
 i

NEW ALGORITHMS FOR THE PARALLEL CD++

SIMULATION ENVIRONMENT

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario

Canada

© Copyright 2007, Shafagh Jafer

A thesis submitted to

The Faculty of Graduate Studies and Research

In partial fulfillment of the requirements for the degree of

Master of Applied Science

By

Shafagh Jafer, B. Eng.

 ii

The undersigned hereby recommends to the Faculty of Graduate Studies and Research

Acceptance of the thesis

New Algorithms for the Parallel CD++ Simulation Environment

Submitted by Shafagh Jafer

In partial fulfillment of the requirements for the degree of

Master of Applied Science

Thesis Supervisor

Dr. Gabriel A. Wainer

 Chair, Department of Systems and Computer Engineering

Dr. Victor C. Aitken

Carleton University

2007

 iii

ABSTRACT

The DEVS (Discrete Event System Specification) formalism provides a discrete-event modeling

and simulation (M&S) approach which allows construction of hierarchical models in a modular

manner. Cell-DEVS extends the DEVS formalism, allowing the implementation of cellular

models with timing delays. This work presents a new simulation technique of DEVS and Cell-

DEVS models in parallel and distributed environments. The parallel simulators presented in here

are based on Time Warp, an optimistic synchronization protocol, which are developed as new

simulation engines for CD++, a M&S toolkit that implements DEVS and Cell-DEVS formalism.

Two distinct parallel simulators, namely Purely Optimistic PCD++ and Conservative PCD++ are

introduced which use hierarchical and flattened architecture respectively. Different Cell-DEVS

models are built in CD++ in order to judge the performance of these two simulators. Moreover,

two new algorithms, Local Rollback Frequency Model (LRFM) and Global Rollback Frequency

Model (GRFM) are implemented to control optimism of the optimistic PCD++. The LRFM and

GRFM techniques are modifications to the WARPED kernel which are applied to the optimistic

PCD++. A set of detailed tests are collected to investigate the effect of these approaches on the

simulator.

 iv

This work is dedicated to Mohammad

for all moments of love and inspiration.

 v

ACKNOWLEDGEMENTS

I would like to gratefully thank my mother, father, Gufran, Yasser, Wajd, and Zahra who have

motivated, encouraged, and supported me all the way.

Also, I want to thank my wonderful supervisor, Dr. Gabriel Wainer for his endless kindness,

patience, and support.

 vi

TABLE OF CONTENTS

ABSTRACT I

ABSTRACT II

ABSTRACT III

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF ACRONYMS ... XIII

CHAPTER 1 INTRODUCTION... 1

1.1. Contribution .. 4

1.2. Thesis organization ... 6

CHAPTER 2 REVIEW OF THE STATE OF THE ART .. 7

2.1. DEVS and Parallel DEVS formalisms .. 7

2.1.1. DEVS model example: A Bluetooth simulator 12

2.2. Timed CELL-DEVS and Parallel CELL-DEVS Formalisms 16

2.3. The CD++ Toolkit ... 19

2.4. Parallel and Distributed Simulation.. 20

2.4.1. Conservative parallel discrete event simulation 21

2.4.2. Optimistic parallel discrete event simulation 22

2.5. Devs-based Simulation Toolkits... 24

CHAPTER 3 SOFTWARE ARCHITECTURE .. 27

3.1. Layered Architecture.. 27

3.2. The Time Warp layer - WARPED Kernel ... 28

3.2.1. WARPED functionalities ... 30

3.2.2. Time Warp optimizations of PCD++ simulator 31

CHAPTER 4 CONSERVATIVE VS. OPTIMISTIC PCD++ SIMULATOR 34

4.1. The Conservative PCD++ Simulator... 34

4.1.1. Parallel DEVS abstract simulator ... 34

 vii

4.1.2. Message definitions ... 38

4.2. The Optimistic PCD++ Simulator ... 44

4.2.1. Parallel DEVS abstract simulator ... 45

4.2.2. Message definitions ... 47

CHAPTER 5 CELL-DEVS MODELS IN THE CD++ TOOLKIT 55

5.1. Game of Life .. 55

5.2. Synapsin-Vesicle Reaction at Nerv Terminal ... 57

5.3. Fire Spread Model .. 65

5.4. Ship Evacuation Model... 67

CHAPTER 6 THE NEW OPTIMISTIC PCD++ SIMULATOR 73

6.1. Rollback Mechanism of Optimistic PCD++ ... 73

6.1.1. Types of rollbacks ... 75

6.2. Near-Perfect State Information Protocols .. 80

6.3. Local Rollback Frequency Model.. 83

6.4. Global Rollback Frequency Model ... 85

CHAPTER 7 EXPERIMENTS AND PERFORMANCE ANALYSIS 88

7.1. Running Cell-DEVS Models .. 88

7.2. Performance Metrics .. 90

7.3. Simulation Results .. 91

7.4. Additional Testings of PCD++ Simulator ... 97

7.4.1. Performance of PCD++ .. 99

7.4.2. Robustness of PCD++ ... 104

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 108

7.1. Future Work .. 109

REFERENCES ... 111

 viii

 L IST OF TABLES

Table 1. State values and their description ... 68

Table 2. Initialization rules ... 69

Table 3. Walking rules .. 69

Table 4. Exit rules ... 70

Table 5. Changing direction rules ... 71

 ix

L IST OF FIGURES

Figure 1. The basic entities and their relationships [Zei00].. 1

Figure 2. DEVS semantics .. 8

Figure 3. Structure of Bluetooth Simulator ... 12

Figure 4. Sketch of a Cellular Automaton [Wai00] .. 17

Figure 5. Causality error at LP2 .. 21

Figure 6. Layered architecture of the optimistic PCD++ simulator [Liu06] 27

Figure 7. Structure of LPs and simulation objects in WARPED ... 29

Figure 8. Major functionalities of WARPED kernel [Liu06]... 30

Figure 9. The tree structure of clustering scope levels in WARPED kernel [Low99] 30

Figure 10. UCSS structure [Liu06] ... 32

Figure 11. Correspondence between the model and the DEVS processors [Tro01] 35

Figure 12. A single coordinator with remote and local child processes 36

Figure 13. Master and slave coordinators class diagram .. 36

Figure 14. The master-slave coordinator structure ... 37

Figure 15. Simulator algorithm for (@, t) ... 38

Figure 16. Simulator algorithm for (q, t) .. 38

Figure 17. Simulator algorithm for (*, t) .. 39

Figure 18. Master coordinator algorithm for (@, t) .. 40

Figure 19. Master coordinator algorithm for (y, t) .. 40

Figure 20. Master coordinator algorithm for (q, t) .. 41

Figure 21. Master coordinator algorithm for (*, t) .. 42

Figure 22. Slave coordinator algorithm for (y, t) .. 43

Figure 23. Root coordinator algorithm ... 44

Figure 24. Model and processor hierarchies in Optimistic PCD++ [Liu06] 45

Figure 25. Distributed processor structure .. 46

Figure 26. Simulator algorithm for (I, 0) .. 47

Figure 27. Simulator algorithm for (@, t) ... 48

Figure 28. Simulator algorithm for (*, t) .. 48

 x

Figure 29. Simulator algorithm for (x, t)... 49

Figure 30. FC algorithm for (I, t) .. 50

Figure 31. FC algorithm for (@, t).. 50

Figure 32. FC algorithm for (y, t) ... 51

Figure 33. FC algorithm for (x, t) ... 51

Figure 34. FC algorithm for (*, t) ... 51

Figure 35. FC algorithm for (D, t) .. 52

Figure 36. NC algorithm for (I, 0) .. 53

Figure 37. NC algorithm for (x, t) ... 53

Figure 38. NC algorithm for (y, t) ... 54

Figure 39. Root algorithm for (y, t)... 54

Figure 40. Game of life cell neighborhood ... 55

Figure 41. Game of life model definition in CD++ .. 56

Figure 42. Game of life cell values throughout the simulation... 56

Figure 43. Game of life model at four different time steps throughout the simulation 57

Figure 44. Neighborhood definition ... 58

Figure 45. Determining the direction .. 59

Figure 46. Definition of Synapsin-Vesicle Reaction model in CD++ 60

Figure 47. V and S before binding at Time: 00:00:00:100 ... 63

Figure 48. V and S after binding at Time: 00:00:00:300 .. 63

Figure 49. Model Execution Results: (a) initial values; (b) final execution 64

Figure 50. Definition of the fire propagation model in CD++ .. 65

Figure 51. Fire cell neighborhood ... 65

Figure 52. Fire propagation model - initial scenario at time 00:00:00:000 66

Figure 53. Fire propagation model - final scenario at time 01:59:40:578 66

Figure 54. Fire propagation at four different snapshots throughout the simulation 67

Figure 55. Cell neighborhood ... 67

Figure 56. Definition of ship evacuation model in CD++ .. 68

Figure 57. Model Execution Results ... 72

Figure 58. Internal structures in the WARPED kernel ... 74

Figure 59. Runtime representation of a simulation object .. 76

 xi

Figure 60. Actions performed during primary rollback .. 77

Figure 61. Tradeoff introduced by limiting optimism [Sri95] .. 81

Figure 62. General framework for adaptive protocols [Sri98] ... 82

Figure 63. LRFM algorithm .. 84

Figure 64. GRFM algorithm ... 86

Figure 65. A simple partition strategy for a 30x30 Cell-DEVS model [Liu06] 89

Figure 66. The partition file of fire propagation model for simulation on 3 nodes 89

Figure 67. Execution results of running 30x30 fire model using the optimistic PCD++ simulator

... 90

Figure 68. Game of life model execution time on 4 different simulators 92

Figure 69. Game of life model speedups with regards to execution on one node 93

Figure 70. Synapsin-vesicle model execution time on 4 different simulators 93

Figure 71. Synapsin-vesicle model speedups with regards to execution on one node 94

Figure 72. Fire propagation model execution time on 4 different simulators 95

Figure 73. Fire propagation model speedups with regards to execution on one node 96

Figure 74. Ship evacuation model execution time on 4 different simulators 96

Figure 75. Ship evacuation model speedups with regards to execution on one node 97

Figure 76. 5x5 Grid model definition in CD++ .. 98

Figure 77. Propagation of “1” throughout the grid ... 98

Figure 78. (a) Grid rule with fixed delay, (b) Grid rule with variable delay 99

Figure 79. Simulation results of 5x5 Grid model with fixed delay .. 100

Figure 80. Simulation results of 5x5 Grid model with variable delay .. 100

Figure 81. Speedup results of the 5x5 Grid model with fixed delay .. 101

Figure 82. Speedup results of the 5x5 Grid model with fixed delay .. 101

Figure 83. Simulation results of 10x10 Grid model with fixed and variable delay 102

Figure 84. Speedup results of the 10x10 Grid model with fixed and variable delay 102

Figure 85. Simulation results of 30x30 Grid model with fixed and variable delay 103

Figure 86. Speedup results of the 30x30 Grid model with fixed and variable delay 103

Figure 87. 3-D representation of Grid model with fixed delay ... 104

Figure 88. 3-D representation of Grid model with variable delay .. 104

Figure 89. Adding complexity level to cells’ evaluation rules .. 105

 xii

Figure 90. Execution results of 5x5 Grid model under 12 different complexity levels 105

Figure 91. Execution results of 10x10 Grid model under 10 different complexity levels 106

Figure 92. Execution results of 30x30 Grid model under 3 different complexity levels 106

Figure 93. 3-D representation of fixed delay Grid model with three levels of complexity 107

Figure 94. 3-D representation of varible delay Grid model with three levels of complexity 107

 xiii

L IST OF ACRONYMS

M&S Modeling and Simulation

DEDS Discrete Event Dynamic Systems

DEVS Discrete Event System Specification

P-DEVS Parallel Discrete Event System Specification

PDES Parallel Discrete Event Simulation

MPI Message Passing Interface

GVT Global Virtual Time

LGVT Local GVT estimate

LVT Local Virtual Time

LP Logical Process

LTSF Least-Time-Stamp-First scheduling

NC Node Coordinator

FC Flat Coordinator

UCSS User Controlled State Saving

NPSI Near Perfect State Information

LRFM Local Rollback Frequency Model

GRFM Global Rollback Frequency Model

 1

CHAPTER 1 INTRODUCTION

Modeling and simulation (M&S) methodologies have become crucial for implementing,

designing, and analyzing a broad variety of systems. The simulation process begins with

a problem to solve. First, the real system is observed, its entities are identified, and a

model is constructed. Then, the model is executed using a simulator consisting of a

computer system which executes the model’s instructions and generates relevant output.

These outputs are compared with the real system to verify the correctness of the model.

In [Zei00] a general framework has been implemented which describes the basic entities

in M&S and their relationships.

Figure 1. The basic entities and their relationships [Zei00]

This M&S framework consists of three basic entities which are linked by two relations:

€ Source system entity: this entity is the real or virtual environment under analysis.

This entity which is viewed as the data source, together with the behavior

database form the Experimental Frame.

€ Model entity: a model entity represents an abstraction of the source system

represented by a set of instructions, rules, mathematical equations, or a set of

constraints to approximate the behavior of the real system.

€ Simulator entity: the simulator is a computer-based entity which is in charge of

executing the model’s instructions.

€ Modeling relation: this relation links the model and the source system to validate

the results generated by the model. In general, the model is considered valid if the

 2

data it generates agree with the data generated by the source system in the

experimental frame in use.

€ Simulation relation: this relation lies between the simulator and the model to

indicate how reliable is the simulator in terms of being capable to execute the

model’s instructions.

The separation between model and simulator significantly simplifies the model

validation and simulator verification [Zei00]. Furthermore, this advantage gives the

opportunity to use different simulation algorithms within the simulator or even using

different simulators. Also, the separation of concerns involved in this architecture allows

model reusability as well as later extension of the model.

Among the existing modeling and simulation techniques, DEVS (Discrete Event

System Specification) formalism [Zei76] provides a discrete-event approach which

allows construction of hierarchical models in a modular manner. DEVS is a sound formal

framework based on generic dynamic systems concepts that allows model reuse, and

reduction in development and testing time due to its hierarchical approach in constructing

models. In this work, our main focus is on discrete-event M&S approach and DEVS

formalism [Zei76, Zei00] which has been proven to be a universal formalism to represent

DEDS (Discrete Event Dynamic Systems) [Cas93].

DEVS formalism has been extended to handle simultaneous event execution.

Parallel DEVS or P-DEVS [Cho94], allows more efficient execution of models in

parallel and distributed environments by keeping the major properties of the original

DEVS formalism and just extending it to overcome the serialization constraints.

The Timed Cell-DEVS formalism [Wai98] is an extension to the traditional

Cellular Automata [Wol86] which makes use of DEVS by defining every cell to

represent an atomic DEVS model and coupling them together to form a complete cell

space representing a coupled DEVS model. This formalism allows defining complex cell

behavior with simple instructions. It also allows construction of n-dimensional cell spaces

to represent more complicated discrete event models. Using this formalism, complex

timing behavior can be represented by defining different timing delays among the cells of

the cell space. The main advantage that Timed Cell-DEVS has over Cellular Automata is

that using the state of each cell (since each cell is a basic DEVS model), only activated

 3

cells are evaluated as opposed to the original Cellular Automata where all cells get

evaluated at each time step which results in a noticeable waste of time.

DEVS and Cell-DEVS formalisms have been successfully used to develop

complex models in different fields of science including: physics, biology, chemistry,

ecology, as well as computer networks, traffic modeling, and many other systems.

Example of such models would be: fire spread in forests [Ame01], land battlefield of two

armies [Mad05], computer networks [Ahm05], and ATLAS [Dia01].

Parallel and distributed simulation (PADS) techniques were proposed to

resolve the issues of complex models simulation. As the models become larger and more

complex, the problems of limited resources within a single-processor arise. Not only the

shortage of resources, but also the long execution times brought up the idea of Parallel

discrete event simulation (PDES) studies. Fujimoto [Fuj01] classifies three major

research categories in the area of parallel and distributed simulation. The first research

group is the high performance computing community which started in late 1970’s and

1980’s aiming at reducing execution time by using multiple processors. This community

developed the world wide known fundamental ideas by proposing two synchronization

algorithms: Chandy-Misra-Bryant [Bry77, Cha79] and Time Warp [Jef85]. The

second group is the Defense community, which mainly focuses on facilitating

interoperability and software reuse. Finally, the third group is the gaming and Internet

community which is interested in developing realistic scenarios in distributed

environments.

 Parallel Cell-DEVS [Wai00] formalism extends the standard formalisms of Cell-

DEVS to allow a higher degree of parallelism in parallel and distributed environments.

This formalism overcomes the restrictions of serialized simulation by revising and

extending Cell-DEVS to allow a higher degree of parallelism and allowing zero-delay

transitions as well as multiple simultaneous events per external ports.

CD++ [Wai01a, Wai02] is a modeling toolkit that implements the DEVS and

Cell-DEVS theories by applying the original formalisms. The toolkit includes facilities to

build DEVS and Cell-DEVS models. This tool has been revised and extended several

times, and currently supports standalone [Rod99], real-time [Gli02a], parallel

 4

conservative [Tro03], parallel purely optimistic [Liu06], and web service-based [Mad06]

simulation.

Synchronization as the key to parallel and distributed simulation requires a robust

mechanism to handle communication among concurrent processes. In general, a parallel

or distributed simulation runs on multiple parallel or distributed processors

interconnected by a communication network. There exist two major classes of

synchronization: conservative (or pessimistic) approaches and optimistic approaches.

Optimistic approaches have a higher degree of parallelism unlike the conservative

approaches where they are overly pessimistic and force the simulation to behave

sequentially when it is not necessary. Conservative approaches rely very much on

application-specific information when making run-time decisions on whether it is safe to

process the event or not. On the other hand, the optimistic mechanisms are less reliant on

the application for correct execution, therefore allowing a simplified software

development and more transparent synchronization.

The focus of this work is on improving the capability of CD++ in supporting P-

DEVS and Parallel Cell-DEVS modeling and simulation. This work is based on previous

research: PCD++ which is an optimistic DEVS and Cell-DEVS parallel simulator

[Liu06], and the conservative PCD++ simulator for DEVS and Cell-DEVS [Tro01]. Our

work aims at: 1) modifying the existing optimistic simulator to enhance the performance

of large scale models executions, 2) analyzing the performance of these two simulators

using precise testing scenarios.

1.1. CONTRIBUTION

We present new implementations in the Time Warp protocol to improve the CD++-based

parallel and distributed simulations by controlling the optimism of our optimistic PCD++

simulator. We have implemented two new protocols, namely Local Rollback Frequency

Model (LRFM) and Global Rollback Frequency Model (GRFM) to limit the optimism

[Szu00]. This was done by modifying the WARPED [Mar99] kernel to implement a Near

Perfect State Information (NPSI) mechanism based on the number of rollbacks. The idea

is to reduce the number of rollbacks by suspending the simulation object within logical

 5

process that has large number of rollbacks, hence blocking it from flooding the net with

anti-messages. However, this new design allows the logical process to stay receiving

input events and inserting them into the corresponding message queues. After a

predefined duration, the suspended simulation object is released and will resume its

simulation duties. The LRFM protocol is only based on local information of the logical

processes. Thus, the simulation object will be suspended or allowed to continue

simulation only based on its number of rollbacks. In contrast, in the GRFM protocol,

each simulation object uses global information in such a way that among all the

simulation objects residing on all logical processes, the one with greatest number of

rollbacks must be suspended for a predefined duration.

We also present a set of complex models implemented in Cell-DEVS using our

CD++, including: Game of Life, Synapsin-Vesicle Reaction at Nerve Terminal, Fire

Spread, and Ship Evacuation model. These models were selected based on their

distinguishable functionality, complexity, and size to better highlight the capability of our

simulator.

Finally, we have run a set of detailed test cases using a variety of models to

observe the performance of both the Conservative PCD++ Simulator [Tro01] and the

Purely Optimistic PCD++ simulator [Liu06]. Precise testing strategies were used to

analyze the performance of our existing PCD++ simulators; the optimistic and the

conservative as well as our LRFM- and GRFM-based protocols. The main goal of this

research work is to create a workbench consisting of four different simulators;

Conservative, Pure Optimistic, LRFM-based Optimistic, and GRFM-based Optimistic

simulators. This workbench serves as simulation environment that can be used as the base

in studying parallel simulations of DEVS and Cell-DEVS. On the other hand, the precise

and detailed testing scenarios that we are presenting can be used along with this

workbench to analyze the capability, performance, and robustness of PCD++ simulators.

This work was the first attempt to use optimism controlling simulators for simulating

parallel DEVS and Cell-DEVS model.

 6

1.2. THESIS ORGANIZATION

This thesis is organized as follows:

 Chapter 2 gives an overview about the state-of-the-art in the field of discrete

event modeling and simulation by presenting DEVS and Cell-DEVS formalisms and their

extensions. Then, the two major synchronization mechanisms namely optimistic

approaches and conservative approaches for parallel and distributed simulation will be

discussed. Finally, a survey of the existing DEVS-based simulation toolkits is provided.

 Chapter 3 covers the software architecture of the purely optimistic parallel CD++

simulator (PCD++). The layered architecture of the software will be presented followed

by a more detailed discussion of each layer.

Chapter 4 introduces the two parallel CD++ simulators by presenting the design

and implementation of each of them. Also, the two simulators are compared in terms of

their structure as well as functionalities in parallel and distributed simulations.

Chapter 5 illustrates different models implemented in Cell-DEVS on our CD++

toolkit.

Chapter 6 presents two new algorithms that we have implemented in WARPED

kernel. First the rollback mechanism of the optimistic PCD++ simulator is discussed.

Then, the Near-perfect State Information protocol is presented. Finally, our new

algorithms; Local Rollback Frequency Model (LRFM) and Global Rollback Frequency

Model (GFRM) are illustrated.

Chapter 7 covers the experimental results for measuring the performance of four

different PCD++ simulators.

Chapter 8 presents the main conclusion of the thesis as well as future research

work that can extend the outcome of this work.

 7

CHAPTER 2 REVIEW OF THE STATE OF THE ART

This chapter gives an overview about the state-of-the-art in the field of discrete event

modeling and simulation. Section 2.1 and 2.2 will present background information about

DEVS and Cell-DEVS formalisms and their extensions. Then, the two major

synchronization mechanisms namely optimistic approaches and conservative approaches

for parallel and distributed simulation will be discussed in Section 2.3. Finally, Section

2.4 will cover a survey of the existing DEVS-based simulation toolkits.

2.1. DEVS AND PARALLEL DEVS FORMALISMS

DEVS [Zei76, Zei00] is a formalism for modeling and simulation of DEDS (Discrete

Events Dynamic Systems) which provides a framework for the definition of hierarchical

models in a modular way by decomposing the real system into behavioral (atomic) and

structural (coupled) components. DEVS theory provides a rigorous methodology for

representing models, and it does present an abstract way of thinking about the world with

independence of the simulation mechanisms and the underlying hardware and

middleware. A DEVS atomic model is formally defined by:

M = <X, Y, S, δint, δext, λ, ta>,

where

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

S is the set of sequential states;

δint: S →→→→ S is the internal state transition function;

δext: Q × X →→→→S is the external state transition function, where

 Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed

 since the last state transition;

λ: S →→→→Y is the output function;

ta: S →→→→ R+
0,∞ is the time advance function.

 8

The semantics for this definition is given as follows. At any time, a DEVS

coupled model is in a state s ∈ S. In the absence of external events, the model will stay in

this state for the duration specified by ta(s). When the elapsed time e, is equal to ta(s), the

state duration expires and the atomic model will send the output λ(s) and performs an

internal transition to a new state specified by δint(s). Transitions that occur due to the

expiration of ta(s) are called internal transitions. However, state transition can also

happen due to arrival of an external event which will place the model into a new state

specified by δext(s,e,x); where s is the current state, e is the elapsed time, and x is the

input value. The time advance function ta(s) can take any real value from 0 to ∞. A state

with ta(s) value of zero is called transient state, and on the other hand, if ta(s) is equal to

∞ the state is said to be passive, in which the system will remain in this state until

receiving an external event. Figure 2 shows the description of states and variables in

DEVS models.

Figure 2. DEVS semantics

A DEVS coupled model is composed of several atomic or coupled submodels, which is

formally defined by:

CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>,

where

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;

D is the set of the component names, and the following requirements are imposed on

the components, which must also be DEVS models:

 9

For each d ∈ D

Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS basic structure with

Xd = {(p,v) | p ∈IPortsd, v∈Xp}, and

Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}.

The component couplings are subject to the following requirements:

External input coupling (EIC) connects external inputs to component inputs,

EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd};

External output coupling (EOC) connects component outputs to external outputs,

EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd};

Internal coupling (IC) connects component outputs to component inputs,

IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb};

Select: 2D - {} → D is the tie-breaking function for imminent components.

Direct feedback loops are not allowed, i.e., an output port of a component may

not be connected to an input port of the same component. Formally:

((d, opd), (e, ipd)) ∈ IC implies d ≠ e.

Also, the values sent from a source port must follow the range inclusion constraint

of a destination port, formally expressed as:

∀ ((N, ipN), (d, ipd)) ∈ EIC : XipN⊆ Xipd

∀ ((a, opa), (N, opN)) ∈ EOC : Yopa⊆ YopN

∀ ((a, opa), (b, ipb)) ∈ IC : Yopa⊆ Xipb.

From the coupled DEVS formalism it can be observed that due to the closure

property, a coupled model is regarded as a new DEVS model [Zei00]. This property

ensures that the overall behavior of a coupled model is equivalent to a basic atomic

model, and therefore allows hierarchical model construction. The X and Y sets describe

the input and output events of the coupled model. Upon reception of an input event, it has

to be redirected to the corresponding atomic component. Similarly, when an output is

generated by a component, it must be mapped as an input to another component or sent

out as an output of the coupled model. The mapping mechanism is defined by the Z

function.

 10

 In coupled DEVS models, when multiple imminent components are scheduled for

an internal transition at the same time, this can lead to ambiguity. For example, let’s

consider a case where we have two imminent components: A, and B. When component A

executes its internal transition, it produces an output that maps to an external event for

component B. However, at this moment, component B is already scheduled for an

internal transition. This will cause an ambiguity for component B, not knowing which

transition to execute first. The coupled DEVS formalism suggests two alternatives for

this scenario: 1) execute the external transition first with e being equal to ta(s) and then

the internal transition, or 2) execute the internal transition first and then the external

transition with e being equal to zero. DEVS resolves this ambiguity by introducing the

select tie-breaking function. This function gives order to the imminent components of a

coupled model so that only one component has e = 0. Then the rest of imminent

components are divided into two groups: 1) a set of components that receive an external

output from this model, 2) the rest of components. The first group will then execute their

external transition functions with e = ta(s), and the second group will be imminent during

the next simulation cycle which may further require the use of select function to decide

which component is going to be the first. The use of tie-breaking mechanism adds

overhead to the simulation and, in addition, decreases the level of parallelism and forces

the simulation to have a serialized manner. Since the select mechanism associates

priorities with imminent components, it will cause a potential bottleneck in the simulation

system when many interconnected atomic models are imminent at the same time.

 Parallel DEVS or P-DEVS [Cho94a] is an extension to DEVS that eliminates all

the serialization constraints and provides an environment for executing simultaneous

DEVS models in parallel. P-DEVS implements confluent function to deal with collision

scenarios at which events get scheduled simultaneously [Zei00]. Collision handling: the

modeler has the responsibility of controlling collision’s behavior.

An atomic P-DEVS model is specified by:

M = < X M , Y M , S, δ ext , δ int, δ con, λ, ta)

where

X M = {(p,v)| p ∈ IPorts, v ∈ X p } is the set of input ports and values;

Y M = {(p,v)| p ∈ OPorts, v ∈ Y p } is the set of output ports and values;

 11

S is the set of sequential states;

δ ext: Q x XM
b → S is the external state transition function;

δ int: S → S is the internal state transition function;

δ con: Q x XM
b → S is the confluent transition function;

λ : S → YM
b is the output function;

ta : S → R0
+ ∪ ∞ is the time advance function;

 with Q := {(s, e) | s ∈ S , 0 ≤ e ≤ ta(s)} the set of total states.

From the following, differences between DEVS and P-DEVS can be noted:

€ Instead of having a single input, a bag of inputs is implied to enable concurrent

execution of events.

€ To define the model’s state at the time of collision (i.e. simultaneous internal and

external transitions), the confluent function δcon has been defined. The modeler

takes care of this function and specifies the behavior of the model when collision

occurs.

The elimination of the sequential Select function and its replacement with the

confluent transition function gives all the imminent components equal priority and the

permission to be activated and to send their output to other components at the same time.

At the other end, the receiver component is only responsible for identifying the type of

the received input event and taking the required actions.

P-DEVS coupled models are similar to DEVS, except for the omission of Select

function. Formally, a coupled model is defined as:

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC>

Therefore, the set of input and output events (X and Y), components (D and Md),

and couplings (EIC, EOC, and IC) are identically the same as of DEVS. Since in P-

DEVS there is no serialization among imminent components, in case of having multiple

imminent components within a coupled P-DEVS model, firstly, all the outputs are

collected and redirected to the corresponding influences, secondly, the transition function

is executed [Zei00].

 12

2.1.1. DEVS model example: A Bluetooth simulator

In order to show how to define DEVS models, we have built a Bluetooth DEVS model to

show how two paired devices communicate with each other. Bluetooth is a wireless

connection that enables devices such as mobile phones, computers and PDAs to exchange

information. Figure 3 illustrates the components of the model. As shown in the figure, the

model consists of four components: SenderMobile, ReceiverMobile, DataTransmission,

and CennectionManager. The ConnectionManager is further decomposed into

PairedDeviceFinder, and PermissionVerifier.

Figure 3. Structure of Bluetooth Simulator

The sender is activated when it receives “enableBluetooth” command which

means the user of the mobile device wants to send data to another mobile using

Bluetooth. Once the sender mobile gets its Bluetooth enabled, the connection manager is

responsible to search for other mobile devices that are in range and have their Bluetooth

feature on. As soon as a paired device is found, its ID is sent to the sender mobile (it will

be displayed on the mobile screen, for simplicity in this model it is assumed that there is

only one paired device available in that range). Once the sender mobile is informed about

 13

the existence of the receiver mobile, it will issue a “connect” command to start the

transmission of data. The connection manager is then activated again and will request

permission from the receiver mobile to transfer the data. After that, the receiver mobile

will grant the permission and the connection manager will notify the sender mobile to

start the transmission. The sender mobile sends the data to the dataTransmission handler

which takes care of ensuring enough capacity at the receiver as well as reliable

transmission. Once the transmission is done successfully the sender is informed and it

goes back to passive state by disabling its Bluetooth and waiting for another input

command (i.e. “enableBT”). As shown in Figure 3, the Bluetooth Simulator has one input

and one output. The enableBT input indicates that the user of SenderMobile would like to

start a Bluetooth transfer of data to a ReceiverMobile. Whenever this command is issued

the SenderMobile is activated and its state changes from passive to active. The

newMsgArrival output indicates that there is new message received. At the

ReceiverMobile there is a counter which counts the number of new messages arrived. The

coupled component ConnectionManager and the atomic component DataTransmission

handle connection establishment and data transfer between SenderMobile and

ReceiverMobile atomic components.

Formal Specifications for Atomic Models:

The formal specifications <S, X, Y, δint, δext, λ, ta> for the atomic models are

defined as follows:

ReceiverMobile:

 Assumption: the receiver will always accept the request of receiving data from

other mobile device. It is assumed that the sender and receiver mobiles know each other.

Also, the receiver’s Bluetooth is always enabled.

S = {phase, ID, totalMsgs, ID_requested, permission_given, gotMsg }

X = {IDrequested, permit, data}

Y = {IDout, accepted, gotData, newMsgArrival}

DataTransmission:

 Once connection is established, the SenderMobile will send the data through the

DataTransmission to the ReciverMobile. At the receiver when the data is received, the

 14

DataTransmission will signal the sender that data was transmitted successfully. The

Sender then goes back to passive state and waits for the next “enableBT” request.

S = {phase, data, dataReceived}

X = {dataOut, gotData}

Y = {dataSent, data}

PairedDeviceFinder:

 This unit is responsible for searching paired devices (mobile sets that are

Bluetooth enabled and are in range). SenderMobile requests to have the ID of the paired

devices. Once a paired device is found its ID is sent to the SenderMobile. In this

assignment it is assumed that there is only one receiver mobile available in that area.

S = {phase, receiverID, reqSearch}

X = {search, IDin}

Y = {getID, deviceID}

PermissionVerifier:

 After getting the ID of the receiver, the sender will have to ask for permission in

order to start the data transmission. PermissionVerifier unit will handle this by

coordinating between the sender and receiver.

S = {phase, accessOK, reqConnection }

X = {connectDevice, granted}

Y = {connected, reqPermission}

SenderMobile:

 Assumption: the receiver will always accept the request of receiving data from

other mobile device. It is assumed that the sender and receiver mobiles know each other.

Also, the receiver’s Bluetooth is always enabled.

S = {phase, gotID, receiverID,enable, sending }

X = {enableBT, deviceFound, start, dataSent }

Y = {searchDevice, connect, dataOut }

Formal Specifications for Coupled Models:

The formal specifications <X, Y, D, EIC, EOC, IC, SELECT > for the coupled model

ConnectionManager and BluetoothSimulator are defined as follows:

 15

ConnectionManager:

 X = {search, IDin, connectDevice, granted};

 Y = {deviceID, getID, connected, reqPermission };

 D = {PermissionVerifier, PairedDeviceFinder};

EIC = {(ConnectionManager.search, PariedDeviveFinder.search),

 (ConnectionManager.IDin, PariedDeviveFinder.IDin),

 (ConnectionManager. connectDevice, PermissionVerifier. connectDevice),

 (ConnectionManager.granted, PermissionVerifier. granted)}

EOC = {(ConnectionManager. deviceID, PariedDeviveFinder. deviceID),

 (ConnectionManager. getID, PariedDeviveFinder. getID),

 (ConnectionManager. connected, PermissionVerifier. connected),

 (ConnectionManager. reqPermission, PermissionVerifier. reqPermission)}

IC = {φ}

SELECT: ({PermissionVerifier, PairedDeviceFinder }) = PairedDeviceFinder;

BluetoothSimulator Simulator: This is the TOP component encapsulating the whole model.

 X = {enableBT };

 Y = {newMsgArrival };

 D = {SenderMobile, ReceiverMobile, ConnectionManager, DataTransmission };

EIC = {(BluetoothSimulator.enableBT, SenderMobile. enableBT),

EOC = {(BluetoothSimulator. newMsgArrival, ReceiverMobile. newMsgArrival),

IC = { (SenderMobile.searchDevice, ConnectionManager.search),

 (SenderMobile.connect, ConnectionManager.connectDevice),

 (ConnectionManager.deviceID, SenderMobile.deviceFound),

 (ConnectionManager.connected, SenderMobile.start) ,(SenderMobile.dataOut,

 DataTransmission.dataOut), ,(SenderMobile.dataSent,

 DataTransmission.dataSent) ,(DataTransmission.data, ReceiverMobile.data) ,

(DataTransmission.gotData, ReceiverMobile.gotData),

(ReceiverMobile.IDrequested, ConnectionManager. IDrequested) ,

(ReceiverMobile.IDout, ConnectionManager. IDout)

 (ReceiverMobile.permit, ConnectionManager. permit)

 (ReceiverMobile.accepted, ConnectionManager. accepted)}

 16

SELECT: ({DataTransmission, ConnectionManager }) = ConnectionManager

 ({SenderMobile, ConnectionManager }) = SenderMobile

 ({SenderMobile, DataTransmission }) = SenderMobile

Using CD++ toolkit, the described model can be simulated and the results are

tested for verification. The closure under coupling property of the coupled DEVS

formalism allows incremental testing of the model. This is performed by testing each

individual atomic model as well as the coupled ones. The TOP component which

encapsulates the whole model can be tested as well, and the results are compared with

ones obtained from atomic component’s test results.

For the top coupled model testing can be done by inputting only one event which

is “enableBT”. This is the command issued by the user of the SenderMobile requesting to

enable its Bluetooth and transferring data to other paired devices. At the end of

simulation the out put “newMsgArrival” is expected which shows how many massages

were received. For example by setting “enableBT” to 3, the following results should be

seen:

From the above simulation results we can see that at the receiver end 7 new messages

were received. This result and also the corresponding timings verify the correctness of

our model.

2.2. TIMED CELL-DEVS AND PARALLEL CELL-DEVS FORMAL ISMS

The Cellular Automata formalism [Wol86] uses cell spaces to represent real systems. A

cellular automaton is an infinite regular n-dimensional lattice, where each cell holds one

finite value. The lattice consists of cells having state variables and a computing

apparatus, which is in charge of updating cell’s state according to a local rule. This is

Input: Output:

00:00:00:00 enableBT 1 00:00:28:000 newmsgarrival 1
00:00:30:00 enableBT 1 00:00:58:000 newmsgarrival 2
00:00:60:00 enableBT 1 00:01:28:000 newmsgarrival 3
00:00:120:00 enableBT 1 00:02:28:000 newmsgarrival 4
00:00:180:00 enableBT 1 00:03:28:000 newmsgarrival 5
00:00:2400:00 enableBT 1 00:05:28:000 newmsgarrival 6
00:00:300:00 enableBT 1 00:40:28:000 newmsgarrival 7

 17

performed by using the current cell’s state and those of a finite set of nearby cells (called

the neighborhood of the cell) [Wai00].

Figure 4. Sketch of a Cellular Automaton [Wai00]

The major limitation of this discrete time paradigm is that at each discrete time

step when the values of all the cells get updated, usually there are several cells which do

not require this update, therefore noticeable computational time is wasted [Wai01b]. To

solve this problem, Cell-DEVS [Wai98] was proposed which integrates DEVS and

cellular automata by presenting each cell as an atomic DEVS model.

Cell-DEVS extends DEVS formalism, allowing the implementation of cellular

models with timing delays. Two types of timing delays can be used, namely transport

and inertial [Gia76]. When transport delay is used, the future value is added to queue

sorted by output time, allowing the previous values that were scheduled for output but

have not yet been sent to be kept. On the other hand, inertial delays allow a preemptive

policy at which any previous scheduled output value will be deleted and the new value

will be scheduled. A Cell-DEVS atomic model is defined by [Wai01b]:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

where

X is a set of external input events;

Y is a set of external output events;

I represents the model's modular interface;

S is the set of sequential states for the cell;

θ is the cell state definition;

N is the set of states for the input events;

d is the delay for the cell;

 18

δint is the internal transition function;

δext is the external transition function;

τ is the local computation function;

λ is the output function; and

D is the state's duration function.

The modular interface (I) represents the input/output ports of the cell and their

connection to the neighbor cell. Communications among cells are performed through

these ports. The values inserted through input ports are used to compute the future state

of the cell by evaluating the local computation function τ. Once τ is computed, if the

result is different than the current cell’s state, this new state value must be sent out to all

neighboring cells informing the state change. Otherwise, the cell remains in its current

state and therefore no output will be propagated to other cells. This will happen when the

time given by the delay function expires. Finally, the internal, external transition

functions and output functions (λ) define this behavior. Cell-DEVS improves execution

performance of cellular models by using a discrete-event approach. It also enhances the

cell’s timing definition by making it more expressive. Cell-DEVS coupled models

represent the cell space as follows:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >

where

Xlist is the input coupling list;

Ylist is the output coupling list;

I represents the definition of the model’s interface;

X is the set of external input events;

Y is the set of external output events;

n is the dimension of the cell space;

 {t1,...,tn} is the number of cells in each of the dimensions;

N is the neighborhood set;

C is the cell space;

B is the set of border cells;

Z is the translation function; and

select is the tie-breaking function for simultaneous events.

 19

A coupled model is composed of an array of atomic cells (C) with given size and

dimensions where each cell is connected through standard DEVS input/output ports to the

cells defined in the neighborhood (N). Since the cell space is finite, the borders of the

cells are either connected to a different neighborhood than the rest of the space, or they

are “wrapped” (i.e. B = {∅}) in which they are connected to those in the opposite one

using the inverse neighborhood relationship. However, border cells have a different

behavior due to their particular locations, which result in a non-uniform neighborhood.

The Z function defines the internal and external coupling of cells in the model. It

translates the outputs of the ith output port in cell Ca into values for the ith input port in

cell Cb. Select function has similar functionality as in basic DEVS models, where it is the

tie-breaking function for the imminent components.

 As in coupled DEVS models, the use of Select function produces serialization,

and therefore similar limitations when the Cell-DEVS models are considered to be

executed in parallel. These limitations would lead to lack of parallelism exploitation and

a probable inconsistency with the real system [Wai99]. Moreover, since the timed Cell-

DEVS allows only one input from each input port, zero-delay transitions are not possible

and also the external DEVS models are not allowed to send two simultaneous events to

the same cell. The Parallel Cell-DEVS [Wai00] formalism overcomes these restrictions

by revising and extending Cell-DEVS to allow a higher degree of parallelism and

allowing zero-delay transitions as well as multiple simultaneous events per external

model. Below is a summary of distinguishable characteristics of parallel Cell-DEVS

which are presented in [Wai00]:

1. Parallel Cell-DEVS models are equivalent to parallel DEVS models.

2. Closure under coupling holds for parallel Cell-DEVS models as well: that is a

coupled Cell-DEVS model is equivalent to an atomic Cell-DEVS model.

2.3. THE CD++ TOOLKIT

CD++ [Wai02] is a modeling tool that implements the DEVS and Cell-DEVS theories by

applying the original formalisms. The toolkit includes facilities to build DEVS and Cell-

DEVS models. DEVS atomic models can be programmed and incorporated into a class

 20

hierarchy programmed in C++. Furthermore, coupled models can be defined using a

built-in specification language. Therefore, coupled and Cell-DEVS models need not to be

programmed, rather the tool provides a specification language that defines the model’s

coupling, the initial values, the external events, and the local transition rules for Cell-

DEVS models.

CD++ also includes an interpreter for Cell-DEVS models [Wai98]. The language

is based on the formal specifications of Cell-DEVS. The model specification includes the

definition of the size and dimension of the cell space, the shape of the neighborhood and

the border. The cell’s local computing function is defined using a set of rules with the

form POSTCONDITION DELAY { PRECONDITION }. These indicate that when the

PRECONDITION is met, the state of the cell will change to the designated

POSTCONDITION after the duration specified by DELAY. If the precondition is not met,

then the next rule is evaluated until a rule is satisfied or there are no more rules.

2.4. PARALLEL AND DISTRIBUTED SIMULATION

As we mentioned earlier, P-DEVS and Parallel Cell-DEVS extend the standard

formalisms of their type to allow a higher degree of parallelism in parallel and distributed

environments. In such environments the entire task of simulation is divided among the

processors or nodes. Therefore each one of these concurrent nodes handles a smaller

portion of the simulation while the whole process of execution takes place in parallel and

as a result in a significantly reduced time.

During a parallel, distributed simulation, a number of Logical Processes (LP) will

be in charge of carrying on the execution of the model on different CPUs [Fuj00]. Each

LP executes a part of the simulation by assigning it to one or more simulation objects.

Logical processes will communicate to each other by sending time-stamped messages.

Synchronization among these LPs is violated when an out of order event is received by

one of the LPs. This violation is referred to as causality error. Such a scenario is

represented by Figure 5 where two LPs each with one event in its input queue process

their events simultaneously. LP2 as a result of executing e1 (time stamp of e1 = 1),

generates and sends a new even e2 (with time stamp = 2) LP1. But at that time, LP1 has

 21

already processed e6 and therefore the time of LP2 has been already advanced to 6. As a

result, arrival of e4 at LP2 violates the local causality constraint and a causality error

arises.

Figure 5. Causality error at LP2

Synchronization among nodes (LPs) is the most challenging problem of parallel

and distributed simulation. There exist three different types of synchronization strategies

for event driven simulations:

1. No synchronization at all: synchronization is ensured by the application (i.e.

sequential simulations).

2. Pessimistic (conservative) synchronization [Bry77, Cha79]: causality violations

are strictly avoided.

3. Optimistic synchronization [Jef85]: causality errors are fixed by the notion of

rollbacks.

2.4.1. Conservative parallel discrete event simulation

Conservative synchronization approaches were the first synchronization algorithms

proposed in the late 1970s by R. E. Bryant [Bry77], K. M. Chandy and J. Misra [Cha78].

This synchronization technique which is known the Chandy-Misra-Bryant (CMB)

algorithm, disallows any occurrence of causality errors. In conservative schemes, if a LP

has an unprocessed event with timestamp t and it is guaranteed that no event with earlier

timestamp can be received, then the probability that causality error may happen is zero.

When the LP has a list of unprocessed events from all other LPs it can safely process the

event with lowest timestamp because the future events will for sure have larger

timestamps. As long as there are unprocessed events from all other LPs, then this cycle

can be repeated and synchronization is guaranteed. However, if this condition is not met,

then there is a risk of deadlock. Technique to resolve this deadlock is to find the model’s

 22

lookahead, which provides the smallest time stamp of the new events that a process can

schedule in the future. Null messages are responsible to carry out the lookahead

information among LPs. This way each LP, based on the lookahead information that it

receives from all other LPs can derive a lower bound on the time stamp (LBTS) of the

events that it will receive in future. As a result, the LP would know which event is safe to

process. An example of a safe lookahead value is the timestamp of the first unprocessed

event in the input queue. The main drawback of the conservative synchronization

approach is the time-wasting flow of null messages which degrade the simulation

performance significantly. Optimistic approaches also offer two important advantages

over conservative techniques [Fuj03].

2.4.2. Optimistic parallel discrete event simulation

In this technique, which was first proposed by Jefferson’s Time Warp mechanism

[Jef85], each LP has a Local Virtual Time (LVT) which advances every discrete step as

events are executed on the process. Therefore, LPs execute their own portion of the

simulation based on the LVT. Causality errors can occur when LPs send messages to

each other. This way, an LP may receive a message with timestamp earlier than its

current LVT. Such events are referred to as straggler events. If a straggler event is

received the LP will launch a rollback operation, where the LP recovers from the

causality error by undoing the effects of all the events that were processed and had

timestamp greater than the timestamp of the straggler event. Messages that were falsely

sent to other processes now must be canceled, which is performed by sending anti-

messages.

The Time Warp protocol consists of two parts [Mar97]: the local control

mechanism and the global control mechanism. The local control mechanism which is

provided in each Time Warp process is in charge of rollback operations which include:

sending anti-messages, restoring the state of the LP, readjusting Local Virtual Time

(LVT), etc. On the other hand, the global control mechanism takes care of global issues

such as memory management, I/O operations, and termination detection.

The rollback mechanism requires defining three structures in each process: an

input queue, to keep all the received events ordered by their virtual receive time (earliest

 23

time-stamped event is on the top of the queue), an output queue, to keep a negative copy

(i.e. anti-message) of each message that the process has recently sent out ordered in

virtual send time, and a state queue, to keep a copy of all recent states of the process (this

is used during the rollback when the state of the process has to be restored to that of

saved prior to rollback). When rollback occurs due to a straggler message, two major

actions take place at the LP [Liu06]. First, the state of the LP is restored to the last saved

one which is now the top element of the state queue (this state was saved at time earlier

than the virtual receive time of the straggler). Second, the process has to recover from the

causality error by sending anti-messages to cancel the effects of already sent messages.

All the anti-messages in the output queue whose timestamp is later than the straggler’s

receive time must be sent out. On the other hand, arrival of anti-messages at other

processes will cause further rollback if the timestamp of the anti-message is less than the

LVT of the receiving process. Therefore, anti-messages (just as positive stragglers)

would cause rollbacks and further propagation of anti-messages. These are referred to as

secondary rollbacks which result in cascaded rollbacks flooding the simulation system

with anti-messages.

The global control mechanism defines the Global Virtual Time (GVT) which is

an instantaneous global snapshot of the system and the wall clock time defined as follows

[Fuj00]:

The Global Virtual Time at wall clock time T (GVT T) is defined as the minimum

time stamp among all unprocessed and partially processed messages and anti-messages at

wall clock T.

Unlike LVTs, the GVT never decreases [Fre02]. Hence, at any time of the

simulation, GVT shows the minimum virtual time. This ensures that any event that was

processed before GVT is 100% safe and will never rollback. Therefore, all events in the

input and output queue whose timestamps are less than GVT can be safely removed from

the queues. Also, all the states in the state queue (except the last one saved) with saved

time older than GVT can be safely removed. The operation of deleting old information

(messages and LP’s states) is referred to as fossil collection. This mechanism avoids

wasting system resources.

 24

In Time Warp systems the global control mechanism is responsible for calculating

and advancing GVT. The main issue is that, high GVT calculation frequency saves

memory and allows faster response time and better space utilization but at the same time

generates a significant processing overhead. On the contrary, lowering the GVT

calculation frequency will generate less processing overhead but requiring more memory

as well as slowing down the response time.

Jefferson’s original Time Warp has been revised and optimized several times to

reduce the processing overhead and especially overcoming the issues of cascaded

rollback. Advanced optimistic techniques in this filed have been explained in [Fuj00]. We

will discuss in details the Time Warp protocol used for our simulator as well as the

optimizations to this mechanism in Chapter 3.

2.5. DEVS-BASED SIMULATION TOOLKITS

Based on previous studies [Liu06], in here we will give a brief review of the existing

tools that implement DEVS theory and its extensions.

€ ADEVS [Nut06] is a discrete event system simulator that provides a C++ library

for constructing discrete event simulations based on the Parallel DEVS and

Dynamic DEVS (dynDEVS) formalisms.

€ DEVS-C++ [Zei96] is a DEVS-based high performance simulation environment

which supports modeling of large-scale, high resolution landscape models using

special form of C++ classes called containers.

€ DEVS-Scheme [Zei93] is a knowledge-based real-time environment which

implements the DEVS formalism in Scheme (a Lisp dialect) and enables the

modeler to specify models directly in its terms.

€ DEVS/CORBA [Zei99a] is a runtime infrastructure built on top of CORBA

middleware which supports parallel and distributed simulation of DEVS formalism.

DEVS/CORBA can be used in a larger network-centric environment to provide a

combination of graphical process modeling, discrete-event simulation, animation,

activity-based costing, and optimization functions.

 25

€ DEVS/HLA [Zei99b] is based on High Level Architecture (HLA) [HLA00]

implemented in C++ which explains how an HLA-compliant DEVS environment

improves the performance of large-scale distributed modeling and simulation.
€ DEVS/Grid [Seo04] is a grid-compliant modeling and simulation environment

based on DEVS formalism. It is implemented using Java and Globus toolkit for

Grid computing infrastructure and supports high performance distributed

simulation.

€ DEVSCluster [Kim04] is a CORBA-based, multi-threaded distributed simulator

implemented in Visual C++. It supports simulation in heterogeneous network

environments.
€ DEVSJAVA [Sar98] is a DEVS-based simulator implemented in JAVA that

supports high-level modeling.

€ GALATEA [Dav00] uses an object oriented architecture to implement a simulation

platform that offers a family of languages for modeling multi-agent systems in

DEVS. GALATEA is the product of two lines of research: simulation languages

based on Zeigler's theory of simulation and logic-based agents

€ JDEVS [Fil02] serves as an experimental framework for natural systems modeling

techniques. It allows discrete-event, general purpose, object-oriented, component

based, GIS connected, collaborative, visual simulation model development and

execution. This experimental environment can be used to solve any complex

problems solvable by discrete-event simulation and is especially suited for natural

system modeling and simulation.

€ JAMES [Uhr01b] is a Java-based agent modeling environment for simulation of

the activities in the area of agent-oriented simulation. It is based on a parallel,

distributed version of DEVS, emphasizing states and state transition.

€ PyDEVS is a simulator developed in ATOM3 [Del02], a tool for multi-paradigm

modeling. ATOM3-DEVS is a tool for constructing DEVS models and generating

Python code for the PyDEVS simulator.

€ PowerDEVS [Kof03] is an integrated tool for hybrid systems modeling and

simulation based on the DEVS formalism. It is implemented in C++ and allows

construction of Atomic DEVS models graphically.

 26

€ SimBeans [Pra99] is a Component-based simulation framework based on DEVS

and the JavaBean component model, developed as a modular, hierarchical

composition of components.

€ DEVS/P2P [Che04] is an interface for P-DEVS implementation over Peer-to-Peer

message communication protocol. It supports hierarchical model partitioning,

automatic coupling restructuring, automatic model deployment, and

distributed/parallel/local simulation.

€ DEVS/RMI [Zha06] is a natively distributed simulation system based on standard

implementation of DEVS. It allows distributing simulation entities across network

nodes seamlessly without any of the commonly used middleware. It is also built

to support auto-adaptive and dynamic reconfiguration of simulations during run-

time. DEVS/RMI approach is well suited for complex, computationally intensive

simulation applications. It also provides an extremely flexible and efficient

software development environment for simulation applications in a heterogeneous

network environment.

€ CD++ [Rod99, Wai02, Tro03] is an M&S toolkit developed in C++ that implements

the original and Parallel DEVS and Cell-DEVS formalisms. It supports both

standalone and parallel conservative simulations. This toolkit has been revised and

tested in our research to realize distributed optimistic discrete-event simulations

based on the Time Warp mechanism.

€ SmallDEVS [Jan06] is a lightweight implementation of the original DEVS formalism

which serves as an experimental software for research and education. It allows

prototype-based object-oriented model construction, interactive modeling and

simulation, and multi-simulation and reflective simulation.

 27

CHAPTER 3 SOFTWARE ARCHITECTURE

In this chapter we will focus on the software architecture of the purely optimistic parallel

CD++ simulator (PCD++) presented in [Liu06]. The layered architecture used by this

simulator is the same layered design used in the parallel conservative simulator [Tro01].

We will present the layered architecture of the software in Section 3.1, followed by a

more detailed discussion of each layer in Section 3.1 and Section 3.2.

3.1. LAYERED ARCHITECTURE

Figure 6 illustrates the layered architecture of the optimistic PCD++ simulator, where

each layer only depends on the layers below it.

Figure 6. Layered architecture of the optimistic PCD++ simulator [Liu06]

The operating system resides on the bottom of the architecture. PCD++ uses

Linux Operating System as the underlying platform for high-performance parallel and

distributed computing. Above the Operating System lays the Message Passing Interface

(MPI). MPI is a standard specification of message-passing library for high-performance

communications on parallel machines and workstations clusters. The Operating System

with the use of MPI provides the communication infrastructure for the PCD++ simulator.

 28

We have used MPICH [Gro96] portable implementation of MPI which allows developing

parallel and distributed applications. The WARPED [Rad98, War07] simulation kernel is

our next layer which serves as a configuration middleware that implements the Time

Warp mechanism and a verity of optimization algorithms. On top of the WARPED kernel

we have the optimistic PCD++ simulator implementing the Parallel DEVS and Cell-

DEVS formalisms. The PCD++ simulator provides the framework for creating and

executing DEVS and Cell-DEVS models in distributed environments using the Time

Warp protocol. Finally, the top most layer is the DEVS or Cell-DEVS model created in

CD++.

3.2. THE TIME WARP LAYER - WARPED KERNEL

WARPED [Rad 98, War07] is a public domain simulation kernel originally developed at

the University of Cincinnati to provide an implementation of Jefferson’s original Time

Warp algorithm [Jef85]. The WARPED kernel is an attempt to make a freely available

Time Warp simulation kernel that is easily ported, simple to modify and extend, and

readily attached to new applications. The services provided by WARPED were used to

implement our CD++ simulators: the conservative PCD++ simulator [Tro01], and the

optimistic PCD++ simulator [Liu06]. This kernel serves as a middleware to implement

CD++ simulator by allowing the use of Time Warp optimizations.

 WARPED is developed using C++ language and compiles with open source GNU

C++ compiler, g++. WARPED kernel uses MPI [MPI95] message passing standard for

communication among distributed and parallel computing nodes. As mentioned in the

previous section, for our PCD++ simulators we have used MPICH [Gro96] the freely

available implementation of MPI which is ported to different platforms including Linux.

Figure 7 illustrates the layout of how LPs and their simulation objects communicate in

WARPED using the MPICH message passing interface. As shown on the figure, there exist

two types of communications [Mar96]: direct communication for message exchange

among local simulation objects (the ones sitting of the same LP), and MPI

communication for message exchange among remote simulation objects (the one hosting

on different LPs).

 29

Figure 7. Structure of LPs and simulation objects in WARPED

WARPED provides an application program interface which includes base classes

for simulation objects (Warped objects), object’s state, and the events which get

exchanged among simulation objects. This API allows users to create their own

application by creating new classes derived from the ones offered. Also, the user has the

opportunity to redefine functionalities by overloading the inherited methods without the

need of changing kernel’s code. Furthermore, WARPED provides a simple definition of

time (again can be redefined by the user) and functions to perform consistent I/O

operations.

The WARPED API is used to model objects (simulation objects) as entities which

exchange messages (time-stamped events) with each other and respond to events by

applying them to their internal stats. Thus, the kernel provides functionalities for sending

and receiving events by simulation objects. On the other hand, since WARPED kernel is

used to present an interface to Jefferson’s Time Warp algorithm, it has to offer a

mechanism suited for potential rollbacks. The main issue in handling rollbacks is saving

and restoring the object’s states. To this extent, the WARPED kernel provides the

capability of defining each object’s state to support periodic state saving during rollbacks

and recovery periods.

The WARPED kernel provides two sets of synchronization mechanisms, namely

NoTime and TimeWarp. The first one implements a conservative behavior, thus was used

in our Conservative PCD++ simulator [Tro01], where the later one implements

Jefferson’s Time Warp optimistic algorithm, therefore used by our Optimistic PCD++

simulator [Liu06].

 30

3.2.1. WARPED functionalities

Here we will present the major functionalities of the WARPED kernel based on previous

studies presented in [Rad98, Mar99]. Figure 8 illustrates a summary of these

functionalities. A detailed discussion about each module is given in [Liu06].

Figure 8. Major functionalities of WARPED kernel [Liu06]

 Based on Jefferson’s definition, the simulation is carried out by assigning each

part of the simulation to one Time Warp process (the simulation objects). The WARPED

kernel groups simulation objects into partitions called “clusters” [Rad98]. In each

partition of cluster, the simulation objects are assigned to the available physical

processors [Low99]. As shown in Figure 9 the WARPED kernel consists of three clustering

levels.

Figure 9. The tree structure of clustering scope levels in WARPED kernel [Low99]

The lowest level is consisted of the simulation objects implementing the Time

Warp local control mechanism. The level above it is the partition level which is consisted

of the physical processors who the simulation objects host on. In Time Warp definition

each physical processor is referred to as a Logical Process (LP) which encapsulates one

 31

or more simulation objects. The local simulation objects although grouped by the same

LP, are not synchronized. This is due to the fact that each simulation object (Time Warp

process) maintains its own LVT [Rad98]. The last (top most) level is the entire system

consisting of multiple partitions working together to implement the Time Warp global

mechanism.

The WARPED kernel provides a variety of optimization strategies to optimize

kernel performance. Optimization algorithms implemented in the kernel are: fixed-sized

and dynamic message aggregation [Che98] algorithms to minimize inter-LP

communication overhead without harming the progress of the simulation; static and

adaptive polling [Sha99] algorithms for optimizing the message reception behavior; one

anti-message per rollback strategy [Mar99] for reducing the number of anti-messages

during rollbacks; lazy and dynamic cancellation algorithms [Lin91] to exploit message

independency and take advantage of the parallelism available within a Time Warp logical

process; and algorithms for adjustment of runtime parameters using external agents

[Rad97] to reduce the overhead of the operations. Many modifications were performed

by previous research [Liu06] to incorporate three core Time Warp optimization strategies

into the optimistic PCD++ simulator. The following section will describe these major

optimizations in details.

3.2.2. Time Warp optimizations of PCD++ simulator

The WARPED layer of our optimistic PCD++ simulator has been modified by previous

research [Liu06] to include three major optimization strategies. In general, optimization

strategies aim at reducing the operational overhead of the Time Warp mechanism, and

exploiting more parallelism than is available in the basic protocol [Low99]. In [Liu06], a

flexible user-controlled state-saving mechanism was implemented in the State

Management module. Also, the fossil collection algorithm was revised in the GVT and

Fossil Collection module to integrate the periodic state-saving strategy. Furthermore, the

Rollback Facility was enhanced to allow sending only one anti-message per rollback and

reduce the number of anti-messages required to be sent to a certain extent. The following

points will describe each of these optimizations:

€ User-Controlled State-Saving Mechanism

 32

The WARPED kernel provides two types of state-saving strategies, namely the copy

state-saving (CSS) strategy and the periodic state-saving (PSS) strategy. Each of these

strategies is handled by a different type of manager: StateManager enforcing CSS

strategy, and InfreqStateManager implementing PSS strategy. The StateManager has the

responsibility of saving the state of a simulation object after executing each event, while

the InfreqStateManager only saves a simulation object’s state infrequently every number

of events. The simulator developer has only the option of selecting one of state managers

at compile time. This selection will then apply to all simulation objects and thus all of

them will use the same type of state managers throughout the simulation. This restricted

selection mechanism has a major drawback which is eliminating the possibility of

choosing different type of state-saving mechanism for different simulation objects based

on their specific requirements at runtime. The solution presented in [Liu06] introduces a

new state-saving mechanism. This new strategy is a two-level user-controlled state-

saving (UCSS) mechanism in the kernel which provides the simulator developer to utilize

more flexible and efficient state-saving strategies at runtime. As shown in Figure 10 the

UCSS mechanism has a two-level structure which enables every simulation object to

switch to “skip-state-saving” mode and as a result skip the state-saving operation. This

mechanism allows simulation objects to make state-saving decisions based on

application-specific criteria.

P
ri
o
ri
ty

 h

ig
h
e

Figure 10. UCSS structure [Liu06]

€ Fossil Collection Algorithm Enhancement

The GVT manager of WARPED kernel reclaims all but the last saved state older

than the GVT along with the messages with timestamps less than the GVT in the input

and output queues. As a result, the GVT always indicates the least timestamp of any

potential future straggler and anti-message that can be received by any of the existing

simulation objects. In other words, it is the minimum time of any rollback that may occur

 33

in one of the processes. When rollback occurs, the state of the process is restored to the

last one saved prior to the rollback which is the one with virtual saved time earlier than

the GVT. Notice that this state is also the one that was left in the state queue during last

fossil collection. Therefore, this mechanism of WARPED kernel works successfully and

rollback operation performs exactly as expected even in the case where rollback time is

equal to the GVT. However, this mechanism fails to work successfully when the periodic

state-saving (PSS) strategy is used [Liu06]. The failure scenario is as follows: when the

state of a process is saved infrequently, the restored state which is the last one available

in the state queue could be saved at virtual time much earlier than the current GVT.

Therefore, although the state restoration is performed correctly, but due to fossil

collections, all events with timestamp between the time of the restored state and the GVT

are already removed from the queues. As a result, runtime crash occurs. To overcome this

problem, the fossil collection mechanism was revised in such a way that fossil collection

is no longer performed using computer GVT [Liu06]. Thus, in the new algorithm, a

minimum value among the virtual time of the last states saved older than the GVT is

calculated for all the processes mapped on a LP. This is the value used to do fossil

collection.

€ One Anti-message per Rollback

During rollback all messages saved in output queue with virtual send time equal

to or greater than the rollback time are sent to their original receivers as anti-messages.

However, there might be multiple anti-messages with different timestamp that must be

sent to the same receiver. This will result in multiple rollbacks at the receiver and

consequently a flood of anti-messages exchanged between the processes. The

communication overhead associated with these message exchanges is very high. To

resolve this issue, when a process has several anti-messages to send to another process,

instead of sending them all, it is clearly enough to only send the one with the earliest

timestamp [Lub91]. Using this fact, the rollback mechanism was revised to send only one

anti-message per rollback and as a result significantly reduce the number of anti-

messages that need to be sent to a certain process.

 34

CHAPTER 4 CONSERVATIVE VS . OPTIMISTIC PCD ++ SIMULATOR

Part of our research is to analyze the performance of our two existing parallel CD++

simulators, namely Conservative PCD++ simulator [Tro01] and Optimistic PCD++

simulator [Liu06]. In this chapter we will look at the design and implementation of these

two simulators and compare their structures as well as functionalities in parallel and

distributed simulations. Section 4.1 will introduce the conservative PCD++ simulator,

while Section 4.2 will present the optimistic version.

4.1. THE CONSERVATIVE PCD++ SIMULATOR

Conservative PCD++ simulator [Tro01] was the first attempt to reduce simulation time in

CD++ using distributed execution of models. Distributed simulation with Parallel CD++

speeds up the execution of both DEVS and Cell-DEVS models in comparison to the

stand-alone simulator [Gli04]. The first parallel simulator of CD++ was based on a

pessimistic (conservative) approach exploiting the parallelism inherent to the DEVS

formalism. Under that scheme, a single root coordinator acts as a global scheduler for

every node participating in the simulation. Based on this structure, all events with the

same timestamp are scheduled to be processed simultaneously on the available nodes.

The simulator introduces two different types of coordinators; master and slave to reduce

inter-process communication. The simulator consists of a hierarchical structure creating a

one-to-one correspondence between the model components and simulation objects.

4.1.1. Parallel DEVS abstract simulator

The DEVS formalism separates the model from the actual simulation. The abstract

simulator implements this mechanism by creating a one-to-one correspondence between

the model and the simulation entity as illustrated by Figure 11. The abstract simulator for

Parallel DEVS was first proposed by [Cho94b] but it lacked in differentiating among

intra-process messages and inter-process messages. Thus, the design and implementation

was revised by [Tro03] to distinguish among these messaging paradigms and as a result

 35

restrict the number of messages over the network (inter-process messaging) to a

minimum.

Figure 11. Correspondence between the model and the DEVS processors [Tro01]

The simulation is carried out by DEVS processors which are of two types:

simulator and coordinator. The simulator represents an atomic DEVS model, where the

coordinator is paired with a coupled model. The simulator is in charge of invoking the

atomic model’s transition and external event function. On the other hand, the coordinator

has the responsibility of translating its children’s output events and estimating the time of

the next imminent dependant(s). As shown in Figure 11 every coordinator has a set of

child DEVS processors. At the beginning of the simulation, one logical process will

reside on each machine (physical process). Then, each logical process will host one or

more DEVS processors. This implies the fact that not all of a coordinator’s children are

necessarily sitting on the same logical process. Due to the one-to-one correspondence,

each coupled model is mapped to only one coordinator. A coordinator communicates

with its child processors through intra-process messaging if they reside on the same

logical process, and through inter-process messaging if they are sitting on remote logical

processes. Figure 12 shows a scenario at which a coupled DEVS model consisting of six

atomic components is simulated using this simulator. The coordinator itself and three of

its child processors are on the same logical process (LP0), where the other three child

processors are hosted on another logical process (LP1). When the number of remote child

processors of a coordinator is high, this design mechanism will lead to considerable

overheads due to inter-process messages that are sent back and forth among the

coordinator and its child processors. To overcome this issue, the concept of Master and

Slave Coordinators was introduced [Tro01].

Abstract Simulator Model

Atomic
Dependant1

Coupled
Model

Atomic
Dependant2

Atomic
Dependant3

Simulator 1

Coordinator

Simulator 2

Simulator 3

 36

Figure 12. A single coordinator with remote and local child processes

In the new design a coordinator is assigned with each logical process. As a result,

all child processors will have a local coordinator through which they can communicate

with remote child processors. In such a scenario, there exist two different types of

coordinators: Master Coordinator, and Slave Coordinator. The master coordinator is

responsible for synchronizing the model execution, interacting with upper level

coordinators, and exchanging messages among the local and remote model components.

The slave coordinator is responsible for message exchange among the local model

components, and forwarding local components messages to the master coordinator if it

resides on another logical process. Figure 13 shows the class diagram of these two

coordinators.

Figure 13. Master and slave coordinators class diagram

Figure 14 illustrates the revised scenario of Figure 12 using the master-slave

structure.

 37

Figure 14. The master-slave coordinator structure

The master-slave coordinator structure organizes DEVS processor into a

hierarchy which does not have a one to one correspondence with the model hierarchy.

Thus, a parent-child relationship that takes into account the existence of master and slave

coordinators must be defined as follows [Tro01]:

i. For each simulator, the parent coordinator will be the parent’s model local

processor.

ii. For each slave coordinator, the parent coordinator will be the model’s master

coordinator.

iii. For each master coordinator, the parent coordinator will be the parent’s model

local processor; just as if it was a simulator.

Based on this hierarchy, the conservative PCD++ simulator was implemented

[Tro01]. Under this design, the simulation advances as a result of exchange of messages

in the form of (type, time) between the parent and child DEVS processors. Two different

types of messages exist: 1) the synchronization messages: (@, t), (*, t), and (done, t), 2)

the content messages: (y, t) and (q, t). The collect message (@, t) is sent from a parent

DEVS processor to its imminent children to tell the children to send their outputs. The

internal message (*, t) is sent from a parent DEVS processor to its imminent children to

tell the children to invoke their transition function (either an external, internal, or

confluent transition). The outputs produced by a model are translated into output

messages (y, t) which are exchanged among a child DEVS processor and its parent.

Finally, the external messages (q, t) represent the external messages arrived from outside

the system or the ones generated as a result of an output message being sent to an

influencee.

 38

Each type of message is handled differently by the simulator, master coordinator,

slave coordinator, and root coordinator. The behaviors of these processors define the

abstract simulator. Next we will look at the behavior of each type of DEVS processors at

handling different messages.

4.1.2. Message definitions

In the following discussion, the form (type, t) is used to denote a message of type that has

a receive time of t. The external, output, collect, internal, and done message are presented

as q, y, @,*, and done respectively.

€ Simulator

 The simulator is responsible of invoking the atomic model’s λ(s) , δext, δint, δcon

functions. The description that follows is a revised version of the original one presented

in [Cho94b] which has been modified by [Tro01].

Figure 15. Simulator algorithm for (@, t)

When a simulator receives a (@, t) message it executes the atomic model’s λ

function and sends the output to the parent coordinator.

Figure 16. Simulator algorithm for (q, t)

 39

 When an external message is received, it is inserted into the bag and will gets

executed at the right time.

Figure 17. Simulator algorithm for (*, t)

 Reception of (*, t) message indicates that a model’s transition function must be

executed. The transition function that must be executed is selected based on t and the

contents of the queue. If t < tN and the queue is not empty, then δext must be executed. If

t = tN then it is the time for an internal transition; either the queue is empty (i.e. no

external messages have been received) therefore δint is executed, or the queue is not

empty (i.e. there are external messages) thus δcon is executed.

€ Master Coordinator

 A coordinator, whether master or slave, is responsible for the simulation of a

coupled model. It translates output events to input events and keeps track of the imminent

components. Each coordinator has a set of child processors which correspond with the

coupled model components. For a master coordinator the set of child processors consists

of: a set of slave coordinators, a set of local child simulators, and a set of local child

master coordinators. A DEVS processor is said to be local if it resides on the same

processor.

 40

Figure 18. Master coordinator algorithm for (@, t)

 When a (@, t) is received at the master coordinator, if t = tN , the collect message

will be forwarded to all imminent child processors with minimum tN and the imminent

processor will be cached in the synchronize set. The master coordinator will then wait for

all imminent processors to send back a done message. Then, the master coordinator will

send a done message to its parent coordinator indicating that it has responded to the

received (@, t) message correctly.

Figure 19. Master coordinator algorithm for (y, t)

 41

 Two different scenarios may occur at the master coordinator upon reception of an

output message:

1. An output message (y, t) is received from a child i that is not a slave coordinator.

2. An output message (y, i, t) is received from a slave coordinator which has

received a (y, t) from a local child i.

 The slave-sync set is used for synchronization so an output message does not get

sent twice to the same slave coordinator. To reduce the number of inter-process messages

sent across the network, instead of forwarding a (q, t) message to the slave coordinator, a

(y, i, t) is sent. A slave coordinator might be the parent coordinator for more than one of

the influencees of i. If (q, t) messages were to be forwarded, then there will be one (q, t)

message for each influencee of i. For Cell–DEVS models, this can be a significant

overhead. Instead, just one (y, i, t) message is sent across the network then the slave

coordinator will generate the appropriate (q, t) messages for each influencee. Then based

on [Cho94b] design, all children ready for a transition are cached in a synchronize set to

later on distinguish active from inactive components.

Figure 20. Master coordinator algorithm for (q, t)

 As in Simulator, when an external message is received at the master coordinator,

it is inserted into the bag and will get executed at the right time.

 42

Figure 21. Master coordinator algorithm for (*, t)

 When the output messages are sent down to child processors, if the message is to be

forwarded to a slave coordinator the z translation will not be applied. Instead, the original

q message will be sent. This is why must make sure that a message is not forwarded twice

to a slave coordinator. As mentioned before, the slave-sync is used for this purpose.

€ Slave Coordinator

 The slave coordinator differs from the master coordinator in only one aspect: when

a message has to be sent to a processor that is not local, it will be sent to the master

coordinator instead. Both the master and slave coordinators handle a (@, t) in a same

manner. However, the set of child processor of a slave coordinator differs from that of a

master coordinator. For a slave coordinator the set of child processors consists of the set

of local child simulators plus the set of local child master coordinators only.

 43

Figure 22. Slave coordinator algorithm for (y, t)

 When an output event is received from a child i, the slave coordinator sorts the

message to the influencees of i. If any influencee is local, the z function is applied and a

(q, t) message is sent. If there are remote influencees, then the output event is sent to the

master coordinator, which in turn will sort the message to other slave coordinators if

necessary. Notice that, only one (y, t) message must be forwarded to the master

coordinator. On the other hand, when the slave coordinator receives an output event

that has been forwarded by the master coordinator on behalf of child i, it will handle the

event as if i had been local, but no (y, t) messages will be forwarded back to the master

coordinator if there is a remote influencee. This is to avoid infinite loops of messages

being forwarded back and forth. The behavior of the slave coordinator upon reception of

other messages is identical to the master coordinator, thus will not be investigated here.

€ Root Coordinator

 The root coordinator is a special processor that is above the topmost coordinator. It

is responsible for driving the simulation and advancing the virtual simulation time. The

root coordinator is also capable of handling external events which are inserted into a

sorted queue of messages.

 44

Figure 23. Root coordinator algorithm

4.2. THE OPTIMISTIC PCD++ SIMULATOR

In Section 4.1 we looked at a parallel CD++ simulator which uses a hierarchical structure

creating a one-to-one correspondence between model components and simulation object.

However, due to the layout of the design, the communication costs associated with this

structure is considerable. This led to proposing a flat simulation mechanism rather than

the traditional hierarchical one to reduce the overhead in communication by reducing the

number of exchange messages (especially inter-process message) to minimum. This is

achieved by simplifying the underlying simulator structure, while keeping the same

model definition and preserving the separation between model and simulator [Gli04].

Researchers have shown that flat simulators outperform hierarchical ones significantly

[Kim00, Gli02a, Gli02d, Glin04, Kim04, Liu06]. Moreover, previous research [Gli02b,

Gli02c] showed that although the hierarchical simulator presented in [Tro01] tried to

reduce the communication overhead by introducing two specialized DEVS coordinators,

but in some cases the communication overhead was still significantly high. After the

Conservative PCD++ simulator [Tro01] which was a hierarchical Parallel DEVS

simulator, [Gli04] was the first attempt to re-design the parallel CD++ simulator to adopt

a flattened structure. The proposed simulator [Gli04] also modified the parallel

mechanism to an Optimistic algorithm supported by the use of Time Warp kernel. The

 45

whole abstract simulator was redesigned to reflect the two major modifications; i.e. the

departure from conservative-based simulator to an optimistic-based simulator, and

flattening the structure of the simulator. As a result, a new Parallel DEVS simulator was

implemented which dealt with the communication overhead dilemma by using a flattened

structure rather than the old hierarchical approach. However, [Liu06] improved the

Optimistic PCD++ simulator further and implemented many optimization strategies and

enhanced the parallel and distributed simulation significantly. Thus, we used the latest

Optimistic PCD++ simulator [Liu06] for this research.

The following section will describe the abstract simulator in terms of its design

layout as well as the functionalities of each DEVS processor.

4.2.1. Parallel DEVS abstract simulator

The flattened architecture of the Parallel DEVS introduces two new types of DEVS

processors, namely Flat Coordinator (FC) and Node Coordinator (NC), to reduce the

communication overhead. The flattened structure keeps the modeling framework

unchanged and uses a flattened approach for overlaying the coordinators. Figure 24

shows the class hierarchies in the modeling and the simulation framework.

Figure 24. Model and processor hierarchies in Optimistic PCD++ [Liu06]

 As shown on the above figure, there are four different types of simulators used in

the new design: Simulator, Flat Coordinator, Node Coordinator, and Root Coordinator.

The simulation is carried out by these processors in a distributed fashion among the

available machines. To better illustrate this design, let’s consider the scenario that was

discussed in Section 4.1 where a coupled DEVS model consisting of six atomic

 46

components is simulated using the flattened PCD++ simulator. Figure 25 shows the

model specification and its partitioning on two machines.

The optimistic PCD++ simulator [Liu06] uses simulation techniques that are

based on optimistic synchronization protocol which extend the conservative approach

used in Parallel CD++ simulator [Tro01, Tro03] that was described in Section 4.1. The

optimistic PCD++ simulator uses the optimistic synchronization protocol provided by the

WARPED kernel to implement a distributed version of CD++. The flattened architecture

used by this simulator outperforms the previous hierarchical simulator [Tro01] by

reducing the communication overhead significantly.

Figure 25. Distributed processor structure

 As presented in Figure 25, one LP is created on each machine encapsulating the

DEVS processors. Only one Root is created on machine 0 (LP0) which interacts with

other NCs using inter-process messaging (for remote NC) and intra-process messaging

(for local NC). The Root coordinator is in charge of starting the simulation and

performing I/O operations among simulation system and the surrounding environment.

Only one NC is created on each machine and acts as the local central controller on its

hosting LP. The NC is the parent coordinator for FC and routes remote messages

received from the Root or from other remote NCs to the FC. The Simulators are the child

processors of the local FC which represent the atomic components of DEVS and Cell-

DEVS models and responsible for executing the abstract functions defined in their

associated atomic model. When a Simulator needs to communicate with a remote

Simulator residing on another LP, it sends the message to its FC, then the message is

forwarded to the NC above it. Once the message is at the NC, it will further be routed to

 47

the destination NC. Even if two Simulators are local (sitting on the same LP), they need

to forward their messages to their parent FC. There is no direct communication among

Simulators; all messages must be forwarded to the parent FC. This is why the FC is

known as the local central controller of its hosting LP.

4.2.2. Message definitions

PCD++ processors exchange two categories of messages: content messages and control

messages. The first category includes the external message (x) and the output message

(y), and the second category includes the initialization message (I), the collect message

(@), the internal message (*), and the done message (D). To describe these messages,

external and output messages are used to exchange simulation data between the models,

initialization messages start the simulation, collect and internal messages trigger the

output and the state transition functions respectively in the atomic DEVS models, done

messages handle synchronization by carrying the model timing information. The

simulation is executed in a message-driven manner. Each type of PCD++ processor,

defines its own receive functionality for each type of messages. In this section, we

present what happens at each PCD++ processor including the Simulator, Flat

Coordinator, Node Coordinator, and Root Coordinator upon reception of different types

of messages.

€ Simulator

The Simulator algorithm for initialization message is defined as follows:

Figure 26. Simulator algorithm for (I, 0)

 48

As defined in DEVS formalism, two variables are used in the simulator to record

its current simulation time (tL) and the value of sigma (ta). Using these two values, the

value of absolute next time (denoted as tN) is calculated as tL + ta. Upon receiving the

initialization message, (I, 0), the Simulator resets tL to the timestamp of the message,

therefore the Simulator’s virtual time now is equal to zero. Then, the simulator initializes

the variables defined in its associated atomic model, and after that, it informs its parent

FC of the value of ta by sending a done message stamped with time 0.

SIMULATOR

(@, t)

parentFC

send(y, t)

send(D, t)

tL=t, ta=0

y= λ(s)
t = tN

alt

Figure 27. Simulator algorithm for (@, t)

When a (@, t) message is received, the Simulator invokes the output function (λ)

of the atomic model and as a result an output message (y, t) is sent to the FC. After this,

the Simulator will send (D, t) to the FC with ta = 0 to indicate that it is imminent.

SIMULATOR

(*, t)

[t = tN and bag is empty]

alt

e = t – tL , ta = tN - t

s = δext(s, e, bag)

s = δint(s)

[t = tN and bag not empty]
s = δcon(s, bag)

[tL < t < tN]

emptyBag()

tL := t

send(D, t)

emptyBag()

parentFC

Figure 28. Simulator algorithm for (*, t)

 49

Following the collect message, a (*, t) will arrive to trigger

internal/external/confluent function of the atomic model depending on the timing of the

message and the status of the Simulator’s message bag.

Figure 29. Simulator algorithm for (x, t)

The last message that may arrive at the Simulator is (x, t) which is simply inserted

into the Simulator’s message bag. Note that, only external messages with identical

timestamp can be inserted into the message bag at a given simulation time. Before adding

further messages with a different timestamp, the existing messages must be processed

and the bag be cleared in the receive function for internal message. In other words, an

internal message will always arrive in between two consecutive batches of external

messages.

€ Flat Coordinator

The FC, sitting in between the NC and the Simulators, performs three tasks:

synchronizing the execution of all child Simulators, routing messages exchanged among

its children, and delivering to its parent NC those messages that are sent from its children

to the environment or to other remote Simulators. To accomplish the first task, the FC

finds its imminent children with the minimum absolute next time and records them in a

structure called synchronize set. It also uses a variable, doneCount, to keep track of the

number of done messages it should receive from its children. This variable is used to

implement a simple barrier. The FC only passes control to its parent NC after these

children (the number is given by doneCount) have finished their previous computation.

The other two tasks rely on the model coupling information that is loaded into the main

administrator of the simulation administration facility during the bootstrap operation.

 50

Figure 30. FC algorithm for (I, t)

When (I, 0) is received, the FC records the total number of its children in a

variable named as doneCount then forwards the (I, 0) message to each child. After this,

the FC waits for all its children to respond to this initialization by sending back a (D, 0).

The FC will only pass the control over to the NC if all its children have finished their

previous computation and have sent done messages as notification messages.

insertMsg(

x)FC

(@,t)

child

tL= 0, ta = 0

*for each imminent child with tN = t

send(@, t)

cachSyncSet(child)

Figure 31. FC algorithm for (@, t)

Upon receiving a (@, t) message, the FC forwards it to all imminent Simulators

and will keep a record of this for later use (to know which children need to do state

transitions when (*, t) is received).

 51

Figure 32. FC algorithm for (y, t)

Moreover, when (y, t) is received, the FC searches the model coupling

information to find out the correct destination. The destination is either an input port on

an atomic model, or an output port on the topmost coupled model.

Figure 33. FC algorithm for (x, t)

In case of receiving (x, t) message, the FC will simply insert the message into its

message bag.

Figure 34. FC algorithm for (*, t)

 52

Upon receiving (*, t) message, the external messages inside the FC’s message bag

are flushed to the local receiving Simulators. This will trigger the imminent Simulators to

perform a state transition.

Figure 35. FC algorithm for (D, t)

Finally, when a (D, t) message is received from a child Simulator, the FC updates

the child’s tN to the sum of the current simulation time and the sigma value carried by the

received (D, t) message.

€ Node Coordinator

Each LP has one NC that acts as the local central controller in charge of the

sequential simulation on the hosting machine. It has a single child, the FC underneath.

The NC on machine 0 also has a parent, the Root. The NC plays a very important role in

the simulation as summarized below:

1) It takes care of the inter-LP communication among the Simulators. The

messages exchanged between the NCs is handled using a special structure, the

NC Message Bag.

2) It is responsible for handling the external events from the environment that

are known prior to the start of the simulation and are scheduled by the

modeler using a text file, namely EV file. These external events are loaded

into the NCs during the bootstrap operations by the main administrator.

Each NC uses a structure called Event List to hold those external events it

needs to handle during the simulation. Events in the structure are sorted so

that they can be processed in increasing timestamp order. The NC uses a

 53

pointer called event-pointer to reference the first event that has not yet been

sent out. Initially, this pointer points to the first event in the list.

3) It synchronizes the activities of all local processors and drives the simulation

on the hosting LP. The local simulation time is advanced by the NC based

on three factors: the external events in its Event List, the external messages

received in its NC Message Bag, and the closest state transition time

provided by the FC.

4) It manages the flow of control messages for the local Simulators in line with

the Parallel DEVS formalism. For example, the formalism requires that the

output operation must take place just before the state transition in imminent

Simulators. Hence, the NC must ensure that the collect message, which

triggers the output operation, will be received by imminent Simulators

before the internal message, which results in the state transition. The correct

sequence of these control messages is manipulated using a flag, namely

next-message-type, which is defined in the state of the NC. It may have a

value of collect (@) or internal (*), corresponding to the type of the control

message that will be sent out by the NC in the next simulation cycle. The

initial value of the flag is set to @.

Figure 36. NC algorithm for (I, 0)

Upon receiving (I, 0), the NC simply forwards it to the child FC.

Figure 37. NC algorithm for (x, t)

 54

In case of receiving (x, t), NC will insert this message into the NC Message Bag.

These external messages contain values sent from remote Simulators to local ones.

Figure 38. NC algorithm for (y, t)

When (y, t) is received the NC simply forward it the Root (it has to be sent to the

environment).

Finally, reception of a (D, t) message by the NC from a child FC indicates that

this is a response to a control message that was previously sent out by the NC.

€ Root

This processor only handles environment-oriented output messages during the

simulation. Output to the environment is done through a test file called as output file or

OUT file.

Figure 39. Root algorithm for (y, t)

When an output message is received by the Root, it checks to see whether the

OUT file is ready. If so, the Root finds out all output ports on the TOP model to which

the message will be eventually sent. Then, it creates a FileData object from the output

message for each of these ports. These data objects are inserted into the file queue

corresponding to the OUT file. Finally, the data in the file queue will be flushed out to

the physical file by the kernel when GVT advances.

 55

CHAPTER 5 CELL -DEVS MODELS IN THE CD ++ TOOLKIT

The CD++ toolkit [Wai02, Tro03] is a modeling and simulation toolkit that implements

the original and Parallel DEVS and Cell-DEVS formalisms. Detailed discussion about

CD++ toolkit was presented in Section 2.3. In this chapter we will present different

models implemented in Cell-DEVS on our CD++ toolkit including: Game of Life

(demonstrates the famous Conway’s Game of Life), Synapsin-Vesicle Reaction at Nerve

Terminal (represents the interaction of synapsin with vesicles at nerve terminal), Fire

Spread (illustrates fire propagation in a forest), and Ship Evacuation (an emergency ship

evacuation scenario).

5.1. GAME OF LIFE

The Game of Life was created by mathematician John Conway in 1970 [Gar70]. It is the

best-known example of cellular automata algorithms. The standard Game of Life uses a

two-dimensional grid. We will use this simple example to show the basic facilities of

CD++ to define model’s rules. Cells can be either on (alive) or off (dead). As presented

in Figure 40, the neighborhood of a cell consists of eight cells surrounding it.

(-1, -1) (-1, 0) (-1, 1)
(0, -1) (0, 0) (0, 1)
(1, -1) (1, 0) (1, 1)

Figure 40. Game of life cell neighborhood

 The key rule is known as “B3/S23”: a new cell is born when it has exactly 3

neighbors; an existing cell (alive cell) survives if it has 2 or 3 neighbors. In all other cases

the cell dies, either of overcrowding (with more than three live neighbors) or loneliness

(with less than two). At each time step all cells update their state simultaneously. We

have modeled the Game of Life using CD++, on a 20x20 cell grid (400 cells). The model

definition is shown in Figure 41.

 56

1. [top]
2. components : life

3. [life]
4. type : cell
5. width : 20
6. height : 20
7. delay : transport
8. defaultDelayTime : 100
9. border : wrapped
10. neighbors : life(-1,-1) life(-1,0) life(-1,1)
11. neighbors : life(0,-1) life(0,0) life(0,1)
12. neighbors : life(1,-1) life(1,0) life(1,1)
13. initialvalue : 0
14. initialrowvalue : 5 00000001110000000000
15. initialrowvalue : 7 00000100100100000000
16. initialrowvalue : 8 00000101110100000000
17. initialrowvalue : 9 00000100100100000000
18. initialrowvalue : 11 00000001110000000000
19. localtransition : life-rule

20. [life-rule]
21. rule : 1 100 { (0,0) = 1 and trueCount = 5 }
22. rule : 1 100 { (0,0) = 0 and trueCount = 3 }

23. rule : 0 100 { t }

Figure 41. Game of life model definition in CD++

 As shown on the model definition, the “born” rule is defined by line 22, the

“survive” rule is defined by line 21, and the “die” rule is defined by line 23. Figure 42

will show the gird values starting at time 00:00:00:000 until the end of the simulation

which is at time 00:00:00:300. Initially the grid is seeded by a number of live cells by

setting the value of the cell to ‘1’. As the rules are evaluated, more cells are born and

finally, at some time they will die until no live cell is left.

Figure 42. Game of life cell values throughout the simulation

Using CD++, the model has been drawn on a 20x20 cell grid. Figure 43 illustrates

the cell gird at four different time stamps of the simulation. The first cell grid shows the

initial scenario where seventeen alive cells exist. As the simulation proceeds, either new

cells are born or live cells die (based on the “B3/S23” rule). After a while, every live cell

 57

stays alone with no live neighbors. As a result, according to the game rules, the remaining

cells die of loneliness.

Figure 43. Game of life model at four different time steps throughout the simulation

5.2. SYNAPSIN-VESICLE REACTION AT NERV TERMINAL

We have modeled the reserve pool of synaptic vesicles in a presynaptic nerve terminal,

predicting the number of synaptic vesicles released from the reserve pool as a function of

time under the influence of action potentials at differing frequencies. Time series

amounts for the components are obtained using rule-based methods (the rules defined by

Cell-DEVS) [Ala07, Jaf07]. This model was created in collaboration with the Department

of Biology at Carleton University. Creating this model in CD++ allows spatial description

of synapsin-vesicle interactions. CD++ toolkit makes it possible to have a 2-D graphical

representation of this model. As a result a comparable model to the real scene observed in

microscopic devices is created.

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles

and actin filaments in a phosphorylation-dependent pattern. Microscopic models have

demonstrated that synapsin inhibits neurotransmitter release either by forming a cage

around synaptic vesicles (cage model) or by anchoring them to the F-actin cytoskeleton

of the nerve terminal [Ben90].

We modeled the molecular interaction of synapsin (S) with vesicles (V) which

occur inside a nerve cell. The model describes the behavior of synapsin movements until

reaching a vesicle and binding to it. Once binding has occurred, depending on offrate V

and S can again go apart and break their bindings. The onrate and offrate describe how

often bindings occur or break then after. The following formula describes the nature of

the reaction:

 58

S + V ↔ SV

From the above formula, the left hand side of the equation demonstrates the

binding scenario where synapsin and vesicles perform a bind at a rate specified by onrate,

while the right hand side of the equation illustrates the bind-break scenario where an

synapsin-vesicle at an offrate which is always smaller than onrate breaks apart and again

synapsin and vesicles get released. Then, synapsin and vesicles can again perform binding

and break apart then after. This equation shows an on-going process of “binding” and

“breaking apart” which depends on offrate/onrate. The larger the offrate is, the more

bindings get broken apart. Similarly, the larger the onrate is, the more V-S binds are

produced. Three different scenarios are modeled: 1) V is stationary (with a fixed position

on cell space), and S is mobile, 2) V is mobile and S is stationary, and 3) V and S are

both mobile (leads to maximum number of total movements and therefore bindings).

Binding patterns are in such a way that each S can bind to more than one V, and V can

bind to more than one S. Examples of such binding would be:

 S-V-S-V

 | |

V-S-V-S-V-S-V

Each cell space in Cell-DEVS is used to represent one S or V. The neighboring

pattern of V and S is in such a way that they can be adjacent cells or diagonal cells, as

shown in the following Figure (Gray – Red Cell = S, Black - BlueCell = V).

Diagonal Neighbors

Adjacent Neighbors

Figure 44. Neighborhood definition

The model uses 100 V and 100 S molecules in a 26x22 cell space. Mobile S or V

change position to up, down, left, and right at random. The coupled Cell-DEVS model for

this application is described as follows.

M=<I,X,Y,Xlist,Ylist, η, N,{m,n}, C, B, Z, select>

 59

Xlist=Φ Ylist=Φ η=9 I=<PX,Py>,with PX={Φ},Py={Φ};

N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) };

X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};

Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};

m=26; n=22; B={Φ}; C={Cij/i ε[1,26], jε[1,22]}

select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) };

Z:

Pij Y1 → Pi,j-1 X1

Pij Y2 → Pi+1,j X2

Pij Y3 → Pi,j+1 X3

Pij Y4 → Pi-1,j X4

Pij Y5 → Pij X5

Pi,j+1 Y1 → Pij X1

Pi-1,j Y2 → Pij X2

Pi,j-1 Y3 → Pij X3

Pi+1,j Y4 → Pij X4

Pij Y5 → Pij X5

On the cell space, the value 1 is used to represent V, and the value 2 is used to

represent S. The number 0 represents an empty cell by which a mobile S can occupy. To

give direction to the V (although the model assumes fixed V) or S, a two digit number

was used. For example, the following represent:

Figure 45. Determining the direction

As mentioned earlier, the model constructed can be further extended to include

the movement of both synapsin (S) and vesicles (V) as well as defining different off and

on rates. Aside from V-S reactions, the model can also include Actins, which bind to

synapsins. Actins can be represented as a string of cells being fixed at their cell space

position. An extract of the model’s definition in CD++ is shown in Figure 46:

 60

Figure 46. Definition of Synapsin-Vesicle Reaction model in CD++

The detailed explanation of each part of the model rules are defined as follows:

In the above two rules, the cells are first initialized with 11-14 (for Vesicles) and

21-24 (for Synapsin) to show the scenario at time = 0, where bindings have not yet been

performed. Once bindings occur, cells change their values; 11-14 get replaced with 31-

34, and 21-24 get replaced with 41-44. Also for Synapsins, four intermediate values 91-

94 are used to represent a moving cell that has not yet being settled down. Once it settles

down its value changes back to 21-24 (depending on its direction of movement) and gets

ready to bind to a vesicle in its neighborhood.

 61

The above rule describes the following scenario: if there exists a synapsin having

the value 21, 22, 23, or 24 (a synapsing that can move up/right/down/left) and there is a

vesicle in its neighboring which could be an adjacent cell or a diagonal cell, then the

synapsin (red cells) will move toward this vesicle and a binding will occur soon, the

value of the synapsin gets changed to 31, 32, 33, or 34 (i.e. 21 changes to 31, 22 changes

to 32, 23 changes to 33, and 24 changes to 34) to represent a synapsin that is bonded to a

vesicle.

Similarly, the above rule describes the following: if there exists a vesicle having the

value 11, 12, 13, or 14 (a vesicle that can move up/right/down/left) and there is a

synapsin in its neighboring which could be an adjacent cell or a diagonal cell, then since

the synapsin will come toward this vesicle and a binding will occur soon, the value of the

vesicle gets changed to 41, 42, 43, or 44 (i.e. 11 changes to 41, 12 changes to 42, 13

changes to 43, and 14 changes to 44).

 For the movement of synapsin the following four rules are implemented: (each

movement is performed in three steps)

 62

step 1: checking to see if there is an empty cell so the synapsin can move into it, for

example if the synapsin’s direction is upward (value = 21), then at first we need to

check if there is an empty cell right above it. (91 is used as an intermediate value to

occupy the empty cell)

step 2: once an empty cell is found, it gets occupied by the synapsin (i.e. the cell’s

value changes from 0 to a random number 21-24).

step 3: the previous position of the synapsin that just moved to an empty cell gets

cleared by setting the value of the cell to 0.

Same procedure is used for right, left, and down movement.

The above rule is used to break the S-V bindings using an offrate = 0.10.

According to this rule, 10% of the bindings get broken and as a result synapsins get

released and will be given another direction and they will move around until finding a

vesicle and binding to it.

 63

Figure 47 shows the grid at the initial case where S and V have not yet interacted

to perform a bound (bold boxes represent examples of binding structures). Then, Figure

48 will show how bounds are formed and the corresponding cells change their values to

represent the binding.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 24 14 24 23 23 11 13 21 22 12 |
 1| 12 23 13 22 14 12 22 12 23 13 |
 2| |
 3| 12 12 11 23 14 13 21 22 23 22 23 11 |
 4| 23 11 14 11 22 22 23 13 14 14 23 |
 5| |
 6| 12 22 12 23 23 13 22 23 13 13 11 22 |
 7| 13 21 24 23 12 12 22 14 24 13 22 |
 8| 12 22 13 22 23 23 11 13 14 22 13 24 |
 9| |
 10| 12 13 12 13 23 23 11 23 24 11 |
 11| 12 22 24 22 12 13 13 22 24 22 13 |
 12| 13 22 13 24 12 14 24 24 12 22 12 |
 13| 24 13 24 12 13 22 12 24 12 21 14 |
 14| |
 15| 13 22 21 22 12 14 12 13 24 23 13 |
 16| 12 23 11 23 21 22 13 21 14 21 12 13 |
 17| 12 13 12 12 22 21 12 21 22 12 |
 18| |
 19| 14 22 13 22 14 11 23 13 24 13 |
 20| |
 21| 14 23 23 24 11 23 22 23 13 12 13 |
 22| 21 12 24 |
 23| 22 13 |
 24| 12 24 13 22 21 21 12 14 12 22 12 23 |
 25| 12 21 22 23 12 14 12 21 22 23 14 |
 +--+

Figure 47. V and S before binding at Time: 00:00:00:100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 32 41 22 32 34 31 44 42 34 31 12 |
 1| 12 32 44 21 42 12 23 42 32 13 |
 2| |
 3| 41 42 41 32 14 42 32 22 33 33 44 |
 4| 32 43 14 41 34 23 13 43 14 32 |
 5| 33 |
 6| 42 33 44 32 31 43 32 21 44 42 42 34 |
 7| 42 31 34 32 41 42 23 42 32 44 31 |
 8| 12 31 41 24 34 33 41 13 43 34 42 31 |
 9| |
 10| 42 44 42 41 23 31 43 32 33 11 |
 11| 41 32 32 33 44 44 13 33 33 33 43 |
 12| 42 31 41 32 42 43 33 32 12 22 12 |
 13| 22 41 32 42 13 34 42 32 44 31 14 |
 14| |
 15| 41 34 32 33 44 42 42 42 34 32 13 |
 16| 44 31 42 31 31 31 42 31 44 33 41 13 |
 17| 12 43 43 42 32 31 44 33 12 |
 18| 24 |
 19| 14 22 13 32 14 42 31 13 33 13 |
 20| |
 21| 43 33 22 44 31 22 13 44 13 |
 22| 23 32 42 32 33 |
 23| 33 41 |
 24| 12 33 43 31 33 33 42 14 42 23 44 34 |
 25| 42 32 34 41 42 42 31 34 21 14 |
 +--+

Figure 48. V and S after binding at Time: 00:00:00:300

 64

As illustrated on the above figures, the bold boxes show bindings between

synapsin (31-34) and vesicle (41-44). The first illustration (Figure 47) represents the

initial scenario where synapsins (21-24) and vesicles (11-14) are free and have not yet

performed bindings. Once synapsins walk toward vesicles, the values of the

corresponding cells change to 31-34 (bonded synapsins) and 41-44 (bonded vesicles). It

is shown that vesicles can be surrounded by more than one synapsin, but each synapsin

can bind to only one vesicle at any time.

From the above figure we can see the following possible binding scenarios:

→ corresponds to: V– S

 → corresponds to: S – V
 |

 S
Several initial parameters are tested in order to see the running process of cell

nerve with different offrate. The case presented in the following figure shows an offrate

of 0.1.

(a) (b)
Figure 49. Model Execution Results: (a) initial values; (b) final execution

The final execution results on Figure 49 present a stable image of synapsin-

vesicles bindings where single/double/multiple bindings had occurred within the neuron.

 65

5.3. FIRE SPREAD MODEL

In this section we present Fire Spreading Model introduced in [Ame01], which represents

a fire propagation scenario in forest based on Rothermel’s mathematical definition

[Rot72]. The model computes the ratio of spread and intensity of fire in forest based on

specific environmental and vegetation conditions. Three parameter groups determine the

fire spread ratio: 1) vegetation type (caloric content, mineral content and density); 2) fuel

properties; 3) environmental parameters (wind speed, humidity, and field slope). Figure

50 shows the definition of the model in CD++ using environmental values obtained for a

fuel model group number 9, a SE wind of 24.135 km/h and a cell size of 15.24×15.24 m.

Figure 50. Definition of the fire propagation model in CD++

The model consists of 900 cells arranged in a 30×30 mesh, where each cell has

the following neighborhood pattern.

(-1, -1) (-1, 0) (-1, 1)
(0, -1) (0, 0) (0, 1)
(1, -1) (1, 0) (1, 1)
Figure 51. Fire cell neighborhood

 As mentioned previously, the precondition, delay time, and postcondition rules

are based on the mathematical models defined by Rothermel. The fire starts from one cell

and propagates throughout the cell grid. Initially, all cells except one are given the value

‘0’ to indicate absence of fire. As the simulation time advances, rules get evaluated to

true and fire appears in cells by changing their value to a non-zero number. The fire

 66

sparks from a predefined cell initialized to ‘1’. The initial scenario of the grid at time

00:00:00:000 is presented in Figure 52. The final scenario (Figure 53) shows the fire

spread at time 01:59:40:578 where the fire has propagated in the direction of wind.

Figure 52. Fire propagation model - initial scenario at time 00:00:00:000

Figure 53. Fire propagation model - final scenario at time 01:59:40:578

Using CD++, the model has been drawn on a 30x30 cell grid. Figure 54 illustrates

snapshots of the simulation results at four different times. Initially, fire starts as fire spot

(the dark cell on the grid). Then as time passes by, fire spreads to the neighboring cells in

the direction of wind. Therefore, each cell, depending on its position and heat, fires its

surrounding cells. As presented on the final scenario of Figure 54, the wind direction

leads the fire from the starting point, cell (19, 10), towards southeast of the forest.

 67

Figure 54. Fire propagation at four different snapshots throughout the simulation

5.4. SHIP EVACUATION MODEL

Based on the model defined in [Klu01], the model we present is the illustration of an

emergency ship evacuation scenario. The model consists of 20×20 cell space, using rules

with the following restrictions:

1. Each cell representing a person on the ship, calculates its shortest path toward the

exit. During the initialization phase, people are placed randomly in any empty

cell to imitate real ship evacuation scenario.

2. People run in their initial direction until they encounter another person or an

obstacle (e.g. wall).

The neighborhood of each cell consists of 10 cells which will affect the cell’s

movement (i.e. they can be walls, exit doors, people, or empty cells) as shown in Figure

55.

UU (-2,0)

U (-1,0)

(0,0)

D (1,0)

UL (-1, -1)

L (0, -1)

DL (1, -1) DR (1, 1)

R (0, 1) RR (0, 2)

UR (-1, 1)

Figure 55. Cell neighborhood

From the above figure we can see that the neighborhood consists of 11 cells. Each value

on the cell space defines a distinct state, such as the type of the cell: wall, empty, exit

door, a moving person. Also each type of movement is given a state value in order to

identify the next position of the person. Table 1 summarizes these values.

 68

State Name Value Comments

N/A 0 Unknown Empty cell.
Wall 1 Represents an obstacle or a wall.
Exit 2 Represents an exit (e.g. stairs, door).
ED 3 Empty cell and its down (D) cell is the shortest path to the

nearest exit.
ER 5 Empty cell and its right (R) cell is the shortest path to the

nearest exit.
EU 7 Empty cell and its up (U) cell is the shortest path to the

nearest exit.
EL 9 Empty cell and its left (L) cell is the shortest path to the

nearest exit.
FD 4 A Full cell (cell with person) and its down (D) cell is the

shortest path to the nearest exit.
FR 6 A Full cell (cell with person) and its right (R) cell is the

shortest path to the nearest exit.
FU 8 A Full cell (cell with person) and its up (U) cell is the

shortest path to the nearest exit.
FL 10 A Full cell (cell with person) and its left (L) cell is the

shortest path to the nearest exit.
Table 1. State values and their description

Figure 56 shows an extract of the model’s definition in CD++.

Figure 56. Definition of ship evacuation model in CD++

 69

The first four rules initialize the model by calculating the shortest path for each

undefined cell and placing people on the cell space randomly. The algorithm works as

follows: when a cell detects that one of its attached cells has changed its state to

“defined”, it would know that the attached cell is the shortest path.

Result Precondition
3 or 4 → ED or FD state (0,0) = Undefined and (1,0) is defined.

5 or 6 → ER or FR state (0,0) = Undefined and (0,1) is defined.

7 or 8 → EU or FU state (0,0) = Undefined and (-1,0) is defined.

9 or 10 → EL or FL state (0,0) = Undefined and (0, -1) is defined.

Table 2. Initialization rules

The above four rules are implemented in the “init rules” section in Figure 56. The

first initialization rule indicates that if the current cell is undefined and the one below it is

defined, then the current cell will be randomly changed to an empty or full cell whose

down (D) cell is the shortest path to the nearest exit. The second initialization rule

indicates that if the current cell is undefined and the one on its right is defined, then the

current cell will be randomly changed to an empty or full cell whose right (R) cell is the

shortest path to the nearest exit. Similarly, the third initialization rule states that if the

current cell is undefined and the one above it is defined, then the current cell will be

randomly changed to an empty or full cell whose up (U) cell is the shortest path to the

nearest exit. Finally, represented by the fourth init rule, if the current cell is undefined

and the one on its left is defined, then the current cell will be randomly changed to an

empty or full cell whose left (L) cell is the shortest path to the nearest exit.

Then the second set of rules defines the case when a cell knows that a person will

move towards it. The cell knows it will soon be occupied by a person if it is empty and it

is the shortest path to at least one cell with a person occupying it.

Result Precondition

 4 → FD state (0,0) = ED and ((0,1) = FL or (-1,0) = FD or (0,-1) = FR)

6 → FR state (0,0) = ER and ((1,0) = FU or (-1,0) = FD or (0,-1) = FR)

8 → FU state (0,0) = EU and ((1,0) = FU or (0,1) = FL or (0,-1) = FR)

10 → FL state (0,0) = EL and ((1,0) = FU or (0,1) = FL or (-1,0) = FD)

Table 3. Walking rules

 70

The above four rules are implemented in the “walking rules” section in Figure 56.

The first walking rule indicates that when the current cell is empty and its down (D) cell

is the shortest path to the nearest exit and there is at least one full cell below, or on its

right or left, then the current cell is changed to a full cell heading towards down. The

second walking rule indicates that if the current cell is empty and its right (R) cell is the

shortest path to the nearest exit and there is at least one full cell above, below, or on its

right, then the current cell is changed to a full cell heading towards right. Third walking

rule represents the case where the current cell is empty and the cell above it is the shortest

path to the nearest exit and also there is at least one full cell above, or on its right or left,

then the current cell is changed to a full cell heading towards up. Finally, the fourth

walking rule states that if the current cell is full and the cell on its left is the shortest path

to the nearest exit and also there is at least one full cell above, below, or on its left, then

the current cell is changed to a full cell heading towards left.

The third set of rules defines the case when a cell occupied with a person is

attached to the exit. Then, the cell knows that a person will leave it and exit.

Resulted State Input Values
 3→ ED state (0,0) = FD and (1,0) is exit.

5→ ER state (0,0) = FR and (0,1) is exit.

7→ EU state (0,0) = FU and (-1,0) is exit.

9→ EL state (0,0) = FL and (0,-1) is exit.

Table 4. Exit rules

These rules are implemented in the “exit rules” section in Figure 56. The first exit

rule indicates the scenario at which the current cell is occupied by a person who is

moving downward and the cell below is an exit door, therefore, the person will leave and

the current cell’s state changes to an empty cell whose down cell is the shortest path to

the exit. The second exit rule indicates that the current cell is occupied by a person who

is moving rightward and the cell on the right side is an exit door, therefore, the person

will leave and the current cell’s state changes to an empty cell whose right cell is the

shortest path to the exit. The third exit rule states that if the current cell is occupied by a

person who is moving upward and the cell above it is an exit door, then the person will

leave and the current cell’s state changes to an empty cell whose up cell is the shortest

 71

path to the exit. Finally, the last exit rule indicates the scenario at which the current cell is

occupied by a person who is moving leftward and the cell on its left is an exit door,

therefore, the person will leave and the current cell’s state changes to an empty cell

whose left cell is the shortest path to the exit.

Then the fourth set of four rules defines when a cell knows that a person will

leave it when it is not near an exit. The cell knows that a person will leave it when it is

already occupied by a person and its shortest path cell is empty. However, only one

person can move to the empty cell when more than one person is trying to move to the

same cell. In this case, the priority is first with the person who is in the upper cell,

second the one in the right cell, third the one in the down cell, and finally the one in the

left cell has the lowest priority.

Result Precondition

 3 → ED state (0,0) = FD and down (D) cell is empty.
 5 → ER state (0,0) = FR and right cell (R) is empty and UR,RR, and

DR cells don’t have a person moving to R.

 7 → EU state (0,0) = FU and upper cell (U) is empty and UU and UR
cells don’t have a person moving to U.

 9 → EL state (0,0) = FL and left cell (L) is empty and UL doesn’t
have a person moving to L.
Table 5. Changing direction rules

These rules are defined in the “changing direction” section in Figure 56. The first

rule indicates that if a cell is occupied with a person whose direction is down (D), then if

the cell below the current cell is empty, the person can move down by one cell. The

second rule indicates the case where the current cell is full with a person who is wishing

to move right, therefore if the cell on the right side of the current cell is empty, the person

can move right. The third rule describes the situation where a cell is occupied by a person

with upward direction, therefore, if the cell above the current cell is empty the person will

move up. Finally, if the current cell is full, being occupied by a person whose direction is

leftward, if the cell on the left side of the current cell is empty then the person will move

left by one cell.

The ship evacuation model can be modified by adding more exit doors or

changing the position of these cells. Using CD++ Modeler [Wai02], the initial cell space

at time zero and at the end of simulation when everybody has left through the exit doors

 72

are illustrated in Figure 57. Initially four different types of cells appear on the grid: empty

spaces, walls, people, and exit doors, while the final result of the simulation shows no

presence of people, i.e. the ship is evacuated.

Time 00:00:00:000 Time 00:00:00:200 Time 00:00:00:500 Time 00:00:00:600

Figure 57. Model Execution Results

 73

CHAPTER 6 THE NEW OPTIMISTIC PCD ++ SIMULATOR

In Chapter 4 we introduced our two existing parallel simulators, namely the conservative

PCD++ simulator [Tro01] and the optimistic PCD++ simulator [Liu06]. We have

modified the WARPED kernel to handle rollbacks in a more efficient way. In this Chapter,

we will present two new algorithms that we have implemented in WARPED kernel. Section

6.1 will introduce the rollback mechanism of the optimistic PCD++ simulator. Then, in

Section 6.2 the Near-perfect State Information protocol will be discussed. Finally, our

new algorithms; Local Rollback Frequency Model (LRFM) and Global Rollback

Frequency Model (GFRM) will be presented in Section 6.3 and 6.4 respectively.

6.1. ROLLBACK MECHANISM OF OPTIMISTIC PCD++

The WARPED kernel mechanisms are based on a set of standard settings such as: Least-

Time-Stamp-First (LTSF) scheduling, copy state saving, passive response GVT (pGVT)

algorithm, and fossil cancellation. Using these properties, the scheduling, rollback, and

GVT facilities are simplified. The reliable communications over First-in, First-out (FIFO)

channels improve Jefferson’s definition [Jef85] where he did not assume this order

preservation in the communication medium. Furthermore, the kernel uses a predefined

ordering scheme for simultaneous events. Thus, events with the same timestamps are

ordered based on the identities of their receivers. The input events at the same virtual

receive time are ordered based on their arriving order (i.e. the sequence by which they

are received at), while the output events with the same virtual send time are ordered

based on their sending order (i.e. the sequence by which they are sent at) [Liu06].

Another restriction is that the timestamp of each event in a process must be less than or

equal to the timestamp of the next event in that process [Liu06].

 The major internal structures defined in the WARPED kernel include such entities

as Logical Process (LP), LTSF scheduler, communication manager, GVT manager, state

manager, and simulation objects. Moreover, there are three types of queues used by these

 74

entities: input queue (IQ), output queue (OQ), and state queue (SQ). These structures and

the relationship among them are shown in Figure 58.

GVT

Manager

LTSF

Scheduler

C
o
m

m
u
n

ic
at

io
n
 M

an
ag

er

Simulation

Object

IQ

State

Manager

Simulation

Object

State

Manager

GVT

Manager

LTSF

Scheduler

C
o
m

m
u
n

ic
at

io
n
 M

an
ag

er

Simulation

Object

IQ

State

Manager

Simulation

Object

State

Manager

LP0 LP1

Partition

Line

Processor0 Processor1 MPI communication

 Direct communication

SQ

OQ

OQ

SQ

OQ

SQ

OQ

SQ

Figure 58. Internal structures in the WARPED kernel

From the diagram we can see that the simulation system (global level) in this

example is partitioned into two parts, with each part mapped onto a dedicated processor.

All simulation entities on a processor are grouped together by a LP (partition level) that is

bound to a physical process. On each processor, the main event processing loop is

performed sequentially by the corresponding LP. Processor parallelism occurs at the

partition or LP level. Simulation objects (local level) within a LP share a communication

manager, a LTSF scheduler, and a GVT manager.

Each simulation object has its own state manager, which manages a state queue

on behalf of the object. Each simulation object also has an output queue containing

messages the object has recently sent, kept in virtual send time order. All simulation

objects within the same LP share a single input queue holding all recently arrived

messages sorted in virtual receive time order. Arrangements have been made so that each

simulation object seems to have its own logically dedicated input queue. Furthermore,

each simulation object may optionally create one or more file queues, which are not

shown in the diagram, corresponding to the output files used by the object during the

 75

simulation. The output data are placed temporarily as data objects in these file queues.

Physical output activity can only be committed when GVT exceeds the virtual time of

these data objects. The simulation objects on all processors must form a complete

partitioning of the system. As required by the Time Warp protocol, each simulation

object also has a local clock whose value is the current simulation time on that object.

The scheduler selects an event from the input queue in each simulation cycle

based on the LTSF algorithm, it then invokes a “process-event” callback provided by the

application programmer for the receiving simulation object to execute this event.

Maintaining all input events in a single input queue greatly simplifies the scheduling

operations as the scheduler has a single access point to all these events.

Inter-LP communications are done by the communication manager over MPI,

while intra-LP communications between any two simulation objects and between a

simulation object and the communication manager are performed by direct function

invocations. Thus when a simulation object on LP0 needs to send an event to another

simulation object on LP1, it passes the event to the local communication manager, which

then wraps the event into a MPI message and forwards it to the destination LP. On the

receiving end, LP1 polls the communication channel regularly and once an incoming

MPI message is detected, the communication manager on LP1 receives the message,

retrieves the event in it, and delivers the event to the destination simulation object on

LP1.

The GVT manager is the entity that operates at the global or system level. Special

kernel messages are passed among the GVT managers in the system, implementing a

specific GVT calculation algorithm. Each GVT manager performs the fossil collection

operations for all simulation objects within the same LP once the GVT goes forward.

Implementing rollback is the task of the local control mechanism in Time Warp and the

rollback operations are performed by the simulation objects at the local level.

6.1.1. Types of rollbacks

The kernel provides two control mechanisms to handle rollbacks: 1) a rollback

mechanism which is implemented at each individual simulation object at the local level,

and 2) GVT calculation and fossil collection which is implemented by the LPs at the

 76

global level [Liu06]. Rollbacks are triggered on a simulation object by incoming straggler

messages and anti-messages at the time when these messages are inserted into this

object’s input queue. There are three types of rollbacks that can happen in the kernel:

primary, secondary, and cascaded which are discussed in the following points.

€ Primary rollback

A typical scenario of the runtime representation of a simulation object before

primary rollback is depicted in Figure 59.

Figure 59. Runtime representation of a simulation object

In the diagram, an input event is depicted as a block with the receive time of the

event shown on it. On the other hand, an output event is shown as a block with its send

time. States saved on the state queue are pictured as boxes with three values: the Local

Virtual Time (LVT) of the simulation object (as shown in the box), a pointer, inPos,

pointing to the event just executed, and another pointer, outPos, identifying the last

message sent by the simulation object. Let’s denote the states shown in the diagram as

S(12), S(21), and S(35).

The figure shows that this simulation object has executed events with receive time

12, 21, and 35, notated as E(12), E(21), and E(35) respectively. After executing these

events, the simulation object’s LVT is set to 35, the receive time of the last event

executed. The simulation object sent three messages when E(12) was executed, while two

messages were sent out when E(35) was executed. These output messages are recorded in

the output queue in increasing send time order. Notice that there is no output message

generated as the result of executing E(21). Hence, the outPos of S(21) still points to the

last output message in the previous cycle, which is also referred by the outPos of S(12).

 77

Now let’s consider an event E(18) arriving at this simulation object. When it is

inserted into the input queue, the kernel rollback facility finds out that the receive time of

this incoming event is strictly less than the current LVT, thus the event is identified as a

straggler event, and a primary rollback will be performed on this simulation object. The

receive time of the straggler event is referred to as rollback time in our following

discussion. Here, the rollback time is 18.

Figure 60. Actions performed during primary rollback

The actions performed by the kernel rollback facility during primary rollback are

illustrated in Figure 60 and described as follows:

1) Insert the straggler event E(18) into the input queue.

2) Undo those previously processed events following E(18) in the input queue.

As shown in Figure 60(a), E(21) and E(35) are unprocessed.

3) Search the state queue to find the last state saved before the rollback time, and

then restore the simulation object’s current state based on that state.

Therefore, the content of the object’s current state is an exact duplicate of

S(12). Notice that when copying a state, all data contained in the state are

copied, including the values of the inPos and outPos.

4) Discard from the state queue all states after S(12).

5) Reset the object’s LVT to the recorded value in the object’s current state.

Since the object’s current state is now a copy of S(12), the LVT is reset to 12.

6) Rollback file queues, if any, associated with this simulation object, which is

not shown in the diagram. The simulation object may create output files and

the output data are contained in the corresponding file queues in increasing

 78

virtual time order. Rollback of these file queues are simply done by removing

all data with virtual time greater or equal to the rollback time.

7) Find the last output message sent during executing E(12) from the output

queue. This can be done with ease in constant time since the outPos of the

restored state, S(12), is pointing exactly to that message.

8) Send all messages in the output queue after the last output message found in

step 5 as anti-messages to their receivers, as shown in Figure 60(b).

After these operations, the kernel resumes normal execution forward again.

We can see from step 6 that anti-messages may be emitted at the end of the

primary rollback to remove the effects of incorrect computations on other simulation

objects, both locally within the same LP and remotely on other processors in which case

the anti-messages are sent as MPI messages through the communication manager.

€ Secondary rollback

Secondary rollback on a simulation object is caused by receiving an anti-message.

Depending on whether the corresponding positive message is processed or not, there are

two kinds of scenarios that could happen here:

The first scenario is when the positive event has already been processed. Thus, the

simulation object receives an anti-message tagged with a negative time. For example, the

anti-message of E(21) is denoted as E(-21). The actions performed by the kernel for this

type of rollbacks are described as follows.

(1) Perform a message annihilation operation to delete both the original

message and its anti-message counterpart.

(2) Follow step 2 to step 8 of the primary rollback operations as presented

earlier but using the timestamp of the anti-message as the rollback time.

We can see that the operations performed here largely remain the same as those of

primary rollbacks except that a message annihilation operation replaces the previous

enqueue operation.

In the second scenario, the positive event has not yet been processed by the

simulation object. The only action that needs to be done is a message annihilation

operation for the anti-message. The simulation object continues to execute the next

available event after the annihilation.

 79

As in the case of primary rollback, there is the issue of identifying the type of the

straggler event. There has to be dedicated mechanism to deal with the positive events,

processed and unprocessed, that have the same timestamp as the anti-message during

secondary rollbacks.

€ Cascaded rollback

The primary rollback triggered by a straggler message is the root cause of

rollbacks in Time Warp. Hence, rollback propagation starts with one primary rollback

and, probably, multiple rounds of secondary rollbacks occurring upon the arrival of anti-

messages at the destination simulation objects. The hosting simulation object of the

primary rollback is thus named as rollback originator, and the original primary rollback

of the propagation is called the root of the propagation. The levels of secondary rollbacks

may be to any depth, and there may even be circularity in the graph of anti-message

paths, but the propagation eventually terminates [Jef85].

During either type of rollback, there may be zero, one, or more anti-messages sent

out from the simulation object. The spreading of the anti-messages may happen with a

partition on the same processor or across the border of partitions to other processors.

Each of these anti-messages will trigger a further secondary rollback on the destination

simulation object. The secondary rollback is performed immediately upon the arrival of

the anti-message at the destination simulation object. Notice that a simulation object A

sends an anti-messages to simulation object B triggering a secondary rollback on B, and

then during the secondary rollback, B may send back anti-messages to A causing further

secondary rollbacks on A, which forms a circle in the graph of anti-message paths.

However, if we consider the propagation process in terms of rollbacks instead of

simulation objects, these circles disappear since the further secondary rollbacks on object

A are simply a deeper level of rollbacks resulting from the earlier secondary rollback on

object B. This suggests using a tree structure to depict the propagation process.

The propagation process can be described as traversing the whole tree from the

primary rollback (root of the tree). This operation backtracks, by returning from the

rollback function, to the most recent node that did not have further anti-message from

that rollback or a node that represents a remote subtree. Under this technique, the time

measured for the simulation object where the primary rollback takes place includes not

 80

only the time for the primary rollback itself, but also the time for all other local rollbacks

in the tree. This is one example that we should be careful about rollback operations.

6.2. NEAR-PERFECT STATE INFORMATION PROTOCOLS

The Near-perfect state information (NPSI) protocols proposed by Srinivasan [Sri98] are a

new class of synchronization for parallel discrete event simulation which outperform

Time Warp, both temporally and spatially. NPSI-based protocols dynamically control the

rate at which processes exploit parallelism achieving a more efficient parallel simulation.

In optimistic protocols such as Time Warp, logical processes execute events aggressively

assuming freedom from errors. Thus, the aggressive event execution would include risk

which is the potential at which erroneous results propagate to other LPs [Rey88]. The

NPSI protocols aim at controlling both aggressiveness and risk of optimism adaptively by

computing an error potential (EP). The EP of a process is defined as a function of the

states of other LPs participating in the simulation. It works as an elastic force which

sometimes blocks and sometimes frees the progress of the LP.

The optimism implemented by Time Warp protocol incurs three time costs: state

saving, rollback, and memory management [Sir98]. Furthermore, by restricting optimism

a forth time costs gets introduced; the lost opportunity cost which is defined as the

potential loss in performance when an LP is suspended form execution while it was safe

for it to continue. Thus, protocols that control optimism define the cost function as

follows:

Total cost = state saving cost + rollback cost + memory management cost +

lost opportunity cost.

Since the time cost of state saving can be a function of the size of the state and the

frequency rate at which it is saved, the Total cost function can be rewritten by omitting

the sate saving cost resulting in:

Total cost = rollback cost + memory management cost + lost opportunity cost.

As mentioned above, by limiting optimism the first two costs can be reduced. However,

as a result of this limitation, the lost opportunity cost would increase in return. Figure 61

illustrates this tradeoff.

 81

Figure 61. Tradeoff introduced by limiting optimism [Sri95]

From the graph we can see that the best performance is attained when the

controlled optimism eliminates both rollback and memory management cost and in return

adds zero lost opportunity cost [Sri98]. Optimism limiting protocols can achieve a good

balance by precisely identifying the incorrect computations and avoiding their

propagation. This can only be done by providing each LP with perfect state information

about other LPs. The issue is that due to various latencies in computing distributed

snapshots, it is impossible to obtain perfect state information. The NPSI mechanism

approximates perfect state information by using a dynamic feedback system that operates

asynchronously with respect to LPs. Hence, providing LPs with near-perfect state

information at low-cost.

The NPSI protocols are optimistic protocols that control the aggressiveness and

risk of LPs by dynamically computing near-perfect sate information. Design of such

protocols includes two phases:

1. Identifying the state information that is required for controlling optimism; and

2. Designing a mechanism that translates this information into control over an LP’s

optimism.

As mentioned previously, EPi is the value which controls the optimism of LPi.

Figure 62 represents a general framework for adaptive protocols.

 82

System

State

Event

Processing

and

Message

Sending

Error Potential
M1 M2

Figure 62. General framework for adaptive protocols [Sri98]

The NPSI protocol keeps each EPi up-to-date by evaluating the function M1 using

the near-perfect sate information it receives from the feedback system. On the other hand,

M2 function dynamically translates new values of EPi in the event execution and

communication rates.

In order to control the optimism of PCD++, we have modified WARPED [Mar99]

to implement a NPSI mechanism based on the number of rollbacks. The idea is to reduce

the number of rollbacks by suspending the simulation object within LP that has large

number of rollbacks and therefore blocking it from flooding the net with anti-messages.

However, the LP will still be able to receive input events and they will be inserted into

the corresponding message bags. After a predefined duration, the suspend simulation

object is released and will go on simulating. Based on previous research [Szu00], we

have implemented two new protocols, namely Local Rollback Frequency Model (LRFM)

and Global Rollback Frequency Model (GRFM) to limit the optimism of PCD++

simulator.

The main concept is to associate each LP with an error potential (EPi) to control

the optimism of LPi. During the simulation run, the value of each EP is kept updated by

evaluating M1 function which uses state information that is received from the feedback

system. Then, the function M2 dynamically translates every update of EPi in delays in the

execution events. The next two sections will provide more details about the design and

implementation of LRFM and GRFM.

 83

6.3. LOCAL ROLLBACK FREQUENCY MODEL

The Local Rollback Frequency Model (LRFM) protocol is only based on local

information of the logical processes. That is, the simulation object within a LP will be

suspended or allowed to continue simulating only based on the number of rollbacks it

had. First, M1 and M2 functions must be defined:

€ Function M1: The error potential of a simulation object is the number of

rollbacks that the object had from a time T1 until the actual time T2, having that

T2 - T1 ≤ T, where T is the interval after which the local number of rollbacks of

the simulation object gets restarted back to zero.

€ Function M2: If the number of rollbacks for a simulation object at the interval T

is greater than a specified value, then the object is suspended, adopting a

conservative behavior. By suspending the simulation object, the LP where the

object resides on will still be able to receive incoming events, but the events are

not processed until the simulation object is again given the permission to resume.

However, if the number of rollbacks of the simulation object is less than the

predefined value, then the object simulates aggressively, adopting its usual

optimistic behavior (as in Time Warp).

To implement this protocol each LP has to be informed about two values:

max_rollback, and period. Where max_rollback is the maximum number of allowed

rollbacks before suspension of the simulation object, and period is the duration for which

the simulation object will stay suspended. The algorithm is presented in Figure 63.

 84

Figure 63. LRFM algorithm

 From the LRFM algorithm we see the following three possible scenarios:

1. The LRFM period has expired, therefore the simulation object starts a new

period, its number of rollbacks gets reset to zero, and it is given the

permission to continue its execution.

2. The LRFM period has not yet expired, if the number of rollbacks of the

simulation object is less than the allowable range (i.e. max_rollbacks),

then the simulation object continues its normal execution.

3. The LRFM period has not yet expired, but the number of rollbacks within

the simulation object has exceeded max_rollbacks, thus the simulation

object gets suspended for the entire duration of the current LRFM period.

With the inclusion of this protocol, in every simulation cycle an object will

simulate the lowest timestamp event (as WARPED does originally) if the number of its

rollbacks in the period T is smaller than the maximum allowable rollbacks; if not, the

object suspends executing until the new period of time T, after which Warped restarts the

rollbacks number to zero.

In order for an LP to be able to simulate objects that mustn't be delayed, we have

modified the scheduler policy to choose the next object to simulate. It chooses the first

object of the input event list (that is, the object with the lowest input event timestamp)

 85

only if its rollbacks count does not exceed max_rollbacks; else, the scheduler checks the

next object of the input event list and so on, until it finds an object in condition to be

simulated or until it reaches the end of the list.

6.4. GLOBAL ROLLBACK FREQUENCY MODEL

In Global Rollback Frequency Model (GRFM) protocol each simulation object uses

global information in such a way that among all the simulation objects residing on all

LPs, the one with greatest number of rollbacks must be suspended for the duration of

time defined at the beginning of the simulation. Therefore, at each simulation cycle all

the LPs must broadcast the information regarding the rollback counts of all of their

simulation objects. As in LRFM, M1 and M2 functions must first be defined:

€ Function M1: The error potential of a simulation object is the number of

rollbacks that the object had minus the maximum number of rollbacks of the other

simulation objects (both local and remote ones) participating in the simulation,

from a time T1 until the actual time T2, having that T2 - T1 ≤ T, where T is the

interval after which the local number of rollbacks of the simulation object gets

restarted back to zero.

€ Function M2: If the number of rollbacks for a simulation object at the interval T

is greater than other number of rollbacks of the other simulation objects, then the

object is suspended, adopting a conservative behavior. By suspending the

simulation object, the LP where the object resides on will still be able to receive

incoming events, but the events are not processed until the simulation object is

again given the permission to resume. However, if the number of rollbacks of the

simulation object is less than the predefined value, then the object simulates

aggressively, adopting its usual optimistic behavior (as in Time Warp).

This algorithm is implemented as follows:

 86

Figure 64. GRFM algorithm

As in LRFM, the GRFM algorithm yields three different scenarios:

1. The GRFM period has expired, therefore the simulation object starts a

new period, its number of rollbacks gets reset to zero, and it is given the

permission to continue its execution.

2. The GRFM period has not yet expired, if the number of rollbacks of the

simulation object is less than the allowable range (i.e. max_rollbacks),

then the simulation object continues its normal execution.

3. The GRFM period has not yet expired, but the number of rollbacks within

the simulation object has exceeded max_rollbacks, thus the simulation

object gets suspended for the entire duration of the current GRFM period.

The main difference of GRFM and LRFM is the way max_rollbacks is initialized. In

LRFM, maximum allowable rollbacks is predefined by the user at run time, while in

GRFM maximum allowable rollbacks is set to the largest number of rollbacks of all

 87

participating simulation objects. That is, whenever a simulation objects is scheduled to

execute, it must send the number of rollbacks it had so far to all other simulation objects,

both local and remote ones. As a result, at any time max_rollbacks is the largest number

of rollbacks among all the existing simulation objects.

By implementing LRFM and GRFM protocols in our optimistic PCD++

simulator, different simulation results can be collected since the RFM period (and in case

of LRFM the max_rollbacks) can be modified very easily at the beginning of the

simulation. This is done by changing these values in the configuration files right before

the simulation starts and therefore, there is no need to rebuild the whole simulator in

order for these modifications to have effect. Chapter 7 will discuss the performance of

these two algorithms by testing those models which were presented in Chapter 5.

 88

CHAPTER 7 EXPERIMENTS AND PERFORMANCE ANALYSIS

As part of the contribution of this research, we have run a variety of tests to analyze the

performance of our existing PCD++ simulators; the optimistic and the conservative as

well as our LRFM and GRFM Time Warp-based protocols. The main goal of this section

is to show the capability of PCD++ simulators in terms of handling the number of nodes

driving the simulation, complexity of the model, and the size of the model. As was

mentioned earlier in Chapter 5, we have selected different models with distinguishable

functionality, complexity, and size to better judge the capability of the simulators. Our

experiments were carried out on a HP PROLIANT DL Server, a cluster of 32 compute

nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2100 266MHz DDR RAM) running

Linux WS 2.4.21 interconnected through Gigabit Ethernet and communicating over

MPICH 1.2.6. A description on how to run Cell-DEVS models is given in Section 7.1.

The performance metrics are presented in Section 7.2. Finally, Section 7.3 will present

the execution results of the Cell-DEVS models and the improvements achieved by using

different simulators/protocols.

7.1. RUNNING CELL-DEVS MODELS

Each Cell-DEVS model consists of a number of necessary and optional files grouped

together in a package. Since the simulation can be distributed among 1 to 32 nodes of the

cluster, we used a partitioning mechanism implemented earlier in [Tro01, Liu06] which

evenly divides the cell space into horizontal rectangles, as illustrated in Figure 65 which

represents the partitioning of a 30×30 (900 cells) model over 3 nodes. Different

partitioning strategies can be implemented which in return result in a significant impact

on the performance of the simulation.

 89

(0,0)

(10,0)

(20,0)

(29,0)

(0,29)

(10,29)

(20,29)

(29,29)

Node 0

Node 1

Node 2

...

...

...

Figure 65. A simple partition strategy for a 30x30 Cell-DEVS model [Liu06]

PCD++ simulators enable user to modify a partition configuration file prior to the

simulation by entering the desired number of nodes that the simulation will be carried on.

Figure 66 illustrates the content of the partition file of the fire propagation model where

the user had selected 3 nodes for running the simulation.

Figure 66. The partition file of fire propagation model for simulation on 3 nodes

Once the partitioning is performed, the model simulation can start by running the

execution script. An extract of the simulation results of the 30x30 fire model execution

on two nodes is illustrated in Figure 67. As shown on the figure, the statistical details of

each logical process (LP0 and LP1) are presented. The important statistics for each LP

include: number of rollbacks (RB), length of rollback (LRB), bootstrap time (BT),

running time (RT), events received (ER), events executed (EE), and the number of local

objects. Once the simulation is over, the start time, end time, and the total elapsed time is

printed out. The value shown as “total elapsed time” is the total simulation time which

includes the bootstrap time as well as the running time (i.e. T = BT + RT).

 90

[sjafer@node01 fire_30_2M]$ runfire.sh
 Run on ->node02
 Run on ->node01
PCD++: A Tool to Implement n-Dimensional Cell-DEVS models
--
Stop at time: 05:00:00:000
[1] Local objects : 453
[0] Local objects : 455
Total objects : 908 / Total machines : 2
Using a period of 15000 to calculate GVT

-------- Configuration for this simulation run --------
--> LTSF Scheduling
--> Saving state information every event
--> Message type-based state saving
--> pGVT algorithm for GVT estimation
--> System's memory manager
--> Aggressive cancellation strategy

-LY is off, create log files for NodeCoordinators only.
Create output file for Root.
GVT [0]: 00:00:00:000
GVT [1]: 00:00:00:000
GVT [1]: 00:37:00:561
GVT [1]: 02:00:28:888
GVT [0]: 02:00:28:888
Simulation complete!
-------------------------- Statistics ---------------------------
LP[0] (ER) = 24471 / (EI) = 2954 / (PR) = 25 / (SR) = 459 / (RB) = 484 / (RBL) = 2451
LP[0] localObjs = 455 / (SS) = 12749 / (SK) = 12082 / (SR) = 0 / (EE) = 24376 / (CFL) = 0
LP[0] (LH) = 0 / (LM) = 0
LP[0] (ST) = 7.54898e+08 ns / (ET) = 2.61378e+09 ns / (CT) = 0 ns / (RT) = 5.6514e+07 ns
LP[0] (BT) = 8.5956e+08 ns
LP[0] (DT) = 2.86839e+08 ns
(Inter-LP Message Size) = 116 bytes
Simulation ended!
-------------------------- Statistics ---------------------------
LP[1] (ER) = 26844 / (EI) = 5487 / (PR) = 34 / (SR) = 953 / (RB) = 987 / (RBL) = 4447
LP[1] localObjs = 453 / (SS) = 14183 / (SK) = 12957 / (SR) = 0 / (EE) = 26687 / (CFL) = 0
LP[1] (LH) = 0 / (LM) = 0
LP[1] (ST) = 7.3481e+08 ns / (ET) = 3.09227e+09 ns / (CT) = 0 ns / (RT) = 1.10897e+08 ns
LP[1] (BT) = 7.99848e+08 ns
LP[1] (DT) = 0 ns
--
START_STRING = 48:56:004186000
Start time: min=48, sec=56, neno=4186000
END_STRING = 49:01:602353000
End time : min=49, sec=1, neno=602353000
Total elapsed time (seconds):5.5981
[sjafer@node01 fire_30_2M]$

Figure 67. Execution results of running 30x30 fire model using the optimistic PCD++ simulator

7.2. PERFORMANCE METRICS

The total elapsed time value was collected from the execution environment to measure

the performance of the simulators in terms of execution time. Also, the speedups with

respect to changing the number of simulating nodes were calculated to show how the

parallel simulation outperforms the sequential one (using only one node). The overall

speedup for N nodes is given as follows.

 91

 Where T (1) represents the serial execution time measured on one node, and T (N)

is the total execution time taken by the simulation running on N nodes. Each of the

models which were presented in Chapter 5 is executed on four different simulators:

€ The optimistic PCD++ simulator [Liu06];

€ The conservative PCD++ simulator [Tro01];

€ The optimistic PCD++ simulator implementing LRFM protocol; and

€ The optimistic PCD++ simulator implementing GRFM protocol.

The goal is to identify the execution performance of each simulator as we increase the

number of participating nodes. Due to the partitioning mechanism that is used by our

optimistic and conservative simulators, we can only increase the number of nodes to a

certain limit. That is, the maximum number of nodes that a model can be simulated on is

equal to the number of rows of the cell gird for that particular model. For instance, if we

have a model of 400 cells arranged in a 20x20 mesh, we can run the model on 1 to 20

nodes. In order to obtain stable results, for each model, simulations were run on 1 to N

nodes and for each scenario five trials were collected. The execution results which will be

presented in the next section reflect the average of these five trials which are within a

confidence interval of 95%.

7.3. SIMULATION RESULTS

In the following points we will present the simulation results of executing our four

models discussed in Chapter 5.

€ Game of Life Model

This model consists of 1200 cells arranged in a 30x40 mesh with a total execution

time of 4.6723 seconds when run on standalone CD++. Figure 68 represents the

execution time resulting from running the model with four different simulators on 1 to 6

nodes.

 92

Game of Life Execution Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Figure 68. Game of life model execution time on 4 different simulators

From the execution time graph, we can see that the optimistic, LRFM-based, and

GRM-based simulators outperform the conservative one on 1 to 6 nodes and at the same

time produce very close results. However, as the number of machines goes beyond 3, the

conservative simulator starts dropping down the execution time. Among the three

optimistic simulators, the GRFM-based simulator takes longer time due to its time

consuming mechanism in broadcasting information about each LP’s rollbacks among the

participating nodes.

 The speedups of the model execution times with respect to execution on one node

for each particular simulator are given in Figure 69. The speedups graph only represents

the performance of 1 to 3 nodes which showed significant performance.

 93

Game of Life Speedups

0

0.5

1

1.5

2

2.5

1 2 3

Number of machine

S
p

ee
d

u
p

Optimistic

LRFM

GRFM

Conservative

Figure 69. Game of life model speedups with regards to execution on one node

€ Synapsin-Vesicle Reaction Model

This model consists of 676 cells arranged in a 26x26 mesh with a total execution

time of 3.7621 seconds when run on standalone CD++. Figure 70 represents the

execution time resulting from running the model with four different simulators on 1 to 8

nodes.

Synapsin-Vesicle Reaction Execution Time

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Figure 70. Synapsin-vesicle model execution time on 4 different simulators

 94

From the graph, we can see that the optimistic and LRFM-based simulators,

produce very close results on 1 to 8 nodes. Also, the GRFM-based simulator has similar

results for 1, 2, 3, and 5 nodes. However, it degrades the performance when 4, 6, 7, and 8

nodes are participating. On the other hand, the conservative simulator shows different

behavior as the number of nodes increases. As seen on the graph, the conservative

simulator improves the total execution time significantly when more than 2 nodes are

available. Again, as in the previously discussed models, as the number of computing

nodes increases, the GRFM-based simulator has the lowest performance among other

ones. The main reason is communication overhead among the participating LPs which

leads in a noticeable time added to the duration of the model execution.

Figure 71 represents the speedups of the model execution times with respect to

execution on one node for each particular simulator.

Synapsin-Vesicle Reaction Speedups

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Number of machine

S
p

ee
d

u
p

Optimistic

LRFM

GRFM

Conservative

Figure 71. Synapsin-vesicle model speedups with regards to execution on one node

€ Fire Propagation Model

This model consists of 900 cells arranged in a 30x30 mesh with a total execution

time of 6.2145 seconds when run on standalone CD++. Figure 72 represents the

execution time resulting from running the model with four different simulators on 1 to 8

nodes.

 95

Fire Propagation Execution Time

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Figure 72. Fire propagation model execution time on 4 different simulators

As seen on the graph, our parallel simulators significantly improved the execution

time of the fire propagation model. The three optimistic simulators produced very similar

results on 1 to 7 nodes. For this model, we can definitely remark that the optimistic

simulators outperform the conservative one. For the optimistic simulators the best results

were achieved on 5 nodes, while the conservative one had its lowest execution time on 4

nodes. The speedups of the model execution times with respect to execution on one node

for each particular simulator are given in Figure 73, which provides a better explanation

of the performances achieved.

 96

Fire Propagation Speedups

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

Number of machine

S
p

ee
d

u
p

s Optimistic

LRFM

GRFM

Conservative

Figure 73. Fire propagation model speedups with regards to execution on one node

€ Ship Evacuation Model

This model consists of 400 cells arranged in a 20x20 mesh with a total execution

time of 6.4327 seconds when run on standalone CD++. Figure 74 represents the

execution time resulting from running the model with four different simulators on 1 to 8

nodes.

Ship Evacuation Execution Time

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Conservative

Figure 74. Ship evacuation model execution time on 4 different simulators

From the execution time graph, we can see that the conservative simulator

outperforms the other three simulators. This is due to the causality-error avoidance

 97

mechanism of this simulator which avoids rollbacks and anti-message flows. The

optimistic and LRFM-based simulators produce very similar results for 2 to 6, and 8

nodes. However, the GRFM-based simulator does not present good results. This is

mainly due to the huge message-passing mechanism among the LPs who are sending

messages back and forth reporting information about their rollbacks. To prove this, we

can see that the GRFM-based simulator reduces the execution time when there are two

computing nodes, but as the number of nodes increases, the performance degrades. The

speedups of the model execution times with respect to execution on one node for each

particular simulator are given in Figure 75. The speedups graph shows that except for the

GRFM-based simulator, the other simulators have improved the execution time.

Ship Evacuation Speedups

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Number of machine

S
p

ee
d

u
p

Optimistic

LRFM

GRFM

Conservative

Figure 75. Ship evacuation model speedups with regards to execution on one node

7.4. ADDITIONAL TESTINGS OF PCD++ SIMULATOR

In this section we show a different sort of tests that we used. For this purpose, we built a

simple model consisting of an n by n grid with initial value of zero for all the cells

(except the one located in the center of the grid). As the simulation runs, the value “1”

propagates through all cells starting from the central cell towards four directions

(N/S/E/W) until the value of all cells are changed from “0” to “1”. We collected similar

tests for the model but changing the size to 5x5, 10x10, and 30x30 cell space. Figure 76

 98

and Figure 77 Represent the 5x5 Grid model definition in CD++ and the propagation of

“1” throughout the grid respectively.

[grid-rule]

type : cell

dim : (5,5)

delay : transport

defaultDelayTime : 100

border : nowrapped

neighbors : grid-rule(-1,0)

neighbors : grid-rule(0,-1) grid-rule(0,0) grid-rule(0,1)

neighbors : grid-rule(1,0)

initialvalue : 0

initialrowvalue : 0 00000

initialrowvalue : 1 00000

initialrowvalue : 2 00100

initialrowvalue : 3 00000

initialrowvalue : 4 00000

localtransition : myrule

[myrule]

rule : 1 100 { trueCount>1 }

rule : {(0,0)} 100 { t }

Figure 76. 5x5 Grid model definition in CD++

2 100

...

Figure 77. Propagation of “1” throughout the grid

This model allows observing the performance of the simulator when the grid’s

size is increased incrementally. Two different types of tests were collected: 1) analyzing

the performance of the simulator by introducing fixed and variable delays into the cells’

evaluation rules, 2) testing the robustness of the simulator as the complexity of the model

is increased. The following sections explain these two testing scenarios in details.

 99

7.4.1. Performance of PCD++

The first testing scenario was running the Grid model on 1 to n machines where n is the

size of the model (n x n). Every set of simulation was performed on optimistic PCD++,

LRFM-based PCD++, and GRFM-based PCD++ simulator. The following figures will

illustrate the simulation time behavior as well as the speedups. For very n x n Grid model

first the simulations were collected by inserting fixed delay time in the rules evaluating

cells’ states. Secondly, the same sets of simulations were performed but this time

modifying the delay to be variable.

Figure 78 shows the difference between fixed and variable delayed rules.

Figure 78. (a) Grid rule with fixed delay, (b) Grid rule with variable delay

€ 5x5 Grid Model with fixed and variable delays

The model consisted of 25 cells arranged in a 5x5 mesh. Figure 79 and Figure 80

represent the execution time resulting from running the model with three different

simulators on 1 to 5 computing nodes with fixed and variable delays.

 100

5x5 Grid Execution Time (Fixed Delay)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Figure 79. Simulation results of 5x5 Grid model with fixed delay

5x5 Grid Execution Time (Variable Delay)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic

LRFM

GRFM

Figure 80. Simulation results of 5x5 Grid model with variable delay

As the graphs show, the execution times of the 5x5 Grid model with variable and

fixed delay are very close to each other. This is mainly due to the small size of the model

where does not get affected by changing the delay type at which cells’ states are changed.

Aside from this, again due to the small size of the model increasing the number of

computing nodes does not improve the execution time, rather it worsens the situation.

The reason is that the actual execution time of the model is noticeably smaller than the

time needed to initialize the additional nodes plus the significant communication

overhead among them. The following speedup graphs clarify this fact.

 101

5x5 Grid Speedups (Fixed Delay)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Number of machine

S
p

ee
d

u
p Optimistic

LRFM

GRFM

Figure 81. Speedup results of the 5x5 Grid model with fixed delay

5x5 Grid Speedups (Variable Delay)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Number of machine

S
p

ee
d

u
p Optimistic

LRFM

GRFM

Figure 82. Speedup results of the 5x5 Grid model with fixed delay

€ 10x10 Grid Model with fixed and variable delays

By expanding the Grid model into a 10x10 mesh consisting of 100 cells, the effect

of different type of delay can be observed. However, the model’s size is still small and

the additional computing nodes do not improve the execution time. For the 10x10 Grid

model we have only run the simulation on the optimistic PCD++. Figure 83 represents

these results.

 102

10x10 Grid Execution Time

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic (Fixed Delay)

Optimistic (Variable Delay)

Figure 83. Simulation results of 10x10 Grid model with fixed and variable delay

As seen on the graph, the variable delay adds up a noticeable computing time to

the simulation. Figure 84 illustrates the resulting speedups which prove that the model is

too small to be executed on more than one machine.

10x10 Grid Speedups

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Number of machine

S
p

ee
d

u
p

Optimistic (Fixed Delay)

Optimistic (Variable Delay)

Figure 84. Speedup results of the 10x10 Grid model with fixed and variable delay

€ 30x30 Grid Model with fixed and variable delays

To observe the performance of the optimistic PCD++ simulator, we repeated the

simulation scenarios of the 10x10 Grid model by expanding the model into 900 cells

arranged in a 30x30 mesh. Figure 85 illustrates the execution results.

 103

30x30 Grid Execution Time

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of machine

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic (Fixed Delay)

Optimistic (Variable Delay)

Figure 85. Simulation results of 30x30 Grid model with fixed and variable delay

From the above graph we can see interesting results where the model with

variable delays outperforms the one with fixed delay. The size of the model looks ideal

enough to be executed on multiple nodes in contrast to the 5x5 and 10x10 Grid model.

For both types of delays, running the model on 2 to 8 nodes reduces the execution time

compared to simulation on single node. Almost after 8 nodes, adding extra computing

nodes increased the execution time. As mentioned before, this is due the significant

startup time and communication overheads which exceed the execution time on single

machine. The speedup graphs prove these results.

30x30 Grid Speedups

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of machine

S
p

ee
d

u
p

Optimistic (Fixed Delay)

Optimistic (Variable Delay)

Figure 86. Speedup results of the 30x30 Grid model with fixed and variable delay

 104

To better illustrate the result achieved from analyzing the performance of PCD++

in handling different model sizes we are presenting the execution results of the 5x5,

10x10, and 30x30 Grid model on single graphical presentations. The following 3-D

graphs reflect these combinations for both fixed and variable delay model.

1 2 3 4 5

5x5 Grid

30x30 Grid
0

0.5

1

1.5

2

2.5

3

Execution
time (sec)

Numbero of machine

Grid Model Execution Time (Fixed Delay)

5x5 Grid

10x10 Grid

30x30 Grid

Figure 87. 3-D representation of Grid model with fixed delay

1 2 3 4 5

5x5 Grid

30x30 Grid0

0.5

1

1.5

2

2.5

Execution
time (sec)

Number of machine

Grid Model Execution Time (Variable Delay)

5x5 Grid

10x10 Grid

30x30 Grid

Figure 88. 3-D representation of Grid model with variable delay

7.4.2. Robustness of PCD++

The second testing scenario was running the 5x5, 10x10, and 30x30 Grid model on single

machine and each time changing the complexity level of the model. The complexity level

was modified by adding extra computations within the cells’ evaluation rules. For

example, in the Grid model when a cell has one or more neighbors holding the value “1”,

after a fixed or variable delay the cell’s value is changed from “0” to “1”. In normal case

this can be done by simply changing the cell’s state value instantly. However, to add

 105

complexity to the model we added extra computation to increase the total time at which a

cell’s state is changed from “0” to “1”. We have increased the complexity level by

introducing a function in the CD++ simulator that loops for n times. The complexity level

(i.e. value of n) can be modified by the user at run time. The following snapshot

represents the Grid model’s rule that uses complexity levels. The function

ComplexityFunc takes two parameters: n is the complexity level (represents the number

of nested loops which will add extra computation time), the second parameter defined the

new value of the cell for which the rule is evaluated (i.e. modifying the cell’s state to “1”

if it has neighbors with state equal to “1”).

Figure 89. Adding complexity level to cells’ evaluation rules

The purpose of using complexity levels on one machine was to increase the

execution time without modifying the model’s size. Although we have run the

complexity tests on 5x5, 10x10, and 30x30 Grid model, but we wanted to take a deeper

look at the performance of the optimistic PCD++ simulator and observe how it performs

in the presence of complex and long-time simulations. As in the first testing scenario, we

have used both types of delays (i.e. fixed and variable). The following graphs provide the

simulation results.

5X5 Grid Execution Time

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10 11 12

Level of complexity

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic (Fixed Delay)

Optimistic (Variable Delay)

Figure 90. Execution results of 5x5 Grid model under 12 different complexity levels

As seen on Figure 90, due to the small size of the model, both types of delays

produce similar results. The complexity level is increased gradually and as a result the

 106

execution time is increased from a couple of seconds to almost 850. Next we present the

10x10 Grid model’s simulation results.

10x10 Grid Execution Time

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Level of complexity

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic (Fixed Delay)

Optimistic (Variable Delay)

Figure 91. Execution results of 10x10 Grid model under 10 different complexity levels

 The execution time of the 10x10 Grid model reflects the effect of complexity

levels more clearly than the 5x5 model. Since the model is four times larger, therefore the

execution time is noticeably higher and more sensitive to complexity levels.

 Finally the complexity simulations were tested for the 30x30 model. Results are

presented in Figure 92.

30x30 Grid Execution Time

0

500

1000

1500

2000

2500

3000

1 2 3

Level of complexity

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Optimistic (Fixed Delay)

Optimistic (Varible Delay)

Figure 92. Execution results of 30x30 Grid model under 3 different complexity levels

 107

 As seen on the graph, due to the large size of the model the effect of complexity

on increasing the execution time is very sensible and only three levels of complexity

present the behavior that was obtained in 10x10 Grid model in 10 complexity levels.

The following graphs represent the 3-D illustration of the complexity-based tests.

Figure 93 shows the scenario of fixed delay Grid model, while Figure 94 represents the

variable delay version of the model with three different complexity levels.

1 2 3

5x5 Grid
10x10 Grid

30x30 Grid

0

500

1000

1500

2000

2500

Execution
time (sec)

Complexity level

Grid Model Execution Time (Fixed Delay)

5x5 Grid

10x10 Grid

30x30 Grid

Figure 93. 3-D representation of fixed delay Grid model with three levels of complexity

1 2 3

5x5 Grid
10x10 Grid

30x30 Grid

0

500

1000

1500

2000

2500

3000

Execution
time (sec)

Complexity level

Grid Model Execution Time (Varible Delay)

5x5 Grid

10x10 Grid

30x30 Grid

Figure 94. 3-D representation of varible delay Grid model with three levels of complexity

 108

CHAPTER 8 CONCLUSIONS AND FUTURE WORK

This work presented the parallel simulation of DEVS and Cell-DEVS models using

PCD++, a parallel and distributed environment based on the Time Warp optimistic

synchronization protocol. PCD++ serves as an extension to the CD++ toolkit which was

developed by previous researcher [Liu06] aiming at exploiting parallelism for the

purpose of fast and efficient simulation of complex models. The concept of Parallel and

Distributed Simulation was presented.

The most challenging problem of parallel and distributed simulation i.e.

Synchronization among nodes (LPs) was discussed by over viewing the three different

types of synchronization strategies for event driven simulations: no synchronization at

all, pessimistic (conservative) synchronization, and optimistic synchronization.

 We illustrated the software architecture of the purely optimistic parallel CD++

simulator (PCD++). The layered architecture of the optimistic PCD++ simulator consists

of five layers (from top to bottom): model, PCD++, Time Warp - WARPED, and the

operating system, where ach layer was explained in details. A variety of optimization

strategies of the Time Warp kernel were pointed out and discussed thoroughly. Some

optimizations in terms of GVT calculation, dynamic memory management, and state

management were mentioned.

We have analyzed the performance of our two existing parallel CD++ simulators,

namely Conservative PCD++ simulator [Tro01] and Optimistic PCD++ simulator

[Liu06]. We looked at the design and implementation of these two simulators and

compared their structures as well as functionalities in parallel and distributed simulations.

The hierarchical structure of the conservative PCD++ simulator was compared

against the flattened structure of the optimistic PCD++ simulator. The migration from a

hierarchical structure to a flattened structure was illustrated as two major modifications;

i.e. the departure from conservative-based simulator to an optimistic-based simulator, and

flattening the structure of the simulator. Then it was illustrated how the optimistic

PCD++ simulator deals with the communication overhead dilemma by using the flattened

structure.

 109

A set of models were designed and implemented in CD++, and they were

presented to illustrate the capability of Cell-DEVS formalism in building such models.

The Ship Evacuation model illustrated an emergency ship evacuation scenario. Synapsin-

Vesicle Reaction model presented the reserve pool of synaptic vesicles in a presynaptic

nerve terminal. The Fire Spread model represented a fire propagation scenario in forest

based on Rothermel’s mathematical definition. The Game of Life model defined the

standard Game of Life using a two-dimensional grid.

Aiming at improving the performance of the optimistic simulator, we modified

the WARPED kernel to handle rollbacks in a more efficient way. We presented two new

algorithms that we have implemented in WARPED kernel. The Near-perfect State

Information protocol was discussed and after that our new algorithms; Local Rollback

Frequency Model (LRFM) and Global Rollback Frequency Model (GFRM) were

presented.

Finally, we have run a variety of tests to analyze the performance of our existing

PCD++ simulators; the optimistic and the conservative as well as our LRFM and GRFM

Time Warp-based protocols. The main goal of these tests was to show the maximum

capability of the two mentioned PCD++ simulators in terms of handling the number of

nodes driving the simulation, complexity of the model, and the size of the model for the

models introduced in Chapter 5.

7.1. FUTURE WORK

With regard to testing the performance of PCD++, there are several topics of interest for

future research:

€ Models with longer execution time are required to be run on PCD++. This

gives the chance to catch unexpected errors especially in terms of timeouts

and broken pipes. In most of the cases, the MPI communication interface

was not able to handle timings (long waits due to the size and complexity

of the model) properly. Thus, a deeper investigation at the MPI level is

suggested.

 110

€ Testing different partitioning strategies as opposed to the one used by

current PCD++ would provide lots of feedback about the capability of the

simulator.

€ A dynamic load balancing mechanism which allows for run-time

balancing of the load would be a great solution to ensure that load is

divided equally among the available nodes.

€ Incorporating algorithms such as moving time windows (MTW) [Fuj00,

Fuj03] and the Filter algorithm [Pra91] and comparing the resulted

simulators with LRFM- and GRFM-based simulators gives key ideas on

how to control optimism efficiently.

€ Aside from different testing strategies, profiling the simulator would

provide very detailed information and could be used to modify the

underlying C++ codes to reduce runtime.

 111

REFERENCES

[Ala07] Al-aubidy, B.; Dias, A.; Bain. R.; Jafer, S.; Dumontier, M.; Wainer, G.;
Cheetham, J. ”Advanced DEVS models with applications to biomedicine”.
Artificial Intelligence, Simulation and Planning. Buenos Aires, Argentina. AIS
2007.

[Ahm05] Ahmed M.; Yonis, K.; Elshafei, M.; Wainer, G. "Building a tool for modeling and

simulation of computer networks". Proceedings of the 38thIEEE/SCS Annual
Simulation Symposium. San Diego, CA. U.S.A. 2005.

[Ben90] Benfenati, F., Valtorta, F., Greengard, P.; “Computer Modelling of Synapsin 1

Binding to Synaptic Vesicles and F-actin”. Implications for Regulation of
Neurotransmitter Release. 1990.

[Bry77] Bryant, R. E. "Simulation of packet communication architecture computer
systems". Massachusetts Institute of Technology. Cambridge, MA. USA. 1977.

[Cas93] Cassandras, C. G. "Discrete event systems: Modeling and performance analysis".
Boston, MA: Aksen Associates, 1993.

[Cha78] Chandy, K. M.; Misra J. "Distributed simulation: A case study in design and
verification of distributed programs". IEEE Transactions on Software Engineering.
pp.440-452. 1978.

[Cha79] Chandy, K.; Misra, J. "Distributed Simulation: A Case Study in Design and
Verification of Distributed-Programs." IEEE Transactions on Software
Engineering, pp. 440-452. 1979.

[Che98] Chetlur, M.; Abu-Ghazaleh, N.; Radhakrishnan, R.; Wilsey, P. A. "Optimizing
Communication in Time-Warp Simulators". Proceedings of the 12th Workshop
on Parallel and Distributed Simulation (PADS'98). 1998.

[Che04] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. "Design and implementation of
distributed DEVS simulation in a peer to peer network system". Advanced
Simulation Technologies Conference - Design, Analysis, and Simulation of
Distributed Systems Symposium. Arlington, USA. 2004.

[Cho94a] Chow, A.C.; Zeigler, B.P. "Parallel DEVS: A parallel, hierarchical, modular
modeling formalism." Proceedings of the Winter Computer Simulation
Conference. Orlando, FL. USA. 1994.

[Cho94b] Chow, A.C.; Kim, D.C.; Zeigler, B.P. "Abstract Simulator for the parallel
DEVS formalism." AI, Simulation, and Planning in High Autonomy Systems.
Gainesville, FL. USA. 1994.

 112

[Dav00] Davila, J.; Uzcagegui, M. "GALATEA: A multi-agent, simulation platform".
Proceedings of the International Conference on Modeling, Simulation and Neural
Networks. Merida, Venezuela. 2000.

[Del02] de Lara, J.; Vangheluwe, H. "ATOM3: A tool for multi-formalism modeling and
meta-modeling". European Joint Conference on Theory and Practice of Software.
Grenoble, France. 2002.

[Dia01] Diaz, A.; Veronica, V.; Wainer, G. "Defining congestion control mechanism in
ATLAS". In proceedings of Summer Computer Simulation Conference, Orlando,
FL. 2001.

[Fil02] Filippi, J. B.; Bernardi, F.; Delhom, M. "The JDEVS modeling and simulation
environment". Proceedings of the Integrated Assessment and Decision Support
Conference (IEMSS'02). pp. 283-288. Lugano, Switzerland. 2002.

[Fre02] Frey P.; Radhakrishnan, R.; Carter, H.W.; Wilsey, P. A.; Alexander, P. "A formal
specification and verification framework for Time Warp-based parallel simulation".
IEEE Transactions on Software Engineering. Vol. 28. No. 1. 2002.

[Fuj99] Fujimoto, R.M. Parallel and Distribution Simulation Systems. Wiley. 1999.

[Fuj00] Fujimoto, R. M. "Parallel and Distributed Simulation Systems". A Wiley-
Interscience publication. ISBN 0-471-18383-0. 2000.

[Fuj01] Fujimoto, R.M. "Parallel and Distributed Simulation Systems." Proceedings of
the Winter Computer Simulation Conference. Phoenix, AZ. USA. 2001.

[Fuj03] Fujimoto, R. M. "Distributed simulation systems". Proceedings of the 2003 Winter
Simulation Conference. pp. 124-134. 2003.

[Gar70] Gardner, M. " Mathematical games: The fantastic combinations of John

Conway's new solitaire game "life"". Scientific American 223: 120 - 123. 1970.

[Gia76] Giambiasi, N.; Miara, A. "SILOG: A practical tool for digital logia circuit
simulation". Proceedings of the 16thD.A.C. San Diego. 1976.

[Gli02a] Glinsky, E.; Wainer, G. "Definition of Real-Time simulation in the CD++
toolkit." Proceedings of the Summer Computer Simu lation Conference. San
Diego, CA. USA. 2002.

[Gli02b] Glinsky, E.; Wainer, G. "Performance analysis of DEVS environments."
Proceedings of AI Simulation and Planning. Lisbon, Portugal. 2002.

[Gli02c] Glinsky, E.; Wainer, G. "Performance Analysis of Real-Time DEVS Models."
Proceedings of the Winter Computer Simulation Conference. San Diego, CA.
USA. 2002.

 113

[Gli02d] Glinsky, E.; Wainer, G. "Definition of Real Time Simulation in the CD++
toolkit." Master's thesis. Departamento de Computación. Facultad de Ciencias
Exactas y Naturales. Universidad de Buenos Aires. Argentina. 2002.

[Gli04] Glinsky, E. "New Techniques for Parallel Simulation of DEVS and Cell-DEVS
Models in CD++". M. A. Sc. Thesis. Carleton University. Canada. 2004.

[Gro96] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. "A high-performance, portable
implementation of the MPI message-passing interface standard". Parallel
Computing. Vol. 22, pp. 789-828. 1996.

[Gru93] Grunwald, D.; Zorn, B. "CustoMalloc: Efficient Synthesized Memory
Allocators". Software - Practice and Experience. Vol. 23, pp. 851-869. 1993.

[HLA00] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) — Framework and Rules. IEEE Std. 1516-2000. September, 2000.

[Jaf07] Jafer, S.; Wainer, G. "An Environment for Advanced Parallel Simulation of
Cellular Models". Proceedings of the International Conference on Unconventional
Computation 2007 – UC’07.

 [Jan06] Janousek, V., Kironsky, E. "Exploratory Modeling with SmallDEVS".
Proceedings of ESM 2006, pp. 122-126, ISBN 90-77381-30-9, Toulouse, France,
2006.

[Jef85] Jefferson, D. "Virtual Time". ACM Transactions on Programming Languages
and Systems. 7(3):405-425. 1985.

[Kim00] Kim, K.; Kang W.; Sagong, B.; Seo, H. "Efficient Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-
Hierarchical One." Proceedings of the 33rd Annual Simulation Symposium.
Washington DC, USA. 2000.

[Kim04] Kim, K.; Kang, W. "CORBA-based, Multi-threaded Distributed Simulation of
Hierarchical DEVS Models: Transforming Model Structure into a Non-hierarchical
One". International Conference on Computational Science and Its Applications
(ICCSA). Assisi, Italy. 2004.

[Klu01] Klüpfel, W.; Meyer-König, T.; Wahle, J.; Schreckenberg, M. “Microscopic
Simulation of Evacuation Processes on Passenger Ships”, Theoretical and
Practical Issues in Cellular Automata, pp. 63-71, Springer-verlag 2001.

[Knu73] Knuth, D. E. "Fundamental Algorithms". Vol. 1. The Art of Computer
Programming. Second Edition. Addison-Wesley. 1973.

[Kof03] Kofman, E.; Lapadula, M.; Pagliero, E. "PowerDEVS: a DEVS-based environment
for hybrid system modeling and simulation". Technical Report LSD0306. LSD,
University Nacional de Rosario. 2003.

 114

[Lin91] Lin, Y. B.; Lazowska, E. D. "A study of Time Warp Rollback Mechanisms". ACM
Transactions on Modeling and Computer Simulations. Vol. 1, No. 1. January 1991.

[Lin93] Lin, Y. B.; Preiss, B. R.; Loucks, W. M.; Lazowska, E. D. "Selecting the
Checkpoint Interval in Time Warp Simulation". Proceedings of the 7th Workshop on
Parallel and Distributed Simulation (PADS'93). 1993.

[Liu06] Liu, Q. "Distributed Optimistic Simulation of DEVS and Cell-DEVS Models with
PCD++". M. A. Sc. Thesis. Carleton University. Canada. 2006.

[Low99] Lowry, M. C.; Ashenden, P. J.; Ha wick, K. A. "Distributed High-Performance
Simulation using Time Warp and Java". Technical Report, Department of
Computer Science. The University of Adelaide. South Australia. 1999.

[Lub91] Lubachevsky, B.; Weiss, A.; Shwartz, A. "An analysis of rollback-based
simulation". ACM Transactions on Modeling and Computer Simulation. Vol. 1, No.
2, pp. 154-193. April 1991.

[Mad05] Madhoun, R.; Wainer, G. "Modeling battlefield scenarios in Cell-DEVS".
Proceedings of SISO Fall Interoperability Workshop. San Diego, CA. U.S.A. 2005.

[Mad06] Madhoun, R. "Web Service-Based Distributed Simulation of Discrete Event
Models". M. A. Sc. Thesis. Carleton University. Canada. 2006.

[Mar96] Martin, D.; McBrayer, T.; Wilsey, P. "WARPED: Time Warp Simulation
Kernel for Analysis and Application Development." Proceedings of the 29th
Hawaii International Conference on System Sciences. 1996.

[Mar97] Martin, D.; McBrayer, T.; Radhakrishan, R.; Wilsey, P. "Time Warp Parallel
Discrete Event Simulator." Technical report. Computer Architecture Design
Laboratory. University of Cincinnati. USA. 1997.

[Mar99] Martin, D. E.; McBrayer, T. J.; Radhakrishnan, R.; Wilsey, P. A. "WARPED - A
Time Warp Parallel Discrete Event Simulator (Documentation for version 1.0)".
Available at: http://www.ececs.uc.edu/~paw/warped/doc/index.html. 1999.
[Accessed July, 2007].

[MPI95] Message Passing Interface Forum. MPI: A Message-Passing Interface standard
(version 1.1). Technical report. Available via: <http://www.mpi-forum.org>.
[Accessed July, 2007].

[Nut06] Nutaro, J. ADEVS website. Available at: http://www.ece.arizona.edu/~nutaro.
[Accessed July, 2007].

[Pra91] Prakash, A.; Subramanian, R. "Filter: An algorithm for reducing cascaded
rollbacks in optimistic distributed simulations". Proceedings of the 24th Annual
Simulation Symposium. pp. 123-132. 1991.

 115

[Pra99] Praehofer, H.; Sametinger, J.; Stritzinger, A. "Discrete event simulation using the
JavaBeans component model". Proceedings of International Conference on Web-
Based Modeling & Simulation. San Francisco, CA. USA. 1999.

[Rad97] Radhakrishnan, R.; Moore, L.; Wilsey, P. A. "External Adjustment of Runtime
Parameters in Time Warp Synchronized Parallel Simulators". Proceedings of the 11th

International Parallel Processing Symposium. 1997.

[Rad98] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D. M.; Wilsey, P.A. "An
Object-Oriented Time Warp Simulation Kernel". Proceedings of the International
Symposium on Computing in Object-Oriented Parallel Environments
(ISCOPE'98). Vol. LNCS 1505, pp. 13-23. Springer-Verlag. 1998.

[Rey88] Reynolds, P. "A Spectrum of Options for Parallel Simulation". Proceedings of

the 1988 Winter Simulation Conference, 325-332. 1988.

[Rod99] Rodriguez D.; Wainer, G. "New Extensions to the CD++ Tool". Proceedings of the
32nd SCS Summer Computer Simulation Conference. Vancouver, Canada. 1999.

[Ron94] Ronneren, R.; Ayani, R. "Adaptive checkpointing in Time Warp". Proceedings of
the 8th Workshop on Parallel and Distributed Simulation (PADS'94). 1994.

[Rot72] Rothermel, R. "A mathematical model for predicting fire spread in wild-land fuels".
Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, Forest
Service, Intermountain Forest and Range Experiment Station. 1972.

[Sar98] Sarjoughian, H. S.; Zeigler, B. "DEVSJAVA: Basis for a DEVS-based
collaborative M&S environment". Proceedings of the International Conference
on Web-Based Modeling and Simulation. Vol. 5, pp. 29-36. San Diego, CA. USA.
1998.

[Seo04] Seo C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. "Implementation of distributed
high-performance DEVS simulation framework in the Grid computing
environment". Advanced Simulation Technologies Conference (ASTC). Arlington,
VA. USA. 2004.

[Sha99] Sharma, G. D.; Abu-Ghazaleh, N. B.; Rajasekaran, U. K. V.; Wilsey, P. A.
"Optimizing Message Delivery in Asynchronous Distributed Applications".
Proceedings of the 5th International Euro-Par Conference on Parallel Processing.
Lecture Notes In Computer Science. Vol. 1685, pp. 1204-1208. 1999.

[Sri95] Srinivasan, S.; Reynolds, P.; "Adaptive Algorithms vs. Time Warp: An
Analytical Compariosn". Proceedings of the 1995 Winter Simulation Conference.
1995.

[Sri98] Srinivasan, S.; Reynolds, J., “Elastic Time”, ACM Transactions on Modeling and
Computer Simulation, Vol. 8, No. 2. 103-139. April 1998.

 116

[Szu00] Szulsztein, E.; Wainer, G. “New Simulation Techniques in WARPED Kernel”
(in Spanish). Proceedings of JAIIO, Buenos Aires, Argentina, 2000.

[Tro01] Troccoli, A.; Wainer, G. "CD++, a tool for simulating Parallel DEVS and Parallel
Cell-DEVS models". Técnica Reporta. Departamento de Computación. Facultad de
Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina. 2001.

[Tro03] Troccoli, A.; Wainer, G. "Implementing Parallel Cell-DEVS". Proceedings of the
36th Annual Simulation Symposium (ANSS'03). IEEE. 2003.

[Uhr01b] Uhrmacher, A. M.; Kullick, B. G. "Interacting multi-agent and simulation systems
- an exploration into Mole and James". Proceedings of the 5th International
Conference on Autonomous agents. pp. 122-123. 2001.

[Wai98] Wainer, G.; Giambiasi, N. "Specification, modeling and simulation of timed Cell-
DEVS spaces". Technical Report n.: 98-007. Departamento de Computación.
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.
1998.

[Wai99] Wainer, G.; Giambiasi, N. "Avoiding serialization in Timed Cell-DEVS".
Proceedings of the 31st SCS Summer Computer Simulation Conference. Chicago.
USA. 1999.

[Wai00] Wainer, G. "Improved cellular models with Parallel Cell-DEVS". Transactions of
the Society for Computer Simulation International. Vol. 17, No. 2, pp. 73-88. 2000.

[Wai01a] Wainer, G.; Christen G.; Dobniewski, A. "Defining models with the CD++
toolkit". Proceedings of the European Simulation Symposium. Marseille, France.
SCS Publisher. 2001.

[Wai01b] Wainer, G.; Giambiasi, N. "Timed Cell-DEVS: modeling and simulation of
cell spaces". Invited paper for the book Discrete Event Modeling & Simulation:
Enabling Future Technologies. Springer-Verlag. 2001.

[Wai02] Wainer, G. "CD++: a toolkit to develop DEVS models". Software - Practice and
Experience. Vol. 32, pp. 1261-1306. 2002.

[Wol86] Wolfram, S. "Theory and applications of cellular automata". Vol. 1. Advances
Series on Complex Systems. World Scientific. Singapore. 1986.

[War07] Warped: A Time Warp Simulation Kernel. Warped Documentation for version
1.0. Available via <www.ececs.uc.edu/~paw/warped/>. [Accessed July, 2007.]

[Zei76] Zeigler, B. "Theory of modeling and simulation". First Edition. Wiley. 1976.

[Zei93] Zeigler, B.; Kim. J. "Extending the DEVS-Scheme knowledge-based simulation
environment for real-time event-based control". IEEE Transactions on Robotics and
Automation. Vol. 9(3), pp. 351-356. 1993.

 117

[Zei96] Zeigler, B.; Moon, Y.; Kim, D.; Kim, J. G. "DEVS-C++: A high performance
modeling and simulation environment". The 29th Hawaii International Conference
on System Sciences. 1996.

[Zei99a] Zeigler, B.; Kim, D.; Buckley, S. "Distributed supply chain simulation in a
DEVS/CORBA execution environment". Proceedings of the 1999 Winter Simulation
Conference. 1999.

[Zei99b] Zeigler, B.; Sarjoughian H. S. "Support for hierarchical modular component-
based model construction in DEVS/HLA". Simulation Interoperability Workshop.
1999.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of Modeling and Simulation:

Integrating Discrete Event and Continuous Complex Dynamic Systems". Academic
Press. 2000.

[Zha06] Zhang, M.; Zeigler, B.; Hammonds, P. "DEVS/RMI - An auto-adaptive and

reconfigurable distributed simulation environment for engineering studies". DEVS
Integrative M&S Symposium (DEVS'06). Huntsville, Alabama, USA. 2006.

