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Abstract. Robotic systems are usually built as independgents that collaborate to
accomplish a specific task. Analysis of robot ppléinning consists of route plan-
ning and path generation. We will show how to apghby Cell-DEVS formalism and
the CD++ toolkit for these tasks. We present a-O&VS model for route planning,
which, based on the obstacles, finds different pathailable and creates a Voronoi
diagram. Then, we show route planning using theokior diagram to determines an
optimal path free of collision. Finally, we introckia Cell-DEVS model that can be
applied to the routing of self-reconfigurable rahot

1. Introduction

The analysis of robot path planning in generaludel a multirobot system in cooperative
environments (all mobile agents interact, tryingthieve a common goal). In most cases,
the environment under study consists of a physoalronment, a number of robots, ob-
jects in the environment, a set of predefined taaksisk distribution scheme (specifying
what to do at every moment), and intercommunicatr@cthanisms. Path planning typi-
cally refers to the design of specifications of plusitions and orientations of robots in the
presence of obstacles. Path planning can be statignamic, depending on the mode in
which the obstacle information is available. Inartb follow the movement of robots in
the work area, we need a spatial planner which findta path free of obstacles to follow
a predefined trajectory. In general, this consi$tsvo phases:
* Route planning: a route is defined as a sequensatwfoals that must be reached by
the robots before reaching the final goal.
» Path generation: once the plan has been creatfféeledt heuristics (for instance, the
shortest path) could be used to reach the predkgjoal.

Cellular models provide an advantage to carry baseé tasks. Route planning using
Voronoi diagrams can be easily constructed usingpkd 2D cellular models (without
needing to compute distance or intersections, gpdistances, and or explicit modeling
of objects). Since cellular models only use locégs, any proposed algorithm can be ap-
plied to objects of arbitrary size/shape. Cell-DENM$ allows defining cell spaces using
the DEVS (Discrete Events systems Specificatiomhfdism [2] to define a cell space.



We present a Cell-DEVS model for route planning,jolvhbased on the obstacles,
finds different paths available and creates a Voralagram. Then, we provide an algo-
rithm for route planning, and we present an alganithat takes the Voronoi diagram and
determines an optimal path free of collision (cdesing the size of the robot). We apply
this heuristics to create a Cell-DEVS model ablsedlve the route planning phase. Final-
ly, we introduce an advanced Cell-DEVS model ttzat be applied to the routing of self-
reconfigurable robots.

2. Background

Cell-DEVS improves execution performance of celluteodels by using a discrete-event
approach. It also enhances the cell’s timing diéfiniby making it more expressive. Each
cell, defined a§DC=< X, Y, S, N, delay, @nt, &xn T, A, D >, uses N inputs to compute
its next state. These inputs, which are receivealutyh the model's interfacX,(Y), acti-
vate the local computing functiom)( State §) changes can be transmitted to other mod-
els, but only after the consumption of a deld). Once the cell behavior is defined, a
coupled Cell-DEVS is created by putting togetheruanber of cells interconnected by a
neighborhood relationship. A coupled Cell-DEVS @mmposed of an array ofxt..xt,
atomic cells, defined a8CC=< Xlist, Ylist, X, Y, n, {t...t}, N, C, B, Z > Each cell is
connected to its neighborhood (N) through DEVS sadBorder cells (B) can have a dif-
ferent behavior or be “wrapped”. Finally, the mdsleixternal couplings can be defined in
the Xlist and Ylist. Each cell in a Cell-DEVS iD&VS atomic model, and the cell space
is a DEVS coupled model. DEVS is a formalism basedyeneric dynamic systems, in-
cluding well defined coupling of components andrdiehical modular construction. A
DEVS model is described as a composite of submpdalsh of them being behavioral
(atomic) or structural (coupled). Each atomic modefined by AM=< XY, S, 8exts Oint,

A, ta>, has an interface (X, Y) to communicate veither models. Every state (S) is asso-
ciated to a time advance (ta) function, which datees its duration. Once this time is
consumed, the model generates results by activatingutput functionX), and the inter-
nal transition function&;,) is fired. Input external events activate the mdé transition
function Q@e. Coupled models are defined as a set of basicpoaoents (atomic or
coupled), which are interconnected through the Hedgerfaces.
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Fig. 1. Informal definition of Cell-DEVS, and shift mapgirio the square lattice.
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CD++ [3, 4] was developed following the definition$ the Cell-DEVS formalism.
Cell-DEVS are described using a built-in specifimatlanguage, which provides a set of
primitives to define the diferent parameters of ttmedel. The behavior of a cell
(t function) is defined using a set of rules of theMfoRESULT DELAY CONDITION.
When an external event is received, the rule etialug@rocess is triggered to calculate the
new cell value. The CONDITION is evaluated; if sééd, the new cell state is obtained
by evaluating the RESULT expression. The cell wéinsmit these changes after a DE-
LAY. A Lattice Translator allows using differentgologies, which are translated into
square CD++ rules, using the mechanism depict&aginl.

The algorithms here presented are based on Vodiagrams, which use the idea of
proximity to a finite set of points in the plane{£...p1} (n >2). The diagram associates
every pointpj to their closest pointgi (i #j), conforming covering sets [5, 6]. Points equi-
distant to two elements in P define tharder of a region. The resulting sets define a tes-
sellation of the plane (exhaustive, as every pbalbngs to a set, and they are mutually
exclusive). Voronoi diagrams can be used to sthayrhovement of a robot of a given
size, describing paths surrounding the obstacled {adicating the distance to them).
These indicators allow a robot to determine ifplaéh is feasible to pass through the path.
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Fig. 2. Voronoi Diagram

We are also interested in models of self-reconfigurobots. These systems are versa-
tile in both their structure and the tasks theyfqren [7]. These robots are composed of a
number of modules that can reshape according ttatieto be carried out. Each robot is
independent of the rest, and they act as parafiéiess. The ability of reconfiguration
leads to flow-based locomotion algorithms (allowihg robots to conform to the terrain
on which they have to travel), which can be nigalydeled as cellular models.

3. Route Planning M odels

Our path-planning model is based on [5] where C& wsed to process a “top down”
bitmap of a diamond-shaped area including a robathitrary shape. The algorithm pro-
duces a Voronoi diagram that can be used to datermipath equidistant from obstacles
in the space. Paths are calculated by markingrieesiections of expanding “wavefronts”
propagated by cellular expansion from given stgrinints. The input is an array of cells
with values 1 (obstacle) or 0. The model execuids/0 stages:



1. Object boundary detection: cells and their neighbods are examined and
compared to a set of 12 “edge code” templates. Eatthmatching a configura-
tion in the template uses the corresponding code{Xor the second stage.

2. Cells with edge codes are expanded in free spateréd\Vexpansions intersect,
the cell of the intersection is given a timestamg aonsidered part of the final
Voronoi diagram. The final state contains the Vaiatiagram.
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Fig. 3. (a) Input bitmap; (b) 3D neighborhood.

The following state variables are required for gveell: theoriginal encodingof de-
tected obstacles (0 or 1); tiealculated edgeode for the cell (1-12); #iag value used
during the “wavefront expansion”, and the pointtb@Voronoi diagranrepresenting this
cell's position. We put each state variable ongassted plane in a 3D Cell-DEVS. Plane
0 (x, y, 0) contains the original bitmap represeptihe space, Plane 1 (x,y,1) contains the
edge codes, Plane 2 (x,y,2) includes the propagafi@dge codes over time, and Plane 3
(x,y,3) stores the final Voronoi diagram. The 3&ghborhood is shown in Figure 3.b).

Fig. 4 describes the model definition in CD++. Tim@del specification defines a
10x10x4 Cell-DEVS (a surface grid of size 10x10 &émel four data planes). Four sets of
rules which are used on each plane. The 3D celleiiscffectively divided into four 2D
models by using separate zones consisting of pkgiens. The rule sets are:

- nothing-rule: used by the original data plane to keep the vdhaes being changed.

- bound-rule: coding of edge directions. Patterns of cell valuesach cell and its
neighborhood are classified as one of 12 edge cddwesrules in this section perform
the classification if the cells in the data planerespond to one of 12 templates.

- plane2-rule: Cells with edge codes from 1-4 must be discardedls@ith edge codes
5-12 are copied into a new grid and given a flalyedor propagation in the third
stage. The rules in this section carry over theesfrom the second plane which satis-
fy the criteria (4 < edge_code < 13).

- plane3-rule: the Voronoi diagram. In the previous plane, cadlsive data values from
their immediate neighbors and propagate the datdrom any given starting point
(points where these data wavefronts collide arsdharthest away and equidistant
from the starting obstacles; these are the poihiaterest when plotting a path for a
robot). This plane examines the values in the plaiew. If more than has its flag is
set (and they do not contain the same values)dhdoelongs to the Voronoi diagram.
The Voronoi diagram is given the iteration numbiewhich the cell was added to the
diagram.



[ Pat h- Fi ndi ng]

dim: (10, 10, 4) delay : transport localtransition : nothing-rule

nei ghbors: (-1,0,0)(0,-1,0)(0,0,0)(0,1,0)(1,0,0)(0,-12,-1) ... (0,1,-1)

zones : bound-rule { (0,0,1)..(9,9,1) } plane2-rule { (0,0,2)..(9,9,2) }
pl ane3-rule { (0,0,3)..(9,9,3) }

[ not hi ng-rul e]

rule: { (0,0,0) } 10 { t }

[ bound-rul e]

rul e: 110{(00-1) =1 and (0,-1,-1)=1 and (-1,0,-1)=1 and (0,1,-1)=1
and (1,0,-1)=1}

rule: 12 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=0 and (0, 1,-1)=0
and (1,0,-1)=1}

[ pl ane2- rul e]

rule: {(0,0,-1)+0.1} 10 { (0,0,-1) >4 and (0,0,-1)<13 }

rule: {(0,1,0)} 10 { fr((O,l,O))=O.l and isint((0,-1,0)) and isint((-
1,0,0)) and isint((1,0,0)) }

[ pl ane3-rul e]

rule: {(tine)} 10 { (0,0,0)=0 and %heck and (-1,0,-1)!=(0,1,-1) }

rule: {(time)} 10 { (0,0,0)=0 and %heck and (O,-1,-1)!=(0,1,-1) }
Fig. 4. Cell-DEVS model definition in CD++

The first example here presented shows the execuatiche model using a partial
boundary and two obstacles.

Fommme o + o aon + oo + o +
0] 1111111111 0] | 0| | o |
1] 111 | 1] 57 |1 |1 |
2| | 2| 222222 | 2 | 2 |
3 | 3] 22222222 | 3| | 3 |
4 | 4] 222 22| 4 | 4 |
5] 111 | 5] 22192 2 | 5 | 5| |
6| 111 | 6] 22857 2| 6 | 6 |
7| | 71 222 22| 7 |7 |
8| | 8 [ 8 | 8 |
9| 1111111111 9| | 9 | 9| |
Fommme e + o aon + oo + o +
e + o s + oo + e, +
0] 1111111111 0] | 0 | o |
1] 111 | 1] 57 | 1] 57777 | 1] 33 55 |
2| | 2| 222222 | 2| 57 92 | 2| 33 455 |
3] | 3] 22222222 | 3| 57 1922 | 3| 444444 |
4 | 4] 222 22| 4] 5 192 2| 4| 54 333 |
5] 111 | 5| 22 192 2 | 5| 11119222 | 5| 54322234 |
6| 111 | 6] 22 857 2| 6| 88885777 | 6| 54322234 |
7| | 7] 222 22| 71 8857 7| 7 333 |
8| ] | 8 88577 | 8 444 |
9| 1111111111 9| | 9 | 9| |
Fommme e + o aon + oo + o +

Fig. 5. Partial boundary and two obstacles



The inputs describe a boundary on the upper andritvrizontal edges of the 10x10
space, as well as two small obstacles inside theesprhe input values in the first plane
remain unchanged, and the edge codes in the s¢tane are generated after one itera-
tion. The third plane is initially populated witlidlge codes >4, and these values are suc-
cessively propagated across their neighborhood® (th@ are “holes” where cells were
out of reach of their neighbors). Propagation stepen cells have no more non-flagged
neighbors. The final plane is the Voronoi diagrarhere “for a diamond shape of diagon-
al size d, the path planning process selects tliosenoi edges that consist of points with
labels of valug=d+%2". Since the first values on the diagram are @ should add that
offset to find the desired values. In this casea@obot of diagonal size 2, the points on
the graph of value 4 or 5 represent viable trae¢hg which can be used by a robot of di-
agonal size 2 to travel avoiding the two obstacles.

Fommme e + o aon + oo + o +
01111 11| 0] | 0 | o |
111111 11 1 | 1 |1 |
20111 111 2| | 2 | 2 |
3111 111 3] | 3 | 3 |
4111 111] 4] | 4 |4 |
51111 111 5] | 5| | 5| |
6/ 111 111 6| | § | 6 |
71111 111 7| |7 |7 |
811  1111] 8§ ] ] |
911 1111 9| | 9 | 9| |
oo + o + oo + e, +
Fommme e + o aon + oo + o +
oj1111 11| 0] | 0 | o |
111111 11| 1] 11722 0| 1] 6 77710 | 1| 2 442 |
2111 111] 2| 16 22 11| 2| 66 7111 | 2| 244332 |
3111  111] 3| 16 22 01 | 3| 66660000 | 3| 4432 |
4111 111 4| 16 22 01 | 4| 66660000 | 4 a4 |
5/111  111] 5| 16 22 01 | 5| 66660000 | 5 a4 |
6/111  111| 6| 16 22 01 | 6| 66660000 | 6| 2344 |
70111 111 7] 17 22 01| 7| 777100 | 7| 233442 |
811  1111] 8 622 111 | 8 6 7111 0| 8 244 2 |
911 1111 9| | 9 | 9 |

Fig. 6. Two large obstacles

Once we find the Voronoi diagram, we obtain a nundfgossible paths. We can find the
shortest path based using a flooding techniqueitik6]. We built a Cell-DEVS model to
generate the shortest path: a cell is considerée foart of a valid path if its value is larg-
er or equal to the robot sizeafid cells). A cell with more than 2 valid neighborscaled

a node An output nodes a cell where the robot is located before moviagd anend
nodeis the destination. The shortest path to the etk e based on the Manhattan dis-
tance. The algorithm consists of two phases: flogdind selection. Thiéooding algo-



rithm explores all possible paths starting on thpot node in parallel, choosing only va-
lid cells. When a node is found, the path is dididie parallel. If during the exploration
two paths are crossed, only the one with the basievcontinuesSelectiorstarts when we
get to the end node; we backtrack, looking fornfieimum cost according to the chosen
criteria. In this way, we can find a minimal pa#is,seen in the following figure.

Fig. 7. (a) Initial Voronoi Diagram; (b-c) Flooding; (de&ction

Our Cell-DEVS implementation encodes the distancthé¢ objects at the beginning of
the process (obtained by the Voronoi diagram selegiresented in previous section).
The following figure shows two examples of execntiased on the original Voronoi dia-
grams. On Fig. 8.b), we see a modification, in Whie have added an extra connection
in the bottom-left part of the diagram (which atfethe shortest path found).
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Fig. 8. (a) Shortest path (b) Shortest path with modiffedonoi diagram

4. M odeling self-reconfiguring robots

In this section we will show how to model self-rafiguring robots, based on the work
presented in [7]. Self-reconfiguring robots are posed identical modules that can auto-
nomously reshape. The problem we will use as ose saudy is that of robotic locomo-
tion in the two-dimensional plane, following a fldike locomotion pattern. The model is
capable of: (1) linear motion on plane of modul@y;convex transitions into a different
plane; and (3) concave transitions into a diffepgane [1]. The control algorithm uses lo-
cal rules and it is constructed as a cellular modét will show the behavior of a self-
reconfiguring robot moving in a non-structured spaavoiding the obstacles presented.



Ten different states can be defined for each estipty (0), occupied by a non-moving
module (1), occupied by an obstacle, or occupied lgbot moving in N/S/E/W direction
(3-9). The model uses a modified Moore Neighborhddte model consists of 27 rules
controlling the full behavior of a cell. Each celin be in a specific state, from a total of
10 states. The basic idea behind the model islticaimotion is produced from a two-
phase mechanism, in which in the first phase eatlhdetermines if it has to change its
state, and the new state it will reach. On the s@g@hase, depending on the state of each
neighbor, a cell might decide to cancel its decisar to go ahead as planned.
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Fig. 9. (a) Neighborhood shape; (b) Model's rules.

The following figure shows some of the ex@mutresults obtained when using a
square topology. Particularly noteworthy is thet fhat the robot climb obstacles with a
relative height of 3 units, and when it climbs dovtrfollows the shape of the terrain.

Time 00:00:00:000 Time 00:00:03:200

Time 00:00:13:500 Time 00:00:18:200
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Fig. 11. (a) Hexagonal Neighborhood definition; (b) Modelges.



The model was extended to a hexagonal topologyltieg is on the same two-phase
mechanism, but fewer rules (21). The amount of iptessstates is also reduced (8). The
following figure shows a graphical representatidrthe model, showing the local rules.
The following figure shows the model representatiming hexagonal Cell-DEVS in
CD++ (notation in Fig. 7a)

[reconfi g-robot - hexa]
(15, 45) delay : transport border : wapped
neighbors : (-1,-1)(-1,0)(-1,1)(0,-1)(0,0)(0,1) (1,-2) (1,-1) (1,0) (1,1)

dim:

[reconfig]

rule: 1 100 {[0]=0 and [4]=1 and [5]=3 and ([6]=0 or [6]=2)}

rule: 1 100 {[0] =3}

rule: 4 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4] =1}

rule: 0 100 {[0]=4 and [1]=0 and [2]=0 and [3]=0 and [4] =1}

rule: 1 100 {[0]=0 and [1]=0 and [5]=1 and [ 6] =4}

rule: 1 100 {[0] =4}

rule: 50 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4] =0 and [5] =1}
rule: 0 100 {[0]=5 and [1]=0 and [2]=0 and [3]=0 and [4] =0 and [5] =1}
rule: 1 100 {[0]=0 and [1]=5 and [2] =0 and [ 6] =1}

rule: 1 100 {[0] =5}

Fig. 12. (a) Hexagonal Neighborhood definition; (b) Modelges.

The following figure shows the model’s executiors We can see, the results obtained
are similar to those presented in Figure 12, uslimghexagonal topology. Nevertheless,
using a square topology required 18.2 secondsateltracross all obstacles, while the
second robot, modeled with a hexagonal topologyired only 15.8 seconds.
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Fig. 13. Model execution.

5. Conclusion

We have introduced the use of CD++ for applicatiohpath planning in robotic appli-
cations. We first presented a model that corresitiyulates the behavior of path-finding
algorithms, creating a Voronoi diagram as a reduie map describes paths surrounding
the obstacles, and indicating the distances betwesm, allowing determining if a robot
can pass through the path. After, we presentedgamitam that takes the Voronoi map



and determines a shortest path between the robdhardestination. The use of hexagon-
al topology, with fewer rules, resulted in fasteswement. The cellular models presented
show the feasibility of this approach in solvingrmgaex application using very simple

rules, permitting observation of emerging behaviorthis way, one can develop algo-
rithms that can execute parallel searches and wepttee quality and speed in the deter-
mination of the paths.

The use of cellular models is very efficient, agdn operate extremely quickly (in
just a few cycles of evolution) and every cell sy solved in parallel, in contrast to
more traditional, mathematical approaches whichuiregmore complex calculations of
distances and angles. The downside is that it cepsre a full knowledge of the obstacle.
In addition, the model does not provide a compdetiation in the case where there is not
one distinct solution path.
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