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ABSTRACT 

DEVS is a sound formal modeling and simulation (M&S) framework based on generic dynamic 

system concepts. Cell-DEVS is a DEVS-based formalism intended to model complex physical 

systems as cell spaces. Time Warp is the most well-known optimistic synchronization protocol 

for parallel and distributed simulations. This work is devoted to developing new techniques for 

executing DEVS and Cell-DEVS models in parallel and distributed environments based on the 

WARPED kernel, an implementation of the Time Warp protocol. The resultant optimistic 

simulator, called as PCD++, is built as a new simulation engine for CD++, an M&S toolkit that 

implements the DEVS and Cell-DEVS formalisms. Algorithms in CD++ and the WARPED kernel 

are redesigned to carry out optimistic simulations using a non-hierarchical approach that reduces 

the communication overhead. The message-passing paradigm is analyzed using a high-level 

abstraction called wall clock time slice. A two-level user-controlled state-saving mechanism is 

proposed to achieve efficient and flexible state saving at runtime. This mechanism is integrated 

with both the copy state-saving and periodic state-saving strategies to realize a hybrid technique 

that gives simulator developers the full power to dynamically choose the best possible 

combination of state-saving strategies at runtime. An optimization strategy called one log file per 

node is provided to break the bottleneck caused by file I/O operations. The number of file 

descriptors consumed in the simulation is upper-bounded and the operational overhead is 

reduced substantially under this strategy. Different Time Warp optimizations are integrated into 

PCD++, and their effects are analyzed quantitatively. It is shown that PCD++ markedly 

outperforms other alternatives, and considerable speedups can be achieved in parallel and 

distributed simulations, indicating that PCD++ is well-suited for simulating large and complex 

models. 
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CHAPTER 1 INTRODUCTION 

Computer-based modeling and simulation (M&S) have become important tools for analyzing 

and designing a broad array of complex systems where a mathematical analysis is intractable. A 

simulation study is often conducted in order to understand the behavior of a system, or to 

evaluate the effects of various parameters or operating policies. A general framework for M&S 

[Zei00] is established to define the basic entities and their relationships that are central to the 

M&S process. The basic entities of the framework include source system, experimental frame, 

model, and simulator. The source system is the real or virtual environment under analysis. It is 

viewed as the source of data gathered through experimental frames of interest to the modeler. An 

experimental frame defines the type of data acquired in the system and the specific conditions 

under which the system is observed or experimented with. A model is an abstract representation 

of the construction and working of the system of interest. In general, a simulation model is a set 

of instructions, rules, mathematical equations, or constraints to approximate the behavior of the 

actual system. A simulator is any computation system that is capable of executing a model to 

generate its behavior.  

There are two primary relations among the basic entities, namely the modeling relation 

(or validity) and the simulation relation (or simulator correctness). The modeling relation links 

the system under study, the experimental frame in use, and the model for that system. It is 

concerned with how well the model-generated behavior agrees with the system behavior 

observed under the conditions as specified by the experimental frame.  The simulation relation 

lies between a model and a simulator. This relation ensures that the simulator executes the model 

instructions correctly. 

Separating the model and simulator concepts brings two major benefits to the framework 

[Zei00]. First, the same model can be executed with different simulators, allowing portability and 

interoperability at a high level of abstraction. Secondly, the well-defined separation of concerns 

allows models and simulators to be independently verified and reused in later combinations with 

minimal re-verification. 

Different modeling techniques have been used to model and simulate different types of 

systems. The discrete time modeling approach adopts a stepwise execution mode where the 
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states of all the components are updated synchronously based on the states of the previous time 

step and the inputs. Continuous modeling and simulation is the classical approach of the natural 

sciences that often involves difference or differential equations. Finally, discrete-event 

simulation refers to the modeling technique in which changes to the state of the system can occur 

only at countable points in time. In this work, we are primarily concerned with the discrete-event 

M&S approach and the DEVS (Discrete Event System Specification) formalism [Zei76, Zei00] 

that has been proven to be a universal common modeling mechanism for discrete event dynamic 

systems. 

As a sound formal M&S framework based on generic dynamic system concepts, DEVS 

allows hierarchical and modular construction of models. Tested models can be reused, enhancing 

reliability and reducing the effort for model development and testing. Since its first 

formalization, DEVS has been extended into various directions. Parallel DEVS or P-DEVS 

[Cho94] is an extension of DEVS that facilitates the handling of simultaneous events. It 

eliminates the serialization constraints existed in the original DEVS definition and exhibits 

increased parallelism in parallel and distributed simulations. The Timed Cell-DEVS formalism 

[Wai98] is a combination of the DEVS and Cellular Automata [Wol86] formalisms with explicit 

timing delays. It defines a way to describe n-dimensional cell spaces as discrete event models, 

where each cell is represented as a DEVS basic model that can be delayed using different timing 

constructions.  

Parallel and distributed simulation technologies have received increasing interest as 

simulations become more time consuming and geographically distributed. They address the 

issues of executing simulations on a computing system containing multiple processors 

interconnected by a communication network. A parallel or distributed simulation typically 

consists of a collection of concurrent processes, each modeling a different part of the physical 

system and executing on a dedicated processor in a sequential fashion. They interact with each 

other by exchanging time-stamped event messages. The execution of the processes needs to be 

synchronized to guarantee that correct results will be produced from the concurrent execution of 

events.  

Synchronization is the key to parallel and distributed simulation. It ensures that each 

process complies with the local causality constraint [Fuj00], which requires that events are 

processed in time stamp order. Errors resulting from out-of-order event execution are referred to 
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as causality errors. Two major classes of synchronization approaches exist: conservative (or 

pessimistic) approaches strictly avoid processing events out of time stamp order; optimistic 

approaches detect causality errors during the execution, and provide mechanisms to recover from 

them via an operation known as rollback. Optimistic synchronization allows higher degree of 

parallelism to be exploited in parallel and distributed simulations. Also, it does not rely on 

application-specific data to achieve good performance, which is usually the case in conservative 

synchronization.  

Jefferson’s Time Warp mechanism [Jef85] is by far the most well-known optimistic 

synchronization protocol. The WARPED simulation kernel [Rad98] is a configurable object-

oriented middleware written in C++ that incorporates the Time Warp mechanism and a variety of 

optimization algorithms. In our research, the WARPED kernel is used as a middleware abstraction 

layer for distributed optimistic simulation.  

CD++ [Wai01a, Wai02a] is an M&S toolkit that implements Parallel DEVS and Cell-

DEVS formalisms. It currently supports both standalone [Rod99] and parallel conservative 

simulations [Tro03]. CD++ has been used to model and simulate different complex systems in a 

variety of fields. Based on previous research [Gli04], our work aims to develop new techniques 

for executing Parallel DEVS and Cell-DEVS models in parallel and distributed environments 

using the Time Warp mechanism. The resultant optimistic simulator, called as PCD++, is built as 

a new extension to the CD++ toolkit. Various optimization strategies are proposed and integrated 

into the PCD++ simulator. It is shown that PCD++ markedly outperforms the previous 

conservative simulator, and considerable speedups can be achieved in parallel and distributed 

simulations, indicating that PCD++ is well-suited for simulating large and complex models. 

1.1. CONTRIBUTION 

This thesis provides a variety of new techniques that allow PCD++ to be used as a high-

performance toolkit for distributed optimistic simulation of complex DEVS and Cell-DEVS 

models. The following is a list of the main contributions of the present work: 

• The algorithms for the DEVS processors are redesigned to allow optimistic 

simulation in parallel and distributed environments. A non-hierarchical approach is 

employed to reduce the communication overhead and improve the performance. 
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• It is shown that the message-passing paradigm in PCD++ is different from that in the 

previous versions of CD++. The algorithms for Cell-DEVS models with transport and 

inertial delays are adapted to the new asynchronous state transition paradigm. 

• Mechanisms are provided for handling rollbacks at virtual time 0 and messaging 

anomalies that may occur during the simulation. 

• The notion of wall clock time slice (WCTS) is proposed to provide a high-level 

abstraction of the simulation process. It greatly simplifies the task of analyzing the 

complex message exchanges between the DEVS processors involved in the 

simulation. 

• A two-level user-controlled state saving (UCSS) mechanism is proposed to achieve 

efficient and flexible state saving at runtime. It is integrated with the copy state 

saving to implement a risk-free message type-based state-saving strategy that can 

significantly reduce the number of states saved during the simulation. The UCSS 

mechanism is also combined with the periodic state saving to realize a hybrid 

technique that allows dynamic integration of different state-saving strategies at 

runtime. 

• An optimization strategy called one log file per node is provided to break the 

bottleneck caused by file I/O operations. The number of file descriptors consumed in 

the simulation is upper-bounded and the operational overhead is reduced substantially 

under this strategy. 

• Several enhancements are added to the WARPED kernel [Rad98] to address a number 

of issues. The kernel state-saving algorithm is modified to implement the UCSS 

mechanism. The concept of breakpoint state is introduced and the kernel state 

restoration algorithm is revised to deal with messaging anomalies. The fossil 

collection algorithm is modified to integrate the periodic state-saving strategy into the 

PCD++ simulator. The kernel rollback operations are enhanced to allow direct 

handling of variables defined in the processes. Finally, the problem found in the 

kernel rollback algorithm is fixed to correctly perform secondary rollbacks (a crucial 

operation for recovering from causality errors). 

• Several Time Warp optimizations are integrated into the PCD++ toolkit, including the 

one anti-message per rollback strategy for reducing the overhead of rollback 
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operations, the periodic state-saving strategy for reducing state-saving overhead, and 

the lazy cancellation strategy for exploiting parallelism available within a LP. 

1.2. THESIS OVERVIEW 

The rest of the thesis is organized as follows:  

Chapter 2 introduces the DEVS and Cell-DEVS formalisms and their extensions, and 

reviews the general concepts in parallel and distributed simulation. A brief survey of existing 

DEVS-based simulation toolkits is given as well.  

Chapter 3 presents the layered software architecture, followed by a description of the 

main functionalities implemented in the PCD++ toolkit.  

Chapter 4 covers the major algorithms employed by the WARPED kernel based on the 

standard Time Warp mechanism.  

Chapter 5 discusses the redesign of the algorithms for the DEVS processors and Cell-

DEVS models in PCD++. The new message-passing paradigm is illustrated. Different methods 

for saving and restoring modifiable variables in PCD++ are presented.  

Chapter 6 is concerned with the essential enhancements to the PCD++ and the WARPED 

kernel to ensure correct and efficient execution of simulations. The notion of WCTS is proposed 

as an abstraction of the simulation process. Mechanisms are provided to address the problem of 

asynchronous execution of the processes and to deal with rollbacks at virtual time 0. The UCSS 

mechanism is proposed to achieve efficient and flexible state saving at runtime. The one log file 

per node strategy is put forward to remove the bottleneck found in the simulations. Algorithms 

of the WARPED kernel and DEVS processors are enhanced to handle messaging anomalies that 

may occur during the simulation.  

Chapter 7 covers the integration of several Time Warp optimization algorithms into the 

PCD++ toolkit to improve the performance. The UCSS mechanism is further extended to work 

with the periodic state-saving strategy in order to reduce the state-saving overhead. 

Chapter 8 illustrates the experimental results for measuring the performance of the 

PCD++ toolkit. The effects of different optimization strategies are discussed quantitatively. 

Chapter 9 presents the main conclusions of the thesis and outlines possible future work. 
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CHAPTER 2 REVIEW OF THE STATE OF THE ART 

This chapter provides a review of the state-of-the-art in the field of discrete event modeling and 

simulation, particularly the techniques for parallel and distributed simulation systems. The 

DEVS and Cell-DEVS formalisms and their extensions are presented in Section 2.1 and 2.2. 

Section 2.3 covers the two major synchronization approaches for distributed simulation, namely 

conservative approaches and optimistic approaches. Finally, a brief survey of existing DEVS-

based simulation toolkits is given in Section 2.4.  

2.1. DEVS AND PARALLEL DEVS FORMALISMS 

In a discrete event simulation, the system being simulated changes state only at discrete points in 

time, upon the occurrence of an event. Based on general systems theory, the DEVS (Discrete 

Event System specification) formalism [Zei00] provides a framework for the definition of 

hierarchical models in a modular way. A real system modeled using DEVS can be described as a 

composition of behavioral (atomic) and structural (coupled) components. A DEVS atomic model 

is defined by: 

M = <X, Y, S, δint, δext, λ, ta>, 

where  

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values; 

S   is the set of sequential states; 

δint: S S  is the internal state transition function; 

δext: Q × X S  is the external state transition function, where 

Q = {(s,e) | s∈S,  0 ≤ e ≤ ta(s)} is the total state set,  

e is the time elapsed since the last state transition; 

λ: S Y  is the output function; 

ta: S 0,R+
∞   is the time advance function. 

At any time, a DEVS atomic model is in some state s. If no external event occurs, it will 

remain in state s for ta(s), the lifetime of state s. When the state lifetime ta(s) expires, i.e. the 
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elapsed time e = ta(s), the atomic model outputs the value λ(s) and does an internal state 

transition to a new state given by δint(s). Notice that the output only happens just before the 

internal state transition. If an external event x ∈  X occurs before the time ta(s), i.e. the model is 

in total state (s,e) with e ≤ ta(s), it performs an external state transition to state δext(s,e,x). That is, 

the internal state transition function dictates the model’s new state when no events occurred since 

the last transition, while the external state transition decides the model’s new state due to the 

reception of an external event.  

The time advance function can take on any real value including 0 and . A state with 

zero ta(s) is called a transitory state, whereas a state with ta(s) equal to infinity is a passive state, 

in which case the system will stay in state s forever unless it is reactivated by an external event.  

∞

The DEVS formalism has a well defined concept of system modularity and component 

coupling to form composite models. A DEVS coupled model is formally defined by: 

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 

where  

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values; 

D is the set of the component names, and the following requirements are imposed on the 

components, which must also be DEVS models: 

For each d ∈  D, Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS with 

 Xd = {(p,v) | p ∈IPortsd, v∈Xp}, and Yd = {(p,v) | p ∈OPortsd, v∈Yp}. 

The component couplings are subject to the following requirements: 

External input coupling (EIC) connects external inputs to component inputs, 

 EIC⊆ {((N, ipN), (d, ipd)) | ipN∈IPorts, d∈D, ipd∈IPortsd}; 

External output coupling (EOC) connects component outputs to external outputs, 

 EOC {((d, opd), (N, opN)) | opN⊆ ∈OPorts, d∈D, opd∈OPortsd}; 

Internal coupling (IC) connects component outputs to component inputs, 

 IC⊆ {((a, opa), (b, ipb)) | a, b∈D, opa∈OPortsa, ipb∈IPortsb}; 

Select: 2D – {}  D is the tie-breaking function for imminent components. 

Direct feedback loops are not allowed, i.e., no output port of a component may be 

connected to an input port of the same component: ((d, opd), (e, ipd))∈IC implies d ≠ e. 
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Also, the values sent from a source port must be within the range of accepted values of a 

destination port, formally expressed as: 

∀ ((N, ipN), (d, ipd))∈EIC : XipN Xipd ⊆

∀ ((a, opa), (N, opN))∈EOC : Yopa YopN ⊆

∀ ((a, opa), (b, ipb))∈IC : Yopa Xipb. ⊆

A coupled DEVS model can be expressed as an equivalent basic model in the DEVS 

formalism due to the closure under coupling property. Expressing a coupled model as an 

equivalent basic model captures the means by which the components interact to yield the overall 

behavior [Zei99a]. Such a basic model can itself be employed in a larger coupled model as 

required for hierarchical model construction.  

Since multiple imminent components can exist at the same time in a coupled model, 

ambiguity may arise. If an imminent component executes its internal transition and produces an 

output that is received by another imminent component as an external event, then it is not clear 

which transition should be done by the receiving component. There are two possible scenarios: 

executing the external transition first with e = ta(s) and then the scheduled internal transition, or 

executing the scheduled internal transition first followed by the external transition with e = 0. 

The DEVS formalism solves this potential ambiguity with the Select function, which defines an 

order over the components so that only one component in the group of imminent models is 

allowed to have e = 0. The other imminent components are divided into two groups: receivers of 

the external event from this model, and the rest. Components in the former group will execute 

their external transition functions with e = ta(s), and those in the latter group will be imminent in 

the next simulation cycle and may need to use the Select function again to decide the execution 

sequence. This rigid tie-breaking strategy introduces serialization of execution, a potential 

bottleneck in the simulation system.  

The Parallel DEVS or P-DEVS formalism [Cho94] was proposed to eliminate the 

restrictions that forced the original DEVS definition to sequential execution. It defines an 

additional function, called as confluent transition function, in the atomic models to handle 

transition collisions and thus removes the sequential Select function for resolving simultaneous 

events. Hence, all imminent components are allowed to be activated and to send their output to 

other components. The receiver is responsible for examining the input event and properly 

interpreting it. Higher degree of parallelism can be exploited in parallel and distributed 
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simulations with the P-DEVS formalism. As a result, it was chosen as the theoretical foundation 

for our research. 

A P-DEVS atomic model is defined as: 

M = < X, Y, S, δint, δext, δcon, λ, ta >, 

where 

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values; 

S   is the set of sequential states; 

δint: S S  is the internal state transition function; 

δext: Q × Xb S is the external state transition function,  

where Xb is a set of bags over elements in X; 

δcon: Q × Xb S is the confluent transition function; 

λ: S Yb  is the output function; 

ta: S 0,R+
∞   is the time advance function; 

Q = {(s,e) | s∈S,  0 ≤ e ≤ ta(s)} is the total state set, and e is the time elapsed since the 

last state transition. 

Instead of having a single input, basic P-DEVS models employ a bag of inputs to allow 

the execution of multiple concurrent events. By simultaneously executing the events in the input 

bag Xb, the external transition function can combine the functionality of a number of external 

transitions into a single one. A second difference is the addition of a confluent transition function 

(δcon) in the model definition. This function decides the next state of the model in cases of 

collision between external and internal functions [Zei00]. In virtue of the confluent transition 

function, modelers have a flexible way to define the appropriate behavior for each atomic model 

in the simulation system. 

Consequently, the Select function is removed from the definition of P-DEVS coupled 

models, resulting in a model definition as follows: 

DN = <X, Y, D, {Md | d∈D}, EIC, EOC, IC> 

The specifications for the set of input and output events (X and Y) and couplings (EIC, 

EOC, and IC) follow the definitions of DEVS coupled models as presented earlier. The basic 

components (D and Md) are specified by the P-DEVS atomic model definition.  
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As we can see, P-DEVS coupled models are specified in the same way as in classic 

DEVS except that the Select function is omitted. While this is an innocent-looking change, its 

semantics are much different. They differ significantly in how imminent components are 

handled. In P-DEVS, there is no serialization among the imminent computations – all imminent 

components generate their outputs which are then distributed to their destinations using the 

coupling information [Zei00]. 

2.2. TIMED CELL-DEVS AND PARALLEL CELL-DEVS FORMALISMS 

Cellular Automata formalism [Wol86] has been widely used to describe real systems that can be 

represented as cell spaces. A Cellular Automata is an infinite regular n-dimensional lattice whose 

cells can take one finite value. These cells evolve by executing a global transition function that 

updates the state of every cell in the space. The behavior of this global function depends on the 

results of a local function executed in each cell in discrete time steps. Conceptually, these local 

functions are computed synchronously and in parallel, using the state values of the present cell 

and a finite set of neighboring cells (called as the neighborhood of the cell). However, this 

discrete time paradigm constrains the precision and efficiency of the simulated models. 

Furthermore, it is usual that several cells do not need to be updated in every step, wasting 

computation time [Wai01b].  

The Timed Cell-DEVS formalism [Wai98] solves these problems by using the DEVS 

paradigm to define a cell space where each cell is represented as a DEVS atomic model. 

Moreover, it adopts delay constructions and defines them as a functional component of the 

model defining each cell. Hence, it is possible to define a discrete event cell space with explicit 

delays. Each cell can use one of two kinds of delay constructions with different semantics, 

namely transport and inertial [Gia76]. Transport delay allows one to model a variable 

commuting time for each cell with anticipatory semantics, while inertial delay introduces 

preemptive semantics to generate more complex temporal behaviors.  

A Cell-DEVS atomic model can be formally defined as [Wai01b]: 

TDC = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>, 

where 

X is the set of external input events; 
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Y is the set of external output events; 

I represents the definition of modular model interface; 

S is the set of sequential states for the cell; 

θ is the definition of the cell’s state; 

N is the set of values for input events; 

delay∈{transport, inertial}; 

d is the delay for the cell; 

δint is the internal transition function; 

δext is the external transition function; 

τ is the local computation function; 

λ is the output function; and 

D is the state’s duration function. 

The cell’s modular interface (I) is composed of a fixed number of ports, each connected 

with a neighbor. A cell can use the input and output ports to interchange data with other 

neighboring cells as well as models outside the cell space. The input values are used to compute 

the future state of the cell by evaluating the local computation function τ. If the resultant future 

state is different from the cell’s present value, the new state value will be sent to all the 

neighboring cells. Otherwise, the cell remains quiescent and no output will be scheduled. Also, 

the new state value is transmitted only after the completion of the delay time given by the delay 

function associated with the cell. Finally, the DEVS transition (δint, δext) and output (λ) functions 

are included in each cell.   

The Cell-DEVS atomic models can be coupled with others, forming a cell space that 

consists of multiple cells interconnected by the neighborhood relationship. Further, the cell space 

itself can be integrated with other Cell-DEVS or DEVS models. A cell space is constructed by 

defining a coupled Cell-DEVS model as follows: 

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z, Select> 

where 

Xlist is the list of input coupling; 

Ylist is the list of output coupling; 

I represents the definition of modular model interface; 

X is the set of external input events; 
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Y is the set of external output events; 

η  is the dimension of the cell space; 

{t1, …, tn} is the number of cells in each of the dimensions; 

N is the neighborhood set; 

C defines the cell space; 

B is the set of border cells; 

Z is the translation function; and  

Select is the tie-breaking function for simultaneous events. 

The cell space (C) is a coupled model defined as an array of Cell-DEVS atomic models 

of fixed size (t1×…×tn). The neighborhood set (N) is defined as a set of n-tuples giving the 

relative position between the origin cell and the surrounding neighbors. The border of the cell 

space is specified by the border cells (B). If B = {∅ }, i.e. the border is wrapped, every cell in 

the space will have the same behavior. The cells in one border are connected with those in the 

opposite one using the inverse neighborhood relationship. Otherwise, the border set is not empty 

and the cells in it will have a different behavior from the others in the cell space. The Z function 

allows definition of the coupling between cells in the model. It translates the outputs of ith output 

port in cell Ca into values for the ith input port in cell Cb. The Select function serves the same 

purpose as in the classic DEVS formalism. It defines an order of execution for the case where 

simultaneous events occur.  

As in the DEVS formalism, the use of the Select function can lead to serialization and 

incorrect execution when models are considered to be executed in parallel [Wai99]. Moreover, 

only one input is allowed for each input port in the Timed Cell-DEVS paradigm, disallowing 

zero-delay transitions and multiple simultaneous events from external DEVS models. The 

Parallel Cell-DEVS formalism [Wai00b] is an extension of the Timed Cell-DEVS formalism to 

remove these restrictions. Several important propositions are presented in [Wai00b], as 

summarized below: 

(1) Parallel Cell-DEVS models are equivalent to Parallel DEVS models. 

(2) Closure under coupling for Parallel Cell-DEVS models also holds. That is, a 

coupled Parallel Cell-DEVS model is equivalent to a basic Parallel Cell-DEVS 

model. 
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An implementation of the Parallel Cell-DEVS was presented in [Tro03], in which the 

author extended the CD++ toolkit [Rod99] to execute Parallel DEVS and Cell-DEVS models in 

distributed environments based on conservative synchronization mechanisms.  

2.3. PARALLEL AND DISTRIBUTED SIMULATION 

In parallel and distributed simulations, the whole simulation task is divided into a set of smaller 

subtasks with each executed on a different processor or node. Hence, the simulation system is 

viewed as a collection of concurrent processes, each modeling a different part of the physical 

system and executing on a dedicated processor in a sequential fashion. These processes 

communicate with each other by exchanging time-stamped event messages. The subtask 

executed by each process consists of a sequence of event computations, where each computation 

may modify the state of the process and/or schedule new events that need to be executed on the 

present process or on other processes. Unlike sequential simulations, which ensure that all events 

generated in the whole simulation are executed in time stamp order, parallel and distributed 

simulations need some mechanism to guarantee that the same results as the sequential execution 

will be produced from the concurrent execution of events. 

Fujimoto defines conditions for correct simulation as follows [Fuj00]: 

Local Causality Constraint: A discrete-event simulation, consisting of processes that 

interact exclusively by exchanging time stamped messages obeys the local causality constraint if 

and only if each process executes events in nondecreasing time stamp order. 

One of the most challenging problems of parallel and distributed simulation is 

synchronization, which ensures the local causality constraint to be satisfied in the simulation 

system. Two major schools of thought have been shaped to address the synchronization problem: 

conservative schemes and optimistic schemes. Conservative schemes adopt a block-resume 

strategy to keep processes synchronized. Under such schemes, the synchronization is done by 

globally controlling the execution order and run lengths of the individual processes to strictly 

avoid executing events out of time stamp order. However, conservative schemes sacrifice 

parallelism to a degree due to the continuous avoidance of time ambiguities. On the other hand, 

optimistic schemes take a lookahead-rollback strategy where causality errors are detected during 

the execution, and mechanisms are provided to recover from them.  
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2.3.1. Conservative parallel discrete event simulation 

Conservative synchronization approaches were introduced in the late 1970s by R. E. Bryant 

[Bry77], K. M. Chandy and J. Misra [Cha78]. Since then several variations, improvements, and 

optimizations have been developed. All of them are based on the principal idea that causality 

violations are strictly avoided.  

The notion of lookahead is essential to conservative synchronization mechanisms. It 

gives the smallest time stamp of the potential new events that a process can schedule in the 

future. The lookahead information is exchanged among the LPs via null messages. Based on the 

lookahead collected from all the processes, each LP can derive a lower bound on the time stamp 

(LBTS) of messages that it may later receive. Armed with this information, the LP can then 

determine which events can be safely processed. However, the resulting cycles of null messages 

could severely degrade simulation performance.  

Although conservative synchronization algorithms have advanced to a state where they 

are viable for use in real-world application, optimistic approaches offer two important 

advantages over conservative techniques [Fuj03]: 

(1) The optimistic approaches can exploit higher degree of parallelism available in the 

simulation. Usually, the conservative approaches tend to be overly pessimistic, and 

force sequential execution when it is not necessary. 

(2) The conservative approaches generally rely on application-specific information to 

determine which events are safe to process. While optimistic mechanisms can 

execute more efficiently if they exploit such information, they are less reliant on the 

application for correct execution, allowing more transparent synchronization and 

simplifying software development.  

On the other hand, optimistic approaches may require computations with higher overhead 

than conservative ones, degrading the system performance to a certain extent. 

2.3.2. Optimistic parallel discrete event simulation 

Jefferson’s Time Warp mechanism [Jef85] is the first and remains the most well-known 

optimistic synchronization protocol that uses Virtual Time to model the passage of time in the 

simulation. The simulation is executed via several Time Warp processes interacting with each 

other by exchanging time-stamped event messages. Each process maintains a Local Virtual Time 
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(LVT) that advances in discrete steps as each event is executed on the process. Time Warp 

processes execute their own part of the simulation speculatively without explicit synchronization. 

A causality error arises if a process receives an event with timestamp less than its LVT. Such 

events are referred to as straggler events. Upon the arrival of a straggler event, the process 

recovers from the causality error by undoing the effects of those events speculatively executed 

during previous computations, an operation called as rollback. Due to the nature of optimistic 

execution, erroneous computations on a Time Warp process can spread to other processes via 

false messages. These false messages are cancelled during rollbacks by virtue of anti-messages. 

When a process sends a message, an anti-message is created and kept separately. The anti-

message has exactly the same format and content as the positive (original) message except in one 

field, a negative flag. Whenever an anti-message meets its counterpart positive message, they 

immediately annihilate one another, hence cancelling the positive one.  

The Time Warp protocol consists of two parts: the local control mechanism and the 

global control mechanism. The local control mechanism is provided in each Time Warp process 

to implement the rollback operations. In order to make rollback possible, three structures are 

maintain in each process: an input queue containing all recently arrived messages sorted in 

virtual receive time order, an output queue containing negative copies (i.e. anti-messages) of the 

messages the process has recently sent in virtual send time order, and a state queue containing 

saved copies of the process’s recent states. Two major actions are performed in case of a 

rollback. First, the state of the process is restored to the last state saved before the virtual time 

indicated by the straggler’s timestamp. Secondly, the process sends anti-messages in its output 

queue to their receivers to cancel the positive ones generated in previous false computations. An 

anti-message causes a rollback at its destination if its timestamp is less than the LVT of the 

receiving process, just as a positive straggler would. During this rollback, more anti-messages 

may be sent to other processes, resulting in a cascade of rollbacks in the simulation system. 

The global control mechanism is concerned with such global issues as space 

management, I/O operations, and termination detection. It requires a distributed computation 

involving all of the processes in the system. The central concept of the global control mechanism 

is Global Virtual Time (GVT), a property of an instantaneous global snapshot of the system at 

wall clock time T, which is defined as follows [Fuj00]:  
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 Global Virtual Time at wall clock time T (GVTT) during the execution of a Time Warp 

simulation is defined as the minimum time stamp among all unprocessed and partially processed 

messages and anti-messages in the system at wall clock T. 

One characteristic of GVT is that it never decreases, despite the fact that individual local 

virtual clocks roll back frequently [Fre02]. Hence, GVT serves as a floor for the virtual time of 

any future rollback that might occur. Any event occurred prior to GVT cannot be rolled back and 

may be safely committed. Therefore, messages in the input and output queues whose timestamp 

is less than GVT can be discarded. Similarly, all but the last saved state older than GVT can be 

reclaimed for each process. Destroying information older than GVT is done via an operation 

known as fossil collection. Furthermore, I/O operations with virtual time less than GVT can be 

irrevocably committed with safety.  

In Time Warp systems, the global control mechanism must estimate GVT every so often. 

How frequent the estimation should be is a trade-off: high frequency allows faster response time 

and better space utilization, but it also imposes an overhead on the processor and communication 

network, slowing down the simulation system.   

Many refinements have been proposed to enhance Jefferson's original Time Warp 

mechanism, either for reducing the operational overhead or for exploiting more parallelism than 

is available in the basic protocol. Details on the Time Warp protocol are covered in Chapter 4, 

while several optimization algorithms are discussed later in Chapter 7. Other advanced optimistic 

techniques can be found in [Fuj00]. 

2.4. DEVS-BASED SIMULATION TOOLKITS 

Based on previous studies [Gli04], we give a brief survey on the existing DEVS-based toolkits 

that have been implemented by different researchers as follows:  

• ADEVS [Nut06] supports the construction of discrete event models based on a 

variant of the P-DEVS formalism. It includes support for dynamic structure models 

based on the Dynamic DEVS formalism [Uhr01a]. 

• DEVS-C++ [Zei96] is a high performance simulation environment that allows 

portability of models across platforms at a high level of abstraction. It uses a set of 

C++ classes, called as containers, to realize serial and parallel simulations.  
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• DEVS-Scheme [Zei93] is a knowledge-based environment implemented in Scheme 

for discrete-event model construction and simulation. It allows combining symbolic 

and hierarchical, modular discrete-event modeling approaches.  

• DEVS/CORBA [Zei99a] is a runtime infrastructure on top of CORBA middleware to 

support distributed simulation of DEVS components. It is possible to embed 

DEVS/CORBA in a larger network-centric environment to provide a combination of 

graphical process modeling, discrete-event simulation, animation, activity-based 

costing, and optimization functions. 

• DEVS/HLA [Zei99b] is an HLA-compliant M&S environment implemented in C++ 

that supports high level model construction. It greatly simplifies the underlying 

programming details required to establish and participate in an HLA federation. 

• DEVS/Grid [Seo04] is an M&S framework implemented using Java and Globus 

toolkit for Grid computing infrastructure.  

• DEVSCluster [Kim04] is a CORBA-based, multi-threaded distributed simulator 

implemented in Visual C++. It transforms a hierarchical DEVS model into a non-

hierarchical one to ease the synchronization of the distributed simulation.  

• DEVSJAVA [Sar98] is a DEVS-based simulator that supports high-level modeling.  

• GALATEA [Dav00] is offered as a family of languages to model multi-agent systems 

to be simulated in a DEVS, multi-agent platform.  

• JDEVS [Fil02] is an M&S environment that enables discrete-event, general purpose, 

object-oriented, component-based, GIS (Geographic Information System) connected, 

collaborative, visual simulation model development and execution. 

• JAMES [Uhr01b] is a Java-based simulation environment that allows the modeler to 

describe agents and their environment as situated automata.  

• PyDEVS is a simulator developed in ATOM3 [Del02], a tool for multi-paradigm 

modeling. DEVS models are constructed using the ATOM3-DEVS tool, which 

generates Python code to be executed with the PyDEVS simulator. 

• PowerDEVS [Kof03] is an M&S toolkit developed in C++ for hybrid systems. 

Atomic DEVS models can be graphically coupled in hierarchical block diagrams to 

create complex systems. 
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• SimBeans [Pra99] is a discrete-event simulation framework based on DEVS and the 

JavaBean component model. 

• DEVS/P2P [Che04] is an M&S framework based on P-DEVS formalism and Peer-to-

Peer message communication protocol. It uses a customized DEVS simulation 

protocol to achieve decentralized inter-node communication. Simulators are 

synchronized by themselves without involving a coordinator. 

• DEVS/RMI [Zha06] is a DEVS-based system that provides a fully dynamic and re-

configurable runtime infrastructure for handling load balancing and fault tolerance in 

distributed simulations. It reduces the overhead associated with common middleware 

solutions by using the native support of Java RMI to achieve the synchronization of 

local and remote simulators. 

• CD++ [Rod99, Wai02a, Tro03] is an M&S toolkit developed in C++ that implements 

the original and Parallel DEVS and Cell-DEVS formalisms. It supports both 

standalone and parallel conservative simulations. This toolkit has been extended in 

our research to realize distributed optimistic discrete-event simulations based on the 

Time Warp mechanism.  
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CHAPTER 3 SOFTWARE ARCHITECTURE 

Aiming at running simulations in parallel and distributed environments using the Time Warp 

protocol, our simulator, PCD++, was developed based on previous work presented in [Gli04]. 

The PCD++ simulator adhered to the same layered design as used in the parallel conservative 

simulator [Tro01]. The software architecture is first presented in Section 3.1, followed by a more 

detailed discussion of the layers that are the focus of our research in Section 3.2. 

3.1. LAYERED ARCHITECTURE 

As shown in Figure 1, the PCD++ simulator employs a layered architecture, where each layer 

only depends on the layers below it and not above. The following is a brief introduction to each 

of the layers. 

 
Figure 1. Layered architecture of the PCD++ optimistic simulator [Gli04] 

At the bottom of the architecture is the operating system. Since the Linux Operating 

System is rapidly becoming a de facto standard platform for high-performance parallel and 

distributed computing, it is used as the underlying platform on which our simulator runs. 

Above the Operating System lies the Message Passing Interface (MPI), a standard 

specification of message-passing library for high-performance communications on both 

massively parallel machines and on workstation clusters. MPI, along with the operating system, 

provides the communication infrastructure for the PCD++ simulator. There are both freely 

available and vendor-supplied MPI implementations for use: MPICH [Gro96] is an open-source 

portable implementation of MPI that provides a vehicle for MPI implementation research and for 
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developing parallel and distributed applications, while Scali MPI Connect™ is a fully integrated 

MPI solution that enables users to take advantage of the leading interconnect technologies, such 

as the Myrinet™ technology for clusters, to build high performance applications. 

Originally designed and developed at the University of Cincinnati, the WARPED 

simulation kernel [Rad98] is a configurable middleware that implements the Time Warp 

mechanism and a variety of optimization algorithms.  

On top of the WARPED kernel, the PCD++ simulator implements the Parallel DEVS and 

Cell-DEVS formalisms and provides the framework for building and executing DEVS and Cell-

DEVS models in distributed environments using the Time Warp protocol. 

The topmost layer represents the DEVS and Cell-DEVS models built in the CD++ 

simulation environment and executed by the PCD++ simulator.  

3.2. MAJOR FUNCTIONALITIES OF THE PCD++ AND WARPED LAYERS 

As our research is targeted at the PCD++ and the WARPED layers, this section highlights the 

major functionalities at these layers to give a broad overview of the capabilities and important 

algorithms implemented in the PCD++ toolkit. Figure 2 shows a closer look at these two layers 

based on previous researches as presented in [Rad98, Mar99, Wai02a]. More detailed description 

on these modules is provided in the following subsections. 
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Figure 2. Major functionalities of the PCD++ and the WARPED layers 
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Following is a brief summary of the majority of our work in terms of these modules: 

(1) At the PCD++ layer, the message-processing algorithms provided in the Simulation 

Framework are redesigned to carry out distributed optimistic simulations. The state 

transition logic in the Modeling Framework is modified to ensure correct 

computation in Cell-DEVS models. Also, the Logging Facility is optimized to 

reduce the overhead of file I/O operations. 

(2) At the WARPED layer, a flexible user-controlled state-saving mechanism is 

implemented in the State Management module. Also, the concept of breakpoint 

state is introduced and the state restoration algorithm is modified to handle 

messaging anomalies that can happen during the simulation. The fossil collection 

algorithm is revised in the GVT and Fossil Collection module to integrate the 

periodic state-saving strategy into the PCD++ simulator. The Rollback Facility is 

enhanced to allow direct handling of variables defined in the processes during 

rollbacks. Finally, the Time Warp Optimizations module is modified to incorporate 

three different optimization strategies into the PCD++ simulator. 

3.2.1. The WARPED layer 

The WARPED kernel provides services to the application above it for building Time Warp 

processes (called as simulation objects) based on Jefferson’s definition. In the WARPED kernel, 

simulation objects are organized into groups called “clusters” [Rad98]. Adding the extra cluster 

or partition level is the result of partitioning the simulation objects amongst the available 

physical processors [Low99]. The clustering levels used in the WARPED kernel are shown in 

Figure 3. 

 
Figure 3. The clustering levels in the WARPED kernel 
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Individual simulation objects are located at the lowest level, implementing the Time 

Warp local control mechanism. Above it is the partition level associated with each physical 

processor. Simulation objects mapped on a physical processor are grouped by an entity called as 

logical process (LP). Note that the simulation objects within a LP operate as Time Warp 

processes, even though they are grouped together, they are not coerced into synchronizing with 

each other [Rad98]. The top level is the entire system consisting of multiple partitions that 

operate collectively to implement the Time Warp global mechanism. 

The major functionality modules in the WARPED kernel are described as follows: 

• Application Interface 

The WARPED kernel presents an abstract definition of events, states, and simulation 

objects to the applications [Mar99]. Basic functions are provided for sending and receiving 

events between simulation objects. Different types of simulation objects with unique definitions 

of states can be constructed by deriving from the WARPED kernel. Control is passed between the 

application and the kernel through cooperative function calls. The application is responsible for 

initializing the simulation objects and defining the activities of each simulation object. The Time 

Warp mechanism and other facilities are made available through inheritance, which allows 

transparent access and is restrictive enough to hide kernel internal operations from the user. 

• Scheduling 

The issue of scheduling is not given recognition in the Time Warp mechanism, and the 

choice of policy to govern scheduling is left entirely to an implementation that requires it. The 

WARPED kernel [Mar99] takes on the most straight-forward and intuitive approach to scheduling 

simulation objects based on their LVT, an approach called least time stamp first (LTSF) 

scheduling. A LTSF scheduler is created on each processor at the partition level for scheduling 

the simulation objects mapped on the corresponding LP.  

• Rollback Facility 

The kernel rollback facility [Mar99] operates transparently to the application. Causality 

errors are detected between event executions for each simulation object. Once a causality error is 

found, normal execution is suspended and rollback operations are performed immediately in the 

kernel. After the rollbacks, the erroneous data resulting from speculative computations is 

recovered and forward execution is resumed. Implementing the rollback facility is demanded by 

the Time Warp local control mechanism. 
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• GVT and Fossil Collection 

An entity called GVT manager [Mar99] is created on each LP to implement the Time 

Warp global control mechanism, namely detecting the termination of the simulation, performing 

I/O operations, and measuring the progress of the computation so that the memory for states and 

events with timestamps older than GVT can be reclaimed. Two different algorithms are provided 

in the GVT and Fossil Collection facility: the Mattern’s GVT estimation algorithm [Mat93] and 

the passive response GVT or pGVT algorithm [Dso94]. One attractive feature of the pGVT 

algorithm is that the loss of a control message does not have a significant impact on the GVT 

calculation and the decision-making process is completely distributed [Low99]. 

• Memory Management 

Five alternatives for dynamic memory management are available [Mar99], including the 

operating system’s default memory allocator, the Global Memory Manager that implements the 

CustoMalloc [Gru93] algorithm, the Buddy Memory Manager based on Knuth’s buddy system 

[Knu73], the Segregated Storage Allocator that combines the basic ideas of buddy system and 

the first fit algorithm, and the Brent’s implementation of the first fit allocation strategy.  

• Event Management 

The basic properties of the abstract event definition (BasicEvent) include the virtual send 

and receive time of the event, the identities of the sender and the receiver, a sequence counter, a 

flag to mark the event as an anti-message, and a flag to label the event as processed or not 

[Mar99]. The application can define different types of events by deriving from the BasicEvent. 

Events are organized in the input and output queues in the kernel. While an output queue is 

created for each simulation object, a single input queue is shared by all the simulation objects 

mapped on a LP. Event management is greatly simplified by organizing all incoming events in a 

single input queue that is under the control of the LTSF scheduler on that processor. 

• State Management 

The abstract state definition (BasicState) has three basic properties [Mar99]: the virtual 

time when the state is saved for a simulation object; a pointer, called as inPos, to the input event 

executed just before saving the state; another pointer, called as outPos, to the output event most 

recently sent by the simulation object. Each simulation object has its own current state that is 

susceptible to modifications during the execution of events. An object’s current state is saved 

regularly in its state queue that is managed by the associated state manager. The state manager 
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provides functionalities for saving and restoring states, and governs the state-saving policy with 

respect to when and how the states should be saved for the simulation object. Two types of state 

managers are provided that implement the copy state saving (CSS) and periodic state saving 

(PSS) strategies respectively. The latter type further includes: fixed-sized checkpoint interval 

strategy and Lin’s [Lin93], Palaniswamy's [Pal93], Fleischmann's [Fle95], and Ronngren's 

[Ron94] adaptive state-saving algorithms. Users can select one of these types for use at compile 

time.   

• File Management 

Files may be opened for output during the simulation. Output data is wrapped in objects 

of type FileData and saved temporarily in a structure called file queue [Mar99]. A FileData 

object contains three values: the actual output data, the length of the data, and the virtual time at 

which the data should be output. A file queue is created for each physical file in the owning 

simulation object. FileData objects with virtual time older than GVT are committed 

automatically by the kernel GVT and Fossil Collection facility. The kernel also provides 

functions for removing erroneous data from the file queues during rollbacks.  

• Time Management 

By default, WARPED has a simple notation of integer time written in the 

hours:minutes:seconds:milliseconds format [Mar99]. There is no concept of negative virtual 

time in the kernel, and any virtual time less than zero is deemed as invalid. 

• Communication Management 

There are two types of communications in the simulation [Mar99]: message-passing 

between simulation objects residing on different processors (remote or inter-LP 

communications), and message-passing between simulation objects on the same processor (local 

or intra-LP communications). Inter-LP communications are realized using a group of 

communication managers over MPI. A communication manager is created on each LP at the 

beginning of the simulation. Intra-LP communications are done via direct function invocations, 

which is much faster than MPI communications. Since both the sender and the receiver reside in 

the same address space, the event is directly inserted into the receiver’s input queue. Therefore, 

simulation objects that communicate frequently should be placed within the same partition. 
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• Time Warp Optimizations 

A variety of Time Warp optimizations are provided by WARPED to optimize almost every 

aspect of operations in the kernel [Mar99], including fixed-sized and dynamic message 

aggregation [Che98] algorithms for minimizing inter-LP communication overhead; static and 

adaptive polling [Sha99] algorithms for optimizing the message reception behavior; one anti-

message per rollback strategy [Mar99] for reducing the number of anti-messages during 

rollbacks; lazy and dynamic cancellation algorithms [Lin91] for exploiting parallelism available 

within a Time Warp process; and algorithms for adjustment of runtime parameters using external 

agents [Rad97] to reduce the operational overhead.  

3.2.2. The PCD++ layer 

The major functionality modules at the PCD++ layer are described as follows: 

• Modeling Framework 

The modeling framework represents the behavior of the DEVS and Cell-DEVS models 

[Wai02a]. A hierarchy of classes, rooted at Model, is defined to implement the model theoretical 

definitions. Modelers can define their models by deriving from the modeling framework. For P-

DEVS models, the model logic needs to be provided in classes inherited from the abstract atomic 

model definition in the framework. After defining the atomic models, the coupled models can be 

specified using the built-in specification language. For Cell-DEVS models, the modeler can rely 

solely on the capabilities provided by the specification language (no programming is needed). 

Currently, the framework supports the definition of Cell-DEVS models with transport and 

inertial delays. The properties of the cell space can be fully specified by the language as well.  

• Simulation Framework 

The simulation framework implements the optimistic simulation mechanisms in line with 

the DEVS theory [Wai02a]. It consists of a hierarchy of classes, rooted at Processor, defining 

different types of simulation objects. That is, the PCD++ processors are concrete 

implementations of simulation objects to realize the abstract DEVS processors. The simulation 

framework is loosely coupled with the modeling framework. The model logic defined in entities 

of the modeling framework is executed in a standardized fashion by their counterparts of the 

simulation framework according to the DEVS formalism.  
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• Simulation Administration 

The simulation is managed by several administrators, including [Wai02a]: a main 

administrator that takes care of the bootstrap operations of the simulation; a model administrator 

that keeps a registry for all the models defined in the simulation and provides a lookup service to 

retrieve model information at runtime; a processor administrator that manages all the PCD++ 

processors created in the simulation; and a local transition administrator that registers and 

evaluates the local transition and port-in rules defined for Cell-DEVS models.  

• Specification Language 

A built-in specification language is provided for defining DEVS and Cell-DEVS models 

[Wai02a]. The model coupling information and all properties of the cell space can be coded in 

simple rules with a few parameters. Besides, the language provides numerous operations, 

functions, and constants, allowing complex models to be defined through a very simple set of 

procedures and greatly facilitating the model development process. 

• Utilities 

Various utilities can to be used internally by the toolkit itself and externally by the 

modelers [Wai02a]. The internal utilities include a parser for the specification language and tools 

for model verification; the external utilities comprises such tools as file format converters, log 

file analyzers, rule and partition debuggers, and visualization tools to show the simulation 

results.   

• Partition Facility 

Partition of models (and the corresponding PCD++ processors) is achieved using a 

simple text file that defines the mapping of atomic models to the machines [Wai02a]. Models are 

divided at the lowest level of the model hierarchy, allowing flexible and fine-grained partitions.  

• Logging Facility 

Log files are created during the simulation [Wai02a]. Each PCD++ processor can log the 

messages received during the simulation in a human readable format. The log files can be use by 

a variety of tools for debugging and visualization purposes. Users can also choose to log only a 

subset of messages, allowing less storage consumption, faster execution, and greater flexibility.    

• I/O Facility 

A number of files are opened during the simulation for defining the models and initial 

values, declaring the external events, specifying the partitions, sending output events to the 
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environment, and generating debugging information [Wai02a]. Although these I/O operations are 

mainly done in the file system, the toolkit can be adapted to permit I/O via other interfaces like 

serial ports, network, and USB connections in future versions.   

• Quantization Facility 

Based on the theory of quantized DEVS models [Zei98a, Zei98b], PCD++ provides 

quantization facility for Cell-DEVS models. A quantized version of CD++ toolkit was 

introduced in [Rod99] and experimental results were presented in [Wai00a]. Two types of 

quantization techniques were provided, including the uniform and the non-uniform (intervals) 

quantizer [Dab03]. Quantization allows faster execution with decreased number of active cells 

and message exchanges at the cost of introducing errors in the simulation results. 
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CHAPTER 4 BASIC CONTROL MECHANISMS IN THE WARPED KERNEL 

This chapter covers the kernel mechanisms based on a set of standard settings, including LTSF 

scheduling, copy state saving, passive response GVT (pGVT) algorithm, and aggressive 

cancellation. The assumptions made by the WARPED kernel are first presented in Section 4.1, 

followed by a discussion of the kernel control mechanisms in Section 4.2. Several flaws in the 

kernel algorithms are discussed in Section 4.3. 

4.1. ASSUMPTIONS OF THE WARPED KERNEL 

The WARPED kernel makes a number of assumptions with respect to its execution environment. 

These assumptions are summarized based on the documentation of the WARPED kernel [Mar99]: 

(1) Reliable communications over First-in, First-out (FIFO) channels. Jefferson’s 

definition [Jef85] did not assume this order preservation in the communication 

medium. However, the WARPED kernel relies on this property to simplify the 

implementation of the scheduling, rollback, and GVT and fossil collection facilities. 

(2) Predefined ordering of simultaneous events. The kernel orders input events with the 

same timestamp based on the identities of their receivers. Input events to the same 

receiver at the same virtual receive time are ordered by their arriving order (i.e. the 

sequence they are received by the receiver). Output events from the same sender at 

the same virtual send time are ordered by their sending order (i.e. the sequence they 

are sent out by the sender). 

(3) The virtual send time of each message must be less than or equal to its virtual 

receive time. An event with the same virtual send and receive time are executed 

instantaneously in virtual time by the receiver. 

(4) The timestamp of each event in a process must be less than or equal to the 

timestamp of the next event in that process. Simultaneous events are ordered by the 

rules specified in Assumption 2 as described above. 

(5) There is no concept of negative simulation time in the kernel.  

(6) Currently, each LP is associated with a UNIX heavy-weight process and is assigned 
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to a dedicated processor. This may change in the future to allow a multithreaded 

implementation where each LP is associated with a light-weight thread [Mar99]. 

(7) Rollback is completely transparent to the process being rolled back. To fulfill this 

requirement, the kernel carries out rollbacks between event executions. That is, 

rollbacks can happen only after the execution of an event has finished and before 

the execution of the next event is commenced. 

4.2. KERNEL CONTROL MECHANISMS 

The kernel control mechanisms include two parts: (1) rollback mechanisms realized by 

individual simulation objects at the local level, and (2) GVT calculation and fossil collection 

mechanisms implemented by the LPs at the global level. These mechanisms are briefly discussed 

in the following subsections. 

4.2.1. Rollback mechanisms and cascaded rollback process  

As required by the Time Warp local control mechanism, rollbacks are performed by the 

simulation objects in the WARPED kernel. Rollback operations are triggered by an incoming 

straggler or anti-message when it is inserted into a simulation object’s input queue. There are two 

types of rollbacks: primary rollback triggered by a straggler message and secondary rollback as 

the result of receiving an anti-message.  

• Primary rollback 

The runtime representation of a simulation object before primary rollback is shown in 

Figure 4, where input events are depicted as blocks with receive time; output events are shown as 

blocks with send time. States are shown as circles with three values: the recorded LVT of the 

simulation object, a pointer (inPos) to the input event just executed, and another pointer (outPos) 

to the last message sent by the simulation object. Let’s denote the states as S(12), S(21), and 

S(35). The diagram shows that this simulation object has executed events with receive time 12, 

21, and 35, notated as E(12), E(21), and E(35). Accordingly, the simulation object’s LVT is set 

to 35.  Now a straggler E(18) arrives, resulting in a primary rollback on this simulation object. 

The receive time of the straggler is referred to as rollback time. Here, the rollback time is 18. 
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Figure 4. Runtime representation of a simulation object 

Shown in Figure 5, the kernel operations for primary rollback are described as follows:  

 
Figure 5. Kernel operations for primary rollback 

(1) Insert the straggler, i.e. E(18), into the input queue. 

(2) Undo the input events after the straggler, i.e. E(21) and E(35) in Figure 5(a). 

(3) Restore the simulation object’s current state to the last state with LVT less than the 

rollback time. Hence, the object’s current state is an exact duplicate of S(12).  

(4) Remove all saved states after S(12) from the state queue. 

(5) Reset the object’s LVT to the LVT in its current state, i.e. 12. 

(6) Rollback the simulation object’s file queues, if any. This is done by removing all 

data with virtual time greater than or equal to the rollback time from the queues. 

(7) Send output messages with send time greater than or equal to the rollback time as 

anti-messages to their receivers, as shown in Figure 5(b). 

After these operations, the kernel resumes normal execution forward again. 
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• Secondary rollback 

Depending on whether the counterpart positive message is processed or not, two different 

scenarios can happen during secondary rollbacks: The first scenario is shown in Figure 6 where 

the positive event has already been processed. The simulation object receives an anti-message, 

denoted as E(-21), which is the counterpart to E(21). The kernel operations are described below. 

 
Figure 6. Kernel operations for secondary rollback (positive event already processed) 

(1) Perform a message implosion to delete both E(21) and E(-21). 

(2) Follow step 2 to step 7 of the primary rollback operations as presented earlier but 

using the timestamp of the anti-message (i.e. 21) as the rollback time. 

We can see that the operations largely remain the same as those for primary rollbacks 

except that a message implosion replaces the previous enqueue operation. 

 
Figure 7. Kernel operations for secondary rollback (positive event not yet processed) 

Another scenario is shown in Figure 7 where the positive event has not yet been 

processed. The only action that needs to be done is a message implosion. The simulation object 

continues to execute the next available event E(41) after the implosion as shown in Figure 7(b). 
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• Cascaded rollback process 

From the preceding discussion, we can see that the primary rollback triggered by a 

straggler message is the root cause of rollbacks in Time Warp systems. Secondary rollbacks are 

performed immediately upon the arrival of anti-messages at the destinations. Hence, rollback 

propagation consists of one primary rollback and, optionally, multiple rounds of secondary 

rollbacks spreading out across the simulation system from the hosting simulation object of the 

primary rollback. The hosting simulation object of the primary rollback is called as rollback 

originator, and the original primary rollback of the propagation is called the root of the 

propagation. The levels of secondary rollbacks may be to any depth, and there may even be 

circularity in the graph of anti-message paths, but the propagation eventually terminates [Eln02]. 

The rollback propagation can be depicted using a tree structure, as shown in Figure 8, where 

rollbacks are denoted as circles and anti-messages are represented as edges.  

 
Figure 8. Tree structure of rollback propagation on a processor 

Three types of rollbacks are illustrated in the diagram: the primary rollback that is the 

root of the propagation (black circle); secondary rollbacks happened locally on the same 

processor as the primary rollback (empty circle); and secondary rollbacks occurred remotely on 

other processors (shaded circle). Each shaded circle, in fact, represents a sub-tree of secondary 

rollbacks on remote processors. In the diagram, the primary rollback sends out two anti-

messages that trigger two secondary rollbacks (i.e. a and b) at level 1. While a triggers only one 

further rollback referred to as c, b causes two local rollbacks (i.e. d and e) and a remote rollback. 

Rollback d, in turn, triggers one local rollback f as well as a remote one.  

The propagation process can be described as traversing the tree from the primary 

rollback, following the sequence of the numbers marked in the diagram. This operation 

backtracks, by returning from the present rollback operation, to the most recent node it hadn't 

finished exploring if it hits a node that has no children (i.e. no further anti-message from that 
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rollback) or a node that represents a remote sub-tree (shaded circle). We observed that this 

traversing process exactly follows the Depth-first search algorithm. There is no blocking for 

remote rollbacks, i.e. the operation returns immediately once a shaded circle is touched. When 

the traversing process returns to the root of the tree, the rollbacks finish and normal execution 

starts on that processor. 

Understanding this process can help us in implementing the kernel algorithms. For 

example, most of the dynamic state-saving and cancellation strategies need to measure the time 

spent on rollbacks for each simulation object. However, we now know that simply starting a 

watch at the beginning of a simulation object’s rollback function and stopping the watch at the 

end will not do the trick. In Figure 8, the time measured in this way for the simulation object 

where the primary rollback takes place includes not only the time for the primary rollback itself, 

but also the time for all the other local secondary rollbacks in the tree.  

4.2.2. GVT calculation and fossil collection 

The pGVT algorithm [Dso94] is implemented by the GVT managers to realize the Time Warp 

global control mechanism, and users can set the frequency of GVT computation as a kernel 

parameter at compile time. Fossil collection is done locally within each partition. The GVT 

manager walks through all local simulation objects, removing all but one saved state older than 

GVT and all the input/output messages whose timestamps is less than the GVT (timestamp 

means virtual receive time for input messages and virtual send time for output messages).  

 
Figure 9. Status of the queues during fossil collection 

Figure 9 shows the queues of a simulation object during a typical fossil collection 

scenario. As we will see in Chapter 7, this fossil collection scheme needs to be enhanced to work 

with the periodic state-saving strategy. 
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4.3. PROBLEMS AND FIXES 

The original kernel algorithms have several flaws that cause runtime crashes of the simulation 

system. These problems have been identified and fixed in our research, and two of them are 

briefly summarized as follows: 

(1) The secondary rollback mechanism was nonexistent in the kernel. Specifically, the 

kernel did not take the necessary actions to perform the secondary rollback after the 

message implosion. During secondary rollbacks, different operations should be 

performed based on whether the imploded positive message is processed or not. 

Hence, the processing status of the positive message must be recorded by the 

rollback facility and used later to select the appropriate operations.  

(2) The insertion functions defined for the input and output queues were not correctly 

implemented. New events were inserted to the front of other existing simultaneous 

events in the queues, which can cause serious problems such as sending out wrong 

anti-messages during rollbacks.   

We also implemented an extra step in the rollback operations to handle the data defined 

in the simulation objects rather than in their states. The Time Warp protocol requires a clear cut 

between a process and its state. That is, all modifiable data must be put into the state of the 

process and saved regularly in the state queue. During rollbacks, the data is recovered solely by 

restoring to a previously saved state. This approach has some limitations. One example is that the 

process may operate on dynamically allocated objects that are referenced by pointers. During the 

simulation, new objects are created and old ones deleted when necessary. If these pointers are 

saved in the state of the process, we may have trouble when the state is restored to a previously 

saved one but the actual objects referred by the pointers in that state have been deleted. In such 

case, the recovered state contains invalid pointers, resulting in runtime failure. In short, there are 

occasions where part of the process’s internal data is inappropriate to be saved in the state queue 

and managed automatically by the Time Warp protocol. On the other hand, simulator developers 

have the knowledge as to how to handle the data in a consistent manner during rollbacks.  

The following mechanism has been implemented in the kernel to solve this problem: 

(1) Define an empty function, referred to as rollbackProcessData, in each simulation 

object. By default, this function does nothing. 
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(2) Invoke the rollbackProcessData function during the kernel rollback operations 

between step 6 and step 7 as presented in Section 4.2.1. Thus, this function acts as a 

placeholder in the rollback operations and allows simulator developers to define 

application-specific logic that needs to be performed during kernel rollbacks.  

(3) Normally, simulator developers can leave this function alone and let the kernel 

handle the state restoration for the simulation object during rollbacks. 

(4) If necessary, simulator developers can define the data that is inappropriate to be 

managed by the Time Warp protocol (e.g. the pointers in the previous example) 

directly in the simulation object rather than in its state, and provide application-

specific implementation for the rollbackProcessData function so that the data is 

maintained consistently should rollbacks happen. 

This solution provides programmers the required flexibility for handling some problems 

that may arise in the simulation. Unfortunately, it also exposes some of the rollback operations to 

simulator developers and relies on, at least in part, their knowledge for correctly implementing 

the Time Warp local control mechanism. Therefore, it should be used with care and only in 

situations where no other solution is available for the problem.  
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CHAPTER 5 DISTRIBUTED OPTIMISTIC SIMULATION IN PCD++ 

Research was carried out to enable the CD++ toolkit to run simulations in distributed 

environments using the Time Warp protocol [Gli04]. However, due to the flaws described in the 

previous chapter and other issues we will discuss in the following sections, the tool failed to run 

advanced simulations. In this work, we have redesigned most part of the PCD++ modules to 

achieve our goals. This chapter discusses the basic algorithms implemented in PCD++, while the 

enhancements and optimizations are covered in the following two chapters. The flattened 

structure of the simulation framework is first introduced in Section 5.1 followed by a description 

of the message definitions in Section 5.2. The current status of the CD++ toolkit is covered in 

Section 5.3. The redesigned simulation framework is presented in Section 5.4 to 5.8, while 

modifications to the modeling framework are provided in Section 5.9. 

5.1. FLATTENED STRUCTURE FOR THE SIMULATION FRAMEWORK 

As discussed in Chapter 3, the CD++ toolkit provides the modeling and the simulation 

frameworks to implement the behavior of DEVS and Cell-DEVS models and the simulation 

mechanisms respectively. In [Gli04], two new types of CD++ processors, called as Flat 

Coordinator (FC) and Node Coordinator (NC), are introduced to realize more efficient 

distributed simulations. This approach tries to reduce the communication overhead by flattening 

the structure of the simulation framework, while keeping the modeling framework unchanged. In 

this work, we adopted the flattened structure of the simulation framework. The class hierarchies 

in the modeling and the simulation frameworks are shown in Figure 10. 

 
Figure 10. Model and processor hierarchies in PCD++ 
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There are only four types of PCD++ processors existed in the simulation: Simulator, FC, 

NC, and Root. In the case of executing DEVS and Cell-DEVS models over multiple machines, a 

distributed processor structure is constructed in PCD++ to carry out the simulation. Figure 11 

gives an example model and partition definition. Four atomic models (A1, A2, A3, and A4) are 

defined, where A1 and A2 are grouped into a coupled model C1. The TOP model represents the 

coupled model at the top (system) level. The example partition scheme maps the atomic models 

onto 2 machines: A1 and A2 on machine 0, while A3 and A4 on machine 1.  

TOP

A1

C1

0  :  A1  A2
1  :  A3  A4 

A2

A3 A4

(a) Model Specification (b) Partition scheme
 

Figure 11. Example model and partition definition 

The distributed processor structure corresponding to the example model and partition 

definition is shown in Figure 12.   

 
Figure 12. Distributed processor structure for the example model 

Two LPs are created in this example, LP0 on machine 0 and LP1 on machine 1, each 

groups together the PCD++ processors on that machine. Only one Root is created on machine 0. 

Messages may be exchanged, locally and remotely, between the Root and the NCs. The Root 

starts the simulation and performs I/O operations between the simulation system and the 

surrounding environment. The NC created on each machine is the local central controller on its 

hosting LP and the end point of inter-LP communications. The FC sits between the NC and the 

Simulators, synchronizing the execution of its child Simulators underneath. All messages 

exchanged between the local Simulators are routed directly by the FC. A Simulator is 
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responsible for executing the DEVS abstract functions defined in its associated atomic model. If 

a Simulator sends a message to another Simulator running on a different machine, the message is 

forwarded by the FC to the local NC, which further relays the message to the remote NC that 

resides on the same machine as the destination Simulator. On the receiving end, the remote NC 

will then route the message to the target Simulator via its child FC. 

5.2. MESSAGE DEFINITIONS 

PCD++ processors exchange messages that can be classified into two categories: content 

messages and control messages. The former includes the external message (x) and the output 

message (y), and the latter includes the initialization message (I), the collect message (@), the 

internal message (*), and the done message (D). The simulation is executed in a message-driven 

fashion. Each type of the processors defines its own receive functions for different types of 

messages. The algorithms for these receive functions will be described in detail in Section 5.5. 

External and output messages are used to exchange simulation data between the models. 

Initialization messages start the simulation. Collect and internal messages trigger the output and 

the state transition functions respectively in the atomic models according to the DEVS 

formalism. Done messages carry the model timing information for synchronizations.  

PCD++ also defines six types of wrapper objects that are derived from the abstract event 

definition in the kernel. Each type can be used to wrap the corresponding type of PCD++ 

messages so that these messages can be treated as kernel events and transmitted between the 

processors. That is, the PCD++ messages are the actual information generated and consumed by 

the PCD++ processors to carry out the simulation, and the kernel events (or wrapper objects) act 

as the vessel by which the information is transmitted. 

5.3. CURRENT STATUS OF THE CD++ TOOLKIT 

CD++ simulation techniques based on optimistic synchronization protocol have been studied to 

extend the conservative approach used in Parallel CD++ [Tro01, Tro03]. In [Gli04], the author 

implemented a distributed version of CD++ using the optimistic synchronization protocol 

provided by the WARPED kernel. However, the original implementation of the WARPED kernel has 

some problems that cause runtime crashes of the simulation system, which, in turn, prevent 
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further examination of other issues in the CD++ toolkit. The kernel problems and their solutions 

have been discussed in Chapter 4. Using the optimistic synchronization protocol has changed the 

simulation environment so dramatically that most of the mechanisms in the toolkit need to be 

modified or enhanced to adapt to the new settings.  

Some of the issues that need further investigation include: 

(1) Mechanism for starting and terminating the simulation: In the conservative Parallel 

CD++, the simulation is synchronized by a central controller, the Root. Thus, it is 

straightforward to use the Root to perform such tasks like handling external events, 

advancing the simulation time, and terminating the simulation when the stop time 

comes. In PCD++, we have a group of NCs, each managing the sequential 

simulation under its control and interacting with each other in a fully asynchronous 

way. Hence, the simulation must be managed in a totally distributed fashion.   

(2) Mechanism for saving and restoring state variables: Although the state saving and 

restoration mechanisms are provided by the kernel and should be transparent to the 

application, as described in Section 4.3, there are circumstances where simulator 

developers need to take care of some of the variables that cannot be handled in the 

standard way. 

(3) Inter-LP communications: In PCD++, it is possible that different LPs have different 

local virtual times. The asynchronous execution of the LPs complicates the inter-LP 

communications since we have to handle messages with different timestamps and 

the potential out-of-order execution of these messages.  

(4) Enhancements to the simulation framework: As we will discuss in the following 

sections as well as in the next chapter, algorithms for the PCD++ processors, 

especially for the NC, need to be enhanced significantly to address a variety of 

issues in distributed optimistic simulations.  

(5) Modifications to the modeling framework: As we will see in Section 5.9, the 

modeling framework needs to be modified to adapt to the new message-passing 

paradigm in optimistic simulations. 

Furthermore, various optimization strategies for the Time Warp mechanism as well as for 

the CD++ toolkit itself have not yet been exploited in the previous study. We will address several 

of them to reduce the overhead incurred in the simulation.   
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5.4. STRUCTURE FOR INTER-LP COMMUNICATIONS 

In the previous versions of the CD++ toolkit, a structure called message bag is used by all kinds 

of DEVS processors to handle simultaneous events according to the P-DEVS formalism. In 

PCD++, there are two types of communications: synchronous intra-LP communications 

performed by all types of PCD++ processors, and asynchronous inter-LP communications 

carried out by the NCs. Due to the asynchronous nature of the inter-LP communications, the NCs 

need to use a special structure, hereinafter called as NC Message Bag, to handle messages 

exchanged between LPs that may have different local virtual times. The NC Message Bag has the 

following properties: 

(1) A NC Message Bag may contain messages with different timestamps.  

(2) The time of a NC Message Bag is defined as the minimum timestamp among the 

messages contained in it. An empty NC Message Bag has a time of infinity.  

(3) Messages in the NC Message Bag are processed in batches in increasing timestamp 

order. Thus, messages with timestamp equal to the time of the NC Message Bag are 

always processed first. These messages are removed from the bag after being 

processed, and the time of the bag advances to the next minimum value among the 

timestamps of the remaining messages, if any. 

Therefore, there are two types of structures used in the PCD++ simulator: the message 

bag employed by the FC and the Simulator for processing synchronized messages exchanged in 

intra-LP communications; and the NC Message Bag used only by the NC for processing 

asynchronous messages transmitted in inter-LP communications. 

Furthermore, the PCD++ messages inserted into and removed from the bags (both types) 

are actually data objects dynamically allocated (generated) and deleted (consumed) by the 

PCD++ processors. As explained in Section 4.3, the bag structures should be defined directly in 

the PCD++ processors rather than in their states; and we need to provide the algorithm for the 

rollbackProcessData function to maintain the messages in the bags in a consistent manner 

during rollbacks, which will be covered in Section 5.8 when we discuss the mechanism for 

saving and restoring state variables.  
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5.5. MESSAGE-PROCESSING ALGORITHMS FOR PCD++ PROCESSORS 

In this section, we present the simulation mechanism implemented in the PCD++ processors, 

including the Simulator, FC, NC, and Root. In the following discussion, a message of type that 

has a timestamp (virtual receive time) of t is denoted as (type, t). The initialization, external, 

output, collect, internal, and done message are symbolized as I, x, y, @,*, and D respectively.   

5.5.1. Simulator 

The algorithms for the Simulator are implemented as in [Gli04], with minor changes. 

1. when a (I, 0) is received from the parent FC
2. tL = 0; ta = infinity
3. initialize variables in the atomic model
4. send (D, 0) to the parent FC
5. end when  

Figure 13. Simulator algorithm for (I, 0) 

Two variables are used in the Simulator to record its current simulation time (tL) and the 

value of sigma (ta) as defined in the DEVS formalism. Hence, the time of the next state 

transition is scheduled at time (tL + ta), so-called absolute next time that is denoted as tN. Upon 

receiving a (I, 0), the Simulator resets tL to the timestamp of the message (which is now the 

Simulator’s current virtual time) and ta to infinity (line 2). Thus, the Simulator will remain in the 

passive state unless it is reactivated by a further message. The Simulator also initializes the 

variables defined in its associated atomic model, and then it informs its parent FC of the value of 

ta via a (D, 0) (line 4). Notice that the (I, 0) can only arrive at virtual time 0. 

 
Figure 14. Simulator algorithm for (@, t) 

Upon the arrival of a (@, t), the Simulator invokes the output function (λ) defined in the 

atomic model, and the resulting output is sent to the FC as a (y, t) (line 4 and 5). Then, it sends a 

(D, t) to the FC with ta = 0, indicating that it is imminent (line 6). 

 41 



 
Figure 15. Simulator algorithm for (*, t) 

Following the collect message, a (*, t) will arrive to trigger the internal/external/confluent 

function defined in the atomic model depending on the timing of the message and the status of 

the Simulator’s message bag. In the first case (line 2), the (*, t) arrives before tN (i.e. the 

simulator is not imminent yet). Thus, the Simulator must have a non-empty message bag. The 

external transition function (δext) of the atomic model is called (line 4), and the messages in the 

message bag are removed afterwards (line 5). In the second case (line 6), the Simulator is 

imminent and its message bag is empty when the (*, t) arrives. Hence, it is time to execute the 

internal transition function (δint) of the atomic model. In the last case (line 8), the imminent 

Simulator has a non-empty message bag. Therefore, a conflict between the internal and external 

transitions is found, and the confluent function (δcon) is called accordingly (line 9). The message 

bag is also empties thereafter. Finally, the Simulator sends a (D, t) to its parent FC. While ta is 

updated in this algorithm in case 1 (line 3), it is modified by the user-defined logic for state 

transitions (line 7 and 9) in the other two cases. The resulting ta is carried in the (D, t) (line 13). 

1. when a (x, t) is received from the parent FC
2. insert message x to the bag 
3. end when  

Figure 16. Simulator algorithm for (x, t) 

The last message that may arrive at the simulator is the (x, t). The received message is 

simply inserted into the Simulator’s message bag. All external messages in the bag will be 

processed when the following (*, t) arrives as shown in Figure 15. Only external messages with 

identical timestamp can be inserted into the message bag at any given simulation time, and a (*, t) 

will always arrive in between any two consecutive batches of external messages.  
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5.5.2. Flat Coordinator 

The FC synchronizes its child Simulators, routes messages among them, and forwards to the NC 

those messages sending from its children to the environment or to other remote Simulators. 

Simulators ready for a state transition are cached in synchronize set. The number of done 

messages that the FC should receive from its children is recorded in doneCount for 

synchronization purposes. The FC only passes control to the NC after its children (the number is 

given by doneCount) have finished their previous computation. Most of the algorithms given 

here are similar to those as presented in [Gli04]. However, the FC algorithm for (y, t) has been 

redesigned to address the defects in the previous version. 

 
Figure 17. FC algorithm for (I, 0) 

When a (I, 0) arrives, the FC records the total number of its children in doneCount (line 3) 

and forwards the (I, 0) to each child (line 4). After this, the FC waits for a (D, 0) from each of its 

children.  

 
Figure 18. FC algorithm for (@, t) 

Upon receiving a (@, t), the FC forwards the message to all the imminent Simulators 

(line 6), and records them in the synchronize set so that later it knows which children need to do 

state transitions when the (*, t) comes.  

When a (y, t) is received, the FC searches the model coupling information to find its 

ultimate destinations. A destination is ultimate if it is an input port on an atomic model or an 

output port on the topmost coupled model. Be careful that these two cases are not mutually 

exclusive. A (y, t) may be sent to multiple atomic models and the environment simultaneously. 

Furthermore, there are two scenarios in the former case: the receiving Simulators may reside 
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locally on the same machine as the sender or they may locate on remote machines. If the (y, t) is 

sent eventually to remote Simulators or to the environment, the FC simply forwards the (y, t) 

itself to the parent NC (line 3). Otherwise, the FC translates the (y, t) into a (x, t) using the Zi,j 

translation function (line 6) and directly sends the (x, t) to the local receivers (line 8). Also, the 

local receivers are recorded in the synchronize set for later state transitions. 

 
Figure 19. FC algorithm for (y, t) 

Two major problems in the previous version are addressed here: in [Gli04], the author 

mistakenly assumed that a (y, t) sending to the environment will not influence other Simulators, 

which is clearly a false assumption. Moreover, in the previous algorithm, the FC translates the (y, 

t) into a (x, t), and forwards the resulting (x, t) to the NC, for remote receivers. While this is not 

wrong as long as the NC can handle the received (x, t) correctly, it has some undesirable 

consequences. Firstly, it blurs the different roles of the FC and NC. It is the NC that handles 

inter-LP communications. As the hub for intra-LP communications, the FC should not do the 

message translation for remote receivers, which is part of the task of inter-LP messaging. 

Secondly, this unnecessarily complicates the NC algorithm for (x, t), which, as we will see later, 

should be dedicated to processing inter-LP messages received from other NCs and is already 

complex enough due to the asynchronous nature of inter-LP communications. The algorithm 

presented here allows a clearer separation of roles between the NC and FC and a more 

reasonable division of functionalities. 

As shown in the following algorithm, the received external messages are simply inserted 

into the FC’s message bag. 

1. when a (x, t) is received from the parent NC
2. insert message x to the bag
3. end when  

Figure 20. FC algorithm for (x, t) 
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As shown in Figure 21, the external messages in the FC’s message bag are flushed to the 

local receiving Simulators upon the arrival of a (*, t) (line 6). All the receivers are recorded in 

the synchronize set. Therefore, the synchronize set contains the local imminent Simulators 

(Figure 18), if any, and/or those Simulators that have received external messages in the previous 

computation (Figures 19 and 21). These are the Simulators ready for a state transition, which will 

be triggered by the (*, t) forwarded by the FC (line 12). 

 
Figure 21. FC algorithm for (*, t) 

Shown in Figure 22, for each (D, t) received from a child Simulator, the FC decreases the 

doneCount, and updates the child’s tN to the sum of the current simulation time and the sigma 

value carried in the received (D, t) (line 3). When the doneCount is reduced to zero, the FC 

calculates the closest state transition time among its children (line 6), and sends this time to the 

parent NC via a (D, t) (line 7). 

 
Figure 22. FC algorithm for (D, t) 
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5.5.3. Node Coordinator 

As the local central controller, the NC performs a number of important operations as follows:  

(1) Inter-LP communications. Messages exchanged between the NCs are handled using 

the NC Message Bag. 

(2) Handling external events from the environment. The external events are scheduled 

by the modeler at the beginning of the simulation using a text file, so-called EV file. 

They are loaded into the NCs during the bootstrap operations. An Event List is used 

to hold the external events that the NC needs to handle during the simulation. 

Events in the Event List are processed in increasing timestamp order. The NC uses 

an event-pointer to refer to the first event in its Event List that has not yet been 

processed. Initially, this pointer points to the first event in the list. 

(3) Driving the simulation on the hosting LP. The NC advances the local simulation 

time to the minimum among: (i) the timestamp of the external event pointed by the 

event-pointer, (ii) the time of the NC Message Bag, and (iii) the closest state 

transition time given by the FC in the received done message. 

(4) Managing the flow of control messages in line with the P-DEVS formalism. The 

NC uses the next-message-type flag to keep track of the type of the control message 

(either @ or *) that will be sent to the FC in the next simulation cycle. The initial 

value of the flag is set to @. 

(5) Handling a variety of problems to shield the other processors, i.e. the FC and 

Simulators, from the complexity of distributed optimistic simulations, as we will 

discuss in Chapter 6. 

The NC algorithms reflect the major redesign we have done to the previous version. 

Some of the algorithms presented here are simplified versions, while the enhancements are 

delayed to Chapter 6 when we discuss the solutions for a few specific problems. 

Upon receiving a (I, 0), the NC simply forwards it to the child FC. 

 
Figure 23. NC algorithm for (I, 0) 

The following algorithm is a simplified version for processing external messages from 

other remote NCs, while the enhanced version will be presented in Section 6.2. As usual, the (x, 
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t) is inserted into the NC Message Bag. In our design, an NC can only receive external messages 

from other remote NCs. These external messages carry the values sending from remote 

Simulators to the local ones. 

 
Figure 24. Simplified NC algorithm for (x, t) 

In Figure 25, if the received (y, t) is sent to the environment, the NC simply forwards it to 

the Root (line 2 to 4). Also, the NC finds out the remote machines on which the ultimate 

receiving Simulators locate based on the model coupling and partition information. Then, the NC 

translates the (y, t) into a (x, t) and sends it to the NC on each of those machines (line 6 and 7). 

Notice that only one (x, t) is sent to each of these machines, reducing the communication 

overhead to the minimum. On the receiving end, the (x, t) will be eventually delivered to the 

receiving Simulators on that machine. 

 
Figure 25. NC algorithm for (y, t) 

A (D, t) is the response of a control message previously sent out by the NC. It carries the 

synchronization information as the closest state transition time collected by the child FC. Figure 

26 shows the simplified NC algorithm for (D, t). The first (D, t) received by the NC is the 

response to the (I, 0) sent to the FC to start the simulation. Since next-message-type is initialized 

to @, the NC follows the second half part of the algorithm (line 6 to 33). For a start, the NC 

calculates the next simulation time, min-time, based on the three factors as presented earlier (line 

7 to 9). If the calculated min-time is larger than the user-specified stop time, the NC simply sets a 

flag (line 11) and exits the algorithm. The usage of this flag will be discussed in Section 6.2. For 

now, we only need to know that the NC will not send any message to the FC beyond the stop 

time. On the other hand, if the min-time is smaller or equal to the stop time, the NC performs the 

following operations: 
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(1) Send all external events scheduled at the min-time, if any, as external messages to 

the FC (line 13 to 18); 

(2) Send the received external messages with timestamp equal to the min-time, if any, 

to the FC and remove them from the NC Message Bag (line 19 to 24); 

(3) Send a control message to the FC and reset the next-message-type accordingly (line 

25 to 31). That is, if there are imminent Simulators on the local machine, the NC 

sends out a (@, t); otherwise, it sends out a (*, t). 

1. when a (D, t) is received from the child FC
2. tL = t; tN = tL + D.ta
3. if next-message-type = * then
4. send (*, t) to the child FC
5. next-message-type = @
6. else
7. min-time = MIN( timestamp of the event pointed by event-pointer, 
8.             time of the NC Message Bag, 
9.             tN )
10. if min-time > stop-time then
11. set a flag
12. else
13. if min-time = the timestamp of the event pointed by event-pointer then
14. for each x in the Event List with min-time do
15. send (x, t) to the child FC
16. move event-pointer to the next event
17. end for each
18. end if
19. if min-time = the time of the NC Message Bag then
20. for each x in the NC Message Bag with min-time do
21. send (x, t) to the child FC
22. end for each
23. end if
24. remove all x in the NC Message Bag with min-time
25. if tN = min-time then
26. send (@, t) to the child FC
27. next-message-type = *
28. else
29. send (*, t) to the child FC
30. next-message-type = @
31. end if
32. end if
33. end if
34. end when  

Figure 26. Simplified NC algorithm for (D, t) 

There are two important differences between the external events (from the environment) 

in the Event List and the external messages (from other remote NCs) in the NC Message Bag: 

First, all the external events are known prior to the start of the simulation, while the external 
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messages are known only when they arrive at runtime. This has a significant impact on the 

calculation of the min-time. Among the three determinant factors, the timestamp of the first not-

yet-processed external event and the closest state transition time, i.e. factor (i) and (iii), are 

assured at the time of the calculation. However, the time of the NC Message Bag, i.e. factor (ii), 

is far from certain. After the calculation of the min-time based on the current NC Message Bag, 

more external messages with less timestamp may arrive at the NC, invalidating the previously 

calculated min-time. The uncertainty of the external messages in the NC Message Bag makes the 

min-time calculation a speculative one. Secondly, the external events exist in the Event List 

throughout the simulation whereas the external messages in the NC Message Bag are removed 

after processing (line 24). In other words, the event objects in the Event List are static, while 

those in the NC Message Bag are dynamic. As a result, they are treated differently during state 

saving operations, as we will discuss in Section 5.7.    

  Let’s go back to the NC algorithm for (D, t). The next-message-type is set to * only after 

the NC sends out a (@, t) (line 27), in which case there must be imminent Simulators on the LP 

and their output functions will be invoked upon receiving the (@, t). These imminent Simulators 

need to do internal transitions immediately after the output operations. Therefore, the NC 

triggers the internal transitions by sending out a (*, t) (line 4). On the other hand, if there is no 

imminent Simulator at this time, the NC always sends a (*, t) whenever external messages are 

flushed out (line 29). Thus, external transitions will be performed in the non-imminent 

Simulators, consuming the external messages.    

5.5.4. Root Coordinator 

The role of the Root Coordinator is weakened significantly in our design. It only handles 

environment-oriented output messages during the simulation. 

 
Figure 27. Root algorithm for (y, t) 

 49 



As shown in Figure 27, Output to the environment is done through a text file called as 

output file or OUT file. Internally, the Root uses a flag, create-output, to record whether such a 

file has been created or not. If the OUT file is ready (line 2), the Root finds out all output ports 

on the TOP model to which the (y, t) will be ultimately sent. Then, it creates a FileData object 

from the (y, t) for each of these ports and inserts it into the file queue corresponding to the OUT 

file (line 4 and 5). Eventually, the data in the file queue will be written to the physical file by the 

kernel when GVT advances. 

5.6. A MESSAGE-PASSING SCENARIO 

Based on the message-processing algorithms described in the previous section, we now illustrate 

the message flow in PCD++ using an event precedence graph, where a vertex (black dot) 

represents a message, and an edge (black arrow) represents the action of sending a message with 

the message type placed nearby. A line with a solid arrowhead denotes a (synchronous) intra-LP 

message and a line with a stick arrowhead denotes an (asynchronous) inter-LP message. A 

lifeline (dashed line) is drawn for each PCD++ processor. The sequence of message execution is 

marked by the numbers following the message type.  

 
Figure 28. Example message-passing scenario 

Without loss of generality, we focus our analysis on a single LP. Since all the LPs operate 

in a similar way, a general idea of the message-passing paradigm can be obtained. Figure 28 

shows a LP with four PCD++ processors, a NC, a FC, and two Simulators (S1 and S2). We do 
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not include the Root in order to keep the diagram as concise as possible. Also, external events 

from the environment are not considered in the example. A further simplification is the absence 

of the potential out-of-order execution. Since the rollback operations are performed 

automatically and transparently in the kernel, we can largely ignore them when we consider the 

message flow at the PCD++ layer. Although there may be messaging anomalies that cannot be 

handled by the kernel rollback facility alone, which will be covered in Section 6.5, it is sufficient 

to leave them alone for now. 

The simulation on this LP starts at simulation time 0, upon the arrival of an initialization 

message (I1) at the NC. The NC forwards the message to the FC (I2), which further forwards it to 

the Simulators (I3, I4). The Simulators respond with done messages (D5, D6) after initializing 

their associated atomic models. The FC informs the NC about the closest state transition time 

after receiving all the done messages from its children (D7).  

At this time, all Simulators are imminent. Thus, the NC sends a collect message (@8) to 

the FC, which again forwards the message to each of the Simulators (@9, @10). Upon receiving 

the collect message, imminent Simulators execute their output functions and send output 

messages to the FC. S1 processes @9 first and sends an output message (y11) to the FC. Suppose 

that this output message is sent to all local Simulators as well as to remote ones. The FC first 

translates the output message into an external message and sends the message to each of its 

children (x12, x13), and then forwards the output message itself to the NC (y14), which, in turn, 

translates the output message into an external one (x15) and sends it remotely to all destination 

NCs. In our example, the external message is sent to only one remote NC. After processing y11, 

the FC turns to process the done message (D16) sent from S1 right after y11. This done message 

represents the end of the output operation at S1. Then, the FC continues to process the output 

message (y17) from S2 just like in the previous case (x18, x19, y20, x21). Notice that before the 

execution of D23 at the FC, a remote external message sending to S1 arrives at the NC (x22). 

Hence, this message is inserted into the NC Message Bag. Now, it is the FC’s turn to process the 

postponed D23 and a new done message (D24) is sent to the NC.  

As a response, the NC sends an internal message (*25) to the FC immediately. This 

message is then delivered to all Simulators that have just finished their output operations 

(*26,*27). Internal transitions are triggered at these Simulators followed by done messages emitted 

to the FC (D28, D29). The FC sends the closest state transition time to the NC via a done message 
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(D30). In processing D30, the NC calculates the min-time and notices that a message, derived from 

x22, with that min-time exists in its NC Message Bag. Therefore, it sends this external message to 

the FC followed by another internal message (x31, *33). The external message (x31) is added to the 

FC’s bag and will be sent to the receiving Simulators when *33 is executed by the FC. 

Meanwhile, another remote external message (x32) sending to S2 arrives. The execution of *33 is 

thus delayed until after x32 is processed by the NC. Then, the FC executes *33, flushing x34 to S1 

followed by *36. The external message x34 is added into S1’s bag, thereby accepting the value 

previously transmitted by x22 from a remote sender.  In the mean time, one more remote external 

message (x35) sending to S2 arrives and gets executed by the NC. After that, the internal message 

*36 invokes S1’s external transition, consuming the value wrapped in x34. The resulting done 

message (D37) is sent to the FC. When D38 is executed by the NC, it sends all external messages 

with min-time existed in its NC Message Bag to the FC (x39, x40), again followed by an internal 

message (*41). These messages are executed by the FC and then forwarded to the destination 

Simulator S2 (x42, x43, *44). Now, the values derived from x32 and x35 are consumed in S2’s 

external transition function, and a done message (D45) is sent to the FC.  

When D46 is processed at the NC, there is no message in its NC Message Bag, and the 

closest state transitions are scheduled at time t1. Hence, the NC advances the local simulation 

time from 0 to t1 and sends to the FC a collect message (@47) that has a send time of 0 and a 

receive time of t1, thereby starting a new cycle of simulation similar to that initiated by @8. 

 Some characteristics of the message flow are summarized as follows: 

(1) The execution of messages at any given simulation time on a LP can be classified 

into at most three distinct phases, namely initialization phase, collect phase, and 

transition phase. Only one initialization phase exists at the beginning of the 

simulation (time 0), consisting of messages in the range of [I1, D7]. The collect 

phase at a specific simulation time starts with a collect message sending from the 

NC to the FC and ends with the following done message received by the NC. In the 

diagram, the collect phase at time 0 comprises messages in range [@8, D24]. This 

phase is optional, it happens if, and only if, there are imminent Simulators on the 

LP at that time. Finally, the transition phase at a specific simulation time begins 

with the first internal message sending from the NC to the FC and ends at the last 

done message received by the NC at that time. In our example, messages in the 
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range of [*25, D46] belong to the transition phase at time 0. The transition phase is 

mandatory for each individual simulation time.  

(2) The variables defined in the atomic models are initialized in the initialization phase. 

The output functions in the imminent atomic models are invoked during the collect 

phases. The state transitions are performed for the atomic models in the transition 

phases. These phases are arranged in line with the P-DEVS formalism.  

(3) Outgoing inter-LP communication happens only in the collect phases, whereas 

incoming inter-LP communication can occur in any phase. Since the output 

functions of imminent models are invoked only in the collect phases, it is clear that 

at any given simulation time, all external messages going to remote NCs are sent 

out by the end of the collect phase of that time. On the other hand, an external 

message from a remote source can arrive at the destination NC when the simulation 

is executed in any phase.  

(4) Although these phases also exist in other versions of the CD++ toolkit, the 

optimistic version differs from the standalone and conservative ones in the structure 

of the transition phase. In the previous versions, the message exchanges are 

synchronized and the state transition is performed only once for the Simulator that 

needs to change its state at a specific time. In PCD++, state transitions in the 

Simulators may be performed repeatedly at any given simulation time as additional 

remote external messages arrive at the NC, resulting in a multi-round transition 

phase. A transition phase consisting of (n+1) rounds is denoted as [R0…Rn]. Each 

round starts with zero/one/more external messages followed by an internal message 

sending from the NC to the FC and ends with a done message returned back to the 

NC. In Figure 28, the transition phase at time 0 has three rounds: R0 includes 

messages in range [*25, D30], R1 involves messages in [x31, D38], and R2 contains 

messages in [x39, D46]. During each round, state transitions are performed 

incrementally with additional external messages and/or for potentially extra 

Simulators.  

These characteristics of the message flow, especially the multi-round transition phases, 

have a significant impact on the computation of the models. Accordingly, the new algorithms for 

Cell-DEVS models with transport and inertial delays are presented in Section 5.9. Based on the 
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above discussions, Section 6.1 gives a new abstraction for optimistic simulations in PCD++. 

5.7. STARTING AND TERMINATING SIMULATIONS 

The mechanisms for starting and terminating the simulation in PCD++ are dramatically different 

from those in the previous versions because of the optimistic and decentralized approach to 

distributed simulation. The major modifications to the bootstrap algorithm are summarized as 

follows:  

The first modification concerns with handling external events from the environment. In 

PCD++, the Root is not longer the central controller and the simulation is carried out under the 

control of a group of NCs. Accordingly, we have to distribute the task of managing external 

events among these NCs. Each NC uses an Event List to hold the external events it needs to 

handle during the simulation. The events given in the EV file are purged before they are loaded 

into a NC’s Event List. That is, an event is loaded into a NC’s Event List if and only if that event 

will ultimately influence some of the Simulators controlled by that NC. As a result, a NC can 

solely depend on its own Event List to process the external events when the local virtual time 

advances to the event’s timestamp. Furthermore, this arrangement is crucial for the NC to 

calculate the min-time as discussed at the end of Section 5.5.3. 

The second modification is that the Root now sends initialization messages to all the NCs 

to start the simulation in a distributed way. Previously, the Root sends only one initialization 

message to the coordinator associated with the TOP model. As the intermediary coordinators are 

removed in our flattened structure, using this approach in PCD++ causes runtime failure. 

The last modification is to handle the user-specified stop time. This issue is naturally 

related to the simulation termination mechanism. In the standalone and conservative versions, the 

stop time is loaded into the Root and the termination of the simulation is totally controlled by the 

Root. As we know, with Time Warp the detection of termination is one of the several global 

issues handled in terms of GVT [Jef85]. In PCD++, the stop time is loaded into each NC so that 

the NC will not send out any message with timestamp beyond the stop time (line 10 and 11 in 

Figure 26). At the same time, the stop time is also passed into the LP as the parameter of the 

simulate function, which defines the main event processing loop. At the end of each simulation 

cycle, the LP compares the stop time with the current GVT. The simulation terminates when the 
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GVT exceeds the user-defined stop time.  

Since the GVT computation is CPU and communication intensive, too frequent GVT 

calculation can degrade the performance. Usually, we set the number of simulation cycles 

between two consecutive GVT calculations to tens of thousand. Therefore, the LP may keep 

executing events with timestamp larger than the stop time while the GVT is lagging behind the 

actual simulation time. In the worst case when the last GVT calculation was done just before the 

stop time, the LP may keep executing tens of thousand of extra events with timestamp actually 

larger than the stop time until the next GVT computation. This is why we need to load the stop 

time into the NC so that no message with timestamp larger than the stop time will be emitted. In 

this case, the LP will run empty loops when the simulation time exceeds the stop time, while 

waiting the GVT value to eventually catch up as illustrated in Figure 29.  

 
Figure 29. Terminating the simulation on a LP 

This approach has two advantages: (1) the empty cycles after the stop time are consumed 

faster than normal event execution, allowing more efficient termination and better performance; 

(2) we can have a clear cut of the simulation results at the stop time. 

5.8. SAVING AND RESTORING STATE VARIABLES 

In Time Warp parallel simulation, each process must periodically save its local state such that, in 

the event of a causality error, a rollback to a correct state is possible [Fre02]. The Time Warp 

protocol requires that all the modifiable variables of a process are saved in its state and restored 

during rollbacks by the Time Warp executive. However, this approach has some disadvantages 

when applied to objects. We have to perform a deep copy for the objects in order to fully recover 

them later from a previously saved state, resulting in large states and long operation time for 

state saving and restoration. 

 55 



To reduce the overhead, we want to save only the pointers to these objects in the state of 

a process, and perform a shallow copy during state saving. That is, only the values of the pointers 

are copied rather than the objects themselves.  

In other situations, the simulator developer has the knowledge as to how to maintain the 

data objects in a consistent way during rollbacks. Hence, this kind of data objects can be 

removed entirely from the state of the process. Even the pointers to these objects need not to be 

saved in the state, further reducing the state copying overhead. Instead, these objects are defined 

in the process itself and will not be saved during the state-saving operation. In Section 4.3, we 

defined an empty function (rollbackProcessData) in each simulation object that will be invoked 

during kernel rollback operations. The simulator developer can provide the implementation of 

this function to take the responsibility of recovering the data objects during rollbacks. 

Therefore, we have three different methods for saving and restoring the modifiable 

variables defined in PCD++ processors and models: deep copy, shallow copy, and no copy at all. 

The following rule of thumb gives the criteria for selecting the appropriate method for different 

types of variables. 

(1) All primitive data types, or a collection of them, can be saved using the deep copy 

method. Examples of such variables include the doneCount and synchronize set in 

the FC, and the next-message-type in the NC. Notice that the synchronize set is a 

container that holds primitive integers (processor ids). As the processors have 

invariable ids, the data contained in the synchronize set will never be invalidated.  

(2) Objects that exist throughout the simulation can be saved using the shallow copy 

method. The NC’s Event List is a perfect candidate for this method. Once loaded 

into the Event List during the bootstrap operation, the event objects remain in the 

list until the end of the simulation. We only need to use a pointer, event-pointer, to 

maintain our current position in the list. The event-pointer is saved in the NC’s 

state, whereas the event objects are not. 

(3) Objects that are dynamically allocated and deleted during the simulation can be 

saved using the deep copy method or, if the simulator developer has enough 

knowledge about them, can be removed from the state of the process all together. 

The message bags (including the NC Message Bag) are defined directly in the 

PCD++ processors, and the message objects in the bags are handled in virtue of the 

 56 



rollbackProcessData function during rollbacks. Figure 30 gives the algorithm for 

the rollbackProcessData function, which is common for all kinds of PCD++ 

processors. 

1. when function rollbackProcessData(rollback-time) is invoked
2. for each message m in the current message bag do
3. if m.timestamp >= rollback-time then
4. remove m from the message bag
5. delete m
6. end if
7. end for each
8. end when  

Figure 30. Algorithm for function rollbackProcessData 

In PCD++, both processors and models define their modifiable variables. A connection is 

made between a processor’s state and the corresponding model’s state so that both are saved in 

the state queue of the processor. Modelers can define variables as they want and put them in the 

states of the models. These user-defined model variables will automatically participate in the 

Time Warp synchronization protocol. 

5.9. ASYNCHRONOUS STATE TRANSITIONS IN CELL-DEVS MODELS 

As discussed in Section 5.6, the PCD++ message-passing paradigm is considerably different 

from that in the standalone and conservative versions. At any given simulation time, the state 

transitions may be performed incrementally in the Simulators with additional external messages, 

resulting in a multi-round transition phase. Therefore, the functions for Cell-DEVS atomic 

models must be adapted to this asynchronous state transition paradigm to obtain the same 

simulation results in PCD++ as in the previous versions for any given model.  

A brief description of the new computation model under the asynchronous state transition 

paradigm is given as follows:  

(1) Applying preemptive semantics to the state transition logic. For a transition phase 

[R0…Rn], the state transitions in all but the last round (Rn) are based on incomplete 

information and, hence, false transitions. Only Rn has the best chance to perform the 

correct transition (This is the case if no rollback happens later on. Otherwise, the 

whole transition phase will be reprocessed after the rollbacks.) Since the state 

transition in a later round involves additional external messages, it has a better 
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chance to perform the correct computation and, thus, generate the correct results. 

Therefore, the state transition logic should be implemented so that the computation 

of the later round preempts that of the previous round. In the end, the potentially 

correct results obtained in Rn preempt those erroneously generated in Rn-1, and the 

simulation advances to the next virtual time afterwards. Both the value and the state 

of the cell must follow this preemptive logic during the multi-round state 

transitions. To do so, the cell needs to record its previous value and previous state 

passed in from the previous virtual time at the beginning of R0 in the transition 

phase at each individual simulation time. For time 0, the previous value and state 

are the cell’s initial value and state defined by the modeler. Except the R0 at time 0, 

the entry point of the first round is identified by a change in the simulation time. 

Hence, a cell can safely record its previous value and state once a time change is 

detected at the beginning of the state transition algorithm. For time 0, this job can 

be done in the initialization phase. 

(2) Handling user-defined state variables. User-defined state variables may be involved 

in the evaluation of local rules. With the multi-round transition phase, this 

computation becomes much more complex. During each round, a potentially 

different rule is evaluated and the state variables referenced in the rule are 

computed. As a result, potentially wrong values are assigned to the variables and 

passed to the next round. The computation errors accumulate throughout the rounds, 

and finally, the wrong values are passed to the simulation at the next virtual time. 

To ensure correct computation of the state variables, a cell needs to record the 

values of the state variables at the beginning of R0. These recorded values are 

inherited from the computation in the last round at the previous simulation time 

and, thus, they are potentially correct. In each of the following rounds, the variables 

are first restored to the recorded values. Only after this restoration operation, can a 

new computation be performed. Therefore, the cell always uses the potentially 

correct values as the basis for a new computation. 

(3) Handling external events. In CD++, port-in transition function (for evaluating 

external events) is given a higher priority than the local transition rules. Under the 

new asynchronous state transition paradigm, the computation results of the port-in 
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transition function can be modified by the local transition rules in later rounds. In 

order to preserve the effect of external events throughout the multi-round transition 

phase, we define a flag, called as event-flag, in each cell. Whenever the cell’s value 

is influenced by an external event or events at a given simulation time, this flag is 

set so that no further changes can be done to the value during the following rounds 

at this time. This flag will be reset once the preserved value has been output to other 

cells and the R0 at a new simulation time begins. In this case, the influence of the 

external event has spread out in the cell space as expected, and the cell’s value is 

again under the control of its local transition rules.  

Based on the above analysis, we now present the enhanced algorithms for Cell-DEVS 

models. The algorithms presented in the following subsections only include the core simulation 

logic. Other auxiliary logic untouched in our revision such as that for model quantization is 

excluded for clarity. Another simplification is that we only show a single output port, hence a 

single cell value, in the algorithms. Actually, a cell can define multiple inter-cell ports to 

communicate with its neighbors. It is easy to obtain the complete version by replacing the single 

cell value with a list of values, each corresponding to an extra output port. 

5.9.1. Cell-DEVS models with transport delay 

Shown in Chapter 2, four abstract functions are defined in the P-DEVS formalism, namely the 

output function (λ), internal transition function (δint), external transition function (δext), and 

confluent transition function (δcon). An initialization function is also defined to initialize the 

variables used by each atomic model. In CD++, a default algorithm for the δcon function has been 

provided that gives a higher priority to internal events. This default δcon function is inherited in 

PCD++ and hence not included in the following discussions. Users can always define their own 

δcon function by deriving from the modeling framework.     

 
Figure 31. Initialization algorithm in Cell-DEVS models with transport delay 
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Figure 31 gives the algorithm for the initialization function, which is invoked by the 

associated Simulator during the initialization phase. First, the cell retrieves its initial value v 

given by the modeler (line 2). The event-flag for identifying external events is initialized to false 

(line 3). The transient-value for recording the tentative value changes during the multi-round 

state transitions at a given simulation time is initialized to the cell’s initial value (line 4). The 

time-record used to detect the entry point of R0 is initialized to time 0 (line 5). The cell also 

records the initial value of the user-defined state variable in state-variable-record (line 6). Again, 

we only show a single user-defined state variable in the algorithm for simplicity. Actually, a 

structure is used to hold all the state variables and another similar structure to keep their records. 

Then, the cell creates an element <0 / out = v> and inserts it into the queue so that its initial 

value v can be sent to all its neighbors via its output port, out, during the collect phase at time 0 

(line 7). Finally, function holdIn is invoked, activating the cell at time 0 (line 8). As a result, the 

cell is ready to output its initial value once the collect phase begins. 

The λ and δint functions are implemented as in the previous conservative version [Tro03].  

1. when the λ function is invoked
2. for each element <t / port = value> in the queue do
3. if t = current-time then
4. send value to the port
5. end if
6. end for each
7. end when  

Figure 32. Algorithm for the λ function in Cell-DEVS models with transport delay 

Figure 32 shows the algorithm for the λ function, which is invoked during each collect 

phase. The cell simply walks through the queue, and sends the value to the specified port if the 

time of the element is equal to the current simulation time (current-time) as indicated by the 

timestamp of the collect message that has triggered this function. 

 
Figure 33. Algorithm for the δint function in Cell-DEVS models with transport delay 
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As shown in Figure 33, when the δint function is called, the cell first removes from the 

queue all the elements that have been sent out in the preceding λ function (line 2 to 6). Then, it 

resets its state based on the current status of the queue. If no further output is scheduled, its state 

is set to passive (line 8). Otherwise, the cell calculates the remaining time to the next scheduled 

output time, and remains active until that time (line 10). 

The new state transition logic is realized in the δext function, which is invoked repeatedly 

throughout the multi-round transition phases. The algorithm is shown in Figure 34. 

1. when the δext function is invoked
2. set the values of neighboring cells based on the current message bag
3. time-change = false
4. if time-record != current-time then
5. time-record = current-time
6. time-change = true   
7. get the previous-value from the input port
8. transient-value = previous-value  
9. event-flag = false
10. state-variable-record = state-variable
11. end if
12 state-variable = state-variable-record
13. if there are external events in the current message bag then
14. new-value = port-in-function()
15. else
16. new-value = local-transition-function()
17. end if
18. output-time = current-time + delay
19. if event-flag = false then
20. if new-value is derived from external events then
21. event-flag = true
22. end if
23. if (new-value != previous-value) & (transient-value = previous-value) then
24. transient-value = new-value
25. push <output-time / out = new-value> into the queue
26. holdIn(active, time to the next output)
27. else if (new-value = previous-value) & (transient-value != previous-value) then
28. transient-value = new-value
29. if time-change = false then
30. remove the previous element from the queue
31. if queue is empty then
32. passivate()
33. else
34. holdIn(active, time to the next output)
35. end if
36. end if
37. else if (new-value != previous-value) & (transient-value != previous-value) & (new-value != transient-value) then
38. transient-value = new-value
39. if time-change = false then
40. replace  the previous element in the queue
41. holdIn(active, time to the next output)
42. end if
43. end if
44. end if
45. end when  

Figure 34. Algorithm for the δext function in Cell-DEVS models with transport delay 
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First of all, the cell sets the values of its neighbors based on the existing external 

messages in the message bag (line 2), thereby consuming these external messages. Then, it 

compares the time-record with the current-time to detect a possible change of time (line 4), 

which indicates the entry point of R0 at the current simulation time. Once found, a series of 

operations are performed (line 5 to 10): the time-record is updated to the current virtual time so 

that no more time change will be detected in the following rounds, and a flag called time-change 

is set accordingly; the cell’s value passed in from the previous time, previous-value, is retrieved, 

and the transient-value is initialized to this previous-value for use in the later rounds; the event-

flag is reset to false in case external events have been processed during the computation of the 

previous time; and the current value of the user-defined state variable inherited from Rn of the 

previous time is recorded in the state-variable-record. These housekeeping operations are done 

only at the beginning of R0 for each individual simulation time. 

The remaining logic (line 12 to 44) is common for all the rounds in a transition phase. 

The state variable is restored to the recorded one before any rule evaluation (line 12). From line 

13 to 17, we can see that the port-in function is preferred over the local transition function during 

the rule evaluation. The event-flag is set (line 20 to 22) if the new value is derived from external 

events (line 14). Once this flag is set, no further modification to the cell’s value is allowed in the 

following rounds until the simulation is advanced to the next virtual time (line 19). 

The preemptive semantics of the transition logic is realized in line 23 to 43. There are 

three possible cases that can happen in each round: a new value change occurs (line 23 to 26), 

the value is changed back to the previous-value (line 27 to 36), or the value is changed further 

from the result of the previous round (line 37 to 43). For all these cases, the transient-value 

always follows the newly generated new-value (line 24, 28, and 38). Thereby, it records the 

tentative value change in the present round and will be used in the conditional expression of the 

immediately subsequent round to choose different logic for different cases. Once a new value 

change is detected, the new-value is inserted into the queue and an output is scheduled (line 25 to 

26). If the cell’s value is changed back to the previous-value (line 27), i.e. there is actually no 

value change if we consider the computation up to the current round as a whole, the cell 

preempts the result of the previous round by removing the previously inserted element from the 

queue (line 30), and reschedules output based on the current queue (line 31 to 35). On the other 

hand, if the cell’s value is changed further (line 37), the cell preempts the previous result by 
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replacing the element with a new one, and reschedules output accordingly (line 40 to 41). That 

is, the cell implements preemptive logic in the multi-round transition phase when no time change 

is found (line 29 and 39). The preemptive semantics is indirectly applied to the state of the cell 

since the cell’s state, decided by the holdIn function, is always updated according to the current 

queue whose elements are maintained by the preemptive logic. 

5.9.2. Cell-DEVS models with inertial delay 

We now present the new algorithms for Cell-DEVS atomic models with inertial delay. The same 

simplifications have been done in the following algorithms as in the previous subsection. Unlike 

in the previous case, Cell-DEVS atomic models with inertial delay need to explicitly apply the 

preemptive semantics to their states in the transition logic.  

The algorithm for the initialization function is given in Figure 35. The cell’s future value 

f is initialized to the initial value (line 4), which is also copied in f-record (line 5). Notice that the 

cell needs to explicitly make a copy of its state, state-record, and the duration of the state, delay-

record (line 6 to 7). The other operations are the same as in the initialization function for cells 

with transport delay. 

 
Figure 35. Initialization algorithm in Cell-DEVS models with inertial delay 

The λ and δint functions are also implemented as in the previous conservative version 

[Tro03]. Shown in Figure 36 and 37, an imminent cell simply sends its current future value to the 

output port in the λ function, and then it changes to the passive state in the following δint function. 

 
Figure 36. Algorithm for the λ function in Cell-DEVS models with inertial delay 
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Figure 37. Algorithm for the δint function in Cell-DEVS models with inertial delay 

The new state transition logic is implemented in the δext function, as shown in Figure 38.  

 
Figure 38. Algorithm for the δext function in Cell-DEVS models with inertial delay 
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The cell detects time changes and does the housekeeping operations at the beginning of 

R0 for each simulation time just like an atomic model with transport delay does. When the δext 

function is invoked, the current state of the cell, current-state, may be either passive or active. If 

it is passive, the cell’s current future value f has been committed and the duration of the state is 

infinity. Otherwise, the current future value is still a tentative one and the cell will remain in 

active state until the time of the next scheduled state transition (tN) comes. Hence, the duration of 

the active state is given by (tN - current-time). The cell records the current f at the beginning of 

R0 for reference in the following rounds of state transitions at this time (line 8). Also, it copies 

the current state (line 10) and the duration of that state (line 11 to 15) in state-record and delay-

record respectively. The user-defined sate variable and external events are handled in the same 

way as in transport-delay cells. 

The preemption is done once a change of the future value is detected (line 27), and the 

operations are carried out in two steps: one is to preempt the cell’s current state along with its 

duration (line 28 to 42), and the other is to preempt the cell’s current future value (line 43). 

While the second step can be done with ease by simply assigning the new-value to the future 

value, preemption of the state needs to be handled more carefully. Here, we have two different 

cases: if the current state is passive, it can be directly preempted with the holdIn function (line 

29). Notice that this operation not only preempts the state itself (from passive to active), but also 

preempts the duration of the state (from infinity to a certain value of delay). Also, this operation 

is common for both preemption of events happened at different time (i.e. later events preempt 

earlier ones, referred to as situation-type-A) and preemption of events occurred at the same time 

but in different rounds of a transition phase (i.e. events in a later round preempt those in previous 

rounds, referred to as situation-type-B).  

If the current state is active, it should be preempted differently depending on whether the 

preemption is done in situation-type-A or in situation-type-B. The operations for situation-type-A 

are already defined by the semantics of the inertial delay [Wai02b]. The state itself remains 

active and the duration of the state is changed from the current value of (tN - current-time) to the 

new delay (line 32 to 34). Notice that a conditional expression (line 31) is added to the operation. 

However, this condition only takes effect in situation-type-B. The reason for this is that 

whenever the simulation time changes, the f-record is updated to have the same value of f (line 

8). Hence, the condition expressed in line 31 is always true whenever the condition in line 27 is 
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satisfied in situation-type-A. On the other hand, the cell’s f may or may not be changed to the f-

record during the following rounds in situation-type-B. If it is not changed to f-record (line 31), 

the preemption logic is the same as in situation-type-A (line 32 to 34). Otherwise, we can 

conclude that there is actually no value change when the multiple rounds at this time are 

considered as a whole. Hence, the current state is recovered to the state-record (line 36 to 40). 

Notice that the duration of the state is recovered to the delay-record as well (line 39). This 

recovery can only occur in the multiple rounds of a transition phase, as secured by the condition 

in line 35.    
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CHAPTER 6 ENHANCEMENTS TO PCD++ AND THE WARPED KERNEL 

The new algorithms for the simulation and modeling frameworks of the PCD++ toolkit have 

been presented in Chapter 5. However, before the toolkit can be used to execute DEVS and Cell-

DEVS models optimistically in distributed environments, it must be enhanced to address a 

variety of issues. This chapter is concerned with the essential enhancements to the PCD++ and 

the WARPED kernel to ensure correct and efficient execution of simulations. The notion of wall 

clock time slice (WCTS) is presented in Section 6.1 as an abstraction for the simulation process 

on each LP. A new state of the NC, called as dormant, is introduced in Section 6.2 to handle 

asynchronous execution of the LPs. Section 6.3 is devoted to dealing with rollbacks happened at 

virtual time 0, a problem left unsolved in the WARPED kernel. A two-level user-controlled state 

saving (UCSS) strategy is proposed in Section 6.4 to achieve efficient and flexible state saving at 

runtime. The issue of messaging anomalies receives great attention in Section 6.5. Both the 

algorithm of the NC and the WARPED kernel are enhanced significantly to address this issue. 

Finally, the one log file per node strategy is presented in Section 6.6 to break the bottleneck in 

the bootstrap operations. 

6.1. AN ABSTRACTION FOR THE SIMULATION PROCESS 

Based on the characteristics of the PCD++ message-passing paradigm, this section gives a new 

abstraction that allows a higher-level understanding of the simulation process on each LP.   

In an event-driven simulation, simulation time advances from the timestamp of one group 

of simultaneous events to that of the next group. Therefore, from a computational standpoint, the 

sequential simulation on a LP can be viewed as a sequence of computation units, one for each 

group of simultaneous events, transforming the system mapped on that processor according to 

the P-DEVS formalism. Each computation unit is performed by the hosting processor during a 

span of time as measured by a physical wall clock. Such computation unit is referred to as wall 

clock time slice (WCTS). A WCTS comprising simultaneous events occurred at virtual time t is 

denoted as WCTS-t, and t is called as the virtual time of the WCTS.   
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The WCTS is an entirely different concept from the “time slice” used in discrete time 

modeling approach, in which the simulation time is divided into a sequence of equal-sized time 

steps, each step is called as a time slice, and the simulation advances from one time step to the 

next. On the contrary, the physical execution time of the simulation on a LP is subdivided into a 

series of wall clock time slices with not necessarily equal lengths, one for a group of 

simultaneous events executed at a specific virtual time, and the simulation time jumps from the 

virtual time of a WCTS to the next.  

The sequential simulation on a LP can be represented in terms of WCTS, as shown in 

Figure 39. 

 
Figure 39. WCTS representation for the simulation on a LP 

In the diagram, the details of PCD++ processors and message exchanges between them 

disappear. Instead, the simulation on a LP is viewed as a sequence of wall clock time slices 

linked together along the time axis, each stands for the execution of simultaneous events at a 

specific simulation time on all the PCD++ processors associated with this LP according to the P-

DEVS formalism. Also, each WCTS-t may contain one mandatory transition phase and one 

optional collect phase. Using the WCTS abstraction makes the otherwise daunting task of 

analyzing potentially huge number of PCD++ processors involved in the simulation and the 

complex message exchanges between them manageable.    

Several properties of the WCTS are summarized as follows: 

(1) The simulation on a LP starts with WCTS-0, the only WCTS with all three phases.  

(2) Wall clock time slices are linked together by messages sending from the NC to the 

FC (shown as black arrows in the diagram). When the NC determines the next 

simulation time at the end of a WCTS, it sends out messages that will be executed 

by the FC at the new simulation time, initiating the next WCTS on the LP. Hence, 

the messages linking two adjacent wall clock time slices have send time equal to the 

virtual time of the previous WCTS and receive time equal to that of the next. For 

example, the linking messages between WCTS-t1 and WCTS-t2 have send time of t1 
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and receive time of t2. All other messages executed in a WCTS have the same send 

and receive time that is equal to the virtual time of the WCTS. 

(3) The completion of the simulation on a LP is marked by a WCTS sending out no 

linking messages, e.g. WCTS-tn in the diagram. The NC on that LP enters into a 

special state called dormant. The whole simulation finishes only when all 

participating LPs have completed their corresponding parts of the simulation. A 

dormant NC may be reactivated later by messages from other remote NCs and 

subsequently initiates more wall clock time slices on the receiving LP. More details 

on the dormant state of the NC will be covered in the next section. 

(4) Wall clock time slices are atomic computation units during rollback operations. 

Since the NC is the only PCD++ processor that receives messages from other LPs 

during the simulation, rollbacks are typically triggered by a remote straggler or anti-

message at the NC. In such case, the NC is the local rollback originator, and the 

rollbacks are propagated from the NC to the other local processors. During the 

process, anti-messages may be sent to other LPs, triggering further rollbacks on 

those LPs. Let’s focus our analysis on a single LP. A typical rollback scenario is 

shown in Figure 40.  

 
Figure 40. Typical rollback scenario shown in terms of wall clock time slices 

In the diagram, the simulation on LPi is executing in WCTS-tn when a straggler or anti-

message with timestamp t2 arrives at the NC (action 1). Based on the kernel rollback 

mechanisms, the received straggler or anti-message is inserted into WCTS-t2 (a message 

implosion happens in WCTS-t2 if it is an anti-message) (action 2). Then, the rollbacks are 

propagated among the PCD++ processors, restoring their states to those saved at the end of 

WCTS-t1 (action 3), and all messages in WCTS-t2 up to WCTS-tn are undone. After the 

rollbacks, the simulation on LPi resumes forward execution from the unprocessed linking 

messages between WCTS-t1 and WCTS-t2 (action 4). Simply put, the arrival of a straggler or 
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anti-message modifies the WCTS to which it belongs, and the simulation resumes execution 

from the modified WCTS after the rollbacks, taking the straggler or anti-message into account. 

However, rollbacks may also be initiated at the FC instead of the NC due to messaging 

anomalies occurred in the simulation. In this case, the NC needs to perform a series of cleanup 

operations after the kernel rollbacks, which will be discussed in Section 6.5. 

6.2. DORMANT STATE OF NODE COORDINATORS 

In optimistic simulations, LPs are allowed to execute as fast as they can. Therefore, some LPs 

may have processed all their local events while waiting for other lagging-behind LPs to finish 

their work in order to complete the whole simulation. Meanwhile, the lagging-behind LPs may 

send messages to the waiting LPs and thereby reactivate them. These messages may or may not 

trigger rollbacks on the waiting LP. If rollbacks happen, the waiting LP will be reactivated 

automatically by the WARPED kernel, simply because some events on that LP are unprocessed 

during the rollbacks and will be executed by the LTSF scheduler afterwards. Hence, we only 

need to consider how to reactivate the waiting LP if no rollback happens. 

To this end, we define a special state called dormant for the NC. The NC enters into the 

dormant state once all local events have been processed on its associated LP. Later, if the NC 

receives messages from other running LPs, it exits the dormant state and reactivates the 

simulation on its LP again. The whole simulation ends when the NCs on all the LPs have entered 

into the dormant state, and the GVT is advanced to infinity.  
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Figure 41. Example scenario for state changes of the NC during the simulation 
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Figure 41 shows an example scenario involving two LPs, where the running state of a LP 

is represented by solid lines and the waiting state is illustrated with dashed lines. In this example, 

all local events on LP1 are finished at virtual time t1. Since there is no unprocessed event left in 

the input queue, the simulation time on LP1 jumps to infinity. As a result, NC1 enters the dormant 

state at time t1. Meanwhile, LP0 keeps executing its events and NC0 sends external messages to 

NC1 at time t2, reactivating the simulation on LP1. Hence, NC1 exits the dormant state at t2, and 

the simulation time on LP1 jumps back from infinity to t2. Both LPs run from time t2 to t3. Then, 

LP0 finishes all its events at t3 and NC0 enters the dormant state. The simulation time on LP0 

jumps from t3 to infinity. LP1 continues execution until time t4 when its local events are also 

finished and NC1 enters the dormant state as well. Thus, the simulation time on LP1 is advanced 

from t4 to infinity. Eventually, the GVT advances to infinity and the whole simulation ends.  

We now give the algorithms for the NC to enter into and exit from the dormant state. The 

NC enters into the dormant state once the computed next simulation time is greater than the stop 

time (line 10 in Figure 26), indicating that all the events on the LP have been processed. Figure 

42 shows the code snippet for entering the dormant state in the NC algorithm for (D, t). The 

complete NC algorithm for (D, t) will be presented in Section 6.5 after more enhancements are 

added to it in the following sections. 

10. if min-time > stop-time then
11. dormant = true  

Figure 42. Code snippet for entering dormant state in the NC algorithm for (D, t) 

The NC exits the dormant state and reactivates the simulation on its LP upon the arrival 

of external messages from other remote NCs. In this case, the NC spontaneously flushes the 

received external messages in its NC Message Bag (without the presence of a (D, t) from the 

child FC), followed by a (*, t), to the FC to reactivate the simulation on the LP. 

The enhanced NC algorithm for (x, t) is shown in Figure 43. As usual, the (x, t) is inserted 

into the NC Message Bag (line 2). The reactivation operation is performed based on three 

conditions: (1) the NC needs to be in the dormant state to ensure that the spontaneous 

reactivation will not interfere with the normal execution of the simulation (line 4); (2) the 

timestamp of the external messages must be less than or equal to the stop time in order to 

maintain a clear cut of the simulation results at the user-specified stop time (line 4); (3) all 

external messages with the same minimum timestamp need to be inserted into the NC Message 
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Bag so that they can be processed in a lump to reduce the potential number of rounds in the 

transition phase at this virtual time (line 5).   

1.  when a (x, t) is received from a remote NC
2. insert message x to the NC Message Bag
3. bag-time = the time of the NC Message Bag
4. if (dormant = true) & (bag-time <= stop-time) & 
5.     (all events in the input queue with timestamp = bag-time have been processed) then
6. dormant = false
7. tL = bag-time; ta = 0
8. for each x in the NC Message Bag with bag-time do
9. send (x, t) to the child FC
10. end for each
11. remove all x in the NC Message Bag with bag-time
12. send (*, t) to the child FC
13. next-message-type = @
14. end if
15. end when  

Figure 43. Enhanced NC algorithm for (x, t) 

To reactivate the simulation on the LP, the NC first resets the dormant flag to exit from 

the dormant state (line 6). The simulation time is set to the current time of the NC Message Bag 

(line 7). Then, all external messages with the minimum timestamp are flushed to the FC and 

removed from the NC Message Bag (line 8 to 11). The NC also sends a (*, t) to the FC to trigger 

the appropriate state transitions at the receiving Simulators (line 12). The next-message-type is 

set to @ accordingly (line 13). 

6.3. HANDLING ROLLBACKS AT TIME ZERO 

Kernel rollback operations rely on correctly restoring the states of the processes to those saved 

ones with virtual time strictly less than the rollback time. However, the problem of handling 

rollbacks at virtual time 0 is left unsolved in the kernel. If a process receives a straggler with 

timestamp 0, the state restoration will fail since no state with negative virtual time can be found 

in the state queue. This problem is illustrated in Figure 44. 

Two LPs are involved in the simulation as shown in Figure 44(a). While LP0 is running at 

virtual time tn, LP1 is still executing events at time 0. Then, LP1 sends a straggler with timestamp 

0 to LP0, triggering rollbacks on LP0. Figure 44(b) shows the details of the rollbacks on LP0. 

Upon receiving the straggler (action 1), the NC on LP0 tries to restore to a state that was 

previously saved before virtual time 0 (the current rollback time). Of course, no such state can be 
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found in its state queue (action 2). Therefore, the rollback operation fails (action 3), resulting in a 

runtime crash. 

 
Figure 44. Rollback at virtual time 0 

There are basically two different approaches to solving this problem: one is to save a 

special state that has an artificial negative virtual time at the head of each state queue, and let the 

process bounce back from it using the standard kernel rollback mechanisms; the other is to 

synchronize the LPs at an appropriate stage with MPI Barriers so that no straggler message with 

timestamp 0 will ever be received by any process in the simulation.  

Both approaches have their relative advantages and associated overheads. The former is a 

pure optimistic approach in the sense that no explicit synchronization is used. The direct cost of 

this approach is small. Only a special state is added to each state queue, containing all necessary 

information based on which the execution of a process can restarts. However, there is a 

performance hazard in this approach. The probability of rollback echoes [Fuj00] increases 

significantly at virtual time 0. Take the previous example, LP0 can successfully perform the 

rollbacks and resume forward execution from WCTS-0 based on this approach. In the meantime, 

LP1 finishes its execution at time 0, and the simulation time on LP1 is advanced to t1. Then, LP0 

may send a message with timestamp 0 back to LP1, forcing it to restart execution from time 0 as 

well. This scenario can happen repeatedly on the LPs, resulting in an unstable situation where 

there is no progress in simulation time as the simulation proceeds. 

On the other hand, the second approach tries to avoid the problem altogether by using 

explicit synchronizations. The best place to implement the MPI Barrier is after the collect phase 

in WCTS-0, as illustrated in Figure 45. 
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Figure 45. Using MPI Barrier to avoid rollbacks at virtual time 0 

As mentioned in Section 5.6, outgoing inter-LP communication happens only in the 

collect phases. Hence, messages with timestamp 0 are sent to remote LPs only in the collect 

phase of WCTS-0. The LPs are synchronized by a MPI Barrier at the end of this collect phase so 

that these messages can be received by their destinations before the simulation time advances 

beyond time 0. Therefore, no straggler with timestamp 0 will be received by any LP afterwards. 

Once the LPs exit from the barrier, they can safely continue optimistic execution based on the 

standard kernel rollback mechanisms. The states saved for the events executed at virtual time 0 

provide the necessary cushion for later rollbacks on the processes. The key is to keep the 

synchronized execution as short as possible. From the diagram, we can see that the execution of 

the LPs is synchronized during the initialization and collect phase in WCTS-0. That is, we 

sacrifice some of the potential benefit of optimistic execution during this period. However, this 

cost is small since the length of the synchronized execution is trivial compared with the whole 

simulation. Further, this approach is relatively easy to be implemented in PCD++: First, the MPI 

Barrier (which is provided at the MPI layer) needs to be wrapped in a public service function, 

called as synchronizeLPs, in the WARPED kernel so that the PCD++ processors can invoke it 

when necessary. Secondly, this service function is invoked in the NC algorithm for (D, t) once 

the end of the collect phase in WCTS-0 is detected. 

Based on the above analysis, we chose to implement the latter approach in PCD++. The 

pseudo-code snippet is shown in Figure 46, which is inserted between line 2 and line 3 in the 

previous NC algorithm for (D, t) (Figure 26 in Section 5.5.3). 

 
Figure 46. Code snippet for handling rollbacks at time 0 in the NC algorithm for (D, t) 
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The end of the collect phase in WCTS-0 is detected by the NC using three conditions: (1) 

the current simulation time is zero; (2) the value of sigma (ta) in the received (D, t) is also zero; 

and (3) the current next-message-type is internal. Once found, the NC simply invokes the 

synchronizeLPs service function that has been implemented in the kernel.   

6.4. USER CONTROLLED STATE SAVING MECHANISM 

Two kinds of state-saving strategies are provided in the WARPED kernel, namely the copy state-

saving (CSS) strategy and the periodic state-saving (PSS) strategy. They are realized using 

different types of state managers. The former is enforced by state managers of type 

StateManager, which saves the state of a simulation object after executing each event. The latter 

is implemented by state managers of type InfreqStateManager that only saves a simulation 

object’s state infrequently every a number of events. Simulator developers can choose either type 

of state managers at compile time. Once selected, all the simulation objects will use the same 

type of state managers throughout the simulation. This rigid mechanism has two major 

disadvantages: First, it ignores the fact that simulator developers may have the knowledge on 

how to save states more efficiently to reduce the state-saving overhead. Secondly, it eliminates 

the possibility that different simulation objects may use different types of state managers to 

fulfill their specific needs at runtime.  

To overcome these shortcomings, we implemented a two-level user-controlled state-

saving (UCSS) mechanism in the kernel so that simulator developers can utilize more flexible 

and efficient state-saving strategies at runtime. This section focuses on the interplay between the 

UCSS and the CSS strategy, while the integration of the UCSS and the PSS strategy will be 

presented in Section 7.2.  

In order to directly control the state-saving operation at runtime, we defined a flag called 

skip-state-saving with an initial value of false in each simulation object. If it is set to true by a 

simulation object, the state-saving operation will be skipped. Hence, a simulation object can 

make state-saving decisions based on application-specific criteria. The resulting UCSS 

mechanism has a two-level structure, as shown in Figure 47. At the bottom level, the CSS 

strategy is implemented by the StateManager as usual, and on top of that, the application-

specific state-saving policy is governed by the skip-state-saving flag, which has a higher priority 
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than the StateManager.    

 
Figure 47. UCSS structure with copy state-saving strategy 

The kernel algorithm, executeSimulation, for executing events and saving states with the 

StateManager is modified to realize the UCSS mechanism. The enhanced algorithm is shown in 

Figure 48, where the modifications are highlighted in bold font. The logic is straightforward. The 

executeProcess function is invoked to trigger the appropriate message-processing algorithm 

defined in the simulation object. The CSS policy, implemented in the saveState function of the 

StateManager (line 8), only takes effect when the skip-state-saving is false. Otherwise, no state 

is saved after executing the current event. Instead, the flag is reset to false so that a new state-

saving decision can be made during the execution of the next event (line 6). That is, the UCSS 

operates on an event-by-event basis for each simulation object. 

1. when the executeSimulation function is invoked
2. set the inPos in the current state = the current event to be executed in the input queue
3. executeProcess()
4. set the outPos in the current state = the last event in the current output queue
5. if skip-state-saving = true then
6. skip-state-saving = false
7. else 
8. call StateManager’s saveState()
9. end if
10. end when  

Figure 48. Enhanced kernel algorithm for executing events and saving states (UCSS) 

During rollbacks, the state of a PCD++ processor is always restored to the last state saved 

at the end of a WCTS with virtual time strictly less than the present rollback time. Hence, it is 

sufficient for a processor to save its state only after processing the last event in each WCTS for 

rollback purposes. The state-saving operation can be safely skipped after executing all the other 

events. From the PCD++ message-passing paradigm, we can see that the last event in a WCTS is 

processed at the end of Rn in the transition phase. Although the actual number of rounds in a 

transition phase cannot be determined for sure, we can at least identify the type of the messages 

executed at the end of the transition phases by a given processor. For the NC and FC, it must be a 

(D, t), and for the Simulators, it should be a (*, t). Therefore, PCD++ processors need to save 
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states only after processing these particular types of messages. Since the Root only processes 

output messages, it still saves state for each event. The resultant state-saving strategy is called as 

message type-based state-saving (MTSS), a specific type of UCSS for the PCD++ toolkit.  

Considering that there are a large number of messages executed in each WCTS and they 

are dominated by external and output messages, MTSS can significantly reduce the number of 

states saved during the simulation when compared with the original CSS strategy. In some cases, 

reductions of up to 30% of memory consumption have been observed in our experiments. 

Further, the overhead of rollbacks is reduced as well because fewer states need to be removed 

from the state queues during rollback operations. Unlike the PSS strategy, MTSS is risk-free in 

the sense that there is no penalty for saving fewer states.  

The MTSS strategy can be easily implemented at the PCD++ layer using the UCSS 

mechanism. A processor simply sets the skip-state-saving flag to true in all but the algorithm for 

the required type of messages. For example, a Simulator will set the flag to true in its algorithms 

for (I, t), (@, t), and (x, t). This flag is left untouched with value false in its algorithm for (*, t) 

since the Simulator should save its state after processing such type of messages.  

6.5. MESSAGING ANOMALIES 

As discussed in Section 5.5.3, the NC calculates the next simulation time based on the time of its 

NC Message Bag. However, more lagging external messages with timestamp less than the 

resulting simulation time may arrive after the calculation, invalidating the previous computation 

result. In this case, the NC’s speculative calculation of the next simulation time leads to 

messaging anomalies that cannot be recovered by the kernel rollback mechanisms alone. 

Messaging anomalies will be detected when the control returns to the NC in the transition phase 

of the next (wrong) simulation time. Once found, the NC needs to perform cleanup operations to 

restore the simulation to the status before the previous wrong computation.  

6.5.1. Speculative computation of the Node Coordinator 

Figure 49 shows an example scenario, where the simulation on the LP involves three PCD++ 

processors (the Simulator is labeled as S1). The execution sequence of the messages is denoted 

by the numbers in the diagram. Only the final portion of WCTS-ta is illustrated.  
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Figure 49. Example scenario of messaging anomalies 

Suppose that, when the last done message (D1) from the FC is executed by the NC at the 

end of WCTS-ta, there is neither external messages in the NC Message Bag nor external events in 

the Event List and the closest state transition time carried in D1 is tb. Hence, the NC calculates the 

next simulation time as tb. Consequently, it sends a collect message (@5) with send time ta and 

receive time tb to the FC. However, before @5 is executed by the FC, three external messages (x2 

with receive time ta, x3 and x4 with receive time t1) arrive at the NC. Since these messages have 

smaller timestamp than @5, they are immediately inserted into the NC Message Bag. The LVT in 

the NC is thus advanced to t1. The arrival of these external messages invalidates the previously 

computed next simulation time tb, but this wrong calculation has not yet been detected.  

The collect message @5 is then executed by the FC, starting the collect phase of WCTS-

tb. Meanwhile, two more external messages (x6 with receive time t2, and x7 with receive time tb) 

arrive at the NC, and get inserted into the NC Message Bag. Notice that no rollback happens 

since the timestamps of these two messages are greater than the NC’s current LVT when they are 

executed (i.e. t2 > t1 and tb > t2 for x6 and x7 respectively). The collect phase of WCTS-tb 

continues, executing messages in the range of [@8, D14]. At this moment, the LVT in all 

processors has been advanced to tb. At the end of the collect phase of WCTS-tb, the NC sends an 

internal message (*15) to the FC. Thus, the simulation enters into R0 of the transition phase in 

WCTS-tb. At the end of R0, a done message (D18) is sent to the NC from the FC. During 

processing D18, the NC computes the next simulation time again based on the current NC 

Message Bag, which now contains five external messages (x2, x3, x4, x6 and x7). The NC finds 

that the minimum timestamp is ta, the timestamp of x2. Hence, it sends an external message (x19) 
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with send time tb and receive time ta (tb> ta) to the FC, as shown by the bold arrow in the 

diagram. However, x19 is a straggler message for the FC since its timestamp is less than the FC’s 

current LVT. According to the kernel rollback mechanism, x19 is inserted into both the NC’s 

output queue and the FC’s input queue, and rollbacks propagate from the FC to the other 

processors immediately.  

Nonetheless, the rollbacks happened here is different from those discussed previously. 

Two kernel assumptions as described in Section 4.1 are violated: First, the rollback at the FC is 

triggered by an abnormal straggler message (x19 in the example) with a send time greater than 

the receive time, which violates Kernel Assumption 3. Since the events are ordered by their send 

time in the output queues, this abnormal straggler message is misplaced in the NC’s output 

queue, resulting in causality errors and runtime crash later on during the simulation. Secondly, 

the rollbacks occur right in the middle of processing the done message (e. g. D18) by the NC. This 

violates Kernel Assumption 7, which demands that all rollbacks should be carried out between 

event executions. Therefore, the rollbacks are not transparent to the NC any more. For example, 

when the NC regains control after the kernel rollbacks, it needs to handle its current state (which 

has been restored during the rollbacks) properly after processing the current done message D18. 

The NC is also responsible for removing the abnormal straggler message from its output queue 

and the FC’s input queue to avoid runtime crash later on. The false messages derived from the 

wrong calculation of the next simulation time (e.g. @5) need to be handled properly by the NC as 

well. Further, the state saved after the wrong calculation (i.e. state saved after processing D1) 

contains incorrect data that must be recovered (e.g. its outPos points to the false message @5). 

Without removing the incorrect data in this state, restoration to it in later rollbacks will cause 

failure of the simulation. In short, the NC has to perform a series of cleanup operations when it 

regains control after the kernel rollbacks in the midst of executing the done message (e.g. D18). 

6.5.2. Two types of messaging anomalies 

Let’s denote the simulation time at which the NC makes the speculative computation as ta and 

the calculated next simulation time as tb. After the calculation, more external messages with 

timestamp less than tb arrive, and messaging anomalies will occur at the end of R0 of the 

transition phase of WCTS-tb when the done message from the FC is processed by the NC. We 

only need to consider the cases where external messages with timestamp in the range of [ta, tb] 
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get inserted into the NC Message Bag after the speculative calculation. If external messages with 

timestamp less than ta arrive, all the processors on this LP will be rolled back to a previous 

virtual time. These are the normal rollbacks initiated at the NC that can be handled by the kernel 

without problem. On the other hand, external messages with timestamp greater than tb will be 

simply inserted into the input queue, and they will not be executed by the NC until their virtual 

time comes. In the range of [ta, tb], whether there are external messages with time ta inserted into 

the NC Message Bag is crucial in determining the NC’s cleanup operations for recovering from 

the messaging anomalies.  

Figure 50 shows the case that external messages with timestamp ta are inserted into the 

NC Message Bag. The wrong computation of simulation time is found at the end of R0 in WCTS-

tb when the NC sends an abnormal straggler message with send time tb and receive time ta to the 

FC, triggering rollbacks at the FC. 

 
Figure 50. Messaging anomaly with empty NC Message Bag 

Since the rollback time is ta, the FC sends anti-messages with minimum timestamp ta to 

all the other processors, including the NC. After the kernel rollbacks, all processors on this LP 

are rolled back to before WCTS-ta. Shown in Figure 50(b), the states of the processors are 

restored to those previously saved at the end of WCTS-tpre, the WCTS before WCTS-ta. All the 

lagging external messages (i.e. x(ta), x(t1), x(t2), … x(tn), and x(tb)) are removed from the NC 

Message Bag, and their corresponding kernel events are unprocessed during the rollbacks. Then, 

the control is returned to the NC, which is still in the middle of processing the done message 

received at the end of R0 in WCTS-tb. At this point, the NC needs to perform the necessary 

cleanup operations. When the NC returns from its algorithm for (D, t), the simulation resumes 

forward execution starting from the unprocessed messages previously output from WCTS-tpre. 

As all the lagging external messages are removed from the NC Message Bag and the states of the 
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processors are restored to the end of the previous WCTS during the kernel rollbacks, no 

erroneous data is left in the state queues. Therefore, the cleanup operations are relatively simple. 

This type of messaging anomalies is called as anomaly with empty NC Message.  

On the other hand, if no external message with timestamp ta arrives, the situation 

becomes more complex as shown in Figure 51. 

 
Figure 51. Messaging anomaly with non-empty NC Message Bag 

Shown in Figure 51(a), the NC sends an abnormal straggler message with send time tb 

and receive time t1 to the FC at the end of R0 in WCTS-tb. The rollback time for the FC is t1. 

Hence, the FC only sends anti-messages with minimum timestamp tb to the other processors, 

including the NC. When the kernel rollbacks finish, the states of the processors are restored to 

those previously saved at the end of WCTS-ta. Thanks to the MTSS strategy, the NC did not save 

states after processing the lagging external messages. Therefore, its state is also restored to the 

last state that was saved at the end of WCTS-ta. As explained earlier, the restored state contains 

incorrect data that must be recovered by the NC itself after the kernel rollbacks.  

During the kernel rollbacks, all messages executed by the FC and the Simulators in 

WCTS-tb are cancelled. Nonetheless, only the external messages with time tb are removed from 

the NC Message Bag. The other lagging external messages (i.e. x(t1), x(t2), … and x(tn)) remain 

in the NC Message Bag after the kernel rollbacks. Also, the false messages originally sent from 

WCTS-ta are unprocessed and kept in the FC’s input queue as well as the NC’s output queue, as 

shown in Figure 51(b). After the rollbacks, the LVT in the NC is reset to tn, while the LVT in the 

FC and the Simulators is restored to ta. In this case, more complex cleanup operations need to be 

done by the NC to erase all the wrong data left in the kernel. Since the NC Message Bag still 
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contains external messages after the kernel rollbacks, this type of messaging anomalies is called 

as anomaly with non-empty NC Message Bag.   

6.5.3. Anomaly with empty NC Message Bag 

In this section, we present the algorithm for handling anomaly with empty NC Message Bag in 

the NC algorithm for (D, t), as shown by the code snippet in Figure 52.  

 
Figure 52. NC algorithm for handling anomaly with empty NC Message Bag 

Once an anomaly with empty NC Message Bag is detected after the kernel rollbacks, the 

NC needs to perform the following cleanup operations in its algorithm for (D, t): 

(1) Remove the abnormal straggler message from the NC’s output queue (line 2). Since 

this straggler message is saved at the end of the NC’s output queue, we can directly 

remove it using the remove function provided by the kernel. This function also 

returns a reference to the message that has been removed, which can then be used to 

remove the same straggler message from the FC’s input queue.    

(2) Remove the abnormal straggler message from the FC’s input queue (line 3). This is 

more difficult than the previous operation. The kernel does not provide function for 

removing a positive event from the input queue except during event implosion, 

where the positive event is annihilated by an incoming anti-message. Hence, we 

defined a new function called removeStragglerEvent for this purpose. The logic of 

this function is similar to that for event implosion. However, the positive message is 

annihilated by a reference to itself rather than the counterpart anti-message. 

(3) Skip the state-saving operation after processing the current done message (line 4). 

During the kernel rollbacks, the state of the NC has been restored to the last state 

saved at the end of WCTS-tpre (see Figure 50). Therefore, the NC should not save 

its current state after processing the present done message. Using the UCSS 

mechanism, the NC only needs to set skip-state-saving to true to do this. 

After these cleanup operations, the NC returns from its algorithm for (D, t) and the 

simulation resumes forward execution. 
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6.5.4. Anomaly with non-empty NC Message Bag 

The cleanup operations for anomalies with non-empty NC Message Bag are much more 

complex. Let’s take a closer look at the status of the NC after the kernel rollbacks, as shown in 

Figure 53. The wrong computation of the next simulation time is made during executing Da in 

WCTS-ta. After processing Da, a state that contains incorrect data resulting from the wrong 

computation is saved in the NC’s state queue (referred to as Sa in the diagram). This wrong 

computation is detected by the NC at the end of R0 in WCTS-tb, in the middle of executing Db. 

An abnormal straggler message is sent to the FC, triggering kernel rollbacks. During the 

rollbacks, the NC’s state is restored to Sa. 

 
Figure 53. NC status during anomalies with non-empty NC Message Bag 

In Figure 51, only one lagging external message for each distinct timestamp (from t1 to tn) 

is shown for simplicity. Actually, as illustrated in Figure 53, multiple external messages may 

coexist for each timestamp after the kernel rollbacks, and those messages with timestamp t1 are 

sent to the FC in batches. For example, if there are three external messages with timestamp t1 in 

the NC Message Bag, the first one sent to the FC will be the abnormal straggler message (with 

send time tb and receive time t1), which will trigger the rollbacks. The following two external 

messages will be sent to the FC right after the kernel rollbacks when the control is returned to the 

NC’s logic for sending external messages. However, the send time of these two messages is 

changed to ta because the current state of the NC has already been restored to Sa during the 

rollbacks. Of course, their receive time is still t1. During the cleanup operations, therefore, not 

only the first abnormal straggler message needs to be removed from the NC’s output queue and 
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the FC’s input queue just like the operations discussed in the previous section, but also the other 

external messages sent along with the abnormal straggler need to be handled in the same way. 

After the cleanup operations, the NC will resend these external messages to the FC again, with 

the correct send and receive time. 

• Undue external events  

The false messages previously sent from the NC to the FC at the end of WCTS-ta (i.e. the 

linking messages between WCTS-ta and WCTS-tb) are unprocessed and left in the NC’s output 

queue and the FC’s input queue during the kernel rollbacks. The false messages contain at least 

one control message, either a (@, tb) or a (*, tb), and may optionally include multiple external 

messages representing the undue external events scheduled at time tb. Hence, the NC needs to 

perform the following cleanup operations to handle the false messages: 

(1) Remove the false messages from the NC’s output queue and the FC’s input queue. 

The NC needs to find all these false messages in the queues, and then remove them 

using the removeStragglerEvent function. 

(2) Identify the potential undue external events sent in the false messages. Once found, 

the NC needs to restore the event-pointer in its current state to recover these undue 

events. Figure 54 shows an example scenario for recovering the event-pointer, 

where an external event with scheduled time t is depicted as E(t). 

 
Figure 54. Restoring the event-pointer for undue external events 

In this example, there are four external events in the NC’s Event List; two of them are 

scheduled at time tb. At the end of WCTS-ta, the wrong simulation time tb is calculated, and both 

E(tb) are sent in the false messages to the FC. The event-pointer in the NC’s current state moves 

to E(tc) accordingly and gets saved as Sa in the state queue after processing Da. During the 

following rollbacks, the NC’s current state is restored to Sa. Hence, the event-pointer in both the 
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NC’s current state and Sa point to E(tc), as shown in Figure 54(a). To undo the external events 

after the rollbacks, the NC needs to reset the event-pointer in its current state to the first E(tb), the 

original position before sending the false messages. In Figure 54(b), the event-pointer in Sa is left 

untouched during the operation. Handling the incorrect data in Sa is presented next.  

• Break point state 

An important cleanup operation is to deal with the incorrect data in Sa. While it is hard to 

directly modify the internal data contained in a previously saved state in the state queue, it is 

easier to correct the data in the NC’s current state. As the NC’s current state is restored to Sa by 

the kernel, they have identical data after the rollbacks. Mechanisms for fixing part of the data in 

the NC’s current state have been revealed in our previous discussion, as summarized below: 

(1) Removing and resending the lagging external messages with time t1 restore the 

correct ordering of messages in the NC’s output queue. 

(2) Removing the false messages eliminates the effect of the previous wrong 

computation. New control message will be sent at the end of the cleanup operations, 

which, together with point (1), makes sure that the outPos in the NC’s current state 

will points to the correct message in NC’s output queue.  

(3) The inPos in both Sa and the NC’s current state remains pointing to the last done 

message of WCTS-ta (e.g. Da in Figure 53).  

(4) Recovering the undue external events restores the event-pointer in the NC’s current 

state to the correct position. 

Another operation is that the NC needs to set the LVT value in its current state to t1 so 

that all the messages resent during the cleanup operations have send time t1 instead of ta. This is 

important since the external messages at time t1 may be cancelled later by their remote senders. 

In such case, the rollback time is t1 for the NC, and the simulation on this LP will be rolled back 

to the end of WCTS-ta. However, if the external messages were resent with send time ta (ta < t1), 

they would not be eliminated properly since only messages with send time greater than ta in the 

NC’s output queue are cancelled.  

The last issue is dealing with the incorrect data contained in state Sa. The idea is to 

replace Sa with a new copy of the NC’s current state, which will be saved in the state queue 

when the NC algorithm for (D, t) returns. Removing Sa can be easily done since we know that it 

is now the last state in the NC’s state queue. Saving a copy of the NC’s current state in the state 
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queue is performed by the kernel automatically. However, simply replacing Sa in this way is not 

enough. Let’s consider what happens if the lagging external messages at time t1 are cancelled 

later by their remote senders. An example scenario is illustrated in Figure 55, showing the 

queues of the NC after the cleanup operations.  

 
Figure 55. Example scenario for anomalies with non-empty NC Message Bag 

The NC made a computation of the next simulation time tb at the end of WCTS-ta, during 

executing the last done message D(ta)2. After that, one lagging external message with timestamp 

t1, x(t1), arrived, invalidating the previously computed tb and resulting in messaging anomalies 

with non-empty NC Message Bag. Rollbacks were performed by the kernel. In the ensuing 

cleanup operations, the abnormal straggler message and the false messages are removed from the 

queues (not shown in the diagram). The LVT in the NC’s current state is set to t1, and correct 

messages are resent (action 1). Then the previous state saved after processing D(ta)2, i.e. Sa, is 

removed from the NC’s state queue (action2). A new copy of the NC’s current state, shown as 

S1, is saved after the cleanup operations with the corrected data (action 3). As a result, its outPos 

refers to the last message resent during the cleanup operations and its inPos points to D(ta)2. The 

simulation continues after the cleanup operations.  

Now, suppose an anti-message is received by the NC to cancel the previous lagging 

external message x(t1). Since the rollback time is t1, the simulation is restored to the end of 

WCTS-ta. There are two problems here: 

(1) Since Sa has been removed, the NC’s current state will be restored to the state saved 

before Sa, shown in the diagram as Sa’. However, the data contained in Sa’ is stale 

and does not reflect the modifications that have been done during executing D(ta)2. 
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Also notice that, as part of the state restoration, the states following Sa’ will be 

removed from the NC’s state queue and S1 is the first one to be removed. 

(2) The linking messages between WCTS-ta and WCTS-tb have been removed from the 

queues during the previous cleanup operations. While these messages were proven 

false due to the arrival of the lagging external message x(t1), they are not now since 

it finally turns out that x(t1) itself is a false one. As a result, the simulation should 

resume forward execution starting from exactly these (removed) linking messages 

after the present rollbacks. However, the nonexistence of these linking messages 

results in failure of the simulation.  

Both of these problems can be solved if the done message, D(ta)2, is executed by the NC 

again immediately after the present rollbacks. By executing this done message, the data in the 

NC’s current state (which has been restored to Sa’) is updated and new linking messages are 

regenerated. A copy of the NC’s current state will be saved in the state queue right after Sa’, 

filling the gap produced by the removal of Sa.  

To this end, a special mechanism needs to be implemented in the kernel. The first 

question we need to answer is how to detect that the NC is now rolled back to the end of a 

WCTS where anomalies with non-empty NC Message Bag have previously occurred. To do so, 

the NC must leave a tag in its queues after handling the messaging anomalies. Then, the special 

mechanism will be triggered once this tag is detected during later rollbacks. 

A flag, called as breakpoint, is added to the abstract state definition in the kernel for this 

purpose. This flag is false by default. When the NC corrects the data in its current state during 

the cleanup operations, it sets this flag to true in its current state. As we know, a copy of the 

NC’s current state is saved after the cleanup operations. Hence, the breakpoint flag saved in S1 is 

true, and S1 is called as a breakpoint state. Notice that S1 will be the first to-be-removed state 

during the later rollbacks that bring the NC back to the end of WCTS-ta. Also, its inPos points 

exactly to D(ta)2, the done message that needs to be reprocessed immediately after the later 

rollbacks.  

The resulting kernel algorithm for state restoration is shown in Figure 56. The original 

algorithm consists two parts: (1) restoring the current state to the last state with LVT less than 

the rollback time (line 2 to 8); and (2) removing all the following states after the last state found 

in the state queue (line 14 to 17). 
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Figure 56. Enhanced kernel algorithm for state restoration during rollbacks 

The enhancement for handling breakpoint states is added to the original algorithm, shown 

in bold font in the diagram (line 9 to 13). Before removing the states from the state queue, a test 

is done on the first to-be-removed state, state-handle, obtained in line 8. If it is a breakpoint state 

(line 9), the kernel undoes the message referenced by its inPos (line 10 and 11) and adjusts the 

LTSF scheduler so that this message will be executed immediately after the current rollbacks.  

• Pending wall clock time slices 

From the previous discussion, we can see that the lagging external messages left in the 

NC Message Bag after kernel rollbacks actually represent a series of pending wall clock time 

slices (each for the group of external messages with identical timestamp) that need to be inserted 

between the previous and the false WCTS. Shown in Figure 53, for example, there are n pending 

wall clock time slices for virtual time from t1 to tn to be inserted between WCTS-ta and WCTS-tb. 

These pending wall clock time slices can only be accommodated into the simulation process one 

by one. During the cleanup operations, the NC will resend the external messages with the least 

timestamp, t1, along with the appropriate control message to the FC, initiating WCTS-t1. When 

the simulation is executed in the normal mode, external messages with timestamp from t2 to tn 

cannot be processed by the NC before the completion of WCTS-t1 simply because these 

messages, having timestamps greater than t1, will not be selected by the LTSF scheduler as long 

as there are still messages with timestamp t1 to be processed in the input queue. It is the false 

 88 



advance of the simulation time to tb that makes all these lagging external messages coexisting in 

the NC Message Bag, violating the local causality constraint.  

Therefore, after resending external messages with time t1, the NC needs to perform the 

following operations to handle the extra external messages with timestamp from t2 to tn in the NC 

Message Bag: 

(1) Reset the NC’s LVT to t1. As explained earlier, the LVT in the NC is restored to tn 

during the kernel rollbacks. Since we are going to execute the first pending wall 

clock time slice, WCTS-t1, the NC’s LVT should be reset to t1 accordingly. 

(2) Rollback the NC’s file queue with a rollback time of t2 to remove the log 

information, if any, for these extra external messages.  

(3) Undo the corresponding kernel events for the extra external messages in the input 

queue. These kernel events will be processed again in batches after the completion 

of the current (inserted) WCTS-t1 just like in the normal execution. 

(4) Remove the extra external messages from the NC Message Bag to eliminate the 

causality errors. 

We now give the algorithm for handling anomalies with non-empty NC Message Bag, as 

shown in Figure 57. When the anomaly is detected, the NC first removes all the external 

messages with time t1, including the abnormal straggler, from the NC’s output queue and the 

FC’s input queue (line 2 to 5). Then, the NC searches the FC’s input queue to find the false 

messages previously sent to WCTS-tb as a result of the wrong computation of the next simulation 

time (line 6). The undue external events sent along with the false messages, if any, are retrieved 

(line 8).  Once found, the event-pointer in the NC’s current state is recovered properly (line 9 to 

12). The NC also locates the false messages saved in its output queue (line 13). These false 

messages are removed from the NC’s output queue and the FC’s input queue (line 14 to 19). 

Then, the erroneous state saved at the end of WCTS-ta is retrieved from the tail of the NC’s state 

queue (line 20), and gets removed thereafter (line 21). 
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1. when cleanup operations for anomaly with non-empty NC Message Bag is invoked
2. for each external message with time t1 in the NC Message Bag do
3. abnormal-straggler = NC’s output queue remove(tail)
4. FC’s input queue removeStragglerEvent(abnormal-straggler)
5. end for each
6. false-input-messages = FC’s input queue findFalseInputMessages(tb)
7. if the size of false-input-messages > 0 then
8. undue-external-events = findUndueExternalEvents(false-input-messages)
9. if the size of undue-external-events > 0 then
10. future-external-event-time = the scheduled time of the undue-external-events
11. rollbackExternalEvents(undue-external-event-time)
12. end if
13. false-output-messages = NC’s output queue findFalseOutputMessages(false-input-messages) 
14. for each message m in false-output-messages do
15. NC’s output queue remove(m)
16. end for each
17. for each message m in false-input-messages do
18.  FC’s input queue removeStragglerEvent(m)
19. end for each
20. false-state = NC’s state queue tail
21. NC’s state queue remove(false-state)
22. else
23. raise error
24. end if
25. NC’s current state LVT = t1

26. NC’s current state breakpoint = true
27. for each external message x with timestamp t1 in the NC Message Bag do
28. resend (x, t1) to the child FC
29. end for each
30. remove all x in the NC Message Bag with timestamp t1

31. if the size of the NC Message Bag > 0 then
32. reset the NC’s LVT = t1
33. rollbackFileQueues(the time of the NC Message Bag)
34. for each external message x remained in the NC Message Bag do
35. NC’s input queue unprocessEvent(x)
36. end for each
37. remove all x in the NC Message Bag 
38. end if
39. send (*, t1) to the child FC
40. next-message-type = @
41. end when  

Figure 57. NC algorithm for anomalies with non-empty NC Message Bag 

The LVT in the NC’s current state is modified from ta to t1, and the breakpoint flag is set 

to true (line 25 and 26). A copy of the NC’s current state will be saved in the state queue to 

replace the erroneous state we have just removed. Then, the external messages with time t1 are 

resent to the FC and subsequently removed from the NC Message Bag (line 27 to 30). After this, 

the NC tests whether there are extra external messages with timestamp greater than t1 left in the 

NC Message Bag (line 31). If so, the NC resets its LVT back to t1 (line 32). The NC’s file queues 
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are rolled back using the current time of the NC Message Bag (i.e. t2) to erase the information 

that may have been logged for these extra external messages (line 33). Further, the corresponding 

kernel events for the extra external messages are undone in the input queue (line 34 to 36). All 

the extra external messages with time t2 up to tn are removed from the NC Message Bag to 

maintain the local causality constraint (line 37). Finally, the NC sends a (*, t1) to the FC and sets 

the next-message-type accordingly (line 39 and 40). 

6.5.5. Enhanced NC algorithm for done message 

There are two issues that we have not yet discussed so far. One is detecting messaging anomalies 

in the NC algorithm for (D, t); the other is identifying the type of the anomaly after kernel 

rollbacks. These issues are addressed as follows: 

(1) Detecting anomalies in the NC algorithm for (D, t). Kernel rollbacks are performed 

in the middle of the NC algorithm for (D, t) only when anomalies occur. The NC’s 

LVT will be decreased during the rollbacks. Therefore, the NC can compare its 

LVT recorded before and after sending out external messages to the FC. The 

cleanup operations will be performed once a change in the NC’s LVT is found. 

(2) Identifying the type of the anomaly. After the kernel rollbacks, the NC can easily 

identify the type of the anomaly based on the status of its NC Message Bag. If the 

bag is empty, anomaly with empty NC Message is confirmed; otherwise, anomaly 

with non-empty NC Message is identified. 

The enhanced NC algorithm for (D, t) is given in Figure 58, which combines the logic for 

normal execution (as shown by the simplified version in Figure 26) and that for handling both 

types of messaging anomalies (as shown in Figure 52 and 57 respectively). 

At the beginning of this algorithm, the NC records its current LVT in initial-LVT (line 2). 

The execution continues as usual until the external messages in the NC Message Bag are sent to 

the FC (line 23 to 27), during which messaging anomalies and kernel rollbacks may happen. 

Then, the NC queries its current LVT again, which may have been decreased as a result of kernel 

rollbacks, and records the new value in new-LVT (line 28). The new-LVT is compared with the 

initial-LVT. If no change is detected, the processing continues in the normal way (line 29 to 37). 

Otherwise, a messaging anomaly is found, and the NC invokes the corresponding cleanup 

operations based on the current status of its NC Message Bag (line 38 to 43).  
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1. when a (D, t) is received from the child FC
2. initial-LVT = the NC’s current LVT
3. tL = t; tN = tL + D.ta
4. if (t = 0) & (D.ta = 0) & (next-message-type = *) then
5. call kernel service function synchronizeLPs()
6. end if
7. if next-message-type = * then
8. send (*, t) to the child FC
9. next-message-type = @
10. else
11. min-time = MIN( timestamp of the event pointed by event-pointer, 
12.             time of the NC Message Bag, 
13.             tN )
14. if min-time > stop-time then
15. dormant = true
16. else
17. if min-time = the timestamp of the event pointed by event-pointer then
18. for each x in the Event List with min-time do
19. send (x, t) to the child FC
20. move event-pointer to the next event
21. end for each
22. end if
23. if min-time = the time of the NC Message Bag then
24. for each x in the NC Message Bag with min-time do
25. send (x, t) to the child FC
26. end for each
27. end if
28. new-LVT = the NC’s current LVT
29. if new-LVT = initial-LVT then
30. remove all x in the NC Message Bag with min-time
31. if tN = min-time then
32. send (@, t) to the child FC
33. next-message-type = *
34. else
35. send (*, t) to the child FC
36. next-message-type = @
37. end if
38. else
39. if the size of the current NC Message Bag = 0 then
40. invoke cleanup operations for anomaly with empty NC Message Bag
41. else
42. invoke cleanup operations for anomaly with non-empty NC Message Bag
43. end if
44. end if
45. end if
46. end if
47. end when  

Figure 58. Enhanced NC algorithm for (D, t) 

6.6. ONE LOG FILE PER NODE STRATEGY 

Logging facility is provided to log the messages received by the PCD++ processors during the 

simulation in a human readable format. In the previous versions, one log file is created for each 
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PCD++ processor. Depending on the size of the model, this can consume a lot of file descriptors. 

For complex models, the required number of file descriptors often exceeds the upper limit 

imposed by the underlying operating system. Also, creating these files and transferring data to 

them constitute a large operational overhead, especially when the files are accessed via a 

Network File System (NFS) during the simulation. When considering the overhead in Time 

Warp optimistic simulations, the cost is prohibitive since one file queue is maintained in the 

kernel for each of these files and all the file queues participate in rollback operations.   

To reduce the overhead of file I/O operations, we implemented a new strategy, called as 

one log file per node, in the PCD++ toolkit. Based on this strategy, only one log file is created on 

each node for all the processors mapped onto it. The strategy is described as follows: 

(1) If the user chooses to log only output messages, only a single log file is created for 

the FC on each node. In this case, the output messages from all the Simulators 

running on a node are logged in the FC’s log file. Usually, this is sufficient for 

visualization purposes. Since the FC is the immediate destination of the output 

messages from the Simulators, these messages can be logged directly in the file 

queue that is locally maintained by the FC. 

(2) Otherwise, only a single log file is created for the NC on each node for logging 

whatever types of messages, or all of them, as specified by the user. The NC’s file 

queue is shared among all the processors on that node. Messages received by the 

NC itself are logged directly into the NC’s file queue, while the other processors on 

that node must first get a reference to the local NC (which can be done in constant 

time) and then log their received messages into the NC’s file queue.  

The one log file per node strategy has the following advantages: 

(1) The required number of file descriptors for logging purposes is upper-bounded by 

the number of machines used in the simulation, rather than increasing linearly with 

the size of the model. For example, a 30 by 30 Cell-DEVS model executed on three 

machines consumes totally three file descriptors (one on each machine) rather than 

nearly one thousand in the previous case. 

(2) The bootstrap time is reduced considerably. During the bootstrap operations, the log 

files are created in the NFS over the network. Thanks to the dramatic decrease in 

the number of files opened in this process, the bootstrap time is reduced from tens 
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of seconds to around one second for a middle sized model. 

(3) The kernel rollback operations are accelerated since only one operation is 

performed to restore the single file queue maintained in the kernel. 

(4) The communication overhead is reduced as well. The data concentrated in a single 

file queue is flushed to the physical log file in bigger chunks, and less frequently, 

over the network.  

(5) Higher scalability is allowed under this strategy. Much larger models can be 

executed without running out of file descriptors. 
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CHAPTER 7 OPTIMIZATION ALGORITHMS IN THE WARPED KERNEL 

Since Jefferson's original presentation of the Time Warp mechanism, many refinements have 

appeared in the literature, which can be considered as falling into two distinct categories 

[Low99]: reducing the operational overhead of the Time Warp mechanism, and exploiting more 

parallelism than is available in the basic protocol. This chapter covers the integration of several 

optimization algorithms into the PCD++ toolkit to improve the performance. The algorithms 

discussed here are provided in the WARPED kernel to address both types of optimizations. The 

one anti-message per rollback strategy aiming at reducing the overhead of sending anti-messages 

during rollbacks is introduced in Section 7.1. The UCSS strategy originally presented in Chapter 

6 is further extended to work with the periodic state saving (PSS) strategy to reduce the state-

saving overhead, as discussed in Section 7.2. Finally in Section 7.3 the lazy cancellation strategy 

is integrated into the toolkit to exploit the parallelism available within a LP. Unfortunately, these 

algorithms cannot be used directly in the PCD++ toolkit as they are. Enhancements and special 

considerations are given more emphasis in the following discussions. 

7.1. ONE ANTI-MESSAGE PER ROLLBACK 

When rollback happens on a process, all messages saved in its output queue that have send time 

equal to or greater than the rollback time are sent to their original receivers as anti-messages. 

Since multiple messages may have been previously sent to a receiver, the same number of anti-

messages will be sent to that receiver during the rollback, resulting in a flood of anti-messages 

exchanged between the processes with the concomitant high communication overhead. However, 

if a process has several anti-messages to send to another process, it clearly suffices to send the 

one with the earliest time [Lub91], reducing the number of anti-messages that need to be 

transmitted to a certain extent.  

The one anti-message per rollback strategy consists of two parts as follows:  

(1) On the sender side, a temporary queue is used to hold the anti-messages to be sent 

to different receivers. The anti-messages in the sender’s output queue that have send 

time equal to or greater than the rollback time are tested in sequence. Only a single 
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anti-message that has the earliest timestamp for each distinct receiver is extracted 

and inserted into the temporary queue, others are suppressed. Then, the sender 

sends the anti-messages in the temporary queue to their corresponding receivers.  

(2) On the receiver side, upon receiving an anti-message, all positive messages from 

the same sender and with send time (originally, receive time is used in the kernel 

algorithm) equal to or greater than that of the anti-message are annihilated, others 

are unprocessed as usual. Thus, one anti-message is now capable of cancelling 

multiple positive messages in the receiver’s input queue.  

In order to integrate this strategy into the PCD++ toolkit, we made some minor 

modifications to the original algorithm in the WARPED kernel. One of them is that the send time is 

used as the criterion for annihilating messages in the receiver’s input queue. As hinted in (2), the 

original algorithm uses the receive time, which can cause wrong message annihilations and 

runtime failure. For example, suppose that an anti-message with send and receive time of 200 

triggers the rollback of the FC to the end of WCTS-100. The linking messages between WCTS-

100 and WCTS-200 should be unprocessed rather than imploded during the rollback. If the 

receive time is used, these linking messages would have been imploded since they have the same 

receive time as the anti-message. As a result, the simulation cannot resume forward execution 

after the rollback. However, if the send time is used instead, these messages will be unprocessed 

normally since their send time 100 is less than the send time of the anti-message. In fact, 

according to Kernel Assumption 3, the send time must be less than or equal to the receive time 

for any message in the system. Hence, our version is stricter than the previous one, confining 

message implosions to the appropriate scope. 

There are two points that deserve attention. First, this strategy is intended to reduce the 

number of anti-messages transmitted during rollbacks. It does not modify the part of the rollback 

algorithm for handling positive straggler messages, nor does it reduce the number of rollbacks. 

Secondly, this strategy still belongs to the aggressive cancellation category. There is no delay in 

the delivering of anti-messages, only with reduced number. 
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7.2. PERIODIC STATE SAVING 

In Time Warp optimistic simulations, the state of each process must be saved regularly, 

regardless of whether or not rollbacks actually occur [Lin93]. To achieve better performance, 

one approach for reducing the operational overhead is to decrease the number of state-saving 

operations. Under the PSS strategy, the state of a simulation object is saved infrequently every a 

number of events. As introduced in Section 6.4, the WARPED kernel implements the PSS strategy 

using state managers of type InfreqStateManager, which is a subtype of the general 

StateManager that enforces the CSS strategy. An introduction of the original algorithm of the 

InfreqStateManager is given in Section 7.2.1. Section 7.2.2 covers the extension of our UCSS 

strategy to incorporate with the PSS strategy. The PSS strategy is integrated into the PCD++ 

toolkit using the additional flexibility made available by the enhanced UCSS mechanism, as 

discussed in Section 7.2.3. Finally, Section 7.2.4 describes the enhancements to the kernel fossil 

collection algorithm to address the specific requirements imposed by the PSS strategy. 

7.2.1. Strategy description 

Figure 59 shows the original implementation of the PSS strategy in the WARPED kernel using a 

period of 2. The InfreqStateManager uses an integer, called as state-period, to control the state-

saving interval in terms of WCTS. The value of state-period can be set by users at compile time. 

Once set, this value will not change during the simulation. That is, the state manager implements 

the PSS strategy using a static state-saving interval.  

WCTS-0 ...WCTS-t1 WCTS-t2 WCTS-t3

save 
state

wallclock  time

save 
state

WCTS-t4

save 
state

state-period = 2  
Figure 59. Periodic state-saving strategy with a static interval of 2 

In the example, the state-period is set to 2. Therefore, the states of all the processes on 

this LP will be saved every two wall clock time slices (e.g. for virtual time 0, t2, t4, t6, and so on). 

Further, the state of a process is saved only after executing the first event in the WCTS, as 

illustrated by the dashed arc in the diagram.  
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As not every event is check-pointed, a process needs to redo intermediate events between 

the last saved state before the rollback time and the straggler that caused the rollback to reinstate 

the content of its current state, an execution phase called coasting forward [Fuj90]. Consider the 

example in Figure 60 where rollbacks are triggered by a straggler message with timestamp t4 

when the simulation executes in WCTS-t5. 

 
Figure 60. Rollbacks with the periodic state-saving strategy 

If the CSS strategy is employed, the states of the processes would be restored to those 

saved at the end of WCTS-t3, and from there the forward execution resumes right after the 

rollbacks. Now, the processes did not save their states in WCTS-t3 under the PSS strategy. The 

most recent states before the current rollback time t4 were saved at the beginning of WCTS-t2. 

Therefore, the coasting forward operations are performed, reprocessing the events from the 

second one in WCTS-t2 (the event immediate after the check-pointed event) up to the last one in 

WCTS-t3. Fortunately, the overhead of coasting forward is less than normal event execution 

since any scheduling of new events is suppressed. The only purpose for the coasting forward 

phase is to reinstate the content of the current states of the processes at the end of WCTS-t3, 

based on which the forward execution can be carried out. 

The coasting forward operation is also controlled by the state-period variable in the 

kernel. If it is set to a nonnegative value in a state manager, the coasting forward operation will 

be performed for the process associated with that state manager during rollbacks. On the other 

hand, if it is -1, as in the case of the CSS strategy, the coasting forward phase is skipped. 

A prominent challenge of integrating the PSS strategy into the PCD++ toolkit is handling 

the messaging anomalies as discussed in Chapter 6. If the NC saves its state infrequently, the 

strategic breakpoint states that should be saved after recovering from the anomalies may be lost. 

Moreover, it is hard, if not impossible, to regenerate the breakpoint state during the coasting 

forward phase in later rollbacks. This problem can be solved if the NC can still use the CSS 

strategy with the StateManager and avoid the coasting forward phase during rollbacks, while all 
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the other processors utilizing the PSS strategy with the InfreqStateManager. In this case, we 

have a hybrid strategy where both CSS and PSS strategies are employed simultaneously in the 

simulation system. Since there is only one NC on each machine (and potentially tens of 

thousands of Simulators), using this strategy does not wipe out much of the advantage associated 

with PSS. However, the kernel only allows one type of state managers, either the StateManager 

or the InfreqStateManager, to be used for all the processors in the system. Hence, a more flexible 

mechanism is needed to realize the hybrid strategy, as we will explain in the following sections. 

7.2.2. UCSS mechanism revisited 

In Section 6.4, we introduced the two-level UCSS mechanism that allows the application to 

decide when to save the state of a process on an event-by-event basis. This mechanism has been 

integrated with the CSS strategy, resulting in the risk-free MTSS strategy that can greatly reduce 

the number of states saved during the simulation. We now extend the UCSS mechanism so that 

processes can choose either type of state-saving strategy individually at runtime. 

The skip-state-saving flag is still used with the highest priority in the extended UCSS 

mechanism. Additionally, we defined another flag with a lower priority, called as do-state-

saving, in the InfreqStateManager associated with each process. By default, this flag has a value 

of false. The state-saving algorithm in the InfreqStateManager is modified so that, if the do-

state-saving is set to true by a process, the InfreqStateManager saves states after every event, 

just like the StateManager does under CSS strategy. Therefore, the enhanced UCSS mechanism 

has a structure as illustrated in Figure 61. 

 
Figure 61. UCSS structure for hybrid state-saving strategy 

Using the UCSS mechanism, a process can dynamically switch between the PSS and the 

CSS strategies by setting the do-state-saving flag at level 1. As the skip-state-saving flag has a 

higher priority at level 0, the MTSS strategy, previously works with the CSS strategy, takes 

effect under the PSS strategy as well. Thus, the enhanced UCSS mechanism virtually gives 
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simulator developers the full power to dynamically choose the best possible combination of 

state-saving strategies at runtime. 

7.2.3. Integrating PSS strategy in PCD++ 

Thanks to the UCSS mechanism, integrating the PSS strategy into the PCD++ toolkit can be 

done with ease, as described below: 

(1) The NC sets the do-state-saving flag to true in its associated InfreqStateManager 

when it is created. Hence, the NC can still utilize the CSS strategy during the 

simulation. On the other hand, all the other PCD++ processors (i.e. the FC, the 

Root, and the Simulators) use their InfreqStateManager to realize the PSS strategy.   

(2) The NC also sets the state-period variable in its state manager to -1 to suppress the 

coasting forward operation during rollbacks. The value of state-period for the other 

PCD++ processors is specified by the user at compile time.  

(3) The skip-state-saving flag is set when necessary by all the processors, including the 

NC, in their message-processing algorithms as described in Section 6.4. Hence, the 

MTSS strategy is integrated into the hybrid state-saving mechanism as well. In this 

case, a processor’s current state is no longer saved after executing the first event in 

a WCTS. Instead, it is saved after processing the first required message (as 

demanded by the MTSS strategy), which is close to the end of the WCTS. This 

reduces the number of events that need to be reprocessed in the coasting forward 

phase, allowing better performance. 

A rollback scenario under the hybrid state-saving strategy is depicted in Figure 62. 

 
Figure 62. Rollbacks under the hybrid state-saving strategy 

There are two major differences compared with the previous case as in Figure 60. First, 

the states of the processors are saved much closer to the end of the WCTS, shown by the dashed 
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arc in the corresponding wall clock time slices. This leads to shorter coasting forward phases. 

Secondly, since the NC still operates under the CSS strategy, its state is restored directly to the 

end of WCTS-t3 during the rollback and no coasting forward is performed for the NC. 

7.2.4. Modifications to the fossil collection algorithm 

The fossil collection algorithm was discussed in Section 4.2.2. When the GVT moves forward, 

the GVT manager reclaims all but the last saved state older than the GVT along with the 

messages with timestamps less than the GVT in the input and output queues. This algorithm 

works well with the CSS strategy. Actually, the GVT value indicates the least timestamp of any 

potential straggler or anti-message that could be received by a process. In other words, it is the 

minimum rollback time for any process in the system. During rollbacks, the state of a process 

will be restored to the last one saved at virtual time earlier than the GVT. As we know, this last 

state is left in the state queue during fossil collections. Hence, the state restoration is successfully 

performed for the process, and the rollback completes as expected even in this extreme case 

where the rollback time is equal to the GVT. 

However, when this fossil collection algorithm is used with the PSS strategy, runtime 

crash can happen during the coasting forward operations. Since the state of a process is saved 

infrequently, the restored state, i.e. the last one available in the state queue older than the GVT, 

could be saved at virtual time much earlier than the GVT. Although the state restoration can be 

done without problem in this case, the following coasting forward operations will fail since the 

events with timestamp between the time of the restored state and the GVT have already been 

garbage collected.  

This scenario is illustrated in Figure 63, where the fossil collections have been done with 

a GVT value of 28. At this time, a straggler message with timestamp 32 arrives, forcing the 

process to be rolled back to virtual time 30. However, there is no state saved at time 30, and the 

last state available in the state queue was saved at time 15, a time well before the GVT. Hence, 

the state of the process is restored to this last state and the events with timestamp between 21 and 

30 need to be reprocessed during the coasting forward. However, some of these events (e.g. 

events with timestamp 21 and 25) have already been reclaimed during the previous fossil 

collections, resulting in the failure of the coasting forward operation. 
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Figure 63. Example scenario for the failure of coasting forward operation 

Hence, the fossil collection algorithm needs to be enhanced to deal with this problem. In 

the new algorithm, fossil collection is no longer performed using the computed GVT. Rather, a 

minimum value among the virtual time of the last states saved older than the GVT is calculated 

for all the processes mapped on a LP. Then, this minimum value is used to do the fossil 

collection. Figure 64 shows a typical scenario for fossil collections on two LPs under the new 

scheme. 

 
Figure 64. Example scenario for fossil collections under the new scheme 

As shown in the diagram, after computing the new GVT value of t4, the GVT manager on 

each LP performs fossil collection for the processes under its control. To do so, the GVT 

manager calculates the minimum virtual time among the last states saved before the current 

GVT. The resulting minimum virtual time among state S1, S2, and S3 on LP0 is t2, while that 

among state S1’, S2’, and S3’ on LP1 is t3. Hence, virtual time t2 and t3 (instead of the GVT t4) are 
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used respectively by the GVT managers on LP0 and LP1 to do fossil collections. The events with 

timestamp less than the corresponding minimum virtual time are removed from the input and 

output queues. As we can see, potentially different virtual time may be used by the LPs during 

fossil collections under the new scheme.  

Eventually, the GVT is advanced to infinity when the simulation ends. Only at that time, 

does the GVT manager use the GVT value directly to do the last fossil collection. Thus, all states 

and events in the queues are reclaimed and data in the file queues are flushed, just like in the 

original scheme. 

7.2.5. Miscellaneous modifications 

Before the PSS strategy can be successfully integrated into the PCD++ toolkit, two more 

problems need to be fixed in the kernel, as summarized below: 

(1) Determining the start point of the coasting forward operation. The original 

algorithm for the PSS strategy supposed that the state of a process is saved only 

after executing the first event in a WCTS. Hence, it rigidly chose the second event 

in that WCTS as the start point of the coasting forward operation during rollbacks. 

Under the MTSS strategy, however, a process now saves its state only after 

executing the first required message, which is certainly not the first and should be 

close to the end of the WCTS. Therefore, we need a more flexible way to determine 

the start point of the coasting forward. The resulting algorithm retrieves the inPos 

of the state restored during the rollback, and starts the coasting forward from the 

event immediately after the one pointed by the inPos, regardless of its actual 

position in the WCTS.  

(2) Suppressing output to files. During the coasting forward, any scheduling of new 

events is suppressed by the kernel. However, the same was not done to prevent 

potential output to files. Duplicate data was inserted into the file queues as events 

were reprocessed. The original algorithm has been enhanced to withhold operations 

on the file queues in the coasting forward phase.  
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7.3. LAZY CANCELLATION 

With the aggressive cancellation strategy, all the messages that have been optimistically 

processed ahead of the rollback time must be cancelled. However, it is possible that a true 

message may be sent prematurely for the wrong reason [Lin91]. Better performance could be 

achieved if the cancellation of the true message is suppressed during the rollback. The lazy 

cancellation strategy is a refinement that can be thought of as repairing incorrect computation, 

rather than discard it altogether as the aggressive cancellation strategy does [Low99]. To do so, 

the sending of anti-messages is deferred during rollbacks and the process resumes forward 

execution immediately after the state restoration and message un-processing. New output 

messages are compared with those speculatively generated before the rollback. If they are 

deemed as identical, called as lazy hit, no action is taken; otherwise, referred to as lazy miss, the 

deferred anti-message is sent out, followed by the new output message, to replace the original 

one at the destination.  

Nevertheless, this strategy can also degrade performance since incorrect computation is 

not cancelled as prompt as is the case with aggressive cancellation. A key factor, so-called the 

sensitivity of output message [Lin91], in determining the performance of lazy cancellation is the 

probability that a given straggler will actually affect the results of the messages that were rolled 

back to accommodate the straggler, i.e. the probability of lazy miss. If this probability is low, 

then the lazy cancellation strategy can be expected to outperform the aggressive cancellation 

strategy.  

The following provides a summary of our attempts to integrate the lazy cancellation 

strategy into the PCD++ toolkit. 

(1) Choosing the appropriate implementation level. Previously, the strategy was 

realized at the local level in the WARPED kernel, where simulation objects perform 

lazy cancellation operations independent of each other. However, this approach will 

cause rollback failure when used in PCD++. As the PCD++ processors on a LP 

work cooperatively to implement the P-DEVS formalism and control messages are 

passed back and forth between them during the simulation, a processor cannot 

resume forward execution regardless of the others. As discussed in Section 6.1, all 

the processors on a LP must be rolled back collectively to the end of a previous 

WCTS to ensure that the forward execution can be successfully resumed after the 
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rollbacks. Therefore, we modified the kernel algorithm to implement the lazy 

cancellation strategy at the partition level instead. In this case, message 

cancellations between the LPs are performed using the lazy cancellation strategy, 

while those between the local processors (or simulation objects) within a LP still 

adhere to the aggressive cancellation strategy.  

(2) Implementing the function for comparing external messages. The kernel invokes a 

function called lazyCmp to determine whether a lazy hit or miss occurs during lazy 

cancellation. Since the lazy cancellation strategy is now realized at the partition 

level and only external messages are exchanged between the LPs, we only need to 

define the lazyCmp function for comparing external messages at the PCD++ layer. 

Two external messages are considered as identical if they have the same send time, 

receive time, sender, receiver, sign, destination port, and value.   
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CHAPTER 8 EXPERIMENTS AND PERFORMANCE ANALYSIS 

In this chapter, we study the performance of the PCD++ toolkit for Cell-DEVS models 

quantitatively. Our experiments were carried out on a HP PROLIANT DL Server, a cluster of 32 

compute nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2100 266MHz DDR RAM) running 

Linux WS 2.4.21 interconnected through Gigabit Ethernet and communicating over MPICH 

1.2.6. A brief introduction to the Cell-DEVS models tested in our experiments is provided in 

Section 8.1. The performance metrics are presented in Section 8.2. The improvements achieved 

by using the one log file per node strategy and the message type-based state-saving (MTSS) 

strategy are covered in Section 8.3 and 8.4 respectively. The execution results of the Cell-DEVS 

models using the standard Time Warp algorithms are presented in Section 8.5, while the effects 

of different Time Warp optimizations are discussed in Section 8.6.  

8.1. INTRODUCTION TO THE CELL-DEVS MODELS 

The performance of the PCD++ simulator was tested with two Cell-DEVS models, including a 

model for fire propagation in forest based on Rothermel’s mathematical definition [Rot72] and a 

3-D watershed model representing a hydrology system originally presented in [Moo96] and 

enhanced in [Ame01]. Since these models have already been validated in the previous 

researches, we focus on the model verification in our experiments to ensure that the PCD++ 

simulator executes the models correctly. 

The correctness of the simulation is verified using the methods as summarized below: 

(1) Verification with debugging files. During the simulation, a debugging file is created 

on each node to log the detailed information of the messages executed on that node. 

These debugging files are carefully analyzed after the simulation to ensure that the 

variables defined in the models and the PCD++ processors are manipulated 

correctly according to the message-processing algorithms as defined in Section 5.5.  

(2) Verification of the simulation results. A distributed simulation is correct when it 

produces simulation results that are legal results from a traditional, single process 

simulator [Fre02]. In our experiments, the models are first executed on a single 

 106 



node using the standalone version of the CD++ toolkit, and the generated 

simulation results are used as reference outputs for verification purposes. These 

models are then executed with PCD++ on multiple nodes. After each run, the 

simulation results are compared with the reference outputs to ensure that the same 

results are generated with PCD++ as those produced with the standalone version. 

Also notice that the performance data presented in the following sections only reflects the 

evaluation results for the specific models tested in our experiments. A thorough analysis of the 

performance of the PCD++ simulator for models with different characteristics needs to use some 

benchmarks such as the DEVStone [Gli04], which will be addressed in the future work. 

The CD++ definitions of the fire propagation and the watershed models are given next, 

while more details on the models themselves can be found in [Ame01].  

The fire propagation model computes the ratio of spread and intensity of fire in forest 

based on specific environmental and vegetation conditions. Figure 65 shows the definition of the 

model in CD++ using environmental values obtained for a fuel model group number 9, a SE 

wind of 24.135 km/h and a cell size of 15.24×15.24 m. 

 
Figure 65. Definition of the fire propagation model in CD++ 

The watershed model represents the water flow and accumulations depending on the 

characteristics of different vertical layers: air, vegetation, surface waters, soil, ground water, and 

bedrock [Moo96]. Based on the mathematical equations, it was coded as a 3-D Cell-DEVS 

model in CD++ to simulate the accumulation of water under the presence of constant rain (7.62 

mm/hr) [Ame01]. Figure 66 shows the model definition with a 20×20×2 cell space in CD++. 
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Figure 66. Definition of the watershed model in CD++ 

8.2. PERFORMANCE METRICS 

A set of 21 key values was collected during the experiments to gauge the performance and 

profile the simulation system. These values fall into two categories based on their intended 

purposes, namely performance measurement and system profiling.  

The first group consists of 3 values collected from the execution environment to measure 

the performance of the simulator in terms of execution time, memory consumption, and CPU 

utilization, as shown in Table 1. The overall speedup for N nodes is defined as follows. 

T(1)Overall Speedup = 
T(N)

  (1) 
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Where T(N) represents the total execution time taken by the simulation running on N 

nodes, and T(1) stands for the best possible serial execution time measured on one node.  
Table 1. Metrics for performance measurement 

Category Metric Name Description 
Execution Time (T) Total execution time of the simulation 

Memory Usage 
(MEM) 

Average and maximum amount of memory 
consumed by the simulation (Kb) Performance 

Measurement CPU Usage 
(%CPU) 

Share of the elapsed CPU time expressed as 
a percentage 

The second group has 18 values acquired by the PCD++ toolkit itself at runtime to profile 

the simulation system, as shown in Table 2. They are generated at the partition level by the LP 

on each compute node. Combining the data collected on all the nodes, we can have a general 

picture about the execution of the whole simulation system. 
Table 2. Metrics for system profiling 

Category Metric Name Description 
Events Received (ER) Number of events inserted into the input queue 
Events Imploded (EI) Number of events annihilated in the input queue1 
Events Executed (EE) Number of events executed 

Event-executing Time (ET) Time spent on executing events 
States Saved (SS) Number of states saved during the simulation 

States Skipped (SK) Number of states skipped by the MTSS strategy 
States Reduced (SR) Number of states reduced by the PSS strategy 

State-saving Time (ST) Time spent on saving states 
Primary Rollbacks (PR) Number of primary rollbacks 

Secondary Rollbacks (SR) Number of secondary rollbacks 
Rollbacks (RB) Total number of rollbacks 
Rollback Length 

(RBL) 
Length of rollbacks expressed as the number of 
events unprocessed 

Rollback Time (RBT) Time spent on rollbacks 
Coast Forward Length 

(CFL) 
Length of coasting forward phases expressed as 
the number events reprocessed 

Coast Forward Time (CFT) Time spent on coasting forward operations 
Lazy Hit (LH) Lazy hits under lazy cancellation strategy 

Lazy Miss (LM) Lazy misses under lazy cancellation strategy 
Bootstrap Time (BT) Time spent on bootstrap operations 

System 
Profiling 

Running Time (RT) Time spent on simulation after bootstrap (T - BT)  

                                                 
1 When the one anti-message per rollback strategy is used, EI is the number of anti-messages received on each node. The actual 
number of message implosions should be greater than the EI value since one anti-message is capable of annihilating multiple 
positive messages in this case. 
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In the standalone and conservative versions, we can tally the number of messages 

executed in the simulation by analyzing the generated log files. However, the numbers of events 

received (ER), imploded (EI) and executed (EE) in optimistic simulations need to be collected at 

runtime within the kernel. The log files only contain those true messages that have survived 

throughout the simulation. The average time required for processing an event is the ratio of the 

total time spent on event execution (ET) to the number of events executed in the simulation (EE). 

Metrics related to state-saving operations include the number of states saved in the state queues 

(SS), the number of states skipped by the MTSS (SK) and PSS (SR) strategies respectively, and 

the time spent on saving states (ST), by which we can have a better insight into the state-saving 

process. Also, the average time required for saving a state can be calculated by ST/SS. The total 

number of rollbacks (RB) is the sum of the primary (PR) and secondary (SR) rollbacks happened 

in the system (i.e. RB = PR + SR). The total length of the rollbacks (RBL) and the time for 

performing the rollback operations (RBT) are collected during the simulation, based on which 

we can obtain both the average length (RBL/RB) and the average processing time (RBT/RB) of a 

single rollback. The overhead of coasting forward is profiled by the length (CFL) and dedicated 

time (CFT) of the operations, while the effect of the lazy cancellation strategy is measured by the 

number of lazy hit (LH) and miss (LM). The bootstrap time (BT) serves two purposes: first, we 

can conveniently use it to measure the performance improvement resulting from the one log file 

per node strategy, as we will discuss in the next section; secondly, more accurate results about 

the real gain derived from the parallel algorithms can be obtained if we subtract the BT from the 

total execution time (T). Hence, we use two different speedups in our analysis. An overall 

speedup based on the total execution time (including the BT) reflects how much faster the 

simulation runs on multiple machines than it does on a single one as felt by the users. The 

definition of the overall speedup is given by Equation (1). Moreover, an algorithm speedup 

(without considering the BT) is used to assess the performance gain attributed to the parallel 

algorithms alone, as defined below. 

                  

1

T(1) - BT(1) RT(1)Algorithm Speedup = 
1 RT(N) T(N) - BT(i)
N

N

i=

=

∑
             (2) 

Where BT(1) and RT(1) represent the bootstrap and running time collected on a single 

node respectively, BT(i) stands for the bootstrap time recorded on node i (1 ≤ i ≤ N) when the 

simulation is executed on N nodes, and RT(N) is the average running time on N nodes. As in the 
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overall speedup definition, T(N) represents the total execution time taken by the simulation 

running on N nodes, and T(1) stands for the best possible serial execution time measured on one 

node. 

8.3. EFFECT OF ONE LOG FILE PER NODE  

In this section, we discuss the performance improvement derived from the one log file per node 

strategy using a fire propagation model of 900 cells arranged in a 30×30 mesh. The standard 

Time Warp algorithms, i.e. LTSF scheduling, copy state-saving, pGVT algorithm, and 

aggressive cancellation, were used in the experiments. Also, the MTSS strategy was turned on in 

all runs. The simulator was configured to log all the messages exchanged during the simulation. 

The model was executed on a single node and 4 nodes (respectively) with and without 

using the one log file per node strategy (respectively) to simulate the behavior of forest fire 

during a period of 5 hours. The resulting execution time (T) and bootstrap time (BT) in these 

four cases are illustrated in Figure 67, where the BT for 4 nodes is the arithmetic average of the 

BT values collected on these nodes.    
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Figure 67. Execution and bootstrap time before and after one log file per node strategy on 1 and 4 nodes 

Notice that the bootstrap time is even greater than the actual running time when the 

strategy is turned off. This clearly indicates that the bootstrap operation is really a bottleneck 

during the simulation. When the strategy is turned on, the bootstrap time is reduced significantly. 

As we can see, it is reduced by 99.1% on a single node and by 96.47% on 4 nodes. Furthermore, 
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the running time is decreased considerably as well due to more efficient communication, I/O, and 

rollback operations associated with the one log file per node strategy, as discussed in Section 6.6. 

It is reduced by 72.08% on 1 node and by 73.02% on 4 nodes. 

The CPU usage (%CPU) monitored in our experiments also suggests that the file I/O 

operation is a major barrier in the bootstrap phase. The CPU usage collected before and after 

applying the one log file per node strategy on a single node is shown in Figure 68. 
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Figure 68. CPU usage before and after one log file per node strategy on 1 node 

Shown in Figure 68(a), when the strategy is turned off, the CPU essentially remains idle 

in the first 23 seconds (corresponding to the observed BT), during which a majority of time has 

been dedicated to I/O operations for creating the log files at the NFS server over the network. At 

the end of the simulation, the logged data is flushed to the physical files, resulting in intensive 

I/O operations again. As expected, the CPU rests idle in the last 12 or so seconds. On the other 

hand, the computation is condensed when the strategy is applied to the simulator, as shown in 

Figure 68(b). Hence, the CPU is utilized much more efficiently with the one log file per node 

strategy. The similar pattern was observed in simulations running on multiple nodes.   

In addition, several other observations can be obtained in the experiments as follows: 

(1) The bootstrap time tends to increase when more nodes are used to do the 

simulation. For example, the BT increased from 0.2121 seconds on 1 node to 

0.8614 seconds on 4 nodes in our experiments. The reason is that the number of log 
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files increases with the number of nodes, causing higher delays in communication 

and file I/O operations at the NFS server.  

(2) The bootstrap time also tends to increase somewhat along with the size of the model 

because of the additional operations for memory allocation and object initialization 

in the main memory. However, this is a relatively moderate increase when 

compared with the previous case. 

(3) Even though the bootstrap time is reduced significantly with the one log file per 

node strategy, it still constitutes an overhead that cannot be ignored when we 

measure the real effect of the parallel algorithms. In the experiments, it accounts for 

3.9% and even 24.84% of the total execution time on 1 and 4 nodes respectively. 

This is why we need to use both the overall and algorithm speedups in our analysis 

of the performance. 

8.4. EFFECT OF MESSAGE TYPE-BASED STATE SAVING 

The MTSS strategy has been introduced in Section 6.4. We now demonstrate its associated 

performance improvement when used with the CSS strategy. The same fire propagation model 

was used for this purpose. Besides the standard Time Warp algorithms, the one log file per node 

strategy is also applied to the simulator in the following experiments. 

The model was executed on 1 and 4 nodes (respectively) with and without the MTSS 

strategy (respectively). The number of states saved in the simulation (SS) and the time spent on 

state-saving operations (ST) are shown in Figure 69. Here, the data for 4 nodes is the average of 

the corresponding values collected on the nodes.  

42278

21435
17356.75

9070.25

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 node (MTSS
OFF)

1 node (MTSS
ON)

4 nodes (MTSS
OFF)

4 nodes (MTSS
ON)

St
at

es
 s

av
ed

 in
 th

e 
si

m
ul

at
io

n 

2.0394

1.4295

0.8373
0.6049

0

0.5

1

1.5

2

2.5

1 node (MTSS
OFF)

1 node (MTSS ON) 4 nodes (MTSS
OFF)

4 nodes (MTSS
ON)

St
at

e-
sa

vi
ng

 ti
m

e 
(s

ec
)

 
Figure 69. States saved and state-saving time before and after MTSS strategy on 1 and 4 nodes 
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Owing to the MTSS strategy, the number of states saved during the simulation is reduced 

by 49.29% and 47.74% on 1 and 4 nodes respectively. Accordingly, the time spent on state-

saving operations is decreased by 29.9% and 27.76%. 
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Figure 70. Running and bootstrap time before and after MTSS strategy on 1 and 4 nodes 

The resultant running and bootstrap time are shown in Figure 70, where the BT for 4 

nodes is the average of the corresponding values collected on the nodes. While the bootstrap time 

remains nearly unchanged in both cases, the actual running time is reduced by 17.64% and 

7.63% on 1 and 4 nodes respectively because fewer states are saved in the state queues and, 

potentially, removed from the queues during rollbacks. 
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Figure 71. Average and maximum memory consumption before and after MTSS strategy 

Probably the most noticeable effect of the MTSS strategy is the decrease in memory 

consumption. Figure 71 shows the time-weighted average and maximum memory consumption 

with and without the strategy for the fire propagation model on 1 and 4 nodes. The time-
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weighted average was calculated using an interval of 1 second. For 4 nodes, the data was also 

averaged over the nodes. The average memory consumption declines by 26% in both cases, 

while the peak memory consumption decreases by 25.13% and 27.44% on 1 and 4 nodes 

respectively. 

8.5. EXPERIMENTS WITH STANDARD TIME WARP PROTOCOL 

Performance is of paramount important in parallel and distributed simulations. The key metrics 

for evaluating the performance of the PCD++ simulator are the execution time and speedup. In 

this section, we analyze the execution results of the Cell-DEVS models with the standard Time 

Warp algorithms. The one log file per node and MTSS strategies were applied to the simulator in 

the experiments as well.  

A simple partition strategy was adopted for all the models in the following tests. It evenly 

divides the cell space into horizontal rectangles, as illustrated in Figure 72 for a 30×30 model 

partitioned over 3 nodes. Using different partition strategies could have a big impact on the 

performance of the simulation. Since the workload on the nodes is unpredictable and keeps 

changing during the simulation, it is hard, if not impossible, to predict the best partition strategy 

for a given model before the simulation. This problem can be alleviated by using some dynamic 

load-balancing techniques in the simulation algorithms, which is out of the scope of this work.  

 
Figure 72. A simple partition strategy for Cell-DEVS models 

• Fire Propagation 

The fire propagation model is used again to assess the performance of the PCD++ 

simulator. We tested this model using different sizes of cell spaces: 20×20 (400 cells), 25×25 
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(625 cells), 30×30 (900 cells) and 35×35 (1225 cells). The model was executed to simulate the 

fire behavior over a period of 5 hours. 

Figure 73 shows a comparison between our optimistic simulator and the previous 

conservative simulator [Tro01, Tro03] for different model sizes on a set of compute nodes. In all 

cases, the optimistic simulator markedly outperforms the conservative one. 

Fire Propagation (20×20)
40.2842

17.9907

9.8919 8.6430

1.92541.87871.97192.0733

0
5

10
15
20
25
30
35
40
45

1 2 3 4
Number of nodes

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

conservative optimistic

Fire Propagation (25×25)
62.3461

38.0282

12.6823 11.0231
2.60912.52372.79593.2949

0

10

20

30

40

50

60

70

1 2 3 4

Number of nodes
Ex

ec
ut

io
n 

tim
e 

(s
ec

)
conservative optimistic

 
Figure 73. Comparison between optimistic and conservative simulators using the fire model 

There are three major contributing factors: 

(1) The PCD++ toolkit has been optimized with the one log file per node strategy. 

Hence, its bootstrap time is substantially less than that of the conservative one. 

Although the data logged during the simulations is the same for both simulators, the 

number of log files generated by PCD++ is only a small fraction of that created by 

the conservative simulator. This factor accounts for much of the difference in the 

execution time on a single node.   

(2) The Time Warp optimistic algorithms avoid, for the most part, the serialization of 

execution that is inherent in the conservative algorithms, and hence exploit higher 

degree of concurrency in the application.  

(3) The non-hierarchical approach adopted in the PCD++ toolkit outperforms the 

hierarchical one of the conservative simulator. The flattened structure reduces the 

communication overhead and allows more efficient message exchanges between the 

PCD++ processors. 

Figure 74 shows the total execution time of the fire model with different sizes executed 

on 1 up to 8 nodes. For any given number of nodes, the execution time always increases as the 

size of the model goes up. Moreover, the execution time rises less steeply when more nodes are 

used to do the simulation. For example, as the model size increases from 400 to 1225 cells, the 
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execution time ascends sharply by nearly 280% (from 2.0733 to 7.8702 seconds) on 1 node, 

whereas it merely rises by 93% (from 2.036 to 3.9274 seconds) on 5 nodes.  
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Figure 74. Total execution time for fire model of various sizes on a set of nodes 

On the other hand, for a fixed model size, the execution time tends to, but not always, 

decrease when more nodes are utilized. For instance, the execution time for the 20×20 model 

decreases from 2.0733 to 1.8787 seconds when the number of nodes climbs from 1 to 3. 

However, when the number of nodes increases further, the downward trend of execution time is 

reversed. It increases from 1.9254 to 2.5028 seconds as the number of nodes rises from 4 to 8. 

Actually, when the number of nodes goes beyond 5, the execution time is even larger than that 

recorded on a single node. The similar pattern can be discerned in the diagram for all the 

different model sizes tested in the experiment. When the model is partitioned onto more and 

more nodes, the increasing overhead involved in inter-LP communication and potential rollbacks 

eventually degrades the performance of the simulation system. Therefore, choosing the 

appropriate number of nodes to execute a given model is actually an art of balance. A trade-off 

between the benefits of higher degree of parallelism and the concomitant overhead costs needs to 

be reached when we consider different partition strategies, which could be one of the most 

difficult decisions for the modelers. 

From Figure 74, we can also find that the best performance can be achieved on a larger 

number of nodes as the model size increases. The shortest execution time is achieved on 3 nodes 

for the 20×20 and 25×25 models, while it is obtained on 4 or 5 nodes for the other two larger 

models. It is clear that we should use more nodes to simulate larger and more complex models 

where intensive computation is the dominant factor in determining the system performance. 

 117 



The bootstrap time collected during the simulations is subtracted from the total execution 

time to measure the performance gain attributed to the Time Warp optimistic algorithms. Due to 

the one log file per node strategy, the recorded bootstrap time varies from 0.1218 to 1.0249 

seconds depending on the model size and the number of nodes involved in the simulation. The 

resulting running time is shown in Figure 75.  
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Figure 75. Running time for fire model of various sizes on a set of nodes 

Based on the above execution and running time, we can calculate the overall and 

algorithm speedups using Equation (1) and (2) respectively, as shown in Figure 76. 
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Figure 76. Overall and algorithm speedups for fire model of various sizes on a set of nodes 
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As we can see, higher speedup can be obtained with larger models. For any given model 

size, a peak value exists in the speedup curve, indicating the best performance achieved for that 

model. For example, the highest overall and algorithm speedups for the 35×35 model are 

obtained on 4 nodes with values of 2.0636 and 2.5288 respectively. The algorithm speedup is 

always higher than its counterpart overall speedup, an evidence showing that the Time Warp 

optimistic algorithms are major contributors to the performance improvement. 

• A Watershed Model 

The watershed model was tested in our experiments to evaluate the performance of 

PCD++ for simulating models of complex physical system. Due to its complex rule definitions, 

this model requires high computing power to carry out the simulation. Also, it uses a 

neighborhood consisting of 10 cells at both layers of the cell space, which allows us to 

investigate how well our simulator performs when the interaction between neighboring cells is 

frequent. We executed the model using two different cell spaces: 15×15×2 (450 cells) and 

20×20×2 (800 cells).  

Figure 77 shows the total execution time and running time collected on a set of nodes for 

the 15×15×2 model. The execution time adheres to the same pattern as discussed previously, 

where the best performance is achieved on 5 nodes with execution and running time of 6.1538 

and 5.6743 seconds respectively. In all cases, the bootstrap time is well below 1 second. 
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Figure 77. Total execution and running time for the 15×15×2 watershed model 

The resulting speedups are illustrated in Figure 78. The best overall and algorithm 

speedups achieved for the 15×15×2 model are 2.7306 and 2.9373 respectively, higher than those 

obtained with the fire models.  
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Figure 78. Overall and algorithm speedups for the 15×15×2 watershed model 

The experimental results for the 20×20×2 model are shown in Figure 79. When the model 

was executed on a single node, the memory usage climbed almost to the limit, resulting in high 

memory swapping and a very long execution time of 586.505 seconds (the conservative 

simulator generated an even longer execution time in our experiments – 1030.153 seconds on 1 

node and 166.1047 on 2 nodes, which are not shown in the diagram). As we can see, the 

execution time decreases sharply to only 18.3177 seconds on 2 nodes. Besides the performance 

gain from the parallel algorithms, one major reason is that the memory consumption falls 

significantly on each node when the model is partitioned into multiple parts. The shortest 

execution time is obtained on 6 nodes. 
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Figure 79. Total execution and running time for the 20×20×2 watershed model 

Since the serial execution time measured on one node is large, the calculated speedups 

are exceptionally high, as shown in Figure 80. However, we know that these speedups are 

exaggerated by the high memory swapping happened on a single node. This shows that many 
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other factors need to be considered in the experiments to evaluate the performance accurately. 

Memory consumption, communication network, and NFS server are some prominent examples. 
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Figure 80. Overall and algorithm speedups for the 20×20×2 watershed model (false) 

8.6. TIME WARP OPTIMIZATIONS 

In this section, we study the potential performance gain of different Time Warp optimization 

algorithms that have been integrated into the PCD++ toolkit, including the one anti-message per 

rollback strategy, the periodic state saving strategy and the lazy cancellation strategy. The fire 

propagation model was used in our experiments for testing purposes. Each scenario was tested 

for 10 runs and the average values of these runs were calculated. 

• One anti-message per rollback 

We executed the 35×35 model on 1, 4, and 8 nodes with and without the one anti-

message per rollback strategy respectively. Figure 81 shows the average number of rollbacks and 

anti-messages on 4 and 8 nodes.   

On 4 nodes, the number of rollbacks remains almost unchanged before and after applying 

the strategy. However, the number of anti-messages generated during the rollbacks declines 

sharply by 60.62% from 28,833 to 11,353. Similar results can be found on 8 nodes as well. In 

this case, the number of rollbacks actually increases by 2% after applying the strategy, whereas 

the number of anti-messages reduces by 54.8% from 66,829 to 30,209. As expected, the one anti-

message per rollback strategy does greatly reduce the number of anti-messages during rollbacks. 
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Figure 81. Number of rollbacks and anti-messages for the 35×35 fire model 

The total execution and running time for these cases is shown in Figure 82. 
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Figure 82. Total execution and running time for the 35×35 fire model 

There is no obvious performance gain due to the one anti-message per rollback strategy 

found in the actual running time. Rather, the running time increases by 0.26% on 4 nodes and by 

2.42% on 8 nodes when this strategy is turned on, mainly because the number of rollbacks is 

increased proportionally in these scenarios. In our simulations, inter-LP anti-messages, which 

have higher communication overhead, constitute just a small fraction of the total anti-messages 

generated during rollbacks. Most of the anti-messages are exchanged locally between PCD++ 

processors within a LP via the main memory. Hence, the sharp reduction in the number of anti-

messages does not translate into significant decrease in communication overhead. Further, the 

models are executed over a fast Gigabit Ethernet network. The performance gain of the strategy 

would be more visible on slower networks. 
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• Periodic state saving 

The 35×35 fire model was executed on 1 and 4 nodes to measure the performance of the 

PSS strategy. The state-period variable was set to 2 in our experiments. Hence, the states of 

PCD++ processors were saved every two wall clock time slices during the simulation.  

Figure 83 shows the execution results on a single node. In this case, 51,028 events are 

executed in the simulation. If the CSS strategy is used, there would be this number of sates saved 

in the state queues. As shown in Figure 83(a), 26,373 states (51.68%) are skipped by the MTSS 

strategy at the upper level of the UCSS mechanism, while an additional 18,020 states (35.31%) 

are reduced by the PSS strategy at the lower level. As a result, the actual number of states saved 

during the simulation is only 7,865 or 13.01% of the total number of executed events.   
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Figure 83. Execution results for the 35×35 fire model before and after PSS strategy on 1 node 

From Figure 83(b), we can see that the time spent on state-saving operations reduces by 

96.44% from 2.3546 to 0.0839 seconds under the PSS strategy. The reduced state-saving 

overhead is reflected in the total execution and running time, which declines by 44.46% and 

46.03% respectively. 

Since no rollback can happen when the simulation is executed on a single node, any 

reduction in state-saving overhead will have a positive effect on the overall performance. 

However, this is not the case when the simulation is run in parallel on multiple nodes. The 

related execution results on 4 nodes are listed in Table 3.  

The number of states saved during the simulation (SS) decreases by 60.6% from 42,558 

to 16,767 and the time spent on saving states (ST) drops by 86.87% under the PSS strategy. 

However, there is a price to pay for this. The direct cost of the PSS strategy is the coasting 
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forward phase added to each rollback. As we can see, 31,197 events (CFL) are reprocessed 

during the 7,561 rollbacks (RB), consuming a total of 0.9565 seconds (CFT) processing time. On 

average, 4.13 events are reprocessed in each coasting forward phase.  Further, the presence of the 

coasting forward phase may lead to more and longer rollbacks, an indirect cost of the PSS 

strategy. In the experiment, the number of rollbacks happened during the simulation (RB) 

increases by 23.3%. Also, the average length of each rollback (RBL/RB) rises from 3.59 to 4.18 

events (or a 16.43% increase). The time spent on rollback operations increases from 0.2569 to 

1.1826 seconds accordingly. Therefore, the overhead of the PSS strategy outweighs its potential 

benefits in our experiment. As shown in the table, the total execution and running time increases 

by 4.83% and 8.21% respectively. 
Table 3. Execution results for the 35×35 fire model before and after PSS strategy on 4 nodes 

 4 nodes (PSS OFF) 4 nodes (PSS ON) 
T(4)(sec) 3.7519 3.9331 

RT(4)(sec) 2.8619 3.0969 
SS 42558 16767 
SK 40598 45112 
SR – 32237 

ST(sec) 0.8741 0.1148 
RB 6132 7561 

RBL 22008 31578 
RBT(sec) 0.2569 1.1826 

CFL – 31197 
CFT(sec) – 0.9565 

 Currently, the PCD++ simulator only employs a PSS strategy with fixed-sized 

checkpoint interval, which is set arbitrarily by the user at compile time. To achieve better 

performance, other adaptive state-saving algorithms as presented in [Lin93, Pal93, Fle95] need 

to be adopted in the toolkit as well. 

• Lazy cancellation 

The 35×35 fire model was executed on 4 and 8 nodes with and without applying the lazy 

cancellation strategy respectively. The relevant execution results on 4 nodes are listed in Table 4. 

Thanks to the lazy cancellation strategy, the number of rollbacks declines by 22.8% and 

the time spent on rollback operations decreases by 12.57%. As a result, the total execution and 

running time reduces moderately by 4.5% and 1.7% respectively. A high ratio of lazy hit (LH) to 

lazy miss (LM) was observed in our experiments, indicating a good performance of the lazy 

cancellation strategy. Notice that the average rollback length (RBL/RB) increases from 3.59 to 
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4.28 events. Since rollbacks are delayed, the overhead associated with each rollback tends to 

increase under the lazy cancellation scheme. However, this increased overhead is compensated 

by the reduction in the total number of rollbacks, leading to a positive overall performance gain. 
Table 4. Execution results for the 35×35 fire model before and after lazy cancellation on 4 nodes 

 4 nodes  
(lazy cancellation OFF)

4 nodes 
(lazy cancellation ON) 

T(4)(sec) 3.7519 3.5830 
RT(4)(sec) 2.8619 2.8120 

RB 6132 4734 
RBL 22008 20274 

RBT(sec) 0.2569 0.2246 
LH – 206 
LM – 2 

The effect of the lazy cancellation strategy is demonstrated more clearly in the 8-node 

scenario where rollbacks happened frequently during the simulation, as shown in Table 5. 
Table 5.  Execution results for the 35×35 fire model before and after lazy cancellation on 8 nodes 

 8 nodes  
(lazy cancellation OFF)

8 nodes 
(lazy cancellation ON) 

T(8)(sec) 4.0913 3.7939 
RT(8)(sec) 2.9334 2.8318 

RB 16750 10392 
RBL 47239 38953 

RBT(sec) 0.4267 0.3223 
LH – 686 
LM – 5 

When the model is executed on 8 nodes, the lazy cancellation strategy reduces the 

number of rollbacks and the time for rollback operations by 37.96% and 24.47% respectively 

with an even higher ratio of LH to LM. The resulting performance improvement is better than 

that observed in the 4-node case as well. The total execution and running time reduces by 7.27% 

and 3.46% respectively. Like in the previous case, the average rollback length (RBL/RB) 

increases from 2.82 to 3.75 events. As long as the probability of lazy miss is low, the lazy 

cancellation strategy can be expected to outperform the aggressive cancellation scheme.   
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

This work tackles the problem of executing DEVS and Cell-DEVS models in parallel and 

distributed environments based on the Time Warp optimistic synchronization protocol. A new 

extension to the CD++ toolkit, PCD++, was developed in our research to meet the need for faster 

and more efficient simulation of complex models. 

A high-level overview of the WARPED kernel and PCD++ toolkit was provided and the 

kernel assumptions were clearly summarized. The original kernel algorithms have several flaws 

that lead to runtime failure. Solutions for these problems were discussed and the kernel 

algorithms were revised to correctly carry out secondary rollbacks. The Time Warp protocol 

requires a clear separation between processes and their states, which is too restrictive in some 

occasions. Therefore, we provided a more flexible mechanism that allows simulator developers 

to maneuver the data that is inappropriate to be managed by the Time Warp mechanism during 

rollbacks. 

Based on previous studies, we adopted a flattened structure for the PCD++ toolkit to 

reduce the communication overhead. A special structure called NC Message Bag was defined for 

inter-LP communications. The algorithms for the four types of DEVS processors, i.e. Simulator, 

FC, NC, and Root, were redesigned to address the need of distributed optimistic simulation. The 

mechanisms for starting and terminating the simulation were enhanced in line with the optimistic 

and decentralized approach to distributed simulation. Three different methods for saving and 

restoring state variables were proposed and the criteria for choosing the appropriate method for 

different variables were given.  

The message-passing paradigm in PCD++ was illustrated using the event precedence 

graph. Several key characteristics, especially the multi-round execution of the transition phase, 

were identified that have a significant impact on the computation of the models. Based on these 

characteristics, the algorithms for Cell-DEVS models with transport and inertial delays were 

adapted to the asynchronous state transition paradigm to ensure correct simulation. 

The simulation process on each LP was abstracted using the notion of WCTS, which 

greatly simplifies the task of analyzing the complex message exchanges between the DEVS 

processors involved in the simulation. The WCTS properties were presented to capture the 
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essence of optimistic simulation in PCD++. A special dormant state was defined for the NC and 

algorithms were given for the NC to enter the dormant state and to reactivate the simulation 

afterwards. Two different solutions to the problem of dealing with rollbacks at virtual time 0 

were discussed. Based on their relative merits, we solved this problem using explicit 

synchronization among the LPs.  

A two-level UCSS mechanism was proposed so that simulator developers can utilize 

more flexible and efficient state-saving techniques during the simulation. This mechanism was 

then integrated with the copy state-saving strategy to implement the risk-free MTSS strategy, a 

specific optimization for the PCD++ toolkit that can significantly reduce the number of states 

saved during the simulation. It was also combined with the periodic state-saving strategy to 

realize a hybrid technique that allows dynamic integration of different state-saving strategies at 

runtime. 

The speculative computation of the NC may lead to messaging anomalies that cannot be 

recovered by the kernel rollback operations alone. Two types of anomalies were discussed and 

the corresponding algorithms for handling these anomalies were presented. The concept of 

breakpoint state was introduced to the kernel state definition. In addition, the state restoration 

mechanism was enhanced accordingly to handle the breakpoint states during rollbacks.  

To remove the bottleneck caused by file I/O operations, we implemented the one log file 

per node strategy in the PCD++ toolkit. The number of file descriptors consumed in the 

simulation is upper-bounded and the operational overhead is reduced significantly under this 

strategy. Furthermore, several other optimizations to the Time Warp protocol were integrated 

into the PCD++ toolkit, including the one anti-message per rollback strategy for reducing the 

overhead of sending anti-messages during rollbacks, the PSS strategy for reducing state-saving 

overhead, and the lazy cancellation strategy for exploiting parallelism available within a LP. 

A series of experiments were conducted to measure the performance of the PCD++ 

toolkit. Several complex Cell-DEVS models were tested using different sizes of cell spaces and 

on different number of nodes. A collection of 21 metrics was used to gauge the performance and 

to profile the simulation system. The effects of different optimization strategies were studied 

quantitatively. We showed that our optimistic simulator markedly outperforms the conservative 

one in all testing scenarios. Considerable speedups were observed in our experiments, indicating 

the PCD++ toolkit is well-suited for simulating large and complex models. 
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9.1. FUTURE WORK 

There are several issues with regard to PCD++ that should be further investigated: 

(1) Optimism control. In the WARPED kernel, no restriction exists on the maximum lag 

in virtual time between the fastest and the slowest LPs. Over-optimism encourages 

rollbacks and can degrade system performance. Also, it results in poor memory 

utilization due to the wide gap between GVT and the most recent virtual time in the 

system. Many schemes have been proposed to introduce conservatism to Time 

Warp in order to throttle the most speculative computations. Some of these 

algorithms need to be incorporated into the PCD++ toolkit such as moving time 

windows (MTW) [Fuj00, Fuj03] and the Filter algorithm [Pra91]. 

(2) Dynamic load balancing. Load balancing is a vital factor in the performance of 

distributed simulation. Dynamic load balancing allows processes to migrate over 

the compute nodes during the execution of parallel simulations, which also helps 

control over-optimism. In PCD++, mechanisms need to be implemented to support 

migrating Simulators between LPs. The migration choice is a trade-off between 

optimizing communication load and computation load. 

(3) Kernel tuning. As discussed in Chapter 7, three different Time Warp optimizations 

are implemented in the PCD++ toolkit. However, many other optimizations have 

not yet been integrated into the toolkit such as those introduced in Chapter 3. The 

impact of these optimizations needs to be tested in order to determine the best 

combination of strategies for simulating DEVS and Cell-DEVS models. 

(4) Further experiments. More testing of the PCD++ toolkit using a benchmark such as 

DEVStone [Gli04] should be conducted to further analyze the performance of the 

simulator. Different partition strategies need to be tested in the experiments to 

investigate the appropriate strategies for a set of models with different 

characteristics. In addition, guidelines need to be provided to users as to how many 

nodes should be used to execute models with different sizes and characteristics. 
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