80939München

© ARGESIM / ASIM 2006

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

25

Introduction

The widespread use of M&S is leading to execution of

larger and more complex systems. One way of hand-

ling this complexity is to devote more memory and

processor cycles through the use of multiple resources

[1]. Parallel discrete event simulation (PDES) studies

the execution of discrete event models in parallel or

distributed computers [1]. The main concern of this

community was to reduce execution time of applica-

tions by using multiple processors, and a large number

of synchronization algorithms were developed [1].

Most of these algorithms are based on Chandy-Misra-

Bryant [2,i3] and Time Warp [4], which introduced

fundamental ideas that are still used.

Another way to attack these problems considered

using the DEVS formalism [5] as the modelling fra-

mework for PDES [6,i7,i8,i9]. DEVS is a sound for-

mal framework based on generic dynamic systems

concepts that supports provably correct, efficient,

event-based simulation. DEVS enables the construc-

tion of models in a hierarchical, modular fashion, allo-

wing component reuse and reducing development and

testing time.

Cell-DEVS [10] combines cellular automata [11] with

DEVS theory, improving timing definition. Individual

cells are defined as DEVS models and coupled to

form complete cell spaces. CD++ [12] is an M&S

tool that implements DEVS and Cell-DEVS theory. A

hierarchical, conservative parallel simulation mecha-

nism has been implemented in CD++, showed impro-

ved results for both DEVS and Cell-DEVS [8]. Howe-

ver, its degree of parallelism and speedups are boun-

ded. Here, we introduce a new technique for optimi-

stic simulation of large, complex DEVS and Cell-

DEVS models in CD++. The technique combines the

Time Warp synchronization mechanism and the DEVS

abstract simulators. We introduce two new classes of

DEVS processors that carry out the simulation effi-

ciently across multiple processors. In our approach,

the hierarchy of the simulation objects is flattened to

reduce communication overheads, using a flat simula-

tion approach that eliminates the need for intermedi-

ate coordinators [7,i13]. Consequently, it reduces the

overhead of message passing, improving the overall

performance of the simulation.

1 DEVS and Cell-DEVS

The DEVS formalism [5] provides a framework for

the definition of hierarchical modular models, allo-

wing for model reuse and development time reduc-

tion. A DEVS model is described as a composite of

models, each of them being behavioural (atomic) or

structural (coupled). P-DEVS [6] provides a flexible

way of dealing with simultaneous events. An atomic

DEVS model is defined as:

M = < XM, YM, S, δext, δint, δcon, λ, ta >

At any given time, an atomic model is in state s during

a period defined by ta(s). When that time expires, an

internal transition takes place; the system outputs the

value λ(s) and then it changes to the state specified by

δint(s). If one or more external events (XM) occur

before ta(s), the new state is given by the external

transition function, δext(s ,e, XM), which uses a bag of

events to allow multiple events to be processed simul-

taneously. If external and internal transitions are in

conflict (an external event is received at this time), the

new state is given by δcon(s).

Coupled models are defined as a set of basic compo-

nents (atomic or coupled) interconnected through the

model's interfaces. The model’s coupling defines how

to convert the outputs of a model into inputs for the

others. A coupled model is:

Parallel Simulation Techniques for DEVS/Cell-DEVS Models

and the CD++ Toolkit

Gabriel Wainer, Ezequiel Glinsky, Carleton University, Ottawa, Canada

WWW.SCE.CARLETON.CA/faculty/wainer

DEVS is a sound formal modelling and simulation (M&S) framework based on generic dynamic system con-

cepts. Cell-DEVS is a formalism for cell-shaped models based on DEVS. This work presents a new simula-

tion technique for execution of DEVS and Cell-DEVS models in parallel/distributed environments. The paral-

lel simulator is based on Time Warp, and developed as a new simulation engine for CD++, an M&S toolkit

that implements DEVS and Cell-DEVS theories. The technique uses a non-hierarchical approach that simpli-

fies the structure of the simulator and reduces the communication overhead. The results obtained

allowed us to achieve considerable speedups.

CM = < X, Y, D, {Md | d 0 D}, EIC, EOC, IC >

X is the set of inputs, Y is the set of outputs, D is a set

of the component names; for each d 0 D, Md is a basic

DEVS model; the external input couplings set (EIC)

defines how to connect external inputs to components;

the external output couplings set (EOC) defines how

to connect component to external outputs; and the

internal couplings set (IC) defines how to interconnect

components.

Cell-DEVS [10] allows the specification of executa-

ble cell spaces with explicit timing delays, which

allows easy definition of complex behaviour in physi-

cal systems. A parallel Cell-DEVS atomic model [14]

can be defined as:

TDC = < Xb, Yb, S, N, d, τ, τcon, δint, δext, δcon, λ, D >

Each cell uses a set of N inputs to compute the next

state. These values are received through a well-defined

interface (Xb and Yb), activating a local function (τ, τcon),

which uses the cell's inputs and present state (S). d defi-

nes the kind of delay and D is the state’s duration func-

tion. The model advances through the activation of δint,

δext, δcon, λ, and D, as in other DEVS models.

After the behaviour for a cell is defined, the complete

cell space will be constructed by building a coupled

Cell-DEVS model:

GCC = < Xlist, Ylist, X, Y, n, {t1, ..., tn}, N, C, B, Z >

The cell space is a coupled model composed of an n-

sized array of t1H ... H tn atomic cells (C). Each of them

is connected to the cells defined by the neighbourhood

(N). As the cell space is finite, the border (B) can have

different behaviour than the rest of the space. X is the

set of input events and Y is the set of output events.

Xlist and Ylist are the lists of input and output couplings.

Finally, the Z function defines the internal and exter-

nal coupling of cells in the model. CD++ [12] imple-

ments DEVS and Cell-DEVS formalisms. Atomic

models can be defined in C++ or an interpreted gra-

phical notation, while coupled and Cell-DEVS models

are defined using a built-in specification language.

2 Optimistic PDES of DEVS Models

As mentioned earlier, we want to combine advanced

DEVS simulators with PDES. In PDES, the simula-

tion is subdivided in smaller parts running on different

nodes. Each subpart is a sequential simulation, usually

referred to as a Logical Process (LP), which groups

one or more objects running in a node [1]. Simulation

objects communicate through timestamped messages.

Objects located on different LPs have to traverse the

boundaries of the LPs to interact with each other. Syn-
chronization is key in these cases, as the difference in

execution speeds can mix events with different time-

stamps, causing causality problems (i.e., an event in

the past affects the present). Conservative synchroni-

zation algorithms avoid violating causality constraints

at all times [2,i3]. Although many conservative algo-

rithms are currently found in real-world applications,

they have two main disadvantages ([1]): it is not pos-

sible to take full advantage of the concurrency in the

application, and the simulator has to be specifically

designed to exploit concurrency, leading to a complex,

tedious design process.

Optimistic synchronization, instead in [4], allows

some causality errors to occur, but provides a detec-

tion/ recovery mechanism. Optimistic algorithms ena-

ble greater degree of parallelism, and they do not rely

on application-specific data.

2.1 The CD++ simulator

CD++ was built as a class hierarchy in C++, where

each class corresponds to a simulation entity using the

basic concepts defined in [5]. There are two basic

abstract classes: Model and Processor. The former is

used to represent the behaviour of the atomic and cou-

pled models, while the latter implements the simula-

tion mechanisms. Simulators manage the atomic

models. Coordinators manage coupled models. The

Root Coordinator manages global aspects. CD++ was

redesigned to provide parallel execution of DEVS and

Cell-DEVS [8]. The parallel version of CD++ was

built on top of Warped [15], a simulation kernel that

provides an implementation of Time Warp with diffe-

rent optimizations. Warped uses the MPI message pas-

sing standard for communication [16]. Although

Parallel CD++ showed speedups in the execution of

both DEVS and Cell-DEVS models, a single Root
Coordinator still acts as a global scheduler for every

node in the simulation.

Another problem is that most DEVS simulators are

hierarchical, creating a one-to-one correspondence

between model components and simulation objects.

Since the simulation advances by exchanging messa-

ges between simulation objects, communication costs

can be considerable. Flat simulation mechanisms,

instead, try to reduce this overhead by simplifying the

underlying simulator structure, while keeping the

model definition and preserving the separation bet-

ween model and simulator.

Flat simulation approaches have been implemented in

distributed [7] and stand-alone [13] environments.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

26

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

There are two basic abstract classes in CD++: Model and

Processor. The former is used to represent the behavior

of the atomic and coupled models, while the latter imple-

ments the simulation mechanisms. Simulators manage

the atomic models. Coordinators manage coupled

models. The Root Coordinator manages global aspects

(starting/stopping the simulation, communication with

environment). This reflects the clear distinction between

model and simulator. We took advantage of this separa-

tion of concerns by focusing on the processors’ class

hierarchy only. All classes inheriting from model remain

unchanged from those defined in earlier versions of the

tool, allowing direct reuse of existing models.

Two new classes are introduced [17]: Flat Coordina-
tor (FC) and Node Coordinator (NC). Additionally,

we modified the Simulator and Root Coordinator
classes (Figureb1). The algorithms we defined are

based on those in [6] and [14]. The Root Coordinator
only handles I/O operations, and starts/stops the simu-

lation. The NC is in charge of synchronization and

time management for the LP. The FC is responsible

for receiving, translating, and sending messages bet-

ween its descendants, using a flat data structure with

coupling information for every component.

In order to run the model on a distributed environ-

ment, we need to indicate the nodes that will partici-

pate in the simulation, and how they are allocated to

each processor. Figureb2 shows an example where two

atomic models run on Processor 0, three atomic

models run on Processor 1, and the remaining two

models on Processor 2. Node coordinators handle

inter-processor communication.

During the creation and registration of each

Simulator object, they are associated to the cor-

responding LP. NCs can communicate with each

other using inter-LP messaging. The Root Coor-

dinator executes on one LP, and it forwards mes-

sages from the environment to the correspon-

ding NC. On the other hand, when a NC proces-

ses an output that must be sent back to the envi

ronment, it is sent to the Root Coordinator.

2.2 Abstract simulators in CD++

We will describe the simulation mechanism by pre-

senting the behaviour of each Processor. The simula-

tion is message-driven. Different messages can be

exchanged among processors: init (initialization), q
(external input), y (output), @ (collect), * (internal

transition), and done.

Simulator

A Simulator is created for each atomic component or

cell. It is responsible of executing the functions of the

associated model, as follows.

When the initialization message is received, variables

are initialized (linesi2 andi3) and the simulator

informs its parent the time of the next scheduled inter-

nal transition (line 5).

When a simulator receives a collect message (@,t),

it generates an output, which is sent to the parent flat

coordinator (lines 3-5).

When an external message (q, t) is received, it is sto-

red in the bag of external events (linei12). These mes-

sages will be used later, when the external transition is

triggered.

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

27

Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

0:atomic_4
atomic_5

1:atomic_1
atomic_2 atomic_3

2:atomic_6
atomic_7

Flat Coordinator #0

Simulator #4

Node Coordinator #0

Root Coordinator

Simulator #5

Flat Coordinator #1

Simulator #1

Node Coordinator #1

Simulator #3 Simulator #2

Flat Coordinator #2

Simulator #6

Node Coordinator #2

Simulator #7

Processor 0 Processor 1 Processor 2

Figure 2. Model partition file for CD++.

Figure 1: New Processor class hierarchy [17]

1 when (init, 0) message is received
2 initialize model’s variables
3 tL = 0
4 t = ta (s)
5 send (done,t) to parent flat coord.
6 end when

An internal message (*,t) triggers the execution of

a transition function. The simulator executes one of

the three transition functions based on t (elapsed time

since the last transition), tN (time of the next schedu-

led transition), and the contents of bag of external

events, as showed in the following code fragment. If

t<tN (lines 2-6) and the bag of external events con-

tains at least one element, the external transition is

executed. If t=tN (lines 7-9), it is time for the internal

transition. However, if the bag is not empty and t=tN
(lines 10-13) the confluent transition has to be execu-

ted. In every case, after executing the corresponding

transition, a done message is sent to the parent flat

coordinator, indicating the next scheduled transition

time (lines 17-19).

Flat coordinator

A flat coordinator has one or more simulator children
(in charge of the atomic components), and one parent
node coordinator. The flat coordinator uses model

coupling information to translate output events into

input events. Additionally, it synchronizes models that

are imminent in this logical process using a structure

called synchronize set.

When the initialization message is received, the flat
coordinator forwards it to all its children to complete

the initialization phase (lines 3-5). Using the done
messages received from them, the minimum time of

next change is computed and communicated to the

parent node coordinator (lines 6-8).

When a collect message (@,t) is received, it is sent

to all dependant simulators with minimum t (lines 3-

7). Once all the responses are received (line 8), a done
message is sent to the parent node coordinator. Simu-

lators that have been scheduled for a transition are

cached in the synchronize set.

If the destination of the output (y,t) message is the

environment, the message is sent to the parent node

coordinator (lines 2-3; above).

If not, all influencees of the message are computed

using the function zij, and one or more (q,t) mes-

sages are sent accordingly (lines 5-13).

SN
E

16
/2

,
Se

pt
em

be
r

20
06

28

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

1 when a (@, t) message is received
2 if t = tN then
3 y = λ(s)
4 send (y,t) to parent flat coord.
5 send (done,t) to parent flat coord.
6 else
7 raise error
8 end if
9 end when
10 /***********************************/
11 when a (q, t) message is received
12 add event q to the bag
13 end when

1 when a (*, t) message is received
 2 case tL ≤ t < tN
 3 e = t - tL
 4 s = δext (s, e, bag)
 5 empty bag
 6 end case
 7 case t = tN and bag is empty
 8 s = δint (s)
 9 end case
10 case t = tN and bag is not empty
11 s = δcon (s, bag)
12 empty bag
13 end case
14 case t > tN or t < tL
15 raise error
16 end case
17 tL = t
18 tN = tL + ta (s)
19 send (done, tN) to parent flat coord.
20 end when

1 when (init, 0) message is received from
 parent node coordinator
2 tL = 0
3 for each child simulator si
4 send (init, 0) to child si
5 end for each
6 wait until all done messages receiv.
7 tN = minimum tN of all components
8 send (done, tN) to parent node coord.
9 end when

 1 when a (@, t) message is received from
 parent node coordinator
 2 if t = tN then
3 tL = t
 4 for each imminent child si with min. tN
 5 send (@, t) to child si
6 cache i in the synchronize set
 7 end for each
 8 wait all done messages received
 9 send (done, t) to parent node coord.
10 else
11 raise error
12 end if
13 end when

 1 when (y,t) message received from child i
 2 if destination of y is the environment
 3 send (y, t) to parent node coordinator
 4 else
 5 for each influencee j of child i
 6 q = zi,j (y)
 7 if (j is a local processor) then
 8 send (q, t) to child j
 9 cache j in the synchronize set
10 else
11 send (q,t) to parent node coord.
12 end if
13 end for each
14 end if
15 end when

For destination processors on the same LP, messages

are sent directly to the simulator (lines 8-9). Messages

for remote simulators are sent to the parent node coor-

dinator (line 11), which will forward them to the cor-

responding LPs. Local components with scheduled

transitions are cached in the synchronize set.

When an external message (q,t) is received in a flat

coordinator, it is stored in a bag of events.

Upon receiving an internal message (*,t), the flat
coordinator sends the external messages stored in the

bag to the corresponding components (lines 3 to 8 in

the following fragment). All the receivers of these

messages are added to the synchronize set. Then, an

internal message is sent to all components in the syn-

chronize set. After all done messages are received

back from these components, the time of the next

event is calculated and a done message is sent to the

node coordinator (lines 13-17).

Node coordinator

One node coordinator is located on each LP, and it has

one flat coordinator child. Node coordinators drive inter-

LP communication, and advance the simulation time in

the local LP based on the information received from the

root coordinator and from its dependant flat coordinator.

The algorithms describing its behaviour are described

next.

The initialization message, sent by the root coordina-
tor, triggers the simulation in each LP. An initializa-

tion message (init,0) is sent to the flat coordinator

(line 2), which will forward it to every simulator.

The first simulation cycle starts after a (done,t)
message is received. The time for the first collect mes-

sage is determined by the minimum between the first

element in queue of external events and the time of

next change reported by the flat coordinator (lines

3-5). next-message-type is used to determine

which type of message has to be sent. If the message

to be sent is a collect (lines 6-17), the process is ana-

logous to the initialization phase: minimum time t is

computed, events with time t are sent (if any), the col-

lect message is sent (linei16) and the next message

type is set to internal (line 17).

When an internal (*,t) message has to be sent to

finish the current simulation cycle, the type of the next

message is set to collect (line 4).

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

29

 1 when (*,t) message is received from
 parent node coordinator
 2 if tL ≤ t ≤ tN then
 3 for each q ∈ bag
 4 for each local receiver sj of q
 5 send (q, t) to sj
 6 cache j in the synchronize set
7 end for each
 8 end for each
 9 empty bag
10 for each i ∈ synchronize set
11 send (*, t) to i
12 end for each
13 wait all done messages received
14 tL = t
15 tN = minimum tN of all components
16 clear the synchronize set
17 send (done,tN)to parent node coord.
18 else
19 raise an error
20 end if
21 end when

 1 when a (init, 0) message is received
 from root coordinator
 2 send (init, 0) to child flat coord.
 3 wait for done message to be received
 from flat coordinator
 4 sort queue of events by arrival time
 5 t = min (tN of flat coordinator,
 time of first event in queue)
 6 if t = tN of queue then
 7 for each q in queue with time t
 8 send (q, t)to flat coordinator
 9 end for each
10 end if
11 send (@, t) to child flat coordinator
12 next-message-type = *
13 end when

 1 when a (done, t) message is received
 from child flat coordinator
 2 if next-message-type = * then
 3 send (*, t) to child flat coord.
 4 next-message-type = @
 5 else
 6 t= min (tN of flat coordinator,
 time of first event in queue)
 7 if t > stop simulation time then
 8 stop simulation in this LP
 9 else
10 if t=tN of first event in queue then
11 for each q in queue with time t
12 send (q, t) to flat coord.
13 end for each
14 end if
15 end if
16 send (@, t) to child flat coord.
17 next-message-type = *
18 end if
19 end when

1 when (q,t) message received from
 parent node coordinator
2 if destination of q msg is local then
3 add event q to the bag
4 else
5 raise error
6 end if
7 end when

An external message (q, t) can be received in a node
coordinator either from another (remote) node coordi-
nator or from its dependant flat coordinator. In the first

case, this event must be sent to the dependant flat coor-
dinator (line 3). This happens when a remote atomic

component sends an output through a port connected to

an atomic component executing in the local LP. As we

have shown earlier, this message is forwarded by the

flat coordinator to the corresponding simulator.

The timestamp t of a message received from a remote

node coordinator might be lower than the current time

in this LP. In such a case, the LP has to recover by per-

forming a rollback. The rollback has to bring that

object back to a state whose time is equal or smaller

than the time of the straggler. In addition, the messa-

ges that were (incorrectly) transmitted from this node

coordinator have to be cancelled (anti-messages have

to be sent to the destination objects). In the second

case, the message must be sent to a remote LP. Thus,

it is necessary to determine which node coordinator is

in charge of that LP, and then to send the message

using inter-process communication (lines 5-6).

When a node coordinator receives an output message

from its child (lines 10-16), a message has to be sent

to the environment. The parameter send-outputs-
from-NC determines whether outputs must be proces-

sed directly by the node coordinator (line 12), or via

the root coordinator (line 14). The first alternative

reduces the number of messages required to process

an output (messages do not have to travel through the

root coordinator) but requires some post-processing if

the outputs of multiple node coordinators have to be

merged. The second alternative centralizes the actual

processing of outputs in the root coordinator; it does

not require any post-processing but the overhead is

larger.

When an external event is received from the root co-
ordinator, the event is stored in timestamp order. The

destination simulator for that event will eventually

receive it when that time is reached by the LP.

Root coordinator

The root coordinator is responsible for starting the

simulation, dealing with external events, and sending

outputs back to the environment. It starts the simula-

tion by sending initialization messages to every node
coordinator, located on the different logical processes

that form the simulation.

External events are received from the environment in

the root coordinator, which sends an external event to

node coordinators that have one or more atomic

model that should receive that message (lines 3-6 in

the next code fragment).

Output messages received by the root coordinator are

sent back to the environment. This code is never exe-

cuted if the parameter send-outputs-from-NC is

set; otherwise, the root coordinator consolidates the

processing of output messages.

Figurei3 summarizes the flow of messages using the

previous algorithms. The root coordinator is in charge

of starting the simulation process by sending initiali-

zation messages. When an output is sent from an ato-

mic component to another, we can identify two diffe-

rent cases: Simulators execute on the same or on dif-

ferent LPs. In the first case, the FC on that LP takes

care of the situation. In the second case, a Simulator

on LPi has to send an output to a Simulator on LPj.

FCi identifies that the destination Simulator is not its

descendant.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

30

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

 1 when a (q, t) message is received
 2 if destination q is local
 3 send (q, t) to child flat coord.
 4 else
 5 dest_nc=node coordinator running
 atomic model that must receive q
 6 send (q,t) to node coord. dest_nc
 7 end if
 8 end when
 9 /***********************************/
10 when (y,t) message is received from
 child flat coordinator
11 if send-outputs-from-NC
12 send output (y, t) to environment
13 else
14 send output (y,t) to parent root coord.
15 end if
16 end when

1 when a (q, t) message is received from
 parent root coordinator
2 add q to the sorted queue of events
3 end when

1 for each child node coordinator nc i

2 send (init, 0) to nc i

3 end for each

1 when (q,t) is received from environment
2 tL = t
3 for each child node coord. nci sharing
4 LP with destination atomic model of q
5 send (q, t) to nc i

6 end for each
7 end when
8 when a (y, t) is received from child NC
9 tL = t
10 send (y, t) to environment
11 end when

Thus, it forwards the message to its parent NCi, which

identifies the corresponding LPj and forwards the

message. Inter-LP communication can lead to viola-

tions to the local causality constraint; in that case, a

rollback is triggered.

2.3 Rollbacks in CD++

We will show the execution behaviour of the simulator

presented in the previous section by showing how to exe-

cute a 10 H10 Cell-DEVS model divided in two LPs.
Figure 4 shows the initialization phase. The first simula-

tion cycle is started by the Root Coordinator, which sends

an initialization message to the NCs in LP0 and LP1 (1
and 2). When (init,0) is received in a NC, it is forwar-

ded to the FC (1.1 and 2.1). Then, the FCs forward the

messages to their Simulators (1.2-1.51, and 2.2-2.51),
triggering an initialization function.

After computing the time for the next change (using the

ta(s) function), every simulator sends a done message to

its parent FC reporting its time of next change. For exam-

ple, S1 indicates that there is an internal transition func-

tion to be executed at time 100 (message 1.52), whereas

S2 reports no scheduled internal transition (message

1.53, which contains infinity, and represents that the

model is in a passive state). After receiving all done mes-

sages, the FC sends a done message to its parent NC

(messages 1.103 and 2.103) with the minimum time of

its components (in this case, 100 for both LPs).

Then, the NC checks for external messages to be sent,

and it sends the first collect message to collect the out-

puts of the imminent components. Figureb5 shows how

NCs send the first message to their FCs (1.1 and 2.1),

which forward a collect message to imminent descen-

dants (Simulators with next change = 100). For exam-

ple, in LP0 it is sent to S1 (1.2) but not to S2.

When receiving a collect message, Simulators execute

their output functions and send the result/done messages

to its parent (1.20 and 2.18). FC translates output mes-

sages and sends external messages to the corresponding

local influencees or to the local NC. FC sends a done
message to the NC completing the collect phase.

At this point, the NC is ready to send an internal mes-

sage (*) to start the next phase. The cycle is similar to

the collect phase: the FC forwards the internal message

only to Simulators that have a scheduled transition for

the current simulation time (100). Simulators execute

the internal, external, or confluent transition function

according to the current time, the time of next change

and the state of the bag of events. Done messages are

sent to inform the time for the next transition.

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

31

Flat Coordinator

Simulator

Node Coordinator

Root Coordinator

Simulator

Processor i

init, q y

init, *, @, q q, y, done

init, *, @, q y, done

Node Coordinator

Processor j

q

...

Environment

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1: (init,0)

1.103: (done, 100)

1.52: (done,100)

2: (init,0)

1.1: (init,0)

S2 S3 ... S50

1.2: (init,0) 1.3: (init,0) 1.4: (init,0)

1.53: (done,inf) 1.102: (done,100) ...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.103: (done, 100)

2.52: (done,inf)

2.1: (init,0)

S52 S53 ... S100

2.2: (init,0) 2.3: (init,0) 2.4: (init,0)

2.53: (done,100) 2.102 (done,100) ...

... ...

Figure 3: Message flow: distributed simulation.

Figure 4: Initialization phase in sample Cell-DEVS model.

NCs are in charge of inter-LP communication. If the

message has a timestamp greater than the local time in

the destination, simulation continues. However, if there

is a violation to causality, a rollback has to be executed.

Figureb6 shows the scenario for a straggler message in

processor P0. The local times are t0=280, and t1=210.

In P0, the NC sent an internal message, which FC for-

warded to S1 (1 and 1.1). In P1, NC sent a collect

message (2), which after being forwarded (2.1 to

2.14) resulted in an output from S52 (2.15) that has to

be sent to S1. This message is forwarded as an external

message, q, from the FC (2.16) to the NC. Then, the

NC in P1 forwards it to the NC in P0 (2.17). The time-

stamp of the message, 210, is smaller than the time at

the local processor (280), triggering a rollback in P0.

Figureb7a shows the state of the NC’s input, state, and

output queues at the moment of receiving a straggler

with t=210. Figureb7b depicts the NC’s queues after the

rollback was completed: then, the NC can return to pro-

cess events, starting by the one that caused the rollback.

We defined the previous algorithms using different

services provided by Warped. Figure 8 shows the new

class diagram of the DEVS processors along with

some of methods that implement the algorithms pre-

viously described. Processor is an abstract class that is

derived from TimeWarp class. Processor provides

basic functionality and data that are common to all

DEVS processors in the application. It defines the

methods initialize, executeProcess and finalize as well

as other methods and variables.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

32

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

1.20: (y,100)

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1.1: (@,100)

S2 S34 ... S50

1.2: (@,100) 1.19: (@,100)

1.37: (y,100)

...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.18: (y,100)

2.1: (@,100)

S52 S76 ... S100

2.2: (@,100) 2.17(@,100)

2.33: (y,100) ...

... ...

...

Figure 5: Collect phase in sample Cell-DEVS model.

Flat Coordinator

S1

Node Coordinator

Root Coordinator

Processor 0

1: (*,280)

S2 S34 ... S50

1.1: (*,280)

t0 = 280

...

Flat Coordinator

S51

Node Coordinator

Processor 1

2.1: (@,210)

2: (@,210)

S52 S76 ... S100

2.2: (@,210) 2.14(@,210)

2.15: (y,210) ...

... ...

...

t1 = 210

2.16: (q,210)

2.17: (q,210)

Figure 6: Straggler message received during the simulation of a Cell-DEVS model.

In general, processor in-

cludes the definition of:

- send methods for each

type of message. These

methods use, in turn, sen-
dEvent in TimeWarp.

- Time management

methods (e.g., time-
Next(), timeLast(), time-
Next(VTime), timeLast-
(VTime)), to report and

update the time of the next

scheduled change, the

time of last change, etc.

- Initialize, finalize, and

some debugging methods.

- ExecuteProcess(), which

defines the behaviour of

any DEVS processor.

- rollbackCheck(), which

is called in the receive

method, and checks for

straggler messages.

- Basic variables, such as

the model associated to

this processor, its parent,

id and descriptors.

nodeCoordinator keeps

track of the number of

done messages it has

received (using done-
Count()). Finally, it deter-

mines and updates the

time of next change (using

nextChange(VTime)), and

sends this value to its

parent NC (using send
(doneMsg,dest)).

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

33

 Processor

Simulator RootCoordinator NodeCoordinator FlatCoordinator

TimeWarp

TimeWarp()
~TimeWarp()
initialize()
finalize()
executeProcess()
saveState()
rollback(VTime)
rollbackFileQueues()
calculateMin()
inputGcollect(VTime)
stateGcollect(VTime)
outputGcollect(VTime)
sendEvent()
getEvent()
...

Processor()
~Processor()
executeProcess()
nextChange()
nextChange(VTime)
lastChange()
lastChange(VTime)
model()
receive(initMsg)
receive(doneMsg)
receive(collectMsg)
receive(externalMsg)
receive(internalMsg)
...
send(initMsg, dest)
send(doneMsg, dest)
send(internalMsg, dest)
...
writelog()
rollbackCheck()

initialize()
receive(initMsg)
receive(internalMsg)
receive(externalMsg)
receive(collectMsg)

initialize()
rootInitialize()
receive(outputMessage)
events()
addExternalEvent(Vtime
,port,value)
...

initialize()
addLocalDependants()
receive(initMsg)
receive(doneMsg)
receive(internalMsg)
receive(collectMsg)
receive(externalMsg)
receive(outputMsg)
calculateNextChange()
synchronizeList()
events()
...

initialize()
stopTime(VTime)
events()
getParentNC()
receive(initMsg)
receive(doneMsg)
receive(externalMsg)
receive(outputMsg)
sendOutsFromNC()
...

190
Input queue

tN = 240
tL = 170
...

State queue

(@,190)
Output queue

processed event

unprocessed event

240

tN = 280
tL = 190
...

(@,240)

280

tN = ?
tL = 240
...

(*,280)

330

210

190
Input queue

tN = 240
tL = 170
...

State queue

(@,190)
Output queue

processed event

unprocessed event

240

tN = 240
tL = 190
...

280 330210

Figure 7: (a - top) Reception of a straggler message in a NC,

(b - bottom) State of the NC after the rollback.

Figure 8: Class diagram for the new DEVS processors.

executeProcess is common to every DEVS processor,

and therefore it is not redefined by any of its subclas-

ses. processor.executeProcess() is in charge of getting

the first event in the queue of events (using getEvent),
logging the necessary information, and calling the cor-

responding receive method based on the message type.

The receive methods on each processor implement the

algorithms presented earlier. For example,

receive(initMessage) in a FC sends initialization mes-

sages to all of its descendants (using the send(initMes-
sage,dest)). Second, it has to wait until all done mes-

sages are received from its dependant Simulators.

The receive (initMessage) method on Simulator, in

contrast, initializes the model variables, computes the

time for the next transition (using time advance func-

tion, ta) and sends a done message to its parent.

3 Simulation Experiments

We carried out different performance tests to analyze

the results obtained with the new algorithms. To pro-

vide uniform means for the overhead, we used the

DEVStone benchmark, a synthetic model generator

that automatically creates models [18]. DEVStone uses

three different types of models with variations in their

internal and external structure: LI models, with a low

level of interconnections for each coupled model; HI

models with a high level of input couplings, HO models

with high level of coupling and numerous outputs.

Table 1 shows the parameters we used for different

tests. Each model is executed using a different number

of levels in the modeling hierarchy (Depth), and diffe-

rent number of submodels on each level (Width).

Likewise, different execution times are used for the

transition functions, using the DEVStone benchmark.

The following figures show some of the overhead

results obtained for these different execution times.

The experiments were executed in a single processor,

allowing us to measure the pure overhead incurred by

our simulator.

Figure 9: Execution times for LI models.

Figure 10: Overhead for LI models

In Figureb9 and Figureb10, we present the total execu-

tion time and the overhead for models A-D. We can

see that the stand-alone engine outperforms the opti-

mistic one, because the optimistic simulator is more

complex. In this case, we need extra synchronization,

saving states, input, and output queues, etc. Although

the overhead associated with those tasks can be con-

siderable, the optimistic simulator still outperformed

the conservative simulator for models B, C, and D.

This is a consequence of the reduction in communica-

tion overhead incurred by the flat simulator. In model

A, the hierarchical conservative engine performs better

than the flat, optimistic engine as a consequence of the

structure (3x10) of model A. In this case, the reduction

in messages exchanged is not that important.

Figureb11 illustrates the results for HI models, which

are similar to those obtained for LI.

Figure 11: Overhead for HI models

We executed several Cell-DEVS models using diffe-

rent cell spaces on one and four processors. As we can

see in Figureb12, the execution time for the model

running on one processor varies from 30.7 to 90.8

seconds. When running the model in parallel on 4 pro-

cessors, the execution time is smaller (between 18.1

and 47.5 seconds); in some cases, the optimistic simu-

lator allows to reduce the execution time in ~50%.

Here, the speedup has been affected by the communi-

cation costs, as the tests were executed over a relati-

vely slow network, a 10 Mbit/s hub.

SN
E

16
/2

,
Se

pt
em

be
r

20
06

34

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

A B C D

O
v
e
rh

e
a
d Stand-alone CD++

Conservative mechanism

Optimistic mechanism

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

A B C D

T
im

e
 (

m
s

) Stand-alone CD++

Conservative mechanism

Optimistic mechanism

Theoretical

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

E F G H

O
v
e
rh

e
a
d Stand-alone CD++

Conservative mechanism

Optimistic mechanism

 Type Depth Width δint δext
A LI 3 10 50 ms 50 ms

B LI 10 3 50 ms 50 ms

C LI 5 5 50 ms 50 ms

D LI 10 10 50 ms 50 ms

E HI 3 6 50 ms 50 ms

F HI 6 3 50 ms 50 ms

G HI 5 5 50 ms 50 ms

H HI 6 6 50 ms 50 ms

Table 1: Simulation parameters.

Figure 12: Execution times (1 vs. 4 processors).

We are interested in analyzing the performance of our

simulator for larger Cell-DEVS. Figure 13 shows the

execution times for different configurations for a cell

space of 50x50, using different initial values (life A-
D). The execution times significantly reduce on 8 pro-

cessors. When a 50x50 model is executed on a single

processor, only one LP is created. Hence, a single

instance of a FC is in charge of the 2500 Simulators,

and a single NC is in charge of scheduling tasks for

the entire model. In contrast, the distribution on 8 pro-

cessors allows a smaller structure associated with

each LP (312 Simulators).

Figure 13: Execution times (50x50 model).

The test uses a sample Cell-DEVS model to study the

performance of a firefly model, in which most of the

cells change frequently, producing increased proces-

sor load. We execute models with 400 and 900 cells,

with two initial configurations (modelsi1 toi4). The

optimistic simulator running on a single processor

achieves almost the same performance as the conser-

vative simulator running on 4 processors, which

shows the increased communication costs.

Figure 14 shows that the optimistic simulator allows sig-

nificant speedups: 2.91 for 20x20 models, 3.17 for 30x30

models. The speedup factor obtained by executing the

simulation on 4 processors using the optimistic approach

instead of the equivalent partitioning for the conservative

approach is 2.45 for 20x20 and 30x30 models.

4 Conclusions

We have introduced a new flat simulation technique

for DEVS and Cell-DEVS based on Time Warp, a

well-known optimistic synchronization protocol. Our

efforts address the need for efficient, fast execution of

models using parallel and distributed simulation. We

propose an optimistic distributed mechanism that ena-

bles achieving higher degrees of parallelism than pre-

vious efforts, which only allowed exploiting paralle-

lism in a limited way.

Under our new approach, scheduling tasks are distri-

buted on the Logical Processes; each Node Coordina-
tor is in charge of the scheduling tasks for the local

simulation objects. Node Coordinators advance the

simulation optimistically, assuming that there will be

no straggler events. In case of detecting a violation to

the local causality constraint, a rollback mechanism

allows recovering from it.

Using DEVStone, we compared the overhead of our

new technique with the overhead of previous imple-

mentations. Although the overhead associated with

synchronization tasks implemented by our simulator

can be considerable, it still outperformed previous

alternatives for some models in single-processor exe-

cutions. This is a consequence of the flat mechanism

implemented in our engine, which outweighs the

increased overhead associated with its more complex

implementation.

More importantly, we showed that when executing

different types of DEVS models, the overhead of War-

ped/MPI is reasonable small (2.5%-5%). This is a pro-

mising result, as the amount of speedup time achieva-

ble by these simulators is considerable, and having a

constrained overhead in the kernel permits a better uti-

lization of the computing resources.

+++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models ++
SN

E 16/2, Septem
ber 2006

35
0

50

100

150

200

250

300

350

Life A Life B Life C Life D

T
im

e
 (

s
e
c
)

1 processor 8 processors

0

20

40

60

80

100

256 400 625 900

Number of cells

T
im

e
 (
s
e
c
)

1 processor 4 processors

0

20

40

60

80

100

120

140

160

180

200

Model 1

(20x20)

Model 2

(20x20)

Model 3

(30x30)

Model 4

(30x30)

T
im

e
 (

s
e
c
) cons. 1 processor

optim. 1 processor

cons. 4 processors

optim. 4 processors

Figure 14: Execution times using conservative and

optimistic simulators (1-4 processors).

We showed that the execution times for a particular

Cell-DEVS model can be reduced using distributed

simulation. Different model sizes where considered,

ranging from 256 to 2500 cells.

The execution of the model in a distributed environ-

ment allowed achieving better performance than

stand-alone execution. Using distributed environ-

ments, our simulator outperforms other alternatives

and achieves considerable speedups.

References

[1] R. M. Fujimoto: Parallel and Distribution
Simulation Systems. Wiley. 1999.

[2] R. E. Bryant: Simulation of Packet
Communication Architecture Computer
Systems. MIT, Cambridge, MA. USA. 1977.

[3] K. Chandy, J. Misra: Distributed
Simulation: A Case Study in Design and
Verification of Distributed- Programs.
IEEE Transactions on Software

Engineering, pp. 440-452. 1979.

[4] D. R. Jefferson: Virtual time.

ACM Transactions on Programming

Languages and Systems. vol. 7(3),

pp. 404-425. July, 1985.

[5] B. Zeigler, T. Kim, H. Praehofer:

Theory of Modelling and Simulation:
Integrating Discrete Event and Continuous
Complex Dynamic Systems.

Academic Press. 2000.

[6] A. C. Chow, B. P. Zeigler:

DEVS: A parallel, hierarchical, modular
modelling formalism. Proceedings of the

Winter Computer Simulation Conference.

Orlando, FL. USA. 1994.

[7] K. H. Kim, Y. R. Seong, T. G. Kim,

K. H. Park: Distributed Simulation of
Hierarchical DEVS Models: Hierarchical
Scheduling Locally and Time Warp
Globally. Transactions of the Society for

Modelling and Simulation International.

vol. 13(3), pp. 135-154. 1996.

[8] A. Troccoli, G. Wainer: Implementing
Parallel Cell-DEVS. Proceedings of the

Annual Simulation Symposium.

Washington DC, USA. 2003.

[9] B. Zeigler, Y. Moon, D. Kim, G. Ball:

The DEVS Environment for High-
Performance Modelling and Simulation.

IEEE Computational Science and

Engineering. 4 (3), pp. 61 -71. 1997.

[10] G. Wainer, N. Giambiasi. N-Dimensional
Cell-DEVS. In Discrete Events Systems:

Theory and Applications, Kluwer. Vol. 12,

No. 1. January 2002. pp. 135-157.

[11] S. Wolfram: A new kind of science.

Wolfram Media, Inc.

[12] G. Wainer, G. CD++: a toolkit to develop
DEVS models. Software - Practice and

Experience. vol. 32, pp. 1261-1306. 2002.

[13] E. Glinsky, G. Wainer: Performance
analysis of DEVS environments.
Proceedings of AI Simulation and Planning.

Lisbon, Portugal. 2002.

[14] G. Wainer: Improved cellular models with
parallel Cell-DEVS. Transactions of the

SCS. vol 17 (2). June 2000.

[15] D. Martin, T. McBrayer, P. Wilsey:

WARPED: Time Warp Simulation Kernel for
Analysis and Application Development.
Proceedings of the 29th Hawaii

International Conference on System

Sciences. 1996.

[16] J. Dongarra, J. et al. MPI: The Complete
Reference. The MIT Press. 1996.

[17] E. Glinsky, G. Wainer: New Parallel
simulation techniques of DEVS and
Cell-DEVS in CD++. In Proceedings of

the 38th IEEE/SCS Annual Simulation

Symposium. Huntsville, AL. 2006.

[18] E. Glinsky, G. Wainer: DEVSTONE:
a Benchmarking Technique for Studying
Performance of DEVS Modelling and
Simulation Environments.

Procedings of IEEE/DS-RT. Montréal,

QC. 2005.

Corresponding author: Gabriel Wainer,

Dept. of Systems and Computer Engineering,

Carleton University

4456 Mackenzie Building, 1125 Colonel By Drive

Ottawa, ON. K1S 5B6, CANADA.

WWW.SCE.CARLETON.CA/faculty/wainer

Received: June 5, 2006

Revised: July 1, 2006

Accepted: July 15, 2006

SN
E

16
/2

,
Se

pt
em

be
r

20
06

36

++ Parallel Simulation Techniques for DEVS/Cell-DEVS Models +++

