
DISTRIBUTED OPTIMISTIC SIMULATION

OF DEVS AND CELL-DEVS MODELS WITH PCD++

Qi Li

The Faculty

In partial fulfillm

M

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

Canada

© Copyright 2006, Qi Liu
A thesis submitted to

 of Graduate Studies and Research

ent of the requirements for the degree of

aster of Applied Science
By

u, B. Eng.

The undersigned hereby recommends to the Faculty of Graduate Studies and Research

Acceptance of the thesis

Distributed Optimistic Simulation of DEVS and Cell-DEVS Models with PCD++

Submitted by Qi Liu

In partial fulfillment of the requirements for the degree of

Master of Applied Science

Thesis Supervisor

Dr. Gabriel A. Wainer

 Chair, Department of Systems and Computer Engineering

Dr. Victor C. Aitken

Carleton University

2006

 ii

ABSTRACT

DEVS is a sound formal modeling and simulation (M&S) framework based on generic dynamic

system concepts. Cell-DEVS is a DEVS-based formalism intended to model complex physical

systems as cell spaces. Time Warp is the most well-known optimistic synchronization protocol

for parallel and distributed simulations. This work is devoted to developing new techniques for

executing DEVS and Cell-DEVS models in parallel and distributed environments based on the

WARPED kernel, an implementation of the Time Warp protocol. The resultant optimistic

simulator, called as PCD++, is built as a new simulation engine for CD++, an M&S toolkit that

implements the DEVS and Cell-DEVS formalisms. Algorithms in CD++ and the WARPED kernel

are redesigned to carry out optimistic simulations using a non-hierarchical approach that reduces

the communication overhead. The message-passing paradigm is analyzed using a high-level

abstraction called wall clock time slice. A two-level user-controlled state-saving mechanism is

proposed to achieve efficient and flexible state saving at runtime. This mechanism is integrated

with both the copy state-saving and periodic state-saving strategies to realize a hybrid technique

that gives simulator developers the full power to dynamically choose the best possible

combination of state-saving strategies at runtime. An optimization strategy called one log file per

node is provided to break the bottleneck caused by file I/O operations. The number of file

descriptors consumed in the simulation is upper-bounded and the operational overhead is

reduced substantially under this strategy. Different Time Warp optimizations are integrated into

PCD++, and their effects are analyzed quantitatively. It is shown that PCD++ markedly

outperforms other alternatives, and considerable speedups can be achieved in parallel and

distributed simulations, indicating that PCD++ is well-suited for simulating large and complex

models.

 iii

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the enthusiastic supervision and constant support of Dr.

Gabriel Wainer during this work.

I want to thank specially to Narendra Mehta for his assistance with all types of technical

problems – at all times.

Finally, I am forever indebted to my parents and Sara for their understanding, endless patience

and encouragement throughout the course of my studies.

 iv

TABLE OF CONTENTS

ABSTRACT …. ..III

ACKNOWLEDGEMENTS ... IV

LIST OF TABLES...VIII

LIST OF FIGURES.. IX

LIST OF ACRONYMS.. XII

CHAPTER 1 INTRODUCTION... 1

1.1. Contribution .. 3

1.2. Thesis Overview .. 5

CHAPTER 2 REVIEW OF THE STATE OF THE ART .. 6

2.1. DEVS and Parallel DEVS formalisms .. 6

2.2. Timed Cell-DEVS and Parallel Cell-DEVS formalisms.............................. 10

2.3. Parallel and Distributed Simulation.. 13

2.3.1. Conservative parallel discrete event simulation 14

2.3.2. Optimistic parallel discrete event simulation..................................... 14

2.4. DEVS-based Simulation Toolkits .. 16

CHAPTER 3 SOFTWARE ARCHITECTURE.. 19

3.1. Layered Architecture.. 19

3.2. Major Functionalities of the PCD++ and WARPED Layers.......................... 20

3.2.1. The WARPED layer... 21

3.2.2. The PCD++ layer .. 25

CHAPTER 4 BASIC CONTROL MECHANISMS IN THE WARPED KERNEL. 28

4.1. Assumptions of the WARPED Kernel .. 28

4.2. Kernel Control Mechanisms .. 29

4.2.1. Rollback mechanisms and cascaded rollback process 29

4.2.2. GVT calculation and fossil collection.. 33

4.3. Problems and Fixes ... 34

CHAPTER 5 DISTRIBUTED OPTIMISTIC SIMULATION IN PCD++ 36

5.1. Flattened Structure for the Simulation Framework.................................... 36

 v

5.2. Message Definitions .. 38

5.3. Current Status of the CD++ Toolkit ... 38

5.4. Structure for Inter-LP Communications.. 40

5.5. Message-processing Algorithms for PCD++ Processors 41

5.5.1. Simulator ... 41

5.5.2. Flat Coordinator ... 43

5.5.3. Node Coordinator ... 46

5.5.4. Root Coordinator.. 49

5.6. A Message-passing Scenario .. 50

5.7. Starting and Terminating Simulations ... 54

5.8. Saving and Restoring State Variables... 55

5.9. Asynchronous State Transitions in Cell-DEVS Models 57

5.9.1. Cell-DEVS models with transport delay... 59

5.9.2. Cell-DEVS models with inertial delay .. 63

CHAPTER 6 ENHANCEMENTS TO PCD++ AND THE WARPED KERNEL.... 67

6.1. An Abstraction for the Simulation Process .. 67

6.2. Dormant State of Node Coordinators ... 70

6.3. Handling Rollbacks at Time Zero ... 72

6.4. User Controlled State Saving Mechanism .. 75

6.5. Messaging Anomalies.. 77

6.5.1. Speculative computation of the Node Coordinator 77

6.5.2. Two types of messaging anomalies.. 79

6.5.3. Anomaly with empty NC Message Bag... 82

6.5.4. Anomaly with non-empty NC Message Bag....................................... 83

6.5.5. Enhanced NC algorithm for done message .. 91

6.6. One Log File Per Node Strategy .. 92

CHAPTER 7 OPTIMIZATION ALGORITHMS IN THE WARPED KERNEL ... 95

7.1. One Anti-message Per Rollback .. 95

7.2. Periodic State Saving .. 97

7.2.1. Strategy description.. 97

7.2.2. UCSS mechanism revisited .. 99

 vi

7.2.3. Integrating PSS strategy in PCD++ .. 100

7.2.4. Modifications to the fossil collection algorithm 101

7.2.5. Miscellaneous modifications .. 103

7.3. Lazy Cancellation.. 104

CHAPTER 8 EXPERIMENTS AND PERFORMANCE ANALYSIS.................... 106

8.1. Introduction to the Cell-DEVS Models... 106

8.2. Performance Metrics .. 108

8.3. Effect of One Log File Per Node.. 111

8.4. Effect of Message Type-based State Saving.. 113

8.5. Experiments with Standard Time Warp Protocol..................................... 115

8.6. Time Warp Optimizations ... 121

CHAPTER 9 CONCLUSIONS AND FUTURE WORK.. 126

9.1. Future Work.. 128

REFERENCES ... 129

 vii

LIST OF TABLES

Table 1. Metrics for performance measurement ... 109

Table 2. Metrics for system profiling ... 109

Table 3. Execution results for the 35×35 fire model before and after PSS strategy on 4 nodes 124

Table 4. Execution results for the 35×35 fire model before and after lazy cancellation on 4 nodes

... 125

Table 5. Execution results for the 35×35 fire model before and after lazy cancellation on 8 nodes

... 125

 viii

LIST OF FIGURES

Figure 1. Layered architecture of the PCD++ optimistic simulator [Gli04]................................. 19

Figure 2. Major functionalities of the PCD++ and the WARPED layers .. 20

Figure 3. The clustering levels in the WARPED kernel .. 21

Figure 4. Runtime representation of a simulation object.. 30

Figure 5. Kernel operations for primary rollback ... 30

Figure 6. Kernel operations for secondary rollback (positive event already processed) 31

Figure 7. Kernel operations for secondary rollback (positive event not yet processed)............... 31

Figure 8. Tree structure of rollback propagation on a processor .. 32

Figure 9. Status of the queues during fossil collection ... 33

Figure 10. Model and processor hierarchies in PCD++.. 36

Figure 11. Example model and partition definition .. 37

Figure 12. Distributed processor structure for the example model... 37

Figure 13. Simulator algorithm for (I, 0) .. 41

Figure 14. Simulator algorithm for (@, t)... 41

Figure 15. Simulator algorithm for (*, t) .. 42

Figure 16. Simulator algorithm for (x, t)... 42

Figure 17. FC algorithm for (I, 0) ... 43

Figure 18. FC algorithm for (@, t).. 43

Figure 19. FC algorithm for (y, t) ... 44

Figure 20. FC algorithm for (x, t) ... 44

Figure 21. FC algorithm for (*, t) ... 45

Figure 22. FC algorithm for (D, t) .. 45

Figure 23. NC algorithm for (I, 0) .. 46

Figure 24. Simplified NC algorithm for (x, t)... 47

Figure 25. NC algorithm for (y, t)... 47

Figure 26. Simplified NC algorithm for (D, t).. 48

Figure 27. Root algorithm for (y, t)... 49

Figure 28. Example message-passing scenario... 50

 ix

Figure 29. Terminating the simulation on a LP .. 55

Figure 30. Algorithm for function rollbackProcessData ... 57

Figure 31. Initialization algorithm in Cell-DEVS models with transport delay 59

Figure 32. Algorithm for the λ function in Cell-DEVS models with transport delay 60

Figure 33. Algorithm for the δint function in Cell-DEVS models with transport delay................ 60

Figure 34. Algorithm for the δext function in Cell-DEVS models with transport delay 61

Figure 35. Initialization algorithm in Cell-DEVS models with inertial delay.............................. 63

Figure 36. Algorithm for the λ function in Cell-DEVS models with inertial delay 63

Figure 37. Algorithm for the δint function in Cell-DEVS models with inertial delay................... 64

Figure 38. Algorithm for the δext function in Cell-DEVS models with inertial delay 64

Figure 39. WCTS representation for the simulation on a LP ... 68

Figure 40. Typical rollback scenario shown in terms of wall clock time slices 69

Figure 41. Example scenario for state changes of the NC during the simulation......................... 70

Figure 42. Code snippet for entering dormant state in the NC algorithm for (D, t) 71

Figure 43. Enhanced NC algorithm for (x, t) .. 72

Figure 44. Rollback at virtual time 0 .. 73

Figure 45. Using MPI Barrier to avoid rollbacks at virtual time 0 ... 74

Figure 46. Code snippet for handling rollbacks at time 0 in the NC algorithm for (D, t) 74

Figure 47. UCSS structure with copy state-saving strategy ... 76

Figure 48. Enhanced kernel algorithm for executing events and saving states (UCSS)............... 76

Figure 49. Example scenario of messaging anomalies ... 78

Figure 50. Messaging anomaly with empty NC Message Bag... 80

Figure 51. Messaging anomaly with non-empty NC Message Bag.. 81

Figure 52. NC algorithm for handling anomaly with empty NC Message Bag 82

Figure 53. NC status during anomalies with non-empty NC Message Bag 83

Figure 54. Restoring the event-pointer for undue external events.. 84

Figure 55. Example scenario for anomalies with non-empty NC Message Bag 86

Figure 56. Enhanced kernel algorithm for state restoration during rollbacks............................... 88

Figure 57. NC algorithm for anomalies with non-empty NC Message Bag................................. 90

Figure 58. Enhanced NC algorithm for (D, t)... 92

Figure 59. Periodic state-saving strategy with a static interval of 2 ... 97

 x

Figure 60. Rollbacks with the periodic state-saving strategy ... 98

Figure 61. UCSS structure for hybrid state-saving strategy ... 99

Figure 62. Rollbacks under the hybrid state-saving strategy.. 100

Figure 63. Example scenario for the failure of coasting forward operation 102

Figure 64. Example scenario for fossil collections under the new scheme 102

Figure 65. Definition of the fire propagation model in CD++.. 107

Figure 66. Definition of the watershed model in CD++ ... 108

Figure 67. Execution and bootstrap time before and after one log file per node strategy on 1 and

4 nodes .. 111

Figure 68. CPU usage before and after one log file per node strategy on 1 node 112

Figure 69. States saved and state-saving time before and after MTSS strategy on 1 and 4 nodes

... 113

Figure 70. Running and bootstrap time before and after MTSS strategy on 1 and 4 nodes 114

Figure 71. Average and maximum memory consumption before and after MTSS strategy 114

Figure 72. A simple partition strategy for Cell-DEVS models... 115

Figure 73. Comparison between optimistic and conservative simulators using the fire model . 116

Figure 74. Total execution time for fire model of various sizes on a set of nodes 117

Figure 75. Running time for fire model of various sizes on a set of nodes 118

Figure 76. Overall and algorithm speedups for fire model of various sizes on a set of nodes ... 118

Figure 77. Total execution and running time for the 15×15×2 watershed model....................... 119

Figure 78. Overall and algorithm speedups for the 15×15×2 watershed model......................... 120

Figure 79. Total execution and running time for the 20×20×2 watershed model....................... 120

Figure 80. Overall and algorithm speedups for the 20×20×2 watershed model (false).............. 121

Figure 81. Number of rollbacks and anti-messages for the 35×35 fire model 122

Figure 82. Total execution and running time for the 35×35 fire model 122

Figure 83. Execution results for the 35×35 fire model before and after PSS strategy on 1 node123

 xi

LIST OF ACRONYMS

CSS Copy State Saving

DEVS Discrete Event System Specification

FC Flat Coordinator

GVT Global Virtual Time

LP Logical Process

LTSF Least-Time-Stamp-First scheduling

LVT Local Virtual Time

M&S Modeling and Simulation

MPI Message Passing Interface

MTSS Message Type-based State Saving

NC Node Coordinator

P-DEVS Parallel Discrete Event System Specification

PSS Periodic State Saving

UCSS User Controlled State Saving

WCTS Wall Clock Time Slice

 xii

CHAPTER 1 INTRODUCTION

Computer-based modeling and simulation (M&S) have become important tools for analyzing

and designing a broad array of complex systems where a mathematical analysis is intractable. A

simulation study is often conducted in order to understand the behavior of a system, or to

evaluate the effects of various parameters or operating policies. A general framework for M&S

[Zei00] is established to define the basic entities and their relationships that are central to the

M&S process. The basic entities of the framework include source system, experimental frame,

model, and simulator. The source system is the real or virtual environment under analysis. It is

viewed as the source of data gathered through experimental frames of interest to the modeler. An

experimental frame defines the type of data acquired in the system and the specific conditions

under which the system is observed or experimented with. A model is an abstract representation

of the construction and working of the system of interest. In general, a simulation model is a set

of instructions, rules, mathematical equations, or constraints to approximate the behavior of the

actual system. A simulator is any computation system that is capable of executing a model to

generate its behavior.

There are two primary relations among the basic entities, namely the modeling relation

(or validity) and the simulation relation (or simulator correctness). The modeling relation links

the system under study, the experimental frame in use, and the model for that system. It is

concerned with how well the model-generated behavior agrees with the system behavior

observed under the conditions as specified by the experimental frame. The simulation relation

lies between a model and a simulator. This relation ensures that the simulator executes the model

instructions correctly.

Separating the model and simulator concepts brings two major benefits to the framework

[Zei00]. First, the same model can be executed with different simulators, allowing portability and

interoperability at a high level of abstraction. Secondly, the well-defined separation of concerns

allows models and simulators to be independently verified and reused in later combinations with

minimal re-verification.

Different modeling techniques have been used to model and simulate different types of

systems. The discrete time modeling approach adopts a stepwise execution mode where the

 1

states of all the components are updated synchronously based on the states of the previous time

step and the inputs. Continuous modeling and simulation is the classical approach of the natural

sciences that often involves difference or differential equations. Finally, discrete-event

simulation refers to the modeling technique in which changes to the state of the system can occur

only at countable points in time. In this work, we are primarily concerned with the discrete-event

M&S approach and the DEVS (Discrete Event System Specification) formalism [Zei76, Zei00]

that has been proven to be a universal common modeling mechanism for discrete event dynamic

systems.

As a sound formal M&S framework based on generic dynamic system concepts, DEVS

allows hierarchical and modular construction of models. Tested models can be reused, enhancing

reliability and reducing the effort for model development and testing. Since its first

formalization, DEVS has been extended into various directions. Parallel DEVS or P-DEVS

[Cho94] is an extension of DEVS that facilitates the handling of simultaneous events. It

eliminates the serialization constraints existed in the original DEVS definition and exhibits

increased parallelism in parallel and distributed simulations. The Timed Cell-DEVS formalism

[Wai98] is a combination of the DEVS and Cellular Automata [Wol86] formalisms with explicit

timing delays. It defines a way to describe n-dimensional cell spaces as discrete event models,

where each cell is represented as a DEVS basic model that can be delayed using different timing

constructions.

Parallel and distributed simulation technologies have received increasing interest as

simulations become more time consuming and geographically distributed. They address the

issues of executing simulations on a computing system containing multiple processors

interconnected by a communication network. A parallel or distributed simulation typically

consists of a collection of concurrent processes, each modeling a different part of the physical

system and executing on a dedicated processor in a sequential fashion. They interact with each

other by exchanging time-stamped event messages. The execution of the processes needs to be

synchronized to guarantee that correct results will be produced from the concurrent execution of

events.

Synchronization is the key to parallel and distributed simulation. It ensures that each

process complies with the local causality constraint [Fuj00], which requires that events are

processed in time stamp order. Errors resulting from out-of-order event execution are referred to

 2

as causality errors. Two major classes of synchronization approaches exist: conservative (or

pessimistic) approaches strictly avoid processing events out of time stamp order; optimistic

approaches detect causality errors during the execution, and provide mechanisms to recover from

them via an operation known as rollback. Optimistic synchronization allows higher degree of

parallelism to be exploited in parallel and distributed simulations. Also, it does not rely on

application-specific data to achieve good performance, which is usually the case in conservative

synchronization.

Jefferson’s Time Warp mechanism [Jef85] is by far the most well-known optimistic

synchronization protocol. The WARPED simulation kernel [Rad98] is a configurable object-

oriented middleware written in C++ that incorporates the Time Warp mechanism and a variety of

optimization algorithms. In our research, the WARPED kernel is used as a middleware abstraction

layer for distributed optimistic simulation.

CD++ [Wai01a, Wai02a] is an M&S toolkit that implements Parallel DEVS and Cell-

DEVS formalisms. It currently supports both standalone [Rod99] and parallel conservative

simulations [Tro03]. CD++ has been used to model and simulate different complex systems in a

variety of fields. Based on previous research [Gli04], our work aims to develop new techniques

for executing Parallel DEVS and Cell-DEVS models in parallel and distributed environments

using the Time Warp mechanism. The resultant optimistic simulator, called as PCD++, is built as

a new extension to the CD++ toolkit. Various optimization strategies are proposed and integrated

into the PCD++ simulator. It is shown that PCD++ markedly outperforms the previous

conservative simulator, and considerable speedups can be achieved in parallel and distributed

simulations, indicating that PCD++ is well-suited for simulating large and complex models.

1.1. CONTRIBUTION

This thesis provides a variety of new techniques that allow PCD++ to be used as a high-

performance toolkit for distributed optimistic simulation of complex DEVS and Cell-DEVS

models. The following is a list of the main contributions of the present work:

• The algorithms for the DEVS processors are redesigned to allow optimistic

simulation in parallel and distributed environments. A non-hierarchical approach is

employed to reduce the communication overhead and improve the performance.

 3

• It is shown that the message-passing paradigm in PCD++ is different from that in the

previous versions of CD++. The algorithms for Cell-DEVS models with transport and

inertial delays are adapted to the new asynchronous state transition paradigm.

• Mechanisms are provided for handling rollbacks at virtual time 0 and messaging

anomalies that may occur during the simulation.

• The notion of wall clock time slice (WCTS) is proposed to provide a high-level

abstraction of the simulation process. It greatly simplifies the task of analyzing the

complex message exchanges between the DEVS processors involved in the

simulation.

• A two-level user-controlled state saving (UCSS) mechanism is proposed to achieve

efficient and flexible state saving at runtime. It is integrated with the copy state

saving to implement a risk-free message type-based state-saving strategy that can

significantly reduce the number of states saved during the simulation. The UCSS

mechanism is also combined with the periodic state saving to realize a hybrid

technique that allows dynamic integration of different state-saving strategies at

runtime.

• An optimization strategy called one log file per node is provided to break the

bottleneck caused by file I/O operations. The number of file descriptors consumed in

the simulation is upper-bounded and the operational overhead is reduced substantially

under this strategy.

• Several enhancements are added to the WARPED kernel [Rad98] to address a number

of issues. The kernel state-saving algorithm is modified to implement the UCSS

mechanism. The concept of breakpoint state is introduced and the kernel state

restoration algorithm is revised to deal with messaging anomalies. The fossil

collection algorithm is modified to integrate the periodic state-saving strategy into the

PCD++ simulator. The kernel rollback operations are enhanced to allow direct

handling of variables defined in the processes. Finally, the problem found in the

kernel rollback algorithm is fixed to correctly perform secondary rollbacks (a crucial

operation for recovering from causality errors).

• Several Time Warp optimizations are integrated into the PCD++ toolkit, including the

one anti-message per rollback strategy for reducing the overhead of rollback

 4

operations, the periodic state-saving strategy for reducing state-saving overhead, and

the lazy cancellation strategy for exploiting parallelism available within a LP.

1.2. THESIS OVERVIEW

The rest of the thesis is organized as follows:

Chapter 2 introduces the DEVS and Cell-DEVS formalisms and their extensions, and

reviews the general concepts in parallel and distributed simulation. A brief survey of existing

DEVS-based simulation toolkits is given as well.

Chapter 3 presents the layered software architecture, followed by a description of the

main functionalities implemented in the PCD++ toolkit.

Chapter 4 covers the major algorithms employed by the WARPED kernel based on the

standard Time Warp mechanism.

Chapter 5 discusses the redesign of the algorithms for the DEVS processors and Cell-

DEVS models in PCD++. The new message-passing paradigm is illustrated. Different methods

for saving and restoring modifiable variables in PCD++ are presented.

Chapter 6 is concerned with the essential enhancements to the PCD++ and the WARPED

kernel to ensure correct and efficient execution of simulations. The notion of WCTS is proposed

as an abstraction of the simulation process. Mechanisms are provided to address the problem of

asynchronous execution of the processes and to deal with rollbacks at virtual time 0. The UCSS

mechanism is proposed to achieve efficient and flexible state saving at runtime. The one log file

per node strategy is put forward to remove the bottleneck found in the simulations. Algorithms

of the WARPED kernel and DEVS processors are enhanced to handle messaging anomalies that

may occur during the simulation.

Chapter 7 covers the integration of several Time Warp optimization algorithms into the

PCD++ toolkit to improve the performance. The UCSS mechanism is further extended to work

with the periodic state-saving strategy in order to reduce the state-saving overhead.

Chapter 8 illustrates the experimental results for measuring the performance of the

PCD++ toolkit. The effects of different optimization strategies are discussed quantitatively.

Chapter 9 presents the main conclusions of the thesis and outlines possible future work.

 5

CHAPTER 2 REVIEW OF THE STATE OF THE ART

This chapter provides a review of the state-of-the-art in the field of discrete event modeling and

simulation, particularly the techniques for parallel and distributed simulation systems. The

DEVS and Cell-DEVS formalisms and their extensions are presented in Section 2.1 and 2.2.

Section 2.3 covers the two major synchronization approaches for distributed simulation, namely

conservative approaches and optimistic approaches. Finally, a brief survey of existing DEVS-

based simulation toolkits is given in Section 2.4.

2.1. DEVS AND PARALLEL DEVS FORMALISMS

In a discrete event simulation, the system being simulated changes state only at discrete points in

time, upon the occurrence of an event. Based on general systems theory, the DEVS (Discrete

Event System specification) formalism [Zei00] provides a framework for the definition of

hierarchical models in a modular way. A real system modeled using DEVS can be described as a

composition of behavioral (atomic) and structural (coupled) components. A DEVS atomic model

is defined by:

M = <X, Y, S, δint, δext, λ, ta>,

where

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values;

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values;

S is the set of sequential states;

δint: S S is the internal state transition function;

δext: Q × X S is the external state transition function, where

Q = {(s,e) | s∈S, 0 ≤ e ≤ ta(s)} is the total state set,

e is the time elapsed since the last state transition;

λ: S Y is the output function;

ta: S 0,R+
∞ is the time advance function.

At any time, a DEVS atomic model is in some state s. If no external event occurs, it will

remain in state s for ta(s), the lifetime of state s. When the state lifetime ta(s) expires, i.e. the

 6

elapsed time e = ta(s), the atomic model outputs the value λ(s) and does an internal state

transition to a new state given by δint(s). Notice that the output only happens just before the

internal state transition. If an external event x ∈ X occurs before the time ta(s), i.e. the model is

in total state (s,e) with e ≤ ta(s), it performs an external state transition to state δext(s,e,x). That is,

the internal state transition function dictates the model’s new state when no events occurred since

the last transition, while the external state transition decides the model’s new state due to the

reception of an external event.

The time advance function can take on any real value including 0 and . A state with

zero ta(s) is called a transitory state, whereas a state with ta(s) equal to infinity is a passive state,

in which case the system will stay in state s forever unless it is reactivated by an external event.

∞

The DEVS formalism has a well defined concept of system modularity and component

coupling to form composite models. A DEVS coupled model is formally defined by:

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>,

where

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values;

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values;

D is the set of the component names, and the following requirements are imposed on the

components, which must also be DEVS models:

For each d ∈ D, Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS with

 Xd = {(p,v) | p ∈IPortsd, v∈Xp}, and Yd = {(p,v) | p ∈OPortsd, v∈Yp}.

The component couplings are subject to the following requirements:

External input coupling (EIC) connects external inputs to component inputs,

 EIC⊆ {((N, ipN), (d, ipd)) | ipN∈IPorts, d∈D, ipd∈IPortsd};

External output coupling (EOC) connects component outputs to external outputs,

 EOC {((d, opd), (N, opN)) | opN⊆ ∈OPorts, d∈D, opd∈OPortsd};

Internal coupling (IC) connects component outputs to component inputs,

 IC⊆ {((a, opa), (b, ipb)) | a, b∈D, opa∈OPortsa, ipb∈IPortsb};

Select: 2D – {} D is the tie-breaking function for imminent components.

Direct feedback loops are not allowed, i.e., no output port of a component may be

connected to an input port of the same component: ((d, opd), (e, ipd))∈IC implies d ≠ e.

 7

Also, the values sent from a source port must be within the range of accepted values of a

destination port, formally expressed as:

∀ ((N, ipN), (d, ipd))∈EIC : XipN Xipd ⊆

∀ ((a, opa), (N, opN))∈EOC : Yopa YopN ⊆

∀ ((a, opa), (b, ipb))∈IC : Yopa Xipb. ⊆

A coupled DEVS model can be expressed as an equivalent basic model in the DEVS

formalism due to the closure under coupling property. Expressing a coupled model as an

equivalent basic model captures the means by which the components interact to yield the overall

behavior [Zei99a]. Such a basic model can itself be employed in a larger coupled model as

required for hierarchical model construction.

Since multiple imminent components can exist at the same time in a coupled model,

ambiguity may arise. If an imminent component executes its internal transition and produces an

output that is received by another imminent component as an external event, then it is not clear

which transition should be done by the receiving component. There are two possible scenarios:

executing the external transition first with e = ta(s) and then the scheduled internal transition, or

executing the scheduled internal transition first followed by the external transition with e = 0.

The DEVS formalism solves this potential ambiguity with the Select function, which defines an

order over the components so that only one component in the group of imminent models is

allowed to have e = 0. The other imminent components are divided into two groups: receivers of

the external event from this model, and the rest. Components in the former group will execute

their external transition functions with e = ta(s), and those in the latter group will be imminent in

the next simulation cycle and may need to use the Select function again to decide the execution

sequence. This rigid tie-breaking strategy introduces serialization of execution, a potential

bottleneck in the simulation system.

The Parallel DEVS or P-DEVS formalism [Cho94] was proposed to eliminate the

restrictions that forced the original DEVS definition to sequential execution. It defines an

additional function, called as confluent transition function, in the atomic models to handle

transition collisions and thus removes the sequential Select function for resolving simultaneous

events. Hence, all imminent components are allowed to be activated and to send their output to

other components. The receiver is responsible for examining the input event and properly

interpreting it. Higher degree of parallelism can be exploited in parallel and distributed

 8

simulations with the P-DEVS formalism. As a result, it was chosen as the theoretical foundation

for our research.

A P-DEVS atomic model is defined as:

M = < X, Y, S, δint, δext, δcon, λ, ta >,

where

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values;

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values;

S is the set of sequential states;

δint: S S is the internal state transition function;

δext: Q × Xb S is the external state transition function,

where Xb is a set of bags over elements in X;

δcon: Q × Xb S is the confluent transition function;

λ: S Yb is the output function;

ta: S 0,R+
∞ is the time advance function;

Q = {(s,e) | s∈S, 0 ≤ e ≤ ta(s)} is the total state set, and e is the time elapsed since the

last state transition.

Instead of having a single input, basic P-DEVS models employ a bag of inputs to allow

the execution of multiple concurrent events. By simultaneously executing the events in the input

bag Xb, the external transition function can combine the functionality of a number of external

transitions into a single one. A second difference is the addition of a confluent transition function

(δcon) in the model definition. This function decides the next state of the model in cases of

collision between external and internal functions [Zei00]. In virtue of the confluent transition

function, modelers have a flexible way to define the appropriate behavior for each atomic model

in the simulation system.

Consequently, the Select function is removed from the definition of P-DEVS coupled

models, resulting in a model definition as follows:

DN = <X, Y, D, {Md | d∈D}, EIC, EOC, IC>

The specifications for the set of input and output events (X and Y) and couplings (EIC,

EOC, and IC) follow the definitions of DEVS coupled models as presented earlier. The basic

components (D and Md) are specified by the P-DEVS atomic model definition.

 9

As we can see, P-DEVS coupled models are specified in the same way as in classic

DEVS except that the Select function is omitted. While this is an innocent-looking change, its

semantics are much different. They differ significantly in how imminent components are

handled. In P-DEVS, there is no serialization among the imminent computations – all imminent

components generate their outputs which are then distributed to their destinations using the

coupling information [Zei00].

2.2. TIMED CELL-DEVS AND PARALLEL CELL-DEVS FORMALISMS

Cellular Automata formalism [Wol86] has been widely used to describe real systems that can be

represented as cell spaces. A Cellular Automata is an infinite regular n-dimensional lattice whose

cells can take one finite value. These cells evolve by executing a global transition function that

updates the state of every cell in the space. The behavior of this global function depends on the

results of a local function executed in each cell in discrete time steps. Conceptually, these local

functions are computed synchronously and in parallel, using the state values of the present cell

and a finite set of neighboring cells (called as the neighborhood of the cell). However, this

discrete time paradigm constrains the precision and efficiency of the simulated models.

Furthermore, it is usual that several cells do not need to be updated in every step, wasting

computation time [Wai01b].

The Timed Cell-DEVS formalism [Wai98] solves these problems by using the DEVS

paradigm to define a cell space where each cell is represented as a DEVS atomic model.

Moreover, it adopts delay constructions and defines them as a functional component of the

model defining each cell. Hence, it is possible to define a discrete event cell space with explicit

delays. Each cell can use one of two kinds of delay constructions with different semantics,

namely transport and inertial [Gia76]. Transport delay allows one to model a variable

commuting time for each cell with anticipatory semantics, while inertial delay introduces

preemptive semantics to generate more complex temporal behaviors.

A Cell-DEVS atomic model can be formally defined as [Wai01b]:

TDC = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>,

where

X is the set of external input events;

 10

Y is the set of external output events;

I represents the definition of modular model interface;

S is the set of sequential states for the cell;

θ is the definition of the cell’s state;

N is the set of values for input events;

delay∈{transport, inertial};

d is the delay for the cell;

δint is the internal transition function;

δext is the external transition function;

τ is the local computation function;

λ is the output function; and

D is the state’s duration function.

The cell’s modular interface (I) is composed of a fixed number of ports, each connected

with a neighbor. A cell can use the input and output ports to interchange data with other

neighboring cells as well as models outside the cell space. The input values are used to compute

the future state of the cell by evaluating the local computation function τ. If the resultant future

state is different from the cell’s present value, the new state value will be sent to all the

neighboring cells. Otherwise, the cell remains quiescent and no output will be scheduled. Also,

the new state value is transmitted only after the completion of the delay time given by the delay

function associated with the cell. Finally, the DEVS transition (δint, δext) and output (λ) functions

are included in each cell.

The Cell-DEVS atomic models can be coupled with others, forming a cell space that

consists of multiple cells interconnected by the neighborhood relationship. Further, the cell space

itself can be integrated with other Cell-DEVS or DEVS models. A cell space is constructed by

defining a coupled Cell-DEVS model as follows:

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z, Select>

where

Xlist is the list of input coupling;

Ylist is the list of output coupling;

I represents the definition of modular model interface;

X is the set of external input events;

 11

Y is the set of external output events;

η is the dimension of the cell space;

{t1, …, tn} is the number of cells in each of the dimensions;

N is the neighborhood set;

C defines the cell space;

B is the set of border cells;

Z is the translation function; and

Select is the tie-breaking function for simultaneous events.

The cell space (C) is a coupled model defined as an array of Cell-DEVS atomic models

of fixed size (t1×…×tn). The neighborhood set (N) is defined as a set of n-tuples giving the

relative position between the origin cell and the surrounding neighbors. The border of the cell

space is specified by the border cells (B). If B = {∅ }, i.e. the border is wrapped, every cell in

the space will have the same behavior. The cells in one border are connected with those in the

opposite one using the inverse neighborhood relationship. Otherwise, the border set is not empty

and the cells in it will have a different behavior from the others in the cell space. The Z function

allows definition of the coupling between cells in the model. It translates the outputs of ith output

port in cell Ca into values for the ith input port in cell Cb. The Select function serves the same

purpose as in the classic DEVS formalism. It defines an order of execution for the case where

simultaneous events occur.

As in the DEVS formalism, the use of the Select function can lead to serialization and

incorrect execution when models are considered to be executed in parallel [Wai99]. Moreover,

only one input is allowed for each input port in the Timed Cell-DEVS paradigm, disallowing

zero-delay transitions and multiple simultaneous events from external DEVS models. The

Parallel Cell-DEVS formalism [Wai00b] is an extension of the Timed Cell-DEVS formalism to

remove these restrictions. Several important propositions are presented in [Wai00b], as

summarized below:

(1) Parallel Cell-DEVS models are equivalent to Parallel DEVS models.

(2) Closure under coupling for Parallel Cell-DEVS models also holds. That is, a

coupled Parallel Cell-DEVS model is equivalent to a basic Parallel Cell-DEVS

model.

 12

An implementation of the Parallel Cell-DEVS was presented in [Tro03], in which the

author extended the CD++ toolkit [Rod99] to execute Parallel DEVS and Cell-DEVS models in

distributed environments based on conservative synchronization mechanisms.

2.3. PARALLEL AND DISTRIBUTED SIMULATION

In parallel and distributed simulations, the whole simulation task is divided into a set of smaller

subtasks with each executed on a different processor or node. Hence, the simulation system is

viewed as a collection of concurrent processes, each modeling a different part of the physical

system and executing on a dedicated processor in a sequential fashion. These processes

communicate with each other by exchanging time-stamped event messages. The subtask

executed by each process consists of a sequence of event computations, where each computation

may modify the state of the process and/or schedule new events that need to be executed on the

present process or on other processes. Unlike sequential simulations, which ensure that all events

generated in the whole simulation are executed in time stamp order, parallel and distributed

simulations need some mechanism to guarantee that the same results as the sequential execution

will be produced from the concurrent execution of events.

Fujimoto defines conditions for correct simulation as follows [Fuj00]:

Local Causality Constraint: A discrete-event simulation, consisting of processes that

interact exclusively by exchanging time stamped messages obeys the local causality constraint if

and only if each process executes events in nondecreasing time stamp order.

One of the most challenging problems of parallel and distributed simulation is

synchronization, which ensures the local causality constraint to be satisfied in the simulation

system. Two major schools of thought have been shaped to address the synchronization problem:

conservative schemes and optimistic schemes. Conservative schemes adopt a block-resume

strategy to keep processes synchronized. Under such schemes, the synchronization is done by

globally controlling the execution order and run lengths of the individual processes to strictly

avoid executing events out of time stamp order. However, conservative schemes sacrifice

parallelism to a degree due to the continuous avoidance of time ambiguities. On the other hand,

optimistic schemes take a lookahead-rollback strategy where causality errors are detected during

the execution, and mechanisms are provided to recover from them.

 13

2.3.1. Conservative parallel discrete event simulation

Conservative synchronization approaches were introduced in the late 1970s by R. E. Bryant

[Bry77], K. M. Chandy and J. Misra [Cha78]. Since then several variations, improvements, and

optimizations have been developed. All of them are based on the principal idea that causality

violations are strictly avoided.

The notion of lookahead is essential to conservative synchronization mechanisms. It

gives the smallest time stamp of the potential new events that a process can schedule in the

future. The lookahead information is exchanged among the LPs via null messages. Based on the

lookahead collected from all the processes, each LP can derive a lower bound on the time stamp

(LBTS) of messages that it may later receive. Armed with this information, the LP can then

determine which events can be safely processed. However, the resulting cycles of null messages

could severely degrade simulation performance.

Although conservative synchronization algorithms have advanced to a state where they

are viable for use in real-world application, optimistic approaches offer two important

advantages over conservative techniques [Fuj03]:

(1) The optimistic approaches can exploit higher degree of parallelism available in the

simulation. Usually, the conservative approaches tend to be overly pessimistic, and

force sequential execution when it is not necessary.

(2) The conservative approaches generally rely on application-specific information to

determine which events are safe to process. While optimistic mechanisms can

execute more efficiently if they exploit such information, they are less reliant on the

application for correct execution, allowing more transparent synchronization and

simplifying software development.

On the other hand, optimistic approaches may require computations with higher overhead

than conservative ones, degrading the system performance to a certain extent.

2.3.2. Optimistic parallel discrete event simulation

Jefferson’s Time Warp mechanism [Jef85] is the first and remains the most well-known

optimistic synchronization protocol that uses Virtual Time to model the passage of time in the

simulation. The simulation is executed via several Time Warp processes interacting with each

other by exchanging time-stamped event messages. Each process maintains a Local Virtual Time

 14

(LVT) that advances in discrete steps as each event is executed on the process. Time Warp

processes execute their own part of the simulation speculatively without explicit synchronization.

A causality error arises if a process receives an event with timestamp less than its LVT. Such

events are referred to as straggler events. Upon the arrival of a straggler event, the process

recovers from the causality error by undoing the effects of those events speculatively executed

during previous computations, an operation called as rollback. Due to the nature of optimistic

execution, erroneous computations on a Time Warp process can spread to other processes via

false messages. These false messages are cancelled during rollbacks by virtue of anti-messages.

When a process sends a message, an anti-message is created and kept separately. The anti-

message has exactly the same format and content as the positive (original) message except in one

field, a negative flag. Whenever an anti-message meets its counterpart positive message, they

immediately annihilate one another, hence cancelling the positive one.

The Time Warp protocol consists of two parts: the local control mechanism and the

global control mechanism. The local control mechanism is provided in each Time Warp process

to implement the rollback operations. In order to make rollback possible, three structures are

maintain in each process: an input queue containing all recently arrived messages sorted in

virtual receive time order, an output queue containing negative copies (i.e. anti-messages) of the

messages the process has recently sent in virtual send time order, and a state queue containing

saved copies of the process’s recent states. Two major actions are performed in case of a

rollback. First, the state of the process is restored to the last state saved before the virtual time

indicated by the straggler’s timestamp. Secondly, the process sends anti-messages in its output

queue to their receivers to cancel the positive ones generated in previous false computations. An

anti-message causes a rollback at its destination if its timestamp is less than the LVT of the

receiving process, just as a positive straggler would. During this rollback, more anti-messages

may be sent to other processes, resulting in a cascade of rollbacks in the simulation system.

The global control mechanism is concerned with such global issues as space

management, I/O operations, and termination detection. It requires a distributed computation

involving all of the processes in the system. The central concept of the global control mechanism

is Global Virtual Time (GVT), a property of an instantaneous global snapshot of the system at

wall clock time T, which is defined as follows [Fuj00]:

 15

 Global Virtual Time at wall clock time T (GVTT) during the execution of a Time Warp

simulation is defined as the minimum time stamp among all unprocessed and partially processed

messages and anti-messages in the system at wall clock T.

One characteristic of GVT is that it never decreases, despite the fact that individual local

virtual clocks roll back frequently [Fre02]. Hence, GVT serves as a floor for the virtual time of

any future rollback that might occur. Any event occurred prior to GVT cannot be rolled back and

may be safely committed. Therefore, messages in the input and output queues whose timestamp

is less than GVT can be discarded. Similarly, all but the last saved state older than GVT can be

reclaimed for each process. Destroying information older than GVT is done via an operation

known as fossil collection. Furthermore, I/O operations with virtual time less than GVT can be

irrevocably committed with safety.

In Time Warp systems, the global control mechanism must estimate GVT every so often.

How frequent the estimation should be is a trade-off: high frequency allows faster response time

and better space utilization, but it also imposes an overhead on the processor and communication

network, slowing down the simulation system.

Many refinements have been proposed to enhance Jefferson's original Time Warp

mechanism, either for reducing the operational overhead or for exploiting more parallelism than

is available in the basic protocol. Details on the Time Warp protocol are covered in Chapter 4,

while several optimization algorithms are discussed later in Chapter 7. Other advanced optimistic

techniques can be found in [Fuj00].

2.4. DEVS-BASED SIMULATION TOOLKITS

Based on previous studies [Gli04], we give a brief survey on the existing DEVS-based toolkits

that have been implemented by different researchers as follows:

• ADEVS [Nut06] supports the construction of discrete event models based on a

variant of the P-DEVS formalism. It includes support for dynamic structure models

based on the Dynamic DEVS formalism [Uhr01a].

• DEVS-C++ [Zei96] is a high performance simulation environment that allows

portability of models across platforms at a high level of abstraction. It uses a set of

C++ classes, called as containers, to realize serial and parallel simulations.

 16

• DEVS-Scheme [Zei93] is a knowledge-based environment implemented in Scheme

for discrete-event model construction and simulation. It allows combining symbolic

and hierarchical, modular discrete-event modeling approaches.

• DEVS/CORBA [Zei99a] is a runtime infrastructure on top of CORBA middleware to

support distributed simulation of DEVS components. It is possible to embed

DEVS/CORBA in a larger network-centric environment to provide a combination of

graphical process modeling, discrete-event simulation, animation, activity-based

costing, and optimization functions.

• DEVS/HLA [Zei99b] is an HLA-compliant M&S environment implemented in C++

that supports high level model construction. It greatly simplifies the underlying

programming details required to establish and participate in an HLA federation.

• DEVS/Grid [Seo04] is an M&S framework implemented using Java and Globus

toolkit for Grid computing infrastructure.

• DEVSCluster [Kim04] is a CORBA-based, multi-threaded distributed simulator

implemented in Visual C++. It transforms a hierarchical DEVS model into a non-

hierarchical one to ease the synchronization of the distributed simulation.

• DEVSJAVA [Sar98] is a DEVS-based simulator that supports high-level modeling.

• GALATEA [Dav00] is offered as a family of languages to model multi-agent systems

to be simulated in a DEVS, multi-agent platform.

• JDEVS [Fil02] is an M&S environment that enables discrete-event, general purpose,

object-oriented, component-based, GIS (Geographic Information System) connected,

collaborative, visual simulation model development and execution.

• JAMES [Uhr01b] is a Java-based simulation environment that allows the modeler to

describe agents and their environment as situated automata.

• PyDEVS is a simulator developed in ATOM3 [Del02], a tool for multi-paradigm

modeling. DEVS models are constructed using the ATOM3-DEVS tool, which

generates Python code to be executed with the PyDEVS simulator.

• PowerDEVS [Kof03] is an M&S toolkit developed in C++ for hybrid systems.

Atomic DEVS models can be graphically coupled in hierarchical block diagrams to

create complex systems.

 17

• SimBeans [Pra99] is a discrete-event simulation framework based on DEVS and the

JavaBean component model.

• DEVS/P2P [Che04] is an M&S framework based on P-DEVS formalism and Peer-to-

Peer message communication protocol. It uses a customized DEVS simulation

protocol to achieve decentralized inter-node communication. Simulators are

synchronized by themselves without involving a coordinator.

• DEVS/RMI [Zha06] is a DEVS-based system that provides a fully dynamic and re-

configurable runtime infrastructure for handling load balancing and fault tolerance in

distributed simulations. It reduces the overhead associated with common middleware

solutions by using the native support of Java RMI to achieve the synchronization of

local and remote simulators.

• CD++ [Rod99, Wai02a, Tro03] is an M&S toolkit developed in C++ that implements

the original and Parallel DEVS and Cell-DEVS formalisms. It supports both

standalone and parallel conservative simulations. This toolkit has been extended in

our research to realize distributed optimistic discrete-event simulations based on the

Time Warp mechanism.

 18

CHAPTER 3 SOFTWARE ARCHITECTURE

Aiming at running simulations in parallel and distributed environments using the Time Warp

protocol, our simulator, PCD++, was developed based on previous work presented in [Gli04].

The PCD++ simulator adhered to the same layered design as used in the parallel conservative

simulator [Tro01]. The software architecture is first presented in Section 3.1, followed by a more

detailed discussion of the layers that are the focus of our research in Section 3.2.

3.1. LAYERED ARCHITECTURE

As shown in Figure 1, the PCD++ simulator employs a layered architecture, where each layer

only depends on the layers below it and not above. The following is a brief introduction to each

of the layers.

Figure 1. Layered architecture of the PCD++ optimistic simulator [Gli04]

At the bottom of the architecture is the operating system. Since the Linux Operating

System is rapidly becoming a de facto standard platform for high-performance parallel and

distributed computing, it is used as the underlying platform on which our simulator runs.

Above the Operating System lies the Message Passing Interface (MPI), a standard

specification of message-passing library for high-performance communications on both

massively parallel machines and on workstation clusters. MPI, along with the operating system,

provides the communication infrastructure for the PCD++ simulator. There are both freely

available and vendor-supplied MPI implementations for use: MPICH [Gro96] is an open-source

portable implementation of MPI that provides a vehicle for MPI implementation research and for

 19

developing parallel and distributed applications, while Scali MPI Connect™ is a fully integrated

MPI solution that enables users to take advantage of the leading interconnect technologies, such

as the Myrinet™ technology for clusters, to build high performance applications.

Originally designed and developed at the University of Cincinnati, the WARPED

simulation kernel [Rad98] is a configurable middleware that implements the Time Warp

mechanism and a variety of optimization algorithms.

On top of the WARPED kernel, the PCD++ simulator implements the Parallel DEVS and

Cell-DEVS formalisms and provides the framework for building and executing DEVS and Cell-

DEVS models in distributed environments using the Time Warp protocol.

The topmost layer represents the DEVS and Cell-DEVS models built in the CD++

simulation environment and executed by the PCD++ simulator.

3.2. MAJOR FUNCTIONALITIES OF THE PCD++ AND WARPED LAYERS

As our research is targeted at the PCD++ and the WARPED layers, this section highlights the

major functionalities at these layers to give a broad overview of the capabilities and important

algorithms implemented in the PCD++ toolkit. Figure 2 shows a closer look at these two layers

based on previous researches as presented in [Rad98, Mar99, Wai02a]. More detailed description

on these modules is provided in the following subsections.

Simulation Framework

Specification
Language

Quantization
Facility

Simulation
Administration Partition

Facility

Logging
Facility

I/O FacilityUtilities

Modeling Framework

Application Interface

Event
Management State Management

Scheduling

File
Management

GVT and
Fossil Collection

Rollback
Facility

Memory
Management

Time Warp
Optomizations

Communication Management

PCD++
Layer

WARPED
Layer Time

Management

Figure 2. Major functionalities of the PCD++ and the WARPED layers

 20

Following is a brief summary of the majority of our work in terms of these modules:

(1) At the PCD++ layer, the message-processing algorithms provided in the Simulation

Framework are redesigned to carry out distributed optimistic simulations. The state

transition logic in the Modeling Framework is modified to ensure correct

computation in Cell-DEVS models. Also, the Logging Facility is optimized to

reduce the overhead of file I/O operations.

(2) At the WARPED layer, a flexible user-controlled state-saving mechanism is

implemented in the State Management module. Also, the concept of breakpoint

state is introduced and the state restoration algorithm is modified to handle

messaging anomalies that can happen during the simulation. The fossil collection

algorithm is revised in the GVT and Fossil Collection module to integrate the

periodic state-saving strategy into the PCD++ simulator. The Rollback Facility is

enhanced to allow direct handling of variables defined in the processes during

rollbacks. Finally, the Time Warp Optimizations module is modified to incorporate

three different optimization strategies into the PCD++ simulator.

3.2.1. The WARPED layer

The WARPED kernel provides services to the application above it for building Time Warp

processes (called as simulation objects) based on Jefferson’s definition. In the WARPED kernel,

simulation objects are organized into groups called “clusters” [Rad98]. Adding the extra cluster

or partition level is the result of partitioning the simulation objects amongst the available

physical processors [Low99]. The clustering levels used in the WARPED kernel are shown in

Figure 3.

Figure 3. The clustering levels in the WARPED kernel

 21

Individual simulation objects are located at the lowest level, implementing the Time

Warp local control mechanism. Above it is the partition level associated with each physical

processor. Simulation objects mapped on a physical processor are grouped by an entity called as

logical process (LP). Note that the simulation objects within a LP operate as Time Warp

processes, even though they are grouped together, they are not coerced into synchronizing with

each other [Rad98]. The top level is the entire system consisting of multiple partitions that

operate collectively to implement the Time Warp global mechanism.

The major functionality modules in the WARPED kernel are described as follows:

• Application Interface

The WARPED kernel presents an abstract definition of events, states, and simulation

objects to the applications [Mar99]. Basic functions are provided for sending and receiving

events between simulation objects. Different types of simulation objects with unique definitions

of states can be constructed by deriving from the WARPED kernel. Control is passed between the

application and the kernel through cooperative function calls. The application is responsible for

initializing the simulation objects and defining the activities of each simulation object. The Time

Warp mechanism and other facilities are made available through inheritance, which allows

transparent access and is restrictive enough to hide kernel internal operations from the user.

• Scheduling

The issue of scheduling is not given recognition in the Time Warp mechanism, and the

choice of policy to govern scheduling is left entirely to an implementation that requires it. The

WARPED kernel [Mar99] takes on the most straight-forward and intuitive approach to scheduling

simulation objects based on their LVT, an approach called least time stamp first (LTSF)

scheduling. A LTSF scheduler is created on each processor at the partition level for scheduling

the simulation objects mapped on the corresponding LP.

• Rollback Facility

The kernel rollback facility [Mar99] operates transparently to the application. Causality

errors are detected between event executions for each simulation object. Once a causality error is

found, normal execution is suspended and rollback operations are performed immediately in the

kernel. After the rollbacks, the erroneous data resulting from speculative computations is

recovered and forward execution is resumed. Implementing the rollback facility is demanded by

the Time Warp local control mechanism.

 22

• GVT and Fossil Collection

An entity called GVT manager [Mar99] is created on each LP to implement the Time

Warp global control mechanism, namely detecting the termination of the simulation, performing

I/O operations, and measuring the progress of the computation so that the memory for states and

events with timestamps older than GVT can be reclaimed. Two different algorithms are provided

in the GVT and Fossil Collection facility: the Mattern’s GVT estimation algorithm [Mat93] and

the passive response GVT or pGVT algorithm [Dso94]. One attractive feature of the pGVT

algorithm is that the loss of a control message does not have a significant impact on the GVT

calculation and the decision-making process is completely distributed [Low99].

• Memory Management

Five alternatives for dynamic memory management are available [Mar99], including the

operating system’s default memory allocator, the Global Memory Manager that implements the

CustoMalloc [Gru93] algorithm, the Buddy Memory Manager based on Knuth’s buddy system

[Knu73], the Segregated Storage Allocator that combines the basic ideas of buddy system and

the first fit algorithm, and the Brent’s implementation of the first fit allocation strategy.

• Event Management

The basic properties of the abstract event definition (BasicEvent) include the virtual send

and receive time of the event, the identities of the sender and the receiver, a sequence counter, a

flag to mark the event as an anti-message, and a flag to label the event as processed or not

[Mar99]. The application can define different types of events by deriving from the BasicEvent.

Events are organized in the input and output queues in the kernel. While an output queue is

created for each simulation object, a single input queue is shared by all the simulation objects

mapped on a LP. Event management is greatly simplified by organizing all incoming events in a

single input queue that is under the control of the LTSF scheduler on that processor.

• State Management

The abstract state definition (BasicState) has three basic properties [Mar99]: the virtual

time when the state is saved for a simulation object; a pointer, called as inPos, to the input event

executed just before saving the state; another pointer, called as outPos, to the output event most

recently sent by the simulation object. Each simulation object has its own current state that is

susceptible to modifications during the execution of events. An object’s current state is saved

regularly in its state queue that is managed by the associated state manager. The state manager

 23

provides functionalities for saving and restoring states, and governs the state-saving policy with

respect to when and how the states should be saved for the simulation object. Two types of state

managers are provided that implement the copy state saving (CSS) and periodic state saving

(PSS) strategies respectively. The latter type further includes: fixed-sized checkpoint interval

strategy and Lin’s [Lin93], Palaniswamy's [Pal93], Fleischmann's [Fle95], and Ronngren's

[Ron94] adaptive state-saving algorithms. Users can select one of these types for use at compile

time.

• File Management

Files may be opened for output during the simulation. Output data is wrapped in objects

of type FileData and saved temporarily in a structure called file queue [Mar99]. A FileData

object contains three values: the actual output data, the length of the data, and the virtual time at

which the data should be output. A file queue is created for each physical file in the owning

simulation object. FileData objects with virtual time older than GVT are committed

automatically by the kernel GVT and Fossil Collection facility. The kernel also provides

functions for removing erroneous data from the file queues during rollbacks.

• Time Management

By default, WARPED has a simple notation of integer time written in the

hours:minutes:seconds:milliseconds format [Mar99]. There is no concept of negative virtual

time in the kernel, and any virtual time less than zero is deemed as invalid.

• Communication Management

There are two types of communications in the simulation [Mar99]: message-passing

between simulation objects residing on different processors (remote or inter-LP

communications), and message-passing between simulation objects on the same processor (local

or intra-LP communications). Inter-LP communications are realized using a group of

communication managers over MPI. A communication manager is created on each LP at the

beginning of the simulation. Intra-LP communications are done via direct function invocations,

which is much faster than MPI communications. Since both the sender and the receiver reside in

the same address space, the event is directly inserted into the receiver’s input queue. Therefore,

simulation objects that communicate frequently should be placed within the same partition.

 24

• Time Warp Optimizations

A variety of Time Warp optimizations are provided by WARPED to optimize almost every

aspect of operations in the kernel [Mar99], including fixed-sized and dynamic message

aggregation [Che98] algorithms for minimizing inter-LP communication overhead; static and

adaptive polling [Sha99] algorithms for optimizing the message reception behavior; one anti-

message per rollback strategy [Mar99] for reducing the number of anti-messages during

rollbacks; lazy and dynamic cancellation algorithms [Lin91] for exploiting parallelism available

within a Time Warp process; and algorithms for adjustment of runtime parameters using external

agents [Rad97] to reduce the operational overhead.

3.2.2. The PCD++ layer

The major functionality modules at the PCD++ layer are described as follows:

• Modeling Framework

The modeling framework represents the behavior of the DEVS and Cell-DEVS models

[Wai02a]. A hierarchy of classes, rooted at Model, is defined to implement the model theoretical

definitions. Modelers can define their models by deriving from the modeling framework. For P-

DEVS models, the model logic needs to be provided in classes inherited from the abstract atomic

model definition in the framework. After defining the atomic models, the coupled models can be

specified using the built-in specification language. For Cell-DEVS models, the modeler can rely

solely on the capabilities provided by the specification language (no programming is needed).

Currently, the framework supports the definition of Cell-DEVS models with transport and

inertial delays. The properties of the cell space can be fully specified by the language as well.

• Simulation Framework

The simulation framework implements the optimistic simulation mechanisms in line with

the DEVS theory [Wai02a]. It consists of a hierarchy of classes, rooted at Processor, defining

different types of simulation objects. That is, the PCD++ processors are concrete

implementations of simulation objects to realize the abstract DEVS processors. The simulation

framework is loosely coupled with the modeling framework. The model logic defined in entities

of the modeling framework is executed in a standardized fashion by their counterparts of the

simulation framework according to the DEVS formalism.

 25

• Simulation Administration

The simulation is managed by several administrators, including [Wai02a]: a main

administrator that takes care of the bootstrap operations of the simulation; a model administrator

that keeps a registry for all the models defined in the simulation and provides a lookup service to

retrieve model information at runtime; a processor administrator that manages all the PCD++

processors created in the simulation; and a local transition administrator that registers and

evaluates the local transition and port-in rules defined for Cell-DEVS models.

• Specification Language

A built-in specification language is provided for defining DEVS and Cell-DEVS models

[Wai02a]. The model coupling information and all properties of the cell space can be coded in

simple rules with a few parameters. Besides, the language provides numerous operations,

functions, and constants, allowing complex models to be defined through a very simple set of

procedures and greatly facilitating the model development process.

• Utilities

Various utilities can to be used internally by the toolkit itself and externally by the

modelers [Wai02a]. The internal utilities include a parser for the specification language and tools

for model verification; the external utilities comprises such tools as file format converters, log

file analyzers, rule and partition debuggers, and visualization tools to show the simulation

results.

• Partition Facility

Partition of models (and the corresponding PCD++ processors) is achieved using a

simple text file that defines the mapping of atomic models to the machines [Wai02a]. Models are

divided at the lowest level of the model hierarchy, allowing flexible and fine-grained partitions.

• Logging Facility

Log files are created during the simulation [Wai02a]. Each PCD++ processor can log the

messages received during the simulation in a human readable format. The log files can be use by

a variety of tools for debugging and visualization purposes. Users can also choose to log only a

subset of messages, allowing less storage consumption, faster execution, and greater flexibility.

• I/O Facility

A number of files are opened during the simulation for defining the models and initial

values, declaring the external events, specifying the partitions, sending output events to the

 26

environment, and generating debugging information [Wai02a]. Although these I/O operations are

mainly done in the file system, the toolkit can be adapted to permit I/O via other interfaces like

serial ports, network, and USB connections in future versions.

• Quantization Facility

Based on the theory of quantized DEVS models [Zei98a, Zei98b], PCD++ provides

quantization facility for Cell-DEVS models. A quantized version of CD++ toolkit was

introduced in [Rod99] and experimental results were presented in [Wai00a]. Two types of

quantization techniques were provided, including the uniform and the non-uniform (intervals)

quantizer [Dab03]. Quantization allows faster execution with decreased number of active cells

and message exchanges at the cost of introducing errors in the simulation results.

 27

CHAPTER 4 BASIC CONTROL MECHANISMS IN THE WARPED KERNEL

This chapter covers the kernel mechanisms based on a set of standard settings, including LTSF

scheduling, copy state saving, passive response GVT (pGVT) algorithm, and aggressive

cancellation. The assumptions made by the WARPED kernel are first presented in Section 4.1,

followed by a discussion of the kernel control mechanisms in Section 4.2. Several flaws in the

kernel algorithms are discussed in Section 4.3.

4.1. ASSUMPTIONS OF THE WARPED KERNEL

The WARPED kernel makes a number of assumptions with respect to its execution environment.

These assumptions are summarized based on the documentation of the WARPED kernel [Mar99]:

(1) Reliable communications over First-in, First-out (FIFO) channels. Jefferson’s

definition [Jef85] did not assume this order preservation in the communication

medium. However, the WARPED kernel relies on this property to simplify the

implementation of the scheduling, rollback, and GVT and fossil collection facilities.

(2) Predefined ordering of simultaneous events. The kernel orders input events with the

same timestamp based on the identities of their receivers. Input events to the same

receiver at the same virtual receive time are ordered by their arriving order (i.e. the

sequence they are received by the receiver). Output events from the same sender at

the same virtual send time are ordered by their sending order (i.e. the sequence they

are sent out by the sender).

(3) The virtual send time of each message must be less than or equal to its virtual

receive time. An event with the same virtual send and receive time are executed

instantaneously in virtual time by the receiver.

(4) The timestamp of each event in a process must be less than or equal to the

timestamp of the next event in that process. Simultaneous events are ordered by the

rules specified in Assumption 2 as described above.

(5) There is no concept of negative simulation time in the kernel.

(6) Currently, each LP is associated with a UNIX heavy-weight process and is assigned

 28

to a dedicated processor. This may change in the future to allow a multithreaded

implementation where each LP is associated with a light-weight thread [Mar99].

(7) Rollback is completely transparent to the process being rolled back. To fulfill this

requirement, the kernel carries out rollbacks between event executions. That is,

rollbacks can happen only after the execution of an event has finished and before

the execution of the next event is commenced.

4.2. KERNEL CONTROL MECHANISMS

The kernel control mechanisms include two parts: (1) rollback mechanisms realized by

individual simulation objects at the local level, and (2) GVT calculation and fossil collection

mechanisms implemented by the LPs at the global level. These mechanisms are briefly discussed

in the following subsections.

4.2.1. Rollback mechanisms and cascaded rollback process

As required by the Time Warp local control mechanism, rollbacks are performed by the

simulation objects in the WARPED kernel. Rollback operations are triggered by an incoming

straggler or anti-message when it is inserted into a simulation object’s input queue. There are two

types of rollbacks: primary rollback triggered by a straggler message and secondary rollback as

the result of receiving an anti-message.

• Primary rollback

The runtime representation of a simulation object before primary rollback is shown in

Figure 4, where input events are depicted as blocks with receive time; output events are shown as

blocks with send time. States are shown as circles with three values: the recorded LVT of the

simulation object, a pointer (inPos) to the input event just executed, and another pointer (outPos)

to the last message sent by the simulation object. Let’s denote the states as S(12), S(21), and

S(35). The diagram shows that this simulation object has executed events with receive time 12,

21, and 35, notated as E(12), E(21), and E(35). Accordingly, the simulation object’s LVT is set

to 35. Now a straggler E(18) arrives, resulting in a primary rollback on this simulation object.

The receive time of the straggler is referred to as rollback time. Here, the rollback time is 18.

 29

Figure 4. Runtime representation of a simulation object

Shown in Figure 5, the kernel operations for primary rollback are described as follows:

Figure 5. Kernel operations for primary rollback

(1) Insert the straggler, i.e. E(18), into the input queue.

(2) Undo the input events after the straggler, i.e. E(21) and E(35) in Figure 5(a).

(3) Restore the simulation object’s current state to the last state with LVT less than the

rollback time. Hence, the object’s current state is an exact duplicate of S(12).

(4) Remove all saved states after S(12) from the state queue.

(5) Reset the object’s LVT to the LVT in its current state, i.e. 12.

(6) Rollback the simulation object’s file queues, if any. This is done by removing all

data with virtual time greater than or equal to the rollback time from the queues.

(7) Send output messages with send time greater than or equal to the rollback time as

anti-messages to their receivers, as shown in Figure 5(b).

After these operations, the kernel resumes normal execution forward again.

 30

• Secondary rollback

Depending on whether the counterpart positive message is processed or not, two different

scenarios can happen during secondary rollbacks: The first scenario is shown in Figure 6 where

the positive event has already been processed. The simulation object receives an anti-message,

denoted as E(-21), which is the counterpart to E(21). The kernel operations are described below.

Figure 6. Kernel operations for secondary rollback (positive event already processed)

(1) Perform a message implosion to delete both E(21) and E(-21).

(2) Follow step 2 to step 7 of the primary rollback operations as presented earlier but

using the timestamp of the anti-message (i.e. 21) as the rollback time.

We can see that the operations largely remain the same as those for primary rollbacks

except that a message implosion replaces the previous enqueue operation.

Figure 7. Kernel operations for secondary rollback (positive event not yet processed)

Another scenario is shown in Figure 7 where the positive event has not yet been

processed. The only action that needs to be done is a message implosion. The simulation object

continues to execute the next available event E(41) after the implosion as shown in Figure 7(b).

 31

• Cascaded rollback process

From the preceding discussion, we can see that the primary rollback triggered by a

straggler message is the root cause of rollbacks in Time Warp systems. Secondary rollbacks are

performed immediately upon the arrival of anti-messages at the destinations. Hence, rollback

propagation consists of one primary rollback and, optionally, multiple rounds of secondary

rollbacks spreading out across the simulation system from the hosting simulation object of the

primary rollback. The hosting simulation object of the primary rollback is called as rollback

originator, and the original primary rollback of the propagation is called the root of the

propagation. The levels of secondary rollbacks may be to any depth, and there may even be

circularity in the graph of anti-message paths, but the propagation eventually terminates [Eln02].

The rollback propagation can be depicted using a tree structure, as shown in Figure 8, where

rollbacks are denoted as circles and anti-messages are represented as edges.

Figure 8. Tree structure of rollback propagation on a processor

Three types of rollbacks are illustrated in the diagram: the primary rollback that is the

root of the propagation (black circle); secondary rollbacks happened locally on the same

processor as the primary rollback (empty circle); and secondary rollbacks occurred remotely on

other processors (shaded circle). Each shaded circle, in fact, represents a sub-tree of secondary

rollbacks on remote processors. In the diagram, the primary rollback sends out two anti-

messages that trigger two secondary rollbacks (i.e. a and b) at level 1. While a triggers only one

further rollback referred to as c, b causes two local rollbacks (i.e. d and e) and a remote rollback.

Rollback d, in turn, triggers one local rollback f as well as a remote one.

The propagation process can be described as traversing the tree from the primary

rollback, following the sequence of the numbers marked in the diagram. This operation

backtracks, by returning from the present rollback operation, to the most recent node it hadn't

finished exploring if it hits a node that has no children (i.e. no further anti-message from that

 32

rollback) or a node that represents a remote sub-tree (shaded circle). We observed that this

traversing process exactly follows the Depth-first search algorithm. There is no blocking for

remote rollbacks, i.e. the operation returns immediately once a shaded circle is touched. When

the traversing process returns to the root of the tree, the rollbacks finish and normal execution

starts on that processor.

Understanding this process can help us in implementing the kernel algorithms. For

example, most of the dynamic state-saving and cancellation strategies need to measure the time

spent on rollbacks for each simulation object. However, we now know that simply starting a

watch at the beginning of a simulation object’s rollback function and stopping the watch at the

end will not do the trick. In Figure 8, the time measured in this way for the simulation object

where the primary rollback takes place includes not only the time for the primary rollback itself,

but also the time for all the other local secondary rollbacks in the tree.

4.2.2. GVT calculation and fossil collection

The pGVT algorithm [Dso94] is implemented by the GVT managers to realize the Time Warp

global control mechanism, and users can set the frequency of GVT computation as a kernel

parameter at compile time. Fossil collection is done locally within each partition. The GVT

manager walks through all local simulation objects, removing all but one saved state older than

GVT and all the input/output messages whose timestamps is less than the GVT (timestamp

means virtual receive time for input messages and virtual send time for output messages).

Figure 9. Status of the queues during fossil collection

Figure 9 shows the queues of a simulation object during a typical fossil collection

scenario. As we will see in Chapter 7, this fossil collection scheme needs to be enhanced to work

with the periodic state-saving strategy.

 33

4.3. PROBLEMS AND FIXES

The original kernel algorithms have several flaws that cause runtime crashes of the simulation

system. These problems have been identified and fixed in our research, and two of them are

briefly summarized as follows:

(1) The secondary rollback mechanism was nonexistent in the kernel. Specifically, the

kernel did not take the necessary actions to perform the secondary rollback after the

message implosion. During secondary rollbacks, different operations should be

performed based on whether the imploded positive message is processed or not.

Hence, the processing status of the positive message must be recorded by the

rollback facility and used later to select the appropriate operations.

(2) The insertion functions defined for the input and output queues were not correctly

implemented. New events were inserted to the front of other existing simultaneous

events in the queues, which can cause serious problems such as sending out wrong

anti-messages during rollbacks.

We also implemented an extra step in the rollback operations to handle the data defined

in the simulation objects rather than in their states. The Time Warp protocol requires a clear cut

between a process and its state. That is, all modifiable data must be put into the state of the

process and saved regularly in the state queue. During rollbacks, the data is recovered solely by

restoring to a previously saved state. This approach has some limitations. One example is that the

process may operate on dynamically allocated objects that are referenced by pointers. During the

simulation, new objects are created and old ones deleted when necessary. If these pointers are

saved in the state of the process, we may have trouble when the state is restored to a previously

saved one but the actual objects referred by the pointers in that state have been deleted. In such

case, the recovered state contains invalid pointers, resulting in runtime failure. In short, there are

occasions where part of the process’s internal data is inappropriate to be saved in the state queue

and managed automatically by the Time Warp protocol. On the other hand, simulator developers

have the knowledge as to how to handle the data in a consistent manner during rollbacks.

The following mechanism has been implemented in the kernel to solve this problem:

(1) Define an empty function, referred to as rollbackProcessData, in each simulation

object. By default, this function does nothing.

 34

(2) Invoke the rollbackProcessData function during the kernel rollback operations

between step 6 and step 7 as presented in Section 4.2.1. Thus, this function acts as a

placeholder in the rollback operations and allows simulator developers to define

application-specific logic that needs to be performed during kernel rollbacks.

(3) Normally, simulator developers can leave this function alone and let the kernel

handle the state restoration for the simulation object during rollbacks.

(4) If necessary, simulator developers can define the data that is inappropriate to be

managed by the Time Warp protocol (e.g. the pointers in the previous example)

directly in the simulation object rather than in its state, and provide application-

specific implementation for the rollbackProcessData function so that the data is

maintained consistently should rollbacks happen.

This solution provides programmers the required flexibility for handling some problems

that may arise in the simulation. Unfortunately, it also exposes some of the rollback operations to

simulator developers and relies on, at least in part, their knowledge for correctly implementing

the Time Warp local control mechanism. Therefore, it should be used with care and only in

situations where no other solution is available for the problem.

 35

CHAPTER 5 DISTRIBUTED OPTIMISTIC SIMULATION IN PCD++

Research was carried out to enable the CD++ toolkit to run simulations in distributed

environments using the Time Warp protocol [Gli04]. However, due to the flaws described in the

previous chapter and other issues we will discuss in the following sections, the tool failed to run

advanced simulations. In this work, we have redesigned most part of the PCD++ modules to

achieve our goals. This chapter discusses the basic algorithms implemented in PCD++, while the

enhancements and optimizations are covered in the following two chapters. The flattened

structure of the simulation framework is first introduced in Section 5.1 followed by a description

of the message definitions in Section 5.2. The current status of the CD++ toolkit is covered in

Section 5.3. The redesigned simulation framework is presented in Section 5.4 to 5.8, while

modifications to the modeling framework are provided in Section 5.9.

5.1. FLATTENED STRUCTURE FOR THE SIMULATION FRAMEWORK

As discussed in Chapter 3, the CD++ toolkit provides the modeling and the simulation

frameworks to implement the behavior of DEVS and Cell-DEVS models and the simulation

mechanisms respectively. In [Gli04], two new types of CD++ processors, called as Flat

Coordinator (FC) and Node Coordinator (NC), are introduced to realize more efficient

distributed simulations. This approach tries to reduce the communication overhead by flattening

the structure of the simulation framework, while keeping the modeling framework unchanged. In

this work, we adopted the flattened structure of the simulation framework. The class hierarchies

in the modeling and the simulation frameworks are shown in Figure 10.

Figure 10. Model and processor hierarchies in PCD++

 36

There are only four types of PCD++ processors existed in the simulation: Simulator, FC,

NC, and Root. In the case of executing DEVS and Cell-DEVS models over multiple machines, a

distributed processor structure is constructed in PCD++ to carry out the simulation. Figure 11

gives an example model and partition definition. Four atomic models (A1, A2, A3, and A4) are

defined, where A1 and A2 are grouped into a coupled model C1. The TOP model represents the

coupled model at the top (system) level. The example partition scheme maps the atomic models

onto 2 machines: A1 and A2 on machine 0, while A3 and A4 on machine 1.

TOP

A1

C1

0 : A1 A2
1 : A3 A4

A2

A3 A4

(a) Model Specification (b) Partition scheme

Figure 11. Example model and partition definition

The distributed processor structure corresponding to the example model and partition

definition is shown in Figure 12.

Figure 12. Distributed processor structure for the example model

Two LPs are created in this example, LP0 on machine 0 and LP1 on machine 1, each

groups together the PCD++ processors on that machine. Only one Root is created on machine 0.

Messages may be exchanged, locally and remotely, between the Root and the NCs. The Root

starts the simulation and performs I/O operations between the simulation system and the

surrounding environment. The NC created on each machine is the local central controller on its

hosting LP and the end point of inter-LP communications. The FC sits between the NC and the

Simulators, synchronizing the execution of its child Simulators underneath. All messages

exchanged between the local Simulators are routed directly by the FC. A Simulator is

 37

responsible for executing the DEVS abstract functions defined in its associated atomic model. If

a Simulator sends a message to another Simulator running on a different machine, the message is

forwarded by the FC to the local NC, which further relays the message to the remote NC that

resides on the same machine as the destination Simulator. On the receiving end, the remote NC

will then route the message to the target Simulator via its child FC.

5.2. MESSAGE DEFINITIONS

PCD++ processors exchange messages that can be classified into two categories: content

messages and control messages. The former includes the external message (x) and the output

message (y), and the latter includes the initialization message (I), the collect message (@), the

internal message (*), and the done message (D). The simulation is executed in a message-driven

fashion. Each type of the processors defines its own receive functions for different types of

messages. The algorithms for these receive functions will be described in detail in Section 5.5.

External and output messages are used to exchange simulation data between the models.

Initialization messages start the simulation. Collect and internal messages trigger the output and

the state transition functions respectively in the atomic models according to the DEVS

formalism. Done messages carry the model timing information for synchronizations.

PCD++ also defines six types of wrapper objects that are derived from the abstract event

definition in the kernel. Each type can be used to wrap the corresponding type of PCD++

messages so that these messages can be treated as kernel events and transmitted between the

processors. That is, the PCD++ messages are the actual information generated and consumed by

the PCD++ processors to carry out the simulation, and the kernel events (or wrapper objects) act

as the vessel by which the information is transmitted.

5.3. CURRENT STATUS OF THE CD++ TOOLKIT

CD++ simulation techniques based on optimistic synchronization protocol have been studied to

extend the conservative approach used in Parallel CD++ [Tro01, Tro03]. In [Gli04], the author

implemented a distributed version of CD++ using the optimistic synchronization protocol

provided by the WARPED kernel. However, the original implementation of the WARPED kernel has

some problems that cause runtime crashes of the simulation system, which, in turn, prevent

 38

further examination of other issues in the CD++ toolkit. The kernel problems and their solutions

have been discussed in Chapter 4. Using the optimistic synchronization protocol has changed the

simulation environment so dramatically that most of the mechanisms in the toolkit need to be

modified or enhanced to adapt to the new settings.

Some of the issues that need further investigation include:

(1) Mechanism for starting and terminating the simulation: In the conservative Parallel

CD++, the simulation is synchronized by a central controller, the Root. Thus, it is

straightforward to use the Root to perform such tasks like handling external events,

advancing the simulation time, and terminating the simulation when the stop time

comes. In PCD++, we have a group of NCs, each managing the sequential

simulation under its control and interacting with each other in a fully asynchronous

way. Hence, the simulation must be managed in a totally distributed fashion.

(2) Mechanism for saving and restoring state variables: Although the state saving and

restoration mechanisms are provided by the kernel and should be transparent to the

application, as described in Section 4.3, there are circumstances where simulator

developers need to take care of some of the variables that cannot be handled in the

standard way.

(3) Inter-LP communications: In PCD++, it is possible that different LPs have different

local virtual times. The asynchronous execution of the LPs complicates the inter-LP

communications since we have to handle messages with different timestamps and

the potential out-of-order execution of these messages.

(4) Enhancements to the simulation framework: As we will discuss in the following

sections as well as in the next chapter, algorithms for the PCD++ processors,

especially for the NC, need to be enhanced significantly to address a variety of

issues in distributed optimistic simulations.

(5) Modifications to the modeling framework: As we will see in Section 5.9, the

modeling framework needs to be modified to adapt to the new message-passing

paradigm in optimistic simulations.

Furthermore, various optimization strategies for the Time Warp mechanism as well as for

the CD++ toolkit itself have not yet been exploited in the previous study. We will address several

of them to reduce the overhead incurred in the simulation.

 39

5.4. STRUCTURE FOR INTER-LP COMMUNICATIONS

In the previous versions of the CD++ toolkit, a structure called message bag is used by all kinds

of DEVS processors to handle simultaneous events according to the P-DEVS formalism. In

PCD++, there are two types of communications: synchronous intra-LP communications

performed by all types of PCD++ processors, and asynchronous inter-LP communications

carried out by the NCs. Due to the asynchronous nature of the inter-LP communications, the NCs

need to use a special structure, hereinafter called as NC Message Bag, to handle messages

exchanged between LPs that may have different local virtual times. The NC Message Bag has the

following properties:

(1) A NC Message Bag may contain messages with different timestamps.

(2) The time of a NC Message Bag is defined as the minimum timestamp among the

messages contained in it. An empty NC Message Bag has a time of infinity.

(3) Messages in the NC Message Bag are processed in batches in increasing timestamp

order. Thus, messages with timestamp equal to the time of the NC Message Bag are

always processed first. These messages are removed from the bag after being

processed, and the time of the bag advances to the next minimum value among the

timestamps of the remaining messages, if any.

Therefore, there are two types of structures used in the PCD++ simulator: the message

bag employed by the FC and the Simulator for processing synchronized messages exchanged in

intra-LP communications; and the NC Message Bag used only by the NC for processing

asynchronous messages transmitted in inter-LP communications.

Furthermore, the PCD++ messages inserted into and removed from the bags (both types)

are actually data objects dynamically allocated (generated) and deleted (consumed) by the

PCD++ processors. As explained in Section 4.3, the bag structures should be defined directly in

the PCD++ processors rather than in their states; and we need to provide the algorithm for the

rollbackProcessData function to maintain the messages in the bags in a consistent manner

during rollbacks, which will be covered in Section 5.8 when we discuss the mechanism for

saving and restoring state variables.

 40

5.5. MESSAGE-PROCESSING ALGORITHMS FOR PCD++ PROCESSORS

In this section, we present the simulation mechanism implemented in the PCD++ processors,

including the Simulator, FC, NC, and Root. In the following discussion, a message of type that

has a timestamp (virtual receive time) of t is denoted as (type, t). The initialization, external,

output, collect, internal, and done message are symbolized as I, x, y, @,*, and D respectively.

5.5.1. Simulator

The algorithms for the Simulator are implemented as in [Gli04], with minor changes.

1. when a (I, 0) is received from the parent FC
2. tL = 0; ta = infinity
3. initialize variables in the atomic model
4. send (D, 0) to the parent FC
5. end when

Figure 13. Simulator algorithm for (I, 0)

Two variables are used in the Simulator to record its current simulation time (tL) and the

value of sigma (ta) as defined in the DEVS formalism. Hence, the time of the next state

transition is scheduled at time (tL + ta), so-called absolute next time that is denoted as tN. Upon

receiving a (I, 0), the Simulator resets tL to the timestamp of the message (which is now the

Simulator’s current virtual time) and ta to infinity (line 2). Thus, the Simulator will remain in the

passive state unless it is reactivated by a further message. The Simulator also initializes the

variables defined in its associated atomic model, and then it informs its parent FC of the value of

ta via a (D, 0) (line 4). Notice that the (I, 0) can only arrive at virtual time 0.

Figure 14. Simulator algorithm for (@, t)

Upon the arrival of a (@, t), the Simulator invokes the output function (λ) defined in the

atomic model, and the resulting output is sent to the FC as a (y, t) (line 4 and 5). Then, it sends a

(D, t) to the FC with ta = 0, indicating that it is imminent (line 6).

 41

Figure 15. Simulator algorithm for (*, t)

Following the collect message, a (*, t) will arrive to trigger the internal/external/confluent

function defined in the atomic model depending on the timing of the message and the status of

the Simulator’s message bag. In the first case (line 2), the (*, t) arrives before tN (i.e. the

simulator is not imminent yet). Thus, the Simulator must have a non-empty message bag. The

external transition function (δext) of the atomic model is called (line 4), and the messages in the

message bag are removed afterwards (line 5). In the second case (line 6), the Simulator is

imminent and its message bag is empty when the (*, t) arrives. Hence, it is time to execute the

internal transition function (δint) of the atomic model. In the last case (line 8), the imminent

Simulator has a non-empty message bag. Therefore, a conflict between the internal and external

transitions is found, and the confluent function (δcon) is called accordingly (line 9). The message

bag is also empties thereafter. Finally, the Simulator sends a (D, t) to its parent FC. While ta is

updated in this algorithm in case 1 (line 3), it is modified by the user-defined logic for state

transitions (line 7 and 9) in the other two cases. The resulting ta is carried in the (D, t) (line 13).

1. when a (x, t) is received from the parent FC
2. insert message x to the bag
3. end when

Figure 16. Simulator algorithm for (x, t)

The last message that may arrive at the simulator is the (x, t). The received message is

simply inserted into the Simulator’s message bag. All external messages in the bag will be

processed when the following (*, t) arrives as shown in Figure 15. Only external messages with

identical timestamp can be inserted into the message bag at any given simulation time, and a (*, t)

will always arrive in between any two consecutive batches of external messages.

 42

5.5.2. Flat Coordinator

The FC synchronizes its child Simulators, routes messages among them, and forwards to the NC

those messages sending from its children to the environment or to other remote Simulators.

Simulators ready for a state transition are cached in synchronize set. The number of done

messages that the FC should receive from its children is recorded in doneCount for

synchronization purposes. The FC only passes control to the NC after its children (the number is

given by doneCount) have finished their previous computation. Most of the algorithms given

here are similar to those as presented in [Gli04]. However, the FC algorithm for (y, t) has been

redesigned to address the defects in the previous version.

Figure 17. FC algorithm for (I, 0)

When a (I, 0) arrives, the FC records the total number of its children in doneCount (line 3)

and forwards the (I, 0) to each child (line 4). After this, the FC waits for a (D, 0) from each of its

children.

Figure 18. FC algorithm for (@, t)

Upon receiving a (@, t), the FC forwards the message to all the imminent Simulators

(line 6), and records them in the synchronize set so that later it knows which children need to do

state transitions when the (*, t) comes.

When a (y, t) is received, the FC searches the model coupling information to find its

ultimate destinations. A destination is ultimate if it is an input port on an atomic model or an

output port on the topmost coupled model. Be careful that these two cases are not mutually

exclusive. A (y, t) may be sent to multiple atomic models and the environment simultaneously.

Furthermore, there are two scenarios in the former case: the receiving Simulators may reside

 43

locally on the same machine as the sender or they may locate on remote machines. If the (y, t) is

sent eventually to remote Simulators or to the environment, the FC simply forwards the (y, t)

itself to the parent NC (line 3). Otherwise, the FC translates the (y, t) into a (x, t) using the Zi,j

translation function (line 6) and directly sends the (x, t) to the local receivers (line 8). Also, the

local receivers are recorded in the synchronize set for later state transitions.

Figure 19. FC algorithm for (y, t)

Two major problems in the previous version are addressed here: in [Gli04], the author

mistakenly assumed that a (y, t) sending to the environment will not influence other Simulators,

which is clearly a false assumption. Moreover, in the previous algorithm, the FC translates the (y,

t) into a (x, t), and forwards the resulting (x, t) to the NC, for remote receivers. While this is not

wrong as long as the NC can handle the received (x, t) correctly, it has some undesirable

consequences. Firstly, it blurs the different roles of the FC and NC. It is the NC that handles

inter-LP communications. As the hub for intra-LP communications, the FC should not do the

message translation for remote receivers, which is part of the task of inter-LP messaging.

Secondly, this unnecessarily complicates the NC algorithm for (x, t), which, as we will see later,

should be dedicated to processing inter-LP messages received from other NCs and is already

complex enough due to the asynchronous nature of inter-LP communications. The algorithm

presented here allows a clearer separation of roles between the NC and FC and a more

reasonable division of functionalities.

As shown in the following algorithm, the received external messages are simply inserted

into the FC’s message bag.

1. when a (x, t) is received from the parent NC
2. insert message x to the bag
3. end when

Figure 20. FC algorithm for (x, t)

 44

As shown in Figure 21, the external messages in the FC’s message bag are flushed to the

local receiving Simulators upon the arrival of a (*, t) (line 6). All the receivers are recorded in

the synchronize set. Therefore, the synchronize set contains the local imminent Simulators

(Figure 18), if any, and/or those Simulators that have received external messages in the previous

computation (Figures 19 and 21). These are the Simulators ready for a state transition, which will

be triggered by the (*, t) forwarded by the FC (line 12).

Figure 21. FC algorithm for (*, t)

Shown in Figure 22, for each (D, t) received from a child Simulator, the FC decreases the

doneCount, and updates the child’s tN to the sum of the current simulation time and the sigma

value carried in the received (D, t) (line 3). When the doneCount is reduced to zero, the FC

calculates the closest state transition time among its children (line 6), and sends this time to the

parent NC via a (D, t) (line 7).

Figure 22. FC algorithm for (D, t)

 45

5.5.3. Node Coordinator

As the local central controller, the NC performs a number of important operations as follows:

(1) Inter-LP communications. Messages exchanged between the NCs are handled using

the NC Message Bag.

(2) Handling external events from the environment. The external events are scheduled

by the modeler at the beginning of the simulation using a text file, so-called EV file.

They are loaded into the NCs during the bootstrap operations. An Event List is used

to hold the external events that the NC needs to handle during the simulation.

Events in the Event List are processed in increasing timestamp order. The NC uses

an event-pointer to refer to the first event in its Event List that has not yet been

processed. Initially, this pointer points to the first event in the list.

(3) Driving the simulation on the hosting LP. The NC advances the local simulation

time to the minimum among: (i) the timestamp of the external event pointed by the

event-pointer, (ii) the time of the NC Message Bag, and (iii) the closest state

transition time given by the FC in the received done message.

(4) Managing the flow of control messages in line with the P-DEVS formalism. The

NC uses the next-message-type flag to keep track of the type of the control message

(either @ or *) that will be sent to the FC in the next simulation cycle. The initial

value of the flag is set to @.

(5) Handling a variety of problems to shield the other processors, i.e. the FC and

Simulators, from the complexity of distributed optimistic simulations, as we will

discuss in Chapter 6.

The NC algorithms reflect the major redesign we have done to the previous version.

Some of the algorithms presented here are simplified versions, while the enhancements are

delayed to Chapter 6 when we discuss the solutions for a few specific problems.

Upon receiving a (I, 0), the NC simply forwards it to the child FC.

Figure 23. NC algorithm for (I, 0)

The following algorithm is a simplified version for processing external messages from

other remote NCs, while the enhanced version will be presented in Section 6.2. As usual, the (x,

 46

t) is inserted into the NC Message Bag. In our design, an NC can only receive external messages

from other remote NCs. These external messages carry the values sending from remote

Simulators to the local ones.

Figure 24. Simplified NC algorithm for (x, t)

In Figure 25, if the received (y, t) is sent to the environment, the NC simply forwards it to

the Root (line 2 to 4). Also, the NC finds out the remote machines on which the ultimate

receiving Simulators locate based on the model coupling and partition information. Then, the NC

translates the (y, t) into a (x, t) and sends it to the NC on each of those machines (line 6 and 7).

Notice that only one (x, t) is sent to each of these machines, reducing the communication

overhead to the minimum. On the receiving end, the (x, t) will be eventually delivered to the

receiving Simulators on that machine.

Figure 25. NC algorithm for (y, t)

A (D, t) is the response of a control message previously sent out by the NC. It carries the

synchronization information as the closest state transition time collected by the child FC. Figure

26 shows the simplified NC algorithm for (D, t). The first (D, t) received by the NC is the

response to the (I, 0) sent to the FC to start the simulation. Since next-message-type is initialized

to @, the NC follows the second half part of the algorithm (line 6 to 33). For a start, the NC

calculates the next simulation time, min-time, based on the three factors as presented earlier (line

7 to 9). If the calculated min-time is larger than the user-specified stop time, the NC simply sets a

flag (line 11) and exits the algorithm. The usage of this flag will be discussed in Section 6.2. For

now, we only need to know that the NC will not send any message to the FC beyond the stop

time. On the other hand, if the min-time is smaller or equal to the stop time, the NC performs the

following operations:

 47

(1) Send all external events scheduled at the min-time, if any, as external messages to

the FC (line 13 to 18);

(2) Send the received external messages with timestamp equal to the min-time, if any,

to the FC and remove them from the NC Message Bag (line 19 to 24);

(3) Send a control message to the FC and reset the next-message-type accordingly (line

25 to 31). That is, if there are imminent Simulators on the local machine, the NC

sends out a (@, t); otherwise, it sends out a (*, t).

1. when a (D, t) is received from the child FC
2. tL = t; tN = tL + D.ta
3. if next-message-type = * then
4. send (*, t) to the child FC
5. next-message-type = @
6. else
7. min-time = MIN(timestamp of the event pointed by event-pointer,
8. time of the NC Message Bag,
9. tN)
10. if min-time > stop-time then
11. set a flag
12. else
13. if min-time = the timestamp of the event pointed by event-pointer then
14. for each x in the Event List with min-time do
15. send (x, t) to the child FC
16. move event-pointer to the next event
17. end for each
18. end if
19. if min-time = the time of the NC Message Bag then
20. for each x in the NC Message Bag with min-time do
21. send (x, t) to the child FC
22. end for each
23. end if
24. remove all x in the NC Message Bag with min-time
25. if tN = min-time then
26. send (@, t) to the child FC
27. next-message-type = *
28. else
29. send (*, t) to the child FC
30. next-message-type = @
31. end if
32. end if
33. end if
34. end when

Figure 26. Simplified NC algorithm for (D, t)

There are two important differences between the external events (from the environment)

in the Event List and the external messages (from other remote NCs) in the NC Message Bag:

First, all the external events are known prior to the start of the simulation, while the external

 48

messages are known only when they arrive at runtime. This has a significant impact on the

calculation of the min-time. Among the three determinant factors, the timestamp of the first not-

yet-processed external event and the closest state transition time, i.e. factor (i) and (iii), are

assured at the time of the calculation. However, the time of the NC Message Bag, i.e. factor (ii),

is far from certain. After the calculation of the min-time based on the current NC Message Bag,

more external messages with less timestamp may arrive at the NC, invalidating the previously

calculated min-time. The uncertainty of the external messages in the NC Message Bag makes the

min-time calculation a speculative one. Secondly, the external events exist in the Event List

throughout the simulation whereas the external messages in the NC Message Bag are removed

after processing (line 24). In other words, the event objects in the Event List are static, while

those in the NC Message Bag are dynamic. As a result, they are treated differently during state

saving operations, as we will discuss in Section 5.7.

 Let’s go back to the NC algorithm for (D, t). The next-message-type is set to * only after

the NC sends out a (@, t) (line 27), in which case there must be imminent Simulators on the LP

and their output functions will be invoked upon receiving the (@, t). These imminent Simulators

need to do internal transitions immediately after the output operations. Therefore, the NC

triggers the internal transitions by sending out a (*, t) (line 4). On the other hand, if there is no

imminent Simulator at this time, the NC always sends a (*, t) whenever external messages are

flushed out (line 29). Thus, external transitions will be performed in the non-imminent

Simulators, consuming the external messages.

5.5.4. Root Coordinator

The role of the Root Coordinator is weakened significantly in our design. It only handles

environment-oriented output messages during the simulation.

Figure 27. Root algorithm for (y, t)

 49

As shown in Figure 27, Output to the environment is done through a text file called as

output file or OUT file. Internally, the Root uses a flag, create-output, to record whether such a

file has been created or not. If the OUT file is ready (line 2), the Root finds out all output ports

on the TOP model to which the (y, t) will be ultimately sent. Then, it creates a FileData object

from the (y, t) for each of these ports and inserts it into the file queue corresponding to the OUT

file (line 4 and 5). Eventually, the data in the file queue will be written to the physical file by the

kernel when GVT advances.

5.6. A MESSAGE-PASSING SCENARIO

Based on the message-processing algorithms described in the previous section, we now illustrate

the message flow in PCD++ using an event precedence graph, where a vertex (black dot)

represents a message, and an edge (black arrow) represents the action of sending a message with

the message type placed nearby. A line with a solid arrowhead denotes a (synchronous) intra-LP

message and a line with a stick arrowhead denotes an (asynchronous) inter-LP message. A

lifeline (dashed line) is drawn for each PCD++ processor. The sequence of message execution is

marked by the numbers following the message type.

Figure 28. Example message-passing scenario

Without loss of generality, we focus our analysis on a single LP. Since all the LPs operate

in a similar way, a general idea of the message-passing paradigm can be obtained. Figure 28

shows a LP with four PCD++ processors, a NC, a FC, and two Simulators (S1 and S2). We do

 50

not include the Root in order to keep the diagram as concise as possible. Also, external events

from the environment are not considered in the example. A further simplification is the absence

of the potential out-of-order execution. Since the rollback operations are performed

automatically and transparently in the kernel, we can largely ignore them when we consider the

message flow at the PCD++ layer. Although there may be messaging anomalies that cannot be

handled by the kernel rollback facility alone, which will be covered in Section 6.5, it is sufficient

to leave them alone for now.

The simulation on this LP starts at simulation time 0, upon the arrival of an initialization

message (I1) at the NC. The NC forwards the message to the FC (I2), which further forwards it to

the Simulators (I3, I4). The Simulators respond with done messages (D5, D6) after initializing

their associated atomic models. The FC informs the NC about the closest state transition time

after receiving all the done messages from its children (D7).

At this time, all Simulators are imminent. Thus, the NC sends a collect message (@8) to

the FC, which again forwards the message to each of the Simulators (@9, @10). Upon receiving

the collect message, imminent Simulators execute their output functions and send output

messages to the FC. S1 processes @9 first and sends an output message (y11) to the FC. Suppose

that this output message is sent to all local Simulators as well as to remote ones. The FC first

translates the output message into an external message and sends the message to each of its

children (x12, x13), and then forwards the output message itself to the NC (y14), which, in turn,

translates the output message into an external one (x15) and sends it remotely to all destination

NCs. In our example, the external message is sent to only one remote NC. After processing y11,

the FC turns to process the done message (D16) sent from S1 right after y11. This done message

represents the end of the output operation at S1. Then, the FC continues to process the output

message (y17) from S2 just like in the previous case (x18, x19, y20, x21). Notice that before the

execution of D23 at the FC, a remote external message sending to S1 arrives at the NC (x22).

Hence, this message is inserted into the NC Message Bag. Now, it is the FC’s turn to process the

postponed D23 and a new done message (D24) is sent to the NC.

As a response, the NC sends an internal message (*25) to the FC immediately. This

message is then delivered to all Simulators that have just finished their output operations

(*26,*27). Internal transitions are triggered at these Simulators followed by done messages emitted

to the FC (D28, D29). The FC sends the closest state transition time to the NC via a done message

 51

(D30). In processing D30, the NC calculates the min-time and notices that a message, derived from

x22, with that min-time exists in its NC Message Bag. Therefore, it sends this external message to

the FC followed by another internal message (x31, *33). The external message (x31) is added to the

FC’s bag and will be sent to the receiving Simulators when *33 is executed by the FC.

Meanwhile, another remote external message (x32) sending to S2 arrives. The execution of *33 is

thus delayed until after x32 is processed by the NC. Then, the FC executes *33, flushing x34 to S1

followed by *36. The external message x34 is added into S1’s bag, thereby accepting the value

previously transmitted by x22 from a remote sender. In the mean time, one more remote external

message (x35) sending to S2 arrives and gets executed by the NC. After that, the internal message

*36 invokes S1’s external transition, consuming the value wrapped in x34. The resulting done

message (D37) is sent to the FC. When D38 is executed by the NC, it sends all external messages

with min-time existed in its NC Message Bag to the FC (x39, x40), again followed by an internal

message (*41). These messages are executed by the FC and then forwarded to the destination

Simulator S2 (x42, x43, *44). Now, the values derived from x32 and x35 are consumed in S2’s

external transition function, and a done message (D45) is sent to the FC.

When D46 is processed at the NC, there is no message in its NC Message Bag, and the

closest state transitions are scheduled at time t1. Hence, the NC advances the local simulation

time from 0 to t1 and sends to the FC a collect message (@47) that has a send time of 0 and a

receive time of t1, thereby starting a new cycle of simulation similar to that initiated by @8.

 Some characteristics of the message flow are summarized as follows:

(1) The execution of messages at any given simulation time on a LP can be classified

into at most three distinct phases, namely initialization phase, collect phase, and

transition phase. Only one initialization phase exists at the beginning of the

simulation (time 0), consisting of messages in the range of [I1, D7]. The collect

phase at a specific simulation time starts with a collect message sending from the

NC to the FC and ends with the following done message received by the NC. In the

diagram, the collect phase at time 0 comprises messages in range [@8, D24]. This

phase is optional, it happens if, and only if, there are imminent Simulators on the

LP at that time. Finally, the transition phase at a specific simulation time begins

with the first internal message sending from the NC to the FC and ends at the last

done message received by the NC at that time. In our example, messages in the

 52

range of [*25, D46] belong to the transition phase at time 0. The transition phase is

mandatory for each individual simulation time.

(2) The variables defined in the atomic models are initialized in the initialization phase.

The output functions in the imminent atomic models are invoked during the collect

phases. The state transitions are performed for the atomic models in the transition

phases. These phases are arranged in line with the P-DEVS formalism.

(3) Outgoing inter-LP communication happens only in the collect phases, whereas

incoming inter-LP communication can occur in any phase. Since the output

functions of imminent models are invoked only in the collect phases, it is clear that

at any given simulation time, all external messages going to remote NCs are sent

out by the end of the collect phase of that time. On the other hand, an external

message from a remote source can arrive at the destination NC when the simulation

is executed in any phase.

(4) Although these phases also exist in other versions of the CD++ toolkit, the

optimistic version differs from the standalone and conservative ones in the structure

of the transition phase. In the previous versions, the message exchanges are

synchronized and the state transition is performed only once for the Simulator that

needs to change its state at a specific time. In PCD++, state transitions in the

Simulators may be performed repeatedly at any given simulation time as additional

remote external messages arrive at the NC, resulting in a multi-round transition

phase. A transition phase consisting of (n+1) rounds is denoted as [R0…Rn]. Each

round starts with zero/one/more external messages followed by an internal message

sending from the NC to the FC and ends with a done message returned back to the

NC. In Figure 28, the transition phase at time 0 has three rounds: R0 includes

messages in range [*25, D30], R1 involves messages in [x31, D38], and R2 contains

messages in [x39, D46]. During each round, state transitions are performed

incrementally with additional external messages and/or for potentially extra

Simulators.

These characteristics of the message flow, especially the multi-round transition phases,

have a significant impact on the computation of the models. Accordingly, the new algorithms for

Cell-DEVS models with transport and inertial delays are presented in Section 5.9. Based on the

 53

above discussions, Section 6.1 gives a new abstraction for optimistic simulations in PCD++.

5.7. STARTING AND TERMINATING SIMULATIONS

The mechanisms for starting and terminating the simulation in PCD++ are dramatically different

from those in the previous versions because of the optimistic and decentralized approach to

distributed simulation. The major modifications to the bootstrap algorithm are summarized as

follows:

The first modification concerns with handling external events from the environment. In

PCD++, the Root is not longer the central controller and the simulation is carried out under the

control of a group of NCs. Accordingly, we have to distribute the task of managing external

events among these NCs. Each NC uses an Event List to hold the external events it needs to

handle during the simulation. The events given in the EV file are purged before they are loaded

into a NC’s Event List. That is, an event is loaded into a NC’s Event List if and only if that event

will ultimately influence some of the Simulators controlled by that NC. As a result, a NC can

solely depend on its own Event List to process the external events when the local virtual time

advances to the event’s timestamp. Furthermore, this arrangement is crucial for the NC to

calculate the min-time as discussed at the end of Section 5.5.3.

The second modification is that the Root now sends initialization messages to all the NCs

to start the simulation in a distributed way. Previously, the Root sends only one initialization

message to the coordinator associated with the TOP model. As the intermediary coordinators are

removed in our flattened structure, using this approach in PCD++ causes runtime failure.

The last modification is to handle the user-specified stop time. This issue is naturally

related to the simulation termination mechanism. In the standalone and conservative versions, the

stop time is loaded into the Root and the termination of the simulation is totally controlled by the

Root. As we know, with Time Warp the detection of termination is one of the several global

issues handled in terms of GVT [Jef85]. In PCD++, the stop time is loaded into each NC so that

the NC will not send out any message with timestamp beyond the stop time (line 10 and 11 in

Figure 26). At the same time, the stop time is also passed into the LP as the parameter of the

simulate function, which defines the main event processing loop. At the end of each simulation

cycle, the LP compares the stop time with the current GVT. The simulation terminates when the

 54

GVT exceeds the user-defined stop time.

Since the GVT computation is CPU and communication intensive, too frequent GVT

calculation can degrade the performance. Usually, we set the number of simulation cycles

between two consecutive GVT calculations to tens of thousand. Therefore, the LP may keep

executing events with timestamp larger than the stop time while the GVT is lagging behind the

actual simulation time. In the worst case when the last GVT calculation was done just before the

stop time, the LP may keep executing tens of thousand of extra events with timestamp actually

larger than the stop time until the next GVT computation. This is why we need to load the stop

time into the NC so that no message with timestamp larger than the stop time will be emitted. In

this case, the LP will run empty loops when the simulation time exceeds the stop time, while

waiting the GVT value to eventually catch up as illustrated in Figure 29.

Figure 29. Terminating the simulation on a LP

This approach has two advantages: (1) the empty cycles after the stop time are consumed

faster than normal event execution, allowing more efficient termination and better performance;

(2) we can have a clear cut of the simulation results at the stop time.

5.8. SAVING AND RESTORING STATE VARIABLES

In Time Warp parallel simulation, each process must periodically save its local state such that, in

the event of a causality error, a rollback to a correct state is possible [Fre02]. The Time Warp

protocol requires that all the modifiable variables of a process are saved in its state and restored

during rollbacks by the Time Warp executive. However, this approach has some disadvantages

when applied to objects. We have to perform a deep copy for the objects in order to fully recover

them later from a previously saved state, resulting in large states and long operation time for

state saving and restoration.

 55

To reduce the overhead, we want to save only the pointers to these objects in the state of

a process, and perform a shallow copy during state saving. That is, only the values of the pointers

are copied rather than the objects themselves.

In other situations, the simulator developer has the knowledge as to how to maintain the

data objects in a consistent way during rollbacks. Hence, this kind of data objects can be

removed entirely from the state of the process. Even the pointers to these objects need not to be

saved in the state, further reducing the state copying overhead. Instead, these objects are defined

in the process itself and will not be saved during the state-saving operation. In Section 4.3, we

defined an empty function (rollbackProcessData) in each simulation object that will be invoked

during kernel rollback operations. The simulator developer can provide the implementation of

this function to take the responsibility of recovering the data objects during rollbacks.

Therefore, we have three different methods for saving and restoring the modifiable

variables defined in PCD++ processors and models: deep copy, shallow copy, and no copy at all.

The following rule of thumb gives the criteria for selecting the appropriate method for different

types of variables.

(1) All primitive data types, or a collection of them, can be saved using the deep copy

method. Examples of such variables include the doneCount and synchronize set in

the FC, and the next-message-type in the NC. Notice that the synchronize set is a

container that holds primitive integers (processor ids). As the processors have

invariable ids, the data contained in the synchronize set will never be invalidated.

(2) Objects that exist throughout the simulation can be saved using the shallow copy

method. The NC’s Event List is a perfect candidate for this method. Once loaded

into the Event List during the bootstrap operation, the event objects remain in the

list until the end of the simulation. We only need to use a pointer, event-pointer, to

maintain our current position in the list. The event-pointer is saved in the NC’s

state, whereas the event objects are not.

(3) Objects that are dynamically allocated and deleted during the simulation can be

saved using the deep copy method or, if the simulator developer has enough

knowledge about them, can be removed from the state of the process all together.

The message bags (including the NC Message Bag) are defined directly in the

PCD++ processors, and the message objects in the bags are handled in virtue of the

 56

rollbackProcessData function during rollbacks. Figure 30 gives the algorithm for

the rollbackProcessData function, which is common for all kinds of PCD++

processors.

1. when function rollbackProcessData(rollback-time) is invoked
2. for each message m in the current message bag do
3. if m.timestamp >= rollback-time then
4. remove m from the message bag
5. delete m
6. end if
7. end for each
8. end when

Figure 30. Algorithm for function rollbackProcessData

In PCD++, both processors and models define their modifiable variables. A connection is

made between a processor’s state and the corresponding model’s state so that both are saved in

the state queue of the processor. Modelers can define variables as they want and put them in the

states of the models. These user-defined model variables will automatically participate in the

Time Warp synchronization protocol.

5.9. ASYNCHRONOUS STATE TRANSITIONS IN CELL-DEVS MODELS

As discussed in Section 5.6, the PCD++ message-passing paradigm is considerably different

from that in the standalone and conservative versions. At any given simulation time, the state

transitions may be performed incrementally in the Simulators with additional external messages,

resulting in a multi-round transition phase. Therefore, the functions for Cell-DEVS atomic

models must be adapted to this asynchronous state transition paradigm to obtain the same

simulation results in PCD++ as in the previous versions for any given model.

A brief description of the new computation model under the asynchronous state transition

paradigm is given as follows:

(1) Applying preemptive semantics to the state transition logic. For a transition phase

[R0…Rn], the state transitions in all but the last round (Rn) are based on incomplete

information and, hence, false transitions. Only Rn has the best chance to perform the

correct transition (This is the case if no rollback happens later on. Otherwise, the

whole transition phase will be reprocessed after the rollbacks.) Since the state

transition in a later round involves additional external messages, it has a better

 57

chance to perform the correct computation and, thus, generate the correct results.

Therefore, the state transition logic should be implemented so that the computation

of the later round preempts that of the previous round. In the end, the potentially

correct results obtained in Rn preempt those erroneously generated in Rn-1, and the

simulation advances to the next virtual time afterwards. Both the value and the state

of the cell must follow this preemptive logic during the multi-round state

transitions. To do so, the cell needs to record its previous value and previous state

passed in from the previous virtual time at the beginning of R0 in the transition

phase at each individual simulation time. For time 0, the previous value and state

are the cell’s initial value and state defined by the modeler. Except the R0 at time 0,

the entry point of the first round is identified by a change in the simulation time.

Hence, a cell can safely record its previous value and state once a time change is

detected at the beginning of the state transition algorithm. For time 0, this job can

be done in the initialization phase.

(2) Handling user-defined state variables. User-defined state variables may be involved

in the evaluation of local rules. With the multi-round transition phase, this

computation becomes much more complex. During each round, a potentially

different rule is evaluated and the state variables referenced in the rule are

computed. As a result, potentially wrong values are assigned to the variables and

passed to the next round. The computation errors accumulate throughout the rounds,

and finally, the wrong values are passed to the simulation at the next virtual time.

To ensure correct computation of the state variables, a cell needs to record the

values of the state variables at the beginning of R0. These recorded values are

inherited from the computation in the last round at the previous simulation time

and, thus, they are potentially correct. In each of the following rounds, the variables

are first restored to the recorded values. Only after this restoration operation, can a

new computation be performed. Therefore, the cell always uses the potentially

correct values as the basis for a new computation.

(3) Handling external events. In CD++, port-in transition function (for evaluating

external events) is given a higher priority than the local transition rules. Under the

new asynchronous state transition paradigm, the computation results of the port-in

 58

transition function can be modified by the local transition rules in later rounds. In

order to preserve the effect of external events throughout the multi-round transition

phase, we define a flag, called as event-flag, in each cell. Whenever the cell’s value

is influenced by an external event or events at a given simulation time, this flag is

set so that no further changes can be done to the value during the following rounds

at this time. This flag will be reset once the preserved value has been output to other

cells and the R0 at a new simulation time begins. In this case, the influence of the

external event has spread out in the cell space as expected, and the cell’s value is

again under the control of its local transition rules.

Based on the above analysis, we now present the enhanced algorithms for Cell-DEVS

models. The algorithms presented in the following subsections only include the core simulation

logic. Other auxiliary logic untouched in our revision such as that for model quantization is

excluded for clarity. Another simplification is that we only show a single output port, hence a

single cell value, in the algorithms. Actually, a cell can define multiple inter-cell ports to

communicate with its neighbors. It is easy to obtain the complete version by replacing the single

cell value with a list of values, each corresponding to an extra output port.

5.9.1. Cell-DEVS models with transport delay

Shown in Chapter 2, four abstract functions are defined in the P-DEVS formalism, namely the

output function (λ), internal transition function (δint), external transition function (δext), and

confluent transition function (δcon). An initialization function is also defined to initialize the

variables used by each atomic model. In CD++, a default algorithm for the δcon function has been

provided that gives a higher priority to internal events. This default δcon function is inherited in

PCD++ and hence not included in the following discussions. Users can always define their own

δcon function by deriving from the modeling framework.

Figure 31. Initialization algorithm in Cell-DEVS models with transport delay

 59

Figure 31 gives the algorithm for the initialization function, which is invoked by the

associated Simulator during the initialization phase. First, the cell retrieves its initial value v

given by the modeler (line 2). The event-flag for identifying external events is initialized to false

(line 3). The transient-value for recording the tentative value changes during the multi-round

state transitions at a given simulation time is initialized to the cell’s initial value (line 4). The

time-record used to detect the entry point of R0 is initialized to time 0 (line 5). The cell also

records the initial value of the user-defined state variable in state-variable-record (line 6). Again,

we only show a single user-defined state variable in the algorithm for simplicity. Actually, a

structure is used to hold all the state variables and another similar structure to keep their records.

Then, the cell creates an element <0 / out = v> and inserts it into the queue so that its initial

value v can be sent to all its neighbors via its output port, out, during the collect phase at time 0

(line 7). Finally, function holdIn is invoked, activating the cell at time 0 (line 8). As a result, the

cell is ready to output its initial value once the collect phase begins.

The λ and δint functions are implemented as in the previous conservative version [Tro03].

1. when the λ function is invoked
2. for each element <t / port = value> in the queue do
3. if t = current-time then
4. send value to the port
5. end if
6. end for each
7. end when

Figure 32. Algorithm for the λ function in Cell-DEVS models with transport delay

Figure 32 shows the algorithm for the λ function, which is invoked during each collect

phase. The cell simply walks through the queue, and sends the value to the specified port if the

time of the element is equal to the current simulation time (current-time) as indicated by the

timestamp of the collect message that has triggered this function.

Figure 33. Algorithm for the δint function in Cell-DEVS models with transport delay

 60

As shown in Figure 33, when the δint function is called, the cell first removes from the

queue all the elements that have been sent out in the preceding λ function (line 2 to 6). Then, it

resets its state based on the current status of the queue. If no further output is scheduled, its state

is set to passive (line 8). Otherwise, the cell calculates the remaining time to the next scheduled

output time, and remains active until that time (line 10).

The new state transition logic is realized in the δext function, which is invoked repeatedly

throughout the multi-round transition phases. The algorithm is shown in Figure 34.

1. when the δext function is invoked
2. set the values of neighboring cells based on the current message bag
3. time-change = false
4. if time-record != current-time then
5. time-record = current-time
6. time-change = true
7. get the previous-value from the input port
8. transient-value = previous-value
9. event-flag = false
10. state-variable-record = state-variable
11. end if
12 state-variable = state-variable-record
13. if there are external events in the current message bag then
14. new-value = port-in-function()
15. else
16. new-value = local-transition-function()
17. end if
18. output-time = current-time + delay
19. if event-flag = false then
20. if new-value is derived from external events then
21. event-flag = true
22. end if
23. if (new-value != previous-value) & (transient-value = previous-value) then
24. transient-value = new-value
25. push <output-time / out = new-value> into the queue
26. holdIn(active, time to the next output)
27. else if (new-value = previous-value) & (transient-value != previous-value) then
28. transient-value = new-value
29. if time-change = false then
30. remove the previous element from the queue
31. if queue is empty then
32. passivate()
33. else
34. holdIn(active, time to the next output)
35. end if
36. end if
37. else if (new-value != previous-value) & (transient-value != previous-value) & (new-value != transient-value) then
38. transient-value = new-value
39. if time-change = false then
40. replace the previous element in the queue
41. holdIn(active, time to the next output)
42. end if
43. end if
44. end if
45. end when

Figure 34. Algorithm for the δext function in Cell-DEVS models with transport delay

 61

First of all, the cell sets the values of its neighbors based on the existing external

messages in the message bag (line 2), thereby consuming these external messages. Then, it

compares the time-record with the current-time to detect a possible change of time (line 4),

which indicates the entry point of R0 at the current simulation time. Once found, a series of

operations are performed (line 5 to 10): the time-record is updated to the current virtual time so

that no more time change will be detected in the following rounds, and a flag called time-change

is set accordingly; the cell’s value passed in from the previous time, previous-value, is retrieved,

and the transient-value is initialized to this previous-value for use in the later rounds; the event-

flag is reset to false in case external events have been processed during the computation of the

previous time; and the current value of the user-defined state variable inherited from Rn of the

previous time is recorded in the state-variable-record. These housekeeping operations are done

only at the beginning of R0 for each individual simulation time.

The remaining logic (line 12 to 44) is common for all the rounds in a transition phase.

The state variable is restored to the recorded one before any rule evaluation (line 12). From line

13 to 17, we can see that the port-in function is preferred over the local transition function during

the rule evaluation. The event-flag is set (line 20 to 22) if the new value is derived from external

events (line 14). Once this flag is set, no further modification to the cell’s value is allowed in the

following rounds until the simulation is advanced to the next virtual time (line 19).

The preemptive semantics of the transition logic is realized in line 23 to 43. There are

three possible cases that can happen in each round: a new value change occurs (line 23 to 26),

the value is changed back to the previous-value (line 27 to 36), or the value is changed further

from the result of the previous round (line 37 to 43). For all these cases, the transient-value

always follows the newly generated new-value (line 24, 28, and 38). Thereby, it records the

tentative value change in the present round and will be used in the conditional expression of the

immediately subsequent round to choose different logic for different cases. Once a new value

change is detected, the new-value is inserted into the queue and an output is scheduled (line 25 to

26). If the cell’s value is changed back to the previous-value (line 27), i.e. there is actually no

value change if we consider the computation up to the current round as a whole, the cell

preempts the result of the previous round by removing the previously inserted element from the

queue (line 30), and reschedules output based on the current queue (line 31 to 35). On the other

hand, if the cell’s value is changed further (line 37), the cell preempts the previous result by

 62

replacing the element with a new one, and reschedules output accordingly (line 40 to 41). That

is, the cell implements preemptive logic in the multi-round transition phase when no time change

is found (line 29 and 39). The preemptive semantics is indirectly applied to the state of the cell

since the cell’s state, decided by the holdIn function, is always updated according to the current

queue whose elements are maintained by the preemptive logic.

5.9.2. Cell-DEVS models with inertial delay

We now present the new algorithms for Cell-DEVS atomic models with inertial delay. The same

simplifications have been done in the following algorithms as in the previous subsection. Unlike

in the previous case, Cell-DEVS atomic models with inertial delay need to explicitly apply the

preemptive semantics to their states in the transition logic.

The algorithm for the initialization function is given in Figure 35. The cell’s future value

f is initialized to the initial value (line 4), which is also copied in f-record (line 5). Notice that the

cell needs to explicitly make a copy of its state, state-record, and the duration of the state, delay-

record (line 6 to 7). The other operations are the same as in the initialization function for cells

with transport delay.

Figure 35. Initialization algorithm in Cell-DEVS models with inertial delay

The λ and δint functions are also implemented as in the previous conservative version

[Tro03]. Shown in Figure 36 and 37, an imminent cell simply sends its current future value to the

output port in the λ function, and then it changes to the passive state in the following δint function.

Figure 36. Algorithm for the λ function in Cell-DEVS models with inertial delay

 63

Figure 37. Algorithm for the δint function in Cell-DEVS models with inertial delay

The new state transition logic is implemented in the δext function, as shown in Figure 38.

Figure 38. Algorithm for the δext function in Cell-DEVS models with inertial delay

 64

The cell detects time changes and does the housekeeping operations at the beginning of

R0 for each simulation time just like an atomic model with transport delay does. When the δext

function is invoked, the current state of the cell, current-state, may be either passive or active. If

it is passive, the cell’s current future value f has been committed and the duration of the state is

infinity. Otherwise, the current future value is still a tentative one and the cell will remain in

active state until the time of the next scheduled state transition (tN) comes. Hence, the duration of

the active state is given by (tN - current-time). The cell records the current f at the beginning of

R0 for reference in the following rounds of state transitions at this time (line 8). Also, it copies

the current state (line 10) and the duration of that state (line 11 to 15) in state-record and delay-

record respectively. The user-defined sate variable and external events are handled in the same

way as in transport-delay cells.

The preemption is done once a change of the future value is detected (line 27), and the

operations are carried out in two steps: one is to preempt the cell’s current state along with its

duration (line 28 to 42), and the other is to preempt the cell’s current future value (line 43).

While the second step can be done with ease by simply assigning the new-value to the future

value, preemption of the state needs to be handled more carefully. Here, we have two different

cases: if the current state is passive, it can be directly preempted with the holdIn function (line

29). Notice that this operation not only preempts the state itself (from passive to active), but also

preempts the duration of the state (from infinity to a certain value of delay). Also, this operation

is common for both preemption of events happened at different time (i.e. later events preempt

earlier ones, referred to as situation-type-A) and preemption of events occurred at the same time

but in different rounds of a transition phase (i.e. events in a later round preempt those in previous

rounds, referred to as situation-type-B).

If the current state is active, it should be preempted differently depending on whether the

preemption is done in situation-type-A or in situation-type-B. The operations for situation-type-A

are already defined by the semantics of the inertial delay [Wai02b]. The state itself remains

active and the duration of the state is changed from the current value of (tN - current-time) to the

new delay (line 32 to 34). Notice that a conditional expression (line 31) is added to the operation.

However, this condition only takes effect in situation-type-B. The reason for this is that

whenever the simulation time changes, the f-record is updated to have the same value of f (line

8). Hence, the condition expressed in line 31 is always true whenever the condition in line 27 is

 65

satisfied in situation-type-A. On the other hand, the cell’s f may or may not be changed to the f-

record during the following rounds in situation-type-B. If it is not changed to f-record (line 31),

the preemption logic is the same as in situation-type-A (line 32 to 34). Otherwise, we can

conclude that there is actually no value change when the multiple rounds at this time are

considered as a whole. Hence, the current state is recovered to the state-record (line 36 to 40).

Notice that the duration of the state is recovered to the delay-record as well (line 39). This

recovery can only occur in the multiple rounds of a transition phase, as secured by the condition

in line 35.

 66

CHAPTER 6 ENHANCEMENTS TO PCD++ AND THE WARPED KERNEL

The new algorithms for the simulation and modeling frameworks of the PCD++ toolkit have

been presented in Chapter 5. However, before the toolkit can be used to execute DEVS and Cell-

DEVS models optimistically in distributed environments, it must be enhanced to address a

variety of issues. This chapter is concerned with the essential enhancements to the PCD++ and

the WARPED kernel to ensure correct and efficient execution of simulations. The notion of wall

clock time slice (WCTS) is presented in Section 6.1 as an abstraction for the simulation process

on each LP. A new state of the NC, called as dormant, is introduced in Section 6.2 to handle

asynchronous execution of the LPs. Section 6.3 is devoted to dealing with rollbacks happened at

virtual time 0, a problem left unsolved in the WARPED kernel. A two-level user-controlled state

saving (UCSS) strategy is proposed in Section 6.4 to achieve efficient and flexible state saving at

runtime. The issue of messaging anomalies receives great attention in Section 6.5. Both the

algorithm of the NC and the WARPED kernel are enhanced significantly to address this issue.

Finally, the one log file per node strategy is presented in Section 6.6 to break the bottleneck in

the bootstrap operations.

6.1. AN ABSTRACTION FOR THE SIMULATION PROCESS

Based on the characteristics of the PCD++ message-passing paradigm, this section gives a new

abstraction that allows a higher-level understanding of the simulation process on each LP.

In an event-driven simulation, simulation time advances from the timestamp of one group

of simultaneous events to that of the next group. Therefore, from a computational standpoint, the

sequential simulation on a LP can be viewed as a sequence of computation units, one for each

group of simultaneous events, transforming the system mapped on that processor according to

the P-DEVS formalism. Each computation unit is performed by the hosting processor during a

span of time as measured by a physical wall clock. Such computation unit is referred to as wall

clock time slice (WCTS). A WCTS comprising simultaneous events occurred at virtual time t is

denoted as WCTS-t, and t is called as the virtual time of the WCTS.

 67

The WCTS is an entirely different concept from the “time slice” used in discrete time

modeling approach, in which the simulation time is divided into a sequence of equal-sized time

steps, each step is called as a time slice, and the simulation advances from one time step to the

next. On the contrary, the physical execution time of the simulation on a LP is subdivided into a

series of wall clock time slices with not necessarily equal lengths, one for a group of

simultaneous events executed at a specific virtual time, and the simulation time jumps from the

virtual time of a WCTS to the next.

The sequential simulation on a LP can be represented in terms of WCTS, as shown in

Figure 39.

Figure 39. WCTS representation for the simulation on a LP

In the diagram, the details of PCD++ processors and message exchanges between them

disappear. Instead, the simulation on a LP is viewed as a sequence of wall clock time slices

linked together along the time axis, each stands for the execution of simultaneous events at a

specific simulation time on all the PCD++ processors associated with this LP according to the P-

DEVS formalism. Also, each WCTS-t may contain one mandatory transition phase and one

optional collect phase. Using the WCTS abstraction makes the otherwise daunting task of

analyzing potentially huge number of PCD++ processors involved in the simulation and the

complex message exchanges between them manageable.

Several properties of the WCTS are summarized as follows:

(1) The simulation on a LP starts with WCTS-0, the only WCTS with all three phases.

(2) Wall clock time slices are linked together by messages sending from the NC to the

FC (shown as black arrows in the diagram). When the NC determines the next

simulation time at the end of a WCTS, it sends out messages that will be executed

by the FC at the new simulation time, initiating the next WCTS on the LP. Hence,

the messages linking two adjacent wall clock time slices have send time equal to the

virtual time of the previous WCTS and receive time equal to that of the next. For

example, the linking messages between WCTS-t1 and WCTS-t2 have send time of t1

 68

and receive time of t2. All other messages executed in a WCTS have the same send

and receive time that is equal to the virtual time of the WCTS.

(3) The completion of the simulation on a LP is marked by a WCTS sending out no

linking messages, e.g. WCTS-tn in the diagram. The NC on that LP enters into a

special state called dormant. The whole simulation finishes only when all

participating LPs have completed their corresponding parts of the simulation. A

dormant NC may be reactivated later by messages from other remote NCs and

subsequently initiates more wall clock time slices on the receiving LP. More details

on the dormant state of the NC will be covered in the next section.

(4) Wall clock time slices are atomic computation units during rollback operations.

Since the NC is the only PCD++ processor that receives messages from other LPs

during the simulation, rollbacks are typically triggered by a remote straggler or anti-

message at the NC. In such case, the NC is the local rollback originator, and the

rollbacks are propagated from the NC to the other local processors. During the

process, anti-messages may be sent to other LPs, triggering further rollbacks on

those LPs. Let’s focus our analysis on a single LP. A typical rollback scenario is

shown in Figure 40.

Figure 40. Typical rollback scenario shown in terms of wall clock time slices

In the diagram, the simulation on LPi is executing in WCTS-tn when a straggler or anti-

message with timestamp t2 arrives at the NC (action 1). Based on the kernel rollback

mechanisms, the received straggler or anti-message is inserted into WCTS-t2 (a message

implosion happens in WCTS-t2 if it is an anti-message) (action 2). Then, the rollbacks are

propagated among the PCD++ processors, restoring their states to those saved at the end of

WCTS-t1 (action 3), and all messages in WCTS-t2 up to WCTS-tn are undone. After the

rollbacks, the simulation on LPi resumes forward execution from the unprocessed linking

messages between WCTS-t1 and WCTS-t2 (action 4). Simply put, the arrival of a straggler or

 69

anti-message modifies the WCTS to which it belongs, and the simulation resumes execution

from the modified WCTS after the rollbacks, taking the straggler or anti-message into account.

However, rollbacks may also be initiated at the FC instead of the NC due to messaging

anomalies occurred in the simulation. In this case, the NC needs to perform a series of cleanup

operations after the kernel rollbacks, which will be discussed in Section 6.5.

6.2. DORMANT STATE OF NODE COORDINATORS

In optimistic simulations, LPs are allowed to execute as fast as they can. Therefore, some LPs

may have processed all their local events while waiting for other lagging-behind LPs to finish

their work in order to complete the whole simulation. Meanwhile, the lagging-behind LPs may

send messages to the waiting LPs and thereby reactivate them. These messages may or may not

trigger rollbacks on the waiting LP. If rollbacks happen, the waiting LP will be reactivated

automatically by the WARPED kernel, simply because some events on that LP are unprocessed

during the rollbacks and will be executed by the LTSF scheduler afterwards. Hence, we only

need to consider how to reactivate the waiting LP if no rollback happens.

To this end, we define a special state called dormant for the NC. The NC enters into the

dormant state once all local events have been processed on its associated LP. Later, if the NC

receives messages from other running LPs, it exits the dormant state and reactivates the

simulation on its LP again. The whole simulation ends when the NCs on all the LPs have entered

into the dormant state, and the GVT is advanced to infinity.

LP0 LP1

x messages

End of the whole simulation

NC0 enters
dormant state

NC1 enters
dormant state

NC1 exits
dormant state

NC1 enters
dormant state

t1

t2

t3

t4 si
m

ul
at

io
n

tim
e

Figure 41. Example scenario for state changes of the NC during the simulation

 70

Figure 41 shows an example scenario involving two LPs, where the running state of a LP

is represented by solid lines and the waiting state is illustrated with dashed lines. In this example,

all local events on LP1 are finished at virtual time t1. Since there is no unprocessed event left in

the input queue, the simulation time on LP1 jumps to infinity. As a result, NC1 enters the dormant

state at time t1. Meanwhile, LP0 keeps executing its events and NC0 sends external messages to

NC1 at time t2, reactivating the simulation on LP1. Hence, NC1 exits the dormant state at t2, and

the simulation time on LP1 jumps back from infinity to t2. Both LPs run from time t2 to t3. Then,

LP0 finishes all its events at t3 and NC0 enters the dormant state. The simulation time on LP0

jumps from t3 to infinity. LP1 continues execution until time t4 when its local events are also

finished and NC1 enters the dormant state as well. Thus, the simulation time on LP1 is advanced

from t4 to infinity. Eventually, the GVT advances to infinity and the whole simulation ends.

We now give the algorithms for the NC to enter into and exit from the dormant state. The

NC enters into the dormant state once the computed next simulation time is greater than the stop

time (line 10 in Figure 26), indicating that all the events on the LP have been processed. Figure

42 shows the code snippet for entering the dormant state in the NC algorithm for (D, t). The

complete NC algorithm for (D, t) will be presented in Section 6.5 after more enhancements are

added to it in the following sections.

10. if min-time > stop-time then
11. dormant = true

Figure 42. Code snippet for entering dormant state in the NC algorithm for (D, t)

The NC exits the dormant state and reactivates the simulation on its LP upon the arrival

of external messages from other remote NCs. In this case, the NC spontaneously flushes the

received external messages in its NC Message Bag (without the presence of a (D, t) from the

child FC), followed by a (*, t), to the FC to reactivate the simulation on the LP.

The enhanced NC algorithm for (x, t) is shown in Figure 43. As usual, the (x, t) is inserted

into the NC Message Bag (line 2). The reactivation operation is performed based on three

conditions: (1) the NC needs to be in the dormant state to ensure that the spontaneous

reactivation will not interfere with the normal execution of the simulation (line 4); (2) the

timestamp of the external messages must be less than or equal to the stop time in order to

maintain a clear cut of the simulation results at the user-specified stop time (line 4); (3) all

external messages with the same minimum timestamp need to be inserted into the NC Message

 71

Bag so that they can be processed in a lump to reduce the potential number of rounds in the

transition phase at this virtual time (line 5).

1. when a (x, t) is received from a remote NC
2. insert message x to the NC Message Bag
3. bag-time = the time of the NC Message Bag
4. if (dormant = true) & (bag-time <= stop-time) &
5. (all events in the input queue with timestamp = bag-time have been processed) then
6. dormant = false
7. tL = bag-time; ta = 0
8. for each x in the NC Message Bag with bag-time do
9. send (x, t) to the child FC
10. end for each
11. remove all x in the NC Message Bag with bag-time
12. send (*, t) to the child FC
13. next-message-type = @
14. end if
15. end when

Figure 43. Enhanced NC algorithm for (x, t)

To reactivate the simulation on the LP, the NC first resets the dormant flag to exit from

the dormant state (line 6). The simulation time is set to the current time of the NC Message Bag

(line 7). Then, all external messages with the minimum timestamp are flushed to the FC and

removed from the NC Message Bag (line 8 to 11). The NC also sends a (*, t) to the FC to trigger

the appropriate state transitions at the receiving Simulators (line 12). The next-message-type is

set to @ accordingly (line 13).

6.3. HANDLING ROLLBACKS AT TIME ZERO

Kernel rollback operations rely on correctly restoring the states of the processes to those saved

ones with virtual time strictly less than the rollback time. However, the problem of handling

rollbacks at virtual time 0 is left unsolved in the kernel. If a process receives a straggler with

timestamp 0, the state restoration will fail since no state with negative virtual time can be found

in the state queue. This problem is illustrated in Figure 44.

Two LPs are involved in the simulation as shown in Figure 44(a). While LP0 is running at

virtual time tn, LP1 is still executing events at time 0. Then, LP1 sends a straggler with timestamp

0 to LP0, triggering rollbacks on LP0. Figure 44(b) shows the details of the rollbacks on LP0.

Upon receiving the straggler (action 1), the NC on LP0 tries to restore to a state that was

previously saved before virtual time 0 (the current rollback time). Of course, no such state can be

 72

found in its state queue (action 2). Therefore, the rollback operation fails (action 3), resulting in a

runtime crash.

Figure 44. Rollback at virtual time 0

There are basically two different approaches to solving this problem: one is to save a

special state that has an artificial negative virtual time at the head of each state queue, and let the

process bounce back from it using the standard kernel rollback mechanisms; the other is to

synchronize the LPs at an appropriate stage with MPI Barriers so that no straggler message with

timestamp 0 will ever be received by any process in the simulation.

Both approaches have their relative advantages and associated overheads. The former is a

pure optimistic approach in the sense that no explicit synchronization is used. The direct cost of

this approach is small. Only a special state is added to each state queue, containing all necessary

information based on which the execution of a process can restarts. However, there is a

performance hazard in this approach. The probability of rollback echoes [Fuj00] increases

significantly at virtual time 0. Take the previous example, LP0 can successfully perform the

rollbacks and resume forward execution from WCTS-0 based on this approach. In the meantime,

LP1 finishes its execution at time 0, and the simulation time on LP1 is advanced to t1. Then, LP0

may send a message with timestamp 0 back to LP1, forcing it to restart execution from time 0 as

well. This scenario can happen repeatedly on the LPs, resulting in an unstable situation where

there is no progress in simulation time as the simulation proceeds.

On the other hand, the second approach tries to avoid the problem altogether by using

explicit synchronizations. The best place to implement the MPI Barrier is after the collect phase

in WCTS-0, as illustrated in Figure 45.

 73

I C T (R0 … Rn) C T (R0 … Rn) T (R0 … Rn) ... C T (R0 … Rn)

WCTS-0

WCTS-t2 WCTS-tn

I C T (R0 … Rn) T (R0 … Rn)

WCTS-0 WCTS-t1

MPI Barrier

LP0

LP1

WCTS-t1

Figure 45. Using MPI Barrier to avoid rollbacks at virtual time 0

As mentioned in Section 5.6, outgoing inter-LP communication happens only in the

collect phases. Hence, messages with timestamp 0 are sent to remote LPs only in the collect

phase of WCTS-0. The LPs are synchronized by a MPI Barrier at the end of this collect phase so

that these messages can be received by their destinations before the simulation time advances

beyond time 0. Therefore, no straggler with timestamp 0 will be received by any LP afterwards.

Once the LPs exit from the barrier, they can safely continue optimistic execution based on the

standard kernel rollback mechanisms. The states saved for the events executed at virtual time 0

provide the necessary cushion for later rollbacks on the processes. The key is to keep the

synchronized execution as short as possible. From the diagram, we can see that the execution of

the LPs is synchronized during the initialization and collect phase in WCTS-0. That is, we

sacrifice some of the potential benefit of optimistic execution during this period. However, this

cost is small since the length of the synchronized execution is trivial compared with the whole

simulation. Further, this approach is relatively easy to be implemented in PCD++: First, the MPI

Barrier (which is provided at the MPI layer) needs to be wrapped in a public service function,

called as synchronizeLPs, in the WARPED kernel so that the PCD++ processors can invoke it

when necessary. Secondly, this service function is invoked in the NC algorithm for (D, t) once

the end of the collect phase in WCTS-0 is detected.

Based on the above analysis, we chose to implement the latter approach in PCD++. The

pseudo-code snippet is shown in Figure 46, which is inserted between line 2 and line 3 in the

previous NC algorithm for (D, t) (Figure 26 in Section 5.5.3).

Figure 46. Code snippet for handling rollbacks at time 0 in the NC algorithm for (D, t)

 74

The end of the collect phase in WCTS-0 is detected by the NC using three conditions: (1)

the current simulation time is zero; (2) the value of sigma (ta) in the received (D, t) is also zero;

and (3) the current next-message-type is internal. Once found, the NC simply invokes the

synchronizeLPs service function that has been implemented in the kernel.

6.4. USER CONTROLLED STATE SAVING MECHANISM

Two kinds of state-saving strategies are provided in the WARPED kernel, namely the copy state-

saving (CSS) strategy and the periodic state-saving (PSS) strategy. They are realized using

different types of state managers. The former is enforced by state managers of type

StateManager, which saves the state of a simulation object after executing each event. The latter

is implemented by state managers of type InfreqStateManager that only saves a simulation

object’s state infrequently every a number of events. Simulator developers can choose either type

of state managers at compile time. Once selected, all the simulation objects will use the same

type of state managers throughout the simulation. This rigid mechanism has two major

disadvantages: First, it ignores the fact that simulator developers may have the knowledge on

how to save states more efficiently to reduce the state-saving overhead. Secondly, it eliminates

the possibility that different simulation objects may use different types of state managers to

fulfill their specific needs at runtime.

To overcome these shortcomings, we implemented a two-level user-controlled state-

saving (UCSS) mechanism in the kernel so that simulator developers can utilize more flexible

and efficient state-saving strategies at runtime. This section focuses on the interplay between the

UCSS and the CSS strategy, while the integration of the UCSS and the PSS strategy will be

presented in Section 7.2.

In order to directly control the state-saving operation at runtime, we defined a flag called

skip-state-saving with an initial value of false in each simulation object. If it is set to true by a

simulation object, the state-saving operation will be skipped. Hence, a simulation object can

make state-saving decisions based on application-specific criteria. The resulting UCSS

mechanism has a two-level structure, as shown in Figure 47. At the bottom level, the CSS

strategy is implemented by the StateManager as usual, and on top of that, the application-

specific state-saving policy is governed by the skip-state-saving flag, which has a higher priority

 75

than the StateManager.

Figure 47. UCSS structure with copy state-saving strategy

The kernel algorithm, executeSimulation, for executing events and saving states with the

StateManager is modified to realize the UCSS mechanism. The enhanced algorithm is shown in

Figure 48, where the modifications are highlighted in bold font. The logic is straightforward. The

executeProcess function is invoked to trigger the appropriate message-processing algorithm

defined in the simulation object. The CSS policy, implemented in the saveState function of the

StateManager (line 8), only takes effect when the skip-state-saving is false. Otherwise, no state

is saved after executing the current event. Instead, the flag is reset to false so that a new state-

saving decision can be made during the execution of the next event (line 6). That is, the UCSS

operates on an event-by-event basis for each simulation object.

1. when the executeSimulation function is invoked
2. set the inPos in the current state = the current event to be executed in the input queue
3. executeProcess()
4. set the outPos in the current state = the last event in the current output queue
5. if skip-state-saving = true then
6. skip-state-saving = false
7. else
8. call StateManager’s saveState()
9. end if
10. end when

Figure 48. Enhanced kernel algorithm for executing events and saving states (UCSS)

During rollbacks, the state of a PCD++ processor is always restored to the last state saved

at the end of a WCTS with virtual time strictly less than the present rollback time. Hence, it is

sufficient for a processor to save its state only after processing the last event in each WCTS for

rollback purposes. The state-saving operation can be safely skipped after executing all the other

events. From the PCD++ message-passing paradigm, we can see that the last event in a WCTS is

processed at the end of Rn in the transition phase. Although the actual number of rounds in a

transition phase cannot be determined for sure, we can at least identify the type of the messages

executed at the end of the transition phases by a given processor. For the NC and FC, it must be a

(D, t), and for the Simulators, it should be a (*, t). Therefore, PCD++ processors need to save

 76

states only after processing these particular types of messages. Since the Root only processes

output messages, it still saves state for each event. The resultant state-saving strategy is called as

message type-based state-saving (MTSS), a specific type of UCSS for the PCD++ toolkit.

Considering that there are a large number of messages executed in each WCTS and they

are dominated by external and output messages, MTSS can significantly reduce the number of

states saved during the simulation when compared with the original CSS strategy. In some cases,

reductions of up to 30% of memory consumption have been observed in our experiments.

Further, the overhead of rollbacks is reduced as well because fewer states need to be removed

from the state queues during rollback operations. Unlike the PSS strategy, MTSS is risk-free in

the sense that there is no penalty for saving fewer states.

The MTSS strategy can be easily implemented at the PCD++ layer using the UCSS

mechanism. A processor simply sets the skip-state-saving flag to true in all but the algorithm for

the required type of messages. For example, a Simulator will set the flag to true in its algorithms

for (I, t), (@, t), and (x, t). This flag is left untouched with value false in its algorithm for (*, t)

since the Simulator should save its state after processing such type of messages.

6.5. MESSAGING ANOMALIES

As discussed in Section 5.5.3, the NC calculates the next simulation time based on the time of its

NC Message Bag. However, more lagging external messages with timestamp less than the

resulting simulation time may arrive after the calculation, invalidating the previous computation

result. In this case, the NC’s speculative calculation of the next simulation time leads to

messaging anomalies that cannot be recovered by the kernel rollback mechanisms alone.

Messaging anomalies will be detected when the control returns to the NC in the transition phase

of the next (wrong) simulation time. Once found, the NC needs to perform cleanup operations to

restore the simulation to the status before the previous wrong computation.

6.5.1. Speculative computation of the Node Coordinator

Figure 49 shows an example scenario, where the simulation on the LP involves three PCD++

processors (the Simulator is labeled as S1). The execution sequence of the messages is denoted

by the numbers in the diagram. Only the final portion of WCTS-ta is illustrated.

 77

Figure 49. Example scenario of messaging anomalies

Suppose that, when the last done message (D1) from the FC is executed by the NC at the

end of WCTS-ta, there is neither external messages in the NC Message Bag nor external events in

the Event List and the closest state transition time carried in D1 is tb. Hence, the NC calculates the

next simulation time as tb. Consequently, it sends a collect message (@5) with send time ta and

receive time tb to the FC. However, before @5 is executed by the FC, three external messages (x2

with receive time ta, x3 and x4 with receive time t1) arrive at the NC. Since these messages have

smaller timestamp than @5, they are immediately inserted into the NC Message Bag. The LVT in

the NC is thus advanced to t1. The arrival of these external messages invalidates the previously

computed next simulation time tb, but this wrong calculation has not yet been detected.

The collect message @5 is then executed by the FC, starting the collect phase of WCTS-

tb. Meanwhile, two more external messages (x6 with receive time t2, and x7 with receive time tb)

arrive at the NC, and get inserted into the NC Message Bag. Notice that no rollback happens

since the timestamps of these two messages are greater than the NC’s current LVT when they are

executed (i.e. t2 > t1 and tb > t2 for x6 and x7 respectively). The collect phase of WCTS-tb

continues, executing messages in the range of [@8, D14]. At this moment, the LVT in all

processors has been advanced to tb. At the end of the collect phase of WCTS-tb, the NC sends an

internal message (*15) to the FC. Thus, the simulation enters into R0 of the transition phase in

WCTS-tb. At the end of R0, a done message (D18) is sent to the NC from the FC. During

processing D18, the NC computes the next simulation time again based on the current NC

Message Bag, which now contains five external messages (x2, x3, x4, x6 and x7). The NC finds

that the minimum timestamp is ta, the timestamp of x2. Hence, it sends an external message (x19)

 78

with send time tb and receive time ta (tb> ta) to the FC, as shown by the bold arrow in the

diagram. However, x19 is a straggler message for the FC since its timestamp is less than the FC’s

current LVT. According to the kernel rollback mechanism, x19 is inserted into both the NC’s

output queue and the FC’s input queue, and rollbacks propagate from the FC to the other

processors immediately.

Nonetheless, the rollbacks happened here is different from those discussed previously.

Two kernel assumptions as described in Section 4.1 are violated: First, the rollback at the FC is

triggered by an abnormal straggler message (x19 in the example) with a send time greater than

the receive time, which violates Kernel Assumption 3. Since the events are ordered by their send

time in the output queues, this abnormal straggler message is misplaced in the NC’s output

queue, resulting in causality errors and runtime crash later on during the simulation. Secondly,

the rollbacks occur right in the middle of processing the done message (e. g. D18) by the NC. This

violates Kernel Assumption 7, which demands that all rollbacks should be carried out between

event executions. Therefore, the rollbacks are not transparent to the NC any more. For example,

when the NC regains control after the kernel rollbacks, it needs to handle its current state (which

has been restored during the rollbacks) properly after processing the current done message D18.

The NC is also responsible for removing the abnormal straggler message from its output queue

and the FC’s input queue to avoid runtime crash later on. The false messages derived from the

wrong calculation of the next simulation time (e.g. @5) need to be handled properly by the NC as

well. Further, the state saved after the wrong calculation (i.e. state saved after processing D1)

contains incorrect data that must be recovered (e.g. its outPos points to the false message @5).

Without removing the incorrect data in this state, restoration to it in later rollbacks will cause

failure of the simulation. In short, the NC has to perform a series of cleanup operations when it

regains control after the kernel rollbacks in the midst of executing the done message (e.g. D18).

6.5.2. Two types of messaging anomalies

Let’s denote the simulation time at which the NC makes the speculative computation as ta and

the calculated next simulation time as tb. After the calculation, more external messages with

timestamp less than tb arrive, and messaging anomalies will occur at the end of R0 of the

transition phase of WCTS-tb when the done message from the FC is processed by the NC. We

only need to consider the cases where external messages with timestamp in the range of [ta, tb]

 79

get inserted into the NC Message Bag after the speculative calculation. If external messages with

timestamp less than ta arrive, all the processors on this LP will be rolled back to a previous

virtual time. These are the normal rollbacks initiated at the NC that can be handled by the kernel

without problem. On the other hand, external messages with timestamp greater than tb will be

simply inserted into the input queue, and they will not be executed by the NC until their virtual

time comes. In the range of [ta, tb], whether there are external messages with time ta inserted into

the NC Message Bag is crucial in determining the NC’s cleanup operations for recovering from

the messaging anomalies.

Figure 50 shows the case that external messages with timestamp ta are inserted into the

NC Message Bag. The wrong computation of simulation time is found at the end of R0 in WCTS-

tb when the NC sends an abnormal straggler message with send time tb and receive time ta to the

FC, triggering rollbacks at the FC.

Figure 50. Messaging anomaly with empty NC Message Bag

Since the rollback time is ta, the FC sends anti-messages with minimum timestamp ta to

all the other processors, including the NC. After the kernel rollbacks, all processors on this LP

are rolled back to before WCTS-ta. Shown in Figure 50(b), the states of the processors are

restored to those previously saved at the end of WCTS-tpre, the WCTS before WCTS-ta. All the

lagging external messages (i.e. x(ta), x(t1), x(t2), … x(tn), and x(tb)) are removed from the NC

Message Bag, and their corresponding kernel events are unprocessed during the rollbacks. Then,

the control is returned to the NC, which is still in the middle of processing the done message

received at the end of R0 in WCTS-tb. At this point, the NC needs to perform the necessary

cleanup operations. When the NC returns from its algorithm for (D, t), the simulation resumes

forward execution starting from the unprocessed messages previously output from WCTS-tpre.

As all the lagging external messages are removed from the NC Message Bag and the states of the

 80

processors are restored to the end of the previous WCTS during the kernel rollbacks, no

erroneous data is left in the state queues. Therefore, the cleanup operations are relatively simple.

This type of messaging anomalies is called as anomaly with empty NC Message.

On the other hand, if no external message with timestamp ta arrives, the situation

becomes more complex as shown in Figure 51.

Figure 51. Messaging anomaly with non-empty NC Message Bag

Shown in Figure 51(a), the NC sends an abnormal straggler message with send time tb

and receive time t1 to the FC at the end of R0 in WCTS-tb. The rollback time for the FC is t1.

Hence, the FC only sends anti-messages with minimum timestamp tb to the other processors,

including the NC. When the kernel rollbacks finish, the states of the processors are restored to

those previously saved at the end of WCTS-ta. Thanks to the MTSS strategy, the NC did not save

states after processing the lagging external messages. Therefore, its state is also restored to the

last state that was saved at the end of WCTS-ta. As explained earlier, the restored state contains

incorrect data that must be recovered by the NC itself after the kernel rollbacks.

During the kernel rollbacks, all messages executed by the FC and the Simulators in

WCTS-tb are cancelled. Nonetheless, only the external messages with time tb are removed from

the NC Message Bag. The other lagging external messages (i.e. x(t1), x(t2), … and x(tn)) remain

in the NC Message Bag after the kernel rollbacks. Also, the false messages originally sent from

WCTS-ta are unprocessed and kept in the FC’s input queue as well as the NC’s output queue, as

shown in Figure 51(b). After the rollbacks, the LVT in the NC is reset to tn, while the LVT in the

FC and the Simulators is restored to ta. In this case, more complex cleanup operations need to be

done by the NC to erase all the wrong data left in the kernel. Since the NC Message Bag still

 81

contains external messages after the kernel rollbacks, this type of messaging anomalies is called

as anomaly with non-empty NC Message Bag.

6.5.3. Anomaly with empty NC Message Bag

In this section, we present the algorithm for handling anomaly with empty NC Message Bag in

the NC algorithm for (D, t), as shown by the code snippet in Figure 52.

Figure 52. NC algorithm for handling anomaly with empty NC Message Bag

Once an anomaly with empty NC Message Bag is detected after the kernel rollbacks, the

NC needs to perform the following cleanup operations in its algorithm for (D, t):

(1) Remove the abnormal straggler message from the NC’s output queue (line 2). Since

this straggler message is saved at the end of the NC’s output queue, we can directly

remove it using the remove function provided by the kernel. This function also

returns a reference to the message that has been removed, which can then be used to

remove the same straggler message from the FC’s input queue.

(2) Remove the abnormal straggler message from the FC’s input queue (line 3). This is

more difficult than the previous operation. The kernel does not provide function for

removing a positive event from the input queue except during event implosion,

where the positive event is annihilated by an incoming anti-message. Hence, we

defined a new function called removeStragglerEvent for this purpose. The logic of

this function is similar to that for event implosion. However, the positive message is

annihilated by a reference to itself rather than the counterpart anti-message.

(3) Skip the state-saving operation after processing the current done message (line 4).

During the kernel rollbacks, the state of the NC has been restored to the last state

saved at the end of WCTS-tpre (see Figure 50). Therefore, the NC should not save

its current state after processing the present done message. Using the UCSS

mechanism, the NC only needs to set skip-state-saving to true to do this.

After these cleanup operations, the NC returns from its algorithm for (D, t) and the

simulation resumes forward execution.

 82

6.5.4. Anomaly with non-empty NC Message Bag

The cleanup operations for anomalies with non-empty NC Message Bag are much more

complex. Let’s take a closer look at the status of the NC after the kernel rollbacks, as shown in

Figure 53. The wrong computation of the next simulation time is made during executing Da in

WCTS-ta. After processing Da, a state that contains incorrect data resulting from the wrong

computation is saved in the NC’s state queue (referred to as Sa in the diagram). This wrong

computation is detected by the NC at the end of R0 in WCTS-tb, in the middle of executing Db.

An abnormal straggler message is sent to the FC, triggering kernel rollbacks. During the

rollbacks, the NC’s state is restored to Sa.

Figure 53. NC status during anomalies with non-empty NC Message Bag

In Figure 51, only one lagging external message for each distinct timestamp (from t1 to tn)

is shown for simplicity. Actually, as illustrated in Figure 53, multiple external messages may

coexist for each timestamp after the kernel rollbacks, and those messages with timestamp t1 are

sent to the FC in batches. For example, if there are three external messages with timestamp t1 in

the NC Message Bag, the first one sent to the FC will be the abnormal straggler message (with

send time tb and receive time t1), which will trigger the rollbacks. The following two external

messages will be sent to the FC right after the kernel rollbacks when the control is returned to the

NC’s logic for sending external messages. However, the send time of these two messages is

changed to ta because the current state of the NC has already been restored to Sa during the

rollbacks. Of course, their receive time is still t1. During the cleanup operations, therefore, not

only the first abnormal straggler message needs to be removed from the NC’s output queue and

 83

the FC’s input queue just like the operations discussed in the previous section, but also the other

external messages sent along with the abnormal straggler need to be handled in the same way.

After the cleanup operations, the NC will resend these external messages to the FC again, with

the correct send and receive time.

• Undue external events

The false messages previously sent from the NC to the FC at the end of WCTS-ta (i.e. the

linking messages between WCTS-ta and WCTS-tb) are unprocessed and left in the NC’s output

queue and the FC’s input queue during the kernel rollbacks. The false messages contain at least

one control message, either a (@, tb) or a (*, tb), and may optionally include multiple external

messages representing the undue external events scheduled at time tb. Hence, the NC needs to

perform the following cleanup operations to handle the false messages:

(1) Remove the false messages from the NC’s output queue and the FC’s input queue.

The NC needs to find all these false messages in the queues, and then remove them

using the removeStragglerEvent function.

(2) Identify the potential undue external events sent in the false messages. Once found,

the NC needs to restore the event-pointer in its current state to recover these undue

events. Figure 54 shows an example scenario for recovering the event-pointer,

where an external event with scheduled time t is depicted as E(t).

Figure 54. Restoring the event-pointer for undue external events

In this example, there are four external events in the NC’s Event List; two of them are

scheduled at time tb. At the end of WCTS-ta, the wrong simulation time tb is calculated, and both

E(tb) are sent in the false messages to the FC. The event-pointer in the NC’s current state moves

to E(tc) accordingly and gets saved as Sa in the state queue after processing Da. During the

following rollbacks, the NC’s current state is restored to Sa. Hence, the event-pointer in both the

 84

NC’s current state and Sa point to E(tc), as shown in Figure 54(a). To undo the external events

after the rollbacks, the NC needs to reset the event-pointer in its current state to the first E(tb), the

original position before sending the false messages. In Figure 54(b), the event-pointer in Sa is left

untouched during the operation. Handling the incorrect data in Sa is presented next.

• Break point state

An important cleanup operation is to deal with the incorrect data in Sa. While it is hard to

directly modify the internal data contained in a previously saved state in the state queue, it is

easier to correct the data in the NC’s current state. As the NC’s current state is restored to Sa by

the kernel, they have identical data after the rollbacks. Mechanisms for fixing part of the data in

the NC’s current state have been revealed in our previous discussion, as summarized below:

(1) Removing and resending the lagging external messages with time t1 restore the

correct ordering of messages in the NC’s output queue.

(2) Removing the false messages eliminates the effect of the previous wrong

computation. New control message will be sent at the end of the cleanup operations,

which, together with point (1), makes sure that the outPos in the NC’s current state

will points to the correct message in NC’s output queue.

(3) The inPos in both Sa and the NC’s current state remains pointing to the last done

message of WCTS-ta (e.g. Da in Figure 53).

(4) Recovering the undue external events restores the event-pointer in the NC’s current

state to the correct position.

Another operation is that the NC needs to set the LVT value in its current state to t1 so

that all the messages resent during the cleanup operations have send time t1 instead of ta. This is

important since the external messages at time t1 may be cancelled later by their remote senders.

In such case, the rollback time is t1 for the NC, and the simulation on this LP will be rolled back

to the end of WCTS-ta. However, if the external messages were resent with send time ta (ta < t1),

they would not be eliminated properly since only messages with send time greater than ta in the

NC’s output queue are cancelled.

The last issue is dealing with the incorrect data contained in state Sa. The idea is to

replace Sa with a new copy of the NC’s current state, which will be saved in the state queue

when the NC algorithm for (D, t) returns. Removing Sa can be easily done since we know that it

is now the last state in the NC’s state queue. Saving a copy of the NC’s current state in the state

 85

queue is performed by the kernel automatically. However, simply replacing Sa in this way is not

enough. Let’s consider what happens if the lagging external messages at time t1 are cancelled

later by their remote senders. An example scenario is illustrated in Figure 55, showing the

queues of the NC after the cleanup operations.

Figure 55. Example scenario for anomalies with non-empty NC Message Bag

The NC made a computation of the next simulation time tb at the end of WCTS-ta, during

executing the last done message D(ta)2. After that, one lagging external message with timestamp

t1, x(t1), arrived, invalidating the previously computed tb and resulting in messaging anomalies

with non-empty NC Message Bag. Rollbacks were performed by the kernel. In the ensuing

cleanup operations, the abnormal straggler message and the false messages are removed from the

queues (not shown in the diagram). The LVT in the NC’s current state is set to t1, and correct

messages are resent (action 1). Then the previous state saved after processing D(ta)2, i.e. Sa, is

removed from the NC’s state queue (action2). A new copy of the NC’s current state, shown as

S1, is saved after the cleanup operations with the corrected data (action 3). As a result, its outPos

refers to the last message resent during the cleanup operations and its inPos points to D(ta)2. The

simulation continues after the cleanup operations.

Now, suppose an anti-message is received by the NC to cancel the previous lagging

external message x(t1). Since the rollback time is t1, the simulation is restored to the end of

WCTS-ta. There are two problems here:

(1) Since Sa has been removed, the NC’s current state will be restored to the state saved

before Sa, shown in the diagram as Sa’. However, the data contained in Sa’ is stale

and does not reflect the modifications that have been done during executing D(ta)2.

 86

Also notice that, as part of the state restoration, the states following Sa’ will be

removed from the NC’s state queue and S1 is the first one to be removed.

(2) The linking messages between WCTS-ta and WCTS-tb have been removed from the

queues during the previous cleanup operations. While these messages were proven

false due to the arrival of the lagging external message x(t1), they are not now since

it finally turns out that x(t1) itself is a false one. As a result, the simulation should

resume forward execution starting from exactly these (removed) linking messages

after the present rollbacks. However, the nonexistence of these linking messages

results in failure of the simulation.

Both of these problems can be solved if the done message, D(ta)2, is executed by the NC

again immediately after the present rollbacks. By executing this done message, the data in the

NC’s current state (which has been restored to Sa’) is updated and new linking messages are

regenerated. A copy of the NC’s current state will be saved in the state queue right after Sa’,

filling the gap produced by the removal of Sa.

To this end, a special mechanism needs to be implemented in the kernel. The first

question we need to answer is how to detect that the NC is now rolled back to the end of a

WCTS where anomalies with non-empty NC Message Bag have previously occurred. To do so,

the NC must leave a tag in its queues after handling the messaging anomalies. Then, the special

mechanism will be triggered once this tag is detected during later rollbacks.

A flag, called as breakpoint, is added to the abstract state definition in the kernel for this

purpose. This flag is false by default. When the NC corrects the data in its current state during

the cleanup operations, it sets this flag to true in its current state. As we know, a copy of the

NC’s current state is saved after the cleanup operations. Hence, the breakpoint flag saved in S1 is

true, and S1 is called as a breakpoint state. Notice that S1 will be the first to-be-removed state

during the later rollbacks that bring the NC back to the end of WCTS-ta. Also, its inPos points

exactly to D(ta)2, the done message that needs to be reprocessed immediately after the later

rollbacks.

The resulting kernel algorithm for state restoration is shown in Figure 56. The original

algorithm consists two parts: (1) restoring the current state to the last state with LVT less than

the rollback time (line 2 to 8); and (2) removing all the following states after the last state found

in the state queue (line 14 to 17).

 87

Figure 56. Enhanced kernel algorithm for state restoration during rollbacks

The enhancement for handling breakpoint states is added to the original algorithm, shown

in bold font in the diagram (line 9 to 13). Before removing the states from the state queue, a test

is done on the first to-be-removed state, state-handle, obtained in line 8. If it is a breakpoint state

(line 9), the kernel undoes the message referenced by its inPos (line 10 and 11) and adjusts the

LTSF scheduler so that this message will be executed immediately after the current rollbacks.

• Pending wall clock time slices

From the previous discussion, we can see that the lagging external messages left in the

NC Message Bag after kernel rollbacks actually represent a series of pending wall clock time

slices (each for the group of external messages with identical timestamp) that need to be inserted

between the previous and the false WCTS. Shown in Figure 53, for example, there are n pending

wall clock time slices for virtual time from t1 to tn to be inserted between WCTS-ta and WCTS-tb.

These pending wall clock time slices can only be accommodated into the simulation process one

by one. During the cleanup operations, the NC will resend the external messages with the least

timestamp, t1, along with the appropriate control message to the FC, initiating WCTS-t1. When

the simulation is executed in the normal mode, external messages with timestamp from t2 to tn

cannot be processed by the NC before the completion of WCTS-t1 simply because these

messages, having timestamps greater than t1, will not be selected by the LTSF scheduler as long

as there are still messages with timestamp t1 to be processed in the input queue. It is the false

 88

advance of the simulation time to tb that makes all these lagging external messages coexisting in

the NC Message Bag, violating the local causality constraint.

Therefore, after resending external messages with time t1, the NC needs to perform the

following operations to handle the extra external messages with timestamp from t2 to tn in the NC

Message Bag:

(1) Reset the NC’s LVT to t1. As explained earlier, the LVT in the NC is restored to tn

during the kernel rollbacks. Since we are going to execute the first pending wall

clock time slice, WCTS-t1, the NC’s LVT should be reset to t1 accordingly.

(2) Rollback the NC’s file queue with a rollback time of t2 to remove the log

information, if any, for these extra external messages.

(3) Undo the corresponding kernel events for the extra external messages in the input

queue. These kernel events will be processed again in batches after the completion

of the current (inserted) WCTS-t1 just like in the normal execution.

(4) Remove the extra external messages from the NC Message Bag to eliminate the

causality errors.

We now give the algorithm for handling anomalies with non-empty NC Message Bag, as

shown in Figure 57. When the anomaly is detected, the NC first removes all the external

messages with time t1, including the abnormal straggler, from the NC’s output queue and the

FC’s input queue (line 2 to 5). Then, the NC searches the FC’s input queue to find the false

messages previously sent to WCTS-tb as a result of the wrong computation of the next simulation

time (line 6). The undue external events sent along with the false messages, if any, are retrieved

(line 8). Once found, the event-pointer in the NC’s current state is recovered properly (line 9 to

12). The NC also locates the false messages saved in its output queue (line 13). These false

messages are removed from the NC’s output queue and the FC’s input queue (line 14 to 19).

Then, the erroneous state saved at the end of WCTS-ta is retrieved from the tail of the NC’s state

queue (line 20), and gets removed thereafter (line 21).

 89

1. when cleanup operations for anomaly with non-empty NC Message Bag is invoked
2. for each external message with time t1 in the NC Message Bag do
3. abnormal-straggler = NC’s output queue remove(tail)
4. FC’s input queue removeStragglerEvent(abnormal-straggler)
5. end for each
6. false-input-messages = FC’s input queue findFalseInputMessages(tb)
7. if the size of false-input-messages > 0 then
8. undue-external-events = findUndueExternalEvents(false-input-messages)
9. if the size of undue-external-events > 0 then
10. future-external-event-time = the scheduled time of the undue-external-events
11. rollbackExternalEvents(undue-external-event-time)
12. end if
13. false-output-messages = NC’s output queue findFalseOutputMessages(false-input-messages)
14. for each message m in false-output-messages do
15. NC’s output queue remove(m)
16. end for each
17. for each message m in false-input-messages do
18. FC’s input queue removeStragglerEvent(m)
19. end for each
20. false-state = NC’s state queue tail
21. NC’s state queue remove(false-state)
22. else
23. raise error
24. end if
25. NC’s current state LVT = t1

26. NC’s current state breakpoint = true
27. for each external message x with timestamp t1 in the NC Message Bag do
28. resend (x, t1) to the child FC
29. end for each
30. remove all x in the NC Message Bag with timestamp t1

31. if the size of the NC Message Bag > 0 then
32. reset the NC’s LVT = t1
33. rollbackFileQueues(the time of the NC Message Bag)
34. for each external message x remained in the NC Message Bag do
35. NC’s input queue unprocessEvent(x)
36. end for each
37. remove all x in the NC Message Bag
38. end if
39. send (*, t1) to the child FC
40. next-message-type = @
41. end when

Figure 57. NC algorithm for anomalies with non-empty NC Message Bag

The LVT in the NC’s current state is modified from ta to t1, and the breakpoint flag is set

to true (line 25 and 26). A copy of the NC’s current state will be saved in the state queue to

replace the erroneous state we have just removed. Then, the external messages with time t1 are

resent to the FC and subsequently removed from the NC Message Bag (line 27 to 30). After this,

the NC tests whether there are extra external messages with timestamp greater than t1 left in the

NC Message Bag (line 31). If so, the NC resets its LVT back to t1 (line 32). The NC’s file queues

 90

are rolled back using the current time of the NC Message Bag (i.e. t2) to erase the information

that may have been logged for these extra external messages (line 33). Further, the corresponding

kernel events for the extra external messages are undone in the input queue (line 34 to 36). All

the extra external messages with time t2 up to tn are removed from the NC Message Bag to

maintain the local causality constraint (line 37). Finally, the NC sends a (*, t1) to the FC and sets

the next-message-type accordingly (line 39 and 40).

6.5.5. Enhanced NC algorithm for done message

There are two issues that we have not yet discussed so far. One is detecting messaging anomalies

in the NC algorithm for (D, t); the other is identifying the type of the anomaly after kernel

rollbacks. These issues are addressed as follows:

(1) Detecting anomalies in the NC algorithm for (D, t). Kernel rollbacks are performed

in the middle of the NC algorithm for (D, t) only when anomalies occur. The NC’s

LVT will be decreased during the rollbacks. Therefore, the NC can compare its

LVT recorded before and after sending out external messages to the FC. The

cleanup operations will be performed once a change in the NC’s LVT is found.

(2) Identifying the type of the anomaly. After the kernel rollbacks, the NC can easily

identify the type of the anomaly based on the status of its NC Message Bag. If the

bag is empty, anomaly with empty NC Message is confirmed; otherwise, anomaly

with non-empty NC Message is identified.

The enhanced NC algorithm for (D, t) is given in Figure 58, which combines the logic for

normal execution (as shown by the simplified version in Figure 26) and that for handling both

types of messaging anomalies (as shown in Figure 52 and 57 respectively).

At the beginning of this algorithm, the NC records its current LVT in initial-LVT (line 2).

The execution continues as usual until the external messages in the NC Message Bag are sent to

the FC (line 23 to 27), during which messaging anomalies and kernel rollbacks may happen.

Then, the NC queries its current LVT again, which may have been decreased as a result of kernel

rollbacks, and records the new value in new-LVT (line 28). The new-LVT is compared with the

initial-LVT. If no change is detected, the processing continues in the normal way (line 29 to 37).

Otherwise, a messaging anomaly is found, and the NC invokes the corresponding cleanup

operations based on the current status of its NC Message Bag (line 38 to 43).

 91

1. when a (D, t) is received from the child FC
2. initial-LVT = the NC’s current LVT
3. tL = t; tN = tL + D.ta
4. if (t = 0) & (D.ta = 0) & (next-message-type = *) then
5. call kernel service function synchronizeLPs()
6. end if
7. if next-message-type = * then
8. send (*, t) to the child FC
9. next-message-type = @
10. else
11. min-time = MIN(timestamp of the event pointed by event-pointer,
12. time of the NC Message Bag,
13. tN)
14. if min-time > stop-time then
15. dormant = true
16. else
17. if min-time = the timestamp of the event pointed by event-pointer then
18. for each x in the Event List with min-time do
19. send (x, t) to the child FC
20. move event-pointer to the next event
21. end for each
22. end if
23. if min-time = the time of the NC Message Bag then
24. for each x in the NC Message Bag with min-time do
25. send (x, t) to the child FC
26. end for each
27. end if
28. new-LVT = the NC’s current LVT
29. if new-LVT = initial-LVT then
30. remove all x in the NC Message Bag with min-time
31. if tN = min-time then
32. send (@, t) to the child FC
33. next-message-type = *
34. else
35. send (*, t) to the child FC
36. next-message-type = @
37. end if
38. else
39. if the size of the current NC Message Bag = 0 then
40. invoke cleanup operations for anomaly with empty NC Message Bag
41. else
42. invoke cleanup operations for anomaly with non-empty NC Message Bag
43. end if
44. end if
45. end if
46. end if
47. end when

Figure 58. Enhanced NC algorithm for (D, t)

6.6. ONE LOG FILE PER NODE STRATEGY

Logging facility is provided to log the messages received by the PCD++ processors during the

simulation in a human readable format. In the previous versions, one log file is created for each

 92

PCD++ processor. Depending on the size of the model, this can consume a lot of file descriptors.

For complex models, the required number of file descriptors often exceeds the upper limit

imposed by the underlying operating system. Also, creating these files and transferring data to

them constitute a large operational overhead, especially when the files are accessed via a

Network File System (NFS) during the simulation. When considering the overhead in Time

Warp optimistic simulations, the cost is prohibitive since one file queue is maintained in the

kernel for each of these files and all the file queues participate in rollback operations.

To reduce the overhead of file I/O operations, we implemented a new strategy, called as

one log file per node, in the PCD++ toolkit. Based on this strategy, only one log file is created on

each node for all the processors mapped onto it. The strategy is described as follows:

(1) If the user chooses to log only output messages, only a single log file is created for

the FC on each node. In this case, the output messages from all the Simulators

running on a node are logged in the FC’s log file. Usually, this is sufficient for

visualization purposes. Since the FC is the immediate destination of the output

messages from the Simulators, these messages can be logged directly in the file

queue that is locally maintained by the FC.

(2) Otherwise, only a single log file is created for the NC on each node for logging

whatever types of messages, or all of them, as specified by the user. The NC’s file

queue is shared among all the processors on that node. Messages received by the

NC itself are logged directly into the NC’s file queue, while the other processors on

that node must first get a reference to the local NC (which can be done in constant

time) and then log their received messages into the NC’s file queue.

The one log file per node strategy has the following advantages:

(1) The required number of file descriptors for logging purposes is upper-bounded by

the number of machines used in the simulation, rather than increasing linearly with

the size of the model. For example, a 30 by 30 Cell-DEVS model executed on three

machines consumes totally three file descriptors (one on each machine) rather than

nearly one thousand in the previous case.

(2) The bootstrap time is reduced considerably. During the bootstrap operations, the log

files are created in the NFS over the network. Thanks to the dramatic decrease in

the number of files opened in this process, the bootstrap time is reduced from tens

 93

of seconds to around one second for a middle sized model.

(3) The kernel rollback operations are accelerated since only one operation is

performed to restore the single file queue maintained in the kernel.

(4) The communication overhead is reduced as well. The data concentrated in a single

file queue is flushed to the physical log file in bigger chunks, and less frequently,

over the network.

(5) Higher scalability is allowed under this strategy. Much larger models can be

executed without running out of file descriptors.

 94

CHAPTER 7 OPTIMIZATION ALGORITHMS IN THE WARPED KERNEL

Since Jefferson's original presentation of the Time Warp mechanism, many refinements have

appeared in the literature, which can be considered as falling into two distinct categories

[Low99]: reducing the operational overhead of the Time Warp mechanism, and exploiting more

parallelism than is available in the basic protocol. This chapter covers the integration of several

optimization algorithms into the PCD++ toolkit to improve the performance. The algorithms

discussed here are provided in the WARPED kernel to address both types of optimizations. The

one anti-message per rollback strategy aiming at reducing the overhead of sending anti-messages

during rollbacks is introduced in Section 7.1. The UCSS strategy originally presented in Chapter

6 is further extended to work with the periodic state saving (PSS) strategy to reduce the state-

saving overhead, as discussed in Section 7.2. Finally in Section 7.3 the lazy cancellation strategy

is integrated into the toolkit to exploit the parallelism available within a LP. Unfortunately, these

algorithms cannot be used directly in the PCD++ toolkit as they are. Enhancements and special

considerations are given more emphasis in the following discussions.

7.1. ONE ANTI-MESSAGE PER ROLLBACK

When rollback happens on a process, all messages saved in its output queue that have send time

equal to or greater than the rollback time are sent to their original receivers as anti-messages.

Since multiple messages may have been previously sent to a receiver, the same number of anti-

messages will be sent to that receiver during the rollback, resulting in a flood of anti-messages

exchanged between the processes with the concomitant high communication overhead. However,

if a process has several anti-messages to send to another process, it clearly suffices to send the

one with the earliest time [Lub91], reducing the number of anti-messages that need to be

transmitted to a certain extent.

The one anti-message per rollback strategy consists of two parts as follows:

(1) On the sender side, a temporary queue is used to hold the anti-messages to be sent

to different receivers. The anti-messages in the sender’s output queue that have send

time equal to or greater than the rollback time are tested in sequence. Only a single

 95

anti-message that has the earliest timestamp for each distinct receiver is extracted

and inserted into the temporary queue, others are suppressed. Then, the sender

sends the anti-messages in the temporary queue to their corresponding receivers.

(2) On the receiver side, upon receiving an anti-message, all positive messages from

the same sender and with send time (originally, receive time is used in the kernel

algorithm) equal to or greater than that of the anti-message are annihilated, others

are unprocessed as usual. Thus, one anti-message is now capable of cancelling

multiple positive messages in the receiver’s input queue.

In order to integrate this strategy into the PCD++ toolkit, we made some minor

modifications to the original algorithm in the WARPED kernel. One of them is that the send time is

used as the criterion for annihilating messages in the receiver’s input queue. As hinted in (2), the

original algorithm uses the receive time, which can cause wrong message annihilations and

runtime failure. For example, suppose that an anti-message with send and receive time of 200

triggers the rollback of the FC to the end of WCTS-100. The linking messages between WCTS-

100 and WCTS-200 should be unprocessed rather than imploded during the rollback. If the

receive time is used, these linking messages would have been imploded since they have the same

receive time as the anti-message. As a result, the simulation cannot resume forward execution

after the rollback. However, if the send time is used instead, these messages will be unprocessed

normally since their send time 100 is less than the send time of the anti-message. In fact,

according to Kernel Assumption 3, the send time must be less than or equal to the receive time

for any message in the system. Hence, our version is stricter than the previous one, confining

message implosions to the appropriate scope.

There are two points that deserve attention. First, this strategy is intended to reduce the

number of anti-messages transmitted during rollbacks. It does not modify the part of the rollback

algorithm for handling positive straggler messages, nor does it reduce the number of rollbacks.

Secondly, this strategy still belongs to the aggressive cancellation category. There is no delay in

the delivering of anti-messages, only with reduced number.

 96

7.2. PERIODIC STATE SAVING

In Time Warp optimistic simulations, the state of each process must be saved regularly,

regardless of whether or not rollbacks actually occur [Lin93]. To achieve better performance,

one approach for reducing the operational overhead is to decrease the number of state-saving

operations. Under the PSS strategy, the state of a simulation object is saved infrequently every a

number of events. As introduced in Section 6.4, the WARPED kernel implements the PSS strategy

using state managers of type InfreqStateManager, which is a subtype of the general

StateManager that enforces the CSS strategy. An introduction of the original algorithm of the

InfreqStateManager is given in Section 7.2.1. Section 7.2.2 covers the extension of our UCSS

strategy to incorporate with the PSS strategy. The PSS strategy is integrated into the PCD++

toolkit using the additional flexibility made available by the enhanced UCSS mechanism, as

discussed in Section 7.2.3. Finally, Section 7.2.4 describes the enhancements to the kernel fossil

collection algorithm to address the specific requirements imposed by the PSS strategy.

7.2.1. Strategy description

Figure 59 shows the original implementation of the PSS strategy in the WARPED kernel using a

period of 2. The InfreqStateManager uses an integer, called as state-period, to control the state-

saving interval in terms of WCTS. The value of state-period can be set by users at compile time.

Once set, this value will not change during the simulation. That is, the state manager implements

the PSS strategy using a static state-saving interval.

WCTS-0 ...WCTS-t1 WCTS-t2 WCTS-t3

save
state

wallclock time

save
state

WCTS-t4

save
state

state-period = 2
Figure 59. Periodic state-saving strategy with a static interval of 2

In the example, the state-period is set to 2. Therefore, the states of all the processes on

this LP will be saved every two wall clock time slices (e.g. for virtual time 0, t2, t4, t6, and so on).

Further, the state of a process is saved only after executing the first event in the WCTS, as

illustrated by the dashed arc in the diagram.

 97

As not every event is check-pointed, a process needs to redo intermediate events between

the last saved state before the rollback time and the straggler that caused the rollback to reinstate

the content of its current state, an execution phase called coasting forward [Fuj90]. Consider the

example in Figure 60 where rollbacks are triggered by a straggler message with timestamp t4

when the simulation executes in WCTS-t5.

Figure 60. Rollbacks with the periodic state-saving strategy

If the CSS strategy is employed, the states of the processes would be restored to those

saved at the end of WCTS-t3, and from there the forward execution resumes right after the

rollbacks. Now, the processes did not save their states in WCTS-t3 under the PSS strategy. The

most recent states before the current rollback time t4 were saved at the beginning of WCTS-t2.

Therefore, the coasting forward operations are performed, reprocessing the events from the

second one in WCTS-t2 (the event immediate after the check-pointed event) up to the last one in

WCTS-t3. Fortunately, the overhead of coasting forward is less than normal event execution

since any scheduling of new events is suppressed. The only purpose for the coasting forward

phase is to reinstate the content of the current states of the processes at the end of WCTS-t3,

based on which the forward execution can be carried out.

The coasting forward operation is also controlled by the state-period variable in the

kernel. If it is set to a nonnegative value in a state manager, the coasting forward operation will

be performed for the process associated with that state manager during rollbacks. On the other

hand, if it is -1, as in the case of the CSS strategy, the coasting forward phase is skipped.

A prominent challenge of integrating the PSS strategy into the PCD++ toolkit is handling

the messaging anomalies as discussed in Chapter 6. If the NC saves its state infrequently, the

strategic breakpoint states that should be saved after recovering from the anomalies may be lost.

Moreover, it is hard, if not impossible, to regenerate the breakpoint state during the coasting

forward phase in later rollbacks. This problem can be solved if the NC can still use the CSS

strategy with the StateManager and avoid the coasting forward phase during rollbacks, while all

 98

the other processors utilizing the PSS strategy with the InfreqStateManager. In this case, we

have a hybrid strategy where both CSS and PSS strategies are employed simultaneously in the

simulation system. Since there is only one NC on each machine (and potentially tens of

thousands of Simulators), using this strategy does not wipe out much of the advantage associated

with PSS. However, the kernel only allows one type of state managers, either the StateManager

or the InfreqStateManager, to be used for all the processors in the system. Hence, a more flexible

mechanism is needed to realize the hybrid strategy, as we will explain in the following sections.

7.2.2. UCSS mechanism revisited

In Section 6.4, we introduced the two-level UCSS mechanism that allows the application to

decide when to save the state of a process on an event-by-event basis. This mechanism has been

integrated with the CSS strategy, resulting in the risk-free MTSS strategy that can greatly reduce

the number of states saved during the simulation. We now extend the UCSS mechanism so that

processes can choose either type of state-saving strategy individually at runtime.

The skip-state-saving flag is still used with the highest priority in the extended UCSS

mechanism. Additionally, we defined another flag with a lower priority, called as do-state-

saving, in the InfreqStateManager associated with each process. By default, this flag has a value

of false. The state-saving algorithm in the InfreqStateManager is modified so that, if the do-

state-saving is set to true by a process, the InfreqStateManager saves states after every event,

just like the StateManager does under CSS strategy. Therefore, the enhanced UCSS mechanism

has a structure as illustrated in Figure 61.

Figure 61. UCSS structure for hybrid state-saving strategy

Using the UCSS mechanism, a process can dynamically switch between the PSS and the

CSS strategies by setting the do-state-saving flag at level 1. As the skip-state-saving flag has a

higher priority at level 0, the MTSS strategy, previously works with the CSS strategy, takes

effect under the PSS strategy as well. Thus, the enhanced UCSS mechanism virtually gives

 99

simulator developers the full power to dynamically choose the best possible combination of

state-saving strategies at runtime.

7.2.3. Integrating PSS strategy in PCD++

Thanks to the UCSS mechanism, integrating the PSS strategy into the PCD++ toolkit can be

done with ease, as described below:

(1) The NC sets the do-state-saving flag to true in its associated InfreqStateManager

when it is created. Hence, the NC can still utilize the CSS strategy during the

simulation. On the other hand, all the other PCD++ processors (i.e. the FC, the

Root, and the Simulators) use their InfreqStateManager to realize the PSS strategy.

(2) The NC also sets the state-period variable in its state manager to -1 to suppress the

coasting forward operation during rollbacks. The value of state-period for the other

PCD++ processors is specified by the user at compile time.

(3) The skip-state-saving flag is set when necessary by all the processors, including the

NC, in their message-processing algorithms as described in Section 6.4. Hence, the

MTSS strategy is integrated into the hybrid state-saving mechanism as well. In this

case, a processor’s current state is no longer saved after executing the first event in

a WCTS. Instead, it is saved after processing the first required message (as

demanded by the MTSS strategy), which is close to the end of the WCTS. This

reduces the number of events that need to be reprocessed in the coasting forward

phase, allowing better performance.

A rollback scenario under the hybrid state-saving strategy is depicted in Figure 62.

Figure 62. Rollbacks under the hybrid state-saving strategy

There are two major differences compared with the previous case as in Figure 60. First,

the states of the processors are saved much closer to the end of the WCTS, shown by the dashed

 100

arc in the corresponding wall clock time slices. This leads to shorter coasting forward phases.

Secondly, since the NC still operates under the CSS strategy, its state is restored directly to the

end of WCTS-t3 during the rollback and no coasting forward is performed for the NC.

7.2.4. Modifications to the fossil collection algorithm

The fossil collection algorithm was discussed in Section 4.2.2. When the GVT moves forward,

the GVT manager reclaims all but the last saved state older than the GVT along with the

messages with timestamps less than the GVT in the input and output queues. This algorithm

works well with the CSS strategy. Actually, the GVT value indicates the least timestamp of any

potential straggler or anti-message that could be received by a process. In other words, it is the

minimum rollback time for any process in the system. During rollbacks, the state of a process

will be restored to the last one saved at virtual time earlier than the GVT. As we know, this last

state is left in the state queue during fossil collections. Hence, the state restoration is successfully

performed for the process, and the rollback completes as expected even in this extreme case

where the rollback time is equal to the GVT.

However, when this fossil collection algorithm is used with the PSS strategy, runtime

crash can happen during the coasting forward operations. Since the state of a process is saved

infrequently, the restored state, i.e. the last one available in the state queue older than the GVT,

could be saved at virtual time much earlier than the GVT. Although the state restoration can be

done without problem in this case, the following coasting forward operations will fail since the

events with timestamp between the time of the restored state and the GVT have already been

garbage collected.

This scenario is illustrated in Figure 63, where the fossil collections have been done with

a GVT value of 28. At this time, a straggler message with timestamp 32 arrives, forcing the

process to be rolled back to virtual time 30. However, there is no state saved at time 30, and the

last state available in the state queue was saved at time 15, a time well before the GVT. Hence,

the state of the process is restored to this last state and the events with timestamp between 21 and

30 need to be reprocessed during the coasting forward. However, some of these events (e.g.

events with timestamp 21 and 25) have already been reclaimed during the previous fossil

collections, resulting in the failure of the coasting forward operation.

 101

Figure 63. Example scenario for the failure of coasting forward operation

Hence, the fossil collection algorithm needs to be enhanced to deal with this problem. In

the new algorithm, fossil collection is no longer performed using the computed GVT. Rather, a

minimum value among the virtual time of the last states saved older than the GVT is calculated

for all the processes mapped on a LP. Then, this minimum value is used to do the fossil

collection. Figure 64 shows a typical scenario for fossil collections on two LPs under the new

scheme.

Figure 64. Example scenario for fossil collections under the new scheme

As shown in the diagram, after computing the new GVT value of t4, the GVT manager on

each LP performs fossil collection for the processes under its control. To do so, the GVT

manager calculates the minimum virtual time among the last states saved before the current

GVT. The resulting minimum virtual time among state S1, S2, and S3 on LP0 is t2, while that

among state S1’, S2’, and S3’ on LP1 is t3. Hence, virtual time t2 and t3 (instead of the GVT t4) are

 102

used respectively by the GVT managers on LP0 and LP1 to do fossil collections. The events with

timestamp less than the corresponding minimum virtual time are removed from the input and

output queues. As we can see, potentially different virtual time may be used by the LPs during

fossil collections under the new scheme.

Eventually, the GVT is advanced to infinity when the simulation ends. Only at that time,

does the GVT manager use the GVT value directly to do the last fossil collection. Thus, all states

and events in the queues are reclaimed and data in the file queues are flushed, just like in the

original scheme.

7.2.5. Miscellaneous modifications

Before the PSS strategy can be successfully integrated into the PCD++ toolkit, two more

problems need to be fixed in the kernel, as summarized below:

(1) Determining the start point of the coasting forward operation. The original

algorithm for the PSS strategy supposed that the state of a process is saved only

after executing the first event in a WCTS. Hence, it rigidly chose the second event

in that WCTS as the start point of the coasting forward operation during rollbacks.

Under the MTSS strategy, however, a process now saves its state only after

executing the first required message, which is certainly not the first and should be

close to the end of the WCTS. Therefore, we need a more flexible way to determine

the start point of the coasting forward. The resulting algorithm retrieves the inPos

of the state restored during the rollback, and starts the coasting forward from the

event immediately after the one pointed by the inPos, regardless of its actual

position in the WCTS.

(2) Suppressing output to files. During the coasting forward, any scheduling of new

events is suppressed by the kernel. However, the same was not done to prevent

potential output to files. Duplicate data was inserted into the file queues as events

were reprocessed. The original algorithm has been enhanced to withhold operations

on the file queues in the coasting forward phase.

 103

7.3. LAZY CANCELLATION

With the aggressive cancellation strategy, all the messages that have been optimistically

processed ahead of the rollback time must be cancelled. However, it is possible that a true

message may be sent prematurely for the wrong reason [Lin91]. Better performance could be

achieved if the cancellation of the true message is suppressed during the rollback. The lazy

cancellation strategy is a refinement that can be thought of as repairing incorrect computation,

rather than discard it altogether as the aggressive cancellation strategy does [Low99]. To do so,

the sending of anti-messages is deferred during rollbacks and the process resumes forward

execution immediately after the state restoration and message un-processing. New output

messages are compared with those speculatively generated before the rollback. If they are

deemed as identical, called as lazy hit, no action is taken; otherwise, referred to as lazy miss, the

deferred anti-message is sent out, followed by the new output message, to replace the original

one at the destination.

Nevertheless, this strategy can also degrade performance since incorrect computation is

not cancelled as prompt as is the case with aggressive cancellation. A key factor, so-called the

sensitivity of output message [Lin91], in determining the performance of lazy cancellation is the

probability that a given straggler will actually affect the results of the messages that were rolled

back to accommodate the straggler, i.e. the probability of lazy miss. If this probability is low,

then the lazy cancellation strategy can be expected to outperform the aggressive cancellation

strategy.

The following provides a summary of our attempts to integrate the lazy cancellation

strategy into the PCD++ toolkit.

(1) Choosing the appropriate implementation level. Previously, the strategy was

realized at the local level in the WARPED kernel, where simulation objects perform

lazy cancellation operations independent of each other. However, this approach will

cause rollback failure when used in PCD++. As the PCD++ processors on a LP

work cooperatively to implement the P-DEVS formalism and control messages are

passed back and forth between them during the simulation, a processor cannot

resume forward execution regardless of the others. As discussed in Section 6.1, all

the processors on a LP must be rolled back collectively to the end of a previous

WCTS to ensure that the forward execution can be successfully resumed after the

 104

rollbacks. Therefore, we modified the kernel algorithm to implement the lazy

cancellation strategy at the partition level instead. In this case, message

cancellations between the LPs are performed using the lazy cancellation strategy,

while those between the local processors (or simulation objects) within a LP still

adhere to the aggressive cancellation strategy.

(2) Implementing the function for comparing external messages. The kernel invokes a

function called lazyCmp to determine whether a lazy hit or miss occurs during lazy

cancellation. Since the lazy cancellation strategy is now realized at the partition

level and only external messages are exchanged between the LPs, we only need to

define the lazyCmp function for comparing external messages at the PCD++ layer.

Two external messages are considered as identical if they have the same send time,

receive time, sender, receiver, sign, destination port, and value.

 105

CHAPTER 8 EXPERIMENTS AND PERFORMANCE ANALYSIS

In this chapter, we study the performance of the PCD++ toolkit for Cell-DEVS models

quantitatively. Our experiments were carried out on a HP PROLIANT DL Server, a cluster of 32

compute nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2100 266MHz DDR RAM) running

Linux WS 2.4.21 interconnected through Gigabit Ethernet and communicating over MPICH

1.2.6. A brief introduction to the Cell-DEVS models tested in our experiments is provided in

Section 8.1. The performance metrics are presented in Section 8.2. The improvements achieved

by using the one log file per node strategy and the message type-based state-saving (MTSS)

strategy are covered in Section 8.3 and 8.4 respectively. The execution results of the Cell-DEVS

models using the standard Time Warp algorithms are presented in Section 8.5, while the effects

of different Time Warp optimizations are discussed in Section 8.6.

8.1. INTRODUCTION TO THE CELL-DEVS MODELS

The performance of the PCD++ simulator was tested with two Cell-DEVS models, including a

model for fire propagation in forest based on Rothermel’s mathematical definition [Rot72] and a

3-D watershed model representing a hydrology system originally presented in [Moo96] and

enhanced in [Ame01]. Since these models have already been validated in the previous

researches, we focus on the model verification in our experiments to ensure that the PCD++

simulator executes the models correctly.

The correctness of the simulation is verified using the methods as summarized below:

(1) Verification with debugging files. During the simulation, a debugging file is created

on each node to log the detailed information of the messages executed on that node.

These debugging files are carefully analyzed after the simulation to ensure that the

variables defined in the models and the PCD++ processors are manipulated

correctly according to the message-processing algorithms as defined in Section 5.5.

(2) Verification of the simulation results. A distributed simulation is correct when it

produces simulation results that are legal results from a traditional, single process

simulator [Fre02]. In our experiments, the models are first executed on a single

 106

node using the standalone version of the CD++ toolkit, and the generated

simulation results are used as reference outputs for verification purposes. These

models are then executed with PCD++ on multiple nodes. After each run, the

simulation results are compared with the reference outputs to ensure that the same

results are generated with PCD++ as those produced with the standalone version.

Also notice that the performance data presented in the following sections only reflects the

evaluation results for the specific models tested in our experiments. A thorough analysis of the

performance of the PCD++ simulator for models with different characteristics needs to use some

benchmarks such as the DEVStone [Gli04], which will be addressed in the future work.

The CD++ definitions of the fire propagation and the watershed models are given next,

while more details on the models themselves can be found in [Ame01].

The fire propagation model computes the ratio of spread and intensity of fire in forest

based on specific environmental and vegetation conditions. Figure 65 shows the definition of the

model in CD++ using environmental values obtained for a fuel model group number 9, a SE

wind of 24.135 km/h and a cell size of 15.24×15.24 m.

Figure 65. Definition of the fire propagation model in CD++

The watershed model represents the water flow and accumulations depending on the

characteristics of different vertical layers: air, vegetation, surface waters, soil, ground water, and

bedrock [Moo96]. Based on the mathematical equations, it was coded as a 3-D Cell-DEVS

model in CD++ to simulate the accumulation of water under the presence of constant rain (7.62

mm/hr) [Ame01]. Figure 66 shows the model definition with a 20×20×2 cell space in CD++.

 107

Figure 66. Definition of the watershed model in CD++

8.2. PERFORMANCE METRICS

A set of 21 key values was collected during the experiments to gauge the performance and

profile the simulation system. These values fall into two categories based on their intended

purposes, namely performance measurement and system profiling.

The first group consists of 3 values collected from the execution environment to measure

the performance of the simulator in terms of execution time, memory consumption, and CPU

utilization, as shown in Table 1. The overall speedup for N nodes is defined as follows.

T(1)Overall Speedup =
T(N)

 (1)

 108

Where T(N) represents the total execution time taken by the simulation running on N

nodes, and T(1) stands for the best possible serial execution time measured on one node.
Table 1. Metrics for performance measurement

Category Metric Name Description
Execution Time (T) Total execution time of the simulation

Memory Usage
(MEM)

Average and maximum amount of memory
consumed by the simulation (Kb) Performance

Measurement CPU Usage
(%CPU)

Share of the elapsed CPU time expressed as
a percentage

The second group has 18 values acquired by the PCD++ toolkit itself at runtime to profile

the simulation system, as shown in Table 2. They are generated at the partition level by the LP

on each compute node. Combining the data collected on all the nodes, we can have a general

picture about the execution of the whole simulation system.
Table 2. Metrics for system profiling

Category Metric Name Description
Events Received (ER) Number of events inserted into the input queue
Events Imploded (EI) Number of events annihilated in the input queue1
Events Executed (EE) Number of events executed

Event-executing Time (ET) Time spent on executing events
States Saved (SS) Number of states saved during the simulation

States Skipped (SK) Number of states skipped by the MTSS strategy
States Reduced (SR) Number of states reduced by the PSS strategy

State-saving Time (ST) Time spent on saving states
Primary Rollbacks (PR) Number of primary rollbacks

Secondary Rollbacks (SR) Number of secondary rollbacks
Rollbacks (RB) Total number of rollbacks
Rollback Length

(RBL)
Length of rollbacks expressed as the number of
events unprocessed

Rollback Time (RBT) Time spent on rollbacks
Coast Forward Length

(CFL)
Length of coasting forward phases expressed as
the number events reprocessed

Coast Forward Time (CFT) Time spent on coasting forward operations
Lazy Hit (LH) Lazy hits under lazy cancellation strategy

Lazy Miss (LM) Lazy misses under lazy cancellation strategy
Bootstrap Time (BT) Time spent on bootstrap operations

System
Profiling

Running Time (RT) Time spent on simulation after bootstrap (T - BT)

1 When the one anti-message per rollback strategy is used, EI is the number of anti-messages received on each node. The actual
number of message implosions should be greater than the EI value since one anti-message is capable of annihilating multiple
positive messages in this case.

 109

In the standalone and conservative versions, we can tally the number of messages

executed in the simulation by analyzing the generated log files. However, the numbers of events

received (ER), imploded (EI) and executed (EE) in optimistic simulations need to be collected at

runtime within the kernel. The log files only contain those true messages that have survived

throughout the simulation. The average time required for processing an event is the ratio of the

total time spent on event execution (ET) to the number of events executed in the simulation (EE).

Metrics related to state-saving operations include the number of states saved in the state queues

(SS), the number of states skipped by the MTSS (SK) and PSS (SR) strategies respectively, and

the time spent on saving states (ST), by which we can have a better insight into the state-saving

process. Also, the average time required for saving a state can be calculated by ST/SS. The total

number of rollbacks (RB) is the sum of the primary (PR) and secondary (SR) rollbacks happened

in the system (i.e. RB = PR + SR). The total length of the rollbacks (RBL) and the time for

performing the rollback operations (RBT) are collected during the simulation, based on which

we can obtain both the average length (RBL/RB) and the average processing time (RBT/RB) of a

single rollback. The overhead of coasting forward is profiled by the length (CFL) and dedicated

time (CFT) of the operations, while the effect of the lazy cancellation strategy is measured by the

number of lazy hit (LH) and miss (LM). The bootstrap time (BT) serves two purposes: first, we

can conveniently use it to measure the performance improvement resulting from the one log file

per node strategy, as we will discuss in the next section; secondly, more accurate results about

the real gain derived from the parallel algorithms can be obtained if we subtract the BT from the

total execution time (T). Hence, we use two different speedups in our analysis. An overall

speedup based on the total execution time (including the BT) reflects how much faster the

simulation runs on multiple machines than it does on a single one as felt by the users. The

definition of the overall speedup is given by Equation (1). Moreover, an algorithm speedup

(without considering the BT) is used to assess the performance gain attributed to the parallel

algorithms alone, as defined below.

1

T(1) - BT(1) RT(1)Algorithm Speedup =
1 RT(N) T(N) - BT(i)
N

N

i=

=

∑
 (2)

Where BT(1) and RT(1) represent the bootstrap and running time collected on a single

node respectively, BT(i) stands for the bootstrap time recorded on node i (1 ≤ i ≤ N) when the

simulation is executed on N nodes, and RT(N) is the average running time on N nodes. As in the

 110

overall speedup definition, T(N) represents the total execution time taken by the simulation

running on N nodes, and T(1) stands for the best possible serial execution time measured on one

node.

8.3. EFFECT OF ONE LOG FILE PER NODE

In this section, we discuss the performance improvement derived from the one log file per node

strategy using a fire propagation model of 900 cells arranged in a 30×30 mesh. The standard

Time Warp algorithms, i.e. LTSF scheduling, copy state-saving, pGVT algorithm, and

aggressive cancellation, were used in the experiments. Also, the MTSS strategy was turned on in

all runs. The simulator was configured to log all the messages exchanged during the simulation.

The model was executed on a single node and 4 nodes (respectively) with and without

using the one log file per node strategy (respectively) to simulate the behavior of forest fire

during a period of 5 hours. The resulting execution time (T) and bootstrap time (BT) in these

four cases are illustrated in Figure 67, where the BT for 4 nodes is the arithmetic average of the

BT values collected on these nodes.

18.7162

5.2253
9.657

2.6058

24.3844

23.5872

0.2121
0.8614

0

5

10

15

20

25

30

35

40

45

1 node (strategy OFF) 1 node (strategy ON) 4 nodes (strategy OFF) 4 nodes (strategy ON)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Running time Bootstrap time

Figure 67. Execution and bootstrap time before and after one log file per node strategy on 1 and 4 nodes

Notice that the bootstrap time is even greater than the actual running time when the

strategy is turned off. This clearly indicates that the bootstrap operation is really a bottleneck

during the simulation. When the strategy is turned on, the bootstrap time is reduced significantly.

As we can see, it is reduced by 99.1% on a single node and by 96.47% on 4 nodes. Furthermore,

 111

the running time is decreased considerably as well due to more efficient communication, I/O, and

rollback operations associated with the one log file per node strategy, as discussed in Section 6.6.

It is reduced by 72.08% on 1 node and by 73.02% on 4 nodes.

The CPU usage (%CPU) monitored in our experiments also suggests that the file I/O

operation is a major barrier in the bootstrap phase. The CPU usage collected before and after

applying the one log file per node strategy on a single node is shown in Figure 68.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Time(sec)

%
CP

U

0

20

40

60

80

100

120

1 2 3 4 5

Time(sec)

%
C

PU

Figure 68. CPU usage before and after one log file per node strategy on 1 node

Shown in Figure 68(a), when the strategy is turned off, the CPU essentially remains idle

in the first 23 seconds (corresponding to the observed BT), during which a majority of time has

been dedicated to I/O operations for creating the log files at the NFS server over the network. At

the end of the simulation, the logged data is flushed to the physical files, resulting in intensive

I/O operations again. As expected, the CPU rests idle in the last 12 or so seconds. On the other

hand, the computation is condensed when the strategy is applied to the simulator, as shown in

Figure 68(b). Hence, the CPU is utilized much more efficiently with the one log file per node

strategy. The similar pattern was observed in simulations running on multiple nodes.

In addition, several other observations can be obtained in the experiments as follows:

(1) The bootstrap time tends to increase when more nodes are used to do the

simulation. For example, the BT increased from 0.2121 seconds on 1 node to

0.8614 seconds on 4 nodes in our experiments. The reason is that the number of log

 112

files increases with the number of nodes, causing higher delays in communication

and file I/O operations at the NFS server.

(2) The bootstrap time also tends to increase somewhat along with the size of the model

because of the additional operations for memory allocation and object initialization

in the main memory. However, this is a relatively moderate increase when

compared with the previous case.

(3) Even though the bootstrap time is reduced significantly with the one log file per

node strategy, it still constitutes an overhead that cannot be ignored when we

measure the real effect of the parallel algorithms. In the experiments, it accounts for

3.9% and even 24.84% of the total execution time on 1 and 4 nodes respectively.

This is why we need to use both the overall and algorithm speedups in our analysis

of the performance.

8.4. EFFECT OF MESSAGE TYPE-BASED STATE SAVING

The MTSS strategy has been introduced in Section 6.4. We now demonstrate its associated

performance improvement when used with the CSS strategy. The same fire propagation model

was used for this purpose. Besides the standard Time Warp algorithms, the one log file per node

strategy is also applied to the simulator in the following experiments.

The model was executed on 1 and 4 nodes (respectively) with and without the MTSS

strategy (respectively). The number of states saved in the simulation (SS) and the time spent on

state-saving operations (ST) are shown in Figure 69. Here, the data for 4 nodes is the average of

the corresponding values collected on the nodes.

42278

21435
17356.75

9070.25

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 node (MTSS
OFF)

1 node (MTSS
ON)

4 nodes (MTSS
OFF)

4 nodes (MTSS
ON)

St
at

es
 s

av
ed

 in
 th

e
si

m
ul

at
io

n

2.0394

1.4295

0.8373
0.6049

0

0.5

1

1.5

2

2.5

1 node (MTSS
OFF)

1 node (MTSS ON) 4 nodes (MTSS
OFF)

4 nodes (MTSS
ON)

St
at

e-
sa

vi
ng

 ti
m

e
(s

ec
)

Figure 69. States saved and state-saving time before and after MTSS strategy on 1 and 4 nodes

 113

Owing to the MTSS strategy, the number of states saved during the simulation is reduced

by 49.29% and 47.74% on 1 and 4 nodes respectively. Accordingly, the time spent on state-

saving operations is decreased by 29.9% and 27.76%.

6.3447
5.2253

2.821 2.6058

0.2121

0.9257 0.8614

0.2131

0

1

2

3

4

5

6

7

1 node (MTSS OFF) 1 node (MTSS ON) 4 nodes (MTSS OFF) 4 nodes (MTSS ON)

Ex
ec

ut
io

n
tim

e
(s

ce
)

Running time Bootstrap time

Figure 70. Running and bootstrap time before and after MTSS strategy on 1 and 4 nodes

The resultant running and bootstrap time are shown in Figure 70, where the BT for 4

nodes is the average of the corresponding values collected on the nodes. While the bootstrap time

remains nearly unchanged in both cases, the actual running time is reduced by 17.64% and

7.63% on 1 and 4 nodes respectively because fewer states are saved in the state queues and,

potentially, removed from the queues during rollbacks.

13112 9696

594944

445440

284808

384917

3804852436

0

100000

200000

300000

400000

500000

600000

700000

1 node (MTSS OFF) 1 node (MTSS ON) 4 nodes (MTSS OFF) 4 nodes (MTSS ON)

M
em

or
y

co
ns

um
pt

io
n

(K
b)

avg. max

Figure 71. Average and maximum memory consumption before and after MTSS strategy

Probably the most noticeable effect of the MTSS strategy is the decrease in memory

consumption. Figure 71 shows the time-weighted average and maximum memory consumption

with and without the strategy for the fire propagation model on 1 and 4 nodes. The time-

 114

weighted average was calculated using an interval of 1 second. For 4 nodes, the data was also

averaged over the nodes. The average memory consumption declines by 26% in both cases,

while the peak memory consumption decreases by 25.13% and 27.44% on 1 and 4 nodes

respectively.

8.5. EXPERIMENTS WITH STANDARD TIME WARP PROTOCOL

Performance is of paramount important in parallel and distributed simulations. The key metrics

for evaluating the performance of the PCD++ simulator are the execution time and speedup. In

this section, we analyze the execution results of the Cell-DEVS models with the standard Time

Warp algorithms. The one log file per node and MTSS strategies were applied to the simulator in

the experiments as well.

A simple partition strategy was adopted for all the models in the following tests. It evenly

divides the cell space into horizontal rectangles, as illustrated in Figure 72 for a 30×30 model

partitioned over 3 nodes. Using different partition strategies could have a big impact on the

performance of the simulation. Since the workload on the nodes is unpredictable and keeps

changing during the simulation, it is hard, if not impossible, to predict the best partition strategy

for a given model before the simulation. This problem can be alleviated by using some dynamic

load-balancing techniques in the simulation algorithms, which is out of the scope of this work.

Figure 72. A simple partition strategy for Cell-DEVS models

• Fire Propagation

The fire propagation model is used again to assess the performance of the PCD++

simulator. We tested this model using different sizes of cell spaces: 20×20 (400 cells), 25×25

 115

(625 cells), 30×30 (900 cells) and 35×35 (1225 cells). The model was executed to simulate the

fire behavior over a period of 5 hours.

Figure 73 shows a comparison between our optimistic simulator and the previous

conservative simulator [Tro01, Tro03] for different model sizes on a set of compute nodes. In all

cases, the optimistic simulator markedly outperforms the conservative one.

Fire Propagation (20×20)
40.2842

17.9907

9.8919 8.6430

1.92541.87871.97192.0733

0
5

10
15
20
25
30
35
40
45

1 2 3 4
Number of nodes

Ex
ec

ut
io

n
tim

e
(s

ec
)

conservative optimistic

Fire Propagation (25×25)
62.3461

38.0282

12.6823 11.0231
2.60912.52372.79593.2949

0

10

20

30

40

50

60

70

1 2 3 4

Number of nodes
Ex

ec
ut

io
n

tim
e

(s
ec

)
conservative optimistic

Figure 73. Comparison between optimistic and conservative simulators using the fire model

There are three major contributing factors:

(1) The PCD++ toolkit has been optimized with the one log file per node strategy.

Hence, its bootstrap time is substantially less than that of the conservative one.

Although the data logged during the simulations is the same for both simulators, the

number of log files generated by PCD++ is only a small fraction of that created by

the conservative simulator. This factor accounts for much of the difference in the

execution time on a single node.

(2) The Time Warp optimistic algorithms avoid, for the most part, the serialization of

execution that is inherent in the conservative algorithms, and hence exploit higher

degree of concurrency in the application.

(3) The non-hierarchical approach adopted in the PCD++ toolkit outperforms the

hierarchical one of the conservative simulator. The flattened structure reduces the

communication overhead and allows more efficient message exchanges between the

PCD++ processors.

Figure 74 shows the total execution time of the fire model with different sizes executed

on 1 up to 8 nodes. For any given number of nodes, the execution time always increases as the

size of the model goes up. Moreover, the execution time rises less steeply when more nodes are

used to do the simulation. For example, as the model size increases from 400 to 1225 cells, the

 116

execution time ascends sharply by nearly 280% (from 2.0733 to 7.8702 seconds) on 1 node,

whereas it merely rises by 93% (from 2.036 to 3.9274 seconds) on 5 nodes.

Total Execution Time

0

5

10

Number of nodes

Ti
m

e
(s

ec
)

20×20 25×25 30×30 35×35

20×20 2.0733 1.9719 1.8787 1.9254 2.036 2.3429 2.5213 2.5028

25×25 3.2949 2.7959 2.5237 2.6091 2.6029 2.9493 2.8421 2.9809

30×30 5.0442 3.5232 3.1573 3.0922 3.042 3.3113 3.3413 3.5372

35×35 7.8702 4.7138 3.9667 3.8138 3.9274 4.0409 4.0879 4.3355

1 2 3 4 5 6 7 8

Figure 74. Total execution time for fire model of various sizes on a set of nodes

On the other hand, for a fixed model size, the execution time tends to, but not always,

decrease when more nodes are utilized. For instance, the execution time for the 20×20 model

decreases from 2.0733 to 1.8787 seconds when the number of nodes climbs from 1 to 3.

However, when the number of nodes increases further, the downward trend of execution time is

reversed. It increases from 1.9254 to 2.5028 seconds as the number of nodes rises from 4 to 8.

Actually, when the number of nodes goes beyond 5, the execution time is even larger than that

recorded on a single node. The similar pattern can be discerned in the diagram for all the

different model sizes tested in the experiment. When the model is partitioned onto more and

more nodes, the increasing overhead involved in inter-LP communication and potential rollbacks

eventually degrades the performance of the simulation system. Therefore, choosing the

appropriate number of nodes to execute a given model is actually an art of balance. A trade-off

between the benefits of higher degree of parallelism and the concomitant overhead costs needs to

be reached when we consider different partition strategies, which could be one of the most

difficult decisions for the modelers.

From Figure 74, we can also find that the best performance can be achieved on a larger

number of nodes as the model size increases. The shortest execution time is achieved on 3 nodes

for the 20×20 and 25×25 models, while it is obtained on 4 or 5 nodes for the other two larger

models. It is clear that we should use more nodes to simulate larger and more complex models

where intensive computation is the dominant factor in determining the system performance.

 117

The bootstrap time collected during the simulations is subtracted from the total execution

time to measure the performance gain attributed to the Time Warp optimistic algorithms. Due to

the one log file per node strategy, the recorded bootstrap time varies from 0.1218 to 1.0249

seconds depending on the model size and the number of nodes involved in the simulation. The

resulting running time is shown in Figure 75.

Running Time

0

2

4

6

8

10

Number of nodes

Ti
m

e
(s

ec
)

20×20 25×25 30×30 35×35

20×20 1.9515 1.4232 1.3574 1.4296 1.5187 1.7175 1.9364 1.8842

25×25 3.1273 2.1225 1.8953 1.8656 1.8715 2.1485 2.1213 2.2520

30×30 4.3566 2.8838 2.5237 2.3314 2.1982 2.5312 2.3975 2.6553

35×35 7.6428 3.9952 3.2959 3.0224 3.0367 3.0952 3.0630 3.2527

1 2 3 4 5 6 7 8

Figure 75. Running time for fire model of various sizes on a set of nodes

Based on the above execution and running time, we can calculate the overall and

algorithm speedups using Equation (1) and (2) respectively, as shown in Figure 76.

Overall Speedup

0.82840.82230.8849
1.01831.0768

1.10361.0514

1.15931.1172

1.26591.26281.3056
1.1785 1.1053

1.50971.5233
1.65821.63131.5976

1.4317 1.4260

1.6696

1.9841 1.92521.94762.00392.0636

1.8153

0.0

0.5

1.0

1.5

2.0

2.5

2 3 4 5 6 7 8
Number of nodes

20×20 25×25 30×30 35×35

Algorithm Speedup

1.3713
1.4377

1.1362
1.0078 1.0357

1.2850
1.3650

1.6710
1.4734

1.6501

1.4556
1.3887

1.6763 1.4742

1.9819

1.5107

1.7263
1.8687

1.64071.7212 1.8171

2.3497
2.49522.46922.51682.5288

2.3189

1.9130

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4 5 6 7 8

Number of nodes20×20 25×25 30×30 35×35

Figure 76. Overall and algorithm speedups for fire model of various sizes on a set of nodes

 118

As we can see, higher speedup can be obtained with larger models. For any given model

size, a peak value exists in the speedup curve, indicating the best performance achieved for that

model. For example, the highest overall and algorithm speedups for the 35×35 model are

obtained on 4 nodes with values of 2.0636 and 2.5288 respectively. The algorithm speedup is

always higher than its counterpart overall speedup, an evidence showing that the Time Warp

optimistic algorithms are major contributors to the performance improvement.

• A Watershed Model

The watershed model was tested in our experiments to evaluate the performance of

PCD++ for simulating models of complex physical system. Due to its complex rule definitions,

this model requires high computing power to carry out the simulation. Also, it uses a

neighborhood consisting of 10 cells at both layers of the cell space, which allows us to

investigate how well our simulator performs when the interaction between neighboring cells is

frequent. We executed the model using two different cell spaces: 15×15×2 (450 cells) and

20×20×2 (800 cells).

Figure 77 shows the total execution time and running time collected on a set of nodes for

the 15×15×2 model. The execution time adheres to the same pattern as discussed previously,

where the best performance is achieved on 5 nodes with execution and running time of 6.1538

and 5.6743 seconds respectively. In all cases, the bootstrap time is well below 1 second.

0

5

10

15

20

Number of nodes

Ti
m

e
(s

ec
)

Total execution time Running time

Total execution time 16.8036 11.793 8.3285 7.3205 6.1538 7.5166 7.4827 6.4963

Running time 16.6668 11.1522 7.7191 6.8140 5.6743 6.8870 6.8219 5.8806

1 2 3 4 5 6 7 8

Figure 77. Total execution and running time for the 15×15×2 watershed model

The resulting speedups are illustrated in Figure 78. The best overall and algorithm

speedups achieved for the 15×15×2 model are 2.7306 and 2.9373 respectively, higher than those

obtained with the fire models.

 119

2.5866
2.24572.2355

2.7306
2.2954

2.0176

1.4249

1.4945

2.1592
2.4460

2.9373

2.4201 2.4431
2.8342

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5 6 7 8

Number of nodes

Sp
ee

du
p

Overall speedup Algorithm speedup

Figure 78. Overall and algorithm speedups for the 15×15×2 watershed model

The experimental results for the 20×20×2 model are shown in Figure 79. When the model

was executed on a single node, the memory usage climbed almost to the limit, resulting in high

memory swapping and a very long execution time of 586.505 seconds (the conservative

simulator generated an even longer execution time in our experiments – 1030.153 seconds on 1

node and 166.1047 on 2 nodes, which are not shown in the diagram). As we can see, the

execution time decreases sharply to only 18.3177 seconds on 2 nodes. Besides the performance

gain from the parallel algorithms, one major reason is that the memory consumption falls

significantly on each node when the model is partitioned into multiple parts. The shortest

execution time is obtained on 6 nodes.

586 .505

586 .1476

585.9

586.0

586.1

586.2

586.3

586.4

586.5

586.6

1

Number of nodes

Ti
m

e(
se

c)

Total execution time Running time

0

5

10

15

20

25

Number of nodes

Ti
m

e(
se

c)

Total execution time Running time

Total execution time 18.3177 19.0835 13.0037 11.207 11.2036 16.1966 13.2554

Running time 17.6831 18.4060 12.2114 10.4019 10.3605 15.3216 12.4016

2 3 4 5 6 7 8

Figure 79. Total execution and running time for the 20×20×2 watershed model

Since the serial execution time measured on one node is large, the calculated speedups

are exceptionally high, as shown in Figure 80. However, we know that these speedups are

exaggerated by the high memory swapping happened on a single node. This shows that many

 120

other factors need to be considered in the experiments to evaluate the performance accurately.

Memory consumption, communication network, and NFS server are some prominent examples.

44.2465
36.2116

52.3497
52.3338

45.1029

30.733632.0185

33.1473

48.0002

31.8455

56.3501 56.5752

38.2563
47.2641

0.0

10.0

20.0

30.0

40.0

50.0

60.0

2 3 4 5 6 7 8
Number of nodes

Sp
ee

du
p

Overall speedup Algorithm speedup

Figure 80. Overall and algorithm speedups for the 20×20×2 watershed model (false)

8.6. TIME WARP OPTIMIZATIONS

In this section, we study the potential performance gain of different Time Warp optimization

algorithms that have been integrated into the PCD++ toolkit, including the one anti-message per

rollback strategy, the periodic state saving strategy and the lazy cancellation strategy. The fire

propagation model was used in our experiments for testing purposes. Each scenario was tested

for 10 runs and the average values of these runs were calculated.

• One anti-message per rollback

We executed the 35×35 model on 1, 4, and 8 nodes with and without the one anti-

message per rollback strategy respectively. Figure 81 shows the average number of rollbacks and

anti-messages on 4 and 8 nodes.

On 4 nodes, the number of rollbacks remains almost unchanged before and after applying

the strategy. However, the number of anti-messages generated during the rollbacks declines

sharply by 60.62% from 28,833 to 11,353. Similar results can be found on 8 nodes as well. In

this case, the number of rollbacks actually increases by 2% after applying the strategy, whereas

the number of anti-messages reduces by 54.8% from 66,829 to 30,209. As expected, the one anti-

message per rollback strategy does greatly reduce the number of anti-messages during rollbacks.

 121

0

5000

10000

15000

20000

N
um

be
r o

f r
ol

lb
ac

ks

0
10000
20000
30000
40000
50000
60000
70000
80000

N
um

be
r o

f a
nt

i-m
es

sa
ge

s

Rollbacks 6132 6168 16750 17083

Anti-messages 28833 11353 66829 30209

4 nodes
(strategy OFF)

4 nodes
(strategy ON)

8 nodes
(strategy OFF)

8 nodes
(strategy ON)

Figure 81. Number of rollbacks and anti-messages for the 35×35 fire model

The total execution and running time for these cases is shown in Figure 82.

0

2

4

6

8

10

Ti
m

e(
se

c)

Total execution time Running time

Total execution time 7.7196 3.7519 3.6495 4.0913 3.9716

Running time 7.4803 2.8619 2.8692 2.9334 3.0045

1 node 4 nodes (strategy
OFF)

4 nodes (strategy
ON)

8 nodes (strategy
OFF)

8 nodes (strategy
ON)

Figure 82. Total execution and running time for the 35×35 fire model

There is no obvious performance gain due to the one anti-message per rollback strategy

found in the actual running time. Rather, the running time increases by 0.26% on 4 nodes and by

2.42% on 8 nodes when this strategy is turned on, mainly because the number of rollbacks is

increased proportionally in these scenarios. In our simulations, inter-LP anti-messages, which

have higher communication overhead, constitute just a small fraction of the total anti-messages

generated during rollbacks. Most of the anti-messages are exchanged locally between PCD++

processors within a LP via the main memory. Hence, the sharp reduction in the number of anti-

messages does not translate into significant decrease in communication overhead. Further, the

models are executed over a fast Gigabit Ethernet network. The performance gain of the strategy

would be more visible on slower networks.

 122

• Periodic state saving

The 35×35 fire model was executed on 1 and 4 nodes to measure the performance of the

PSS strategy. The state-period variable was set to 2 in our experiments. Hence, the states of

PCD++ processors were saved every two wall clock time slices during the simulation.

Figure 83 shows the execution results on a single node. In this case, 51,028 events are

executed in the simulation. If the CSS strategy is used, there would be this number of sates saved

in the state queues. As shown in Figure 83(a), 26,373 states (51.68%) are skipped by the MTSS

strategy at the upper level of the UCSS mechanism, while an additional 18,020 states (35.31%)

are reduced by the PSS strategy at the lower level. As a result, the actual number of states saved

during the simulation is only 7,865 or 13.01% of the total number of executed events.

25885

7865

0

26373

26373

18020

0

10000

20000

30000

40000

50000

60000

1 node (PSS OFF) 1 node (PSS ON)

State saved State skipped State reduced

7.7196

4.2875 4.0374

2.3564

0.0839

7.4803

0

1

2

3

4

5

6

7

8

9

1 node (PSS OFF) 1 node (PSS ON)

Total execution time Running time State-saving time

Figure 83. Execution results for the 35×35 fire model before and after PSS strategy on 1 node

From Figure 83(b), we can see that the time spent on state-saving operations reduces by

96.44% from 2.3546 to 0.0839 seconds under the PSS strategy. The reduced state-saving

overhead is reflected in the total execution and running time, which declines by 44.46% and

46.03% respectively.

Since no rollback can happen when the simulation is executed on a single node, any

reduction in state-saving overhead will have a positive effect on the overall performance.

However, this is not the case when the simulation is run in parallel on multiple nodes. The

related execution results on 4 nodes are listed in Table 3.

The number of states saved during the simulation (SS) decreases by 60.6% from 42,558

to 16,767 and the time spent on saving states (ST) drops by 86.87% under the PSS strategy.

However, there is a price to pay for this. The direct cost of the PSS strategy is the coasting

 123

forward phase added to each rollback. As we can see, 31,197 events (CFL) are reprocessed

during the 7,561 rollbacks (RB), consuming a total of 0.9565 seconds (CFT) processing time. On

average, 4.13 events are reprocessed in each coasting forward phase. Further, the presence of the

coasting forward phase may lead to more and longer rollbacks, an indirect cost of the PSS

strategy. In the experiment, the number of rollbacks happened during the simulation (RB)

increases by 23.3%. Also, the average length of each rollback (RBL/RB) rises from 3.59 to 4.18

events (or a 16.43% increase). The time spent on rollback operations increases from 0.2569 to

1.1826 seconds accordingly. Therefore, the overhead of the PSS strategy outweighs its potential

benefits in our experiment. As shown in the table, the total execution and running time increases

by 4.83% and 8.21% respectively.
Table 3. Execution results for the 35×35 fire model before and after PSS strategy on 4 nodes

 4 nodes (PSS OFF) 4 nodes (PSS ON)
T(4)(sec) 3.7519 3.9331

RT(4)(sec) 2.8619 3.0969
SS 42558 16767
SK 40598 45112
SR – 32237

ST(sec) 0.8741 0.1148
RB 6132 7561

RBL 22008 31578
RBT(sec) 0.2569 1.1826

CFL – 31197
CFT(sec) – 0.9565

 Currently, the PCD++ simulator only employs a PSS strategy with fixed-sized

checkpoint interval, which is set arbitrarily by the user at compile time. To achieve better

performance, other adaptive state-saving algorithms as presented in [Lin93, Pal93, Fle95] need

to be adopted in the toolkit as well.

• Lazy cancellation

The 35×35 fire model was executed on 4 and 8 nodes with and without applying the lazy

cancellation strategy respectively. The relevant execution results on 4 nodes are listed in Table 4.

Thanks to the lazy cancellation strategy, the number of rollbacks declines by 22.8% and

the time spent on rollback operations decreases by 12.57%. As a result, the total execution and

running time reduces moderately by 4.5% and 1.7% respectively. A high ratio of lazy hit (LH) to

lazy miss (LM) was observed in our experiments, indicating a good performance of the lazy

cancellation strategy. Notice that the average rollback length (RBL/RB) increases from 3.59 to

 124

4.28 events. Since rollbacks are delayed, the overhead associated with each rollback tends to

increase under the lazy cancellation scheme. However, this increased overhead is compensated

by the reduction in the total number of rollbacks, leading to a positive overall performance gain.
Table 4. Execution results for the 35×35 fire model before and after lazy cancellation on 4 nodes

 4 nodes
(lazy cancellation OFF)

4 nodes
(lazy cancellation ON)

T(4)(sec) 3.7519 3.5830
RT(4)(sec) 2.8619 2.8120

RB 6132 4734
RBL 22008 20274

RBT(sec) 0.2569 0.2246
LH – 206
LM – 2

The effect of the lazy cancellation strategy is demonstrated more clearly in the 8-node

scenario where rollbacks happened frequently during the simulation, as shown in Table 5.
Table 5. Execution results for the 35×35 fire model before and after lazy cancellation on 8 nodes

 8 nodes
(lazy cancellation OFF)

8 nodes
(lazy cancellation ON)

T(8)(sec) 4.0913 3.7939
RT(8)(sec) 2.9334 2.8318

RB 16750 10392
RBL 47239 38953

RBT(sec) 0.4267 0.3223
LH – 686
LM – 5

When the model is executed on 8 nodes, the lazy cancellation strategy reduces the

number of rollbacks and the time for rollback operations by 37.96% and 24.47% respectively

with an even higher ratio of LH to LM. The resulting performance improvement is better than

that observed in the 4-node case as well. The total execution and running time reduces by 7.27%

and 3.46% respectively. Like in the previous case, the average rollback length (RBL/RB)

increases from 2.82 to 3.75 events. As long as the probability of lazy miss is low, the lazy

cancellation strategy can be expected to outperform the aggressive cancellation scheme.

 125

CHAPTER 9 CONCLUSIONS AND FUTURE WORK

This work tackles the problem of executing DEVS and Cell-DEVS models in parallel and

distributed environments based on the Time Warp optimistic synchronization protocol. A new

extension to the CD++ toolkit, PCD++, was developed in our research to meet the need for faster

and more efficient simulation of complex models.

A high-level overview of the WARPED kernel and PCD++ toolkit was provided and the

kernel assumptions were clearly summarized. The original kernel algorithms have several flaws

that lead to runtime failure. Solutions for these problems were discussed and the kernel

algorithms were revised to correctly carry out secondary rollbacks. The Time Warp protocol

requires a clear separation between processes and their states, which is too restrictive in some

occasions. Therefore, we provided a more flexible mechanism that allows simulator developers

to maneuver the data that is inappropriate to be managed by the Time Warp mechanism during

rollbacks.

Based on previous studies, we adopted a flattened structure for the PCD++ toolkit to

reduce the communication overhead. A special structure called NC Message Bag was defined for

inter-LP communications. The algorithms for the four types of DEVS processors, i.e. Simulator,

FC, NC, and Root, were redesigned to address the need of distributed optimistic simulation. The

mechanisms for starting and terminating the simulation were enhanced in line with the optimistic

and decentralized approach to distributed simulation. Three different methods for saving and

restoring state variables were proposed and the criteria for choosing the appropriate method for

different variables were given.

The message-passing paradigm in PCD++ was illustrated using the event precedence

graph. Several key characteristics, especially the multi-round execution of the transition phase,

were identified that have a significant impact on the computation of the models. Based on these

characteristics, the algorithms for Cell-DEVS models with transport and inertial delays were

adapted to the asynchronous state transition paradigm to ensure correct simulation.

The simulation process on each LP was abstracted using the notion of WCTS, which

greatly simplifies the task of analyzing the complex message exchanges between the DEVS

processors involved in the simulation. The WCTS properties were presented to capture the

 126

essence of optimistic simulation in PCD++. A special dormant state was defined for the NC and

algorithms were given for the NC to enter the dormant state and to reactivate the simulation

afterwards. Two different solutions to the problem of dealing with rollbacks at virtual time 0

were discussed. Based on their relative merits, we solved this problem using explicit

synchronization among the LPs.

A two-level UCSS mechanism was proposed so that simulator developers can utilize

more flexible and efficient state-saving techniques during the simulation. This mechanism was

then integrated with the copy state-saving strategy to implement the risk-free MTSS strategy, a

specific optimization for the PCD++ toolkit that can significantly reduce the number of states

saved during the simulation. It was also combined with the periodic state-saving strategy to

realize a hybrid technique that allows dynamic integration of different state-saving strategies at

runtime.

The speculative computation of the NC may lead to messaging anomalies that cannot be

recovered by the kernel rollback operations alone. Two types of anomalies were discussed and

the corresponding algorithms for handling these anomalies were presented. The concept of

breakpoint state was introduced to the kernel state definition. In addition, the state restoration

mechanism was enhanced accordingly to handle the breakpoint states during rollbacks.

To remove the bottleneck caused by file I/O operations, we implemented the one log file

per node strategy in the PCD++ toolkit. The number of file descriptors consumed in the

simulation is upper-bounded and the operational overhead is reduced significantly under this

strategy. Furthermore, several other optimizations to the Time Warp protocol were integrated

into the PCD++ toolkit, including the one anti-message per rollback strategy for reducing the

overhead of sending anti-messages during rollbacks, the PSS strategy for reducing state-saving

overhead, and the lazy cancellation strategy for exploiting parallelism available within a LP.

A series of experiments were conducted to measure the performance of the PCD++

toolkit. Several complex Cell-DEVS models were tested using different sizes of cell spaces and

on different number of nodes. A collection of 21 metrics was used to gauge the performance and

to profile the simulation system. The effects of different optimization strategies were studied

quantitatively. We showed that our optimistic simulator markedly outperforms the conservative

one in all testing scenarios. Considerable speedups were observed in our experiments, indicating

the PCD++ toolkit is well-suited for simulating large and complex models.

 127

9.1. FUTURE WORK

There are several issues with regard to PCD++ that should be further investigated:

(1) Optimism control. In the WARPED kernel, no restriction exists on the maximum lag

in virtual time between the fastest and the slowest LPs. Over-optimism encourages

rollbacks and can degrade system performance. Also, it results in poor memory

utilization due to the wide gap between GVT and the most recent virtual time in the

system. Many schemes have been proposed to introduce conservatism to Time

Warp in order to throttle the most speculative computations. Some of these

algorithms need to be incorporated into the PCD++ toolkit such as moving time

windows (MTW) [Fuj00, Fuj03] and the Filter algorithm [Pra91].

(2) Dynamic load balancing. Load balancing is a vital factor in the performance of

distributed simulation. Dynamic load balancing allows processes to migrate over

the compute nodes during the execution of parallel simulations, which also helps

control over-optimism. In PCD++, mechanisms need to be implemented to support

migrating Simulators between LPs. The migration choice is a trade-off between

optimizing communication load and computation load.

(3) Kernel tuning. As discussed in Chapter 7, three different Time Warp optimizations

are implemented in the PCD++ toolkit. However, many other optimizations have

not yet been integrated into the toolkit such as those introduced in Chapter 3. The

impact of these optimizations needs to be tested in order to determine the best

combination of strategies for simulating DEVS and Cell-DEVS models.

(4) Further experiments. More testing of the PCD++ toolkit using a benchmark such as

DEVStone [Gli04] should be conducted to further analyze the performance of the

simulator. Different partition strategies need to be tested in the experiments to

investigate the appropriate strategies for a set of models with different

characteristics. In addition, guidelines need to be provided to users as to how many

nodes should be used to execute models with different sizes and characteristics.

 128

REFERENCES

[Ame01] Ameghino J.; Troccoli, A.; Wainer, G. “Models of complex physical systems using
Cell-DEVS”. The 34th IEEE/SCS Annual Simulation Symposium. 2001.

[Bry77] Bryant, R. E. “Simulation of packet communication architecture computer systems”.
Massachusetts Institute of Technology. Cambridge, MA. USA. 1977.

[Cha78] Chandy, K. M.; Misra J. “Distributed simulation: A case study in design and verification
of distributed programs”. IEEE Transactions on Software Engineering. pp.440-452. 1978.

[Che98] Chetlur, M.; Abu-Ghazaleh, N.; Radhakrishnan, R.; Wilsey, P. A. “Optimizing
Communication in Time-Warp Simulators”. Proceedings of the 12th Workshop on
Parallel and Distributed Simulation (PADS’98). 1998.

[Che04] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. “Design and implementation of distributed
DEVS simulation in a peer to peer network system”. Advanced Simulation Technologies
Conference – Design, Analysis, and Simulation of Distributed Systems Symposium.
Arlington, USA. 2004.

[Cho94] Chow, A. C.; Zeigler, B. “Parallel DEVS: A parallel, hierarchical, modular modeling
formalism”. Proceedings of the Winter Computer Simulation Conference. Orlando, FL.
USA. 1994.

[Dab03] D’Abreu, M.; Wainer, G. “Models for Continuous and Hybrid System Simulation”.
Proceedings of the 2003 Winter Simulation Conference. 2003.

[Dav00] Davila, J.; Uzcagegui, M. “GALATEA: A multi-agent, simulation platform”.
Proceedings of the International Conference on Modeling, Simulation and Neural
Networks. Merida, Venezuela. 2000.

[Del02] de Lara, J.; Vangheluwe, H. “ATOM3: A tool for multi-formalism modeling and meta-
modeling”. European Joint Conference on Theory and Practice of Software. Grenoble,
France. 2002.

[Dso94] D’Souza, L. M.; Fan, X.; Wilsey, P. A. “pGVT: An algorithm for accurate GVT
estimation”. Proceedings of the 8th Workshop on Parallel and Distributed Simulation
(PADS’94). pp. 102-109. 1994.

[Eln02] Elnozahy, E. N.; Alvisi, L.; Wang, Y. M.; Johnson, D. B. “A survey of rollback-recovery
protocols in message-passing systems”. ACM Computing Surveys (CSUR). Vol. 34(3),
pp. 375-408. 2002.

 129

[Fil02] Filippi, J. B.; Bernardi, F.; Delhom, M. “The JDEVS modeling and simulation
environment”. Proceedings of the Integrated Assessment and Decision Support
Conference (IEMSS’02). pp. 283-288. Lugano, Switzerland. 2002.

[Fle95] Fleischmann, J.; Wilsey, P.A. “Comparative analysis of periodic state saving techniques
in Time Warp simulations”. Proceedings of the 9th Workshop on Parallel and Distributed
Simulation (PADS’95). 1995.

[Fre02] Frey P.; Radhakrishnan, R.; Carter, H.W.; Wilsey, P. A.; Alexander, P. “A formal
specification and verification framework for Time Warp-based parallel simulation”. IEEE
Transactions on Software Engineering. Vol. 28. No. 1. 2002.

[Fuj90] Fujimoto, R. M. “Optimistic approaches to parallel discrete event simulation”.
Transactions of the Society for Computer Simulation. 7(2):153-191. June 1990.

[Fuj00] Fujimoto, R. M. “Parallel and Distributed Simulation Systems”. A Wiley-Interscience
publication. ISBN 0-471-18383-0. 2000.

[Fuj03] Fujimoto, R. M. “Distributed simulation systems”. Proceedings of the 2003 Winter
Simulation Conference. pp. 124-134. 2003.

[Gia76] Giambiasi, N.; Miara, A. “SILOG: A practical tool for digital logia circuit simulation”.
Proceedings of the 16th D.A.C. San Diego. 1976.

[Gli04] Glinsky, E. “New Techniques for Parallel Simulation of DEVS and Cell-DEVS Models
in CD++”. M. A. Sc. Thesis. Carleton University. Canada. 2004.

[Gro96] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. “A high-performance, portable
implementation of the MPI message-passing interface standard”. Parallel Computing.
Vol. 22, pp. 789-828. 1996.

[Gru93] Grunwald, D.; Zorn, B. “CustoMalloc: Efficient Synthesized Memory Allocators”.
Software – Practice and Experience. Vol. 23, pp. 851-869. 1993.

[Jef85] Jefferson, D. “Virtual Time”. ACM Transactions on Programming Languages and
Systems. 7(3):405-425. 1985.

[Kim04] Kim, K.; Kang, W. “CORBA-based, Multi-threaded Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-hierarchical One”.
International Conference on Computational Science and Its Applications (ICCSA).
Assisi, Italy. 2004.

[Knu73] Knuth, D. E. “Fundamental Algorithms”. Vol. 1. The Art of Computer Programming.
Second Edition. Addison-Wesley. 1973.

[Kof03] Kofman, E.; Lapadula, M.; Pagliero, E. “PowerDEVS: a DEVS-based environment for
hybrid system modeling and simulation”. Technical Report LSD0306. LSD, University
Nacional de Rosario. 2003.

 130

[Lin91] Lin, Y. B.; Lazowska, E. D. “A study of Time Warp Rollback Mechanisms”. ACM
Transactions on Modeling and Computer Simulations. Vol. 1, No. 1. January 1991.

[Lin93] Lin, Y. B.; Preiss, B. R.; Loucks, W. M.; Lazowska, E. D. “Selecting the Checkpoint
Interval in Time Warp Simulation”. Proceedings of the 7th Workshop on Parallel and
Distributed Simulation (PADS’93). 1993.

[Low99] Lowry, M. C.; Ashenden, P. J.; Hawick, K. A. “Distributed High-Performance
Simulation using Time Warp and Java”. Technical Report, Department of Computer
Science. The University of Adelaide. South Australia. 1999.

[Lub91] Lubachevsky, B.; Weiss, A.; Shwartz, A. “An analysis of rollback-based simulation”.
ACM Transactions on Modeling and Computer Simulation. Vol. 1, No. 2, pp. 154-193.
April 1991.

[Mat93] Mattern, F. “Efficient algorithms for distributed snapshots and global virtual time
approximation”. Journal of Parallel and Distributed Computing. Vol. 18, No. 4. 1993.

[Mar99] Martin, D. E.; McBrayer, T. J.; Radhakrishnan, R.; Wilsey, P. A. “WARPED – A Time
Warp Parallel Discrete Event Simulator (Documentation for version 1.0)”. Available at:
http://www.ececs.uc.edu/~paw/warped/doc/index.html. 1999.

[Moo96] Moon, Y.; Zeigler, B.; Ball, G.; Guertin, D. P. “DEVS representation of spatially
distributed systems: validity, complexity reduction”. IEEE Transactions on Systems, Man
and Cybernetics. pp. 288-296. 1996.

[Nut06] Nutaro, J. ADEVS website. Available at: http://www.ece.arizona.edu/~nutaro.
[Accessed June, 2006]

[Pal93] Palaniswamy, A. C.; Wilsey, P. A. “An Analytical Comparison of Periodic
Checkpointing and Incremental State Saving”. Proceedings of the 7th Workshop on
Parallel and Distributed Simulation (PADS’93). 1993.

[Pra91] Prakash A.; Subramanian, R. “Filter: An algorithm for reducing cascaded rollbacks in
optimistic distributed simulations”. Proceedings of the 24th Annual Simulation
Symposium. pp. 123-132. 1991.

[Pra99] Praehofer, H.; Sametinger, J.; Stritzinger, A. “Discrete event simulation using the
JavaBeans component model”. Proceedings of International Conference on Web-Based
Modeling & Simulation. San Francisco, CA. USA. 1999.

[Rad97] Radhakrishnan, R.; Moore, L.; Wilsey, P. A. “External Adjustment of Runtime
Parameters in Time Warp Synchronized Parallel Simulators”. Proceedings of the 11th
International Parallel Processing Symposium. 1997.

[Rad98] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D. M.; Wilsey, P.A. “An Object-
Oriented Time Warp Simulation Kernel”. Proceedings of the International Symposium on

 131

http://www.ececs.uc.edu/~paw/warped/doc/index.html. 1999
http://www.ece.arizona.edu/

Computing in Object-Oriented Parallel Environments (ISCOPE’98). Vol. LNCS 1505,
pp. 13-23. Springer-Verlag. 1998.

[Rod99] Rodriguez D.; Wainer, G. “New Extensions to the CD++ Tool”. Proceedings of the 32nd
SCS Summer Computer Simulation Conference. Vancouver, Canada. 1999.

[Ron94] Ronneren, R.; Ayani, R. “Adaptive checkpointing in Time Warp”. Proceedings of the
8th Workshop on Parallel and Distributed Simulation (PADS’94). 1994.

[Rot72] Rothermel, R. “A mathematical model for predicting fire spread in wild-land fuels”.
Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station. 1972.

[Sar98] Sarjoughian, H. S.; Zeigler, B. “DEVSJAVA: Basis for a DEVS-based collaborative
M&S environment”. Proceedings of the International Conference on Web-Based
Modeling and Simulation. Vol. 5, pp. 29-36. San Diego, CA. USA. 1998.

[Seo04] Seo C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Implementation of distributed high-
performance DEVS simulation framework in the Grid computing environment”.
Advanced Simulation Technologies Conference (ASTC). Arlington, VA. USA. 2004.

[Sha99] Sharma, G. D.; Abu-Ghazaleh, N. B.; Rajasekaran, U. K. V.; Wilsey, P. A. “Optimizing
Message Delivery in Asynchronous Distributed Applications”. Proceedings of the 5th
International Euro-Par Conference on Parallel Processing. Lecture Notes In Computer
Science. Vol. 1685, pp. 1204-1208. 1999.

[Tro01] Troccoli, A.; Wainer, G. “CD++, a tool for simulating Parallel DEVS and Parallel Cell-
DEVS models”. Técnica Reporta. Departamento de Computación. Facultad de Ciencias
Exactas y Naturales. Universidad de Buenos Aires. Argentina. 2001.

[Tro03] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-DEVS”. Proceedings of the 36th
Annual Simulation Symposium (ANSS’03). IEEE. 2003.

[Uhr01a] Uhrmacher, A. M. “Dynamic structures in modeling and simulation: a reflective
approach”. ACM Transactions on Modeling and Computer Simulation. Vol. 11(2), pp.
206-232. 2001.

[Uhr01b] Uhrmacher, A. M.; Kullick, B. G. “Interacting multi-agent and simulation systems – an
exploration into Mole and James”. Proceedings of the 5th International Conference on
Autonomous agents. pp. 122-123. 2001.

[Wai98] Wainer, G.; Giambiasi, N. “Specification, modeling and simulation of timed Cell-DEVS
spaces”. Technical Report n.: 98-007. Departamento de Computación. Facultad de
Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina. 1998.

[Wai99] Wainer, G.; Giambiasi, N. “Avoiding serialization in Timed Cell-DEVS”. Proceedings
of the 31st SCS Summer Computer Simulation Conference. Chicago. USA. 1999.

 132

[Wai00a] Wainer, G.; Zeigler, B. “Experimental Results of Timed Cell-DEVS Quantization”.
Proceedings of AIS’2000. Tucson. Arizona. 2000.

[Wai00b] Wainer, G. “Improved cellular models with Parallel Cell-DEVS”. Transactions of the
Society for Computer Simulation International. Vol. 17, No. 2, pp. 73-88. 2000.

[Wai01a] Wainer, G.; Christen G.; Dobniewski, A. “Defining models with the CD++ toolkit”.
Proceedings of the European Simulation Symposium. Marseille, France. SCS Publisher.
2001.

[Wai01b] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: modeling and simulation of cell
spaces”. Invited paper for the book Discrete Event Modeling & Simulation: Enabling
Future Technologies. Springer-Verlag. 2001.

[Wai02a] Wainer, G. “CD++: a toolkit to develop DEVS models”. Software – Practice and
Experience. Vol. 32, pp. 1261-1306. 2002.

[Wai02b] Wainer, G.; Giambiasi, N. “N-dimensional Cell-DEVS models”. Discrete Event
Dynamic Systems. Springer Netherlands. ISSN 0924-6703. Vol. 12. No. 2. 2002.

[Wol86] Wolfram, S. “Theory and applications of cellular automata”. Vol. 1. Advances Series on
Complex Systems. World Scientific. Singapore. 1986.

[Zei76] Zeigler, B. “Theory of modeling and simulation”. First Edition. Wiley. 1976.

[Zei93] Zeigler, B.; Kim. J. “Extending the DEVS-Scheme knowledge-based simulation
environment for real-time event-based control”. IEEE Transactions on Robotics and
Automation. Vol. 9(3), pp. 351-356. 1993.

[Zei96] Zeigler, B.; Moon, Y.; Kim, D.; Kim, J. G. “DEVS-C++: A high performance modeling
and simulation environment”. The 29th Hawaii International Conference on System
Sciences. 1996.

[Zei98a] Zeigler, B. “DEVS theory of quantization”. DARPA Contract N6133997K-0007. ECE
Department. University of Arizona. Tucson. 1998.

[Zei98b] Zeigler, B.; Cho, H.; Lee, J.; Sarjoughian, H. “The DEVS/HLA distributed simulation
environment and its support for predictive filtering”. DARPA Contract N6133997K-
0007. ECE Department. University of Arizona. Tucson. 1998.

[Zei99a] Zeigler, B.; Kim, D.; Buckley, S. “Distributed supply chain simulation in a
DEVS/CORBA execution environment”. Proceedings of the 1999 Winter Simulation
Conference. 1999.

[Zei99b] Zeigler, B.; Sarjoughian H. S. “Support for hierarchical modular component-based
model construction in DEVS/HLA”. Simulation Interoperability Workshop. 1999.

 133

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. “Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems”. Academic Press. 2000.

[Zha06] Zhang, M.; Zeigler, B.; Hammonds, P. “DEVS/RMI – An auto-adaptive and
reconfigurable distributed simulation environment for engineering studies”. DEVS
Integrative M&S Symposium (DEVS’06). Huntsville, Alabama, USA. 2006.

 134

	ABSTRACT
	ACKNOWLEDGEMENTS
	Table of contents
	List of tables
	List of figures
	List of acronyms
	Chapter 1 Introduction
	CONTRIBUTION
	THESIS OVERVIEW

	Chapter 2 Review of the state of the art
	DEVS AND PARALLEL DEVS FORMALISMS
	TIMED CELL-DEVS AND PARALLEL CELL-DEVS FORMALISMS
	PARALLEL AND DISTRIBUTED SIMULATION
	Conservative parallel discrete event simulation
	Optimistic parallel discrete event simulation

	DEVS-BASED SIMULATION TOOLKITS

	Chapter 3 Software architecture
	LAYERED ARCHITECTURE
	MAJOR FUNCTIONALITIES OF THE PCD++ AND warped LAYERS
	The warped layer
	The PCD++ layer

	Chapter 4 Basic control mechanisms in the warped kernel
	ASSUMPTIONS OF THE warped KERNEL
	KERNEL CONTROL MECHANISMS
	Rollback mechanisms and cascaded rollback process
	GVT calculation and fossil collection

	PROBLEMS AND FIXES

	Chapter 5 Distributed optimistic simulation in pcd++
	FLATTENED STRUCTURE FOR THE SIMULATION FRAMEWORK
	MESSAGE DEFINITIONS
	CURRENT STATUS OF THE CD++ TOOLKIT
	STRUCTURE FOR INTER-LP COMMUNICATIONS
	MESSAGE-PROCESSING ALGORITHMS FOR PCD++ PROCESSORS
	Simulator
	Flat Coordinator
	Node Coordinator
	Root Coordinator

	A MESSAGE-PASSING SCENARIO
	STARTING AND TERMINATING SIMULATIONS
	SAVING AND RESTORING STATE VARIABLES
	ASYNCHRONOUS STATE TRANSITIONS IN CELL-DEVS MODELS
	Cell-DEVS models with transport delay
	Cell-DEVS models with inertial delay

	Chapter 6 Enhancements to pcd++ and the warped kernel
	AN ABSTRACTION FOR THE SIMULATION PROCESS
	DORMANT STATE OF NODE COORDINATORS
	HANDLING ROLLBACKS AT TIME ZERO
	USER CONTROLLED STATE SAVING MECHANISM
	MESSAGING ANOMALIES
	Speculative computation of the Node Coordinator
	Two types of messaging anomalies
	Anomaly with empty NC Message Bag
	Anomaly with non-empty NC Message Bag
	Enhanced NC algorithm for done message

	ONE LOG FILE PER NODE STRATEGY

	Chapter 7 Optimization algorithms in the warped kernel
	ONE ANTI-MESSAGE PER ROLLBACK
	PERIODIC STATE SAVING
	Strategy description
	UCSS mechanism revisited
	Integrating PSS strategy in PCD++
	Modifications to the fossil collection algorithm
	Miscellaneous modifications

	LAZY CANCELLATION

	Chapter 8 Experiments and performance analysis
	INTRODUCTION TO THE CELL-DEVS MODELS
	PERFORMANCE METRICS
	EFFECT OF ONE LOG FILE PER NODE
	EFFECT OF MESSAGE TYPE-BASED STATE SAVING
	EXPERIMENTS WITH STANDARD TIME WARP PROTOCOL
	TIME WARP OPTIMIZATIONS

	Chapter 9 Conclusions and future work
	FUTURE WORK

	References

