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ABSTRACT

The DEVS (Discrete Event System Specificatidoymalism provides a discrete-event modeling
and simulation (M&S) approach which allows constiart of hierarchical models in a modular
manner. Cell-DEVS extends the DEVS formalism, aitayvthe implementation of cellular
models with timing delays. This work presents a rs&wulation technique of DEVS and Cell-
DEVS models in parallel and distributed environrseitthe parallel simulators presented in here
are based on Time Warp, an optimistic synchroromagirotocol, which are developed as new
simulation engines for CD++, a M&S toolkit that ilepents DEVS and Cell-DEVS formalism.
Two distinct parallel simulators, namely Purely @pstic PCD++ and Conservative PCD++ are
introduced which use hierarchical and flattenedigecture respectively. Different Cell-DEVS
models are built in CD++ in order to judge the parfance of these two simulators. Moreover,
two new algorithms, Local Rollback Frequency MofldRFM) and Global Rollback Frequency
Model (GRFM) are implemented to control optimismtloé optimistic PCD++. The LRFM and
GRFM techniques are modifications to twarPED kernel which are applied to the optimistic
PCD++. A set of detailed tests are collected tegtigate the effect of these approaches on the

simulator.
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CHAPTER 1 INTRODUCTION

Modeling and simulation (M&S) methodologies havedrae crucial for implementing,

designing, and analyzing a broad variety of systérhe simulation process begins with
a problem to solve. First, the real system is olexkrits entities are identified, and a
model is constructed. Then, the model is executed uaisgnulator consisting of a

computer system which executes the model’s instmgtand generates relevant output.
These outputs are compared with the real systewerity the correctness of the model.
In [Zei00] a general framework has been implememthath describes the basic entities

in M&S and their relationships.

Experimental Frame

Source
System

Behavior Databas Simulator

Modeling
Relation

Simulation
Relation

Figure 1. The basic entities and their relationship [Zei00]
This M&S framework consists of three basic entitisch are linked by two relations:

€ Source system entity: this entity is the real or virtual environmentden analysis.
This entity which is viewed as the data sourcegetiogr with thebehavior
database form theExperimental Frame.

€ Model entity: a model entity represents an abstraction of tace system
represented by a set of instructions, rules, matiieal equations, or a set of
constraints to approximate the behavior of the sgatem.

€ Smulator entity: the simulator is a computer-based entity whicimigharge of
executing the model’s instructions.

€ Modedling relation: this relation links thenodel and thesource systento validate

the results generated by the model. In generalmibdel is considered valid if the



data it generates agree with the data generatethdysource system in the
experimental frame in use.

€ Smulation relation: this relation lies between tr@mulator and themodel to
indicate how reliable is the simulator in termsh&ing capable to execute the
model’s instructions.

The separation between model and simulator sigmflg simplifies the model
validation and simulator verification [Zei0O]. Fhermore, this advantage gives the
opportunity to use different simulation algorithmathin the simulator or even using
different simulators. Also, the separation of cansdanvolved in this architecture allows
model reusability as well as later extension ofrtialel.

Among the existing modeling and simulation techegjlDEVS (Discrete Event
System Specificationformalism [Zei76] provides a discrete-event apphoachich
allows construction of hierarchical models in a mlad manner. DEVS is a sound formal
framework based on generic dynamic systems condbptsallows model reuse, and
reduction in development and testing time dueddiiéerarchical approach in constructing
models. In this work, our main focus is on discretent M&S approach and DEVS
formalism [Zei76, Zei00] which has been proven écabuniversal formalism to represent
DEDS (Discrete Event Dynamic Systems) [Cas93].

DEVS formalism has been extended to handle simed@as event execution.
Parallel DEVS or P-DEVS [Cho94], allows more efficient execution of modéts
parallel and distributed environments by keeping thajor properties of the original
DEVS formalism and just extending it to overcome $kerialization constraints.

The Timed Cell-DEVS formalism [Wai98] is an extension to the tradiabn
Cellular Automata [Wol86] which makes use of DEVS befining every cell to
represent an atomic DEVS model and coupling thegetter to form a complete cell
space representing a coupled DEVS model. This fimmaallows defining complex cell
behavior with simple instructions. It also allowmetruction of n-dimensional cell spaces
to represent more complicated discrete event mod#dsg this formalism, complex
timing behavior can be represented by defininged#iiit timing delays among the cells of
the cell space. The main advantage that Timed [@EWS has over Cellular Automata is

that using thestate of each cell (since each cell is a basic DEVS r)pdaly activated



cells are evaluated as opposed to the originalu@ellAutomata where all cells get
evaluated at each time step which results in aeakile waste of time.

DEVS and Cell-DEVS formalisms have been successfuled to develop
complex models in different fields of science imthg: physics, biology, chemistry,
ecology, as well as computer networks, traffic niode and many other systems.
Example of such models would be: fire spread iedts [Ame01], land battlefield of two
armies [Mad05], computer networks [AhmO05], and AT& fDia01].

Parallel and distributed simulation (PADS) techniques were proposed to
resolve the issues of complex models simulationth&smodels become larger and more
complex, the problems of limited resources withisiregle-processor arise. Not only the
shortage of resources, but also the long exectitio&s brought up the idea &farallel
discrete event simulation (PDES) studies. Fujimoto [FujOl] classifies thre@jon
research categories in the area of parallel angiluited simulation. The first research
group is the high performance computing communibyciv started in late 1970’s and
1980’s aiming at reducing execution time by usingjtiple processors. This community
developed the world wide known fundamental ideagpimposing two synchronization
algorithms: Chandy-Misra-Bryant [Bry77, Cha79] andTime Warp [Jef85]. The
second group is the Defense community, which maifdguses on facilitating
interoperability and software reuse. Finally, thed group is the gaming and Internet
community which is interested in developing redalistscenarios in distributed
environments.

Parallel Cell-DEVS [Wai00] formalism extends the standard formalisms of Cell-
DEVS to allow a higher degree of parallelism inghi@t and distributed environments.
This formalism overcomes the restrictions of ser#l simulation by revising and
extending Cell-DEVS to allow a higher degree ofagllatism and allowing zero-delay
transitions as well as multiple simultaneous eveetsexternal ports.

CD++ [WaiOla, Wai02] is a modeling toolkit that implemte the DEVS and
Cell-DEVS theories by applying the original fornsais. The toolkit includes facilities to
build DEVS and Cell-DEVS models. This tool has beewised and extended several

times, and currently supports standalone [Rod9®¥al-time [Gli02a], parallel



conservative [Tro03], parallel purely optimisticifiD6], and web service-based [Mad06]
simulation.

Synchronization as the key to parallel and distedwsimulation requires a robust
mechanism to handle communication among concupe@esses. In general, a parallel
or distributed simulation runs on multiple parall@r distributed processors
interconnected by a communication network. Theréstexwo major classes of
synchronization:conservative (or pessimistic) approaches andptimistic approaches.
Optimistic approaches have a higher degree of parallelisiikeuthe conservative
approaches where they are overly pessimistic amde féthe simulation to behave
sequentially when it is not necessary. Conservatigproaches rely very much on
application-specific information when making rumé decisions on whether it is safe to
process the event or not. On the other hand, theigtic mechanisms are less reliant on
the application for correct execution, therefordowing a simplified software
development and more transparent synchronization.

The focus of this work is on improving the capapilbf CD++ in supporting P-
DEVS and Parallel Cell-DEVS modeling and simulatidhis work is based on previous
research: PCD++ which is an optimistic DEVS and|-D&VS parallel simulator
[Liu06], and the conservative PCD++ simulator fd&EW5 and Cell-DEVS [Tro01]. Our
work aims at: 1) modifying the existing optimisicnulator to enhance the performance
of large scale models executions, 2) analyzingpgr@ormance of these two simulators

using precise testing scenarios.

1.1. CONTRIBUTION

We present new implementations in the Time Warpooa to improve the CD++-based
parallel and distributed simulations by controllithg optimism of our optimistic PCD++
simulator. We have implemented two new protocodsnely Local Rollback Frequency
Model (LRFM) andGlobal Rollback Frequency Model (GRFM) to limit the optimism
[Szu00]. This was done by modifying teeRPED [Mar99] kernel to implement a Near
Perfect State Information (NPSI) mechanism basethemumber of rollbacks. The idea

is to reduce the number of rollbacks by suspenthiegsimulation object within logical



process that has large number of rollbacks, helazking it from flooding the net with
anti-messages. However, this new design allowsldgieal process to stay receiving
input events and inserting them into the correspmndnessage queues. After a
predefined duration, the suspended simulation obgceleased and will resume its
simulation duties. The LRFM protocol is only basedlocal information of the logical
processes. Thus, the simulation object will be endpd or allowed to continue
simulation only based on its number of rollbacks.cbntrast, in the GRFM protocol,
each simulation object uses global information uths a way that among all the
simulation objects residing on all logical processthe one with greatest number of
rollbacks must be suspended for a predefined durati

We also present a set of complex models implemeintégell-DEVS using our
CD++, including: Game of Life, Synapsin-Vesicle B&an at Nerve Terminal, Fire
Spread, and Ship Evacuation model. These model® welected based on their
distinguishable functionality, complexity, and sipebetter highlight the capability of our
simulator.

Finally, we have run a set of detailed test cas@sgua variety of models to
observe the performance of both the ConservativB+RCSimulator [Tro01] and the
Purely Optimistic PCD++ simulator [LiuO6]. Precisesting strategies were used to
analyze the performance of our existing PCD++ sataub; the optimistic and the
conservative as well as our LRFM- and GRFM-basedoppls. The main goal of this
research work is to create a workbench consistihgfoar different simulators;
Conservative, Pure Optimistic, LRFM-based Optimisand GRFM-based Optimistic
simulators. This workbench serves as simulationrenment that can be used as the base
in studying parallel simulations of DEVS and CelEY2S. On the other hand, the precise
and detailed testing scenarios that we are pregprdan be used along with this
workbench to analyze the capability, performanoe, mbustness of PCD++ simulators.
This work was the first attempt to use optimism toolfing simulators for simulating
parallel DEVS and Cell-DEVS model.



1.2. THESIS ORGANIZATION

This thesis is organized as follows:

Chapter 2 gives an overview about the state-chthen the field of discrete
event modeling and simulation by presenting DEV& @gll-DEVS formalisms and their
extensions. Then, the two major synchronization harsms namely optimistic
approaches and conservative approaches for paaalteldistributed simulation will be
discussed. Finally, a survey of the existing DE\&Sdal simulation toolkits is provided.

Chapter 3 covers the software architecture ofptmely optimistic parallel CD++
simulator (PCD++). The layered architecture of sé&ware will be presented followed
by a more detailed discussion of each layer.

Chapter 4 introduces the two parallel CD++ simukaioy presenting the design
and implementation of each of them. Also, the twoutators are compared in terms of
their structure as well as functionalities in pkeland distributed simulations.

Chapter 5 illustrates different models implementecell-DEVS on our CD++
toolkit.

Chapter 6 presents two new algorithms that we hay#gemented inWARPED
kernel. First the rollback mechanism of the opttmi$?CD++ simulator is discussed.
Then, the Near-perfect State Information protocol is presented. Finally, our new
algorithms; Local Rollback Frequency Model (LRFM)daGlobal Rollback Frequency
Model (GFRM) are illustrated.

Chapter 7 covers the experimental results for meagthe performance of four
different PCD++ simulators.

Chapter 8 presents the main conclusion of the shesiwell as future research

work that can extend the outcome of this work.



CHAPTER 2 REVIEW OF THE STATE OF THE ART

This chapter gives an overview about the statdefart in the field of discrete event
modeling and simulation. Section 2.1 and 2.2 widgent background information about
DEVS and Cell-DEVS formalisms and their extensioiten, the two major
synchronization mechanisms namely optimistic apghtea and conservative approaches
for parallel and distributed simulation will be disssed in Section 2.3. Finally, Section

2.4 will cover a survey of the existing DEVS-basadulation toolkits.

2.1. DEVS AND PARALLEL DEVS FORMALISMS

DEVS [Zei76, Zei00] is a formalism for modeling asanulation of DEDS (Discrete
Events Dynamic Systems) which provides a framevworkhe definition of hierarchical
models in a modular way by decomposing the reaksysnto behavioral (atomic) and
structural (coupled) components. DEVS theory presiag rigorous methodology for
representing models, and it does present an abstagcof thinking about the world with
independence of the simulation mechanisms and thderlying hardware and
middleware. A DEVS atomic model is formally definegt
M =<X,Y, S,dnt Oexs A, t8>,

where

X={(p,v) | pU IPorts, v Xy} is the set of input ports and values;

Y ={(p.v) | pO OPorts, VL] Y} is the set of output ports and values;

S is the sletequential states;

it S-S is the internal stadasition function;

dext QX XS is the external state tramsifunction, where

Q ={(s,e) |8 S, 0 <O < ta(s)} is the total state set, e is the timpstal
since the last state transition;
LSsY is the output fuloctj

ta: S— Row is the time advance funttio



The semantics for this definition is given as fal At any time, a DEVS
coupled model is in a stagd] S. In the absence of external events, the modestay in
this state for the duration specified bysjafVhen the elapsed tinggis equal to tag), the
state duration expires and the atomic model witidsthe outpufA(s) and performs an
internal transition to a new state specified &y(s). Transitions that occur due to the
expiration of ta§) are called internal transitions. However, statndgition can also
happen due to arrival of an external event whict pace the model into a new state
specified bydex(s,e,X); wheres is the current states is the elapsed time, andis the
input value. The time advance function ta(s) c&e &ny real value from O to. A state
with ta(s) value of zero is callgédansient state, and on the other hand, if ta(s) is equal to
o the state is said to beassive, in which the system will remain in this state ilnt
receiving an external event. Figure 2 shows therga®on of states and variables in
DEVS models.

Ll | - -,

§' = Beut (5,£X)

Figure 2. DEVS semantics

A DEVS coupled model is composed of several atomic or coupled submpudigh is
formally defined by:
CM =<X, Y, D, {Mq | 0D}, EIC, EOC, IC,Select>,

where

X={(p,v) | pO IPorts, v X,} is the set of input ports and values;

Y ={(p,v) | pO OPorts, VI Yy} is the set of output ports and values;

D is the set of the component names, and the foltprequirements are imposed on

the components, which must also be DEVS models:



For each dJ D
Ma = (Xg, Yd, S, Sint, Oexss 4, ta) is @ DEVS basic structure with
Xda={(p,v) | pOlPorts, vLIXp}, and
Ya={(p,v) | pO OPortg, v Yp}.
The component couplings are subject to the follgwequirements:
External input coupling (EIC) connects external inputs to component inputs,
EICO {((N, ipn), (d, ipy) | ipve IPorts, dID, ipglIPortsy};
External output coupling (EOC) connects component outputs to external asitput
EOCI {((d, opy), (N, opy)) | o,y OPorts, dID, opy1OPortg};
Internal coupling (IC) connects component outputs to component inputs
ICH{((a, opy), (b, ipy)) | a, bID,0p,1OPorts, ippllIPorts};
Sdect: 2° - } — D is the tie-breaking function for imminent compots.
Direct feedback loops are not allowed, i.e., armpouport of a component may
not be connected to an input port of the same caemgoFormally:
((d, o), (e, ipy) O IC implies d# e.
Also, the values sent from a source port mustyiolioe range inclusion constraint
of a destination port, formally expressed as:
O ((N, ipn), (d, ipy)) O EIC : XipnD Xipd

[ ((a, op), (N, opy)) U EOC : Yopdd Yopn

O ((a, op), (b, i) O IC : Yopdd Xipb

From the coupled DEVS formalism it can be obseriret due to theclosure
property, a coupled model is regarded as a new DEM8el [Zei00]. This property
ensures that the overall behavior of a coupled mm@dequivalent to a basic atomic
model, and therefore allows hierarchical model troicion. The X and Y sets describe
the input and output events of the coupled modpbrireception of an input event, it has
to be redirected to the corresponding atomic corapbnSimilarly, when an output is
generated by a component, it must be mapped agpah to another component or sent
out as an output of the coupled model. The mappieghanism is defined by the

function.



In coupled DEVS models, when multiple imminent gaments are scheduled for
an internal transition at the same time, this azad[to ambiguity. For example, let's
consider a case where we have two imminent compgen&nand B. When component A
executes its internal transition, it produces atpwuthat maps to an external event for
component B. However, at this moment, components Balready scheduled for an
internal transition. This will cause an ambiguity tomponent B, not knowing which
transition to execute first. The coupled DEVS folisma suggests two alternatives for
this scenario: 1) execute the external transiticst tith e being equal tda(s) and then
the internal transition, or 2) execute the intertrahsition first and then the external
transition withe being equal to zero. DEVS resolves this ambighityintroducing the
select tie-breaking function. This function gives orderthe imminent components of a
coupled model so that only one component Bas 0. Then the rest of imminent
components are divided into two groups: 1) a setoofiponents that receive an external
output from this model, 2) the rest of componemtee first group will then execute their
external transition functions wita=ta(s), and the second group will be imminent during
the next simulation cycle which may further requine use okeect function to decide
which component is going to be the first. The u$di®@breaking mechanism adds
overhead to the simulation and, in addition, desgedahe level of parallelism and forces
the simulation to have a serialized manner. Siree select mechanism associates
priorities with imminent components, it will cauagotential bottleneck in the simulation
system when many interconnected atomic modelsvarerient at the same time.

Parallel DEVS or P-DEVS [Cho94a] is an extension to DEVS that eliminatés al
the serialization constraints and provides an emwrent for executing simultaneous
DEVS models in parallel. P-DEVS implememtnfluent function to deal with collision
scenarios at which events get scheduled simultahe@ziei00]. Collision handling: the
modeler has the responsibility of controlling caithn’s behavior.

An atomic P-DEVS model is specified by:

M=<Xwm,Ym,S,dext,Oint, Ocon A, 1)

where

X'm={(p,v)| pU IPorts, vl1 X, } is the set of input ports and values;

Y m ={(p,v)| pd OPorts, V1 Y , } is the set of output ports and values;
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S is the set of sequential states;

Sexi QX Xu® = S is the external state transition function;
Oin: S-S is the internal state transition function;
Scok QX Xu® = S is the confluent transition function;
A:S- YMb is the output function;

ta:S— Ry 0o is the time advance function;

with Q :={(s, e) | 81 S, 0< e<ta(s)} the set of total states.

From the following, differences between DEVS anDIFVYS can be noted:

€ Instead of having a single input, a bag of inpatemplied to enable concurrent
execution of events.

€ To define the model's state at the time of collis{oe. simultaneous internal and
external transitions), the confluent functidg, has been defined. The modeler
takes care of this function and specifies the biglnaf the model when collision
occurs.

The elimination of the sequenti&lect function and its replacement with the
confluent transition function gives all the imminent components equal priorityl dhe
permission to be activated and to send their outpother components at the same time.
At the other end, the receiver component is ongpoasible for identifying the type of
the received input event and taking the requireas.

P-DEVS coupled models are similar to DEVS, excepttfie omission ofeect
function. Formally, a coupled model is defined as:

CM=<X, Y, D, {M4|dOD} EIC, EOC, IC>

Therefore, the set of input and output evetsuidY), componentsl¥ andMy),
and couplingsEIC, EOC, andIC) are identically the same as of DEVS. Since in P-
DEVS there is no serialization among imminent conguds, in case of having multiple
imminent components within a coupled P-DEVS modietly, all the outputs are
collected and redirected to the corresponding emfaes, secondly, the transition function

is executed [Zei0Q].
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2.1.1. DEVS model example: A Bluetooth simulator

In order to show how to define DEVS models, we hawit a Bluetooth DEVS model to
show how two paired devices communicate with eatttero Bluetooth is a wireless
connection that enables devices such as mobilegshaomputers and PDAs to exchange
information. Figure 3 illustrates the componentshef model. As shown in the figure, the
model consists of four components: SenderMobileseRerMobile, DataTransmission,
and CennectionManager. The ConnectionManager ighdur decomposed into

PairedDeviceFinder, and PermissionVerifier.

Bluetooth Simulator E’C’dﬁﬁééﬁahméﬁéé’e’r ””””””””””” 1}
| I
' I
searchDevw?i search getiD ! |Drequested
enapleB T dewceFoundi devicelD PairedDeviceFinder \Din 1 IDout
Sender T "~ Receiver
Mobile ! ; ;
i 1 Mobile
I
! I
' )
connect wonnectDevice reqPermission 3 permit newiMsg
tart i 4 g > Arrival
sta connected PermissionYerifier granted ! accepted N
o < -+
' I
! I
' |
! I
! |
! l
! |
dataOut data
datasent DataTransmission | gotDala

Figure 3. Structure of Bluetooth Simulator

The sender is activated when it receives “enableBbth” command which
means the user of the mobile device wants to seatd tb another mobile using
Bluetooth. Once the sender mobile gets its Bluétemiabled, the connection manager is
responsible to search for other mobile devices dhatin range and have their Bluetooth
feature on. As soon as a paired device is fourdDitis sent to the sender mobile (it will
be displayed on the mobile screen, for simpliaityhis model it is assumed that there is

only one paired device available in that range)c&the sender mobile is informed about

12



the existence of the receiver mobile, it will issae‘connect” command to start the
transmission of data. The connection manager is #wtivated again and will request
permission from the receiver mobile to transfer dlaga. After that, the receiver mobile
will grant the permission and the connection manag# notify the sender mobile to
start the transmission. The sender mobile sendddtseto the dataTransmission handler
which takes care of ensuring enough capacity at rde=iver as well as reliable
transmission. Once the transmission is done sutdgsthe sender is informed and it
goes back to passive state by disabling its Blubt@nd waiting for another input
command (i.e. “enableBT”). As shown in Figure 3 Bluetooth Simulator has one input
and one output. ThenableBT input indicates that the user $nder Mobile would like to
start a Bluetooth transfer of data t&eceiverMobile. Whenever this command is issued
the SenderMobile is activated and its state changes frgassive to active. The
newMsgArrival output indicates that there is new message redeivst the
ReceiverMobile there is a counter which counts the number of messages arrived. The
coupled componenConnectionManager and the atomic componeataTransmission
handle connection establishment and data transitween SenderMobile and

ReceiverMobile atomic components.

Formal Specifications for Atomic Models:

The formal specifications <S, X, ¥int, 0ext A, ta> for the atomic models are
defined as follows:
ReceiverMobile:

Assumption: the receiver will always accept theuesy of receiving data from
other mobile device. It is assumed that the seaddreceiver mobiles know each other.
Also, the receiver’s Bluetooth is always enabled.

S = {phase, ID, totalMsgs, ID_requested, permissgiven, gotMsg }
X = {IDrequested, permit, data}
Y = {IDout, accepted, gotData, newMsgArrival}
DataTransmission:
Once connection is established, the SenderMobllesend the data through the

DataTransmission to the ReciverMobile. At the reeeiwwhen the data is received, the
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DataTransmission will signal the sender that dada tkansmitted successfully. The
Sender then goes back to passive state and waitsefoext “enableBT” request.

S = {phase, data, dataReceived}

X = {dataOut, gotData}

Y = {dataSent, data}
PairedDeviceFinder:

This unit is responsible for searching paired devignobile sets that are
Bluetooth enabled and are in range). SenderMobdaests to have the ID of the paired
devices. Once a paired device is found its ID i# s@the SenderMobile. In this
assignment it is assumed that there is only orgvecmobile available in that area.

S = {phase, receiverlD, reqgSearch}

X = {search, IDin}

Y = {getID, devicelD}
PermissionVerifier:

After getting the ID of the receiver, the sendelt vave to ask for permission in
order to start the data transmission. Permissiafigeunit will handle this by
coordinating between the sender and receiver.

S = {phase, accessOkggConnection }

X = {connectDevice, granted}

Y = {connected, reqPermission}
SenderMobile:

Assumption: the receiver will always accept theuesy of receiving data from
other mobile device. It is assumed that the seaddreceiver mobiles know each other.
Also, the receiver’s Bluetooth is always enabled.

S = {phase, gotlD, receiverID,enable, sending }
X ={enableBT, deviceFound, start, dataSent }

Y = {searchDevice, connect, dataOut }

Formal Specifications for Coupled Models:
The formal specifications <X, Y, D, EIC, EOC, ICEIECT > for the coupled model

ConnectionManager and BluetoothSimulator are ddfagefollows:
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ConnectionManager:
X = {search, IDin, connectDevice, granted};
Y = {devicelD, getID, connected, regPermission };
D = {PermissionVerifier, PairedDeviceFinder};
EIC = {( ConnectionManager.search, PariedDeviveFinder.sgarch
(ConnectionManager.IDin, PariedDeviveFinder.IQin
(ConnectionManager. connectDevice, PermissioifigerconnectDevice),

(ConnectionManager.granted, PermissionVerifieanted)}

EOC ={(ConnectionManager. devicelPariedDeviveFinder. devicelD),
(ConnectionManager. getlD, PariedDeviveFindetID),
(ConnectionManager. connected, Permission\égrifionnected),

(ConnectionManager. reqPermission, Permissidfi¥ie reqPermission)}

IC ={¢}
SELECT: ({PermissionVerifier, PairedDeviceFindgr=3 PairedDeviceFinder;

BluetoothSimulator Simulator: This is the TOP component encapsulating the whaldain
X ={enableBT };

Y = {newMsgArrival },

D = {SenderMobile, ReceiverMobile, Connectioniager, DataTransmission };
EIC = {( BluetoothSimulator.enableBT, SenderMobile. enableBT

EOC = {(BluetoothSimulator. newMsgArrival, Receilobile. newMsgArrival),
IC ={ (SenderMobile.searchDevice, ConnectionMamagsrch),

(SenderMobile.connect, ConnectionManager.conregdt®),

( ConnectionManager.devicelD, SenderMobile.ddvizand),

( ConnectionManager.connected, SenderMobile)staé8enderMobile.dataOut,
DataTransmission.dataOut), ,( SenderMobitaSkent,
DataTransmission.dataSent) ,( DataTransmmistata, ReceiverMobile.data) ,

( DataTransmission.gotData, ReceiverMobile.gotData)

(ReceiverMobile.IDrequested, ConnectionManageretidiested) ,

(ReceiverMabile.IDout, ConnectionManager. IDout)

(ReceiverMobile.permit, ConnectionMaeagpermit)

(ReceiverMobile.accepted, Connectiondgan. accepted)}
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SELECT: ({DataTransmission, ConnectionManager ennectionManager
({SenderMobile, ConnectionManager }) = SenderNmbi
({SenderMobile, DataTransmission }) = SenderMebil

Using CD++ toolkit, the described model can be $atad and the results are
tested for verification. Theslosure under coupling property of the coupled DEVS
formalism allows incremental testing of the modghis is performed by testing each
individual atomic model as well as the coupled onEse TOP component which
encapsulates the whole model can be tested asamellthe results are compared with
ones obtained from atomic component’s test results.

For the top coupled model testing can be done pytiing only one event which
is “enableBT". This is the command issued by ther uf the SenderMobile requesting to
enable its Bluetooth and transferring data to otparred devices. At the end of
simulation the out put “newMsgArrival” is expectedhich shows how many massages
were received. For example by setting “enableBT3 tahe following results should be

seen:

| nput : Cut put :

00: 00: 00: 00 enabl eBT
00: 00: 30: 00 enabl eBT
00: 00: 60: 00 enabl eBT
00: 00: 120: 00 enabl eBT
00: 00: 180: 00 enabl eBT
00: 00: 2400: 00 enabl eBT
00: 00: 300: 00 enabl eBT

00: 00: 28: 000 newnsgarri val
00: 00: 58: 000 newnsgarri val
00: 01: 28: 000 newnsgarriva
00: 02: 28: 000 newnsgarri val
00: 03: 28: 000 newnsgarri val
00: 05: 28: 000 newnsgarri val
00: 40: 28: 000 newnsgarri val

RPRRRRRR
~NoOoUhWNRE

From the above simulation results we can see thHieareceiver end 7 new messages
were received. This result and also the correspontimings verify the correctness of

our model.

2.2. TIMED CELL-DEVS AND PARALLEL CELL-DEVS FORMAL ISMS

The Cellular Automata formalism [Wol86] uses cglhses to represent real systems. A
cellular automaton is an infinite regular n-dimemsil lattice, where each cell holds one
finite value. The lattice consists of cells havistate variables and a computing

apparatus, which is in charge of updating cella&estaccording to a local rule. This is
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performed by using the current cell’'s state andé¢haf a finite set of nearby cells (called
the neighborhood of the cell) [Wai00].

Cell's Heighbothood
Figure 4. Sketch of a Cellular Automaton [Wai00]

The major limitation of this discrete time paradigenthat at each discrete time
step when the values of all the cells get updatedally there are several cells which do
not require this update, therefore noticeable cdatmnal time is wasted [WaiOlb]. To
solve this problemCell-DEVS [Wai98] was proposed which integrates DEVS and
cellular automata by presenting each cell as amiatBEVS model.

Cell-DEVS extends DEVS formalism, allowing the implentation of cellular
models with timing delays. Two types of timing dedacan be used, nameisansport
andinertial [Gia76]. When transport delay is used, the futuatu® is added to queue
sorted by output time, allowing the previous valtiest were scheduled for output but
have not yet been sent to be kept. On the othed, haertial delays allow a preemptive
policy at which any previous scheduled output vakikk be deleted and the new value
will be scheduled. A Cell-DEVS atomic model is aefd by [Wai01b]:

TDC =<X,Y,1,S 6, N, d,dnt, Oexss T, A, D >

where
X is a set of external input events;
Y is a set of external output events;
I represents the model's modular interface;
S is the set of sequential states for the cell;
0 is the cell state definition;
N is the set of states for the input events;
d is the delay for the cell;
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Oint is the internal transition function;

Oext is the external transition function
T is the local computation function;
A is the output function; and

D is the state's duration function.

The modular interface (I) represents the input/fouiports of the cell and their
connection to the neighbor cell. Communications gnoells are performed through
these ports. The values inserted through inputspang used to compute the future state
of the cell by evaluating the local computation diion 1. Oncet is computed, if the
result is different than the current cell’s states new state value must be sent out to all
neighboring cells informing the state change. Qtfe, the cell remains in its current
state and therefore no output will be propagateather cells. This will happen when the
time given by the delay function expires. Finaltjpe internal, external transition
functions and output functiond)(define this behavior. Cell-DEVS improves execatio
performance of cellular models by using a discestent approach. It also enhances the
cell’'s timing definition by making it more expregsi Cell-DEVS coupled models
represent the cell space as follows:

GCC = <Xiig, Yiist, I, X, Y, n, {tg,...,t}, N, C, B, Z, select >

where

Xiist is the input coupling list;
Yiist is the output coupling list;
I represents the definitiorthed model’s interface;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{t,...1} is the number of cells in each of the dimensjons
N is the neighborhood set;
C is the cell space;
B is the set of border cells;
z is the translation function; and

select is the tie-breaking function for simultaneousrms.
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A coupled model is composed of an array of atorelts{C) with given size and
dimensions where each cell is connected througtdatd DEVS input/output ports to the
cells defined in the neighborhood (N). Since tb# space is finite, the borders of the
cells are either connected to a different neighbodhthan the rest of the space, or they
are “wrapped” (i.e. B ={1}) in which they are connected to those in the @ijgoone
using the inverse neighborhood relationship. Howebwerder cells have a different
behavior due to their particular locations, whiesult in a non-uniform neighborhood.
The Z function defines the internal and externalipdimg of cells in the model. It
translates the outputs of tHE dutput port in cell §into values for the'i input port in
cell G.. Select function has similar functionality as in basic D&EWhodels, where it is the
tie-breaking function for the imminent components.

As in coupled DEVS models, the use S&fect function produces serialization,
and therefore similar limitations when the Cell-D&EMWnodels are considered to be
executed in parallel. These limitations would I¢adack of parallelism exploitation and
a probable inconsistency with the real system [\8faiMoreover, since the timed Cell-
DEVS allows only one input from each input port,azdelay transitions are not possible
and also the external DEVS models are not allowesend two simultaneous events to
the same cell. ThParallel Cell-DEVS [Wai00] formalism overcomes these restrictions
by revising and extending Cell-DEVS to allow a heghdegree of parallelism and
allowing zero-delay transitions as well as multigiultaneous events per external
model. Below is a summary of distinguishable chiaméstics of parallel Cell-DEVS
which are presented in [Wai00]:

1. Parallel Cell-DEVS models are equivalent to pat&leVS models.
2. Closure under coupling holds for parallel Cell-DEY®dels as well: that is a

coupled Cell-DEVS model is equivalent to an ato@é&tl-DEVS model.

2.3. THE CD++ TOOLKIT

CD++ [Wai02] is a modeling tool that implements DEVS and Cell-DEVS theories by
applying the original formalisms. The toolkit indees facilities to build DEVS and Cell-

DEVS models. DEVS atomic models can be programmmedigcorporated into a class
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hierarchy programmed in C++. Furthermore, couplextiets can be defined using a
built-in specification language. Therefore, coupded Cell-DEVS models need not to be
programmed, rather the tool provides a specificatamguage that defines the model’s
coupling, the initial values, the external everaisd the local transition rules for Cell-
DEVS models.

CD++ also includes an interpreter for Cell-DEVS misdWai98]. The language
is based on the formal specifications of Cell-DEWY8e model specification includes the
definition of the size and dimension of the celhap, the shape of the neighborhood and
the border. The cell’'s local computing functiondsfined using a set of rules with the
form POSTCONDITION DELAY { PRECONDITION }. These indicate that when the
PRECONDITION is met, the state of the cell will change to thesigeated
POSTCONDITION after the duration specified BELAY. If the precondition is not met,

then the next rule is evaluated until a rule issfiatdl or there are no more rules.

2.4. PARALLEL AND DISTRIBUTED SIMULATION

As we mentioned earlier, P-DEVS and Parallel CHM3 extend the standard
formalisms of their type to allow a higher degrégarallelism in parallel and distributed
environments. In such environments the entire tdséimulation is divided among the
processors or nodes. Therefore each one of thesmurcent nodes handles a smaller
portion of the simulation while the whole proce$&xecution takes place in parallel and
as a result in a significantly reduced time.

During a parallel, distributed simulation, a numbé&togical Processe&P) will
be in charge of carrying on the execution of thelehi@n different CPUs [Fuj00]. Each
LP executes a part of the simulation by assignirtg one or moresimulation objects.
Logical processes will communicate to each otheséyding time-stamped messages.
Synchronization among these LPs is violated wheouwrof order event is received by
one of the LPs. This violation is referred to @asality error. Such a scenario is
represented by Figure 5 where two LPs each withemsat in its input queue process
their events simultaneously. LP2 as a result ofcetieg el (time stamp ofel = 1),
generates and sends a new es2(with time stamp = 2) LP1. But at that time, LP4sh
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already processegb and therefore the time of LP2 has been alreadgrazhd to 6. As a

result, arrival ofe4 at LP2 violates théocal causality constraint and a causality error

arises.
) for )
e2
47
Clock =6 Clock =1
Queue: e6 Queue: e/

Figure 5. Causality error at LP2
Synchronization among nodes (LPs) is the most ehgihg problem of parallel

and distributed simulation. There exist three défe types of synchronization strategies
for event driven simulations:
1. No synchronization at all: synchronization is eesuby the application (i.e.
sequential simulations).
2. Pessimistic (conservative) synchronization [BryCha79]: causality violations
are strictly avoided.
3. Optimistic synchronization [Jef85]: causality egaare fixed by the notion of

rollbacks.

2.4.1. Conservative parallel discrete event simulation

Conservative synchronization approaches were trst 8ynchronization algorithms
proposed in the late 1970s by R. E. Bryant [BryK/]M. Chandy and J. Misra [Cha78].
This synchronization technique which is known th&éa@dy-Misra-Bryant (CMB)
algorithm, disallows any occurrence of causalitpes. In conservative schemes, if a LP
has an unprocessed event with timestampd it is guaranteed that no event with earlier
timestamp can be received, then the probability ¢hasality error may happen is zero.
When the LP has a list of unprocessed events fibather LPs it can safely process the
event with lowest timestamp because the future tevevill for sure have larger
timestamps. As long as there are unprocessed efrentsall other LPs, then this cycle
can be repeated and synchronization is guaranite®gever, if this condition is not met,

then there is a risk of deadlock. Technique toluesthis deadlock is to find the model’s
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lookahead, which provides the smallest time stamp of the e&ents that a process can
schedule in the future. Null messages are respensd carry out the lookahead
information among LPs. This way each LP, basedhenldokahead information that it
receives from all other LPs can derive a lower faban the time stamp (LBTS) of the
events that it will receive in future. As a restiie LP would know which event is safe to
process. An example of a safe lookahead valueeigirtnestamp of the first unprocessed
event in the input queue. The main drawback of ¢baservative synchronization
approach is the time-wasting flow of null messagdsch degrade the simulation
performance significantly. Optimistic approachesoabffer two important advantages

over conservative techniques [Fuj03].

2.4.2. Optimistic parallel discrete event simulation

In this technique, which was first proposed by @eihn’s Time Warp mechanism
[Jef85], each LP haslaocal Virtual Time (LVT ) which advances every discrete step as
events are executed on the process. Therefore,ek®sute their own portion of the
simulation based on the LVT. Causality errors canouo when LPs send messages to
each other. This way, an LP may receive a messatle timestamp earlier than its
current LVT. Such events are referred tosasggler events. If a straggler event is
received the LP will launch &ollback operation, where the LP recovers from the
causality error by undoing the effects of all thees that were processed and had
timestamp greater than the timestamp of the steagglent. Messages that were falsely
sent to other processes now must be canceled, whigerformed by sendingnti-
messages.

The Time Warp protocol consists of two parts [Mdr9the local control
mechanism and theglobal control mechanism. The local control mechanism which is
provided in each Time Warp process is in chargeoliback operations which include:
sending anti-messages, restoring the state of #heréadjusting Local Virtual Time
(LVT), etc. On the other hand, the global control meidm takes care of global issues
such as memory management, I/O operations, andnt&iion detection.

The rollback mechanism requires defining threecstines in each process: an

input queue, to keep all the received events ordered by thduwal receive time (earliest
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time-stamped event is on the top of the queuepusmut queue, to keep a negative copy
(i.e. anti-message) of each message that the mrdwes recently sent out ordered in
virtual send time, and siate queue, to keep a copy of all recent states of the pro¢ss

is used during the rollback when the state of thecgss has to be restored to that of
saved prior to rollback). When rollback occurs doea straggler message, two major
actions take place at the LP [Liu06]. First, thetestof the LP is restored to the last saved
one which is now the top element of tate queue (this state was saved at time earlier
than the virtual receive time of the straggler)c@el, the process has to recover from the
causality error by sending anti-messages to caheeéffects of already sent messages.
All the anti-messages in thaitput queue whose timestamp is later than the straggler’s
receive time must be sent out. On the other hamijah of anti-messages at other
processes will cause further rollback if the tiraegp of the anti-message is less than the
LVT of the receiving process. Therefore, anti-mgssa(just as positive stragglers)
would cause rollbacks and further propagation of@messages. These are referred to as
secondary rollbacks which result in cascaded rollbacks fiogdthe simulation system
with anti-messages.

The global control mechanism defines Bwbal Virtual Time (GVT) which is
an instantaneous global snapshot of the systenthendall clock time defined as follows
[Fujo0]:

The Global Virtual Time at wall clock time T (GVT ) is defined as the minimum
time stamp among all unprocessed and partiallygased messages and anti-messages at
wall clock T.

Unlike LVTs, the GVT never decreases [Fre02]. Henae any time of the
simulation, GVT shows the minimum virtual time. $hensures that any event that was
processed before GVT is 100% safe and will nevidloaok. Therefore, all events in the
input and output queue whose timestamps are lass@GVT can be safely removed from
the queues. Also, all the states in the state q(exeept the last one saved) with saved
time older than GVT can be safely removed. The afpmr of deleting old information
(messages and LP’s states) is referred téossl collection. This mechanism avoids
wasting system resources.
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In Time Warp systems the global control mechansnesponsible for calculating
and advancing GVT. The main issue is that, high Gdalculation frequency saves
memory and allows faster response time and bgitaesutilization but at the same time
generates a significant processing overhead. On ctirdrary, lowering the GVT
calculation frequency will generate less processwerhead but requiring more memory
as well as slowing down the response time.

Jefferson’s original Time Warp has been revised @ptimized several times to
reduce the processing overhead and especially @awémg the issues of cascaded
rollback. Advanced optimistic techniques in thisdihave been explained in [Fuj00]. We
will discuss in details the Time Warp protocol uded our simulator as well as the

optimizations to this mechanism in Chapter 3.

2.5. DEVS-BASED SIMULATION TOOLKITS

Based on previous studies [Liu06], in here we gille a brief review of the existing

tools that implement DEVS theory and its extensions

€ ADEVS [Nut06] is a discrete event system simuldhat provides a C++ library
for constructing discrete event simulations basedtle Parallel DEVS and
Dynamic DEVS (dynDEVS) formalisms.

€ DEVS-C++ [Zei96] is a DEVS-based high performaniteutation environment
which supports modeling of large-scale, high resofulandscape models using
special form of C++ classes calleghtainers.

€ DEVS-Scheme [Zei93] is a knowledge-based real-tievironment which
implements the DEVS formalism in Scheme (a Lispledid and enables the

modeler to specify models directly in its terms.

€ DEVS/CORBA [Zei99a] is a runtime infrastructure Ibubn top of CORBA
middleware which supports parallel and distribuggdulation of DEVS formalism.
DEVS/CORBA can be used in a larger network-cerdgrigironment to provide a
combination of graphical process modeling, disesstent simulation, animation,
activity-based costing, and optimization functions.
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DEVS/HLA [Zei99b] is based on High Level ArchitectuHLA) [HLAOOQ]
implemented in C++ which explains how an HLA-coraptiDEVS environment

improves the performance of large-scale distribntedeling and simulation.
DEVS/Grid [Seo004] is a grid-compliant modeling asichulation environment

based on DEVS formalism. It is implemented usimgaJand Globus toolkit for
Grid computing infrastructure and supports highfgrenance distributed

simulation.

DEVSCluster [Kim04] is a CORBA-based, multi-thredd#istributed simulator
implemented in Visual C++. It supports simulatiarhieterogeneous network

environments.
DEVSJAVA [Sar98] is a DEVS-based simulator impleteenn JAVA that

supports high-level modeling.

GALATEA [Dav00] uses an object oriented architeetter implement a simulation
platform that offers a family of languages for migagmulti-agent systems in

DEVS. GALATEA is the product of two lines of reselr simulation languages
based on Zeigler's theory of simulation and logisddl agents

JDEVS [Fil02] serves as an experimental frameworknfatural systems modeling
techniques. It allows discrete-event, general pggpobject-oriented, component
based, GIS connected, collaborative, visual simarlamodel development and
execution. This experimental environment can bed usesolve any complex
problems solvable by discrete-event simulation iarespecially suited for natural
system modeling and simulation.

JAMES [Uhr01b] is a Java-based agent modeling enwent for simulation of
the activities in the area of agent-oriented sitthoita It is based on a parallel,

distributed version of DEVS, emphasizing states state transition.

PyDEVS is a simulator developed in ATOM3 [Del02]tom! for multi-paradigm
modeling. ATOM3-DEVS is a tool for constructing DE\/odels and generating
Python code for the PyDEVS simulator.

PowerDEVS [Kof03] is an integrated tool for hybrgystems modeling and
simulation based on the DEVS formalism. It is inmpénted in C++ and allows

construction of Atomic DEVS models graphically.
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SimBeans [Pra99] is a Component-based simulat@medwork based on DEVS
and the JavaBean component model, developed as dulano hierarchical
composition of components.

DEVS/P2P [Che04] is an interface for P-DEVS implatagon over Peer-to-Peer
message communication protocol. It supports hiereat model partitioning,
automatic coupling restructuring, automatic modelepldyment, and
distributed/parallel/local simulation.

DEVS/RMI [Zha06] is a natively distributed simulai system based on standard
implementation of DEVS. It allows distributing sifation entities across network
nodes seamlessly without any of the commonly useldlleware. It is also built
to support auto-adaptive and dynamic reconfigunatibsimulations during run-
time. DEVS/RMI approach is well suited for complexmmputationally intensive
simulation applications. It also provides an exegmflexible and efficient
software development environment for simulationligpgions in a heterogeneous
network environment.

CD++ [R0od99, Wai02, Tro03] is an M&S toolkit devptr in C++ that implements
the original and Parallel DEVS and Cell-DEVS formails. It supports both
standalone and parallel conservative simulatiohgs olkit has been revised and
tested in our research to realize distributed aptimdiscrete-event simulations
based on the Time Warp mechanism.

SmallDEVS [Jan06] is a lightweight implementatidritee original DEVS formalism
which serves as an experimental software for reseand education. It allows
prototype-based object-oriented model constructionieractive modeling and

simulation, and multi-simulation and reflective giation.
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CHAPTER 3 SOFTWARE ARCHITECTURE

In this chapter we will focus on the software aretiure of the purely optimistic parallel
CD++ simulator (PCD++) presented in [Liu0O6]. Theideed architecture used by this
simulator is the same layered design used in tha@lplhconservative simulator [Tro01].
We will present the layered architecture of thetwgafe in Section 3.1, followed by a

more detailed discussion of each layer in Secti@raBd Section 3.2.

3.1. LAYERED ARCHITECTURE

Figure 6 illustrates the layered architecture e dptimistic PCD++ simulator, where

each layer only depends on the layers below it.

Model

PCD++

Time Warp - Warped

MPI

Operating System

Figure 6. Layered architecture of the optimistic PM++ simulator [Liu06]

The operating system resides on the bottom of thhitacture. PCD++ uses
Linux Operating System as the underlying platfoon thigh-performance parallel and
distributed computing. Above the Operating Systags lthe Message Passing Interface
(MPI1). MPI is a standard specification of messagssmg library for high-performance
communications on parallel machines and workstatidaosters. The Operating System

with the use of MPI provides the communicationastructure for the PCD++ simulator.
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We have used MPICH [Gro96] portable implementatbMP1 which allows developing
parallel and distributed applications. TheRrPED [Rad98, War07] simulation kernel is
our next layer which serves as a configuration temdre that implements the Time
Warp mechanism and a verity of optimization aldors. On top of thevaARPED kernel
we have the optimistic PCD++ simulator implementthg Parallel DEVS and Cell-
DEVS formalisms. The PCD++ simulator provides tmanfework for creating and
executing DEVS and Cell-DEVS models in distributmavironments using the Time
Warp protocol. Finally, the top most layer is thE\L5 or Cell-DEVS model created in
CD++.

3.2. THE TIME WARP LAYER - WARPED KERNEL

WARPED [Rad 98, War07]s a public domain simulation kernel originally éésped at
the University of Cincinnati to provide an implenation of Jefferson’s original Time
Warp algorithm [Jef85]. ThevarRPED kernel is an attempt to make a freely available
Time Warp simulation kernel that is easily portsdnple to modify and extend, and
readily attached to new applications. The servipewided bywaARPED were used to
implement our CD++ simulators: the conservative RE€imulator [Tro01], and the
optimistic PCD++ simulator [Liu06]. This kernel ses as a middleware to implement
CD++ simulator by allowing the use of Time Warpioptations.

WARPED is developed using C++ language and compiles apign source GNU
C++ compiler, g++WARPED kernel uses MPI [MPI95] message passing standard fo
communication among distributed and parallel commguhodes. As mentioned in the
previous section, for our PCD++ simulators we hased MPICH [Gro96] the freely
available implementation of MPI which is porteddifferent platforms including Linux.
Figure 7 illustrates the layout of how LPs and rtts#nulation objects communicate in
WARPED using the MPICH message passing interface. As slwwthe figure, there exist
two types of communications [Mar96{tirect communication for message exchange
among local simulation objects (the ones sitting tbe same LP), andVPI
communication for message exchange among remote simulationtshjge one hosting
on different LPSs).
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Figure 7. Structure of LPs and simulation objectsn WARPED

WARPED provides an application program interface whictludes base classes
for simulation objects (Warped objects), objecttstes, and the events which get
exchanged among simulation objects. This API allowe®rs to create their own
application by creating new classes derived froendhes offered. Also, the user has the
opportunity to redefine functionalities by overlaagl the inherited methods without the
need of changing kernel’'s code. FurthermaveRPED provides a simple definition of
time (again can be redefined by the user) and imetto perform consistent I/O
operations.

The wARPED API is used to model objects (simulation objeets)entities which
exchange messages (time-stamped events) with ében and respond to events by
applying them to their internal stats. Thus, thenképrovides functionalities for sending
and receiving events by simulation objects. Ondtieer hand, sinceyARPED kernel is
used to present an interface to Jefferson’s TimepWagorithm, it has to offer a
mechanism suited for potential rollbacks. The masue in handling rollbacks is saving
and restoring the object's states. To this exténg¢ WARPED kernel provides the
capability of defining each object’s state to supperiodic state saving during rollbacks
and recovery periods.

The WARPED kernel provides two sets of synchronization medms, namely
NoTime and TimeWarp. The first one implements aseovative behavior, thus was used
in our Conservative PCD++ simulator [Tro0l], whetlee later one implements
Jefferson’s Time Warp optimistic algorithm, themefaused by our Optimistic PCD++
simulator [Liu06].
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3.2.1. WARPED functionalities

Here we will present the major functionalities bétwARPED kernel based on previous

studies presented in [Rad98, Mar99]. Figure 8 ftitaiss a summary of these

functionalities. A detailed discussion about eaddute is given in [Liu06].

Application Interface

Scheduling
Rollback GVT and Memory Time Warp
Facility Fossil Collection Management Optomizations
Event . Time
Management State Management | File Management Management

Communication Management

Figure 8. Major functionalities of WARPED kernel [Liu06]
Based on Jefferson’s definition, the simulatiorcasried out by assigning each

part of the simulation to one Time Warp procesg gmulation objects). The WARPED
kernel groups simulation objects into partitiondlezh “clusters” [Rad98]. In each
partition of cluster, the simulation objects are assigned to the adailgphysical
processors [Low99]. As shown in Figure 9 therPED kernel consists of three clustering

levels.

Global Level
(Entire System)

Partition Level
(Physical Processing Unit)

Clustering

Local Level
(Individual logical processes)

Figure 9. The tree structure of clustering scope i&ls inwARPED kernel [Low99]
The lowest level is consisted of the simulationecly implementing the Time

Warplocal control mechanism. The level above it is the partition level whishconsisted
of the physical processors who the simulation dbjéost on. In Time Warp definition
each physical processor is referred to as a Lofloatess (LP) which encapsulates one
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or more simulation objects. The local simulationects although grouped by the same
LP, are not synchronized. This is due to the faat each simulation object (Time Warp
process) maintains its own LVT [Rad98]. The lasp(tost) level is the entire system
consisting of multiple partitions working togethter implement the Time Warglobal
mechanism.

The wWARPED kernel provides a variety of optimization stragsgito optimize
kernel performance. Optimization algorithms impleteel in the kernel are: fixed-sized
and dynamic message aggregation [Che98] algorithtms minimize inter-LP
communication overhead without harming the progrelsshe simulation; static and
adaptive polling [Sha99] algorithms for optimizitige message reception behavior; one
anti-message per rollback strategy [Mar99] for oeag the number of anti-messages
during rollbacks; lazy and dynamic cancellationoailipms [Lin91] to exploit message
independency and take advantage of the parall@isaiiable within a Time Warp logical
process; and algorithms for adjustment of runtinseameters using external agents
[Rad97] to reduce the overhead of the operatiorenyvmodifications were performed
by previous research [Liu06] to incorporate threeecTime Warp optimization strategies
into the optimistic PCD++ simulator. The followirggction will describe these major

optimizations in details.

3.2.2. Time Warp optimizations of PCD++ simulator

The wARPED layer of our optimistic PCD++ simulator has beeadified by previous
research [LiuO6] to include three major optimizatstrategies. In general, optimization
strategies aim at reducing the operational overledatie Time Warp mechanism, and
exploiting more parallelism than is available ie thasic protocol [Low99]. In [Liu06], a
flexible user-controlled state-saving mechanism wagplemented in the State
Management module. Also, the fossil collection athon was revised in the GVT and
Fossil Collection module to integrate the periostiste-saving strategy. Furthermore, the
Rollback Facility was enhanced to allow sendingyanie anti-message per rollback and
reduce the number of anti-messages required terig® a certain extent. The following
points will describe each of these optimizations:

€ User-Controlled State-Saving Mechanism
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The warPEDKernel provides two types of state-saving stragegiamely theopy
state-saving (CSS) strategy and theeriodic state-saving (PSS) strategy. Each of these
strategies is handled by a different type of mana§mteManager enforcing CSS
strategy, andnfregStateManager implementing PSS strategy. TBateManager has the
responsibility of saving the state of a simulata)ect after executing each event, while
the InfreqgSateManager only saves a simulation object’s state infrequeetlery number
of events. The simulator developer has only theapif selecting one of state managers
at compile time. This selection will then applydl simulation objects and thus all of
them will use the same type of state managers ¢iwaut the simulation. This restricted
selection mechanism has a major drawback whichlimirating the possibility of
choosing different type of state-saving mechanisndffferent simulation objects based
on their specific requirements at runtime. The sofupresented in [Liu06] introduces a
new state-saving mechanism. This new strategy twaalevel user-controlled state-
saving (UCSS) mechanism in the kernel which providessiheulator developer to utilize
more flexible and efficient state-saving strategesuntime. As shown in Figure 10 the
UCSS mechanism has a two-level structure which lesaévery simulation object to
switch to ‘skip-state-saving” mode and as a result skip the state-saving operathis
mechanism allows simulation objects to make stawg decisions based on
application-specific criteria.

o
=
Level 0 skip-state-saving %D
£z
Level 1 StateManager E
E

Figure 10. UCSS structure [Liu06]

€ Fossil Collection Algorithm Enhancement

The GVT manager oWvARPED kernel reclaims all but the last saved state older
than the GVT along with the messages with timestataps than the GVT in the input
and output queues. As a result, the GVT alwayscatds the least timestamp of any
potential future straggler and anti-message thatlhmareceived by any of the existing
simulation objects. In other words, it is the minimtime of any rollback that may occur
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in one of the processes. When rollback occursstate of the process is restored to the
last one saved prior to the rollback which is tine avith virtual saved time earlier than
the GVT. Notice that this state is also the oné s left in the state queue during last
fossil collection. Therefore, this mechanismveARPED kernel works successfully and
rollback operation performs exactly as expectechamehe case where rollback time is
equal to the GVT. However, this mechanism failsvtok successfully when the periodic
state-saving (PSS) strategy is used [LiuO6]. Thlerascenario is as follows: when the
state of a process is saved infrequently, the medtstate which is the last one available
in the state queue could be saved at virtual tinnehmearlier than the current GVT.
Therefore, although the state restoration is peréat correctly, but due to fossil
collections, all events with timestamp betweentiime of the restored state and the GVT
are already removed from the queues. As a resuitime crash occurs. To overcome this
problem, the fossil collection mechanism was revisesuch a way that fossil collection
is no longer performed using computer GVT [LiuO&hus, in the new algorithm, a
minimum value among the virtual time of the lasites saved older than the GVT is
calculated for all the processes mapped on a L#s iBhthe value used to do fossil
collection.

€ One Anti-message per Rollback

During rollback all messages saved in output queitie virtual send time equal
to or greater than the rollback time are sent &rtariginal receivers as anti-messages.
However, there might be multiple anti-messages witferent timestamp that must be
sent to the same receiver. This will result in npldt rollbacks at the receiver and
consequently a flood of anti-messages exchangedvebat the processes. The
communication overhead associated with these messaghanges is very high. To
resolve this issue, when a process has severamasgages to send to another process,
instead of sending them all, it is clearly enouglohly send the one with the earliest
timestamp [Lub91]. Using this fact, the rollbackahanism was revised to send only one
anti-message per rollback and as a result significareduce the number of anti-

messages that need to be sent to a certain process.
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CHAPTER 4 CONSERVATIVE VS. OPTIMISTIC PCD ++ SIMULATOR

Part of our research is to analyze the performaniceur two existing parallel CD++
simulators, namely Conservative PCD++ simulatorofQlj and Optimistic PCD++
simulator [Liu06]. In this chapter we will look #te design and implementation of these
two simulators and compare their structures as aglfunctionalities in parallel and
distributed simulations. Section 4.1 will introduttee conservative PCD++ simulator,

while Section 4.2 will present the optimistic versi

4.1. THE CONSERVATIVE PCD++ SIMULATOR

Conservative PCD++ simulator [Tro01] was the fagempt to reduce simulation time in
CD++ using distributed execution of models. Digitdd simulation with Parallel CD++
speeds up the execution of both DEVS and Cell-DEM&Rlels in comparison to the
stand-alone simulator [Gli04]. The first parallemmslator of CD++ was based on a
pessimistic (conservative) approach exploiting gagallelism inherent to the DEVS
formalism. Under that scheme, a singt®t coordinator acts as a global scheduler for
every node participating in the simulation. Basedtlois structure, all events with the
same timestamp are scheduled to be processed amolisly on the available nodes.
The simulator introduces two different types of iioators;master andslave to reduce
inter-process communication. The simulator consies hierarchical structure creating a

one-to-one correspondence between the model comzoaed simulation objects.

4.1.1. Parallel DEVS abstract simulator

The DEVS formalism separates the model from theiacsimulation. Theabstract
simulator implements this mechanism by creating a one-toemms2spondence between
the model and the simulation entity as illustratgd=igure 11. The abstract simulator for
Parallel DEVS was first proposed by [Cho94b] butaitked in differentiating among
intra-process messages and inter-process mes3dges.the design and implementation

was revised by [Tro03] to distinguish among thesssaging paradigms and as a result
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restrict the number of messages over the netwamter{process messaging) to a

minimum.
Model Abstract Simulator
Coupled Coordinator
Model
/ A \ / A V\
Atomic Atomic Atomic
Dependantl| | Dependant2| | Dependant3 Simulator 1 Simulator 2 Simulator 3

Figure 11. Correspondence between the model and tlR¥EVS processors [Tro01]
The simulation is carried out by DEVS processordctvhare of two types:

simulator and coordinator. Thesimulator represents an atomic DEVS model, where the
coordinator is paired with a coupled model. The simulatormicharge of invoking the
atomic model’s transition and external event fumctiOn the other hand, the coordinator
has the responsibility of translating its childeputput events and estimating the time of
the next imminent dependant(s). As shown in Fidilreevery coordinator has a set of
child DEVS processors. At the beginning of the datian, one logical process will
reside on each machine (physical process). Thei, legical process will host one or
more DEVS processors. This implies the fact thatalloof a coordinator’s children are
necessarily sitting on the same logical process fauthe one-to-one correspondence,
each coupled model is mapped to only one coordin@ocoordinator communicates
with its child processors through intra-process sagsg if they reside on the same
logical process, and through inter-process mesgafithey are sitting on remote logical
processes. Figure 12 shows a scenario at whicluglesh DEVS model consisting of six
atomic components is simulated using this simulafbe coordinator itself and three of
its child processors are on the same logical peo¢eB0), where the other three child
processors are hosted on another logical procéxk) (Mhen the number of remote child
processors of a coordinator is high, this desigrchaeism will lead to considerable
overheads due to inter-process messages that atebaek and forth among the
coordinator and its child processors. To overcome issue, the concept bdfaster and

Save Coordinators was introduced [Tro01].
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In the new design a coordinator is assigned with éagical process. As a result,
all child processors will have a local coordinatiorough which they can communicate
with remote child processors. In such a scenahieret exist two different types of
coordinators:Master Coordinator, and Save Coordinator. The master coordinator is
responsible for synchronizing the model executiamgeracting with upper level
coordinators, and exchanging messages among thedod remote model components.
The slave coordinator is responsible for messaghange among the local model
components, and forwarding local components messegéhe master coordinator if it

resides on another logical process. Figure 13 shibwsclass diagram of these two

LPO

Coordinator

LP1

—>inter-process message
---»intra-process message

Figure 12. A single coordinator with remote and loal child processes

coordinators.

(a) Model Hierarchy

Model SimuObj
Atomic Coupled Processor
f f — T
AtomicCell CoupledCell Simulator Coordinator Cocf:giolfat or
TDCell IDCell Colz)/[r?isif;tor CO(?I‘I(?;;IZtOI'

(b) Processor Hierarchy

Figure 14 illustrates the revised scenario of FeglR using the master-slave

structure.

Figure 13. Master and slave coordinators class diagm
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Figure 14. The master-slave coordinator structure

The master-slave coordinator structure organizesV®BEprocessor into a
hierarchy which does not have a one to one correfpece with the model hierarchy.
Thus, a parent-child relationship that takes imtcoant the existence of master and slave
coordinators must be defined as follows [Tro01]:

i. For eachsimulator, the parent coordinator will be the parent's modekl

processor.

ii. For eaclslave coordinator, the parent coordinator will be the modetaster

coordinator.

iii. For eachmaster coordinator, the parent coordinator will be the parent's model

local processor; just as if it wasianulator.

Based on this hierarchy, the conservative PCD++ulsitor was implemented
[Tro01]. Under this design, the simulation advanagss result of exchange of messages
in the form of {ype, time) between the parent and child DEVS processors. different
types of messages exist: 1) #yachronization messages. (@, t), (*, t), and ¢lone, t), 2)
the content messages: (y, t) and €, t). Thecollect message (@, t) is sent from a parent
DEVS processor to its imminent children to tell ttgldren to send their outputs. The
internal message (*, t) is sent from a parent DEVS processor to its inemirchildren to
tell the children to invoke their transition furani (either an external, internal, or
confluent transition). The outputs produced by adehoare translated int@utput
messages (y, t) which are exchanged among a child DEVS proceasdr its parent.
Finally, theexternal messages (q, t) represent the external messages arrived fronideuts
the system or the ones generated as a result @ugout message being sent to an

influencee.
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Each type of message is handled differently bystimallator, master coordinator,
slave coordinator, androot coordinator. The behaviors of these processors define the
abstract simulator. Next we will look at the belwaof each type of DEVS processors at

handling different messages.

4.1.2. Message definitions

In the following discussion, the forftype, t) is used to denote a messageypé that has
a receive time of. The external, output, collect, internal, and doressage are presented
asq, y, @,*, anddone respectively.
€ Simulator

The simulator is responsible of invoking the atomic model&) , duwt, Ant, Gon
functions. The description that follows is a redisesrsion of the original one presented
in [Cho94b] which has been modified by [Tro01].

|
@b

alt

[t = tn] (V2]
(done, t)

else .
raiseError()

Figure 15. Simulator algorithm for (@, t)
When a simulator receives @ t) message it executes the atomic modgl’'s

function and sends the output to the parent coatdin

SIMULATOR

lockBag()
addEventToBag(q)

unlockBag

Figure 16. Simulator algorithm for (q, t)

38



When an external message is received, it is iederto the bag and will gets
executed at the right time.

alt

[t <t<t]
e=t—t

s =0eu( S, €, bag )
| emptyBag()

[t = {y and bag is empty] 1
s=dn(s)

[t = tn and bag not empty]
S = Beon( s, bag )

sendError()
to=t
ty o= ta (s)

] send( done, t,)

[t>tyort<t]

Figure 17. Simulator algorithm for (*, t)

Reception of {, t) message indicates that a model's transition fanciust be
executed. The transition function that must be etezt is selected based bmand the
contents of the queue. ik ty and the queue is not empty, th&a must be executed. If
t = ty thenit is the time for an internal transition; eithdéretqueue is empty (i.e. no
external messages have been received) therefgrss executed, or the queue is not

empty (i.e. there are external messages) fh$s executed.

€ Master Coordinator

A coordinator, whether master or slave, is resipbmdor the simulation of a
coupled model. It translates output events to imwents and keeps track of the imminent
components. Each coordinator has a set of childgssors which correspond with the
coupled model components. For a master coordinléoset of child processors consists
of: a set of slave coordinators, a set of localdceimulators, and a set of local child
master coordinators. A DEVS processor is said tddoal if it resides on the same
processor.
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MASTER COORDINATOR

parentCoordinator
: child
@b ! |

alt

[t=t =t  *forallimminent

child j
send (@, t)

[]

cacheSyncSet(j)

]

waitForDoneMsgs(i)

send (done, t)

[else]

I

sendError()

Figure 18. Master coordinator algorithm for (@, t)

When a @, t) is received at the master coordinatott, # ty , the collect message
will be forwarded to all imminent child processavgh minimumty and the imminent
processor will be cached in the synchronize set. mhaster coordinator will then wait for
all imminent processors to send bac#ioae message. Then, the master coordinator will
send adone message to its parent coordinator indicating thdtas responded to the

received @, t) message correctly.

[jis local processor]

slaveCoordinator || parentCoordinator
| E= e
[\ ! ' '

alt

9=2i(y) * for all influencees,j
of child i

send (q, t)

cacheSyncSet())

[else] s=coordination(self,j)

[s is slave coordinator]
send (done, t)

cache(s)
alt
[ selfl] :| Y = Zi seiny)
send (y,t)
[else]
clearSlaveSyncSet()
(AR T = os
cache(s) | ! !
| | |
| | |

Figure 19. Master coordinator algorithm for (y, t)
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Two different scenarios may occur at thaster coordinator upon reception of an
output message:

1. An output message,(t) is received from a childthat is not alave coordinator.

2. An output messagey,(i, t) is received from aslave coordinator which has
received ay|, t) from a local child.

Thedave-sync set is used for synchronization so an output ngesdaes not get
sent twice to the sansbkave coordinator. To reduce the number of inter-process messages
sent across the network, instead of forwarding, & (message to the slave coordinator, a
(y, i, t) is sent. Aslave coordinator might be the parent coordinator for more than dne o
the influencees af If (g, t) messages were to be forwarded, then there widinse(, t)
message for each influencee iofFor Cell-DEVS models, this can be a significant
overhead. Instead, just ong (, t) message is sent across the network therstve
coordinator will generate the appropriatg, {) messages for each influencee. Then based
on [Cho94b] design, all children ready for a tréingi are cached in synchronize set to

later on distinguish active from inactive comporsent

MASTER RDINATOR

@y

> lockBag()
> addEventToBag(q)
> unlockBag()

Figure 20. Master coordinator algorithm for (g, t)

As in Smulator, when an external message is received at the n@stedinator,

it is inserted into the bag and will get executetha right time.
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[
MASTER COORDINATOR H slaveCoordinator || parentCoordinator

O I . , i
| *for all q in bag e |

T * for all receivers of q

[jis local processor] 4=, sie(Y)

send (q, t)

cacheSyncSet(j)

[else] s=coordination(self,j)

[s is slave coordinator]
send (done, t)

cache(s)
clearSlaveSyncSet()

] emetiBan0

send (%, t)

: waitForAll(done, ty)
L] clearSyncSet(

send(done, ty)

*for all i in sync set

= — |
| | |
| | |
| | |
| | |

Figure 21. Master coordinator algorithm for (*, t)

When the output messages are sent down to chattepsors, if the message is to be
forwarded to alave coordinator thez translation will not be applied. Instead, the oréd
g message will be sent. This is why must make $wakea message is not forwarded twice

to aslave coordinator. As mentioned before, tistave-sync is used for this purpose.

€ Slave Coordinator

Thesdlave coordinator differs from themaster coordinator in only one aspect: when
a message has to be sent to a processor that Iscadt it will be sent to thenaster
coordinator instead.Both the master and slaw®ordinatorshandle a (@t) in a same
manner. However, the set of child processor okmestoordinatodiffers from that of a
master coordinator. For a slave coordinator theotehild processors consists of the set

of local childsimulators plus the set of local chilohaster coordinators only.
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=
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- B

SLAVE COORDINATOR H parentCoordinator

) 1

alt sendToMaster=false

* for all imminent
child

send(q,t)

cacheSyncSet(j)

[else] [sendToMaster=false] send (y, t)

sendToMaster=true

T T I
!

[j is local
processor]

Figure 22. Slave coordinator algorithm for , t)

When an output event is received from a chjlthe slave coordinator sorts the
message to the influenceesioff any influencee is local, thefunction is applied and a
(g, t) message is sent. If there are remote influendken,the output event is sent to the
master coordinator, which in turn will sort the message to otisave coordinators if
necessary. Notice that, only ong, ) message must be forwarded to tmaster
coordinator. On the other hand, when tlk&ve coordinator receives an output event
that has been forwarded by thmaster coordinator on behalf of child, it will handle the
event as ifi had been local, but ng, () messages will be forwarded back to thester
coordinator if there is a remote influencee. This is to avaifinite loops of messages
being forwarded back and forth. The behavior ofdla&e coordinator upon reception of

other messages is identical to the master cooalingius will not be investigated here.

€ Root Coordinator

Theroot coordinator is a special processor that is above the topnumstimator. It
is responsible for driving the simulation and adwag the virtual simulation time. The
root coordinator is also capable of handling exEmvents which are inserted into a

sorted queue of messages.
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ROOT COORDINATOR TopmostCoordinator

| |

| |

| |

| |

| |
. L

> loadQueue
*for all g in Queue

[t=tn_Q] send(q,t)

[t=tn_topMostCoord] send(@,t)

> waitForDone()

send(*,t)

> waitForDone()
L

Figure 23. Root coordinator algorithm

4.2. THE OPTIMISTIC PCD++ SIMULATOR

In Section 4.1 we looked at a parallel CD++ simaathich uses a hierarchical structure
creating a one-to-one correspondence between ngodglonents and simulation object.
However, due to the layout of the design, the compation costs associated with this
structure is considerable. This led to proposirftaasimulation mechanism rather than
the traditional hierarchical one to reduce the bgad in communication by reducing the
number of exchange messages (especially inter-ggoceessage) to minimum. This is
achieved by simplifying the underlying simulatorusture, while keeping the same
model definition and preserving the separation betwmodel and simulator [Gli04].
Researchers have shown that flat simulators owparhierarchical ones significantly
[KimQO, Gli02a, Gli02d, Glin04, KimO04, Liu06]. Moower, previous research [Gli02b,
Gli02c] showed that although the hierarchical semi presented in [TroO1] tried to
reduce the communication overhead by introducing $pecialized DEVS coordinators,
but in some cases the communication overhead vilasighificantly high. After the
Conservative PCD++ simulator [Tro0l] which was @&raichical Parallel DEVS
simulator, [Gli04] was the first attempt to re-dgsithe parallel CD++ simulator to adopt
a flattened structure. The proposed simulator @lialso modified the parallel
mechanism to an Optimistic algorithm supported hy ase of Time Warp kernel. The
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whole abstract simulator was redesigned to refleettwo major modifications; i.e. the
departure from conservative-based simulator to ptimistic-based simulator, and
flattening the structure of the simulator. As aulesa new Parallel DEVS simulator was
implemented which dealt with the communication tread dilemma by using a flattened
structure rather than the old hierarchical approdg¢bwever, [Liu0O6] improved the
Optimistic PCD++ simulator further and implementadny optimization strategies and
enhanced the parallel and distributed simulatigmifcantly. Thus, we used the latest
Optimistic PCD++ simulator [Liu06] for this resehrc

The following section will describe the abstraghsiator in terms of its design
layout as well as the functionalities of each DEW8cessor.

4.2.1. Parallel DEVS abstract simulator

The flattened architecture of the Parallel DEVSadtices two new types of DEVS
processors, namellylat Coordinator (FC) andNode Coordinator (NC), to reduce the
communication overhead. The flattened structurep&ethe modeling framework
unchanged and uses a flattened approach for ovmglaiie coordinators. Figure 24

shows the class hierarchies in the modeling andithelation framework.

Model

T~ SimuObj

Atomic Coupled ?
Processor

AtomicCell CoupledCell
*
T~ | | | |
. Flat Node Root
TDCell [DCell Simulator Coordinator Coordinator Coordinator

Figure 24. Model and processor hierarchies in Optinistic PCD++ [Liu06]
As shown on the above figure, there are four wbffie types of simulators used in

the new designSmulator, Flat Coordinator, Node Coordinator, andRoot Coordinator.
The simulation is carried out by these processors idistributed fashion among the
available machines. To better illustrate this desigt's consider the scenario that was

discussed in Section 4.1 where a coupled DEVS madekisting of six atomic
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components is simulated using the flattened PCDiulator. Figure 25 shows the
model specification and its partitioning on two Iniaes.

The optimistic PCD++ simulator [Liu06] uses simidat techniques that are
based on optimistic synchronization protocol whettend the conservative approach
used in Parallel CD++ simulator [Tro01, Tro03] theds described in Section 4.1. The
optimistic PCD++ simulator uses the optimistic dyromization protocol provided by the
WARPED kernel to implement a distributed version of CDHhe flattened architecture
used by this simulator outperforms the previousrdnghical simulator [Tro01] by

reducing the communication overhead significantly.

---®» inter-process message
—— intra-process message

Machine 0 Machine 1

Simulator1 Simulator2 Simulator3 Simulator4 Simulator5 Simulatoré

Figure 25. Distributed processor structure

As presented in Figure 25, one LP is created @h e@achine encapsulating the
DEVS processors. Only one Root is created on mac@iLP0O) which interacts with
other NCs using inter-process messaging (for reri¢ and intra-process messaging
(for local NC). The Root coordinator is in chargé siarting the simulation and
performing /0O operations among simulation systerd &he surrounding environment.
Only one NC is created on each machine and actiseakcal central controller on its
hosting LP. The NC is the parent coordinator for &@ routes remote messages
received from the Root or from other remote NC#h®FC. The Simulators are the child
processors of the local FC which represent the iat@amponents of DEVS and Cell-
DEVS models and responsible for executing the abstfunctions defined in their
associated atomic model. When a Simulator needsotomunicate with a remote
Simulator residing on another LP, it sends the agsdo its FC, then the message is
forwarded to the NC above it. Once the messagetlseaNC, it will further be routed to
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the destination NC. Even if two Simulators are lqsdting on the same LP), they need
to forward their messages to their parent FC. Tiemo direct communication among
Simulators; all messages must be forwarded to #venp FC. This is why the FC is

known as the local central controller of its hogtitP.

4.2.2. Message definitions

PCD++ processors exchange two categories of messamggent messages and control
messages. The first category includes the external mesgapg@and the output message
(y), and the second category includes the initiagbramessagel), the collect message
(@), the internal messagé)( and the done messade)( To describe these messages,
external and output messages are used to exchangkatson data between the models,
initialization messages start the simulation, atlland internal messages trigger the
output and the state transition functions respeltiin the atomic DEVS models, done
messages handle synchronization by carrying the emdiching information. The
simulation is executed in a message-driven martBach type of PCD++ processor,
defines its own receive functionality for each type messages. In this section, we
present what happens at each PCD++ processor ingluthe Smulator, Flat
Coordinator, Node Coordinator, andRoot Coordinator upon reception of different types

of messages.

€ Simulator

The Simulator algorithm for initialization messagelefined as follows:

I I
I I
(1,0) | |

initialize()

=0
ta=infinity

(D, 0)

Figure 26. Simulator algorithm for (I, 0)
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As defined in DEVS formalism, two variables aredige the simulator to record
its current simulation time (¥ and the value ofigma (ta). Using these two values, the
value ofabsolute next time (denoted asy) is calculated as t+ ta. Upon receiving the
initialization message,l,(0), the Simulator resets to the timestamp of the message,
therefore the Simulator’s virtual time now is egtmkero. Then, the simulator initializes
the variables defined in its associated atomic made after that, it informs its parent

FC of the value of;tby sending a done message stamped with time O.

SIMULATOR parentFC

I
I
@y |

ot f=t, t,20
o y=Ms)

send(y, t)

send(D, t)

Figure 27. Simulator algorithm for (@, t)
When a @, t) message is received, the Simulator invokes tiyubdunction )
of the atomic model and as a result an output nges§at) is sent to the FC. After this,

the Simulator will sendd, t) to the FC with{= 0 to indicate that it is imminent.

SIMULATOR
parentFC

(]

alt

[t<t<ty]
e=t—t ,ta=ty-t
s =dext(s, e, bag)

emptyBag()

[t =ty and bag is empty]

»
1
o
»

[t =ty and bag not empty]
s = Bcon( s, bag )

emptyBag()

Lo Ut

send(D. t)

Figure 28. Simulator algorithm for (*, t)
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Following the collect message, a*,(t) will arrive to trigger
internal/external/confluent function of the atommodel depending on the timing of the

message and the status of the Simulator’'s messape b

SIMULATOR
i

«t |

insertMsg(x)

Figure 29. Simulator algorithm for (x, t)

The last message that may arrive at the Simulatfy 1) which is simply inserted
into the Simulator's message bag. Note that, onfiereal messages with identical
timestamp can be inserted into the message bagiatm@m simulation time. Before adding
further messages with a different timestamp, thistieg messages must be processed
and the bag be cleared in the receive functionrfarnal message. In other words, an
internal message will always arrive in between twemsecutive batches of external

messages.

€ Flat Coordinator

The FC, sitting in between the NC and the Simutat@erforms three tasks:
synchronizing the execution of all child Simulataisuting messages exchanged among
its children, and delivering to its parent NC thosessages that are sent from its children
to the environment or to other remote Simulatois.atcomplish the first task, the FC
finds its imminent children with the minimum abslwext time and records them in a
structure calledsynchronize set. It also uses a variabldpneCount, to keep track of the
number of done messages it should receive frorghiislren. This variable is used to
implement a simple barrier. The FC only passesrobmd its parent NC after these
children (the number is given lgponeCount) have finished their previous computation.
The other two tasks rely on the model coupling rimfation that is loaded into theain

administrator of the simulation administration facility durinkyet bootstrap operation.
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ki
e
&

(1.0)

=0

doneCount= #of children
*for all children

| send(l, 0)

Figure 30. FC algorithm for (I, t)

When (, 0) is received, the FC records the total numideitsochildren in a
variable named adoneCount then forwards thel (0) message to each child. After this,
the FC waits for all its children to respond tcstimitialization by sending back &(0).
The FC will only pass the control over to the NGQGilif its children have finished their

previous computation and have sent done messagetifaisation messages.

t%=0,t,=0
*for each imminent child with ty = t

cachSyncSet(child)

send(@, t)

Figure 31. FC algorithm for (@,1)
Upon receiving a@, t) message, the FC forwards it to all imminent Satars
and will keep a record of this for later use (tamwnwhich children need to do state
transitions when*(, t) is received).
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EC parentNC

[y influences Simulator OR env] send(y,t)

*for each child Cjinfluenced by y

X = Z;; (y), cacheSyncSet(j)

send(x, t)

Figure 32. FC algorithm for (y, t)
Moreover, when y, t) is received, the FC searches the model coupling

information to find out the correct destination.eTtiestination is either an input port on

an atomic model, or an output port on the topmoapted model.

insertMsg(x)

Figure 33. FC algorithm for (x, t)
In case of receivingx(t) message, the FC will simply insert the messateiia

message bag.

.t

-
- il |
) |

[aft

[ doneCount = 0] L=t
* for each x in bag

*for each C; of x
send (x, t)

:l cacheSyncSet(i)

*for each i in Sync set
’ send(*, 1)

L ] clearSyncset()
[else] L ] raiseErmor()

Figure 34. FC algorithm for (*, t)
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Upon receiving ¥, t) message, the external messages inside the FGsagebag
are flushed to the local receiving Simulators. ilé trigger the imminent Simulators to

perform a state transition.

E

updateCi(t)

t.=1, ta = min(all children’s ty) - t

[doneCount==0]

send(D, t)

Figure 35. FC algorithm for (D, t)
Finally, when aD, t) message is received from a child Simulator, tGeupdates

the child’s § to the sum of the current simulation time anddlgena value carried by the

received D, t) message.

€ Node Coordinator
Each LP has one NC that acts as the local centratraller in charge of the

sequential simulation on the hosting machine. & &aasingle child, the FC underneath.
The NC on machine 0 also has a parent, the RoetNKh plays a very important role in
the simulation as summarized below:

1) It takes care of the inter-LP communication amohg Simulators. The

messages exchanged between the NCs is handledauspegial structure, the
NC Message Bag.

2) It is responsible for handling the external evdrmisn the environment that
are known prior to the start of the simulation aaré scheduled by the
modeler using a text file, nameBV file. These external events are loaded
into the NCs during the bootstrap operations by rtiaén administrator.
Each NC uses a structure calledent List to hold those external events it
needs to handle during the simulation. Events éndtinucture are sorted so

that they can be processed in increasing timestant@r. The NC uses a
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pointer calledevent-pointer to reference the first event that has not yet been
sent out. Initially, this pointer points to thestievent in the list.

3) It synchronizes the activities of all local procassand drives the simulation
on the hosting LP. The local simulation time is aved by the NC based
on three factors: the external events in its Evéstt the external messages
received in its NC Message Bag, and the closege dtansition time
provided by the FC.

4) It manages the flow of control messages for thall8mulators in line with
the Parallel DEVS formalism. For example, the fdisma requires that the
output operation must take place just before thte dtansition in imminent
Simulators. Hence, the NC must ensure that theedolnessage, which
triggers the output operation, will be received ibyninent Simulators
before the internal message, which results in the statesition. The correct
sequence of these control messages is manipulaied a flag, namely
next-message-type, which is defined in the state of the NC. It mavé a
value of collect (@) or internal (*), corresponditigthe type of the control
message that will be sent out by the NC in the s@xulation cycle. The

initial value of the flag is set to @.

childFC ‘

Figure 36. NC algorithm for (I, 0)
Upon receivingl| 0), the NC simply forwards it to the child FC.

insertNCMsgBag(x)

Figure 37. NC algorithm for (x, t)
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In case of receivingx(t), NC will insert this message into th€ Message Bag.

These external messages contain values sent frooteeSimulators to local ones.

Figure 38. NC algorithm for (y, t)
When §, t) is received the NC simply forward it the Rooth#s to be sent to the

environment).
Finally, reception of al§, t) message by the NC from a child FC indicates that

this is a response to a control message that veasopisly sent out by the NC.

€ Root

This processor only handles environment-orientetpudumessages during the
simulation. Output to the environment is done tigloa test file called asutput file or
OUT file.

ROOT

(V2]

[createOutput==true]
createFileData(y)

InsertOutQ(fd)

Figure 39. Root algorithm for (y, t)
When an output message is received by the Rochetks to see whether the

OUT file is ready. If so, the Root finds out alltput ports on the TOP model to which
the message will be eventually sent. Then, it eseafileData object from the output

message for each of these ports. These data olgestmserted into the file queue
corresponding to the OUT file. Finally, the datatle file queue will be flushed out to
the physical file by the kernel when GVT advances.
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CHAPTER 5 CELL -DEVS MODELS IN THE CD ++ TOOLKIT

The CD++ toolkit [Wai02, Tro03] is a modeling anidhslation toolkit that implements
the original and Parallel DEVS and Cell-DEVS formaids. Detailed discussion about
CD++ toolkit was presented in Section 2.3. In tbisapter we will present different
models implemented in Cell-DEVS on our CD++ toolkicluding: Game of Life
(demonstrates the famous Conway’s Game of LifehaPgin-Vesicle Reaction at Nerve
Terminal (represents the interaction of synapsith wesicles at nerve terminal), Fire
Spread (illustrates fire propagation in a forestid Ship Evacuation (an emergency ship

evacuation scenario).

5.1. GAME OF LIFE

The Game of Life was created by mathematician Jodmway in 1970 [Gar70]. It is the
best-known example of cellular automata algorithiriee standard Game of Life uses a
two-dimensional grid. We will use this simple exdenpo show the basic facilities of
CD++ to define model’s rules. Cells can be either(alive) or off (dead). As presented
in Figure 40, the neighborhood of a cell consi$tsight cells surrounding it.

(-1,-1) (-1, 0) (-1, 1)
0, -1) (0,0) 0, 1)
(1, -1) (1, 0) (1,1)

Figure 40. Game of life cell neighborhood

The key rule is known as “B3/S23”: a new cell b when it has exactly 3
neighbors; an existing cell (alive cell) survivég has 2 or 3 neighbors. In all other cases
the cell dies, either of overcrowding (with moreaurththree live neighbors) or loneliness
(with less than two). At each time step all celiglate their state simultaneously. We
have modeled the Game of Life using CD++, on a RGéll grid (400 cells). The model
definition is shown in Figure 41.
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1. [top]

2. components : life

3 [life]

4. type : cell

5. width : 20

6 height : 20

7 delay : transport

8. defaultDelayTime : 100

9. border : wrapped

10. neighbors : life(-1,-1) life(-1,0) life(-1,1)
11. neighbors : 1life(0,-1) 1ife(0,0) 1life(0,1)
12. neighbors : life(1,-1) 1life(1,0) 1life(1,1)
13. initialvalue : 0

14. initialrowvalue : 5 00000001110000000000
15. initialrowvalue : 7 00000100100100000000
16. initialrowvalue : 8 00000101110100000000
17. initialrowvalue : 9 00000100100100000000
18. initialrowvalue : 11 00000001110000000000
19. localtransition : life-rule

20. [life-rule]

21. rule : 1 100 { (0,0) = 1 and trueCount = 5 }
22. rule : 1 100 { (0,0) = 0 and trueCount = 3 }
23. rule : 0 100 { t }

Figure 41. Game of life model definition in CD++

As shown on the model definition, the “born” ruke defined by line 22, the
“survive” rule is defined by line 21, and the “didile is defined by line 23. Figure 42
will show the gird values starting at tird@: 00: 00: 000 until the end of the simulation
which is at timed0: 00: 00: 300. Initially the grid is seeded by a number of lnalls by
setting the value of the cell to ‘1’. As the rulase evaluated, more cells are born and

finally, at some time they will die until no liveelt is left.

B

Figure 42. Game of life cell values throughout theimulation

Using CD++, the model has been drawn on a 20x2A@udl Figure 43 illustrates
the cell gird at four different time stamps of #ieulation. The first cell grid shows the
initial scenario where seventeen alive cells eXstthe simulation proceeds, either new

cells are born or live cells die (based on the &3" rule). After a while, every live cell
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stays alone with no live neighbors. As a resultpading to the game rules, the remaining

cells die of loneliness.

Time 00:00:00:000 Time 00:00:00:100 Time 00:00:00:200 Time 00:00:00:300

Figure 43. Game of life model at four different tine steps throughout the simulation

5.2. SYNAPSIN-VESICLE REACTION AT NERV TERMINAL

We have modeled the reserve pool of synaptic wesicl a presynaptic nerve terminal,
predicting the number of synaptic vesicles reledsau the reserve pool as a function of
time under the influence of action potentials daffefing frequencies. Time series
amounts for the components are obtained usingbaged methods (the rules defined by
Cell-DEVS) [Ala07, Jaf07]. This model was creatactollaboration with the Department
of Biology at Carleton University. Creating this d& in CD++ allows spatial description
of synapsin-vesicle interactions. CD++ toolkit makepossible to have a 2-D graphical
representation of this model. As a result a conpammodel to the real scene observed in
microscopic devices is created.

Synapsin is a neuron-specific phosphoprotein thrttsto small synaptic vesicles
and actin filaments in a phosphorylation-dependettern. Microscopic models have
demonstrated that synapsin inhibits neurotransmrtkease either by forming a cage
around synaptic vesicles (cage model) or by anobatiem to the F-actin cytoskeleton
of the nerve terminal [Ben90].

We modeled the molecular interaction syhapsin (S) with vesicles (V) which
occur inside a nerve cell. The model described#tavior of synapsin movements until
reaching a vesicle and binding to it. Once bindiag occurred, depending ofirate V
and S can again go apart and break their bindiflgs onrate andoffrate describe how
often bindings occur or break then after. The fellg formula describes the nature of

the reaction:
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S+Ve SV
From the above formula, the left hand side of theation demonstrates the
binding scenario whem/napsin andvesicles perform a bind at a rate specified dvy ate,
while the right hand side of the equation illustsathe bind-break scenario where an
synapsin-vesicle at anoffrate which is always smaller thamrate breaks apart and again
synapsin andvesicles get released. Thesynapsin andvesicles can again perform binding
and break apart then after. This equation showsrnagoing process of “binding” and
“breaking apart” which depends affrate/onrate. The larger theoffrate is, the more
bindings get broken apart. Similarly, the largee tmrate is, the more V-S binds are
produced. Three different scenarios are modele¥: i$)stationary (with a fixed position
on cell space), and S is mobile, 2) V is mobile & stationary, and 3) V and S are
both mobile (leads to maximum number of total mogata and therefore bindings).
Binding patterns are in such a way that each Sbaashto more than one V, and V can
bind to more than one S. Examples of such bindiaglevbe:
S-V-S-V
I I
V-S V-SV-SV

Each cell space in Cell-DEVS is used to represapt® or V. The neighboring
pattern of V and S is in such a way that they caratljacent cells or diagonal cells, as
shown in the following Figure (Gray — Red Cell =B¥ack - BlueCell = V).

Diagonal Neighbors Adjacent Neighbors
Figure 44. Neighborhood definition

The model uses 100 V and 100 S molecules in a 26&R3pace. Mobile S or V
change position to up, down, left, and right atan. The coupled Cell-DEVS model for

this application is described as follows.

M=<I,X,Y,Xlist,Ylist,n, N,{m,n}, C, B, Z, select>
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Xlist=® Ylist=® n=9 1=<P*,P'>,with P*={®},P’={®};

N={ (-1,-1), (-1,0), (-1,2), (0,-1), (0,0), (0,18.-1), (1,0), (1.1) };
X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,4 83 24};
Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,4 8,3 24};

m=26; n=22; B={b}; C={Cij/i €[1,26], je[1,22]}

select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,@»,1), (1,-1), (1,0), (1,1) };

Z:
Pij Y1 - Pij-1 X1 Pij+1Y1 - Pj X1
Pij Y2 - Pi+1,j X2 Pi-1,j Y2 - PRj X2
Pij Y3 - Pij+1 X3 Pij-1Y3 - PRjX3
Pij Ya - Pi-1j X4 Pi+1j Y4 - Pj X4
Pij Y5 - Rj X5 Pj Y5 - Pj X5

On the cell space, the value 1 is used to reprééeahd the value 2 is used to
represent S. The number O represents an emptipycelhich a mobile S can occupy. To
give direction to the V (although the model assumiresd V) or S, a two digit number

was used. For example, the following represent:

Figure 45. Determining the direction
As mentioned earlier, the model constructed catfubtber extended to include
the movement of both synapsin (S) and vesiclesa@Avell as defining different off and
on rates. Aside from V-S reactions, the model dapn acludeActins, which bind to
synapsins. Actins can be represented as a string of celisgbixed at their cell space
position. An extract of the model’s definition irD&+ is shown in Figure 46:
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[top]

components : chemCell
[chemCell]

type :
dim :

delay :
defaultDelayTime : 100
border :
neighbors : chemCell(-1,-1) chemCell(-1,0) chemCell(-1,1)
neighbors : chemCell(0,-1) chemCell(0,0) chemCell(0,1)

neighbors : chemCell(l,-1) chemCell(1l,0) chemCell(1l,1)

initialvalue : 0

initialrowvalue : 0 0010201202201012020100
initialrowvalue : 1 0001020120101020120100
initialrowvalue : 24 0010201202201101201200
initialrowvalue : 25 0001202020111202201000

localtransition : chemCell-rule
[chemCell-rule]

rule : {round(uniform(11,14))} 100 { (0,0) =1 }

rule : {round(uniform(21,24))} 100 { (0,0) =2 }

rule : {round(uniform(31,34))} 100
{((0,0)=21 or (0,0)=22 or (0,0)=23 or (0,0)=24) and
(((-1,0)- 10 =1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 3 or (-1,0)- 10 = 4) or
((1,0)- 10 =1o0r (1,0)- 10 =2 or (1,0)- 10 = 3 or (1,0)- 10 = 4) or
((0,-1)- 10 =1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or
((0,1)- 10 =1o0r (0,1)- 10 =2 or (0,1)- 10 = 3 or (0,1)- 10 = 4) or
((-1,1)- 10 =1 or (-1,1)- 10 =2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or
((1,-1)- 10 =1 or (1,-1)- 10 =2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or
((1,1)- 10 =1o0r (1,1)- 10 =2 or (1,1)- 10 = 3 or (1,1)- 10 = 4) or
((-1,-1)- 10 =1 or (-1,-1)- 10= 2 or (-1,-1)- 10= 3 or (-1,-1)- 10 = 4))
and random > 0.10}

$moving up
rule :
: {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 }
rule :

rule

$release 0.1 of the S (the offrate is 0.1)
: {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or

rule

% any others
rule :

(26,22)

cell
transport

wrapped

91 100 {(0,0)=21 and (-1,0)=0 and t}

00 0 {(0,0)=91}

(0,0)=31 or (0,0)=34) and random < 0.10}

{ (0, 0) } 100 { t}

Figure 46. Definition of Synapsin-Vesicle Reactiomodel in CD++

The detailed explanation of each part of the modek are defined as follows:

rule : {round(uniform(11,14))} 100 { (O0,0)
rule : {round(uniform(21,24))} 100 { (0,0)

In the above two rules, the cells are first inisad with 11-14 (for Vesicles) and

21-24 (for Synapsin) to show the scenario at tints where bindings have not yet been
performed. Once bindings occur, cells change thaues; 11-14 get replaced with 31-
34, and 21-24 get replaced with 41-44. Also for&pgins, four intermediate values 91-
94 are used to represent a moving cell that hagetdieing settled down. Once it settles
down its value changes back to 21-24 (dependingsatirection of movement) and gets

ready to bind to a vesicle in its neighborhood.
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rule : {round(uniform(31,34))} 100
{((0,0)=21 or (0,0)=22 or (0,0)=23 or (0,0)=24) and

(((-1,0)- 10 =1 or (-1,0)- 10 =2 or (-1,0)- 10 = 3 or (-1,0)- 10 = 4) or
((1,0)- 10 =1o0r (1,0)- 10 =2 or (1,0)- 10 = 3 or (1,0)- 10 = 4) or
((0,-1)- 10 =1 or (0,-1)- 10 =2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or
((0,1)- 10 =1o0r (0,1)- 10 =2 or (0,1)- 10 = 3 or (0,1)- 10 = 4) or
((-1,1)- 10 =1 or (-1,1)- 10 =2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or
((1,-1)- 10 =1 or (1,-1)- 10 =2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or
((1,1)- 10 =1o0r (1,1)- 10 =2 or (1,1)- 10 = 3 or (1,1)- 10 = 4) or
((-1,-1)- 10 =1 or (-1,-1)- 10= 2 or (-1,-1)- 10= 3 or (-1,-1)- 10 = 4))

and random > 0.10}

The above rule describes the following scenarithefe exists a synapsin having
the value 21, 22, 23, or 24 (a synapsing that cavenup/right/down/left) and there is a
vesicle in its neighboring which could be an adjoeell or a diagonal cell, then the
synapsin (red cells) will move toward this vesieled a binding will occur soon, the
value of the synapsin gets changed to 31, 32,1334 di.e. 21 changes to 31, 22 changes
to 32, 23 changes to 33, and 24 changes to 34€ptesent a synapsin that is bonded to a

vesicle.

rule : {round(uniform(41,44))} 100 {((0,0)=11] or (0,0)=12 or (0,0)=13 or (0,0)=14) and

(((-1,0)- 30 =1 or (-1,0)- 30 =2 or (-1,0)- 30 = 3 or (-1,0)- 30 = 4) or
((1,0)- 30 =1 or (1,0)- 30 =2 or (1,0)- 30 =3 or (1,0)- 30 = 4) or
((0,-1)- 30 =1 or (0,-1)- 30 =2 or (0,-1)- 30 = 3 or (0,-1)- 30 = 4) or
((0,1)- 30 =1 or (0,1)- 30 =2 or (0,1)- 30 =3 or (0,1)- 30 =4 ) or
((-1,1)- 30 =1 or (-1,1)- 30 =2 or (-1,1)- 30 = 3 or (-1,1)- 30 4) or
((1,-1)- 30=1 or (1,-1)- 30 =2 or (1,-1)- 30 = 3 or (1,-1)- 30 = 4) or
((1,1)- 30 =1 or (1,1)- 30 =2 or (1,1)- 30 =3 or (1,1)- 30 = 4) or
((-1,-1)- 30 =1 or (-1,-1)-30=2 or (-1,-1)-30=3 or (-1,-1)-30 = 4))and
random > 0.10}

Similarly, the above rule describes the followirfgthere exists a vesicle having the
value 11, 12, 13, or 14 (a vesicle that can movkigig/down/left) and there is a
synapsin in its neighboring which could be an agjacell or a diagonal cell, then since
the synapsin will come toward this vesicle andralivig will occur soon, the value of the
vesicle gets changed to 41, 42, 43, or 44 (i.echdnges to 41, 12 changes to 42, 13
changes to 43, and 14 changes to 44).

For the movement of synapsin the following foulesuare implemented: (each
movement is performed in three steps)
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$moving up

rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}

rule : {round(uniform(21,24))} O {(0,0)=0 and 1,0)=91 }
rule : 00 0 {(0,0)=91}

step 1:checking to see if there is an empty cell so fmagsin can move into it, for
example if the synapsin’s direction is upward (eafi21), then at first we need to
check if there is an empty cell right above it. (lused as an intermediate value to
occupy the empty cell)

step 2:once an empty cell is found, it gets occupiedH®y synapsin (i.e. the cell’s
value changes from 0 to a random number 21-24).

step 3:the previous position of the synapsin that juswvetbto an empty cell gets
cleared by setting the value of the cell to 0.

Same procedure is used for right, left, and dowreneent.

%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or (0,0)=34) and random < 0.10}

The above rule is used to break the S-V bindingaguan offrate = 0.10.
According to this rule, 10% of the bindings get ks and as a result synapsins get
released and will be given another direction ared twill move around until finding a

vesicle and binding to it.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0l 13 24 14 24 23 23 11 13 21 22 12 |
1] 12 23 13 22 14 12 22 12 23 13 |
2| |
31 12 12 11 23 14 13 21 22 23 22 23 11 |
4] 23 11 14 11 22 22 23 13 14 14 23 |
5] | |
61 12 22 | 12 23 23 13 22 23 13 13 11 22 |
71 13 21 24 23 12 12 22 14 24 13 22 |
8] 12 22 13 22 23 23 11 13 14 22 13 24 |
91 |
10| 12 13 12 13 23 23 11 23 24 11 |
11| 12 22 24 22 12 13 13 22 24 22 13 |
12 13 22 13 24 12 14 24 24 12 22 12 |
13| 24 13 24 12 13 22 12 24 12 21 14 |
14| |
15| 13 22 21 22 12 14 12 13 24 23 13 |
16| 12 23 11 23 21 22 13 |21 14 21 12 13 |
171 12 13 12 12 22 21 12 21 22 12 |
18| |
19| 14 22 13 22 14 11 23 13 24 13 |
20| |
21] 14 23 23 24 11 23 22 23 13 12 13 |
22| 21 12 24 |
23] 22 13 |
24| 12 24 13 22 21 21 12 14 12 22 12 23 |
25| 12 21 22 23 12 14 12 21 22 23 14 |
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Figure 47 shows the grid at the initial case wifm@nd V have not yet interacted
to perform a bound (bold boxes represent examglésnding structures). Then, Figure
48 will show how bounds are formed and the corredpw cells change their values to

represent the binding.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

o o +
0] 13 24 14 24 23 23 11 13 21 22 12 |
1] 12 23 13 22 14 12 22 12 23 13 |
2] |
3] 12 12 11 23 14 13 21 22 23 22 23 11 |
4] 23 11 14 11 22 22 23 13 14 14 23 |
51 | |
6] 12 22 12 23 23 13 22 23 13 13 11 22 |
71 13 1 24 23 12 12 22 14 24 13 22 |
8] 12 22 13 22 23 23 11 13 14 22 13 24 |
9| |
10| 12 13 12 13 23 23 11 23 24 11 |
11| 12 22 24 22 12 13 13 22 24 22 13 |
12| 13 22 13 24 12 14 24 24 12 22 12 |
13| 24 13 24 12 13 22 12 24 12 21 14 |
14| |
15| 13 22 21 22 12 14 12 13 24 23 13 |
16| 12 23 11 23 21 22 13 |21 14 21 12 13 |
17| 12 13 12 12 22 21 12 21 22 12 |
18] |
19| 14 22 13 22 14 11 23 13 24 13 |
20| |
21| 14 23 23 24 11 23 22 23 13 12 13 |
22| 21 12 24 |
23| 22 13 |
24| 12 24 13 22 21 21 12 14 12 22 12 23 |
25| 12 21 22 23 12 14 12 21 22 23 14 |
o +

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
e +
0| 13 32 41 22 32 34 31 44 42 34 31 12 |
1| 12 32 44 21 42 12 23 42 32 13 |
2| |
3| 41 42 41 32 14 42 32 22 33 33 44 |
4| 32 43 14 41 34 23 13 43 14 32 |
5| 33 |
6l 44 32 31 43 32 21 44 42 42 34 |
71 12 31 34 32 41 42 23 42 32 44 31 |
8| 12 31 41 24 34 33 41 13 43 34 42 31 |
9| |
10| 42 44 42 41 23 31 43 32 33 11 |
11 41 32 32 33 44 44 13 33 33 33 43 |
12 42 31 41 32 42 43 33 32 12 22 12 |
13| 22 41 32 42 13 34 42 32 44 31 14 |
14| |
15| 41 34 32 33 44 42 42 42 34 32 13 |
16| 44 31 42 31 31 31 42 |31 44 33 41 13 |
17| 12 43 43 42 32 31 44 33 12 |
18] 24 |
19| 14 22 13 32 14 42 31 13 33 13 |
20| |
21] 43 33 22 44 31 22 13 44 13 |
22| 23 32 42 32 33 |
23] 33 41 |
24| 12 33 43 31 33 33 42 14 42 23 44 34 |
25| 42 32 34 41 42 42 31 34 21 14 |
e +

Figure 48. V and S after binding at Time: 00:00:0800
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As illustrated on the above figures, the bold bosksw bindings between
synapsin (31-34) and vesicle (41-44). The firatsifation (Figure 47) represents the
initial scenario where synapsins (21-24) and vesi¢lL1-14) are free and have not yet
performed bindings. Once synapsins walk toward clesi the values of the
corresponding cells change to 31-34 (bonded syngpand 41-44 (bonded vesicles). It
is shown that vesicles can be surrounded by ma@me dme synapsin, but each synapsin
can bind to only one vesicle at any time.

From the above figure we can see the following sdinding scenarios:

|.LL_2L| — corresponds to: V-S

4z

1z
=1 31

- — 21 lcorresponds to: S\

I
S

Several initial parameters are tested in orderew® the running process of cell

nerve with differenoffrate. The case presented in the following figure shawsffrate
of 0.1.

E N EEEEEEERN | ENEE B NN Em
H EEN B BN BN = H EE .lll n

H E EN BN BN BN Em HEE B EEE N EEN
= I.= =Il EE B m

| ] EEN [ [ []] L

| H N B INEE EEm ||

| [ | HN N BN BN m

[ [ ] =I HEEE BNEN

EEEENENEE = EE B

EEEN - m

HEE BN EEEEEN =l H EE =N = =
Hl BN BB E BN EERN | L[] - HEN

mm ] - | - [ [ [ ]|
H N BN =N I= N BN II.. | Il E B
(@) (b)

Figure 49. Model Execution Results: (a) initial vales; (b) final execution

The final execution results on Figure 49 preserdtable image of synapsin-

vesicles bindings where single/double/multiple Ioigd had occurred within the neuron.
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5.3. FIRE SPREAD MODEL

In this section we present Fire Spreading Modebahiced in [Ame01], which represents
a fire propagation scenario in forest based on &uaikl's mathematical definition
[Rot72]. The model computes the ratio of spread iatehsity of fire in forest based on
specific environmental and vegetation conditionste€ parameter groups determine the
fire spread ratio: 1) vegetation type (caloric emif mineral content and density); 2) fuel
properties; 3) environmental parameters (wind spbathidity, and field slope). Figure
50 shows the definition of the model in CD++ usernyironmental values obtained for a
fuel model group number 9, a SE wind of 24.135 kamitl a cell size of 15.24x15.24 m.

[top]

components : forestfire

[forestfire]

type : cell dim : (30,30) delay : inertial border : nowrapped

neighbors : (_15_1) (_190) (_191) (05_1) (050) (051) (15_1) (150) (191)
localtransition : FireBehavior

[FireBehavior]

rule : {(1,-1)+(21.552615/17.967136)} {(21.552615/17.967136)*60000} {(0,0)=0 and (1,-1)!=? and 0<(1,-1)}
rule : {(1,0)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and (1,0)!=? and 0<(1,0)}

rule : {(0,-1)+(15.24/5.106976)} {(15.24/5.106976)*60000} {(0,0)=0 and (0,-1)!=? and 0<(0,-1)}

rule : {(-1,-1)+(21.552615/1.872060)} {(21.552615/1.872060)*60000} {(0,0)=0 and (-1,-1)!=? and 0<(-1,-1)}
rule : {(1,1)+(21.552615/1.872060)} {(21.552615/1.872060)*60000} {(0,0)=0 and (1,1)!=? and 0<(1,1)}
rule : {(-1,0)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and (-1,0)!=? and 0<(-1,0)}

rule : {(0,1)+(15.24/1.146091)} {(15.24/1.146091)*60000} {(0,0)=0 and (0,1)!=? and 0<(0,1)}

rule : {(-1,1)+(21.552615/0.987474)} {(21.552615/0.987474)*60000} {(0,0)=0 and (-1,1)!=? and 0<(-1,1)}
rule : {(0,0)} 0 {t}

Figure 50. Definition of the fire propagation modelin CD++

The model consists of 900 cells arranged in a 30x88h, where each cell has
the following neighborhood pattern.

('1! '1) ('1! O) ('1! 1)

(o! '1) (O! 0) (O! 1)

(1! '1) (1! 0) (1! 1)
Figure 51. Fire cell neighborhood

As mentioned previously, the precondition, deleiet and postcondition rules

are based on the mathematical models defined byelRatl. The fire starts from one cell
and propagates throughout the cell grid. Initiadlif,cells except one are given the value
‘0’ to indicate absence of fire. As the simulatitme advances, rules get evaluated to

true and fire appears in cells by changing theluedo a non-zero number. The fire
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sparks from a predefined cell initialized to ‘1'hd initial scenario of the grid at time
00:00:00:000 is presented in Figure 52. The firc@nario (Figure 53) shows the fire
spread at time 01:59:40:578 where the fire hasggafed in the direction of wind.

Line : 1809 - Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

19| 1.0

Figure 52. Fire propagation model - initial scenarm at time 00: 00: 00: 000

Line : 18410 - Time: 01:59:40:578

o 2 3 6 7 8 e 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0| 117.4108.9100.3 91.8 83.3 74.8 66.2 57.7 55.9 54.1 52.3 50.6 48.8 47.0 45.2 43.4 41.6 39.9 38.1 36.3 34.5 32.7 30.9 29.1 27.4 25.6 23.8|
1] 114.4105.9 97.4 88.8 80.3 71.8 63.2 54.7 52.9 51.1 49.4 47.6 45.8 44.0 42.2 40.4 38.7 36.9 35.1 33.3 31.5 29.7 27.9 26.2 24.4 22.6 25.6]
2] 120.0111.4102.9 94.4 85.8 77.3 68.8 60.3 51.7 49.9 48.2 46.4 44.6 42.8 41.0 39.2 37.5 35.7 33.9 32.1 30.3 28.5 26.7 25.0 23.2 21.4 24.4 27.4|
3] 117.0108.4 99.9 91.4 82.9 74.3 65.8 57.3 48.7 47.0 45.2 43.4 41.6 39.8 38.0 36.3 34.5 32.7 30.9 29.1 27.3 25.5 23.8 22.0 20.2 23.2 26.2 29.1]|
4| 114.0105.5 96.9 88.4 79.9 71.3 62.8 54.3 45.8 44.0 42.2 40.4 38.6 36.8 35.1 33.3 31.5 29.7 27.9 26.1 24.3 22.6 20.8 19.0 22.0 25.0 27.9 30.9]
51 119.5111.0102.5 93.9 85.4 76.9 68.4 59.8 51.3 42.8 41.0 39.2 37.4 35.6 33.9 32.1 30.3 28.5 26.7 24.9 23.1 21.4 19.6 17.8 20.8 23.8 26.7 29.7 32.7|
61 116.6108.0 99.5 91.0 82.4 73.9 65.4 56.9 48.3 39.8 38.0 36.2 34.4 32.7 30.9 29.1 27.3 25.5 23.7 21.9 20.2 18.4 16.6 19.6 22.6 25.5 28.5 31.5 34.5|
71 113.6105.0 96.5 88.0 79.5 70.9 62.4 53.9 45.3 36.8 35.0 33.2 31.5 29.7 27.9 26.1 24.3 22.5 20.7 19.0 17.2 15.4 18.4 21.4 24.3 27.3 30.3 33.3 36.3|
8]119.1110.6102.1 93.5 85.0 76.5 67.9 59.4 50.9 42.4 33.8 32.0 30.3 28.5 26.7 24.9 23.1 21.3 19.5 17.8 16.0 14.2 17.2 20.2 23.1 26.1 29.1 32.1 35.1 38.1]
9]116.1107.6 99.1 90.5 82.0 73.5 65.0 56.4 47.9 39.4 30.8 29.1 27.3 25.5 23.7 21.9 20.1 18.3 16.6 14.8 13.0 16.0 19.0 21.9 24.9 27.9 30.9 33.9 36.9 39.9]
10] 104.6 96.1 87.6 79.0 70.5 62.0 53.4 44.9 36.4 27.9 26.1 24.3 22.5 20.7 18.9 17.1 15.4 13.6 11.8 14.8 17.8 20.7 23.7 26.7 29.7 32.7 35.7 38.7 41.6]|
11 117.9 93.1 84.6 76.0 67.5 59.0 50.5 41.9 33.4 24.9 23.1 21.3 19.5 17.7 16.0 14.2 12.4 10.6 13.6 16.6 19.5 22.5 25.5 28.5 31.5 34.5 37.5 40.4 43.4]|
12| 106.4 81.6 73.1 64.5 56.0 47.5 38.9 30.4 21.9 20.1 18.3 16.5 14.8 13.0 11.2 9.4 12.4 15.4 18.3 21.3 24.3 27.3 30.3 33.3 36.3 39.2 42.2 45.2|
13| 119.7 94.9 70.1 61.5 53.0 44.5 36.0 27.4 18.9 17.1 15.3 13.6 11.8 10.0 8.2 11.2 14.2 17.1 20.1 23.1 26.1 29.1 32.1 35.1 38.0 41.0 44.0 47.0]|
14| 108.2 83.4 58.6 50.0 41.5 33.0 24.4 15.9 14.1 12.4 10.6 8.8 7.0 10.0 13.0 16.0 18.9 21.9 24.9 27.9 30.9 33.9 36.8 39.8 42.8 45.8 48.8|
15| 96.7 71.9 47.1 38.5 30.0 21.5 12.9 11.2 9.4 7.6 5.8 8.8 11.8 14.8 17.7 20.7 23.7 26.7 29.7 32.7 35.6 38.6 41.6 44.6 47.6 50.6]
161 110.0 85.2 60.3 35.5 27.0 18.5 10.0 8.2 6.4 4.6 7.6 10.6 13.6 16.5 19.5 22.5 25.5 28.5 31.5 34.4 37.4 40.4 43.4 46.4 49.4 52.3|
17| 98.5 73.6 48.8 24.0 15.5 7.0 5.2 3.4 6.4 9.4 12.4 15.3 18.3 21.3 24.3 27.3 30.3 33.2 36.2 39.2 42.2 45.2 48.2 51.1 54.1]
18] 111.8 86.9 62.1 37.3 12.5 4.0 2.2 5.2 8.2 11.2 14.1 17.1 20.1 23.1 26.1 29.1 32.0 35.0 38.0 41.0 44.0 47.0 49.9 52.9 55.9]
19| 100.2 75.4 50.6 25.8 1.0 4.0 7.0 10.0 12.9 15.9 18.9 21.9 24.9 27.9 30.8 33.8 36.8 39.8 42.8 45.8 48.7 51.7 54.7 57.7]|
20| 113.5 88.7 63.9 39.1 14.3 12.5 15.5 18.5 21.5 24.4 27.4 30.4 33.4 36.4 39.4 42.4 45.3 48.3 51.3 54.3 57.3 60.3 63.2 66.2]
21 102.0 77.2 52.4 27.6 25.8 24.0 27.0 30.0 33.0 36.0 38.9 41.9 44.9 47.9 50.9 53.9 56.9 59.8 62.8 65.8 68.8 71.8 74.8]
22 115.3 90.5 65.7 40.9 39.1 37.3 35.5 38.5 41.5 44.5 47.5 50.5 53.4 56.4 59.4 62.4 65.4 68.4 71.3 74.3 77.3 80.3 83.3]
23] 103.8 79.0 54.2 52.4 50.6 48.8 47.1 50.0 53.0 56.0 59.0 62.0 65.0 67.9 70.9 73.9 76.9 79.9 82.9 85.8 88.8 91.8|
24| 117.1 92.3 67.5 65.7 63.9 62.1 60.3 58.6 61.5 64.5 67.5 70.5 73.5 76.5 79.5 82.4 85.4 88.4 91.4 94.4 97.4100.3|
25| 105.6 80.8 79.0 77.2 75.4 73.6 71.9 70.1 73.1 76.0 79.0 82.0 85.0 88.0 91.0 93.9 96.9 99.9102.9105.9108.9]
26| 118.9 94.1 92.3 90.5 88.7 86.9 85.2 83.4 81.6 84.6 87.6 90.5 93.5 96.5 99.5102.5105.5108.4111.4114.4117.4]
27| 107.4105.6103.8102.0100.2 98.5 96.7 94.9 93.1 96.1 99.1102.1105.0108.0111.0114.0117.0120.0 1
28] 120.7118.9117.1115.3113.5111.8110.0108.2106.4104.6107.6110.6113.6116.6119.5 |
29 119.7117.9116.1119.1 |

Figure 53. Fire propagation model - final scenariat time 01: 59: 40: 578
Using CD++, the model has been drawn on a 30x3@udl Figure 54 illustrates
snapshots of the simulation results at four difietenes. Initially, fire starts as fire spot
(the dark cell on the grid). Then as time passeditgyspreads to the neighboring cells in
the direction of wind. Therefore, each cell, depegdn its position and heat, fires its
surrounding cells. As presented on the final sdenafr Figure 54, the wind direction

leads the fire from the starting point, cell (19),fowards southeast of the forest.
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Time 00:00:00:000

Time 00:09:34:017

Time 00:22:45:720

Time 01:59:40:578

Figure 54. Fire propagation at four different snap$iots throughout the simulation

5.4. SHIP EVACUATION MODEL

Based on the model defined in [KluO1], the model present is the illustration of an

emergency ship evacuation scenario. The model stsnsi 20x20 cell space, using rules

with the following restrictions:

1. Each cell representing a person on the ship, akesiits shortest path toward the

exit. During the initialization phase, people glaced randomly in any empty

cell to imitate real ship evacuation scenario.

2. People run in their initial direction until they @unter another person or an

obstacle (e.g. wall).

The neighborhood of each cell consists of 10 osliech will affect the cell's

movement (i.e. they can be walls, exit doors, popt empty cells) as shown in Figure

55.

UU (-2,0)

UL (-1,-1) | U(-1,0) | UR(-1,1)
L (0, -1) 00 |R(O,1) RR (0, 2)

DL(1,-1) | D(10) | DR(1, 1)

Figure 55. Cell neighborhood
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From the above figure we can see that the neigloooriconsists of 11 cells. Each value
on the cell space defines a distinct state, suctheasype of the cell: wall, empty, exit
door, a moving person. Also each type of movemsgrdiven a state value in order to

identify the next position of the person. Tablauingnarizes these values.




State Name Value Comments
N/A 0 Unknown Empty cell.
Wall 1 Represents an obstacle or a wall.
Exit 2 Represents an exit (e.g. stairs, door).
ED 3 Empty cell and its down (D) cell is the shsttpath to the
nearest exit.
ER 5 Empty cell and its right (R) cell is the slesttpath to the
nearest exit.
EU 7 Empty cell and its up (U) cell is the shortpath to the|
nearest exit.
EL 9 Empty cell and its left (L) cell is the shateath to the
nearest exit.
FD 4 A Full cell (cell with person) and its down)(Bell is the
shortest path to the nearest exit.
FR 6 A Full cell (cell with person) and its righiR) cell is the
shortest path to the nearest exit.
FU 8 A Full cell (cell with person) and its up (@gll is the
shortest path to the nearest exit.
FL 10 A Full cell (cell with person) and its left)(cell is the
shortest path to the nearest exit.

Table 1. State values and their description

Figure 56 shows an extract of the model’s definiiio CD++.

[top]

components : ship
[ship]

type : cell

width : 20

height : 20

delay : transport
defaultDelayTime : 20
border : nowrapped
neighbors : ship(-2,0

neighbors : ship(0,-1
neighbors : ship(1l,-1
initialvalue : 0

initialrowvalue : 0
initialrowvalue : 1
initialrowvalue : 18
initialrowvalue : 19

[ship-rule]
%init rules

%walking rules

rule : 4 100 { (0,0)
rule : 6 100 { (0,0)
rule : 8 100 { (0,0)
rule : 10 100 { (0,0)
%exit rules

rule : 3 100 { (0,0)
rule : 9 100 { (0,0)
rule : 7 100 { (0,0)
rule : 5 100 { (0,0)
%changing direction
rule : 3 100 { (0,0)
rule : 9 100 { (0,0)
rule : 7 100 { (0,0)

rule : 5 100 { (0,0)

)

)
)

neighbors : ship(-1,-1) ship(-1,0) ship(-1,1)

localtransition : ship-rule

rule : {3 + randInt(1l)}
rule : {5 + randInt(1l)}
rule : {7 + randInt(1l)}
rule : {9 + randInt(1l)}

ship(0,0) ship(0,1) ship(0,2)
ship(1,0) ship(1,1)

11111111111111111111
10000000000000000001

10000000000000000001
11111111111111111111

0 { (0,0) =0and (1,0) >1 and (1,0) < 11}

0 { (0,0) =0 and (0,1) >1 and (0,1) < 11}

0 { (0,0) =0 and (-1,0) > 1 and (-1,0) < 11}

0 { (0,0) =0 and (0,-1) >1 and (0,-1) < 11}

3 and ( (0,1) = 10 or (-1,0) = 4 or (0,-1) =6 )}
5 and ( (1,0) = 8 or (-1,0) = 4 or (0,-1) =6 )1}
7 and ( (1,0) = 8 or (0,1) = 10 or (0,-1) =6 )}
9 and ( (1,0) = 8 or (0,1) = 10 or (-1,0) = 4 )}
4 and (1,0) = 2}
10 and (0,-1) = 2}
8 and (-1,0) = 2}

6 and (0,1) = 2}

4 and odd((1,0)) 1}

10 and odd((0,-1)) and (-1,-1) !'= 4}

8 and odd((-1,0)) and (-2,0) != 4 and (-1,1) !'= 10 }

6 and odd((0,1)) and (-1,1) '= 4 and (0,2) !'= 10 and (1,1) '= 8 }

Figure 56. Definition of ship evacuation model in O++
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The first four rules initialize the model by calatihg the shortest path for each
undefined cell and placing people on the cell spacglomly. The algorithm works as
follows: when a cell detects that one of its atettcells has changed its state to

“defined”, it would know that the attached celtli® shortest path.

Resuli Precondition
3 or4— ED or FD state (0,0) = Undefined and (1,0) is raedi.

5 or 6— ER or FR state (0,0) = Undefined and (0,1) isroi

7 or 8— EU or FU state (0,0) = Undefined and (-1,0) isirokd.

9 or 10— EL or FL state (0,0) = Undefined and (0, -1) isirokd.

Table 2. Initialization rules

The above four rules are implemented in the “inies” section in Figure 56. The
first initialization rule indicates that if the eent cell is undefined and the one below it is
defined, then the current cell will be randomly mpad to an empty or full cell whose
down (D) cell is the shortest path to the nearedt &he second initialization rule
indicates that if the current cell is undefined &mel one on its right is defined, then the
current cell will be randomly changed to an emptyull cell whose right (R) cell is the
shortest path to the nearest exit. Similarly, thedtinitialization rule states that if the
current cell is undefined and the one above itaBnéd, then the current cell will be
randomly changed to an empty or full cell whose(Up cell is the shortest path to the
nearest exit. Finally, represented by the fourihrule, if the current cell is undefined
and the one on its left is defined, then the curcefl will be randomly changed to an
empty or full cell whose left (L) cell is the shest path to the nearest exit.

Then the second set of rules defines the case wiwetl knows that a person will
move towards it. The cell knows it will soon be opied by a person if it is empty and it

is the shortest path to at least one cell withragreoccupying it.

Result Precondition
4 — FD state (0,0) = ED and ((0,1) =FL or (-1,0) = BD(0,-1) = FR)
6 — FR state (0,0) = ER and ((1,0) = FU or (-1,0) =&i§0,-1) = FR)
8 — FU state (0,0) = EU and ( (1,0) =FU or (0,1) =¢t(0,-1) = FR)
10— FL state (0,0)=EL and ((1,0) =FU or (0,1) =6i(-1,0) = FD)

Table 3. Walking rules
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The above four rules are implemented in the “wakinles” section in Figure 56.
The first walking rule indicates that when the euatrcell is empty and its down (D) cell
is the shortest path to the nearest exit and tsea¢ least one full cell below, or on its
right or left, then the current cell is changedatdull cell heading towards down. The
second walking rule indicates that if the curregit s empty and its right (R) cell is the
shortest path to the nearest exit and there isast lone full cell above, below, or on its
right, then the current cell is changed to a fell beading towards right. Third walking
rule represents the case where the current cethjgty and the cell above it is the shortest
path to the nearest exit and also there is at tessftull cell above, or on its right or left,
then the current cell is changed to a full cell dieg towards up. Finally, the fourth
walking rule states that if the current cell idl fuhd the cell on its left is the shortest path
to the nearest exit and also there is at leastfudheell above, below, or on its left, then
the current cell is changed to a full cell headimgards left.

The third set of rules defines the case when a amilipied with a person is

attached to the exit. Then, the cell knows thag¢son will leave it and exit.

Resulted State Input Values
3— ED state (0,0) =FD and (1,0) is exit.
5— ER state (0,0) =FR and (0,1) is exit.
7— EU state (0,0) =FU and (-1,0) is exit.
9— EL state (0,0) = FL and (0,-1) is exit.

Table 4. Exit rules
These rules are implemented in the “exit rulestisadn Figure 56. The first exit

rule indicates the scenario at which the curreriit iseoccupied by a person who is
moving downward and the cell below is an exit ddloerefore, the person will leave and
the current cell’'s state changes to an empty cktis® down cell is the shortest path to
the exit. The second exit rule indicates thataheent cell is occupied by a person who
is moving rightward and the cell on the right sidean exit door, therefore, the person
will leave and the current cell’s state changesrioempty cell whose right cell is the
shortest path to the exit. The third exit ruleesahat if the current cell is occupied by a
person who is moving upward and the cell above &n exit door, then the person will

leave and the current cell's state changes to grtyeoell whose up cell is the shortest
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path to the exit. Finally, the last exit rule inalies the scenario at which the current cell is
occupied by a person who is moving leftward and ek on its left is an exit door,
therefore, the person will leave and the currenitscetate changes to an empty cell
whose left cell is the shortest path to the exit.

Then the fourth set of four rules defines when I lagows that a person will
leave it when it is not near an exit. The cell \wsdhat a person will leave it when it is
already occupied by a person and its shortest galthis empty. However, only one
person can move to the empty cell when more thanpamson is trying to move to the
same cell. In this case, the priority is first wihe person who is in the upper cell,
second the one in the right cell, third the onéhim down cell, and finally the one in the

left cell has the lowest priority.

Result Precondition
3 — ED state (0,0) = FD and down (D) cell is empty.
5— ER state (0,0) = FR and right cell (R) is emptd &R,RR, and

DR cells don’t have a person moving to R.

7 — EU state (0,0) = FU and upper cell (U) is emptgt & and UR
cells don’t have a person moving to U.

9 — EL state (0,0) = FL and left cell (L) is empty add doesn't
have a person moving to L.
Table 5. Changing direction rules

These rules are defined in the “changing directsection in Figure 56The first
rule indicates that if a cell is occupied with agm®n whose direction is down (D), then if
the cell below the current cell is empty, the parsan move down by one cell. The
second rule indicates the case where the currdnsdall with a person who is wishing
to move right, therefore if the cell on the rigltesof the current cell is empty, the person
can move right. The third rule describes the sibmaivhere a cell is occupied by a person
with upward direction, therefore, if the cell abdte current cell is empty the person will
move up. Finally, if the current cell is full, bgimccupied by a person whose direction is
leftward, if the cell on the left side of the curteell is empty then the person will move
left by one cell.

The ship evacuation model can be modified by addimye exit doors or
changing the position of these cells. Using CD++diler [Wai02], the initial cell space

at time zero and at the end of simulation when ey has left through the exit doors
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are illustrated in Figure 57. Initially four diffent types of cells appear on the grid: empty
spaces, walls, people, and exit doors, while thal fiesult of the simulation shows no

presence of people, i.e. the ship is evacuated.

Time 00:00:00:000  Time 00:00:00:200 Time 00:00:00:500  Time 00:00:00:600

Figure 57. Model Execution Results
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CHAPTER 6 THE NEW OPTIMISTIC PCD ++ SIMULATOR

In Chapter 4 we introduced our two existing pataimulators, namely the conservative
PCD++ simulator [Tro0l1] and the optimistic PCD++mslator [Liu06]. We have
modified thewARPED kernel to handle rollbacks in a more efficient whythis Chapter,
we will present two new algorithms that we havelenpented invARPEDkernel. Section
6.1 will introduce the rollback mechanism of thdimpstic PCD++ simulator. Then, in
Section 6.2 thé\ear-perfect Sate Information protocol will be discussed. Finally, our
new algorithms; Local Rollback Frequency Model (INRFand Global Rollback
Frequency Model (GFRM) will be presented in SecBdhand 6.4 respectively.

6.1. ROLLBACK MECHANISM OF OPTIMISTIC PCD++

The wARPED kernel mechanisms are based on a set of standtilgs such as: Least-
Time-Stamp-First (LTSF) scheduling, copy state sgvpassive response GVT (pGVT)
algorithm, and fossil cancellation. Using thesepprties, the scheduling, rollback, and
GVT facilities are simplified. The reliable commuations over First-in, First-out (FIFO)
channels improve Jefferson’s definition [Jef85] wehdne did not assume this order
preservation in the communication medium. Furtheanthe kernel uses a predefined
ordering scheme for simultaneous events. Thus,tewsith the same timestamps are
ordered based on the identities of their receivEhe input events at the same virtual
receive time are ordered based on tleirving order (i.e. the sequence by which they
are received at), while the output events with shene virtual send time are ordered
based on theisending order (i.e. the sequence by which they are sent at)Ofjiu
Another restriction is that the timestamp of eaglant in a process must be less than or
equal to the timestamp of the next event in thatgss [Liu06].

The major internal structures defined in thierRPED kernel include such entities
as Logical Process (LP), LTSF scheduler, commuioicahanager, GVT manager, state

manager, and simulation objects. Moreover, thezdlaee types of queues used by these
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entities: input queue (1Q), output queue (OQ), siade queue (SQ). These structures and
the relationship among them are shown in Figure 58.

Partition
Line

LPO LP1
GVT LTSF GVT
Manager Scheduler Manager
I T T T T T T T] Q[ [ [ ]

LTSF
Scheduler
[ T [T ]

State
Manager

State
Manager

Simulation Simulation

Communication Manager
Communication Manager

Simulation Simulation

Processor0 44— MPI communication Processorl
<+— Direct communication

Figure 58. Internal structures in thewARPED kernel

From the diagram we can see that the simulatiotesygglobal level) in this
example is partitioned into two parts, with eacht paapped onto a dedicated processor.
All simulation entities on a processor are grougmegether by a LP (partition level) that is
bound to a physical process. On each processormtia event processing loop is
performed sequentially by the corresponding LP.cssor parallelism occurs at the
partition or LP level. Simulation objects (locavét) within a LP share a communication
manager, a LTSF scheduler, and a GVT manager.

Each simulation object has its own state managbichhmanages a state queue
on behalf of the object. Each simulation objecbai®ms an output queue containing
messages the object has recently sent, kept inavigend time order. All simulation
objects within the same LP share a single inputugulolding all recently arrived
messages sorted in virtual receive time order. geanents have been made so that each
simulation object seems to have its own logicakylidated input queue. Furthermore,
each simulation object may optionally create onanare file queues, which are not

shown in the diagram, corresponding to the outpes fused by the object during the
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simulation. The output data are placed tempora#ydata objects in these file queues.
Physical output activity can only be committed wi@YT exceeds the virtual time of
these data objects. The simulation objects on micgssors must form a complete
partitioning of the system. As required by the TiMé&rp protocol, each simulation
object also has a local clock whose value is tlieeatisimulation time on that object.

The scheduler selects an event from the input quewsach simulation cycle
based on the LTSF algorithm, it then invokes a €pss-event” callback provided by the
application programmer for the receiving simulatiobject to execute this event.
Maintaining all input events in a single input qaegreatly simplifies the scheduling
operations as the scheduler has a single accasstpail these events.

Inter-LP communications are done by the commurocatnhanager over MPI,
while intra-LP communications between any two satioh objects and between a
simulation object and the communication manager pdormed by direct function
invocations. Thus when a simulation object on LR@ds to send an event to another
simulation object on LP1, it passes the event ¢dadlbal communication manager, which
then wraps the event into a MPI message and fosnard the destination LP. On the
receiving end, LP1 polls the communication chamegiularly and once an incoming
MPI message is detected, the communication managdtP1 receives the message,
retrieves the event in it, and delivers the eventhe destination simulation object on
LP1.

The GVT manager is the entity that operates aglbieal or system level. Special
kernel messages are passed among the GVT managths system, implementing a
specific GVT calculation algorithm. Each GVT managerforms the fossil collection
operations for all simulation objects within then&aLP once the GVT goes forward.
Implementing rollback is the task of the local gohtmechanism in Time Warp and the

rollback operations are performed by the simulatibjects at the local level.

6.1.1. Types of rollbacks

The kernel provides two control mechanisms to handillbacks: 1) a rollback
mechanism which is implemented at each individirabigation object at the local level,

and 2) GVT calculation and fossil collection whihimplemented by the LPs at the
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global level [LiuO6]. Rollbacks are triggered osimulation object by incoming straggler
messages and anti-messages at the time when thessages are inserted into this
object’s input queue. There are three types obacks that can happen in the kernel:
primary, secondary, andcascaded which are discussed in the following points.
€ Primary rollback

A typical scenario of the runtime representationaosimulation object before

primary rollback is depicted in Figure 59.

4

[[] inPos

LVT=35 mmm— 35 [] outPos
?

‘//_,J:l inPos
21 /D outPos
. [1 inPos
2 o outos

Input Q Output Q state Q

‘ I unprocessed event [ ]processed event ‘

Figure 59. Runtime representation of a simulation bject

In the diagram, an input event is depicted as akblath thereceive time of the
event shown on it. On the other hand, an outpubhteigeshown as a block with itend
time. States saved on the state queue are picturedxas lwith three values: the Local
Virtual Time (LVT) of the simulation object (as sk in the box), a pointeinPos,
pointing to the event just executed, and anothentpq outPos, identifying the last
message sent by the simulation object. Let's detiwestates shown in the diagram as
S(12), S(21), and S(35).

The figure shows that this simulation object hasceed events with receive time
12, 21, and 35, notated as E(12), E(21), and E(@§)ectively. After executing these
events, the simulation object’'s LVT is set to 3be treceive time of the last event
executed. The simulation object sent three messalges E(12) was executed, while two
messages were sent out when E(35) was executeske dgput messages are recorded in
the output queue in increasing send time ordericHdhat there is no output message
generated as the result of executing E(21). HatheeputPos of S(21) still points to the

last output message in the previous cycle, whiehss referred by the outPos of S(12).
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Now let's consider an event E(18) arriving at thiswulation object. When it is
inserted into the input queue, the kernel rollbtdility finds out that the receive time of
this incoming event is strictly less than the catreVT, thus the event is identified as a
straggler event, and a primary rollback will befpened on this simulation object. The
receive time of the straggler event is referredasorollback time in our following

discussion. Here, the rollback tine18.

(/ inPos — send
inPos
outPos

?
12

[[] inPos [l inPos
LVT=12  m— ‘I ;] outPos LVT=12 mmm— 12 ‘I 0] outPos
Input Q Output Q state Q Input Q Output Q state Q
‘ [l unprocessed event [ Jprocessed event ‘ ‘ [l unprocessed event [ Jprocessed event ‘
(@) (b)

Figure 60. Actions performed during primary rollback

The actions performed by the kernel rollback fagitiuring primary rollback are

illustrated in Figure 60 and described as follows:

1) Insert the straggler event E(18) into the inputieue

2) Undo those previously processed events followint8E{n the input queue.
As shown in Figure 60(a), E(21) and E(35) are uogseed.

3) Search the state queue to find the last state daafede the rollback time, and
then restore the simulation object’'s current sthtsed on that state.
Therefore, the content of the object’s currentesiatan exact duplicate of
S(12). Notice that when copying a state, all datatained in the state are
copied, including the values of the inPos and ositPo

4) Discard from the state queue all states after S(12)

5) Reset the object’s LVT to the recorded value in ¢hgect’'s current state.
Since the object’s current state is now a copy(@2) the LVT is reset to 12.

6) Rollback file queues, if any, associated with thimulation object, which is
not shown in the diagram. The simulation object raaate output files and

the output data are contained in the corresponfiliagjueues in increasing
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virtual time order. Rollback of these file queues simply done by removing
all data with virtual time greater or equal to th#back time.

7) Find the last output message sent during execuii@) from the output
gueue. This can be done with ease in constant ginee the outPos of the
restored state, S(12), is pointing exactly to thassage.

8) Send all messages in the output queue after the@uldsut message found in
step 5 as anti-messages to their receivers, assimokigure 60(b).

After these operations, the kernel resumes norredwgion forward again.

We can see from step 6 that anti-messages may hte@mat the end of the
primary rollback to remove the effects of incorrecmputations on other simulation
objects, both locally within the same LP and reryota other processors in which case
the anti-messages are sent as MPI messages thr@migbmmunication manager.
€ Secondary rollback

Secondary rollback on a simulation object is causereceiving an anti-message.
Depending on whether the corresponding positivesas is processed or not, there are
two kinds of scenarios that could happen here:

The first scenario is when the positive event haesady been processed. Thus, the
simulation object receives an anti-message taggédasnegative time. For example, the
anti-message of E(21) is denoted as E(-21). Therecperformed by the kernel for this
type of rollbacks are described as follows.

(1) Perform a message annihilation operation to delsith the original

message and its anti-message counterpart.

(2) Follow step 2 to step 8 of the primary rollback @e®ns as presented

earlier but using the timestamp of the anti-messege rollback time.

We can see that the operations performed herdyargmain the same as those of
primary rollbacks except that a message annihilatiperation replaces the previous
engueue operation.

In the second scenario, the positive event hasyabtbeen processed by the
simulation object. The only action that needs todome is a message annihilation
operation for the anti-message. The simulation acibgwntinues to execute the next

available event after the annihilation.

78



As in the case of primary rollback, there is treues of identifying the type of the
straggler event. There has to be dedicated mechawisleal with the positive events,
processed and unprocessed, that have the samdatmpesas the anti-message during
secondary rollbacks.
€ Cascaded rollback

The primary rollback triggered by a straggler mgssé the root cause of
rollbacks in Time Warp. Hence, rollback propagatgtarts with one primary rollback
and, probably, multiple rounds of secondary rolksacccurring upon the arrival of anti-
messages at the destination simulation objects. fid&ting simulation object of the
primary rollback is thus named edllback originator, and the original primary rollback
of the propagation is called theot of the propagation. The levels of secondary rollbacks
may be to any depth, and there may even be cirguliar the graph of anti-message
paths, but the propagation eventually terminatef8§].

During either type of rollback, there may be zenog, or more anti-messages sent
out from the simulation object. The spreading & #nti-messages may happen with a
partition on the same processor or across the bafdpartitions to other processors.
Each of these anti-messages will trigger a furdemondary rollback on the destination
simulation object. The secondary rollback is pemfedimmediately upon the arrival of
the anti-message at the destination simulationchbidotice that a simulation object A
sends an anti-messages to simulation object Berigg a secondary rollback on B, and
then during the secondary rollback, B may send laetkmessages to A causing further
secondary rollbacks on A, which forms a circle ive tgraph of anti-message paths.
However, if we consider the propagation processeirms of rollbacks instead of
simulation objects, these circles disappear sinedurther secondary rollbacks on object
A are simply a deeper level of rollbacks resultiram the earlier secondary rollback on
object B. This suggests using a tree structurepocti the propagation process.

The propagation process can be described as thaygdlse whole tree from the
primary rollback (root of the tree). This operatibacktracks, by returning from the
rollback function, to the most recent node that mad have further anti-message from
that rollback or a node that represents a remdt&ret Under this technique, the time

measured for the simulation object where the prymaliback takes place includes not
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only the time for the primary rollback itself, baiso the time for all other local rollbacks

in the tree. This is one example that we shouldaveful about rollback operations.

6.2. NEAR-PERFECT STATE INFORMATION PROTOCOLS

The Near-perfect state information (NPSI) protogoisposed by Srinivasan [Sri98] are a
new class of synchronization for parallel discreteent simulation which outperform
Time Warp, both temporally and spatially. NPSI-labpeotocols dynamically control the
rate at which processes exploit parallelism achiga more efficient parallel simulation.
In optimistic protocols such as Time Warp, logipaedcesses execute eveatgressively
assuming freedom from errors. Thus, the aggressreat execution would includeésk
which is the potential at which erroneous resuttsppgate to other LPs [Rey88]. The
NPSI protocols aim at controlling both aggressiasrend risk of optimism adaptively by
computing an error potential (EP). The EP of a esscis defined as a function of the
states of other LPs participating in the simulatiinworks as an elastic force which
sometimes blocks and sometimes frees the progfélse oP.

The optimism implemented by Time Warp protocol mscthree time costs: state
saving, rollback, and memory management [Sir98itHemmore, by restricting optimism
a forth time costs gets introduced; the lost oppoty cost which is defined as the
potential loss in performance when an LP is susperidrm execution while it was safe
for it to continue. Thus, protocols that controltiopsm define the cost function as
follows:

Total cost = state saving cost +rollback cost + memory management cost +

lost opportunity cost.

Since the time cost of state saving can be a fomcf the size of the state and the
frequency rate at which it is saved, thatal cost function can be rewritten by omitting
the sate saving cost resulting in:

Total cost = rollback cost + memory management cost + lost opportunity cost.
As mentioned above, by limiting optimism the fitato costs can be reduced. However,
as a result of this limitation, the lost opportyrgbst would increase in return. Figure 61

illustrates this tradeoff.
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state saving + rollback +
memory management costs

overall cost
lost opportunity cost

Cost

Balance Restriction Optimism

Figure 61. Tradeoff introduced by limiting optimism [Sri95]
From the graph we can see that the best performenegtained when the

controlled optimism eliminates both rollback andnmeey management cost and in return
adds zero lost opportunity cost [Sri98]. Optimigmiting protocols can achieve a good
balance by precisely identifying the incorrect caomgtions and avoiding their
propagation. This can only be done by providinghelae with perfect state information
about other LPs. The issue is that due to variatsnties in computing distributed
snapshots, it is impossible to obtain perfect statermation. The NPSI mechanism
approximates perfect state information by usingradic feedback system that operates
asynchronously with respect to LPs. Hence, progdiPs with near-perfect state
information at low-cost.

The NPSI protocols are optimistic protocols thamtodol the aggressiveness and
risk of LPs by dynamically computing near-perfeatesinformation. Design of such
protocols includes two phases:

1. Identifying the state information that is requifed controlling optimism; and
2. Designing a mechanism that translates this infaonahto control over an LP’s
optimism.

As mentioned previously, Es the value which controls the optimism of;LP

Figure 62 represents a general framework for adajptiotocols.
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Figure 62. General framework for adaptive protocolgSri98]

The NPSI protocol keeps each; Eip-to-date by evaluating the function, Msing
the near-perfect sate information it receives ftbmfeedback system. On the other hand,
M, function dynamically translates new values of; EP the event execution and
communication rates.

In order to control the optimism of PCD++, we hawedified WARPED [Mar99]
to implement a NPSI mechanism based on the nunibeilivacks. The idea is to reduce
the number of rollbacks by suspending the simulatbject within LP that has large
number of rollbacks and therefore blocking it frlooding the net with anti-messages.
However, the LP will still be able to receive inputents and they will be inserted into
the corresponding message bags. After a predefiiedtion, the suspend simulation
object is released and will go on simulating. Basedprevious research [Szu00], we
have implemented two new protocols, namedgal Rollback Frequency Model (LRFM)
and Global Rollback Frequency Model (GRFM) to limit the optimism of PCD++
simulator.

The main concept is to associate each LP witbreor potential (ER) to control
the optimism of LR During the simulation run, the value of each ERept updated by
evaluatingM1 function which uses state information that is rese@ from the feedback
system. Then, the functidvi2 dynamically translates every update of ERJelays in the
execution events. The next two sections will previdore details about the design and
implementation of LRFM and GRFM.
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6.3. LOCAL ROLLBACK FREQUENCY MODEL

The Local Rollback Frequency Model (LRFM) protocsl only based on local
information of the logical processes. That is, $iraulation object within a LP will be
suspended or allowed to continue simulating onlgeldaon the number of rollbacks it
had. First, M and M functions must be defined:
€ Function Mi: The error potential of a simulation object is thember of
rollbacks that the object had from a tiffie until the actual tim@2, having that
T2 - T1 <T, whereT is the interval after which the local number offlvacks of
the simulation object gets restarted back to zero.
€ Function M: If the number of rollbacks for a simulation objettthe intervall
is greater than a specified value, then the objecsuspended, adopting a
conservative behavior. By suspending the simulatibject, the LP where the
object resides on will still be able to receiveaming events, but the events are
not processed until the simulation object is aggen the permission to resume.
However, if the number of rollbacks of the simudatiobject is less than the
predefined value, then the object simulates agwyedgs adopting its usual
optimistic behavior (as in Time Warp).
To implement this protocol each LP has to be infmmabout two values:
max_rollback, and period. Where max_rollback is the maximum number of allowed
rollbacks before suspension of the simulation dbgredperiod is the duration for which

the simulation object will stay suspended. The @ilgm is presented in Figure 63.
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1. In each LP, at the beginning predefine:
max_rollbacks and period
2. In each simulation object, at the simulation start:
previous_time =0
3. In each object, when the LP is scheduled to run:
actual_time = Warped.TotalSimulationlTime ()
if (actual_time - previous_time >= period)
simulateNextEvent()
previous_time = actual time
rollbacks =0
else
if (rollbacks < max_rollbacks)
simulateNextEvent()
/* else, SUSPEND the simulation object */

Figure 63. LRFM algorithm

From the LRFM algorithm we see the following thpeessible scenarios:

1. The LRFM period has expired, therefore the simaftatibject starts a new

period, its number of rollbacks gets reset to zemd it is given the

permission to continue its execution.

. The LRFM period has not yet expired, if the numbgrollbacks of the

simulation object is less than the allowable rafige max_rollbacks),

then the simulation object continues its normalkexen.

. The LRFM period has not yet expired, but the nundfeollbacks within

the simulation object has exceededx rollbacks, thus the simulation

object gets suspended for the entire durationetthrent LRFM period.

With the inclusion of this protocol, in every simtibn cycle an object will
simulate the lowest timestamp event (@sRPED does originally) if the number of its
rollbacks in the period is smaller than the maximum allowable rollbacksnat, the

object suspends executing until the new periodnoé T, after which Warped restarts the

rollbacks number to zero.

In order for an LP to be able to simulate objebtt mustn't be delayed, we have
modified the scheduler policy to choose the nejéahto simulate. It chooses the first

object of the input event list (that is, the objedth the lowest input event timestamp)
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only if its rollbacks count does not excemex _rollbacks; else, the scheduler checks the
next object of the input event list and so on, lumtfinds an object in condition to be

simulated or until it reaches the end of the list.

6.4. GLOBAL ROLLBACK FREQUENCY MODEL

In Global Rollback Frequency Model (GRFM) protoadch simulation object uses

global information in such a way that among all gaulation objects residing on all

LPs, the one with greatest number of rollbacks niessuspended for the duration of

time defined at the beginning of the simulationefdfore, at each simulation cycle all

the LPs must broadcast the information regardirgy rifilback counts of all of their

simulation objects. As in LRFM, Mand M functions must first be defined:

€ Function M. The error potential of a simulation object is thamber of
rollbacks that the object had minus the maximum lemof rollbacks of the other
simulation objects (both local and remote onesjigpating in the simulation,
from a timeT1 until the actual timd&2, having thafl2 - T1 < T, whereT is the
interval after which the local number of rollbacksthe simulation object gets
restarted back to zero.
€ Function M2: If the number of rollbacks for a simulation olij@t the intervall

is greater than other number of rollbacks of tHeeosimulation objects, then the
object is suspended, adopting a conservative beha®y suspending the
simulation object, the LP where the object resiolesill still be able to receive
incoming events, but the events are not processétitie simulation object is
again given the permission to resume. Howevehdfritumber of rollbacks of the
simulation object is less than the predefined vathen the object simulates
aggressively, adopting its usual optimistic beha@s in Time Warp).

This algorithm is implemented as follows:
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1. In each LP, at the beginning predefine: period

2. In each simulation object, at the beginning predefine:
previous_time =0
max_rollbacks =0

3. In each simulation object, when the LP is scheduled to run:
actual_time = Warped.TotalSimulationlTime ()

if (actual _time - previous _time >= period)

simulateNextEvent()
previous_time = actual time
rollbacks =0

else
if (rollbacks < max_rollbacks)
simulateNextEvent()
/* else, SUSPEND the simulation object */
4. For i from 1 until the number of LPs
if (i is NOT this LP id)
send to LP i the number of rollbacks of the objects of the LP id
Subroutine that receives the number of rollbacks from other LP:
For j from 1 until the numbers received
If (rollbacks[j] > max_rollbacks)

max_rollbacks = rollbacks[j]

Figure 64. GRFM algorithm

As in LRFM, the GRFM algorithm yields three diffatescenarios:
1. The GRFM period has expired, therefore the simuhatbject starts a

new period, its number of rollbacks gets resetamzand it is given the

permission to continue its execution.

2. The GRFM period has not yet expired, if the numierollbacks of the

simulation object is less than the allowable rafige max_rollbacks),

then the simulation object continues its normalkexen.

3. The GRFM period has not yet expired, but the nunolbeollbacks within

the simulation object has exceededx rollbacks, thus the simulation

object gets suspended for the entire durationetthrent GRFM period.

The main difference of GRFM and LRFM is the wamx_rollbacks is initialized. In
LRFM, maximum allowable rollbacks is predefined e user at run time, while in

GRFM maximum allowable rollbacks is set to the émtgnumber of rollbacks of all
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participating simulation objects. That is, wheneaesimulation objects is scheduled to
execute, it must send the number of rollbacksdt $@far to all other simulation objects,
both local and remote ones. As a result, at ang thax_rollbacks is the largest number
of rollbacks among all the existing simulation altge
By implementing LRFM and GRFM protocols in our opistic PCD++

simulator, different simulation results can be eciéd since the RFIderiod (and in case
of LRFM the max_rollbacks) can be modified very easily at the beginning loé t
simulation. This is done by changing these valuethé configuration files right before
the simulation starts and therefore, there is nedn® rebuild the whole simulator in
order for these modifications to have effect. Chapt will discuss the performance of

these two algorithms by testing those models whiele presented in Chapter 5.
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CHAPTER 7 EXPERIMENTS AND PERFORMANCE ANALYSIS

As part of the contribution of this research, weéhaun a variety of tests to analyze the
performance of our existing PCD++ simulators; tipgiroistic and the conservative as
well as our LRFM and GRFM Time Warp-based protocole main goal of this section
is to show the capability of PCD++ simulators imte of handling the number of nodes
driving the simulation, complexity of the model,dathe size of the model. As was
mentioned earlier in Chapter 5, we have selectédrdnt models with distinguishable
functionality, complexity, and size to better judidpe capability of the simulators. Our
experiments were carried out on a HP PROLIANT Dkv8e a cluster of 32 compute
nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2B6MHz DDR RAM) running
Linux WS 2.4.21 interconnected through Gigabit Etleé and communicating over
MPICH 1.2.6. A description on how to run Cell-DEW®dels is given in Section 7.1.
The performance metrics are presented in SectidnFinally, Section 7.3 will present
the execution results of the Cell-DEVS models dreimprovements achieved by using

different simulators/protocols.

7.1. RUNNING CELL-DEVS MODELS

Each Cell-DEVS model consists of a number of nexmgsand optional files grouped
together in a package. Since the simulation cadigigbuted among 1 to 32 nodes of the
cluster, we used a partitioning mechanism implescm@arlier in [Tro01, Liu06] which
evenly divides the cell space into horizontal regtas, as illustrated in Figure 65 which
represents the partitioning of a 30x30 (900 cefig)del over 3 nodes. Different
partitioning strategies can be implemented whicletinirn result in a significant impact

on the performance of the simulation.
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(0,0) E':F (0,29)

Node 0

(10,0) (10,29)

Node 1

(20,0) # (20,29)

Node 2

(29,0) (29,29)

Figure 65. A simple partition strategy for a 30x30Cell-DEVS model [Liu06]
PCD++ simulators enable user to modify a partitonfiguration file prior to the
simulation by entering the desired number of nabdasthe simulation will be carried on.
Figure 66 illustrates the content of the partitiv@ of the fire propagation model where

the user had selected 3 nodes for running the atmoual

0 : forestfire(0,0)..(9,29)
1 : forestfire(10,0)..(19,29)
2 : forestfire(20,0)..(29,29)

Figure 66. The partition file of fire propagation model for simulation on 3 nodes

Once the partitioning is performed, the model satiah can start by running the
execution script. An extract of the simulation feswf the 30x30 fire model execution
on two nodes is illustrated in Figure 67. As shawnthe figure, the statistical details of
each logical process (LPO and LP1) are presentied.iMportant statistics for each LP
include: number of rollbacks (RB), length of roldihia(LRB), bootstrap time (BT),
running time (RT), events received (ER), eventseter (EE), and the number of local
objects. Once the simulation is over, the staretiend time, and the total elapsed time is
printed out. The value shown as “total elapsed tirmehe total simulation time which
includes the bootstrap time as well as the runtimg (i.e. T = BT + RT).
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[sjafer@node0l fire 30_2M]$ runfire.sh
Run on ->node02
Run on ->node01
PCD++: A Tool to Implement n-Dimensional Cell-DEVS models

Stop at time: 05:00:00:000

[1] Local objects : 453

[0] Local objects : 455

Total objects : 908 / Total machines : 2
Using a period of 15000 to calculate GVT

-------- Configuration for this simulation run --------
--> LTSF Scheduling
--> Saving state information every event
--> Message type-based state saving
--> pGVT algorithm for GVT estimation
--> System's memory manager
--> Aggressive cancellation strategy

-LY is off, create log files for NodeCoordinators only.
Create output file for Root.
GVT [0]: 00:00:00:000
GVT [1]: 00:00:00:000
GVT [1]: 00:37:00:561
GVT [1]: 02:00:28:888
GVT [0]: 02:00:28:888
Simulation complete!
-------------------------- Statistics ==--mmerrmmmmnmmennanannan
LP[0] (ER) = 24471 / (El) = 2954 / (PR) = 25/ (SR) = 459 / (RB) = 484 / (RBL) = 2451
LP[0] localObjs = 455 / (SS) = 12749 / (SK) = 12082 / (SR) = 0/ (EE) = 24376 / (CFL) =0
LP[0O] (LH)=0/(LM)=0
LP[0] (ST) = 7.54898e+08 ns / (ET) = 2.61378e+09 ns / (CT) = 0 ns / (RT) = 5.6514e+07 ns
LP[0] (BT) = 8.5956e+08 ns
LP[0] (DT) = 2.86839e+08 ns
(Inter-LP Message Size) = 116 bytes
Simulation ended!
-------------------------- Statistics --------srnmmmmmmneneeean
LP[1] (ER) = 26844 / (El) = 5487 / (PR) = 34/ (SR) = 953 / (RB) = 987 / (RBL) = 4447
LP[1] localObjs = 453 / (SS) = 14183 / (SK) = 12957 / (SR) = 0 / (EE) = 26687 / (CFL) =0
LP[1] (LH)=0/(LM)=0
LP[1] (ST) = 7.3481e+08 ns / (ET) = 3.09227e¢+09 ns /(CT) =0 ns / (RT) =1.10897e+08 ns
LP[1] (BT) = 7.99848e+08 ns
LP[1] (DT)=0ns

START_STRING = 48:56:004186000

Start time: min=48, sec=56, neno=4186000
END_STRING = 49:01:602353000

End time : min=49, sec=1, neno=602353000
Total elapsed time (seconds):5.5981
[sjafer@node01 fire_30_2M]$

Figure 67. Execution results of running 30x30 firenodel using the optimistic PCD++ simulator

7.2. PERFORMANCE METRICS

The total elapsed time value was collected from the execution environntentieasure

the performance of the simulators in terms of ekenutime. Also, the speedups with

respect to changing the number of simulating nodese calculated to show how the

parallel simulation outperforms the sequential ¢m&ng only one node). Theverall

speedup for N nodes is given as follows.
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L GD)

Overall Speedup = TN

Where T (1) represents the serial execution tireasured on one node, and T (N)
is the total execution time taken by the simulatranning on N nodes. Each of the
models which were presented in Chapter 5 is exdautdour different simulators:

€ The optimistic PCD++ simulator [Liu06];

€ The conservative PCD++ simulator [Tro01];

€ The optimistic PCD++ simulator implementing LRFMofocol; and

€ The optimistic PCD++ simulator implementing GRFM{arcol.
The goal is to identify the execution performanéeach simulator as we increase the
number of participating nodes. Due to the partingnmechanism that is used by our
optimistic and conservative simulators, we can antrease the number of nodes to a
certain limit. That is, the maximum number of notlest a model can be simulated on is
equal to the number of rows of the cell gird foattparticular model. For instance, if we
have a model of 400 cells arranged in a 20x20 mashcan run the model on 1 to 20
nodes. In order to obtain stable results, for eaodel, simulations were run on 1 to N
nodes and for each scenario five trials were ct@dtkcThe execution results which will be
presented in the next section reflect the averdgbese five trials which are within a

confidence interval of 95%.

7.3. SIMULATION RESULTS

In the following points we will present the simudat results of executing our four

models discussed in Chapter 5.

€ Game of Life Model
This model consists of 1200 cells arranged in a480xesh with a total execution
time of 4.6723 seconds when run on standalone COFigure 68 represents the
execution time resulting from running the modelhafibur different simulators on 1 to 6

nodes.
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Game of Life Execution Time
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Figure 68. Game of life model execution time on 4ifferent simulators

From the execution time graph, we can see thavphienistic, LRFM-based, and
GRM-based simulators outperform the conservativee@mn 1 to 6 nodes and at the same
time produce very close results. However, as thebau of machines goes beyond 3, the
conservative simulator starts dropping down thecetien time. Among the three
optimistic simulators, the GRFM-based simulatoretadonger time due to its time
consuming mechanism in broadcasting informatioruakach LP’s rollbacks among the
participating nodes.

The speedups of the model execution times witheeso execution on one node
for each particular simulator are given in FiguBe ©he speedups graph only represents

the performance of 1 to 3 nodes which showed saamf performance.
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Game of Life Speedups
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Figure 69. Game of life model speedups with regarde execution on one node

€ Synapsin-Vesicle Reaction Model
This model consists of 676 cells arranged in a BaGx2sh with a total execution
time of 3.7621 seconds when run on standalone COFigure 70 represents the
execution time resulting from running the modelhafibur different simulators on 1 to 8

nodes.

Synapsin-Vesicle Reaction Execution Time
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1 2 3 4 5 6 7 8

Number of machine

Figure 70. Synapsin-vesicle model execution time dndifferent simulators
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From the graph, we can see that the optimistic BREM-based simulators,
produce very close results on 1 to 8 nodes. Als® GRFM-based simulator has similar
results for 1, 2, 3, and 5 nodes. However, it déggahe performance when 4, 6, 7, and 8
nodes are participating. On the other hand, theserwative simulator shows different
behavior as the number of nodes increases. As seetihe graph, the conservative
simulator improves the total execution time sigrafitly when more than 2 nodes are
available. Again, as in the previously discussedi@® as the number of computing
nodes increases, the GRFM-based simulator hasothest performance among other
ones. The main reason is communication overhead@rtiee participating LPs which
leads in a noticeable time added to the duratigdhe@imodel execution.

Figure 71 represents the speedups of the modeLigaedimes with respect to

execution on one node for each particular simulator

Synapsin-Vesicle Reaction Speedups
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1 2 3 4 5 6 7 8 9 10

Number of machine

Figure 71. Synapsin-vesicle model speedups with i@gls to execution on one node

€ Fire Propagation Model
This model consists of 900 cells arranged in a 80x&sh with a total execution

time of 6.2145 seconds when run on standalone COHgure 72 represents the
execution time resulting from running the modelhafibur different simulators on 1 to 8

nodes.
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Fire Propagation Execution Time
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Figure 72. Fire propagation model execution time o#d different simulators

As seen on the graph, our parallel simulators Bggmitly improved the execution
time of the fire propagation model. The three ofgtia simulators produced very similar
results on 1 to 7 nodes. For this model, we camitdely remark that the optimistic
simulators outperform the conservative one. Forofitemistic simulators the best results
were achieved on 5 nodes, while the conservatieehanl its lowest execution time on 4
nodes. The speedups of the model execution timsrespect to execution on one node
for each particular simulator are given in FiguBs Which provides a better explanation
of the performances achieved.
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Fire Propagation Speedups
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Figure 73. Fire propagation model speedups with regds to execution on one node
€ Ship Evacuation Model
This model consists of 400 cells arranged in a ROx2sh with a total execution
time of 6.4327 seconds when run on standalone COHgure 74 represents the
execution time resulting from running the modelhafibur different simulators on 1 to 8
nodes.
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Figure 74. Ship evacuation model execution time ohdifferent simulators

From the execution time graph, we can see thatcthreservative simulator

outperforms the other three simulators. This is tluehe causality-error avoidance
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mechanism of this simulator which avoids rollbacksd anti-message flows. The
optimistic and LRFM-based simulators produce vamilar results for 2 to 6, and 8
nodes. However, the GRFM-based simulator does nesept good results. This is
mainly due to the huge message-passing mechanissngathe LPs who are sending
messages back and forth reporting information abieeit rollbacks. To prove this, we
can see that the GRFM-based simulator reducesxéugon time when there are two
computing nodes, but as the number of nodes inesedise performance degrades. The
speedups of the model execution times with resfmeekecution on one node for each
particular simulator are given in Figure 75. Theexups graph shows that except for the

GRFM-based simulator, the other simulators haveawgd the execution time.

Ship Evacuation Speedups
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Figure 75. Ship evacuation model speedups with regis to execution on one node

7.4. ADDITIONAL TESTINGS OF PCD++ SIMULATOR

In this section we show a different sort of tebit tve used. For this purpose, we built a
simple model consisting of am by n grid with initial value of zero for all the cells
(except the one located in the center of the gAd)the simulation runs, the value “1”
propagates through all cells starting from the mantell towards four directions
(N/S/E/W) until the value of all cells are chandeaim “0” to “1”. We collected similar
tests for the model but changing the size to 5%0%10, and 30x30 cell space. Figure 76
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and Figure 77 Represent the 5x5 Grid model dedimith CD++ and the propagation of
“1” throughout the grid respectively.

[grid-rule]

type : cell

dim : (5,5)

delay : transport
defaultDelayTime : 100
border : nowrapped

neighbors : grid-rule (-1,0)
neighbors : grid-rule(0,-1) grid-rule(0,0) grid-rule(0,1
neighbors : grid-rule(1,0)
initialvalue : O

initialrowvalue : O 00000

initialrowvalue : 1 00000

initialrowvalue : 2 00100

initialrowvalue : 3 00000

initialrowvalue : 4 00000

localtransition : myrule

[myrule]
rule : 1 100 { trueCount>1 }
rule : {(0,0)} 100 { t }

Figure 76. 5x5 Grid model definition in CD++

Line : 1 - Time: 00:00:00:000 Line : 2 - Time: 00:00:00 100
il 1 2 3 4 0 1 2 3 4
et et + oo +
0 | ol |
1| | 1 1.0000 |
2| L.oo0o | zl 1.0000 1.0000 1.0000 |
3| | 3l 1.0000 |
4 | y |
e n +-—- +
Line : 3 - Time: 00:00:00:200 Line : 5 - Time: 00:00:00:400
0 1 2 3 4 0 1 2 3 4
e e + +--—— +
0l 1.0000 | o] l.o0o0 L.0oo00  1.0000 1.0000 L.0000]
1] 1.0000 1.0000 1.0000 | e 1| l.0000 L1.0000 1.0000 1.0000 L1.0000]
21 1.0000 l.0000 1.0000 1.0000 L.0000) 21 l.0000 L.00o0 1.0000 1.0000 1.0000]
3 1.0000 1.0000 1.0000 | 3 l.0000 L.00O00 1.0000 1.0000 L.0000]
4] 1.0000 | 4| 1.0000 L.0000 1.0000 1.0000 L.0000]
e e + +--—— +

Figure 77. Propagation of “1” throughout the grid
This model allows observing the performance of shmulator when the grid’'s

size is increased incrementally. Two different &y tests were collected: 1) analyzing
the performance of the simulator by introducinge@ixand variable delays into the cells’
evaluation rules, 2) testing the robustness oftimeilator as the complexity of the model

is increased. The following sections explain th@setesting scenarios in details.
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7.4.1. Performance of PCD++

The first testing scenario was running the Grid elazh 1 to n machines whera is the
size of the modeln(x n). Every set of simulation was performed on optii®CD++,
LRFM-based PCD++, and GRFM-based PCD++ simulatbe fllowing figures will
illustrate the simulation time behavior as welklas speedups. For venyx n Grid model
first the simulations were collected by insertigetl delay time in the rules evaluating
cells’ states. Secondly, the same sets of simulstiwere performed but this time

modifying the delay to be variable.

rule : 1 100 {trueCount > 1}
(@
rule : 1 {(100 * truecount)} {trueCount > 1}

(b)

Figure78 shows the difference between fixed and variablayael rules.

rule : 1 100 {trueCount > 1}
(@
rule : 1 { (100 * truecount)} {trueCount > 1}

(b)

Figure 78. (a) Grid rule with fixed delay, (b) Grid rule with variable delay
€ 5x5 Grid Model with fixed and variable delays
The model consisted of 25 cells arranged in a 588hmFigure 79 and Figure 80
represent the execution time resulting from runnthg model with three different

simulators on 1 to 5 computing nodes with fixed aadable delays.
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5x5 Grid Execution Time (Fixed Delay)
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Figure 79. Simulation results of 5x5 Grid model wih fixed delay
5x5 Grid Execution Time (Variable Delay)
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Figure 80. Simulation results of 5x5 Grid model wit variable delay

As the graphs show, the execution times of the®x8 model with variable and
fixed delay are very close to each other. Thisasnhy due to the small size of the model
where does not get affected by changing the dglag at which cells’ states are changed.
Aside from this, again due to the small size of thedel increasing the number of
computing nodes does not improve the execution,tiaher it worsens the situation.
The reason is that the actual execution time ofntleelel is noticeably smaller than the
time needed to initialize the additional nodes pthe significant communication

overhead among them. The following speedup gralain$ycthis fact.
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5x5 Grid Speedups (Fixed Delay)
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Figure 81. Speedup results of the 5x5 Grid model i fixed delay

5x5 Grid Speedups (Variable Delay)
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Figure 82. Speedup results of the 5x5 Grid model i fixed delay

€ 10x10 Grid Model with fixed and variable delays
By expanding the Grid model into a 10x10 mesh iimgj of 100 cells, the effect

of different type of delay can be observed. Howgetlee model’s size is still small and
the additional computing nodes do not improve tkecation time. For the 10x10 Grid
model we have only run the simulation on the optimiPCD++. Figure 83 represents

these results.
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10x10 Grid Execution Time
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Figure 83. Simulation results of 10x10 Grid model with fixed ad variable delay
As seen on the graph, the variable delay adds ngtieeable computing time to
the simulation. Figure 84 illustrates the resultapgedups which prove that the model is

too small to be executed on more than one machine.
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Figure 84. Speedup results of the 10x10 Grid modelith fixed and variable delay

€ 30x30 Grid Model with fixed and variable delays
To observe the performance of the optimistic PCBinulator, we repeated the
simulation scenarios of the 10x10 Grid model byamdng the model into 900 cells

arranged in a 30x30 mesh. Figure 85 illustrategeKeeution results.
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30x30 Grid Execution Time

10

—e— Optimistic (Fixed Delay)

4 —=— Optimistic (Variable Delay)

Execution time (sec)

0YYTTYYYYTYYYTTYYYTYKYYTTYYTTT

1 3 5 7 9 111315 17 19 21 23 25 27 29

Number of machine

Figure 85. Simulation results of 30x30 Grid model vth fixed and variable delay
From the above graph we can see interesting resiieye the model with

variable delays outperforms the one with fixed gelehe size of the model looks ideal
enough to be executed on multiple nodes in contoatite 5x5 and 10x10 Grid model.
For both types of delays, running the model on 8 twodes reduces the execution time
compared to simulation on single node. Almost a&erodes, adding extra computing
nodes increased the execution time. As mentiondédrdyethis is due the significant
startup time and communication overheads which exk¢be execution time on single

machine. The speedup graphs prove these results.

30x30 Grid Speedups
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Figure 86. Speedup results of the 30x30 Grid modelith fixed and variable delay
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To better illustrate the result achieved from apialy the performance of PCD++
in handling different model sizes we are presentimg execution results of the 5x5,
10x10, and 30x30 Grid model on single graphicalsgmations. The following 3-D
graphs reflect these combinations for both fixed eariable delay model.

Grid Model Execution Time (Fixed Delay)

3 @ 5x5 Grid
. 25 m 10x10 Grid
Executlon 2 0 30x30 Grid
time (sec)
15
1
0.5
0 30x30 Grid
5x5 Grid

Numbero of machine

Figure 87. 3-D representation of Grid model with fked delay

Grid Model Execution Time (Variable Delay)
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Number of machine

Figure 88. 3-D representation of Grid model with vaable delay
7.4.2. Robustness of PCD++

The second testing scenario was running the 5x8,A,Gand 30x30 Grid model on single
machine and each time changing the complexity lef/#ie model. The complexity level
was modified by adding extra computations withire tbells’ evaluation rules. For
example, in the Grid model when a cell has one aremeighbors holding the value “1”,
after a fixed or variable delay the cell’s valueimnged from “0” to “1”. In normal case

this can be done by simply changing the cell’'sestatlue instantly. However, to add

104



complexity to the model we added extra computatboimcrease the total time at which a
cell's state is changed from “0” to “1”. We havecieased the complexity level by
introducing a function in the CD++ simulator thabps forn times. The complexity level
(i.e. value ofn) can be modified by the user at run time. Theofsihg snapshot
represents the Grid model's rule that uses coniylexevels. The function
ComplexityFunc takes two parameters:is the complexity level (represents the number
of nested loops which will add extra computationd), the second parameter defined the
new value of the cell for which the rule is evakdifi.e. modifying the cell’s state to “1”

if it has neighbors with state equal to “1").

rule : {ComplexityFunc(n, 1)} 100 {trueCount > 0}

Figure 89. Adding complexity level to cells’ evalation rules

The purpose of using complexity levels on one mazhvas to increase the
execution time without modifying the model's sizAlthough we have run the
complexity tests on 5x5, 10x10, and 30x30 Grid nhollet we wanted to take a deeper
look at the performance of the optimistic PCD++ dmbor and observe how it performs
in the presence of complex and long-time simula&tidks in the first testing scenario, we
have used both types of delays (i.e. fixed ancabée). The following graphs provide the

simulation results.

5X5 Grid Execution Time

900

300 -
200 -
100

0 h T T T T T T T T T T T
12 3 4 5 6 7 8 9 10 11 12

Level of complexity

— 800 | /

3

a 700

o 600 /

£ 500 —e— Optimistic (Fixed Delay)
5 4001 —=— Optimistic (Variable Delay)
5

[8]

(0]

X

L

Figure 90. Execution results of 5x5 Grid model uner 12 different complexity levels

As seen on Figure 90, due to the small size ofntlbeel, both types of delays

produce similar results. The complexity level isreased gradually and as a result the
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execution time is increased from a couple of sesdodalmost 850. Next we present the
10x10 Grid model’s simulation results.

10x10 Grid Execution Time

2000
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Figure 91. Execution results of 10x10 Grid model wter 10 different complexity levels

The execution time of the 10x10 Grid model reflethie effect of complexity
levels more clearly than the 5x5 model. Since tloeehis four times larger, therefore the
execution time is noticeably higher and more safestb complexity levels.

Finally the complexity simulations were tested floe 30x30 model. Results are
presented in Figure 92.

30x30 Grid Execution Time
3000
?g‘ 2500 A
= 2000 ad
E 1500 —e— Optimistic (Fixed Delay)
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S 1000 -
3
X 500
0
1 2 3
Level of complexity

Figure 92. Execution results of 30x30 Grid model wter 3 different complexity levels
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As seen on the graph, due to the large size omibiel the effect of complexity
on increasing the execution time is very sensilie anly three levels of complexity
present the behavior that was obtained in 10x168 @adel in 10 complexity levels.

The following graphs represent the 3-D illustratafithe complexity-based tests.

Figure 93 shows the scenario of fixed delay Griddebpowhile Figure 94 represents the
variable delay version of the model with threeahéint complexity levels.

Grid Model Execution Time (Fixed Delay)
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Execution 107 B 55 Grid
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Figure 93. 3-D representation of fixed delay Grid rodel with three levels of complexity
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Figure 94. 3-D representation of varible delay Gridnodel with three levels of complexity
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK

This work presented the parallel simulation of DE¥®&d Cell-DEVS models using
PCD++, a parallel and distributed environment basadthe Time Warp optimistic
synchronization protocol. PCD++ serves as an ekinrts the CD++ toolkit which was
developed by previous researcher [Liu06] aimingeaploiting parallelism for the
purpose of fast and efficient simulation of compiegdels. The concept of Parallel and
Distributed Simulation was presented.

The most challenging problem of parallel and distteéd simulation i.e.
Synchronization among nodes (LPs) was discusseolvey viewing the three different
types of synchronization strategies for event drigemulations: no synchronization at
all, pessimistic (conservative) synchronizationg aptimistic synchronization.

We illustrated the software architecture of theepuoptimistic parallel CD++
simulator (PCD++). The layered architecture of depeimistic PCD++ simulator consists
of five layers (from top to bottom): model, PCD+¥me Warp -WARPED, and the
operating system, where ach layer was explainedetails. A variety of optimization
strategies of the Time Warp kernel were pointed and discussed thoroughly. Some
optimizations in terms of GVT calculation, dynamieemory management, and state
management were mentioned.

We have analyzed the performance of our two exjgterallel CD++ simulators,
namely Conservative PCD++ simulator [Tro01] and i@jstic PCD++ simulator
[Liu06]. We looked at the design and implementatminthese two simulators and
compared their structures as well as functionalitieparallel and distributed simulations.

The hierarchical structure of the conservative PER#mulator was compared
against the flattened structure of the optimist@DR*+ simulator. The migration from a
hierarchical structure to a flattened structure Wastrated as two major modifications;
i.e. the departure from conservative-based simutatan optimistic-based simulator, and
flattening the structure of the simulator. Thenwias illustrated how the optimistic
PCD++ simulator deals with the communication ovathdilemma by using the flattened

structure.
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A set of models were designed and implemented in-&Dand they were
presented to illustrate the capability of Cell-DEY#malism in building such models.
The Ship Evacuation model illustrated an emergehgy evacuation scenario. Synapsin-
Vesicle Reaction model presented the reserve pogyraptic vesicles in a presynaptic
nerve terminal. The Fire Spread model representie goropagation scenario in forest
based on Rothermel's mathematical definition. Them@ of Life model defined the
standard Game of Life using a two-dimensional grid.

Aiming at improving the performance of the optinassimulator, we modified
the wARPED kernel to handle rollbacks in a more efficient welye presented two new
algorithms that we have implemented WARPED kernel. The Near-perfect State
Information protocol was discussed and after that our newridihgos; Local Rollback
Frequency Model (LRFM) and Global Rollback Frequeridodel (GFRM) were
presented.

Finally, we have run a variety of tests to analifze performance of our existing
PCD++ simulators; the optimistic and the conseweasis well as our LRFM and GRFM
Time Warp-based protocols. The main goal of thes¢stwas to show the maximum
capability of the two mentioned PCD++ simulatorsgenms of handling the number of
nodes driving the simulation, complexity of the rabdand the size of the model for the

models introduced in Chapter 5.

7.1. FUTURE WORK

With regard to testing the performance of PCD+€re¢hare several topics of interest for
future research:
€ Models with longer execution time are required ¢orbn on PCD++. This
gives the chance to catch unexpected errors edlpenigerms of timeouts
and broken pipes. In most of the cases, the MPInwanication interface
was not able to handle timings (long waits duehto gize and complexity
of the model) properly. Thus, a deeper investigatid the MPI level is

suggested.
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Testing different partitioning strategies as oppose the one used by
current PCD++ would provide lots of feedback abibet capability of the
simulator.

A dynamic load balancing mechanism which allows fon-time
balancing of the load would be a great solutioretsure that load is
divided equally among the available nodes.

Incorporating algorithms such as moving time windofMTW) [Fuj00,
FujOo3] and the Filter algorithm [Pra91] and compgrithe resulted
simulators with LRFM- and GRFM-based simulatorsegi\key ideas on
how to control optimism efficiently.

Aside from different testing strategies, profiliige simulator would
provide very detailed information and could be udedmodify the

underlying C++ codes to reduce runtime.
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