
Applying Cell-DEVS Methodology

Applying Cell-DEVS Methodology for
Modeling the Environment
Gabriel Wainer
Department of Systems and Computer Engineering
Carleton University
4456 Mackenzie Building
1125 Colonel By Drive
Ottawa, ON K1S 5B6, Canada
gwainer@sce.carleton.ca

Recent research efforts have focused on the analysis of environmental systems using cellular mod-
els. Although most of the existing solutions are based on the cellular automata formalism, this tech-
nique has some problems that constrain its power, usability and feasibility for studying large complex
systems. Instead, combining cellular automata with discrete event systems specifications (DEVS)
showed excellent results in terms of quality and performance. Despite these encouraging results, the
environmental science/engineering community still prefers more traditional approaches, as DEVS-
based techniques require a fundamental change of the modeling and simulation paradigm, while
entailing expertise in advanced programming, distributed computing, etc. Cell-DEVS and the CD++
toolkit were created to address these problems: they simplify the construction of complex cellular mod-
els by allowing simple and intuitive model specification. The discrete event nature of the formalism
provides better precision and performance, and models can run in different simulation environments
(single user, real-time, distributed/parallel) without special expertise required. Environmental appli-
cations can be easily constructed, making it possible for users with basic training in the techniques
and software tools to face the study of complex problems. We present the definition of different
models of environmental applications, including the pollution on a basin, fire spreading, watershed
formation and viability of a population, focusing on how to define such applications using Cell-DEVS
methodology, using an approach that facilitates this paradigm shift.

Keywords: DEVS, Cell-DEVS, environmental models, cellular automata

1. Introduction

In recent years, a number of research efforts have presented
solutions for modeling and simulation of environmental
systems using cellular models. A cell space organizes the
structure of the model of a given physical system by di-
viding the area of influence into geometrically distributed
cells. This approach is useful, as most environmental sys-
tems are heterogeneous, and they must consider multiple
variables, while being able to analyze their behavior in
space and time. The most popular technique to study cell
spaces is cellular automata (CA) [1], [2], which have been
widely used to describe a variety of complex systems.
A cellular automaton is organized as an n-dimensional

SIMULATION, Vol. 82, Issue 10, October 2006 635-660
©2006 The Society for Modeling and Simulation International
DOI: 10.1177/0037549706073698

infinite lattice of cells, each holding a state value and a com-
puting apparatus. Conceptually, these local functions are
computed synchronously and in parallel, using the state
values of the present cell and its neighbors, as shown in
Figure 1.

CA popularity has grown in the last few years, and they
have been widely used in environmental sciences. The fol-
lowing is a non-comprehensive list of some recent efforts,
which shows the variety of applications in this field that
have been solved using this approach.

• Avolio [3] has presented a large-scale surface model
for lava and debris flows using CA. The model re-
produces the 2002 eruption of the Etna volcano with
precision.

• Koh [4] has presented a model of erosion on terrain.
The model considers the effect of wind, terrain slope
and other factors in the formation of sand dunes.

Volume 82, Number 10 SIMULATION 635

Wainer

Cell neighborhood

Figure 1. Schematic diagram of a cellular automaton

• El Yacoubi et al. [5] have introduced a simulation
tool based on landscape modeling based on CA.
Likewise, Pukkala [6] has presented a model on
landscape modeling, which considers ecology infor-
mation for forest planning.

• Colasanti et al. [7] have presented a two-dimensional
(2D) cellular automaton to study seed dispersal,
clonal expansion, and interactions with adjacent
plants, in order to predict the impact of genetically
modified plants on a community.

• Bagnoli [8] has presented a model to study compe-
tition and sorting of species. The model considers
adaptation to environmental factors, and interaction
between organisms (competition, association).

• Auger and Faivre [9] have introduced a study on two
sibling species of Hippolais (a local bird species)
using CA for interspecies competition.

• Molofsky and Bever [10] have presented a discus-
sion on the use of CA to understand ecological com-
munities.

• Dzwinel [11] has presented a model of a popula-
tion of individuals infected by a periodic plague. The
model shows how the age and proximity of the indi-
viduals affect the spread of the plague.

• Darwen and Green [12] have presented a study of
viability of a population in a field; in Bianchini et al.
[13], the spread of pollutants in the Venetian lagoon.
Bandini and Pavesi [14] have shown the dynamics
of vegetable population using CA.

• Spencer [15] has presented an experimental design
to test the growth and survival of the mosquito Culex
pipiens, studying how scale affects responses.

• Diverse authors [16]–[21] have shown the use of CA
for modeling fire spreading phenomena.

As discussed in Muzy et al. [21] and Wainer and Gi-
ambiasi [22], CA have some problems that constrain their
power, usability and feasibility to analyze complex sys-
tems. CA are restricted by the simplicity of their formal
description: neighborhood, uniformity of the cells, one dis-
crete state per cell, closure to external events, infinite lat-
tices. According to experimental conditions, cell behavior
and neighborhoods often need to be different. One state per
cell is also usually not sufficient when dealing with com-
plex deterministic systems. Finally, it can be necessary to
have external events changing individual cells [21]. An-
other series of problems is related to performance. CA use
a discrete time base for cell updates, constraining the pre-
cision and efficiency of the simulated models (small time
steps must be used for higher precision, producing more
demanding needs in terms of processing time). Likewise,
CA often model systems that are asynchronous in nature
using a discrete time implementation, which also makes
it very difficult to handle time-triggered activities in each
of the cells. Therefore, pure CA cannot be used for many
applications, and they often need to be modified for simu-
lation purposes [21].

An approach that has been shown to be useful to ad-
dress these issues combines CA with discrete event systems
specifications (DEVS). DEVS [23] is a formalism defined
in the early 1970s to specify discrete event systems orga-
nized hierarchically and using a modular description. This
strategy allows the reuse of tested models, allowing the
reduction of development times [22]. DEVS models run
asynchronously; consequently, every cell in a model runs
independently from the others. The following is a non-
comprehensive list of different efforts that have shown how
to use DEVS for constructing cell spaces in environmental
science.

• Large ecosystems, including watersheds [24], [25]
(a main topic of study in hydrology). Analysis in
Zeigler et al. [25] has shown that DEVS enable sig-
nificant speedups and accuracy, especially for large-
scale landscape models.

• Forecasting the development of Caulerpa taxifolia,
a tropical alga whose severe invasive power was dis-
covered in numerous places in the world [26], [27].
The biological parameters ruling the spread of algae
include depth, temperature and substrate; combin-
ing this discrete event technique and a geographical
information system (GIS) allowed the simulation of
algae reproduction over a period of five years.

• Models of fire spreading [28]–[32], enabling the un-
derstanding and prediction of fire-related incidents.

636 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

Characteristics of the area, such as slope, humidity,
wind and vegetation, are considered. The results can
be used to determine the best place for firefighters
in terms of safety and efficiency.

• Hu and Zeigler [33] have presented a high-
performance environment for the modeling and sim-
ulation of large-scale models (for instance, fire
spread models) based on cellular DEVS. Likewise,
Filippi et al. [34] have presented a simulation en-
vironment integrating DEVS models and GIS for
modeling environmental applications.

In most cases, cellular DEVS utilize continuous state
variables and update functions. This requires mechanisms
to transform the continuous model into a discrete event
model. DEVS has been used recently for continuous sys-
tems simulation [23], [34]–[39]. Most of these techniques
are based on Q-DEVS [34], whose main idea is to repre-
sent continuous signals by the crossing of an equal spaced
set of boundaries. The results of these research efforts have
shown that discrete event methods in general and DEVS
in particular present several advantages:

• computational time reduction (for a given accuracy,
the number of calculations can decrease);

• hierarchical modular modeling;

• seamless integration with models defined with other
modeling techniques mapped to DEVS;

• simulation of discrete time models (can be seen as
particular cases of discrete event methods);

• hybrid systems modeling, in which the discrete event
paradigm provides the theory to develop a uniform
approach to model and simulate systems with con-
tinuous and discrete components.

This approach requires the user to have expertise
in advanced programming techniques (including object-
oriented programming, distributed computing, standards,
etc.). Accordingly, most success stories include multidis-
ciplinary teams (with a group in charge of software de-
velopment). This makes it difficult for the environmental
experts to explore their models at first hand; consequently,
we still see many examples of environmental studies de-
veloped as specific single-use programs (usually developed
for a single study in a high-level language), which permits
solving problems of a limited extent, and cannot be easily
reused for related experiments. Figure 2 shows an example
of a cellular model defined using Cellang (a CA modeling
environment [40]), Cell-DEVS, and JDEVS [34] (a simi-
lar description of a cellular DEVS model can be found in
Ntaimo et al. [30]).

As we can see in Figure 2, in a cellular DEVS envi-
ronment we have first to define a DEVS model using a
standard programming language (i.e., Java for JDEVS or

DEVS/Java). Then, we need to define an array of cells and
the input/output (I/O) ports interconnection, as shown in
Figure 2(d). A CA-based language such as Cellang per-
mits defining problems using simple rules, as we can see
in Figure 2(b).

The Cell-DEVS formalism [41], [42] and the CD++
toolkit [43], [44] allow us to overcome these problems.
Figure 2(c) shows the rule definition of a cellular DEVS
model using the Cell-DEVS formalism in the CD++ envi-
ronment. Cell-DEVS allows the definition of asynchronous
cell spaces with explicit timing definition. This approach
is still based on the formal specifications of DEVS, but
it allows the user to focus on the problem to be solved by
using simple rules for modeling (as with CA). Explicit tim-
ing delay constructions can be used to define precise timing
in each cell. In this paper, we discuss how these methods
can improve the creation of ecological and environmental
models. Our approach allows us to enhance the modeling
experience in different ways.

• It permits the environmental specialists to apply their
expertise while facilitating the change of paradigm.
The experts can apply our advanced environment
with traditional techniques (CA, finite elements, fi-
nite differences, etc.). Then, they can perform a
smooth transition from the discrete time to the dis-
crete event based paradigm. This switch is usually
difficult because one must change from a view dic-
tating how the cellular model will evolve on the next
time unit to a view in which one must think about
each cell as an independent entity reacting to ex-
ternal events. Only active cells execute their local
computing function, and the execution results are
spread out after a predefined delay (only if a state
change has occurred). Another source of difficulty
is that the continuous local computing function can
be quantized, which requires a fundamental shift in
thinking about the system as a whole. Experimen-
tal data must be collected considering that instead
of determining what value a dependent variable will
have (its state) at a given time, we must determine
at what time a dependent variable will enter a given
state (therefore, the data collection must focus on
the time for the state changes). The delay function
provides a natural mechanism for implementing the
quantization function. In addition, our tools facilitate
the modeling task, as one does not need to focus on
advanced programming or software environments.
Wainer and Giambiasi [22] reported a gain in devel-
opment times when using this approach, because the
modelers can focus on defining smaller portions of a
problem and expressing it using simpler equations,
which can be solved more easily than the complete
system, creating a very precise model of each cell.

• It has the potential to improve knowledge genera-
tion using a model-based approach. We have put

Volume 82, Number 10 SIMULATION 637

Wainer

public class MyCellAtomic extends AtomicModel {
 Port in = new Port(this,"in","IN");
 Port out = new Port(this,"out","OUT");
...

public EventVector outFunction(Message m) {
//output function here }

public void intTransition() {
//internal transition function }

public EventVector extTransition(Message m){
//external transition function here }

public int advanceTime() {
//time advance function here }
}

(a)

total :=[0,1]+[1,1]+[1,0]+[-1,0]+[0,-1]+
[-1,-1]+[1,-1]+[-1,1]

state:=1 when (total=2 & cell=1) | total=3
state:=0 otherwise

(b)

[life-rule]
Rule: 1 10 {(0,0)=1 and (truecount=3 or

 truecount=4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

(c)
G

en
er

at
or

 in.G

out0.G

out8.G

C6 C7 C8

C3 C4 C5

in_G.C6

out_T.C6
out_T.C0

out_T.C8

in_G.C2

M

in.M

out0.M

out8.M

out_T.C2C0 C1 C2

out6.G

(d)

Figure 2. (a) DEVS atomic model applied to a cell space [34]. (b) Cell space coupled model sketch [31]. (c) Life game definition in
Cellang [40]. (d) Structure of a cellular DEVS coupled model [47].

into consideration two important issues: how to keep
the ability of CA to describe very complex systems
using very simple rules (which is its main advan-
tage), and how to bridge the gap between a dis-
crete time and a discrete event description such as
DEVS, while allowing users to focus on the applica-
tion itself. The independent simulation mechanisms
permit these models to be executed interchangeably
in single-processor, parallel or real-time simulators
without any changes. Cell-DEVS enables the def-
inition of specialized behavior in certain areas of
the space, thus permitting modeling modified phe-
nomena in particular regions. Such combined analy-
sis is unfeasible using Partial Differential Equations
(PDE)s or CA. Likewise, the use of DEVS as the
basic formal specification mechanism enables us to
define interactions with models defined in other for-
malisms: individual cells can provide data to those
models, and integration between them could enable

defining complex hybrid systems. If the complexity
of the model increases, the user can still define the
cell’s behavior using a DEVS atomic model defined
in C++ (while using CD++ facilities to create a cell
space, I/O ports, execute in parallel, visualize the
results or obtain the results through remote execu-
tion). This approach provides us with evolvability of
the models through a technique that is easy to un-
derstand and to map into other existing techniques,
while having the potential to evolve into more com-
plex entities.

• It enables high-performance execution. We want to
achieve higher precision and improved resolution in
the results obtained when executing these models.
Only the active cells in the space are triggered, in-
dependently from any activation period (as in other
cellular DEVS approaches). Cell timing delays can
be used to define asynchronous behavior for each

638 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

cell. Then, the continuous model defined in each
cell can be automatically executed using Q-DEVS.
Our previous results confirm that these goals can
be achieved using our current methods. Previously
we showed [22] that the discrete-event nature of our
approach can improve execution times in several or-
ders of magnitude. We have also shown [28], [37]
varied experiments in which the application of Cell-
DEVS combined with quantization techniques can
improve the execution performance of continuous
models with an exponential reduction in the total ex-
ecution time (while introducing error that increases
linearly). As the simulation engines are independent
from the models themselves, we have introduced a
parallel simulation engine, which can improve per-
formance further without modifications to the model
[45]. For detailed results on performance results, the
reader might refer toWainer and Zeigler [37],Wainer
[38] and Wainer and Chen [45]; for analysis on mod-
eling improvement results, see Wainer and Giambi-
asi [22], [43] and Muzy et al. [47].

In the following sections, we show how this approach
can be applied by environmental systems experts to build
advanced models based on cell spaces, keeping complex-
ity low, allowing the modeler to focus on the tasks to solve
only, while being able to execute in a high-performance en-
vironment. We present different facilities provided by the
formalism and the tools, and discuss different examples
of application in environmental sciences, showing how a
team with basic training can create complex applications
without difficulties (the models presented were developed
by teams of two over a two-week period, after 12 hours
of training, which shows the high learning curve for new-
comers into the field). In order to show how to produce a
paradigm change while guaranteeing the correctness of the
results obtained, we start our experiments by creating cel-
lular models that have been previously validated by other
research. In this way, we can guarantee the validity of the
results, as we were able to reproduce the original results
in every example presented here (presuming that the pub-
lished results are correct). We show models on diffusion
(viability of a population, pollution of the Venetian basin),
hydrology and fire spreading, focusing on how our tech-
niques can facilitate the task of the environmental mod-
eler. Then, we modify such models, introducing some of
the novel facilities available in CD++ (these results serve
as a proof of concept to show how an expert can enhance
their existing models based on our methodology). This al-
lows us to show how modelers can address the creation of
advanced discrete event models, by extending their basic
experience using cellular models. The different examples
presented here show the numerous new advanced facilities
of CD++ and its application to the field of environmen-
tal sciences: execution of models with varied topologies,
advanced rule definitions (with multiple state variables in
each cell and multiple I/O ports to transfer information

between submodels), integration of the results into visu-
alization environments, and seamless execution with high
performance (including a parallel simulator and quantiza-
tion algorithms).

2. Cell-DEVS and CD++

Cell-DEVS was defined as an extension to CA com-
bined with DEVS [23]. DEVS provides a formal frame-
work for the construction of hierarchical modular models.
A DEVS model is seen as composed by behavioral (atomic)
submodels that can be combined into structural (coupled)
models. As the formalism is closed under coupling, cou-
pled models can be seen as new basic models that can be
integrated hierarchically [23]. Cell-DEVS defines a cell as
a DEVS atomic model and a cell space as a coupled model.
Each cell of a Cell-DEVS model holds a state variable and
a computing function, which updates the cell state by using
its present state and its neighborhood (Figure 3).

A Cell-DEVS atomic model is defined as TDC = 〈X, Y ,
S, N , delay, δext , δint , τ, λ, D〉. A cell uses a set of N input
values to compute its future state, which is obtained by ap-
plying the local function τ. A delay function is associated
with each cell, after which the state values are transmitted.
After this basic behavior for a cell is defined (δext , δint , λ
and Dare defined in Cell-DEVS formal specifications), a
complete cell space can be built as a coupled Cell-DEVS,
GCC = 〈Xlist, Ylist, X, Y , n, {t1, . . . , tn}, N , C, B, Z〉. A
coupled Cell-DEVS is an array of atomic cells (C), each
of which is connected to the cells in the neighborhood (N).
The border cells (B) can be provided with a different be-
havior than the rest of the space. The Z function defines the
internal and external coupling in the model. Xlist and Ylist
are used for defining the coupling with external models,
while the neighborhood definition is used for the internal
couplings.

The performance of models with continuous variables
is constrained by the number of activations of the simulator
(which, in general, uses a discrete time approach). In recent
years, DEVS has been extended to accommodate this type
of continuous and hybrid system using a more efficient ap-
proach. Most existing solutions in this area are based on the
concept of quantized state functions (Q-DEVS) [34]. The
main idea of Q-DEVS is to represent continuous signals by
the crossing of an equal spaced set of boundaries (defined
by a quantum size). This operation reduces substantially
the frequency of updates, while potentially incurring into
error. QSS (quantized state systems) [36] extends Q-DEVS
with hysteresis. Differential equation systems can be ap-
proximated by legitimate DEVS models with QSS; the ad-
dition of hysteresis removes the possible infinite number
of transitions performed by a model in a finite time inter-
val, and the existence of a minimum time interval between
events constitutes a sufficient condition to obtain legitimate
models.

Cell-DEVS with dynamic quantization [37], [38] tries
to reduce the error of a cell-QDEVS simulation by improv-

Volume 82, Number 10 SIMULATION 639

Wainer

Figure 3. Informal definition of Cell-DEVS

Figure 4. Signal quantization

ing its precision. An active cell can appear as quiescent as
a result of a quantum size covering the activity area; if
the quantum size is reduced, a smaller error will be ob-
tained. Simultaneously, if we increase the quantum size in
the cells with steep update functions, execution time can be
improved at a low cost in terms of the error introduced. Two
different strategies were proposed to adjust the quantum.
Strategy 1 reduces the quantum size for cells with high up-
date rates, and increases it for cells with low update rates.
Strategy 2 reduces the number of activations at a cost of a
higher error. Let q be the base quantum, r the adjustment
ratio for the dynamic quantum, and d(t) the quantum value
used in time t . If v= Last Threshold Value, v′= new value,
regionChange(v,v’,q) = (v = φ|q= 0 | (q �= 0 ∧ [v/q] �=
[v’/q])) and q(0) = q, then

strategy 1 ¬ regionChange(v,v’,d) ⇒ d = q*(1- ratio);
RegionChange(v,v’,d) ⇒ d = q*(1+ratio);

strategy 2 regionChange(v,v’,d) ⇒ d = q*(1-ratio);
–regionChange(v,v’,d) ⇒ d = q*(1+ratio).

GDEVS [39] uses polynomials of arbitrary degree (as
opposed to constant values) to represent the piecewise I/O
trajectories of a DEVS model. In GDEVS, the system is
modeled through piecewise polynomial coefficients. As
these have piecewise constant trajectories, we can build
a discrete event abstraction in the coefficient space using
the concept of coefficient event (an instantaneous change
of, at least, one of the values of the coefficients defining
the polynomial trajectory). An event is a list of coefficient
values defining a polynomial describing the trajectory.

CD++ implements DEVS and Cell-DEVS theories, in-
cluding GDEVS, Q-DEVS, QSS and Q-DEVS with dy-
namic quantization. The general characteristics of the
tool, as reported previously [22], [28], [41], [43], are the
following.

• The environment is built as a hierarchy of models,
each related with a simulation entity.

• CD++ can simulate in single-processor, parallel or
real-time modes. The execution engine uses the
model’s specifications to build one object to control
each component in the model hierarchy. The tool
includes facilities to run quantized Cell-DEVS, in-
cluding models with dynamic quantization.

• Atomic and coupled models can be described using a
built-in graph-based specification language or C++.
The graph-based notation is more abstract, while
C++ increases flexibility.

• Most environments for cellular modeling use 2D or
three-dimensional (3D) models. Nonetheless, there
are a variety of theoretical problems requiring four
or more dimensions. Our simulator uses an array
of Πi=1...ndi cells for a model with dimension (d1,

640 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

[Tension]
type : cell dim : (40,40) delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (1,-1) (1,0) (1,1) (0,0) (0,1)
localtransition : Tension-rules

[Tension-rules]
rule : 0 100 { statecount(0) >= 5 }
rule : 1 100 { t }

Figure 5. A Cell-DEVS specification in CD++: surface tension

d2, . . . , dn). CD++ also permits defining zones with
differentiated behavior, each defined by a different
set of rules on the same cellular model.

• Cell-DEVS models are defined using a built-in lan-
guage. The local computing function evaluates the
model’s rules until one of them is satisfied (or
there are no more rules). The main operators avail-
able to define rules include: Boolean, comparison,
arithmetic, neighborhood values, time, condition-
als, angle conversion, pseudo-random numbers, er-
ror rounding and constants (i.e., gravitation, light,
Planck, etc.). Figure 5 shows a simple example rep-
resenting a surface tension model [48], which fol-
lows Cell-DEVS formal definitions.

In this case, Xlist = Ylist = {∅}, the size of the cell
space {t1, t2} is defined by dim (here t1 = t2= 40). The
Nset is defined by the neighbors keyword. The border B
is wrapped (cells in one border communicate with the op-
posite one). Using this information, the tool builds a cell
space, and the Ztranslation function. The local comput-
ing function executes two simple rules, which, as shown
in Ameghino et al. [49], reproduce the behavior found in
surface tension models (such as those founds in oil spills).
We have two states: presence (value 1) or absence (value
0) of oil particles. The model represents a “majority vote”
system: a cell becomes occupied if at least five of the nine
are; otherwise it becomes empty. Figure 6 shows how parti-
cles concentrate where there is higher tension, a high-level
representation of the majority vote rules.

We are interested in focusing on some of the facilities
recently introduced to CD++, which include those given in
the following subsections.

2.1 Advanced Rule Definition

The behavior of the local computing functions has been
extended to include a set of rules with the form: POST-
CONDITION ASSIGNMENTS DELAY PRECONDI-
TION. When the PRECONDITION is satisfied, the cell
state changes to the designated POSTCONDITION, and
its output is DELAYed for the specified time. If the model’s
state variables need to be modified, we use the ASSIGN-
MENTS [47]. CA include only one state variable per cell.

Figure 6. Execution results of the surface tension model

Although the nature of CA (infinite number of cells, n di-
mensions) provides the mathematical power to solve any
computable problem, the model definition with one state
per cell is cumbersome, and (as we show in Sections 5 and
6) it can make a complex model too difficult to understand
and test. To address this issue, CD++ now allows the def-
inition of multiple state variables, which are declared as
follows [47]:

StateVariables: pend temp vol
StateValues: 3.4 22 -5.2
rule: {(0,0,0)+$pend} 10 { (0,0,0)>4.5 and
$vol<22.3 }
rule: { (0,0,0)+1 } { $temp:=$vol/2;
$pend:=(0,1,0);}10{(0,1,0) > 5.5}

The first line declares the list of state variables, and the
second their initial values. Here, the first line assigns 3.4
to pend, 22 to temp and –5.2 to vol. State variables can be
referenced as in the third and fourth lines. The identifier
“:=” is used to assign values to a state variable. Here, if
the condition (0,1,0) > 5.5 is true, the variable temp will be
assigned half of vol value, and pend will be assigned the
value of the neighboring cell (0,1,0). These assignments
are executed immediately (delay functions are not applied
to assignments).

Although these new facilities greatly improve the
model’s definition, sometimes the complexity of the func-
tions is such that some users still prefer to use a program-
ming language. For these cases, we allow the user to define
parts of the model using a C++ method, which can be called
within a Cell-DEVS specification, as shown in Figure 7.
In this case, the user has to define a function (AP), which
is activated by CD++ upon the execution of the rules.

Volume 82, Number 10 SIMULATION 641

Wainer

type : cell dim : (5,5,2)
delay : transport border : nowrapped
neighbors : (-1,-1,0)(-1,0,0)(-1,1,0)(0,-1,0)(0,0,0)(0,1,0)(1,-1,0)(1,0,0)(1,1,0)(0,0,1)
localtransition : AP

[AP]
rule : { AP(cellpos(0) } 1 { cellpos(2)=0 }
rule : { if((0,0,0) = 1.0 or (0,0,0) = -83.0, 0.0, 1.0) } 1 { cellpos(2)=1 }

Figure 7. Definition of a Cell-DEVS model with an external function in C++

2.2 New Definitions for I/O Ports on Each Cell

When a cell is created, two ports (NeighborChange and
Out) are defined. NeighborChange receives values from
the neighbors; input ports In are created only for those cells
connected with external models. Out connects the cell with
the neighbors, while output ports OutX can be defined by
the modeler, and they are created dynamically only for the
cells that send outputs to other DEVS models.

Besides the basic I/O ports between cells, a user can
now define new ports as follows [47]:

NeighborPorts: alarm weight number

Input and output ports share their names, making it pos-
sible to automatically define the translation function: an
output from a cell will influence exclusively the input port
with the same name in every cell in its neighborhood.A cell
can read the value sent by one of its neighbors as follows:

rule : 1 100 { (0,1)∼alarm != 0 }
rule: { ∼alarm := 1; ∼weight :=
(0,-1)∼weight; } 100 { (0,1)∼number
> 50 }

If the cell receives an input in the alarm port from the
cell to the right, and that value is not 0, its status will change
to 1, and this change will be sent through the default output
port after 100 ms. As it might be necessary to output values
through many ports at the same time, the assignment can
be used as many times as needed, as seen in the second line:
if we receive a value larger than 50 in the port number on
the cell to the right, we wait 100 ms, generate an output of
1 in the alarm port, and we copy the weight value received
from the cell to the left to the weight output port.

2.3 Definition of Varied Topologies

Although most cellular environments use rectangular
topologies, it has been shown that square meshes can re-
strict defining the behavior of advanced cell spaces. Trian-
gular meshes, instead, cover areas of a more varied topol-
ogy while keeping a limited number of neighbors. Like-
wise, hexagonal geometries have high isotropy (i.e., the
capacity to represent equivalent behavior in every possi-
ble direction), which results in more natural model rules.
However, these models are more complex to represent,

and building visual aids is more complicated. CD++ Lat-
tice Translator allows us to define the cells’ behavior using
hexagonal and triangular geometries, and to translate them
into CD++ models using a square lattice. The mechanism is
depicted in Figure 9. For hexagonal meshes, we use a func-
tion that shifts alternate rows in opposite directions. The
mapping of the triangular lattice is similar: every second
cell has a different orientation, and each row of triangles
is mapped to one row of squares depending on the parity
of x+y. This approach allows us to execute these models
without needing to recreate the simulation engine, which
is still based on a rectangular mesh.

2.4 Advanced Software Technologies

CD++ can execute using a client/server architecture.
Users can create models in local workstations, execute
them in a remote high-performance simulation engine, then
receive, visualize and analyze the results locally with easy-
to-use 2D and 3D interfaces. An integrated development
environment (IDE) based on Eclipse permits the users to
easily interact with model definitions (Figure 10a). Figure
10(b) shows the 2D visualization engine for Cell-DEVS
models (which also includes triangular and hexagonal out-
puts for the Lattice Translator rules). A 3D interface sup-
porting multiview outputs was built using VRML in or-
der to facilitate Web-based visualization (showed in Fig-
ure 10c). This 3D graphical user interface (GUI) provides
varied functions (select geometries for the nodes, assign
colors, edit individual nodes and navigate in the field of
visualization). The GUI was designed with the intention
of being used by various users from remote locations, and
it was extended to run advanced visual models built with
Maya, as seen in Figures 10(d), (e) and (f) [50].

3. Modeling Phenomena with Diffusion Behavior

Many existing CA for environmental systems are based
on modeling phenomena that can be represented as diffu-
sion models. In this section, we present two such models,
focusing on solving them using the facilities provided by
Cell-DEVS and CD++. The first model we introduce is
devoted to the viability of population growth on a field,
defined in Darwen and Green [12] as a CA. The popu-

642 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

Figure 8. Structure of an atomic cell

Figure 9. Shift mapping to the square lattice

lation can be vegetal or animal, and the goal is to study
the connection between the area initially occupied by the
population and its survival chances. Population members
can move freely. The CA in Darwen and Green [12] fo-
cuses on extinction or wild oscillations, going beyond the
traditional reasons for this behavior (namely, populations
too small or confined to a small area in high population
density). This study has shown that when a population oc-
cupies an unconfined region smaller than a critical size, it
can also become extinct (even with a healthy population
density).

Different parameters influence the population expan-
sion, which could result in indefinite expansion (viability),
growth up to a steady state, or extinction. The model con-
siders two types of dynamics: the local, governed by pa-
rameters of fertility and maximum population per cell, and
migration, which considers population movement from
neighboring cells. As discussed in Darwen and Green [12],
each cell on the field contains a part of the population, and
the dynamics on each cell is defined by the discrete logis-
tics equation (1) for a single population, which applies to
a wide range of populations models (but works better for
species reproducing seasonally):

N(t + 1) = rN(t)

[
1 − N(t)

K

]
. (1)

Here, N represents the size of the population on a cell, t

represents the current time, t+1 denotes the next time step,
r � 0 is the reproduction rate, and K is the maximum local
population on each cell. The model separates the fertility
rate α = (r− 1) and the population mortality rate β =
(−r/K), by rewriting equation (1) as follows:

N(t + 1) = r N(t) +
(−r

K

)
N(t)2 ⇔ N(t + 1)

= N(t) + r N(t) − N(t) +
(−r

K

)
N(t)2

⇔ N(t + 1) = N(t) + (r − 1) N(t) +
(−r

K

)
N(t)2.

(2)

The model also considers migration between the four ad-
jacent cells (N, S, E, W), as follows:

δ2Nx,y = Nx,y−1 + Nx,y+1 + Nx+1,y + Nx−1,y − (
4Nx,y

)
.

Consequently, if we add this term to equation (2), we can
obtain the behavior of the cell (x, y) at time t :

Nx,y(t + 1) = Nx,y(t) + αNx,y(t) + βNx,y(t)
2

+ γδ2Nx,y(t). (3)

Here, γ < 1 is the proportion of the population on a cell that
is ready to migrate, and it is used as a diffusion coefficient.
γ can be also used as a scale factor: as each cell contains
the maximum population size in the area, a large γ can
be used to represent species moving rapidly or a smaller
area. Finally, considering that population is never negative,
and equation (3) can violate this condition, the Heaviside
operator H(z) is used (H(z) = z∀z > 0, and H(z) = 0
otherwise), resulting in

Nx,y(t + 1) = H
[
Nx,y(t) + αNx,y(t) + βNx,y(t)

2

+ γδ2Nx,y(t)
]
. (4)

If the population expands up to the borders of the field of
study, the population is viable. The population is not af-
fected by external factors, including external immigration.

Volume 82, Number 10 SIMULATION 643

Wainer

(a)

Figure 10. GUI and visualization facilities (continues on next page)

If the population reaches the value

Neq = r − 1

r
K,

the system is in steady state, and the population in succes-
sive generations does not change.

The original model was built as a finite-difference CA
using CM-Fortran executing under a CM-2 supercomputer.
A specialized graphical output was also built for the project.

In our case, the model was developed by a team of two stu-
dents working part-time for one month. The model can be
executed in a CD++ parallel simulation engine [45] with-
out modifying a single line. This presents a substantial im-
provement with respect to the original approach to solving
these problems. The first step of the model creation is the
construction of a formal specification (this step, which was
carried out in this and the following examples, allows the
modeler to think about the problem in an abstract way prior

644 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

(b) (c) (d)

(e) (f)

Figure 10. (continued from previous page)

to any implementation). The Cell-DEVS coupled model for
this application is formally defined by

Viability = 〈 Xlist, Ylist, X, Y , n, {t1, . . . , tn}, N , C, B,
Z〉.

Xlist =Ylist = {∅}; t1 = t2 = 40; N = {(–1,0), (0,–1), (0,0),
(0,1), (1,0)}; C = {Cij |i ∈ [1,t1], j ∈ [1,t2]}, where Cij

is a Cell-DEVS atomic model; B = {Cij |Cij ∈ C, i ∈
[1, t1], j ∈ [1, t2]}, and Z is defined by the neighbor-
hood. For each cell Cij , the Cell-DEVS atomic model is
defined by C =< X, Y , S, N , d , δint, δext, λ, τ, ta >,
with N ∈ Zη; τ : Zη → Z is defined by equation (4);
d = transport. These formal specifications can be directly
mapped to CD++ as shown in Figure 11.

The model follows a Cell-DEVS formal specification:
a 40 × 40 cell space using the N/S/E/W neighbors. Using

this information, a complete cell space is built. The cell’s
rules (localtransition : viability) define the local comput-
ing and delay functions using CD++ notation. We use a
macro (calc) to implement equation (4), using r = 1.24,
K = 100 and γ = 0.22. The first rule defines a limit for
growth. If this threshold is not crossed, and there is activity
(i.e., the result of equation (4) is not zero), the next step is
computed. In any other case (t = true), the cell becomes ex-
tinct. As in any Cell-DEVS, if a cell state does not change,
the cell becomes dormant, and it will be reactivated only
upon detection of activity. As we can see, modifying this
specification is very simple, which enables the modeler to
run advanced experiments quickly and easily, without spe-
cial concerns about the simulation engine or the software
development activities. Figure 12 shows graphical simula-
tion results (from CD++) for some basic cases, in which

Volume 82, Number 10 SIMULATION 645

Wainer

type : cell delay : transport dim : (40,40) border : nowrapped
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)
localtransition : viability

[viability]
rule : #K 1 { #calc > #K}
rule : { #calc } 1 { #calc > 0 }
rule : 0 1 { t }

#BeginMacro(calc)
trunc((#R *(0,0) * (1-(0,0)/#K)) + trunc(#gamma*((-1,0)+(0,-1)+(0,1)+(1,0)- 4 * (0,0))))
#EndMacro
#R = 1.24; #K= 100; #gamma=0.22

Figure 11. Cell-DEVS specification of a portion of the model using CD++

the three main behaviors can be established for different
fertility and mortality parameters using the same initial
conditions.

Figure 12(a) considers a viable population that will
expand to the borders of the grid in 200 transitions. We
achieve such behavior by using large fertility and small
mortality rates (K = 200, r = 1.2, α = 0.2, β = −0.006
and γ = 0.18). Figure 12(b) shows a steady-state popula-
tion, which is a result of the reduction in the fertility rate
combined with the small mortality rate (r = 1.1, α = 0.1,
β = −0.0055). Figure 12(c) shows how the population
increases, and diminishes up to extinction (r = 1.05, α =
0.05, β = –0.00525). This is the result of an even smaller
fertility rate. Figure 13 shows the execution results for a
more complex scenario.

Figure 13 shows the combined behavior of expansion
and migration. These results are similar to those presented
in Darwen and Green [12]: small patches shrink and dis-
appear, medium-sized patches remain constant or oscillate
between two sizes, and large patches expand indefinitely. In
Figure 13(a), we see that the population initially expands,
but later becomes extinct (as a result of low fertility, higher
mortality and low mobility). Figure 13(b) shows a viable
case as a result of a high fertility rate. In Figure 13(c), the
population becomes steady. Although mobility increased,
lower fertility makes growth slow, producing a steady-state
condition in which the population stops growing.

Performance experiments carried out with this example
allow us to show that the approach scales up without any
problems. Figure 14 shows the execution times for the first
75 time steps in varied configurations. Similar results were
obtained by Wainer and Giambiasi [22] and Wainer and
Chen [45] for different cellular models.

Our second study was carried out using a differ-
ent set of facilities in CD++. The model was executed
remotely by a group of students at the University of
Buenos Aires, Argentina, using a CD++ server [44]
(installed at 134.117.60.106:9001). The simulation re-
sults were presented using a CD++ visualization applet
(http://www.sce.carleton.ca/faculty/wainer/wbgraf/). Fig-
ure 15 shows the architecture of the solution, which allows

us to show our basic facilities for Web-based simulation.
The model developed by the remote team is based on

that presented by Bianchini et al. [13], which was a study
on the contamination of the Venetian lagoon, produced by
substances such as nitrogen and phosphorus. The goal was
to learn about this ecosystem, in order to be able to control
contamination produced the various lakes of the region.
The basic nature of the problem was the creation of an
industrial zone, which compromised the sustainability of
the lagoon as a result of increased pollution. The manu-
facturing debris increased the salinity and hydraulic vol-
ume (converting it into a sea-like environment), increased
the number of algae, and decreased oxygenation and sedi-
ment deposits. The authors proposed to monitor these pa-
rameters, using simulation for forecasting changes in the
ecosystem. To achieve this goal, their research team built a
dedicated CA environment. The system, called SeTA (Sea
Transformation Automaton), was developed using C/C++
and Unix Bourne Shell scripts, combined with ARC/info.

The CA measures the quantity of polluting substance
within a concentrated range. A hydrodynamic model rep-
resents the lagoon’s water velocity and the morphology of
the basin. The CA uses the initial scenario of substance
concentration, velocity maps and vegetation, and it gener-
ates a transformed scenario. Each cell contains the speed
of the water flowing in the cell (and its direction), and the
level of contamination of the cell. Pollution is produced
when the lake receives certain nitrogen from the exterior.
The model’s rules are the following.

1. The value of the current cell is computed as (0,0) +∑
[((20 – (0,0))/20)*Si*Wi], in which the addition

is carried out in all of the cells influencing the cell
(0,0). In this case, Si represents the concentration
of the pollutant on cell i, Wi the speed on the cell,
and Si*Wi is the contribution of a neighboring cell
in the direction to cell (0,0). Finally, (20 – (0,0)) / 20
represents the reception capacity of the current cell.

2. After evaluating rule l, and after consuming a delay
representing the contamination rate, the new value

646 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

(a)

(b)

(c)

Figure 12. Viability rules: basic behavior

(a) r = 1.1, K = 100, = 0.12

(b) r = 1.5, K = 100, = 0.12

(c) r = 1.25, K = 100, = 0.22

Figure 13. Viability analysis

Volume 82, Number 10 SIMULATION 647

Wainer

00:00

02:24

04:48

07:12

09:36

12:00

14:24

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Number of cells

E
xe

cu
ti

o
n

 t
im

Figure 14. Execution times of the viability model with different sizes of the cell space

Figure 15. CD++ client/server architecture [44]

of contamination of the cell is computed as (0,0) –
[(20 – Si/20)*(0,0)*WC], where WC is the velocity
on the central cell, Si represents the concentration
of the contaminant in the cell i (the cell receiving
pollution), and (20 – SC(t))/20 is the capacity of
reception of the receiving cell.

3. After evaluating rules 1 and 2, and waiting for the
delay representing the time to execute rule 2, the next
rule includes the cases in which one or more velocity

directions in the surrounding cells enter within the
cell, and the water in the origin cell is zero. This is
computed as (0,0) +

∑
[((20 – (0,0))/20)*Si*Wi] –

[(20 – Si/20)* (0,0)*WC].

4. In any other case (i.e., there is no neighboring cell
pointing to the origin, and the speed of water in the
cell is not affecting the origin cell), the current pol-
lution value is maintained.

648 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

(a) (b) (c) (d)

Figure 16. Two sources of constant pollution

We have run different test scenarios for the model, which
have allowed us to obtain results equivalent to those in the
original study, as discussed in the following. We show the
simulation results in Figures 16–18, in which we distin-
guish water (black cells) or contamination (lighter gray;
darker cells are contaminated). The simulation results il-
lustrate different modes of diffusion and the space–time
variations of the concentration of nitrogen in the lagoon,
according to the different phenomena taken into consider-
ation (advection, diffusion, vegetation absorption, sources
of emission).

In Figure 16, the model is fed with pollution from two
different sources (built as standard DEVS models repre-
senting nitrogen generators). In this case, we show the
simulation results on a continuous focus of contamination
during several hours (the factories discharge 560 l h–1). We
modified the original model, adding subsurface vegetation
(which makes the diffusion of pollutants to be slower). This
is implemented as a zone (marked by a square in the figure)
in which the model introduces a different behavior than the
rest of the cell space. Introducing this change is straight-
forward, while doing this in the original CA environment
requires an extension of the SeTA environment we created
for this application.

We can see how the pollutant concentrates in the places
where the contaminant is being discharged. As the hydro-
logical map and the presence of vegetation allow station-
ary water, diffusion is slow. The differences between the
second and third images (which represent 24 hours of sim-
ulated time) are not large: the microalgae avoid further
expansion of the contamination. Figure 16(d) shows the
results obtained when vegetation in the model is elimi-
nated. As we can see, the leftmost part of the model does
not contain any vegetation (which was the case in Figures
16a–c), and therefore the pollution concentrates and ex-
pands more quickly. On the north-east side of the figure,
where there was no vegetation, the evolution is exactly the
same as in the previous case.

Figure 17 shows the influence of the hydrological map.
Here, all the cells have a single direction of movement, us-
ing random equiprobable values. Pollution expands more

homogeneously, as water flows in every direction. Like-
wise, we can see that there are higher levels of contami-
nation getting to farther places than in the previous case,
contaminating places distant from the source of pollution.

Figure 18 presents the original model (with vegetation
and slow probability of absorption of the pollutant by the
plants), using a single source of nitrogen at the beginning
of the simulation (representing accidents, showing how the
toxic elements will spread in these cases). When the source
of pollutant stops, the contamination is slowly absorbed by
vegetation in the lake. We can see that, although the algae
collaborate in eliminating the pollution, the hydrological
characteristics of the lake makes a polluted region in the
north-west area that does not disappear.

4. Modeling Watersheds

Gutowitz [52] and Gaylord and Nishidate [54] intro-
duced a Cell-DEVS model of a watershed that was previ-
ously defined in Ameghino et al. [55] using DEVS/C++.
They combined GIS data (topography, soil, rain) with a
DEVS environment to project the evolution of a water-
shed. A watershed is a natural region that acts as the water-
receiving area of a drainage basin. The water that accumu-
lates has different origins, such as rain, rivers and melting
snow, as shown in Figure 19.

The hydrology model considers the watershed as di-
vided into cells organized in layers: air, vegetation, surface
water, soil, ground water and bedrock. The model repre-
sents the water flow and accumulations based on the char-
acteristics of the different layers. Water accumulation is
computed as shown in Figure 20. Each cell is an atomic
model, and then these build an array of spatially organized
models.

Here, we show how CD++ can be used to define this
model with ease, introducing varied behavior in different
areas of the model. To do so, we built a Cell-DEVS version
of the original model using CD++. Figure 21 shows the
execution results for this model. Figure 21(a) shows the
model’s initial state, representing the slope of the terrain
before rain. Each cell occupies 1 × 1 m2. Figure 21(b)

Volume 82, Number 10 SIMULATION 649

Wainer

Figure 17. Variation in the hydrology model

Figure 18. GUI and visualization facilities

Figure 19. Topography of a watershed

shows the execution results after intense rain (7.62 mm
h−1) after 2 h. We can see that the rain is accumulated in
the lower levels of the terrain, and a stream is formed.

The height of accumulated water depends on the rain
water that reaches the ground, the water received from
neighboring cells, the water that overflows to neighbor-
ing cells and the water the ground has absorbed. Based on

the equations for this model, the CD++ model developed
simulates the accumulation of water under the presence
of constant rain. The original model in Gutowitz [52] and
Ameghino et al. [55]4] assumed the soil in the whole wa-
tershed area was of the same type. Here, we show how
to expand the original model by defining areas contain-
ing different soil types (grass or rock). Figure 22 shows
the implementation of the model in CD++: it represents
the accumulation of water by taking the present amount of
water in the cell, and adding the rain fall up to the present.
Then, we consider how much water must be passed to the
neighbors, and how much water is received from the in-
verse neighborhood.

We use a 3D model to defined a different behavior using
two overlapped planes, one to represent the height of the
water retained (surface 0) and one to represent the topog-
raphy of the terrain (surface 1). These values for ground el-
evation remain unchanged throughout the simulation, and
they are used to calculate the water overflow to neighbor-
ing cells. We use two zones, representing the sets of cells
that will model grass and rock areas. For each zone, differ-
ent sets of rules apply. Each rule calculates the new water
height by applying the hydrology model equation. These
rules represent the water accumulation changing the sur-
face vegetation and ground filtration parameters, as shown
in Figure 23. A modeler with some experience can define
this varied behavior with ease.

650 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

Figure 20. Hydrology model [55]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

(a) (b)

Figure 21. Execution of the hydrology model [52]

We repeated the execution of this model using Q-DEVS,
QSS and Q-DEVS with dynamic quantization. These re-
sults were obtaining by running the hydrology equations in
CD++, and activating the corresponding simulation engine
at runtime (the user only needs to select the quantization
parameters upon execution, and does not need to worry
about implementation issues). Figure 24 presents perfor-
mance results obtained with the different techniques.

Figure 24(b) presents the cumulative error obtained with
different strategies for this model. The figure compares the
different strategies (using different update ratios for the
dynamic DEVS strategies 1 and 2). The results are ob-
tained with standard and hysteresis quantum overlap, be-
cause the results of hysteresis quantum differ from the stan-
dard when direction changes are present. The lowest error
was obtained with dynamic quantum Str1 with ratio 0.9.
Str1 results were better than Str2 and standard Q-DEVS
(the larger the ratio, the better the result), as expected. The
quantum size is adjusted very quickly, which reduces the

amount of error obtained. The best execution time was
for Q-DEVS and Str1 with an update ratio of 0.05 (larger
update ratios adjust the values quicker, reducing the er-
ror while increasing the number of messages). When us-
ing q = 0.05, Q-DEVS provides better results. As each
cell increases by approximately 0.07 units in each update,
changing the quantum size makes it oscillate around the
function value, resulting in an increase in the total simu-
lation messages. This does not occur with fixed quantum
size. Likewise, once the quantum size varies, the dynamic
quantum strategies have lower message interchange.A low
update ratio improves the number of messages involved,
while increasing the error. Paying a small cost in the extra
execution overhead, we were able to reduce the error in-
volved (up to 75%). Str2 reduces the number of messages
using higher rates when compared to Str1, but incurring in
a higher amount of error. If we consider, for instance, q =
1 with Str1 and ratio 0.9, the amount of error introduced
is minimum and the number of messages has been greatly

Volume 82, Number 10 SIMULATION 651

Wainer

type : cell dim : (30,30,2)
delay : inertial border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0) (1,0,0)(-1,0,1) (0,-1,1) (0,0,1)(0,1,1) (1,0,1)
zone : grass { (0,0,0)..(29,10,0) }
zone : stones { (0,20,0)..(29,29,0) }

[grass]
rule : {0.07 + (0,0,0) - if(((((0,0,1) + (0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) + (0,0,1) -
(-1,0,0) - (-1,0,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((1,0,1) +
(1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - (1,0,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1) - (0,-1,0) - (0,-1,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0)
- (0,1,1))/1000) * (0,0,0))/1000),0) + if(((((-1,0,1) + (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0)
+ (-1,0,1) - (0,0,0) - (0,0,1)) * (-1,0,0))/1000),0) + if(((((1,0,1) + (1,0,0))>((0,0,1) +
(0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1)) * (1,0,0))/1000),0) + if(((((0,-1,1) + (0,-
1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-1,0))/1000),0) +
if(((((0,1,1) + (0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - (0,0,1)) *
(0,1,0))/1000),0) } 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

[rock]
rule : {0.09 + (0,0,0) - if(((((0,0,1) + (0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) + (0,0,1) -
(-1,0,0) - (-1,0,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((1,0,1) +
(1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - (1,0,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1) - (0,-1,0) - (0,-1,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((0,1,1) + (0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0)
- (0,1,1))/1000) * (0,0,0))/1000),0) + if(((((-1,0,1) + (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0)
+ (-1,0,1) - (0,0,0) - (0,0,1)) * (-1,0,0))/1000),0) + if(((((1,0,1) + (1,0,0))>((0,0,1) +
(0,0,0)))),((((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1)) * (1,0,0))/1000),0) + if(((((0,-1,1) + (0,-
1,0))>((0,0,1) + (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-1,0))/1000),0) +
if(((((0,1,1) + (0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - (0,0,1)) *
(0,1,0))/1000),0) } 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

Figure 22. Watershed model definition with zones for differentiated terrain information

Figure 23. Watershed simulation differentiated zones for terrain information

reduced. If we consider now q = 3.5, the error obtained
with Str1 is better, while the number of messages involved
is comparable.

5. Modeling Fire Spread

Forest fires destroy important resources, and hence
enormous efforts have been made to prevent them. Many

forest fire models have been developed to study how the fire
spreads under different environmental conditions. Wainer
and Chen [45] have described a fire model using Cell-
DEVS. The model is based on experimental fires conducted
on Pinus pinaster litter, in a closed room without any air
motion [16]. The study domain is meshed uniformly with
cells of 1 cm2. The physical model is solved by the finite
difference method, which leads to the following equation

652 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

(a) (b)

Figure 24. Quantized watershed simulation results (a) execution time; (b) cumulative error

T k+1
i,j

= aT k

i−1,j
+ aT k

i+1,j
+ bT k

i,j−1 + bT k

i,j+1

+ cQ

(
∂σv

∂t

)k+1

i,j

+ dT k

i,j

where Tij is the temperature of a grid node. The coefficients
a, b, c and d depend on the considered time step and mesh
size [16]. As described in Figure 25, we used two planes
representing the different variables in our model. The first
plane stores the cell’s temperature. The second plane stores
the ignition time of the cells in the propagation plane. As
discussed in [45], this model accurately reproduces the
experimental results. As we can see in Figure 24, we need
n×m × 2 cells (double the size of the simulated area). The
new facilities provided by CD++ allow us to save time and
memory space by reducing the model to one plane only
(see Muzy et al. [47] for a report on the savings).

The first step was to add a state variable ti to remove
one layer of cells and to replace all the references to this
layer by references to the state variable. For instance, two
of the original rules in this model were defined as [45]:

rule: {#burning} 1 {cellpos(2)=0 AND
(((0,0,0) > #burning AND (0,0,0)
>333) OR (#burning>(0,0,0) AND
(0,0,0)>=573)) AND (0,0,0)!=209 }
% Burning

rule: { time/100 } 1 { cellpos(2)=1
AND (0,0,-1)>=573 AND (0,0,0) = 1.0}
% ti

These were replaced by

rule: {#burning} 1 {((0,0)>#burning
AND (0,0)>333) OR

(#burning>(0,0) AND (0,0)>=573) AND
(0,0)!=209} % Burning

(0,0,0)

Plane 0

Plane 1

(0,-1,0)

(1,0,0)

(0,1,0)

(-1,0,0)

(0,0,0)

(0,0,1)

Figure 25. Cell’s neighborhood specification [45]

rule : { (0,0) } { $ti := time/100;}
1 { (0,0)>=573 AND $ti = 1.0 } % ti

The model does not use multiple planes, as in the previ-
ous case, and therefore we do not need to check the plane
we are using (cellpos). Simultaneously, the references are
always to 2D cells. The ti rule records the moment when
the cell starts burning. In this case, we use a new state
variable instead of an independent plane, as in the original
model presented in Wainer and Chen [45]. As these rules
are more compact, we can manipulate them to obtain better
performance and easier understanding. To shorten execu-
tion time, the number of rules was reduced and the clauses
in the rules’ condition reordered. For instance, we can see
that both rules need (0,0)!=209, and (0,0)>333 and (0,0)�
333 ⇒ (0,0) �= 209. Hence, (0,0)!=209 can be removed.
Rule ti overlaps with the second part of the rule burning,

Volume 82, Number 10 SIMULATION 653

Wainer

so they were merged. The two rules were merged into one,
which will assign the new value to $ti depending on $ti’s
original value:

rule : { #burning } 1 { (0,0)> 333
AND ((0,0)< 573 OR $ti != 1.0) AND (0,0)
>#burning }

rule : { #burning }{ $ti := if($ti =
1.0, time/100,$ti); } 1 { (0,0)>=573 AND
#burning>=(0,0) }

rule : { #burning } { $ti := time /
100; } 1 { $ti=1.0 AND (0,0)>=573
AND #burning<(0,0) }

A second step optimization is based on the fact that
CD++ is capable of using short-cut evaluation (in the same
style as the C programming language). When the left ex-
pression of an “and” operation evaluates to false, the whole
operation will evaluate to false, so it is useless to evaluate
the right expression. Similarly, when the left expression of
an “or” operation evaluates to true, the whole operation
will evaluate to true, and so there is no need to evaluate the
right expression of the operation. By simply reordering
the operations and their parameters, we can save execution
time. The idea is to execute the simplest conditions first,
while leaving the more complex ones to the end:

rule : { #burning } 1 { (0,0) > 333
AND ((0,0) < 573 OR $ti != 1.0)
AND (0,0) > #burning }

rule : { #burning }{ $ti := if($ti=
1.0,time/100, $ti); } 1 { (0,0)>=
573 AND #burning >= (0,0) }

rule : { #burning }{ $ti := time /
100; } 1 { $ti = 1.0 AND (0,0) >=
573 AND #burning < (0,0) }

This problem can also be solved using multiple ports to
replace the extra plane. When we use multiple ports we do
not need to store the values internally, but to transmit them
through the ports. So, there is no need to set values, but just
send them out though the corresponding port. In this case,
two ports are declared: temp and ti. The port temp exports
the cell’s temperature, while the port ti exports the ignition
time:

rule : { ∼temp := #burning; } 1
{ (0,0)∼temp>333 AND ((0,0)∼temp<
573 OR (0,0)∼ti!=1.0) AND

(0,0)∼temp > #burning }
rule : { #burning } 1 { (0,0)> 333
AND ((0,0)< 573 OR $ti != 1.0)
AND (0,0)>#burning }

rule : { #burning } { $ti := if($ti=
1.0, time/100, $ti); } 1 { (0,0)>=
573 AND #burning>=(0,0) }

rule : { #burning } { $ti := time /
100; } 1 { $ti=1.0 AND (0,0)>=573
AND #burning<(0,0) }

These two new versions of the model behave exactly
the same as the original, but with clear gains in the model-
ing itself, which permits a user to describe more complex
phenomena easily. Likewise, the different optimizations
presented have allowed us to obtain gains in execution
times of up to 40% just by reordering and factoring the
rules to execute more efficiently using the CD++ evalu-
ation mechanism. Figure 26 shows a 3D version of the
execution results for this model using CD++/Maya. These
visualizations can be easily expanded to include terrain and
climate information, which would be useful for training,
online visualization and decision-making.

Many of the models defined up to now have been based
on a traditional definition for cellular models. We have
shown how to use these basic definitions to create Cell-
DEVS models, and how to expand them by using some of
the basic facilities provided by CD++. Nevertheless, one
of the fundamental advantages in the use of Cell-DEVS
(which requires the most complex adaptation effort) is in
the definition and use of the delay functions. We show an
advanced Cell-DEVS fire model based on a well-known
model for fire propagation in forests by Rothermel [56], in
which we can see how to make use of the explicit time delay
functions to improve model definition. This model uses en-
vironmental and vegetation conditions, and it computes the
ratio of spread and intensity of fire. Three parameter groups
determine the fire spread ratio: (i) vegetation type (caloric
content, mineral content and density); (ii) fuel properties
(the vegetation is classified according to its size); (iii) envi-
ronmental parameters (wind speed, fuel humidity and field
slope). When Rothermel’s rules are applied to a given fuel
model and environmental parameters, it can determine the
spread ratio (i.e., the distance and direction the fire moves
in a minute). The first step is to use the fuel model, the speed
and direction of the wind, the terrain topography and the
dimensions of the cellular space to obtain the spread ratio
in every direction. For instance, Figure 27 shows the val-
ues obtained for a fuel model group number 9, a south-east
wind of 24.135 km h–1 and a cell size of 15.24 × 15.24 m2.
Instead of using a time-based approach, the model uses the
delay function to compute the fire spread, as seen in Fig-
ure 28.

The rules defining the local computing function are de-
voted to detecting the presence of fire in the eight neigh-
boring cells. For instance, the first rule checks if the cur-
rent cell is not burning: (0,0) = 0) and if the south-west
neighbor has started to burn (0 < (1,–1). If this condi-
tion holds, the new value of the cell will be (1,–1) +
(21.552615/17.967136), which is the time the fire will
start in the cell. As the spread ratio is 17.967136 mpm
and a cell has a diagonal of 21.552615 m, it will take
(21.552615/17.967136) min for the fire to reach the cell
once it has started in its south-west neighbor. Therefore,
we use a delay of (21.552615/17.967136)*60,000 ms after
which the present cell state will spread to the neighbors.
The remaining rules represent a similar behavior for the re-

654 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

Figure 26. Visualization of the model in CD++/Maya

Wind direction = 45.000000 (bearing) Wind speed = 8.045000 [kph] NFFL model = 1
Cell Width = 15.240000 [m] (E-W) Cell Height = 15.240000 [m] (N-S)
Max. Spread = 17.967136 [mpm]
0 Spread = 5.106976 [mpm] Distance = 15.2400m 45 Spread = 17.967136 Distance = 21.552615
90 Spread = 5.106976 Distance = 15.240000 135 Spread = 1.872060 Distance = 21.552615
180 Spread = 1.146091 Distance = 15.240000 225 Spread = 0.987474 Distance = 21.552615
270 Spread = 1.146091 Distance = 15.240000 315 Spread = 1.872060 Distance = 21.552615

Figure 27. Parameter definition computed using Rothermel’s model

type : cell dim : (20,20)
delay : inertial border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
localtransition : FireBehavior

[FireBehavior]
rule : {(1,-1)+(21.552615/17.967136)} {(21.552615 / 17.967136)*60000} {(0,0)=0 and 0<(1,-1)}
rule : {(1,0)+(15.24/5.106976)} {(15.24 / 5.106976)*60000} {(0,0)=0 and 0<(1,0)}
rule : {(0,-1)+(15.24/5.106976)} {(15.24 / 5.106976)*60000} {(0,0)=0 and 0<(0,-1)}
rule : {(-1,-1)+(21.552615/1.872060)} {(21.552615 / 1.872060)*60000} {(0,0)=0 and 0<(-1,-1)}
rule : {(1,1)+(21.552615/1.872060)} {(21.552615 / 1.872060)*60000} {(0,0)=0 and 0<(1,1)}
rule : {(-1,0)+(15.24/1.146091)} {(15.24 / 1.146091)*60000} {(0,0)=0 and 0<(-1,0)}
rule : {(0,1)+(15.24/1.146091)} {(15.24 / 1.146091)*60000} {(0,0)=0 and 0<(0,1)}
rule : {(-1,1)+(21.552615/0.987474)} {(21.552615 / 0.987474)*60000} {(0,0)=0 and 0<(-1,1)}
rule : {(0,0)} 0 { t }

Figure 28. Definition of a fire forest model [48]

maining neighbors. The results of running this model are
shown in Figure 29. As we can see, the burning time of
a cell depends on the spread ratio in the direction of the
burning cell. This value is used as the delay component for
the rules. It is important to note that the cells are updated at
different times, as set by a rule’s delay component. This is
a clear departure from the classical approach to CA, where
all active cells are updated at the same time. A non-burning
cell in the direction of the fire spread will be updated in a
shorter period of time than a non-burning cell in the op-
posite direction. Another advantage is that the expression
of a timing delay is done in a natural fashion, allowing
the modeler to reduce the development time related with
timing control programming.

Another advantage is that the complexity of this physi-
cal phenomenon is such that the inclusion of other external
influences is difficult to consider. Cell-DEVS allows us to
easily include new rules, allowing the evolvability of the
model. For instance, we can use CD++ Lattice Translator
to convert this model into a hexagonal version, as shown
in Figure 30.

As we can see, we use a different notation to represent
each one of the six neighbors ([1 . . . 6], in counterclock-
wise direction starting at 0◦). In the hexagonal lattice, the
distance between two neighboring cells is the same in ev-
ery direction, so we use a distance of 15.24 m for all of the
rules. Using a triangular lattice, we obtain the rules shown
in Figure 31.

Volume 82, Number 10 SIMULATION 655

Wainer

(a) (b)

Figure 29. (a) Fire propagation results. (b) A 2-h period (each zone represents 20 min)

[FireBehavior]
rule: {[5]+(15.24/13.68048533)} {(15.24 / 13.68048533)*60000} {[0]=0 and [5]!=? and [5]>0}
rule: {[6]+(15.24/5.106976)} {(15.24 / 5.106976)*60000} {[0]=0 and [6]!=? and [6]>0}
rule: {[4]+(15.24/2.95036533)} {(15.24 / 2.95036533)*60000} {[0]=0 and [4]!=? and [4]>0}
rule: {[1]+(15.24/1.630070333)} {(15.24 / 1.630070333)*60000} {[0]=0 and [1]!=? and [1]>0}
rule: {[3]+(15.24/1.146091)} {(15.24 / 1.146091)*60000} {[0]=0 and [3]!=? and [3]>0}
rule: {[2]+(15.24/1.040346333)} {(15.24 / 1.040346333)*60000} {[0]=0 and [2]!=? and [2]>0}

Figure 30. Rothermel’s rules using hexagonal topology

[FireBehavior]
rule: {[3]+(4.40 / 5.106976)} {(4.40 / 5.106976)*60000} {[0]=0 and [3]!=? and [3]>0 and
odd(cellpos(0)+cellpos(1))}
rule: {[1]+(4.40 / 2.95036)} {(4.40 / 2.950365)*60000} {[0]=0 and [1]!=? and [1]>0 and
odd(cellpos(0)+cellpos(1))}
rule: {[2]+(4.40 / 1.040346)} {(4.40 / 1.040346)*60000} {[0]=0 and [2]!=? and [2]>0 and
odd(cellpos(0)+cellpos(1))}

rule: {[3]+(4.40 / 8.57344)} {(4.40 / 8.57344)*60000} {[0]=0 and [3]!=? and [3]>0 and
even(cellpos(0)+cellpos(1)}
rule: {[2]+(4.40 / 1.630070)} {(4.40 / 1.630070)*60000} {[0]=0 and [2]!=? and [2]>0 and
even(cellpos(0)+cellpos(1)}
rule: {[1]+(4.40 / 1.146091)} {(4.40 / 1.146091)*60000} {[0]=0 and [1]!=? and [1]>0 and
even(cellpos(0)+cellpos(1)}

Figure 31. Rothermel’s rules using triangular topology

In this case, there are six rules because we need to per-
form rules for even triangles and odd triangles. These mod-
els are translated into a square grid, as shown earlier in Fig-
ure 9. CD++ can display these topologies, as shown in Fig-
ure 32. The following figures show how to apply our new
facilities in simulating Rothermel’s model using different
topologies.As we can see, the use of triangular and hexago-
nal topologies (which have much higher isotropy) produce
very different results. Although triangular and hexagonal
meshes provide better results in terms of the area covered,
most researchers still use square lattices, as most GIS sys-

tems and existing modeling tools are based on square lat-
tices only. The results presented in the Figure 32 provide a
means of showing how environmental scientists can make
use of these advanced topologies in order to improve the
existing models using this basic feature.

Fire suppression can be easily implemented. In Figure
33, we show the implementation of a rain front moving to
the south-east, extinguishing the fire on burning cells. This
behavior is implemented in the rules shown in Figure 34,
which were added to the previous model. Negative values
define the effects of the rain. A cell whose value is –1 is a

656 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

(a) (b)

Figure 32. Fire propagation with (a) hexagonal lattice and (b) triangular lattice

rule : -1 {60000*3} {(0,0)=0 and ((-1,0)=-1 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)}
rule : -2 {60000*3.5} {(0,0)>0 and ((-1,0)=-1 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)
rule : -3 {60000*4.5} {(0,0)=-2}
rule : -4 {60000*5} {(0,0)=-3}

Figure 33. Forest fire: rules defining rain

(a) (b)

Figure 34. Fire evolution with rain: (a) square lattice; (b) hexagonal mesh

wet cell where no fire was presented previously. A value
of –2 or –3 indicates the cell was previously on fire and is
now cooling down, and a value of –4 means the fire on that
cell is extinguished. The first rule in Figure 33 defines rain
spreading to the south-west. The second rule defines the
cooling process on a burning cell, and the third and fourth
rules represent an advance in the cooling process.

Figure 34 shows the execution of this model using two
different topologies (square and hexagonal). The initial be-
havior is similar to that seen in Figures 29 and 32. We then
observe the advance of rain, which cools the fire areas (light
gray), and finally we can see how rain extinguishes fire ar-
eas. It is important to notice that if any of the cells are
scheduled to start burning and become wet before the fire
starts, these will not burn. This was easily defined by an
inertial delay, which preempts any scheduled event if a new
event from a neighboring cell occurs before the scheduled
time and the present cell obtains a different value.

The extension in Figure 35 allows us to analyze fire sup-
pression by firefighters. A negative value is still used for
wet or cooling cells, and a positive value for burning cells,
but the way in which the water is spread has been changed.
In this case, firefighters move from north to south, spread-
ing water on non-burning vegetation. Once they reach a

burning cell, they hold their positions until the fire is ex-
tinguished, and then they move towards the south-west.

Figure 36 shows how firefighters spread coolant from
north to south, and while the fire spreads (as in Figures 29
and 32), the firefighter zones cool down (light gray), while
in some areas the fire has been extinguished.

6. Conclusion

We have shown how to apply the Cell-DEVS formalism
and the CD++ tool to the construction of advanced models
in the field of environmental science. Cell-DEVS allows
us to describe physical and natural systems using an n-
dimensional cell-based formalism. Input/output port def-
initions allow the definition of multiple interconnections
between Cell-DEVS and DEVS models. Complex timing
behavior for the cells in the space can be defined using very
simple constructions. CD++ simplifies the construction of
complex cellular models by allowing simple and intuitive
model specification. The CD++ logic rules facilitate the
debugging phase and, consequently, reduce development
time. Complex model modifications can now be easily inte-
grated into the models, even by a non-computer specialist.
Using different examples of applications in the field, we

Volume 82, Number 10 SIMULATION 657

Wainer

rule : -1 60000 {(0,0)=0 and (-1,0)=-1}
rule : -2 {60000*7} {(0,0)>0 and ((-1,1)=-1 or (-1,1)=-4) }
rule : -3 {60000*9} {(0,0)=-2}
rule : -4 {60000*9} {(0,0)=-3}

Figure 35. Rules defining firefighter behavior

(a) (b)

Figure 36. Fire evolution with firefighters: (a) square lattice; (b) hexagonal lattice

have shown how an environmental scientist can use the dif-
ferent facilities, showing how a team with minimum train-
ing can create complex applications without difficulties.
The different examples presented here show the numer-
ous new advanced facilities of CD++ and its application
to the field of environmental sciences: execution of mod-
els with varied topologies, advanced rule definitions (with
multiple state variables in each cell and multiple I/O ports
to transfer information between submodels), integration
of the results into advanced visualization environments,
and seamless execution with high performance (including
a parallel simulator and quantization algorithms). We have
shown models on diffusion (viability of a population, pol-
lution of the Venetian basin), hydrology and fire spreading,
focusing on how our techniques can facilitate the task of
the environmental modeler.

We have shown how these methods can improve the cre-
ation of ecological and environmental models, focusing on
different aspects: how it allows the environmental special-
ists to apply their expertise while facilitating the change
of paradigm, how to improve knowledge generation us-
ing a model-based approach, and how to execute with high
performance. The experts can apply our advanced environ-
ment with traditional techniques, and then they can switch
to the discrete-event based paradigm. If the local comput-
ing function is to be quantized, this requires a fundamental
shift in thinking about the system as a whole, and also an
alternative mechanism to collect experimental data and to
define model equations: we must consider that instead of
determining what value a dependent variable will have (its
state) at a given time, we must determine at what time a de-
pendent variable will enter a given state (therefore, the data
collection must focus on the time for the state changes). The
Cell-DEVS delay function provides a natural mechanism
for implementing the quantization function. We have put
into consideration two important issues: how to maintain
the ability of CA to describe very complex systems using
very simple rules (which is its main advantage), and how

to bridge the gap between a continuous variable formal-
ism. The independent simulation mechanisms permit these
models to be executed interchangeably in single-processor,
parallel or real-time simulators without any changes. This
approach provides us with a technique that is easy to un-
derstand and to map into other existing techniques, while
having the potential of evolving into more complex appli-
cations. The result is a set of models with the potential to
evolve into more complex entities, which is unfeasible with
the aforementioned approaches. We have also shown how
different simulation engines can be activated at runtime,
showing the use of quantization techniques for the exe-
cution of continuous variable Cell-DEVS. We have pre-
sented two different strategies for automatic updating of
the quantum sizes in different cells. We have made im-
portant reductions in the error obtained, while maintaining
the high speed of quantized DEVS models. Likewise, we
can see that the introduction of QSS permits us to obtain a
more controlled behavior, even for applications with cells
executing with a nonlinear pattern.

7. Acknowledgments

This work has been partially supported by the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC), the Canadian Foundation for Innovation, and the
Ontario Innovation Fund. Different students collaborated
in various stages of this project, including J. Ameghino, R.
Chreyh, Esteban Fernandez Rojo, A. Khan, M. MacLeod
and M. Polimeni.

8. References

[1] Toffoli, T., and N. Margolus. 1987. Cellular Automata Machines.
Cambridge, MA: MIT Press.

[2] Wolfram, S. 2002. A New Kind of Science. Champaign, IL: Wolfram
Media.

[3] Avolio, M. 2004.A cellular “blocks” model for large surface flows and

658 SIMULATION Volume 82, Number 10

Applying Cell-DEVS Methodology

applications to lava flows. In Proceedings of the 6th International
Conference on Cellular Automata for Research and Industry,Am-
sterdam, the Netherlands. Lecture Notes in Computer ScienceVol.
3305. Berlin: Springer.

[4] Koh, A. 2002. Dramatic landscapes: Cellular automata model-
ing of landscape phenomena. Ph.D. Thesis, Monash Univer-
sity. Available online at http://www.csse.monash.edu.au/hons/se-
projects/2002/cckoh1/dramatic_landscapes.pdf.

[5] ElYacoubi, S., A. El Jai, P. Jacewicz, and J. G. Pausas. 2003. LUCAS:
an original tool for landscape modeling. Environmental Modelling
and Software 18(5):429–37.

[6] Pukkala, T. 1988. Effect of spatial distribution of trees on the volume
increment of a young Scots pine stand. Silva Fennica 22(1):1–17.

[7] Colasanti, R., R. Hunt, and L. Watrud. 2004. The use of cel-
lular automata modeling approaches to understand potential
impacts of genetically modified plants on plant communities.
In NKS 2004, Boston, MA. Available online at http://www.
wolframscience.com/conference/2004/presentations/HTMLLinks/
index_20.html.

[8] Bagnoli, F. 2004. Sympatric speciation through assortative mating in
a long-range cellular automaton. In Proceedings of the 6th Inter-
national Conference on Cellular Automata for Research and In-
dustry, Amsterdam, the Netherlands. Lecture Notes in Computer
Science, Vol. 3305. Berlin: Springer.

[9] Auger, P., and B. Faivre. 1993. Cellular automata models applied to
competition: The case of the sibling birds species of Hippolais in
Burgundy. Acta Oecologica 14(6):781–806.

[10] Molofsky, J., and J. Bever. 2004. A new kind of ecology? Bioscience
54(5):440–6.

[11] Dzwinel, W. 2004. A cellular automata model of population infected
by periodic plagues. In Proceedings of the 6th International Con-
ference on Cellular Automata for Research and Industry, Ams-
terdam, the Netherlands. Lecture Notes in Computer Science Vol.
3305. Berlin: Springer.

[12] Darwen, P., and D. Green. 1995. Viability of populations in a land-
scape. Ecological Modelling 85(2–3):165–71.

[13] Bianchini, A., F. Indovina, and E. Rinaldi. 1999. Cellular automata
for the study of the diffusion of pollutants within the basins of the
lagoon: The case of the Venetian lagoon. In Proceedings of the
6th International Conference on Computers in Urban Planning
and Urban Management, Venice, Italy.

[14] Bandini, S., and G. Pavesi. 2002. Simulation of vegetable popula-
tion dynamics based on cellular automata. In Proceedings of the
5th International Conference on Cellular Automata for Research
and Industry, Geneva, Switzerland. Lecture Notes in Computer
Science Vol. 2493. Berlin: Springer.

[15] Spencer, M. 1997. The effects of habitat size and energy on food web
structure: An individual-based cellular automata model. Ecolog-
ical Modelling 94:299–316.

[16] Balbi, J., P. Santoni, and J. Dupuy. 1999. Dynamic modelling of fire
spread across a fuel bed. International Journal of Wasteland Fire
9:275–84.

[17] Barros, F., and G. L. Ball. 1998. Fire modelling using dynamic struc-
ture cellular automata. In Proceedings of the 3rd International
Conference on Forest Fire Research and 14th Conference on Fire
and Forest Meteorology, Luso, Portugal.

[18] Trunfio, G. 2004. Predicting wildfire spreading through a hexagonal
cellular automata model. In Proceedings of the 6th International
Conference on Cellular Automata for Research and Industry,Am-
sterdam, the Netherlands. Lecture Notes in Computer ScienceVol.
3305. Berlin: Springer.

[19] Berjak, S. G., and J. W. Hearne. 2002. An improved cellular automa-
ton model for simulating fire in a spatially heterogeneous Savanna
system. Ecological Modelling 148:133–51.

[20] Dunn, A. 2004. Modelling wildfire dynamics via interacting au-
tomata. In Proceedings of the 6th International Conference on
Cellular Automata for Research and Industry, Amsterdam, the
Netherlands. Lecture Notes in Computer Science Vol. 3305.
Berlin: Springer.

[21] Muzy, A., E. Innocenti, A. Aiello, J.-F. Santucci, P. Santoni, and D.
Hill. 2005. Modelling and simulation of ecological propagation
processes: Application to fire spread. Environmental Modelling
and Software 20:827–42.

[22] Wainer, G., and N. Giambiasi. 2001. Application of the Cell-DEVS
paradigm for cell spaces modeling and simulation. Simulation
76(1):22–39.

[23] Zeigler, B., T. Kim, and H. Praehofer. 2000. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. New York: Academic Press.

[24] Chiari, F., M. Delhom, J.-B. Filippi, and J.-F. Santucci. 2000. A GIS
based methodology for the modeling and the simulation of wa-
tersheds. In Proceedings of the Advanced Technology Workshop
(ATW) 2000 Conference, Corsica, France.

[25] Zeigler, B., Y. Moon, D. Kim, and G. Ball. 1997. The DEVS en-
vironment for high-performance modeling and simulation. IEEE
Computational Science and Engineering 4(3):61–71.

[26] Hill, D., T. Thibault, and P. Coquillard. 2002. Predicting invasive
species expansion using GIS and simulation coupling. Modeling
and Simulation 1(1):30–5.

[27] Hill, D., P. Coquillard, J. De Vaugelas, and A. Meinesz. 1998. An
algorithmic model for invasive species application to Caulerpa
taxifolia (Vahl) C. Agardh development in the North-Western
Mediterranean Sea. Ecological Modelling 109:251–265.

[28] Muzy, A., G. Wainer, E. Innocenti, A. Aiello, and J.-F. Santucci. 2002.
Dynamic and discrete quantization for simulation time improve-
ment: fire spreading application using the CD++ tool. In Proceed-
ings of the 2002 Winter Simulation Conference, San Diego, CA.

[29] Vasconcelos, M., J. Pereira, and B. Zeigler. 1995. Simulation of fire
growth using discrete event hierarchical modular models. EARSeL
Advances in Remote Sensing 4(3):54–62.

[30] Ntaimo, L., B. Khargharia, B. Zeigler, and M. Vasconcelos.
2004. Forest fire spread and suppression in DEVS. Simulation
80(10):479–500.

[31] Muzy, A., E. Innocenti, D. Hill, and J.-F. Santucci. 2003. Optimi-
sation of cell spaces simulation for the modelling of fire spread-
ing. In Proceedings of the 36th Annual Simulation Symposium,
Orlando, FL.

[32] Vasconcelos, M.,A. Gonçalves, and F. Barros. 2000. Dynamic maps.
In Proceedings of Artificial Intelligence, Simulation and Planning
in High Autonomy Systems (AIS 2000), Tucson, AZ.

[33] Hu, X., and B. P. Zeigler. 2004. A high performance simulation en-
gine for large-scale cellular DEVS models. High Performance
Computing Symposium (HPC’04), Advanced Simulation Tech-
nologies Conference, Arlington, VA.

[34] Filippi, J. B., F. Chiari, and P. Bisgambiglia. 2002. Using JDEVS
for the modeling and simulation of natural complex systems. In
Proceedings of Artificial Intelligence, Simulation and Planning in
High Autonomy Systems (AIS 2002), Lisbon, Portugal, pp. 317–
22.

[35] Zeigler, B. 1998. DEVS. Theory of Quantization. DARPA Contract
N6133997K-007, ECE Department, University of Arizona, Tuc-
son, AZ.

[36] Kofman, E., and S. Junco. 2001. Quantized state systems: A DEVS
approach for continuous system simulation. Transactions of the
SCS 18(3):123–32.

[37] Wainer, G., and B. Zeigler. 2000. Experimental results of timed Cell-
DEVS quantization, AI and simulation. In Proceedings of Arti-
ficial Intelligence, Simulation and Planning in High Autonomy
Systems (AIS 2000), Tucson, AZ.

[38] Wainer, G. 2004. Performance analysis of continuous Cell-DEVS
models. In Proceedings of High Performance Computing and Sim-
ulation (HPC&S) Conference; 18th European Simulation Multi-
conference, Magdeburg, Germany.

[39] Giambiasi, N., B. Escude, and S. Ghosh. 2000. GDEVS: A general-
ized discrete event specification for accurate modeling of dynamic
systems. Transactions of the SCS 17(3):120–34.

[40] Eckart, D. 1991. A cellular automata simulation system. SIGPLAN
Notices 26(8):80–5.

Volume 82, Number 10 SIMULATION 659

Wainer

[41] Wainer, G., and N. Giambiasi. 2001. Timed Cell-DEVS: Modelling
and simulation of cell spaces. In Discrete Event Modeling and
Simulation: Enabling Future Technologies, H. Sarjoughian, F.
Cellier, eds. Berlin: Springer.

[42] Wainer, G., and N. Giambiasi. 2002. N-dimensional Cell-DEVS.
Discrete Events Systems: Theory and Applications, Vol. 12, No.
1, pp. 135–57. Dordrecht: Kluwer.

[43] Wainer, G. 2002. CD++: A toolkit to define discrete-event models.
Software, Practice and Experience, Vol. 32, No. 3, pp. 1261–306.
New York: Wiley.

[44] Wainer, G., and W. Chen. 2003. A framework for remote execution
and visualization of Cell-DEVS models. Simulation 79:626–47.

[45] Troccoli, A., and G. Wainer. 2003. Implementing parallel Cell-
DEVS. In Proceedings of the 36th IEEE/SCS Annual Simulation
Symposium, Orlando, FL.

[46] Muzy, A., G. Wainer, E. Innocenti, A. Aiello, and J.-F. Santucci.
2005. Cellular discrete-event modeling and simulation of fire
spreading across a fuel bed. Simulation 81(2):103–17.

[47] López,A., and G. Wainer. 2004. Improved Cell-DEVS model defini-
tion in CD++. In Proceedings of the 6th International Conference
on Cellular Automata for Research and Industry, Amsterdam,
the Netherlands. Lecture Notes in Computer Science Vol. 3305.
Berlin: Springer.

[48] Ameghino, J., A. Troccoli, and G. Wainer. 2001. Modeling and sim-
ulation of complex physical systems using Cell-DEVS. In Pro-
ceedings of the 34th IEEE/SCS Annual Simulation Symposium,
Seattle, WA.

[49] Toffoli, T. 1994. Occam, Turing, von Neumann, Jaynes: How much
can you get for how little? (A conceptual introduction to cellu-
lar automata). In Proceedings of the International Conference on
Cellular Automata for Research and Industry, Rende, Italy.

[50] Khan, A., W. Venhola, G. Wainer, and M. Jemtrud. 2005. Advanced
DEVS model visualization. In Proceedings of the IMACS World
Congress on Scientific Computation, Applied Mathematics and
Simulation, Paris, France.

[51] Gutowitz, H. 1995. Cellular automata and the sciences of complex-
ity. Parts I and II. Complexity 1(5):16 and 1(6):29.

[52] Ameghino, J., and G. Wainer. 2000. Application of the Cell-DEVS
paradigm using CD++. In Proceedings of the 32nd SCS Summer
Computer Simulation Conference, Vancouver, Canada.

[53] Gaylord, R., and K. Nishidate. 1996. Modeling Nature: Cellular
Automata Simulations with Mathematica. Berlin: Springer.

[54] Ameghino, J., A. Troccoli, and G. Wainer. 2003. Applying Cell-
DEVS models of complex systems. In Proceedings of the Summer
Simulation Multiconference, Montreal, QC, Canada.

[55] Moon, Y., B. Zeigler, G. Ball, and D. P. Guertin. 1996. DEVS rep-
resentation of spatially distributed systems: Validity, complexity
reduction. Proceedings of Artificial Intelligence, Simulation, and
Planning in High Autonomy Systems, La Jolla, CA, 288–96.

[56] Rothermel, R. C. 1972. A mathematical model for predicting fire
spread in wasteland fuels. USDA Forestry Service Research Pa-
per, INT-115.

Gabriel Wainer received the M.Sc. (1993) and Ph.D. degrees
(1998, with highest honors) of the Universidad de Buenos Aires,
Argentina, and Université d’Aix-Marseille III, France. In July
2000, he joined the Department of Systems and Computer Engi-
neering, Carleton University (Ottawa, ON, Canada), where he
is now an Associate Professor. He is the author of two books
and over 130 research articles. He is one of the investigators in
Carleton University Centre for advanced Simulation and Visu-
alization (V-Sim). He is Associate Editor of the Transactions of
the SCS, and the International Journal of Simulation and Pro-
cess Modeling. He is a chair of the DEVS standardization study
group (SISO), and Associate Director of the Ottawa Center of
The McLeod Institute of Simulation Sciences and chair of the
Ottawa M&SNet. His current research interests is related with
modelling methodologies and tools, parallel/distributed simula-
tion and real-time systems.

660 SIMULATION Volume 82, Number 10

