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ABSTRACT 

The DEVS (Discrete Event System Specification) formalism provides a discrete-event modeling 

and simulation (M&S) approach which allows construction of hierarchical models in a modular 

manner. Cell-DEVS extends the DEVS formalism, allowing the implementation of cellular 

models with timing delays. This work presents a new simulation technique of DEVS and Cell-

DEVS models in parallel and distributed environments. The parallel simulators presented in here 

are based on Time Warp, an optimistic synchronization protocol, which are developed as new 

simulation engines for CD++, a M&S toolkit that implements DEVS and Cell-DEVS formalism. 

Two distinct parallel simulators, namely Purely Optimistic PCD++ and Conservative PCD++ are 

introduced which use hierarchical and flattened architecture respectively. Different Cell-DEVS 

models are built in CD++ in order to judge the performance of these two simulators. Moreover, 

two new algorithms, Local Rollback Frequency Model (LRFM) and Global Rollback Frequency 

Model (GRFM) are implemented to control optimism of the optimistic PCD++. The LRFM and 

GRFM techniques are modifications to the WARPED kernel which are applied to the optimistic 

PCD++. A set of detailed tests are collected to investigate the effect of these approaches on the 

simulator.                                                                                                                                                                                 
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CHAPTER 1 INTRODUCTION  

Modeling and simulation (M&S) methodologies have become crucial for implementing, 

designing, and analyzing a broad variety of systems. The simulation process begins with 

a problem to solve. First, the real system is observed, its entities are identified, and a 

model is constructed. Then, the model is executed using a simulator consisting of a 

computer system which executes the model’s instructions and generates relevant output. 

These outputs are compared with the real system to verify the correctness of the model. 

In [Zei00] a general framework has been implemented which describes the basic entities 

in M&S and their relationships.  

 

Figure 1. The basic entities and their relationships [Zei00] 

This M&S framework consists of three basic entities which are linked by two relations: 

€ Source system entity: this entity is the real or virtual environment under analysis. 

This entity which is viewed as the data source, together with the behavior 

database form the Experimental Frame. 

€ Model entity: a model entity represents an abstraction of the source system 

represented by a set of instructions, rules, mathematical equations, or a set of 

constraints to approximate the behavior of the real system. 

€ Simulator entity: the simulator is a computer-based entity which is in charge of 

executing the model’s instructions. 

€ Modeling relation: this relation links the model and the source system to validate 

the results generated by the model. In general, the model is considered valid if the 
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data it generates agree with the data generated by the source system in the 

experimental frame in use. 

€ Simulation relation: this relation lies between the simulator and the model to 

indicate how reliable is the simulator in terms of being capable to execute the 

model’s instructions. 

The separation between model and simulator significantly simplifies the model 

validation and simulator verification [Zei00]. Furthermore, this advantage gives the 

opportunity to use different simulation algorithms within the simulator or even using 

different simulators. Also, the separation of concerns involved in this architecture allows 

model reusability as well as later extension of the model. 

Among the existing modeling and simulation techniques, DEVS (Discrete Event 

System Specification) formalism [Zei76] provides a discrete-event approach which 

allows construction of hierarchical models in a modular manner. DEVS is a sound formal 

framework based on generic dynamic systems concepts that allows model reuse, and 

reduction in development and testing time due to its hierarchical approach in constructing 

models. In this work, our main focus is on discrete-event M&S approach and DEVS 

formalism [Zei76, Zei00] which has been proven to be a universal formalism to represent 

DEDS (Discrete Event Dynamic Systems) [Cas93].  

DEVS formalism has been extended to handle simultaneous event execution. 

Parallel DEVS or P-DEVS [Cho94], allows more efficient execution of models in 

parallel and distributed environments by keeping the major properties of the original 

DEVS formalism and just extending it to overcome the serialization constraints.  

The Timed Cell-DEVS formalism [Wai98] is an extension to the traditional 

Cellular Automata [Wol86] which makes use of DEVS by defining every cell to 

represent an atomic DEVS model and coupling them together to form a complete cell 

space representing a coupled DEVS model. This formalism allows defining complex cell 

behavior with simple instructions. It also allows construction of n-dimensional cell spaces 

to represent more complicated discrete event models. Using this formalism, complex 

timing behavior can be represented by defining different timing delays among the cells of 

the cell space. The main advantage that Timed Cell-DEVS has over Cellular Automata is 

that using the state of each cell (since each cell is a basic DEVS model), only activated 
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cells are evaluated as opposed to the original Cellular Automata where all cells get 

evaluated at each time step which results in a noticeable waste of time.  

DEVS and Cell-DEVS formalisms have been successfully used to develop 

complex models in different fields of science including: physics, biology, chemistry, 

ecology, as well as computer networks, traffic modeling, and many other systems. 

Example of such models would be: fire spread in forests [Ame01], land battlefield of two 

armies [Mad05], computer networks [Ahm05], and ATLAS [Dia01]. 

Parallel and distributed simulation (PADS) techniques were proposed to 

resolve the issues of complex models simulation. As the models become larger and more 

complex, the problems of limited resources within a single-processor arise. Not only the 

shortage of resources, but also the long execution times brought up the idea of Parallel 

discrete event simulation (PDES) studies. Fujimoto [Fuj01] classifies three major 

research categories in the area of parallel and distributed simulation. The first research 

group is the high performance computing community which started in late 1970’s and 

1980’s aiming at reducing execution time by using multiple processors. This community 

developed the world wide known fundamental ideas by proposing two synchronization 

algorithms: Chandy-Misra-Bryant [Bry77, Cha79] and Time Warp [Jef85]. The 

second group is the Defense community, which mainly focuses on facilitating 

interoperability and software reuse. Finally, the third group is the gaming and Internet 

community which is interested in developing realistic scenarios in distributed 

environments. 

 Parallel Cell-DEVS [Wai00] formalism extends the standard formalisms of Cell-

DEVS to allow a higher degree of parallelism in parallel and distributed environments. 

This formalism overcomes the restrictions of serialized simulation by revising and 

extending Cell-DEVS to allow a higher degree of parallelism and allowing zero-delay 

transitions as well as multiple simultaneous events per external ports. 

CD++ [Wai01a, Wai02] is a modeling toolkit that implements the DEVS and 

Cell-DEVS theories by applying the original formalisms. The toolkit includes facilities to 

build DEVS and Cell-DEVS models. This tool has been revised and extended several 

times, and currently supports standalone [Rod99], real-time [Gli02a], parallel 



  4

conservative [Tro03], parallel purely optimistic [Liu06], and web service-based [Mad06] 

simulation.  

Synchronization as the key to parallel and distributed simulation requires a robust 

mechanism to handle communication among concurrent processes. In general, a parallel 

or distributed simulation runs on multiple parallel or distributed processors 

interconnected by a communication network. There exist two major classes of 

synchronization: conservative (or pessimistic) approaches and optimistic approaches. 

Optimistic approaches have a higher degree of parallelism unlike the conservative 

approaches where they are overly pessimistic and force the simulation to behave 

sequentially when it is not necessary. Conservative approaches rely very much on 

application-specific information when making run-time decisions on whether it is safe to 

process the event or not. On the other hand, the optimistic mechanisms are less reliant on 

the application for correct execution, therefore allowing a simplified software 

development and more transparent synchronization. 

The focus of this work is on improving the capability of CD++ in supporting P-

DEVS and Parallel Cell-DEVS modeling and simulation. This work is based on previous 

research: PCD++ which is an optimistic DEVS and Cell-DEVS parallel simulator 

[Liu06], and the conservative PCD++ simulator for DEVS and Cell-DEVS [Tro01]. Our 

work aims at: 1) modifying the existing optimistic simulator to enhance the performance 

of large scale models executions, 2) analyzing the performance of these two simulators 

using precise testing scenarios. 

1.1. CONTRIBUTION 

We present new implementations in the Time Warp protocol to improve the CD++-based 

parallel and distributed simulations by controlling the optimism of our optimistic PCD++ 

simulator. We have implemented two new protocols, namely Local Rollback Frequency 

Model (LRFM) and Global Rollback Frequency Model (GRFM) to limit the optimism 

[Szu00]. This was done by modifying the WARPED [Mar99] kernel to implement a Near 

Perfect State Information (NPSI) mechanism based on the number of rollbacks. The idea 

is to reduce the number of rollbacks by suspending the simulation object within logical 
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process that has large number of rollbacks, hence blocking it from flooding the net with 

anti-messages. However, this new design allows the logical process to stay receiving 

input events and inserting them into the corresponding message queues. After a 

predefined duration, the suspended simulation object is released and will resume its 

simulation duties. The LRFM protocol is only based on local information of the logical 

processes. Thus, the simulation object will be suspended or allowed to continue 

simulation only based on its number of rollbacks. In contrast, in the GRFM protocol, 

each simulation object uses global information in such a way that among all the 

simulation objects residing on all logical processes, the one with greatest number of 

rollbacks must be suspended for a predefined duration. 

We also present a set of complex models implemented in Cell-DEVS using our 

CD++, including: Game of Life, Synapsin-Vesicle Reaction at Nerve Terminal, Fire 

Spread, and Ship Evacuation model. These models were selected based on their 

distinguishable functionality, complexity, and size to better highlight the capability of our 

simulator. 

Finally, we have run a set of detailed test cases using a variety of models to 

observe the performance of both the Conservative PCD++ Simulator [Tro01] and the 

Purely Optimistic PCD++ simulator [Liu06]. Precise testing strategies were used to 

analyze the performance of our existing PCD++ simulators; the optimistic and the 

conservative as well as our LRFM- and GRFM-based protocols. The main goal of this 

research work is to create a workbench consisting of four different simulators; 

Conservative, Pure Optimistic, LRFM-based Optimistic, and GRFM-based Optimistic 

simulators. This workbench serves as simulation environment that can be used as the base 

in studying parallel simulations of DEVS and Cell-DEVS.  On the other hand, the precise 

and detailed testing scenarios that we are presenting can be used along with this 

workbench to analyze the capability, performance, and robustness of PCD++ simulators.  

This work was the first attempt to use optimism controlling simulators for simulating 

parallel DEVS and Cell-DEVS model. 
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1.2. THESIS ORGANIZATION 

This thesis is organized as follows: 

 Chapter 2 gives an overview about the state-of-the-art in the field of discrete 

event modeling and simulation by presenting DEVS and Cell-DEVS formalisms and their 

extensions. Then, the two major synchronization mechanisms namely optimistic 

approaches and conservative approaches for parallel and distributed simulation will be 

discussed. Finally, a survey of the existing DEVS-based simulation toolkits is provided. 

 Chapter 3 covers the software architecture of the purely optimistic parallel CD++ 

simulator (PCD++). The layered architecture of the software will be presented followed 

by a more detailed discussion of each layer. 

Chapter 4 introduces the two parallel CD++ simulators by presenting the design 

and implementation of each of them. Also, the two simulators are compared in terms of 

their structure as well as functionalities in parallel and distributed simulations.  

Chapter 5 illustrates different models implemented in Cell-DEVS on our CD++ 

toolkit. 

Chapter 6 presents two new algorithms that we have implemented in WARPED 

kernel. First the rollback mechanism of the optimistic PCD++ simulator is discussed. 

Then, the Near-perfect State Information protocol is presented. Finally, our new 

algorithms; Local Rollback Frequency Model (LRFM) and Global Rollback Frequency 

Model (GFRM) are illustrated. 

Chapter 7 covers the experimental results for measuring the performance of four 

different PCD++ simulators. 

Chapter 8 presents the main conclusion of the thesis as well as future research 

work that can extend the outcome of this work.  
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CHAPTER 2 REVIEW OF THE STATE OF THE ART  

This chapter gives an overview about the state-of-the-art in the field of discrete event 

modeling and simulation. Section 2.1 and 2.2 will present background information about 

DEVS and Cell-DEVS formalisms and their extensions. Then, the two major 

synchronization mechanisms namely optimistic approaches and conservative approaches 

for parallel and distributed simulation will be discussed in Section 2.3. Finally, Section 

2.4 will cover a survey of the existing DEVS-based simulation toolkits. 

2.1.  DEVS AND PARALLEL DEVS FORMALISMS 

DEVS [Zei76, Zei00] is a formalism for modeling and simulation of DEDS (Discrete 

Events Dynamic Systems) which provides a framework for the definition of hierarchical 

models in a modular way by decomposing the real system into behavioral (atomic) and 

structural (coupled) components. DEVS theory provides a rigorous methodology for 

representing models, and it does present an abstract way of thinking about the world with 

independence of the simulation mechanisms and the underlying hardware and 

middleware. A DEVS atomic model is formally defined by: 

M = <X, Y, S, δint, δext, λ, ta>, 

where 

X = {(p,v) | p ∈ IPorts, v ∈ Xp}             is the set of input ports and values; 

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 

S                                        is the set of sequential states; 

δint: S →→→→ S                            is the internal state transition function; 

δext: Q × X →→→→S                    is the external state transition function, where 

                Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed                   

                                                                      since the last state transition; 

λ: S →→→→Y                              is the output function; 

ta: S →→→→ R+
0,∞                         is the time advance function. 
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The semantics for this definition is given as follows. At any time, a DEVS 

coupled model is in a state s ∈ S. In the absence of external events, the model will stay in 

this state for the duration specified by ta(s). When the elapsed time e, is equal to ta(s), the 

state duration expires and the atomic model will send the output λ(s) and performs an 

internal transition to a new state specified by δint(s). Transitions that occur due to the 

expiration of ta(s) are called internal transitions. However, state transition can also 

happen due to arrival of an external event which will place the model into a new state 

specified by δext(s,e,x); where s is the current state, e is the elapsed time, and x is the 

input value. The time advance function ta(s) can take any real value from 0 to ∞. A state 

with ta(s) value of zero is called transient state, and on the other hand, if ta(s) is equal to 

∞ the state is said to be passive, in which the system will remain in this state until 

receiving an external event. Figure 2 shows the description of states and variables in 

DEVS models.  

 
Figure 2. DEVS semantics 

 

A DEVS coupled model is composed of several atomic or coupled submodels, which is 

formally defined by:   

CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 

where 

X = {(p,v) | p ∈ IPorts, v ∈ Xp}      is the set of input ports and values; 

Y = {(p,v) | p ∈ OPorts, v ∈ Yp}  is the set of output ports and values; 

D is the set of the component names, and the following requirements are imposed on   

the components, which must also be DEVS models: 
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For each d ∈ D 

Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS basic structure with 

Xd = {(p,v) | p ∈IPortsd, v∈Xp}, and 

Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}. 

The component couplings are subject to the following requirements: 

External input coupling (EIC) connects external inputs to component inputs,  

EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd}; 

External output coupling (EOC) connects component outputs to external outputs, 

EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd}; 

Internal coupling (IC) connects component outputs to component inputs,  

IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb};  

Select: 2D - {} → D is the tie-breaking function for imminent components. 

Direct feedback loops are not allowed, i.e., an output port of a component may 

not be connected to an input port of the same component. Formally: 

((d, opd), (e, ipd)) ∈ IC implies d ≠ e. 

Also, the values sent from a source port must follow the range inclusion constraint 

of a destination port, formally expressed as: 

∀ ((N, ipN), (d, ipd)) ∈ EIC : XipN⊆ Xipd 

∀ ((a, opa), (N, opN)) ∈ EOC : Yopa⊆ YopN 

∀ ((a, opa), (b, ipb)) ∈ IC : Yopa⊆ Xipb. 

From the coupled DEVS formalism it can be observed that due to the closure 

property, a coupled model is regarded as a new DEVS model [Zei00]. This property 

ensures that the overall behavior of a coupled model is equivalent to a basic atomic 

model, and therefore allows hierarchical model construction. The X and Y sets describe 

the input and output events of the coupled model. Upon reception of an input event, it has 

to be redirected to the corresponding atomic component. Similarly, when an output is 

generated by a component, it must be mapped as an input to another component or sent 

out as an output of the coupled model. The mapping mechanism is defined by the Z 

function.  
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 In coupled DEVS models, when multiple imminent components are scheduled for 

an internal transition at the same time, this can lead to ambiguity. For example, let’s 

consider a case where we have two imminent components: A, and B. When component A 

executes its internal transition, it produces an output that maps to an external event for 

component B. However, at this moment, component B is already scheduled for an 

internal transition. This will cause an ambiguity for component B, not knowing which 

transition to execute first. The coupled DEVS formalism suggests two alternatives for 

this scenario: 1) execute the external transition first with e being equal to ta(s) and then 

the internal transition, or 2) execute the internal transition first and then the external 

transition with e being equal to zero. DEVS resolves this ambiguity by introducing the 

select tie-breaking function. This function gives order to the imminent components of a 

coupled model so that only one component has e = 0. Then the rest of imminent 

components are divided into two groups: 1) a set of components that receive an external 

output from this model, 2) the rest of components. The first group will then execute their 

external transition functions with e = ta(s), and the second group will be imminent during 

the next simulation cycle which may further require the use of select function to decide 

which component is going to be the first. The use of tie-breaking mechanism adds 

overhead to the simulation and, in addition, decreases the level of parallelism and forces 

the simulation to have a serialized manner. Since the select mechanism associates 

priorities with imminent components, it will cause a potential bottleneck in the simulation 

system when many interconnected atomic models are imminent at the same time.  

 Parallel DEVS or P-DEVS [Cho94a] is an extension to DEVS that eliminates all 

the serialization constraints and provides an environment for executing simultaneous 

DEVS models in parallel. P-DEVS implements confluent function to deal with collision 

scenarios at which events get scheduled simultaneously [Zei00]. Collision handling: the 

modeler has the responsibility of controlling collision’s behavior. 

An atomic P-DEVS model is specified by: 

M = < X M , Y M , S, δ ext , δ int, δ con, λ, ta) 

where 

X M = {(p,v)| p ∈ IPorts, v ∈ X p }  is the set of input ports and values; 

Y M = {(p,v)| p ∈ OPorts, v ∈ Y p }   is the set of output ports and values; 
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S      is the set of sequential states; 

δ ext: Q x XM
b → S    is the external state transition function; 

δ int: S →  S     is the internal state transition function; 

δ con: Q x XM
b → S   is the confluent transition function; 

λ : S → YM
b     is the output function; 

ta : S → R0 
+ ∪ ∞    is the time advance function; 

        with Q := {(s, e) | s ∈ S , 0 ≤ e ≤ ta(s)} the set of total states. 

 

From the following, differences between DEVS and P-DEVS can be noted: 

€ Instead of having a single input, a bag of inputs is implied to enable concurrent 

execution of events. 

€ To define the model’s state at the time of collision (i.e. simultaneous internal and 

external transitions), the confluent function δcon has been defined. The modeler 

takes care of this function and specifies the behavior of the model when collision 

occurs. 

The elimination of the sequential Select function and its replacement with the 

confluent transition function gives all the imminent components equal priority and the 

permission to be activated and to send their output to other components at the same time. 

At the other end, the receiver component is only responsible for identifying the type of 

the received input event and taking the required actions.  

P-DEVS coupled models are similar to DEVS, except for the omission of Select 

function. Formally, a coupled model is defined as:  

CM = <X, Y, D, {M d | d ∈ D}, EIC, EOC, IC> 

Therefore, the set of input and output events (X and Y), components (D and Md), 

and couplings (EIC, EOC, and IC) are identically the same as of DEVS. Since in P-

DEVS there is no serialization among imminent components, in case of having multiple 

imminent components within a coupled P-DEVS model, firstly, all the outputs are 

collected and redirected to the corresponding influences, secondly, the transition function 

is executed [Zei00].   
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2.1.1. DEVS model example: A Bluetooth simulator 

In order to show how to define DEVS models, we have built a Bluetooth DEVS model to 

show how two paired devices communicate with each other. Bluetooth is a wireless 

connection that enables devices such as mobile phones, computers and PDAs to exchange 

information. Figure 3 illustrates the components of the model. As shown in the figure, the 

model consists of four components: SenderMobile, ReceiverMobile, DataTransmission, 

and CennectionManager. The ConnectionManager is further decomposed into 

PairedDeviceFinder, and PermissionVerifier.  

 

 
Figure 3. Structure of Bluetooth Simulator 

The sender is activated when it receives “enableBluetooth” command which 

means the user of the mobile device wants to send data to another mobile using 

Bluetooth. Once the sender mobile gets its Bluetooth enabled, the connection manager is 

responsible to search for other mobile devices that are in range and have their Bluetooth 

feature on. As soon as a paired device is found, its ID is sent to the sender mobile (it will 

be displayed on the mobile screen, for simplicity in this model it is assumed that there is 

only one paired device available in that range). Once the sender mobile is informed about 
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the existence of the receiver mobile, it will issue a “connect” command to start the 

transmission of data. The connection manager is then activated again and will request 

permission from the receiver mobile to transfer the data. After that, the receiver mobile 

will grant the permission and the connection manager will notify the sender mobile to 

start the transmission. The sender mobile sends the data to the dataTransmission handler 

which takes care of ensuring enough capacity at the receiver as well as reliable 

transmission. Once the transmission is done successfully the sender is informed and it 

goes back to passive state by disabling its Bluetooth and waiting for another input 

command (i.e. “enableBT”). As shown in Figure 3, the Bluetooth Simulator has one input 

and one output. The enableBT input indicates that the user of SenderMobile would like to 

start a Bluetooth transfer of data to a ReceiverMobile. Whenever this command is issued 

the SenderMobile is activated and its state changes from passive to active. The 

newMsgArrival output indicates that there is new message received. At the 

ReceiverMobile there is a counter which counts the number of new messages arrived. The 

coupled component ConnectionManager and the atomic component DataTransmission 

handle connection establishment and data transfer between SenderMobile and 

ReceiverMobile atomic components. 

 

Formal Specifications for Atomic Models: 

The formal specifications <S, X, Y, δint, δext, λ, ta> for the atomic models are 

defined as follows: 

ReceiverMobile: 

 Assumption: the receiver will always accept the request of receiving data from 

other mobile device. It is assumed that the sender and receiver mobiles know each other. 

Also, the receiver’s Bluetooth is always enabled. 

S = {phase, ID, totalMsgs, ID_requested, permission_given, gotMsg   } 

X = {IDrequested, permit, data} 

Y = {IDout, accepted, gotData, newMsgArrival} 

DataTransmission: 

 Once connection is established, the SenderMobile will send the data through the 

DataTransmission to the ReciverMobile. At the receiver when the data is received, the 
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DataTransmission will signal the sender that data was transmitted successfully. The 

Sender then goes back to passive state and waits for the next “enableBT” request. 

S = {phase, data, dataReceived} 

X = {dataOut, gotData} 

Y = {dataSent, data} 

PairedDeviceFinder: 

 This unit is responsible for searching paired devices (mobile sets that are 

Bluetooth enabled and are in range). SenderMobile requests to have the ID of the paired 

devices. Once a paired device is found its ID is sent to the SenderMobile. In this 

assignment it is assumed that there is only one receiver mobile available in that area. 

S = {phase, receiverID, reqSearch} 

X = {search, IDin} 

Y = {getID, deviceID} 

PermissionVerifier: 

 After getting the ID of the receiver, the sender will have to ask for permission in 

order to start the data transmission. PermissionVerifier unit will handle this by 

coordinating between the sender and receiver. 

S = {phase, accessOK, reqConnection } 

X = {connectDevice, granted} 

Y = {connected, reqPermission} 

SenderMobile: 

 Assumption: the receiver will always accept the request of receiving data from 

other mobile device. It is assumed that the sender and receiver mobiles know each other. 

Also, the receiver’s Bluetooth is always enabled.  

S = {phase, gotID, receiverID,enable, sending } 

X = {enableBT, deviceFound, start, dataSent } 

Y = {searchDevice, connect, dataOut } 

 

Formal Specifications for Coupled Models: 

The formal specifications <X, Y, D, EIC, EOC, IC, SELECT > for the coupled model 

ConnectionManager and BluetoothSimulator are defined as follows: 



  15

ConnectionManager: 

 X = {search, IDin, connectDevice, granted}; 

 Y = {deviceID, getID, connected, reqPermission }; 

 D = {PermissionVerifier, PairedDeviceFinder}; 

EIC = {( ConnectionManager.search, PariedDeviveFinder.search),                                                              

   (ConnectionManager.IDin, PariedDeviveFinder.IDin ), 

   (ConnectionManager. connectDevice, PermissionVerifier. connectDevice),       

   (ConnectionManager.granted, PermissionVerifier. granted)} 

 

EOC = {( ConnectionManager. deviceID, PariedDeviveFinder. deviceID),                                                             

    (ConnectionManager. getID, PariedDeviveFinder. getID), 

    (ConnectionManager. connected, PermissionVerifier. connected),    

    (ConnectionManager. reqPermission, PermissionVerifier. reqPermission)} 

 

IC = {φ} 

SELECT:  ({PermissionVerifier, PairedDeviceFinder }) = PairedDeviceFinder; 

BluetoothSimulator Simulator: This is the TOP component encapsulating the whole model. 

    X = {enableBT }; 

    Y = {newMsgArrival }; 

    D = {SenderMobile, ReceiverMobile, ConnectionManager, DataTransmission }; 

EIC = {( BluetoothSimulator.enableBT, SenderMobile. enableBT),                                                             

EOC = {( BluetoothSimulator. newMsgArrival, ReceiverMobile. newMsgArrival),                                                             

IC = { (SenderMobile.searchDevice, ConnectionManager.search),  

  (SenderMobile.connect, ConnectionManager.connectDevice),  

  ( ConnectionManager.deviceID, SenderMobile.deviceFound),  

  ( ConnectionManager.connected, SenderMobile.start) ,( SenderMobile.dataOut,   

      DataTransmission.dataOut), ,( SenderMobile.dataSent,   

      DataTransmission.dataSent) ,( DataTransmission.data, ReceiverMobile.data) ,    

( DataTransmission.gotData, ReceiverMobile.gotData),   

(ReceiverMobile.IDrequested, ConnectionManager. IDrequested) ,  

(ReceiverMobile.IDout, ConnectionManager. IDout)  

            (ReceiverMobile.permit, ConnectionManager. permit)  

            (ReceiverMobile.accepted, ConnectionManager. accepted)} 
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SELECT:  ({DataTransmission, ConnectionManager }) = ConnectionManager 

  ({SenderMobile, ConnectionManager }) = SenderMobile 

  ({SenderMobile, DataTransmission }) = SenderMobile 

Using CD++ toolkit, the described model can be simulated and the results are 

tested for verification. The closure under coupling property of the coupled DEVS 

formalism allows incremental testing of the model. This is performed by testing each 

individual atomic model as well as the coupled ones. The TOP component which 

encapsulates the whole model can be tested as well, and the results are compared with 

ones obtained from atomic component’s test results.  

For the top coupled model testing can be done by inputting only one event which 

is “enableBT”. This is the command issued by the user of the SenderMobile requesting to 

enable its Bluetooth and transferring data to other paired devices. At the end of 

simulation the out put “newMsgArrival” is expected which shows how many massages 

were received. For example by setting “enableBT” to 3, the following results should be 

seen: 

 

 

 

 

 

 

 

From the above simulation results we can see that at the receiver end 7 new messages 

were received. This result and also the corresponding timings verify the correctness of 

our model. 

2.2.  TIMED CELL-DEVS AND PARALLEL CELL-DEVS FORMAL ISMS 

The Cellular Automata formalism [Wol86] uses cell spaces to represent real systems. A 

cellular automaton is an infinite regular n-dimensional lattice, where each cell holds one 

finite value. The lattice consists of cells having state variables and a computing 

apparatus, which is in charge of updating cell’s state according to a local rule. This is 

 
Input:    Output: 
 
00:00:00:00   enableBT 1 00:00:28:000 newmsgarrival 1 
00:00:30:00   enableBT 1 00:00:58:000 newmsgarrival 2 
00:00:60:00   enableBT 1 00:01:28:000 newmsgarrival 3 
00:00:120:00  enableBT 1 00:02:28:000 newmsgarrival 4 
00:00:180:00  enableBT 1 00:03:28:000 newmsgarrival 5 
00:00:2400:00 enableBT 1 00:05:28:000 newmsgarrival 6 
00:00:300:00  enableBT 1 00:40:28:000 newmsgarrival 7 
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performed by using the current cell’s state and those of a finite set of nearby cells (called 

the neighborhood of the cell) [Wai00]. 

 
Figure 4. Sketch of a Cellular Automaton [Wai00] 

 
The major limitation of this discrete time paradigm is that at each discrete time 

step when the values of all the cells get updated, usually there are several cells which do 

not require this update, therefore noticeable computational time is wasted [Wai01b].  To 

solve this problem, Cell-DEVS [Wai98] was proposed which integrates DEVS and 

cellular automata by presenting each cell as an atomic DEVS model.  

Cell-DEVS extends DEVS formalism, allowing the implementation of cellular 

models with timing delays. Two types of timing delays can be used, namely transport 

and inertial [Gia76]. When transport delay is used, the future value is added to queue 

sorted by output time, allowing the previous values that were scheduled for output but 

have not yet been sent to be kept. On the other hand, inertial delays allow a preemptive 

policy at which any previous scheduled output value will be deleted and the new value 

will be scheduled. A Cell-DEVS atomic model is defined by [Wai01b]: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

where 

X     is a set of external input events; 

Y    is a set of external output events; 

I    represents the model's modular interface; 

S     is the set of sequential states for the cell; 

θ    is the cell state definition; 

N     is the set of states for the input events; 

d     is the delay for the cell; 
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δint     is the internal transition function; 

δext                is the external transition function; 

τ     is the local computation function; 

λ     is the output function; and 

D     is the state's duration function. 

The modular interface (I) represents the input/output ports of the cell and their 

connection to the neighbor cell. Communications among cells are performed through 

these ports. The values inserted through input ports are used to compute the future state 

of the cell by evaluating the local computation function τ. Once τ  is computed, if the 

result is different than the current cell’s state, this new state value must be sent out to all 

neighboring cells informing the state change. Otherwise, the cell remains in its current 

state and therefore no output will be propagated to other cells. This will happen when the 

time given by the delay function expires. Finally, the internal, external transition 

functions and output functions (λ) define this behavior. Cell-DEVS improves execution 

performance of cellular models by using a discrete-event approach. It also enhances the 

cell’s timing definition by making it more expressive. Cell-DEVS coupled models 

represent the cell space as follows: 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 

where 

Xlist   is the input coupling list; 

Ylist    is the output coupling list; 

I                       represents the definition of the model’s interface;  

X   is the set of external input events; 

Y   is the set of external output events; 

n   is the dimension of the cell space; 

           {t1,...,tn}  is the number of cells in each of the dimensions; 

N   is the neighborhood set; 

C    is the cell space; 

B    is the set of border cells; 

Z   is the translation function; and 

select    is the tie-breaking function for simultaneous events. 
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A coupled model is composed of an array of atomic cells (C) with given size and 

dimensions where each cell is connected through standard DEVS input/output ports to the 

cells defined in the neighborhood (N).  Since the cell space is finite, the borders of the 

cells are either connected to a different neighborhood than the rest of the space, or they 

are “wrapped” (i.e. B = {∅}) in which they are connected to those in the opposite one 

using the inverse neighborhood relationship. However, border cells have a different 

behavior due to their particular locations, which result in a non-uniform neighborhood. 

The Z function defines the internal and external coupling of cells in the model. It 

translates the outputs of the ith output port in cell Ca into values for the ith input port in 

cell Cb. Select function has similar functionality as in basic DEVS models, where it is the 

tie-breaking function for the imminent components.  

  As in coupled DEVS models, the use of Select function produces serialization, 

and therefore similar limitations when the Cell-DEVS models are considered to be 

executed in parallel. These limitations would lead to lack of parallelism exploitation and 

a probable inconsistency with the real system [Wai99]. Moreover, since the timed Cell-

DEVS allows only one input from each input port, zero-delay transitions are not possible 

and also the external DEVS models are not allowed to send two simultaneous events to 

the same cell. The Parallel Cell-DEVS [Wai00] formalism overcomes these restrictions 

by revising and extending Cell-DEVS to allow a higher degree of parallelism and 

allowing zero-delay transitions as well as multiple simultaneous events per external 

model. Below is a summary of distinguishable characteristics of parallel Cell-DEVS 

which are presented in [Wai00]: 

1. Parallel Cell-DEVS models are equivalent to parallel DEVS models. 

2. Closure under coupling holds for parallel Cell-DEVS models as well: that is a 

coupled Cell-DEVS model is equivalent to an atomic Cell-DEVS model. 

2.3.  THE CD++ TOOLKIT 

CD++ [Wai02] is a modeling tool that implements the DEVS and Cell-DEVS theories by 

applying the original formalisms. The toolkit includes facilities to build DEVS and Cell-

DEVS models. DEVS atomic models can be programmed and incorporated into a class 
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hierarchy programmed in C++. Furthermore, coupled models can be defined using a 

built-in specification language. Therefore, coupled and Cell-DEVS models need not to be 

programmed, rather the tool provides a specification language that defines the model’s 

coupling, the initial values, the external events, and the local transition rules for Cell-

DEVS models. 

CD++ also includes an interpreter for Cell-DEVS models [Wai98]. The language 

is based on the formal specifications of Cell-DEVS. The model specification includes the 

definition of the size and dimension of the cell space, the shape of the neighborhood and 

the border. The cell’s local computing function is defined using a set of rules with the 

form POSTCONDITION   DELAY  { PRECONDITION }. These indicate that when the 

PRECONDITION is met, the state of the cell will change to the designated 

POSTCONDITION after the duration specified by DELAY. If the precondition is not met, 

then the next rule is evaluated until a rule is satisfied or there are no more rules. 

2.4.  PARALLEL AND DISTRIBUTED SIMULATION 

As we mentioned earlier, P-DEVS and Parallel Cell-DEVS extend the standard 

formalisms of their type to allow a higher degree of parallelism in parallel and distributed 

environments. In such environments the entire task of simulation is divided among the 

processors or nodes. Therefore each one of these concurrent nodes handles a smaller 

portion of the simulation while the whole process of execution takes place in parallel and 

as a result in a significantly reduced time.  

During a parallel, distributed simulation, a number of Logical Processes (LP) will 

be in charge of carrying on the execution of the model on different CPUs [Fuj00]. Each 

LP executes a part of the simulation by assigning it to one or more simulation objects. 

Logical processes will communicate to each other by sending time-stamped messages. 

Synchronization among these LPs is violated when an out of order event is received by 

one of the LPs. This violation is referred to as causality error. Such a scenario is 

represented by Figure 5 where two LPs each with one event in its input queue process 

their events simultaneously. LP2 as a result of executing e1 (time stamp of e1 = 1), 

generates and sends a new even e2 (with time stamp = 2) LP1. But at that time, LP1 has 
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already processed e6 and therefore the time of LP2 has been already advanced to 6. As a 

result, arrival of e4 at LP2 violates the local causality constraint and a causality error 

arises.  

 
Figure 5. Causality error at LP2 

Synchronization among nodes (LPs) is the most challenging problem of parallel 

and distributed simulation. There exist three different types of synchronization strategies 

for event driven simulations: 

1. No synchronization at all: synchronization is ensured by the application (i.e. 

sequential simulations). 

2. Pessimistic (conservative) synchronization [Bry77, Cha79]: causality violations 

are strictly avoided. 

3. Optimistic synchronization [Jef85]: causality errors are fixed by the notion of 

rollbacks. 

2.4.1. Conservative parallel discrete event simulation 

Conservative synchronization approaches were the first synchronization algorithms 

proposed in the late 1970s by R. E. Bryant [Bry77], K. M. Chandy and J. Misra [Cha78]. 

This synchronization technique which is known the Chandy-Misra-Bryant (CMB) 

algorithm, disallows any occurrence of causality errors. In conservative schemes, if a LP 

has an unprocessed event with timestamp t and it is guaranteed that no event with earlier 

timestamp can be received, then the probability that causality error may happen is zero. 

When the LP has a list of unprocessed events from all other LPs it can safely process the 

event with lowest timestamp because the future events will for sure have larger 

timestamps. As long as there are unprocessed events from all other LPs, then this cycle 

can be repeated and synchronization is guaranteed. However, if this condition is not met, 

then there is a risk of deadlock. Technique to resolve this deadlock is to find the model’s 
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lookahead, which provides the smallest time stamp of the new events that a process can 

schedule in the future. Null messages are responsible to carry out the lookahead 

information among LPs. This way each LP, based on the lookahead information that it 

receives from all other LPs can derive a lower bound on the time stamp (LBTS) of the 

events that it will receive in future. As a result, the LP would know which event is safe to 

process. An example of a safe lookahead value is the timestamp of the first unprocessed 

event in the input queue. The main drawback of the conservative synchronization 

approach is the time-wasting flow of null messages which degrade the simulation 

performance significantly. Optimistic approaches also offer two important advantages 

over conservative techniques [Fuj03]. 

2.4.2. Optimistic parallel discrete event simulation 

In this technique, which was first proposed by Jefferson’s Time Warp mechanism 

[Jef85], each LP has a Local Virtual Time (LVT ) which advances every discrete step as 

events are executed on the process. Therefore, LPs execute their own portion of the 

simulation based on the LVT. Causality errors can occur when LPs send messages to 

each other. This way, an LP may receive a message with timestamp earlier than its 

current LVT. Such events are referred to as straggler events. If a straggler event is 

received the LP will launch a rollback operation, where the LP recovers from the 

causality error by undoing the effects of all the events that were processed and had 

timestamp greater than the timestamp of the straggler event. Messages that were falsely 

sent to other processes now must be canceled, which is performed by sending anti-

messages.  

The Time Warp protocol consists of two parts [Mar97]: the local control 

mechanism and the global control mechanism. The local control mechanism which is 

provided in each Time Warp process is in charge of rollback operations which include: 

sending anti-messages, restoring the state of the LP, readjusting Local Virtual Time 

(LVT ), etc. On the other hand, the global control mechanism takes care of global issues 

such as memory management, I/O operations, and termination detection. 

The rollback mechanism requires defining three structures in each process: an 

input queue, to keep all the received events ordered by their virtual receive time (earliest 
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time-stamped event is on the top of the queue), an output queue, to keep a negative copy 

(i.e. anti-message) of each message that the process has recently sent out ordered in 

virtual send time, and a state queue, to keep a copy of all recent states of the process (this 

is used during the rollback when the state of the process has to be restored to that of 

saved prior to rollback). When rollback occurs due to a straggler message, two major 

actions take place at the LP [Liu06]. First, the state of the LP is restored to the last saved 

one which is now the top element of the state queue (this state was saved at time earlier 

than the virtual receive time of the straggler). Second, the process has to recover from the 

causality error by sending anti-messages to cancel the effects of already sent messages. 

All the anti-messages in the output queue whose timestamp is later than the straggler’s 

receive time must be sent out. On the other hand, arrival of anti-messages at other 

processes will cause further rollback if the timestamp of the anti-message is less than the 

LVT of the receiving process. Therefore, anti-messages (just as positive stragglers) 

would cause rollbacks and further propagation of anti-messages. These are referred to as 

secondary rollbacks which result in cascaded rollbacks flooding the simulation system 

with anti-messages.   

The global control mechanism defines the Global Virtual Time (GVT ) which is 

an instantaneous global snapshot of the system and the wall clock time defined as follows 

[Fuj00]:  

The Global Virtual Time at wall clock time T (GVT T) is defined as the minimum 

time stamp among all unprocessed and partially processed messages and anti-messages at 

wall clock T.  

Unlike LVTs, the GVT never decreases [Fre02]. Hence, at any time of the 

simulation, GVT shows the minimum virtual time. This ensures that any event that was 

processed before GVT is 100% safe and will never rollback. Therefore, all events in the 

input and output queue whose timestamps are less than GVT can be safely removed from 

the queues. Also, all the states in the state queue (except the last one saved) with saved 

time older than GVT can be safely removed. The operation of deleting old information 

(messages and LP’s states) is referred to as fossil collection. This mechanism avoids 

wasting system resources. 
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In Time Warp systems the global control mechanism is responsible for calculating 

and advancing GVT. The main issue is that, high GVT calculation frequency saves 

memory and allows faster response time and better space utilization but at the same time 

generates a significant processing overhead. On the contrary, lowering the GVT 

calculation frequency will generate less processing overhead but requiring more memory 

as well as slowing down the response time.  

Jefferson’s original Time Warp has been revised and optimized several times to 

reduce the processing overhead and especially overcoming the issues of cascaded 

rollback. Advanced optimistic techniques in this filed have been explained in [Fuj00]. We 

will discuss in details the Time Warp protocol used for our simulator as well as the 

optimizations to this mechanism in Chapter 3. 

2.5.  DEVS-BASED SIMULATION TOOLKITS 

Based on previous studies [Liu06], in here we will give a brief review of the existing 

tools that implement DEVS theory and its extensions. 

 

€ ADEVS [Nut06] is a discrete event system simulator that provides a C++ library 

for constructing discrete event simulations based on the Parallel DEVS and 

Dynamic DEVS (dynDEVS) formalisms. 

€ DEVS-C++ [Zei96] is a DEVS-based high performance simulation environment 

which supports modeling of large-scale, high resolution landscape models using 

special form of C++ classes called containers.   

€ DEVS-Scheme [Zei93] is a knowledge-based real-time environment which 

implements the DEVS formalism in Scheme (a Lisp dialect) and enables the 

modeler to specify models directly in its terms. 

€ DEVS/CORBA [Zei99a] is a runtime infrastructure built on top of CORBA 

middleware which supports parallel and distributed simulation of DEVS formalism. 

DEVS/CORBA can be used in a larger network-centric environment to provide a 

combination of graphical process modeling, discrete-event simulation, animation, 

activity-based costing, and optimization functions. 
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€ DEVS/HLA [Zei99b] is based on High Level Architecture (HLA) [HLA00] 

implemented in C++ which explains how an HLA-compliant DEVS environment 

improves the performance of large-scale distributed modeling and simulation.   
€ DEVS/Grid [Seo04] is a grid-compliant modeling and simulation environment 

based on DEVS formalism. It is implemented using Java and Globus toolkit for 

Grid computing infrastructure and supports high performance distributed 

simulation. 

€ DEVSCluster [Kim04] is a CORBA-based, multi-threaded distributed simulator 

implemented in Visual C++. It supports simulation in heterogeneous network 

environments.  
€ DEVSJAVA [Sar98] is a DEVS-based simulator implemented in JAVA that 

supports high-level modeling.   

€ GALATEA [Dav00] uses an object oriented architecture to implement a simulation 

platform that offers a family of languages for modeling multi-agent systems in 

DEVS. GALATEA is the product of two lines of research: simulation languages 

based on Zeigler's theory of simulation and logic-based agents 

€ JDEVS [Fil02] serves as an experimental framework for natural systems modeling 

techniques. It allows discrete-event, general purpose, object-oriented, component 

based, GIS connected, collaborative, visual simulation model development and 

execution. This experimental environment can be used to solve any complex 

problems solvable by discrete-event simulation and is especially suited for natural 

system modeling and simulation. 

€ JAMES [Uhr01b] is a Java-based agent modeling environment for simulation of 

the activities in the area of agent-oriented simulation. It is based on a parallel, 

distributed version of DEVS, emphasizing states and state transition. 

€ PyDEVS is a simulator developed in ATOM3 [Del02], a tool for multi-paradigm 

modeling. ATOM3-DEVS is a tool for constructing DEVS models and generating 

Python code for the PyDEVS simulator. 

€  PowerDEVS [Kof03] is an integrated tool for hybrid systems modeling and 

simulation based on the DEVS formalism. It is implemented in C++ and allows 

construction of Atomic DEVS models graphically. 
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€ SimBeans [Pra99] is a Component-based simulation framework based on DEVS 

and the JavaBean component model, developed as a modular, hierarchical 

composition of components. 

€ DEVS/P2P [Che04] is an interface for P-DEVS implementation over Peer-to-Peer 

message communication protocol. It supports hierarchical model partitioning, 

automatic coupling restructuring, automatic model deployment, and 

distributed/parallel/local simulation.  

€ DEVS/RMI [Zha06] is a natively distributed simulation system based on standard 

implementation of DEVS. It allows distributing simulation entities across network 

nodes seamlessly without any of the commonly used middleware. It is also built 

to support auto-adaptive and dynamic reconfiguration of simulations during run-

time. DEVS/RMI approach is well suited for complex, computationally intensive 

simulation applications. It also provides an extremely flexible and efficient 

software development environment for simulation applications in a heterogeneous 

network environment. 

€ CD++ [Rod99, Wai02, Tro03] is an M&S toolkit developed in C++ that implements 

the original and Parallel DEVS and Cell-DEVS formalisms. It supports both 

standalone and parallel conservative simulations. This toolkit has been revised and 

tested in our research to realize distributed optimistic discrete-event simulations 

based on the Time Warp mechanism. 

€ SmallDEVS [Jan06] is a lightweight implementation of the original DEVS formalism 

which serves as an experimental software for research and education. It allows 

prototype-based object-oriented model construction, interactive modeling and 

simulation, and multi-simulation and reflective simulation. 
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CHAPTER 3 SOFTWARE ARCHITECTURE  

In this chapter we will focus on the software architecture of the purely optimistic parallel 

CD++ simulator (PCD++) presented in [Liu06]. The layered architecture used by this 

simulator is the same layered design used in the parallel conservative simulator [Tro01]. 

We will present the layered architecture of the software in Section 3.1, followed by a 

more detailed discussion of each layer in Section 3.1 and Section 3.2.  

 

3.1.  LAYERED ARCHITECTURE 

Figure 6 illustrates the layered architecture of the optimistic PCD++ simulator, where 

each layer only depends on the layers below it.  

 

 

 
Figure 6. Layered architecture of the optimistic PCD++ simulator [Liu06] 

 

The operating system resides on the bottom of the architecture. PCD++ uses 

Linux Operating System as the underlying platform for high-performance parallel and 

distributed computing. Above the Operating System lays the Message Passing Interface 

(MPI). MPI is a standard specification of message-passing library for high-performance 

communications on parallel machines and workstations clusters. The Operating System 

with the use of MPI provides the communication infrastructure for the PCD++ simulator. 
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We have used MPICH [Gro96] portable implementation of MPI which allows developing 

parallel and distributed applications. The WARPED [Rad98, War07] simulation kernel is 

our next layer which serves as a configuration middleware that implements the Time 

Warp mechanism and a verity of optimization algorithms. On top of the WARPED kernel 

we have the optimistic PCD++ simulator implementing the Parallel DEVS and Cell-

DEVS formalisms. The PCD++ simulator provides the framework for creating and 

executing DEVS and Cell-DEVS models in distributed environments using the Time 

Warp protocol. Finally, the top most layer is the DEVS or Cell-DEVS model created in 

CD++. 

3.2.  THE TIME WARP LAYER - WARPED KERNEL 

WARPED [Rad 98, War07] is a public domain simulation kernel originally developed at 

the University of Cincinnati to provide an implementation of Jefferson’s original Time 

Warp algorithm [Jef85]. The WARPED kernel is an attempt to make a freely available 

Time Warp simulation kernel that is easily ported, simple to modify and extend, and 

readily attached to new applications. The services provided by WARPED were used to 

implement our CD++ simulators: the conservative PCD++ simulator [Tro01], and the 

optimistic PCD++ simulator [Liu06]. This kernel serves as a middleware to implement 

CD++ simulator by allowing the use of Time Warp optimizations.  

 WARPED is developed using C++ language and compiles with open source GNU 

C++ compiler, g++. WARPED kernel uses MPI [MPI95] message passing standard for 

communication among distributed and parallel computing nodes. As mentioned in the 

previous section, for our PCD++ simulators we have used MPICH [Gro96] the freely 

available implementation of MPI which is ported to different platforms including Linux. 

Figure 7 illustrates the layout of how LPs and their simulation objects communicate in 

WARPED using the MPICH message passing interface. As shown on the figure, there exist 

two types of communications [Mar96]: direct communication for message exchange 

among local simulation objects (the ones sitting of the same LP), and MPI 

communication for message exchange among remote simulation objects (the one hosting 

on different LPs). 
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Figure 7. Structure of LPs and simulation objects in WARPED 

WARPED provides an application program interface which includes base classes 

for simulation objects (Warped objects), object’s state, and the events which get 

exchanged among simulation objects. This API allows users to create their own 

application by creating new classes derived from the ones offered. Also, the user has the 

opportunity to redefine functionalities by overloading the inherited methods without the 

need of changing kernel’s code. Furthermore, WARPED provides a simple definition of 

time (again can be redefined by the user) and functions to perform consistent I/O 

operations.  

The WARPED API is used to model objects (simulation objects) as entities which 

exchange messages (time-stamped events) with each other and respond to events by 

applying them to their internal stats. Thus, the kernel provides functionalities for sending 

and receiving events by simulation objects. On the other hand, since WARPED kernel is 

used to present an interface to Jefferson’s Time Warp algorithm, it has to offer a 

mechanism suited for potential rollbacks. The main issue in handling rollbacks is saving 

and restoring the object’s states. To this extent, the WARPED kernel provides the 

capability of defining each object’s state to support periodic state saving during rollbacks 

and recovery periods.  

The WARPED kernel provides two sets of synchronization mechanisms, namely 

NoTime and TimeWarp. The first one implements a conservative behavior, thus was used 

in our Conservative PCD++ simulator [Tro01], where the later one implements 

Jefferson’s Time Warp optimistic algorithm, therefore used by our Optimistic PCD++ 

simulator [Liu06]. 
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3.2.1. WARPED functionalities  

Here we will present the major functionalities of the WARPED kernel based on previous 

studies presented in [Rad98, Mar99]. Figure 8 illustrates a summary of these 

functionalities. A detailed discussion about each module is given in [Liu06].  

 
Figure 8. Major functionalities of WARPED kernel [Liu06] 

 Based on Jefferson’s definition, the simulation is carried out by assigning each 

part of the simulation to one Time Warp process (the simulation objects). The WARPED 

kernel groups simulation objects into partitions called “clusters” [Rad98]. In each 

partition of cluster, the simulation objects are assigned to the available physical 

processors [Low99]. As shown in Figure 9 the WARPED kernel consists of three clustering 

levels. 

 
Figure 9. The tree structure of clustering scope levels in WARPED kernel [Low99] 

The lowest level is consisted of the simulation objects implementing the Time 

Warp local control mechanism. The level above it is the partition level which is consisted 

of the physical processors who the simulation objects host on. In Time Warp definition 

each physical processor is referred to as a Logical Process (LP) which encapsulates one 
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or more simulation objects. The local simulation objects although grouped by the same 

LP, are not synchronized. This is due to the fact that each simulation object (Time Warp 

process) maintains its own LVT [Rad98]. The last (top most) level is the entire system 

consisting of multiple partitions working together to implement the Time Warp global 

mechanism. 

The WARPED kernel provides a variety of optimization strategies to optimize 

kernel performance. Optimization algorithms implemented in the kernel are: fixed-sized 

and dynamic message aggregation [Che98] algorithms to minimize inter-LP 

communication overhead without harming the progress of the simulation; static and 

adaptive polling [Sha99] algorithms for optimizing the message reception behavior; one 

anti-message per rollback strategy [Mar99] for reducing the number of anti-messages 

during rollbacks; lazy and dynamic cancellation algorithms [Lin91] to exploit message 

independency and take advantage of the parallelism available within a Time Warp logical 

process; and algorithms for adjustment of runtime parameters using external agents 

[Rad97] to reduce the overhead of the operations. Many modifications were performed 

by previous research [Liu06] to incorporate three core Time Warp optimization strategies 

into the optimistic PCD++ simulator. The following section will describe these major 

optimizations in details.  

3.2.2. Time Warp optimizations of PCD++ simulator 

The WARPED layer of our optimistic PCD++ simulator has been modified by previous 

research [Liu06] to include three major optimization strategies. In general, optimization 

strategies aim at reducing the operational overhead of the Time Warp mechanism, and 

exploiting more parallelism than is available in the basic protocol [Low99]. In [Liu06], a 

flexible user-controlled state-saving mechanism was implemented in the State 

Management module. Also, the fossil collection algorithm was revised in the GVT and 

Fossil Collection module to integrate the periodic state-saving strategy. Furthermore, the 

Rollback Facility was enhanced to allow sending only one anti-message per rollback and 

reduce the number of anti-messages required to be sent to a certain extent. The following 

points will describe each of these optimizations: 

€ User-Controlled State-Saving Mechanism 
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The WARPED kernel provides two types of state-saving strategies, namely the copy 

state-saving (CSS) strategy and the periodic state-saving (PSS) strategy. Each of these 

strategies is handled by a different type of manager: StateManager enforcing CSS 

strategy, and InfreqStateManager implementing PSS strategy. The StateManager has the 

responsibility of saving the state of a simulation object after executing each event, while 

the InfreqStateManager only saves a simulation object’s state infrequently every number 

of events. The simulator developer has only the option of selecting one of state managers 

at compile time. This selection will then apply to all simulation objects and thus all of 

them will use the same type of state managers throughout the simulation. This restricted 

selection mechanism has a major drawback which is eliminating the possibility of 

choosing different type of state-saving mechanism for different simulation objects based 

on their specific requirements at runtime. The solution presented in [Liu06] introduces a 

new state-saving mechanism. This new strategy is a two-level user-controlled state-

saving (UCSS) mechanism in the kernel which provides the simulator developer to utilize 

more flexible and efficient state-saving strategies at runtime. As shown in Figure 10 the 

UCSS mechanism has a two-level structure which enables every simulation object to 

switch to “skip-state-saving” mode and as a result skip the state-saving operation. This 

mechanism allows simulation objects to make state-saving decisions based on 

application-specific criteria.  
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Figure 10. UCSS structure [Liu06] 

      

€ Fossil Collection Algorithm Enhancement 

The GVT manager of WARPED kernel reclaims all but the last saved state older 

than the GVT along with the messages with timestamps less than the GVT in the input 

and output queues. As a result, the GVT always indicates the least timestamp of any 

potential future straggler and anti-message that can be received by any of the existing 

simulation objects. In other words, it is the minimum time of any rollback that may occur 
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in one of the processes. When rollback occurs, the state of the process is restored to the 

last one saved prior to the rollback which is the one with virtual saved time earlier than 

the GVT. Notice that this state is also the one that was left in the state queue during last 

fossil collection. Therefore, this mechanism of WARPED kernel works successfully and 

rollback operation performs exactly as expected even in the case where rollback time is 

equal to the GVT. However, this mechanism fails to work successfully when the periodic 

state-saving (PSS) strategy is used [Liu06]. The failure scenario is as follows: when the 

state of a process is saved infrequently, the restored state which is the last one available 

in the state queue could be saved at virtual time much earlier than the current GVT. 

Therefore, although the state restoration is performed correctly, but due to fossil 

collections, all events with timestamp between the time of the restored state and the GVT 

are already removed from the queues. As a result, runtime crash occurs. To overcome this 

problem, the fossil collection mechanism was revised in such a way that fossil collection 

is no longer performed using computer GVT [Liu06]. Thus, in the new algorithm, a 

minimum value among the virtual time of the last states saved older than the GVT is 

calculated for all the processes mapped on a LP. This is the value used to do fossil 

collection.  

€ One Anti-message per Rollback 

During rollback all messages saved in output queue with virtual send time equal 

to or greater than the rollback time are sent to their original receivers as anti-messages. 

However, there might be multiple anti-messages with different timestamp that must be 

sent to the same receiver. This will result in multiple rollbacks at the receiver and 

consequently a flood of anti-messages exchanged between the processes. The 

communication overhead associated with these message exchanges is very high. To 

resolve this issue, when a process has several anti-messages to send to another process, 

instead of sending them all, it is clearly enough to only send the one with the earliest 

timestamp [Lub91]. Using this fact, the rollback mechanism was revised to send only one 

anti-message per rollback and as a result significantly reduce the number of anti-

messages that need to be sent to a certain process.   
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CHAPTER 4 CONSERVATIVE VS . OPTIMISTIC PCD ++ SIMULATOR  

Part of our research is to analyze the performance of our two existing parallel CD++ 

simulators, namely Conservative PCD++ simulator [Tro01] and Optimistic PCD++ 

simulator [Liu06]. In this chapter we will look at the design and implementation of these 

two simulators and compare their structures as well as functionalities in parallel and 

distributed simulations. Section 4.1 will introduce the conservative PCD++ simulator, 

while Section 4.2 will present the optimistic version.  

4.1.  THE CONSERVATIVE PCD++ SIMULATOR 

Conservative PCD++ simulator [Tro01] was the first attempt to reduce simulation time in 

CD++ using distributed execution of models. Distributed simulation with Parallel CD++ 

speeds up the execution of both DEVS and Cell-DEVS models in comparison to the 

stand-alone simulator [Gli04]. The first parallel simulator of CD++ was based on a 

pessimistic (conservative) approach exploiting the parallelism inherent to the DEVS 

formalism. Under that scheme, a single root coordinator acts as a global scheduler for 

every node participating in the simulation. Based on this structure, all events with the 

same timestamp are scheduled to be processed simultaneously on the available nodes. 

The simulator introduces two different types of coordinators; master and slave to reduce 

inter-process communication. The simulator consists of a hierarchical structure creating a 

one-to-one correspondence between the model components and simulation objects.  

4.1.1. Parallel DEVS abstract simulator 

The DEVS formalism separates the model from the actual simulation. The abstract 

simulator implements this mechanism by creating a one-to-one correspondence between 

the model and the simulation entity as illustrated by Figure 11. The abstract simulator for 

Parallel DEVS was first proposed by [Cho94b] but it lacked in differentiating among 

intra-process messages and inter-process messages. Thus, the design and implementation 

was revised by [Tro03] to distinguish among these messaging paradigms and as a result 
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restrict the number of messages over the network (inter-process messaging) to a 

minimum.  

 

 

 

 

 

 

 

Figure 11. Correspondence between the model and the DEVS processors [Tro01] 

The simulation is carried out by DEVS processors which are of two types: 

simulator and coordinator. The simulator represents an atomic DEVS model, where the 

coordinator is paired with a coupled model. The simulator is in charge of invoking the 

atomic model’s transition and external event function. On the other hand, the coordinator 

has the responsibility of translating its children’s output events and estimating the time of 

the next imminent dependant(s). As shown in Figure 11 every coordinator has a set of 

child DEVS processors. At the beginning of the simulation, one logical process will 

reside on each machine (physical process). Then, each logical process will host one or 

more DEVS processors. This implies the fact that not all of a coordinator’s children are 

necessarily sitting on the same logical process. Due to the one-to-one correspondence, 

each coupled model is mapped to only one coordinator. A coordinator communicates 

with its child processors through intra-process messaging if they reside on the same 

logical process, and through inter-process messaging if they are sitting on remote logical 

processes. Figure 12 shows a scenario at which a coupled DEVS model consisting of six 

atomic components is simulated using this simulator. The coordinator itself and three of 

its child processors are on the same logical process (LP0), where the other three child 

processors are hosted on another logical process (LP1). When the number of remote child 

processors of a coordinator is high, this design mechanism will lead to considerable 

overheads due to inter-process messages that are sent back and forth among the 

coordinator and its child processors. To overcome this issue, the concept of Master and 

Slave Coordinators was introduced [Tro01].  
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Figure 12. A single coordinator with remote and local child processes 

In the new design a coordinator is assigned with each logical process. As a result, 

all child processors will have a local coordinator through which they can communicate 

with remote child processors. In such a scenario, there exist two different types of 

coordinators: Master Coordinator, and Slave Coordinator. The master coordinator is 

responsible for synchronizing the model execution, interacting with upper level 

coordinators, and exchanging messages among the local and remote model components. 

The slave coordinator is responsible for message exchange among the local model 

components, and forwarding local components messages to the master coordinator if it 

resides on another logical process. Figure 13 shows the class diagram of these two 

coordinators. 

 
Figure 13. Master and slave coordinators class diagram 

Figure 14 illustrates the revised scenario of Figure 12 using the master-slave 

structure.  
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Figure 14. The master-slave coordinator structure 

The master-slave coordinator structure organizes DEVS processor into a 

hierarchy which does not have a one to one correspondence with the model hierarchy. 

Thus, a parent-child relationship that takes into account the existence of master and slave 

coordinators must be defined as follows [Tro01]:  

i. For each simulator, the parent coordinator will be the parent’s model local 

processor. 

ii. For each slave coordinator, the parent coordinator will be the model’s master 

coordinator. 

iii.  For each master coordinator, the parent coordinator will be the parent’s model 

local processor; just as if it was a simulator. 

Based on this hierarchy, the conservative PCD++ simulator was implemented 

[Tro01]. Under this design, the simulation advances as a result of exchange of messages 

in the form of (type, time) between the parent and child DEVS processors. Two different 

types of messages exist: 1) the synchronization messages: (@, t), (*, t), and (done, t), 2) 

the content messages: (y, t) and (q, t). The collect message (@, t) is sent from a parent 

DEVS processor to its imminent children to tell the children to send their outputs. The 

internal message (*, t) is sent from a parent DEVS processor to its imminent children to 

tell the children to invoke their transition function (either an external, internal, or 

confluent transition). The outputs produced by a model are translated into output 

messages (y, t) which are exchanged among a child DEVS processor and its parent. 

Finally, the external messages (q, t) represent the external messages arrived from outside 

the system or the ones generated as a result of an output message being sent to an 

influencee.  
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Each type of message is handled differently by the simulator, master coordinator, 

slave coordinator, and root coordinator. The behaviors of these processors define the 

abstract simulator. Next we will look at the behavior of each type of DEVS processors at 

handling different messages. 

4.1.2. Message definitions 

In the following discussion, the form (type, t) is used to denote a message of type that has 

a receive time of t. The external, output, collect, internal, and done message are presented 

as q, y, @,*, and done respectively. 

€ Simulator 

 The simulator is responsible of invoking the atomic model’s λ(s) , δext, δint, δcon 

functions. The description that follows is a revised version of the original one presented 

in [Cho94b] which has been modified by [Tro01]. 

 

Figure 15. Simulator algorithm for (@, t) 

When a simulator receives a (@, t) message it executes the atomic model’s λ  

function and sends the output to the parent coordinator. 

 

Figure 16. Simulator algorithm for (q, t) 
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 When an external message is received, it is inserted into the bag and will gets 

executed at the right time. 

 

Figure 17. Simulator algorithm for (*, t) 

 Reception of (*, t) message indicates that a model’s transition function must be 

executed. The transition function that must be executed is selected based on t and the 

contents of the queue. If t < tN and the queue is not empty, then δext must be executed. If   

t = tN then it is the time for an internal transition; either the queue is empty (i.e. no 

external messages have been received) therefore δint is executed, or the queue is not 

empty (i.e. there are external messages) thus δcon is executed. 

€ Master Coordinator  

 A coordinator, whether master or slave, is responsible for the simulation of a 

coupled model. It translates output events to input events and keeps track of the imminent 

components. Each coordinator has a set of child processors which correspond with the 

coupled model components. For a master coordinator the set of child processors consists 

of: a set of slave coordinators, a set of local child simulators, and a set of local child 

master coordinators. A DEVS processor is said to be local if it resides on the same 

processor. 
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Figure 18. Master coordinator algorithm for (@, t) 

 When a (@, t) is received at the master coordinator, if t = tN , the collect message 

will be forwarded to all imminent child processors with minimum tN  and the imminent 

processor will be cached in the synchronize set. The master coordinator will then wait for 

all imminent processors to send back a done message. Then, the master coordinator will 

send a done message to its parent coordinator indicating that it has responded to the 

received (@, t) message correctly. 

 

Figure 19. Master coordinator algorithm for (y, t) 
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  Two different scenarios may occur at the master coordinator upon reception of an 

output message:   

1. An output message (y, t) is received from a child i that is not a slave coordinator. 

2. An output message (y, i, t) is received from a slave coordinator which has 

received a (y, t) from a local child i. 

  The slave-sync set is used for synchronization so an output message does not get 

sent twice to the same slave coordinator. To reduce the number of inter-process messages 

sent across the network, instead of forwarding a (q, t) message to the slave coordinator, a 

(y, i, t) is sent. A slave coordinator might be the parent coordinator for more than one of 

the influencees of i. If (q, t) messages were to be forwarded, then there will be one (q, t) 

message for each influencee of i. For Cell–DEVS models, this can be a significant 

overhead. Instead, just one (y, i, t) message is sent across the network then the slave 

coordinator will generate the appropriate (q, t) messages for each influencee. Then based 

on [Cho94b] design, all children ready for a transition are cached in a synchronize set to 

later on distinguish active from inactive components. 

 

Figure 20. Master coordinator algorithm for (q, t) 

  As in Simulator, when an external message is received at the master coordinator, 

it is inserted into the bag and will get executed at the right time. 
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Figure 21. Master coordinator algorithm for (*, t) 

 When the output messages are sent down to child processors, if the message is to be 

forwarded to a slave coordinator the z translation will not be applied. Instead, the original 

q message will be sent. This is why must make sure that a message is not forwarded twice 

to a slave coordinator. As mentioned before, the slave-sync is used for this purpose.  

€ Slave Coordinator 

 The slave coordinator differs from the master coordinator in only one aspect: when 

a message has to be sent to a processor that is not local, it will be sent to the master 

coordinator instead. Both the master and slave coordinators handle a (@, t) in a same 

manner. However, the set of child processor of a slave coordinator differs from that of a 

master coordinator. For a slave coordinator the set of child processors consists of the set 

of local child simulators plus the set of local child master coordinators only. 
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Figure 22. Slave coordinator algorithm for (y, t) 

 When an output event is received from a child i, the slave coordinator sorts the 

message to the influencees of i. If any influencee is local, the z function is applied and a 

(q, t) message is sent. If there are remote influencees, then the output event is sent to the 

master coordinator, which in turn will sort the message to other slave coordinators if 

necessary. Notice that, only one (y, t) message must be forwarded to the master 

coordinator. On the other hand, when the slave coordinator receives an output event 

that has been forwarded by the master coordinator on behalf of child i, it will handle the 

event as if i had been local, but no (y, t) messages will be forwarded back to the master 

coordinator if there is a remote influencee. This is to avoid infinite loops of messages 

being forwarded back and forth. The behavior of the slave coordinator upon reception of 

other messages is identical to the master coordinator, thus will not be investigated here. 

€ Root Coordinator 

 The root coordinator is a special processor that is above the topmost coordinator. It 

is responsible for driving the simulation and advancing the virtual simulation time. The 

root coordinator is also capable of handling external events which are inserted into a 

sorted queue of messages. 
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Figure 23. Root coordinator algorithm 

4.2.  THE OPTIMISTIC PCD++ SIMULATOR 

In Section 4.1 we looked at a parallel CD++ simulator which uses a hierarchical structure 

creating a one-to-one correspondence between model components and simulation object. 

However, due to the layout of the design, the communication costs associated with this 

structure is considerable. This led to proposing a flat simulation mechanism rather than 

the traditional hierarchical one to reduce the overhead in communication by reducing the 

number of exchange messages (especially inter-process message) to minimum. This is 

achieved by simplifying the underlying simulator structure, while keeping the same 

model definition and preserving the separation between model and simulator [Gli04]. 

Researchers have shown that flat simulators outperform hierarchical ones significantly 

[Kim00, Gli02a, Gli02d, Glin04, Kim04, Liu06]. Moreover, previous research [Gli02b, 

Gli02c] showed that although the hierarchical simulator presented in [Tro01] tried to 

reduce the communication overhead by introducing two specialized DEVS coordinators, 

but in some cases the communication overhead was still significantly high. After the 

Conservative PCD++ simulator [Tro01] which was a hierarchical Parallel DEVS 

simulator, [Gli04] was the first attempt to re-design the parallel CD++ simulator to adopt 

a flattened structure.  The proposed simulator [Gli04] also modified the parallel 

mechanism to an Optimistic algorithm supported by the use of Time Warp kernel. The 
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whole abstract simulator was redesigned to reflect the two major modifications; i.e. the 

departure from conservative-based simulator to an optimistic-based simulator, and 

flattening the structure of the simulator. As a result, a new Parallel DEVS simulator was 

implemented which dealt with the communication overhead dilemma by using a flattened 

structure rather than the old hierarchical approach. However, [Liu06] improved the 

Optimistic PCD++ simulator further and implemented many optimization strategies and 

enhanced the parallel and distributed simulation significantly. Thus, we used the latest 

Optimistic PCD++ simulator [Liu06] for this research. 

The following section will describe the abstract simulator in terms of its design 

layout as well as the functionalities of each DEVS processor. 

4.2.1. Parallel DEVS abstract simulator 

The flattened architecture of the Parallel DEVS introduces two new types of DEVS 

processors, namely Flat Coordinator (FC) and Node Coordinator (NC), to reduce the 

communication overhead. The flattened structure keeps the modeling framework 

unchanged and uses a flattened approach for overlaying the coordinators. Figure 24 

shows the class hierarchies in the modeling and the simulation framework.  

 
Figure 24. Model and processor hierarchies in Optimistic PCD++ [Liu06] 

 As shown on the above figure, there are four different types of simulators used in 

the new design: Simulator, Flat Coordinator, Node Coordinator, and Root Coordinator. 

The simulation is carried out by these processors in a distributed fashion among the 

available machines. To better illustrate this design, let’s consider the scenario that was 

discussed in Section 4.1 where a coupled DEVS model consisting of six atomic 
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components is simulated using the flattened PCD++ simulator. Figure 25 shows the 

model specification and its partitioning on two machines.  

The optimistic PCD++ simulator [Liu06] uses simulation techniques that are 

based on optimistic synchronization protocol which extend the conservative approach 

used in Parallel CD++ simulator [Tro01, Tro03] that was described in Section 4.1. The 

optimistic PCD++ simulator uses the optimistic synchronization protocol provided by the 

WARPED kernel to implement a distributed version of CD++. The flattened architecture 

used by this simulator outperforms the previous hierarchical simulator [Tro01] by 

reducing the communication overhead significantly.  

 
Figure 25. Distributed processor structure 

 As presented in Figure 25, one LP is created on each machine encapsulating the 

DEVS processors. Only one Root is created on machine 0 (LP0) which interacts with 

other NCs using inter-process messaging (for remote NC) and intra-process messaging 

(for local NC). The Root coordinator is in charge of starting the simulation and 

performing I/O operations among simulation system and the surrounding environment. 

Only one NC is created on each machine and acts as the local central controller on its 

hosting LP. The NC is the parent coordinator for FC and routes remote messages 

received from the Root or from other remote NCs to the FC. The Simulators are the child 

processors of the local FC which represent the atomic components of DEVS and Cell-

DEVS models and responsible for executing the abstract functions defined in their 

associated atomic model. When a Simulator needs to communicate with a remote 

Simulator residing on another LP, it sends the message to its FC, then the message is 

forwarded to the NC above it. Once the message is at the NC, it will further be routed to 
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the destination NC. Even if two Simulators are local (sitting on the same LP), they need 

to forward their messages to their parent FC. There is no direct communication among 

Simulators; all messages must be forwarded to the parent FC. This is why the FC is 

known as the local central controller of its hosting LP.  

4.2.2. Message definitions 

PCD++ processors exchange two categories of messages: content messages and control 

messages. The first category includes the external message (x) and the output message 

(y), and the second category includes the initialization message (I), the collect message 

(@), the internal message (*), and the done message (D). To describe these messages, 

external and output messages are used to exchange simulation data between the models, 

initialization messages start the simulation, collect and internal messages trigger the 

output and the state transition functions respectively in the atomic DEVS models, done 

messages handle synchronization by carrying the model timing information. The 

simulation is executed in a message-driven manner. Each type of PCD++ processor, 

defines its own receive functionality for each type of messages. In this section, we 

present what happens at each PCD++ processor including the Simulator, Flat 

Coordinator, Node Coordinator, and Root Coordinator upon reception of different types 

of messages.  

 

€ Simulator 

The Simulator algorithm for initialization message is defined as follows: 

 
Figure 26. Simulator algorithm for (I, 0) 
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As defined in DEVS formalism, two variables are used in the simulator to record 

its current simulation time (tL) and the value of sigma (ta). Using these two values, the 

value of absolute next time (denoted as tN) is calculated as tL + ta. Upon receiving the 

initialization message, (I, 0), the Simulator resets tL to the timestamp of the message, 

therefore the Simulator’s virtual time now is equal to zero. Then, the simulator initializes 

the variables defined in its associated atomic model, and after that, it informs its parent 

FC of the value of ta by sending a done message stamped with time 0. 

SIMULATOR

(@, t)

parentFC

send(y, t)

send(D, t)

tL=t, ta=0

y= λ(s)
t = tN

alt 

 
Figure 27. Simulator algorithm for (@, t) 

When a (@, t) message is received, the Simulator invokes the output function (λ) 

of the atomic model and as a result an output message (y, t) is sent to the FC. After this, 

the Simulator will send (D, t) to the FC with ta = 0 to indicate that it is imminent. 

SIMULATOR

(*, t)

[t = tN  and bag is empty]

alt

e = t – tL , ta = tN - t

s = δext( s, e, bag )

s = δint( s )

[t = tN  and bag not empty]
s = δcon( s, bag )

[tL < t < tN]

emptyBag()

tL := t

send( D, t)

emptyBag()

parentFC

 
Figure 28. Simulator algorithm for (*, t) 
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Following the collect message, a (*, t) will arrive to trigger 

internal/external/confluent function of the atomic model depending on the timing of the 

message and the status of the Simulator’s message bag. 

 
Figure 29. Simulator algorithm for (x, t) 

The last message that may arrive at the Simulator is (x, t) which is simply inserted 

into the Simulator’s message bag. Note that, only external messages with identical 

timestamp can be inserted into the message bag at a given simulation time. Before adding 

further messages with a different timestamp, the existing messages must be processed 

and the bag be cleared in the receive function for internal message. In other words, an 

internal message will always arrive in between two consecutive batches of external 

messages. 

 

€ Flat Coordinator  

The FC, sitting in between the NC and the Simulators, performs three tasks: 

synchronizing the execution of all child Simulators, routing messages exchanged among 

its children, and delivering to its parent NC those messages that are sent from its children 

to the environment or to other remote Simulators. To accomplish the first task, the FC 

finds its imminent children with the minimum absolute next time and records them in a 

structure called synchronize set. It also uses a variable, doneCount, to keep track of the 

number of done messages it should receive from its children. This variable is used to 

implement a simple barrier. The FC only passes control to its parent NC after these 

children (the number is given by doneCount) have finished their previous computation. 

The other two tasks rely on the model coupling information that is loaded into the main 

administrator of the simulation administration facility during the bootstrap operation.  
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Figure 30. FC algorithm for (I, t) 

When (I, 0) is received, the FC records the total number of its children in a 

variable named as doneCount then forwards the (I, 0) message to each child. After this, 

the FC waits for all its children to respond to this initialization by sending back a (D, 0). 

The FC will only pass the control over to the NC if all its children have finished their 

previous computation and have sent done messages as notification messages. 

insertMsg(

x)FC

(@,t)

child

tL= 0, ta = 0

*for each imminent child with tN = t

send(@, t)

cachSyncSet(child)

 
Figure 31. FC algorithm for (@, t) 

Upon receiving a (@, t) message, the FC forwards it to all imminent Simulators 

and will keep a record of this for later use (to know which children need to do state 

transitions when (*, t) is received). 
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Figure 32. FC algorithm for (y, t) 

Moreover, when (y, t) is received, the FC searches the model coupling 

information to find out the correct destination. The destination is either an input port on 

an atomic model, or an output port on the topmost coupled model. 

 
Figure 33. FC algorithm for (x, t) 

In case of receiving (x, t) message, the FC will simply insert the message into its 

message bag. 

 

 
Figure 34. FC algorithm for (*, t) 
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Upon receiving (*, t) message, the external messages inside the FC’s message bag 

are flushed to the local receiving Simulators. This will trigger the imminent Simulators to 

perform a state transition. 

 
Figure 35. FC algorithm for (D, t) 

Finally, when a (D, t) message is received from a child Simulator, the FC updates 

the child’s tN to the sum of the current simulation time and the sigma value carried by the 

received (D, t) message. 

 

€ Node Coordinator 

Each LP has one NC that acts as the local central controller in charge of the 

sequential simulation on the hosting machine. It has a single child, the FC underneath. 

The NC on machine 0 also has a parent, the Root. The NC plays a very important role in 

the simulation as summarized below: 

1) It takes care of the inter-LP communication among the Simulators. The 

messages exchanged between the NCs is handled using a special structure, the 

NC Message Bag. 

2) It is responsible for handling the external events from the environment that 

are known prior to the start of the simulation and are scheduled by the 

modeler using a text file, namely EV file.  These external events are loaded 

into the NCs during the bootstrap operations by the main administrator. 

Each NC uses a structure called Event List to hold those external events it 

needs to handle during the simulation. Events in the structure are sorted so 

that they can be processed in increasing timestamp order. The NC uses a 
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pointer called event-pointer to reference the first event that has not yet been 

sent out. Initially, this pointer points to the first event in the list. 

3) It synchronizes the activities of all local processors and drives the simulation 

on the hosting LP. The local simulation time is advanced by the NC based 

on three factors: the external events in its Event List, the external messages 

received in its NC Message Bag, and the closest state transition time 

provided by the FC. 

4) It manages the flow of control messages for the local Simulators in line with 

the Parallel DEVS formalism. For example, the formalism requires that the 

output operation must take place just before the state transition in imminent 

Simulators. Hence, the NC must ensure that the collect message, which 

triggers the output operation, will be received by imminent Simulators 

before the internal message, which results in the state transition. The correct 

sequence of these control messages is manipulated using a flag, namely 

next-message-type, which is defined in the state of the NC. It may have a 

value of collect (@) or internal (*), corresponding to the type of the control 

message that will be sent out by the NC in the next simulation cycle. The 

initial value of the flag is set to @. 

 
Figure 36. NC algorithm for (I, 0) 

Upon receiving (I, 0), the NC simply forwards it to the child FC.  

 
Figure 37. NC algorithm for (x, t) 
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In case of receiving (x, t), NC will insert this message into the NC Message Bag. 

These external messages contain values sent from remote Simulators to local ones. 

 
Figure 38. NC algorithm for (y, t) 

When (y, t) is received the NC simply forward it the Root (it has to be sent to the 

environment). 

Finally, reception of a (D, t) message by the NC from a child FC indicates that 

this is a response to a control message that was previously sent out by the NC.  

 

€ Root 

This processor only handles environment-oriented output messages during the 

simulation. Output to the environment is done through a test file called as output file or 

OUT file.  

 
Figure 39. Root algorithm for (y, t) 

When an output message is received by the Root, it checks to see whether the 

OUT file is ready. If so, the Root finds out all output ports on the TOP model to which 

the message will be eventually sent. Then, it creates a FileData object from the output 

message for each of these ports. These data objects are inserted into the file queue 

corresponding to the OUT file. Finally, the data in the file queue will be flushed out to 

the physical file by the kernel when GVT advances.    
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CHAPTER 5 CELL -DEVS MODELS IN THE CD ++ TOOLKIT  

The CD++ toolkit [Wai02, Tro03] is a modeling and simulation toolkit that implements 

the original and Parallel DEVS and Cell-DEVS formalisms. Detailed discussion about 

CD++ toolkit was presented in Section 2.3. In this chapter we will present different 

models implemented in Cell-DEVS on our CD++ toolkit including: Game of Life 

(demonstrates the famous Conway’s Game of Life), Synapsin-Vesicle Reaction at Nerve 

Terminal (represents the interaction of synapsin with vesicles at nerve terminal), Fire 

Spread (illustrates fire propagation in a forest), and Ship Evacuation (an emergency ship 

evacuation scenario).  

5.1. GAME OF LIFE 

The Game of Life was created by mathematician John Conway in 1970 [Gar70]. It is the 

best-known example of cellular automata algorithms. The standard Game of Life uses a 

two-dimensional grid. We will use this simple example to show the basic facilities of 

CD++ to define model’s rules. Cells can be either on (alive) or off (dead). As presented 

in Figure 40, the neighborhood of a cell consists of eight cells surrounding it.  

(-1, -1) (-1, 0) (-1, 1) 
(0, -1) (0, 0) (0, 1) 
(1, -1) (1, 0) (1, 1) 

Figure 40. Game of life cell neighborhood 

  

 The key rule is known as “B3/S23”: a new cell is born when it has exactly 3 

neighbors; an existing cell (alive cell) survives if it has 2 or 3 neighbors. In all other cases 

the cell dies, either of overcrowding (with more than three live neighbors) or loneliness 

(with less than two). At each time step all cells update their state simultaneously. We 

have modeled the Game of Life using CD++, on a 20x20 cell grid (400 cells). The model 

definition is shown in Figure 41. 
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1. [top]
2. components : life

3. [life]
4. type : cell
5. width : 20
6. height : 20
7. delay : transport
8. defaultDelayTime : 100
9. border : wrapped 
10. neighbors : life(-1,-1) life(-1,0) life(-1,1) 
11. neighbors : life(0,-1)  life(0,0)  life(0,1)
12. neighbors : life(1,-1)  life(1,0)  life(1,1)
13. initialvalue : 0
14. initialrowvalue :  5     00000001110000000000
15. initialrowvalue :  7     00000100100100000000
16. initialrowvalue :  8     00000101110100000000
17. initialrowvalue :  9     00000100100100000000
18. initialrowvalue : 11     00000001110000000000
19. localtransition : life-rule

20. [life-rule]
21. rule : 1 100 { (0,0) = 1 and trueCount = 5 } 
22. rule : 1 100 { (0,0) = 0 and trueCount = 3 } 

23. rule : 0 100 { t } 

 
Figure 41. Game of life model definition in CD++ 

 As shown on the model definition, the “born” rule is defined by line 22, the 

“survive” rule is defined by line 21, and the “die” rule is defined by line 23. Figure 42 

will show the gird values starting at time 00:00:00:000 until the end of the simulation 

which is at time 00:00:00:300. Initially the grid is seeded by a number of live cells by 

setting the value of the cell to ‘1’. As the rules are evaluated, more cells are born and 

finally, at some time they will die until no live cell is left.  

 
Figure 42. Game of life cell values throughout the simulation 

Using CD++, the model has been drawn on a 20x20 cell grid. Figure 43 illustrates 

the cell gird at four different time stamps of the simulation. The first cell grid shows the 

initial scenario where seventeen alive cells exist. As the simulation proceeds, either new 

cells are born or live cells die (based on the “B3/S23” rule). After a while, every live cell 
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stays alone with no live neighbors. As a result, according to the game rules, the remaining 

cells die of loneliness.  

 
Figure 43. Game of life model at four different time steps throughout the simulation 

5.2. SYNAPSIN-VESICLE REACTION AT NERV TERMINAL 

We have modeled the reserve pool of synaptic vesicles in a presynaptic nerve terminal, 

predicting the number of synaptic vesicles released from the reserve pool as a function of 

time under the influence of action potentials at differing frequencies. Time series 

amounts for the components are obtained using rule-based methods (the rules defined by 

Cell-DEVS) [Ala07, Jaf07]. This model was created in collaboration with the Department 

of Biology at Carleton University. Creating this model in CD++ allows spatial description 

of synapsin-vesicle interactions. CD++ toolkit makes it possible to have a 2-D graphical 

representation of this model. As a result a comparable model to the real scene observed in 

microscopic devices is created. 

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles 

and actin filaments in a phosphorylation-dependent pattern. Microscopic models have 

demonstrated that synapsin inhibits neurotransmitter release either by forming a cage 

around synaptic vesicles (cage model) or by anchoring them to the F-actin cytoskeleton 

of the nerve terminal [Ben90]. 

We modeled the molecular interaction of synapsin (S) with vesicles (V) which 

occur inside a nerve cell. The model describes the behavior of synapsin movements until 

reaching a vesicle and binding to it. Once binding has occurred, depending on offrate V 

and S can again go apart and break their bindings. The onrate and offrate describe how 

often bindings occur or break then after. The following formula describes the nature of 

the reaction: 
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S + V ↔ SV 

From the above formula, the left hand side of the equation demonstrates the 

binding scenario where synapsin and vesicles perform a bind at a rate specified by onrate, 

while the right hand side of the equation illustrates the bind-break scenario where an 

synapsin-vesicle at an offrate which is always smaller than onrate breaks apart and again 

synapsin and vesicles get released. Then, synapsin and vesicles can again perform binding 

and break apart then after. This equation shows an on-going process of “binding” and 

“breaking apart” which depends on offrate/onrate. The larger the offrate is, the more 

bindings get broken apart. Similarly, the larger the onrate is, the more V-S binds are 

produced. Three different scenarios are modeled: 1) V is stationary (with a fixed position 

on cell space), and S is mobile, 2) V is mobile and S is stationary, and 3) V and S are 

both mobile (leads to maximum number of total movements and therefore bindings). 

Binding patterns are in such a way that each S can bind to more than one V, and V can 

bind to more than one S. Examples of such binding would be: 

 S-V-S-V 

 |     | 

V-S-V-S-V-S-V 

 

Each cell space in Cell-DEVS is used to represent one S or V. The neighboring 

pattern of V and S is in such a way that they can be adjacent cells or diagonal cells, as 

shown in the following Figure (Gray – Red Cell = S, Black - BlueCell = V). 

 
Diagonal Neighbors 

 
Adjacent Neighbors 

Figure 44. Neighborhood definition 

 

The model uses 100 V and 100 S molecules in a 26x22 cell space. Mobile S or V 

change position to up, down, left, and right at random. The coupled Cell-DEVS model for 

this application is described as follows. 

M=<I,X,Y,Xlist,Ylist, η, N,{m,n}, C, B, Z, select> 
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Xlist=Φ Ylist=Φ η=9 I=<PX,Py>,with PX={Φ},Py={Φ}; 

N={  (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) }; 

X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 

Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 

m=26; n=22; B={Φ}; C={Cij/i ε[1,26], jε[1,22]} 

select ={  (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) }; 

Z:  

Pij  Y1 → Pi,j-1 X1         

Pij  Y2 → Pi+1,j X2                  

Pij  Y3 → Pi,j+1 X3        

Pij  Y4 → Pi-1,j X4         

Pij  Y5 → Pij  X5 

Pi,j+1 Y1 →  Pij  X1 

Pi-1,j Y2 →   Pij  X2 

Pi,j-1 Y3  →  Pij  X3 

Pi+1,j Y4 →  Pij  X4 

Pij  Y5 →  Pij  X5 

 

On the cell space, the value 1 is used to represent V, and the value 2 is used to 

represent S. The number 0 represents an empty cell by which a mobile S can occupy. To 

give direction to the V (although the model assumes fixed V) or S, a two digit number 

was used. For example, the following represent: 

 
Figure 45. Determining the direction 

As mentioned earlier, the model constructed can be further extended to include 

the movement of both synapsin (S) and vesicles (V) as well as defining different off and 

on rates. Aside from V-S reactions, the model can also include Actins, which bind to 

synapsins. Actins can be represented as a string of cells being fixed at their cell space 

position. An extract of the model’s definition in CD++ is shown in Figure 46: 
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Figure 46. Definition of Synapsin-Vesicle Reaction model in CD++ 

The detailed explanation of each part of the model rules are defined as follows: 

 

In the above two rules, the cells are first initialized with 11-14 (for Vesicles) and 

21-24 (for Synapsin) to show the scenario at time = 0, where bindings have not yet been 

performed. Once bindings occur, cells change their values; 11-14 get replaced with 31-

34, and 21-24 get replaced with 41-44. Also for Synapsins, four intermediate values 91-

94 are used to represent a moving cell that has not yet being settled down. Once it settles 

down its value changes back to 21-24 (depending on its direction of movement) and gets 

ready to bind to a vesicle in its neighborhood.  
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The above rule describes the following scenario: if there exists a synapsin having 

the value 21, 22, 23, or 24 (a synapsing that can move up/right/down/left) and there is a 

vesicle in its neighboring which could be an adjacent cell or a diagonal cell, then the 

synapsin (red cells) will move toward this vesicle and a binding will occur soon, the 

value of the synapsin gets changed to 31, 32, 33, or 34 (i.e. 21 changes to 31, 22 changes 

to 32, 23 changes to 33, and 24 changes to 34) to represent a synapsin that is bonded to a 

vesicle. 

 

Similarly, the above rule describes the following: if there exists a vesicle having the 

value 11, 12, 13, or 14 (a vesicle that can move up/right/down/left) and there is a 

synapsin in its neighboring which could be an adjacent cell or a diagonal cell, then since 

the synapsin will come toward this vesicle and a binding will occur soon, the value of the 

vesicle gets changed to 41, 42, 43, or 44 (i.e. 11 changes to 41, 12 changes to 42, 13 

changes to 43, and 14 changes to 44). 

 For the movement of synapsin the following four rules are implemented: (each 

movement is performed in three steps) 
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step 1: checking to see if there is an empty cell so the synapsin can move into it, for 

example if the synapsin’s direction is upward (value = 21), then at first we need to 

check if there is an empty cell right above it. (91 is used as an intermediate value to 

occupy the empty cell) 

step 2: once an empty cell is found, it gets occupied by the synapsin (i.e. the cell’s 

value changes from 0 to a random number 21-24). 

step 3: the previous position of the synapsin that just moved to an empty cell gets 

cleared by setting the value of the cell to 0. 

Same procedure is used for right, left, and down movement. 

 

The above rule is used to break the S-V bindings using an offrate = 0.10. 

According to this rule, 10% of the bindings get broken and as a result synapsins get 

released and will be given another direction and they will move around until finding a 

vesicle and binding to it.  
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Figure 47 shows the grid at the initial case where S and V have not yet interacted 

to perform a bound (bold boxes represent examples of binding structures). Then, Figure 

48 will show how bounds are formed and the corresponding cells change their values to 

represent the binding.  

       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21 
    +----------------------------------------------------------------------------------------+
   0|          13      24      14  24      23  23      11      13  21      22      12        |
   1|              12      23      13  22      14      12      22      12  23      13        |
   2|                                                                                        |
   3|          12      12  11  23      14      13  21      22  23      22  23      11        |
   4|              23      11              14  11  22      22  23      13  14  14  23        |
   5|                                                                                        |
   6|          12  22      12  23      23      13  22      23      13  13  11  22            |
   7|              13  21      24  23      12      12  22      14  24      13  22            |
   8|          12      22      13  22      23  23      11  13      14  22      13  24        |
   9|                                                                                        |
  10|              12      13      12      13  23      23      11  23      24      11        |
  11|              12  22      24      22      12  13  13  22      24  22      13            |
  12|          13      22      13  24      12  14  24      24      12      22      12        |
  13|          24      13      24      12  13      22      12  24      12  21      14        |
  14|                                                                                        |
  15|          13  22      21  22      12      14      12      13  24      23      13        |
  16|          12  23  11  23  21      22      13  21      14      21      12      13        |
  17|              12      13      12      12  22      21      12  21      22      12        |
  18|                                                                                        |
  19|          14      22      13      22      14      11  23      13  24      13            |
  20|                                                                                        |
  21|          14  23      23  24      11  23      22      23      13      12      13        |
  22|                                  21  12                              24                |
  23|                                                      22  13                            |
  24|          12      24      13  22      21  21      12  14      12  22      12  23        |
  25|              12  21      22      23      12  14  12  21      22  23      14            |
    +----------------------------------------------------------------------------------------+

 
Figure 47. V and S before binding at Time: 00:00:00:100 

 

        0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21 
    +----------------------------------------------------------------------------------------+
   0|          13  32          41  22  32  34  31      44      42  34      31      12        |
   1|              12      32      44  21      42      12      23      42  32      13        |
   2|                                                                                        |
   3|          41      42  41  32      14      42  32      22          33  33      44        |
   4|              32      43              14  41  34          23      13  43  14  32        |
   5|                                                          33                            |
   6|          42  33      44  32      31      43  32      21      44  42  42  34            |
   7|              42  31      34  32      41      42  23      42  32      44  31            |
   8|          12      31      41  24      34  33      41  13      43      34  42  31        |
   9|                                                                                        |
  10|              42      44      42      41  23      31      43  32      33      11        |
  11|              41  32      32      33      44  44  13  33      33  33      43            |
  12|          42      31      41  32      42  43  33      32      12      22      12        |
  13|          22      41      32      42  13      34      42  32      44  31      14        |
  14|                                                                                        |
  15|          41  34      32      33  44      42      42      42  34      32      13        |
  16|          44  31  42  31  31      31      42  31      44      33      41      13        |
  17|              12      43      43      42  32      31      44  33              12        |
  18|                                                                          24            |
  19|          14          22  13          32  14      42  31      13  33      13            |
  20|                                                                                        |
  21|          43  33      22          44  31              22      13      44      13        |
  22|                          23      32  42              32              33                |
  23|                                                      33  41                            |
  24|          12      33      43  31      33  33      42  14      42  23      44  34        |
  25|              42  32      34              41  42  42  31      34  21      14            |
    +----------------------------------------------------------------------------------------+

 
Figure 48. V and S after binding at Time: 00:00:00:300 
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As illustrated on the above figures, the bold boxes show bindings between 

synapsin (31-34) and vesicle (41-44). The first illustration (Figure 47) represents the 

initial scenario where synapsins (21-24) and vesicles (11-14) are free and have not yet 

performed bindings. Once synapsins walk toward vesicles, the values of the 

corresponding cells change to 31-34 (bonded synapsins) and 41-44 (bonded vesicles). It 

is shown that vesicles can be surrounded by more than one synapsin, but each synapsin 

can bind to only one vesicle at any time. 

From the above figure we can see the following possible binding scenarios: 

 

→  corresponds to:         V– S          
  

 → corresponds to:       S – V                                                                                                                            
                                                                                 | 

                                                                                      S 
Several initial parameters are tested in order to see the running process of cell 

nerve with different offrate. The case presented in the following figure shows an offrate 

of 0.1.  

        

(a)       (b) 
Figure 49. Model Execution Results: (a) initial values; (b) final execution 

The final execution results on Figure 49 present a stable image of synapsin-

vesicles bindings where single/double/multiple bindings had occurred within the neuron.   
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5.3. FIRE SPREAD MODEL 

In this section we present Fire Spreading Model introduced in [Ame01], which represents 

a fire propagation scenario in forest based on Rothermel’s mathematical definition 

[Rot72]. The model computes the ratio of spread and intensity of fire in forest based on 

specific environmental and vegetation conditions. Three parameter groups determine the 

fire spread ratio: 1) vegetation type (caloric content, mineral content and density); 2) fuel 

properties; 3) environmental parameters (wind speed, humidity, and field slope). Figure 

50 shows the definition of the model in CD++ using environmental values obtained for a 

fuel model group number 9, a SE wind of 24.135 km/h and a cell size of 15.24×15.24 m.  

 
Figure 50. Definition of the fire propagation model in CD++ 

The model consists of 900 cells arranged in a 30×30 mesh, where each cell has 

the following neighborhood pattern. 

(-1, -1) (-1, 0) (-1, 1) 
(0, -1) (0, 0) (0, 1) 
(1, -1) (1, 0) (1, 1) 
Figure 51. Fire cell neighborhood 

 As mentioned previously, the precondition, delay time, and postcondition rules 

are based on the mathematical models defined by Rothermel. The fire starts from one cell 

and propagates throughout the cell grid. Initially, all cells except one are given the value 

‘0’ to indicate absence of fire. As the simulation time advances, rules get evaluated to 

true and fire appears in cells by changing their value to a non-zero number. The fire 
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sparks from a predefined cell initialized to ‘1’. The initial scenario of the grid at time 

00:00:00:000 is presented in Figure 52. The final scenario (Figure 53) shows the fire 

spread at time 01:59:40:578 where the fire has propagated in the direction of wind.  

 
Figure 52. Fire propagation model - initial scenario at time 00:00:00:000 

 
Figure 53. Fire propagation model - final scenario at time 01:59:40:578 

Using CD++, the model has been drawn on a 30x30 cell grid. Figure 54 illustrates 

snapshots of the simulation results at four different times. Initially, fire starts as fire spot 

(the dark cell on the grid). Then as time passes by, fire spreads to the neighboring cells in 

the direction of wind. Therefore, each cell, depending on its position and heat, fires its 

surrounding cells. As presented on the final scenario of Figure 54, the wind direction 

leads the fire from the starting point, cell (19, 10), towards southeast of the forest.  
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Figure 54. Fire propagation at four different snapshots throughout the simulation 

5.4. SHIP EVACUATION MODEL 

Based on the model defined in [Klu01], the model we present is the illustration of an 

emergency ship evacuation scenario. The model consists of 20×20 cell space, using rules 

with the following restrictions: 

1. Each cell representing a person on the ship, calculates its shortest path toward the 

exit.  During the initialization phase, people are placed randomly in any empty 

cell to imitate real ship evacuation scenario. 

2. People run in their initial direction until they encounter another person or an 

obstacle (e.g. wall).   

The neighborhood of each cell consists of 10 cells which will affect the cell’s 

movement (i.e. they can be walls, exit doors, people, or empty cells) as shown in Figure 

55.  

UU (-2,0) 

U (-1,0) 

(0,0) 

D (1,0) 

UL (-1, -1) 

L (0, -1) 

DL (1, -1) DR (1, 1) 

R (0, 1) RR (0, 2) 

UR (-1, 1) 

 

 
Figure 55. Cell neighborhood 

 

From the above figure we can see that the neighborhood consists of 11 cells. Each value 

on the cell space defines a distinct state, such as the type of the cell: wall, empty, exit 

door, a moving person. Also each type of movement is given a state value in order to 

identify the next position of the person. Table 1 summarizes these values. 
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State Name Value Comments 

N/A 0 Unknown Empty cell. 
Wall 1 Represents an obstacle or a wall. 
Exit 2 Represents an exit (e.g. stairs, door). 
ED 3 Empty cell and its down (D) cell is the shortest path to the 

nearest exit. 
ER 5 Empty cell and its right (R) cell is the shortest path to the 

nearest exit. 
EU 7 Empty cell and its up (U) cell is the shortest path to the 

nearest exit. 
EL 9 Empty cell and its left (L) cell is the shortest path to the 

nearest exit. 
FD 4 A Full cell (cell with person) and its down (D) cell is the 

shortest path to the nearest exit. 
FR 6 A Full cell (cell with person) and its right (R) cell is the 

shortest path to the nearest exit. 
FU 8 A Full cell (cell with person) and its up (U) cell is the 

shortest path to the nearest exit. 
FL 10 A Full cell (cell with person) and its left (L) cell is the 

shortest path to the nearest exit. 
Table 1. State values and their description 

Figure 56 shows an extract of the model’s definition in CD++. 

 
Figure 56. Definition of ship evacuation model in CD++ 
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The first four rules initialize the model by calculating the shortest path for each 

undefined cell and placing people on the cell space randomly.  The algorithm works as 

follows: when a cell detects that one of its attached cells has changed its state to 

“defined”, it would know that the attached cell is the shortest path. 

Result Precondition 
3 or 4 → ED or FD state (0,0) = Undefined and (1,0) is defined. 

5 or 6 → ER or FR state (0,0) = Undefined and (0,1) is defined. 

7 or 8 → EU or FU state (0,0) = Undefined and (-1,0) is defined. 

9 or 10 → EL or FL state (0,0) = Undefined and (0, -1) is defined. 

Table 2. Initialization rules 

The above four rules are implemented in the “init rules” section in Figure 56. The 

first initialization rule indicates that if the current cell is undefined and the one below it is 

defined, then the current cell will be randomly changed to an empty or full cell whose 

down (D) cell is the shortest path to the nearest exit. The second initialization rule 

indicates that if the current cell is undefined and the one on its right is defined, then the 

current cell will be randomly changed to an empty or full cell whose right (R) cell is the 

shortest path to the nearest exit. Similarly, the third initialization rule states that if the 

current cell is undefined and the one above it is defined, then the current cell will be 

randomly changed to an empty or full cell whose up (U) cell is the shortest path to the 

nearest exit. Finally, represented by the fourth init rule, if the current cell is undefined 

and the one on its left is defined, then the current cell will be randomly changed to an 

empty or full cell whose left (L) cell is the shortest path to the nearest exit.    

Then the second set of rules defines the case when a cell knows that a person will 

move towards it. The cell knows it will soon be occupied by a person if it is empty and it 

is the shortest path to at least one cell with a person occupying it. 

Result Precondition 

 4 → FD state (0,0) = ED and ((0,1) = FL or (-1,0) = FD or (0,-1) = FR ) 

6 → FR state (0,0) = ER and ((1,0) = FU or (-1,0) = FD or (0,-1) = FR) 

8 → FU state (0,0) = EU and ( (1,0) = FU or (0,1) = FL or (0,-1) = FR ) 

10 → FL state (0,0) = EL and ( (1,0) = FU or (0,1) = FL or (-1,0) = FD ) 

Table 3. Walking rules 
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The above four rules are implemented in the “walking rules” section in Figure 56. 

The first walking rule indicates that when the current cell is empty and its down (D) cell 

is the shortest path to the nearest exit and there is at least one full cell below, or on its 

right or left, then the current cell is changed to a full cell heading towards down. The 

second walking rule indicates that if the current cell is empty and its right (R) cell is the 

shortest path to the nearest exit and there is at least one full cell above, below, or on its 

right, then the current cell is changed to a full cell heading towards right. Third walking 

rule represents the case where the current cell is empty and the cell above it is the shortest 

path to the nearest exit and also there is at least one full cell above, or on its right or left, 

then the current cell is changed to a full cell heading towards up. Finally, the fourth 

walking rule states that if the current cell is full and the cell on its left is the shortest path 

to the nearest exit and also there is at least one full cell above, below, or on its left, then 

the current cell is changed to a full cell heading towards left. 

The third set of rules defines the case when a cell occupied with a person is 

attached to the exit.  Then, the cell knows that a person will leave it and exit. 

Resulted State Input Values 
 3→ ED state (0,0) = FD and (1,0) is exit. 

5→ ER state (0,0) = FR and (0,1) is exit. 

7→ EU state (0,0) = FU and (-1,0) is exit. 

9→ EL state (0,0) = FL and (0,-1) is exit. 

Table 4. Exit rules 

These rules are implemented in the “exit rules” section in Figure 56. The first exit 

rule indicates the scenario at which the current cell is occupied by a person who is 

moving downward and the cell below is an exit door, therefore, the person will leave and 

the current cell’s state changes to an empty cell whose down cell is the shortest path to 

the exit.  The second exit rule indicates that the current cell is occupied by a person who 

is moving rightward and the cell on the right side is an exit door, therefore, the person 

will leave and the current cell’s state changes to an empty cell whose right cell is the 

shortest path to the exit. The third exit rule states that if the current cell is occupied by a 

person who is moving upward and the cell above it is an exit door, then the person will 

leave and the current cell’s state changes to an empty cell whose up cell is the shortest 
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path to the exit. Finally, the last exit rule indicates the scenario at which the current cell is 

occupied by a person who is moving leftward and the cell on its left is an exit door, 

therefore, the person will leave and the current cell’s state changes to an empty cell 

whose left cell is the shortest path to the exit.   

Then the fourth set of four rules defines when a cell knows that a person will 

leave it when it is not near an exit.  The cell knows that a person will leave it when it is 

already occupied by a person and its shortest path cell is empty.  However, only one 

person can move to the empty cell when more than one person is trying to move to the 

same cell.  In this case, the priority is first with the person who is in the upper cell, 

second the one in the right cell, third the one in the down cell, and finally the one in the 

left cell has the lowest priority. 

Result Precondition 

 3 → ED state (0,0) = FD and down (D) cell is empty. 
 5 → ER state (0,0) = FR and right cell (R) is empty and UR,RR, and 

DR cells don’t have a person moving to R. 

 7 → EU state (0,0) = FU and upper cell (U) is empty and UU and UR 
cells don’t have a person moving to U. 

 9 → EL state (0,0) = FL and left cell (L) is empty and UL doesn’t 
have a person moving to L. 
Table 5. Changing direction rules 

These rules are defined in the “changing direction” section in Figure 56.  The first 

rule indicates that if a cell is occupied with a person whose direction is down (D), then if 

the cell below the current cell is empty, the person can move down by one cell. The 

second rule indicates the case where the current cell is full with a person who is wishing 

to move right, therefore if the cell on the right side of the current cell is empty, the person 

can move right. The third rule describes the situation where a cell is occupied by a person 

with upward direction, therefore, if the cell above the current cell is empty the person will 

move up. Finally, if the current cell is full, being occupied by a person whose direction is 

leftward, if the cell on the left side of the current cell is empty then the person will move 

left by one cell. 

The ship evacuation model can be modified by adding more exit doors or 

changing the position of these cells. Using CD++ Modeler [Wai02], the initial cell space 

at time zero and at the end of simulation when everybody has left through the exit doors 
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are illustrated in Figure 57. Initially four different types of cells appear on the grid: empty 

spaces, walls, people, and exit doors, while the final result of the simulation shows no 

presence of people, i.e. the ship is evacuated. 

Time 00:00:00:000 Time 00:00:00:200 Time 00:00:00:500 Time 00:00:00:600

 
Figure 57. Model Execution Results 
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CHAPTER 6 THE NEW OPTIMISTIC PCD ++ SIMULATOR  

In Chapter 4 we introduced our two existing parallel simulators, namely the conservative 

PCD++ simulator [Tro01] and the optimistic PCD++ simulator [Liu06]. We have 

modified the WARPED kernel to handle rollbacks in a more efficient way. In this Chapter, 

we will present two new algorithms that we have implemented in WARPED kernel. Section 

6.1 will introduce the rollback mechanism of the optimistic PCD++ simulator. Then, in 

Section 6.2 the Near-perfect State Information protocol will be discussed. Finally, our 

new algorithms; Local Rollback Frequency Model (LRFM) and Global Rollback 

Frequency Model (GFRM) will be presented in Section 6.3 and 6.4 respectively. 

6.1. ROLLBACK MECHANISM OF OPTIMISTIC PCD++ 

The WARPED kernel mechanisms are based on a set of standard settings such as: Least-

Time-Stamp-First (LTSF) scheduling, copy state saving, passive response GVT (pGVT) 

algorithm, and fossil cancellation. Using these properties, the scheduling, rollback, and 

GVT facilities are simplified. The reliable communications over First-in, First-out (FIFO) 

channels improve Jefferson’s definition [Jef85] where he did not assume this order 

preservation in the communication medium. Furthermore, the kernel uses a predefined 

ordering scheme for simultaneous events. Thus, events with the same timestamps are 

ordered based on the identities of their receivers. The input events at the same virtual 

receive time are ordered based on their arriving order (i.e. the sequence by which they 

are received at), while the output events with the same virtual send time are ordered 

based on their sending order (i.e. the sequence by which they are sent at) [Liu06]. 

Another restriction is that the timestamp of each event in a process must be less than or 

equal to the timestamp of the next event in that process [Liu06].  

 The major internal structures defined in the WARPED kernel include such entities 

as Logical Process (LP), LTSF scheduler, communication manager, GVT manager, state 

manager, and simulation objects. Moreover, there are three types of queues used by these 
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entities: input queue (IQ), output queue (OQ), and state queue (SQ). These structures and 

the relationship among them are shown in Figure 58.  
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Figure 58. Internal structures in the WARPED kernel 

From the diagram we can see that the simulation system (global level) in this 

example is partitioned into two parts, with each part mapped onto a dedicated processor. 

All simulation entities on a processor are grouped together by a LP (partition level) that is 

bound to a physical process. On each processor, the main event processing loop is 

performed sequentially by the corresponding LP. Processor parallelism occurs at the 

partition or LP level. Simulation objects (local level) within a LP share a communication 

manager, a LTSF scheduler, and a GVT manager.  

Each simulation object has its own state manager, which manages a state queue 

on behalf of the object. Each simulation object also has an output queue containing 

messages the object has recently sent, kept in virtual send time order. All simulation 

objects within the same LP share a single input queue holding all recently arrived 

messages sorted in virtual receive time order. Arrangements have been made so that each 

simulation object seems to have its own logically dedicated input queue. Furthermore, 

each simulation object may optionally create one or more file queues, which are not 

shown in the diagram, corresponding to the output files used by the object during the 



  75

simulation. The output data are placed temporarily as data objects in these file queues. 

Physical output activity can only be committed when GVT exceeds the virtual time of 

these data objects. The simulation objects on all processors must form a complete 

partitioning of the system. As required by the Time Warp protocol, each simulation 

object also has a local clock whose value is the current simulation time on that object. 

The scheduler selects an event from the input queue in each simulation cycle 

based on the LTSF algorithm, it then invokes a “process-event” callback provided by the 

application programmer for the receiving simulation object to execute this event. 

Maintaining all input events in a single input queue greatly simplifies the scheduling 

operations as the scheduler has a single access point to all these events. 

Inter-LP communications are done by the communication manager over MPI, 

while intra-LP communications between any two simulation objects and between a 

simulation object and the communication manager are performed by direct function 

invocations. Thus when a simulation object on LP0 needs to send an event to another 

simulation object on LP1, it passes the event to the local communication manager, which 

then wraps the event into a MPI message and forwards it to the destination LP. On the 

receiving end, LP1 polls the communication channel regularly and once an incoming 

MPI message is detected, the communication manager on LP1 receives the message, 

retrieves the event in it, and delivers the event to the destination simulation object on 

LP1. 

The GVT manager is the entity that operates at the global or system level. Special 

kernel messages are passed among the GVT managers in the system, implementing a 

specific GVT calculation algorithm. Each GVT manager performs the fossil collection 

operations for all simulation objects within the same LP once the GVT goes forward. 

Implementing rollback is the task of the local control mechanism in Time Warp and the 

rollback operations are performed by the simulation objects at the local level.  

6.1.1. Types of rollbacks 

The kernel provides two control mechanisms to handle rollbacks: 1) a rollback 

mechanism which is implemented at each individual simulation object at the local level, 

and 2) GVT calculation and fossil collection which is implemented by the LPs at the 
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global level [Liu06]. Rollbacks are triggered on a simulation object by incoming straggler 

messages and anti-messages at the time when these messages are inserted into this 

object’s input queue. There are three types of rollbacks that can happen in the kernel: 

primary, secondary, and cascaded which are discussed in the following points.  

€ Primary rollback  

A typical scenario of the runtime representation of a simulation object before 

primary rollback is depicted in Figure 59.  

 
Figure 59. Runtime representation of a simulation object 

In the diagram, an input event is depicted as a block with the receive time of the 

event shown on it. On the other hand, an output event is shown as a block with its send 

time. States saved on the state queue are pictured as boxes with three values: the Local 

Virtual Time (LVT) of the simulation object (as shown in the box), a pointer, inPos, 

pointing to the event just executed, and another pointer, outPos, identifying the last 

message sent by the simulation object. Let’s denote the states shown in the diagram as 

S(12), S(21), and S(35).  

The figure shows that this simulation object has executed events with receive time 

12, 21, and 35, notated as E(12), E(21), and E(35) respectively. After executing these 

events, the simulation object’s LVT is set to 35, the receive time of the last event 

executed. The simulation object sent three messages when E(12) was executed, while two 

messages were sent out when E(35) was executed. These output messages are recorded in 

the output queue in increasing send time order. Notice that there is no output message 

generated as the result of executing E(21). Hence, the outPos of S(21) still points to the 

last output message in the previous cycle, which is also referred by the outPos of S(12). 
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Now let’s consider an event E(18) arriving at this simulation object. When it is 

inserted into the input queue, the kernel rollback facility finds out that the receive time of 

this incoming event is strictly less than the current LVT, thus the event is identified as a 

straggler event, and a primary rollback will be performed on this simulation object. The 

receive time of the straggler event is referred to as rollback time in our following 

discussion. Here, the rollback time is 18. 

 
Figure 60. Actions performed during primary rollback 

The actions performed by the kernel rollback facility during primary rollback are 

illustrated in Figure 60 and described as follows:  

1) Insert the straggler event E(18) into the input queue. 

2) Undo those previously processed events following E(18) in the input queue. 

As shown in Figure 60(a), E(21) and E(35) are unprocessed.   

3) Search the state queue to find the last state saved before the rollback time, and 

then restore the simulation object’s current state based on that state. 

Therefore, the content of the object’s current state is an exact duplicate of 

S(12). Notice that when copying a state, all data contained in the state are 

copied, including the values of the inPos and outPos. 

4) Discard from the state queue all states after S(12). 

5) Reset the object’s LVT to the recorded value in the object’s current state. 

Since the object’s current state is now a copy of S(12), the LVT is reset to 12. 

6) Rollback file queues, if any, associated with this simulation object, which is 

not shown in the diagram. The simulation object may create output files and 

the output data are contained in the corresponding file queues in increasing 
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virtual time order. Rollback of these file queues are simply done by removing 

all data with virtual time greater or equal to the rollback time. 

7) Find the last output message sent during executing E(12) from the output 

queue. This can be done with ease in constant time since the outPos of the 

restored state, S(12), is pointing exactly to that message. 

8) Send all messages in the output queue after the last output message found in 

step 5 as anti-messages to their receivers, as shown in Figure 60(b). 

After these operations, the kernel resumes normal execution forward again.  

We can see from step 6 that anti-messages may be emitted at the end of the 

primary rollback to remove the effects of incorrect computations on other simulation 

objects, both locally within the same LP and remotely on other processors in which case 

the anti-messages are sent as MPI messages through the communication manager.  

€ Secondary rollback 

Secondary rollback on a simulation object is caused by receiving an anti-message. 

Depending on whether the corresponding positive message is processed or not, there are 

two kinds of scenarios that could happen here: 

The first scenario is when the positive event has already been processed. Thus, the 

simulation object receives an anti-message tagged with a negative time. For example, the 

anti-message of E(21) is denoted as E(-21). The actions performed by the kernel for this 

type of rollbacks are described as follows. 

(1) Perform a message annihilation operation to delete both the original 

message and its anti-message counterpart. 

(2) Follow step 2 to step 8 of the primary rollback operations as presented 

earlier but using the timestamp of the anti-message as the rollback time. 

We can see that the operations performed here largely remain the same as those of 

primary rollbacks except that a message annihilation operation replaces the previous 

enqueue operation. 

In the second scenario, the positive event has not yet been processed by the 

simulation object. The only action that needs to be done is a message annihilation 

operation for the anti-message. The simulation object continues to execute the next 

available event after the annihilation.  
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As in the case of primary rollback, there is the issue of identifying the type of the 

straggler event. There has to be dedicated mechanism to deal with the positive events, 

processed and unprocessed, that have the same timestamp as the anti-message during 

secondary rollbacks. 

€ Cascaded rollback 

The primary rollback triggered by a straggler message is the root cause of 

rollbacks in Time Warp. Hence, rollback propagation starts with one primary rollback 

and, probably, multiple rounds of secondary rollbacks occurring upon the arrival of anti-

messages at the destination simulation objects. The hosting simulation object of the 

primary rollback is thus named as rollback originator, and the original primary rollback 

of the propagation is called the root of the propagation. The levels of secondary rollbacks 

may be to any depth, and there may even be circularity in the graph of anti-message 

paths, but the propagation eventually terminates [Jef85]. 

During either type of rollback, there may be zero, one, or more anti-messages sent 

out from the simulation object. The spreading of the anti-messages may happen with a 

partition on the same processor or across the border of partitions to other processors. 

Each of these anti-messages will trigger a further secondary rollback on the destination 

simulation object. The secondary rollback is performed immediately upon the arrival of 

the anti-message at the destination simulation object. Notice that a simulation object A 

sends an anti-messages to simulation object B triggering a secondary rollback on B, and 

then during the secondary rollback, B may send back anti-messages to A causing further 

secondary rollbacks on A, which forms a circle in the graph of anti-message paths. 

However, if we consider the propagation process in terms of rollbacks instead of 

simulation objects, these circles disappear since the further secondary rollbacks on object 

A are simply a deeper level of rollbacks resulting from the earlier secondary rollback on 

object B. This suggests using a tree structure to depict the propagation process. 

The propagation process can be described as traversing the whole tree from the 

primary rollback (root of the tree). This operation backtracks, by returning from the 

rollback function, to the most recent node that did not have further anti-message from 

that rollback or a node that represents a remote subtree. Under this technique, the time 

measured for the simulation object where the primary rollback takes place includes not 
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only the time for the primary rollback itself, but also the time for all other local rollbacks 

in the tree. This is one example that we should be careful about rollback operations. 

6.2. NEAR-PERFECT STATE INFORMATION PROTOCOLS 

The Near-perfect state information (NPSI) protocols proposed by Srinivasan [Sri98] are a 

new class of synchronization for parallel discrete event simulation which outperform 

Time Warp, both temporally and spatially. NPSI-based protocols dynamically control the 

rate at which processes exploit parallelism achieving a more efficient parallel simulation. 

In optimistic protocols such as Time Warp, logical processes execute events aggressively 

assuming freedom from errors. Thus, the aggressive event execution would include risk 

which is the potential at which erroneous results propagate to other LPs [Rey88]. The 

NPSI protocols aim at controlling both aggressiveness and risk of optimism adaptively by 

computing an error potential (EP). The EP of a process is defined as a function of the 

states of other LPs participating in the simulation. It works as an elastic force which 

sometimes blocks and sometimes frees the progress of the LP. 

The optimism implemented by Time Warp protocol incurs three time costs: state 

saving, rollback, and memory management [Sir98]. Furthermore, by restricting optimism 

a forth time costs gets introduced; the lost opportunity cost which is defined as the 

potential loss in performance when an LP is suspended form execution while it was safe 

for it to continue. Thus, protocols that control optimism define the cost function as 

follows:   

Total cost = state saving cost + rollback cost + memory management cost +  

lost opportunity cost. 

Since the time cost of state saving can be a function of the size of the state and the 

frequency rate at which it is saved, the Total cost function can be rewritten by omitting 

the sate saving cost resulting in: 

Total cost = rollback cost + memory management cost + lost opportunity cost. 

As mentioned above, by limiting optimism the first two costs can be reduced. However, 

as a result of this limitation, the lost opportunity cost would increase in return. Figure 61 

illustrates this tradeoff. 
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Figure 61. Tradeoff introduced by limiting optimism [Sri95] 

From the graph we can see that the best performance is attained when the 

controlled optimism eliminates both rollback and memory management cost and in return 

adds zero lost opportunity cost [Sri98]. Optimism limiting protocols can achieve a good 

balance by precisely identifying the incorrect computations and avoiding their 

propagation. This can only be done by providing each LP with perfect state information 

about other LPs. The issue is that due to various latencies in computing distributed 

snapshots, it is impossible to obtain perfect state information. The NPSI mechanism 

approximates perfect state information by using a dynamic feedback system that operates 

asynchronously with respect to LPs. Hence, providing LPs with near-perfect state 

information at low-cost.  

The NPSI protocols are optimistic protocols that control the aggressiveness and 

risk of LPs by dynamically computing near-perfect sate information. Design of such 

protocols includes two phases: 

1. Identifying the state information that is required for controlling optimism; and 

2. Designing a mechanism that translates this information into control over an LP’s 

optimism. 

As mentioned previously, EPi is the value which controls the optimism of LPi.  

Figure 62 represents a general framework for adaptive protocols.  
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Figure 62. General framework for adaptive protocols [Sri98] 

The NPSI protocol keeps each EPi up-to-date by evaluating the function M1 using 

the near-perfect sate information it receives from the feedback system. On the other hand, 

M2 function dynamically translates new values of EPi in the event execution and 

communication rates. 

In order to control the optimism of PCD++, we have modified WARPED [Mar99] 

to implement a NPSI mechanism based on the number of rollbacks. The idea is to reduce 

the number of rollbacks by suspending the simulation object within LP that has large 

number of rollbacks and therefore blocking it from flooding the net with anti-messages. 

However, the LP will still be able to receive input events and they will be inserted into 

the corresponding message bags. After a predefined duration, the suspend simulation 

object is released and will go on simulating. Based on previous research [Szu00], we 

have implemented two new protocols, namely Local Rollback Frequency Model (LRFM) 

and Global Rollback Frequency Model (GRFM) to limit the optimism of PCD++ 

simulator.  

The main concept is to associate each LP with an error potential (EPi) to control 

the optimism of LPi. During the simulation run, the value of each EP is kept updated by 

evaluating M1 function which uses state information that is received from the feedback 

system. Then, the function M2 dynamically translates every update of EPi in delays in the 

execution events. The next two sections will provide more details about the design and 

implementation of LRFM and GRFM. 
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6.3. LOCAL ROLLBACK FREQUENCY MODEL 

The Local Rollback Frequency Model (LRFM) protocol is only based on local 

information of the logical processes. That is, the simulation object within a LP will be 

suspended or allowed to continue simulating only based on the number of rollbacks it 

had. First, M1 and M2 functions must be defined: 

€ Function M1: The error potential of a simulation object is the number of 

rollbacks that the object had from a time T1 until the actual time T2, having that 

T2 - T1 ≤ T, where T is the interval after which the local number of rollbacks of 

the simulation object gets restarted back to zero. 

€ Function M2: If the number of rollbacks for a simulation object at the interval T 

is greater than a specified value, then the object is suspended, adopting a 

conservative behavior. By suspending the simulation object, the LP where the 

object resides on will still be able to receive incoming events, but the events are 

not processed until the simulation object is again given the permission to resume. 

However, if the number of rollbacks of the simulation object is less than the 

predefined value, then the object simulates aggressively, adopting its usual 

optimistic behavior (as in Time Warp).  

To implement this protocol each LP has to be informed about two values: 

max_rollback, and period. Where max_rollback is the maximum number of allowed 

rollbacks before suspension of the simulation object, and period is the duration for which 

the simulation object will stay suspended. The algorithm is presented in Figure 63. 
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Figure 63. LRFM algorithm 

 From the LRFM algorithm we see the following three possible scenarios: 

1. The LRFM period has expired, therefore the simulation object starts a new 

period, its number of rollbacks gets reset to zero, and it is given the 

permission to continue its execution. 

2. The LRFM period has not yet expired, if the number of rollbacks of the 

simulation object is less than the allowable range (i.e. max_rollbacks), 

then the simulation object continues its normal execution. 

3. The LRFM period has not yet expired, but the number of rollbacks within 

the simulation object has exceeded max_rollbacks, thus the simulation 

object gets suspended for the entire duration of the current LRFM period. 

With the inclusion of this protocol, in every simulation cycle an object will 

simulate the lowest timestamp event (as WARPED does originally) if the number of its 

rollbacks in the period T is smaller than the maximum allowable rollbacks; if not, the 

object suspends executing until the new period of time T, after which Warped restarts the 

rollbacks number to zero. 

In order for an LP to be able to simulate objects that mustn't be delayed, we have 

modified the scheduler policy to choose the next object to simulate. It chooses the first 

object of the input event list (that is, the object with the lowest input event timestamp) 
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only if its rollbacks count does not exceed max_rollbacks; else, the scheduler checks the 

next object of the input event list and so on, until it finds an object in condition to be 

simulated or until it reaches the end of the list. 

6.4. GLOBAL ROLLBACK FREQUENCY MODEL  

In Global Rollback Frequency Model (GRFM) protocol each simulation object uses 

global information in such a way that among all the simulation objects residing on all 

LPs, the one with greatest number of rollbacks must be suspended for the duration of 

time defined at the beginning of the simulation. Therefore, at each simulation cycle all 

the LPs must broadcast the information regarding the rollback counts of all of their 

simulation objects. As in LRFM, M1 and M2 functions must first be defined: 

€ Function M1: The error potential of a simulation object is the number of 

rollbacks that the object had minus the maximum number of rollbacks of the other 

simulation objects (both local and remote ones) participating in the simulation, 

from a time T1 until the actual time T2, having that T2 - T1 ≤ T, where T is the 

interval after which the local number of rollbacks of the simulation object gets 

restarted back to zero. 

€ Function M2: If the number of rollbacks for a simulation object at the interval T 

is greater than other number of rollbacks of the other simulation objects, then the 

object is suspended, adopting a conservative behavior. By suspending the 

simulation object, the LP where the object resides on will still be able to receive 

incoming events, but the events are not processed until the simulation object is 

again given the permission to resume. However, if the number of rollbacks of the 

simulation object is less than the predefined value, then the object simulates 

aggressively, adopting its usual optimistic behavior (as in Time Warp).  

This algorithm is implemented as follows: 
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Figure 64. GRFM algorithm 

As in LRFM, the GRFM algorithm yields three different scenarios: 

1. The GRFM period has expired, therefore the simulation object starts a 

new period, its number of rollbacks gets reset to zero, and it is given the 

permission to continue its execution. 

2. The GRFM period has not yet expired, if the number of rollbacks of the 

simulation object is less than the allowable range (i.e. max_rollbacks), 

then the simulation object continues its normal execution. 

3. The GRFM period has not yet expired, but the number of rollbacks within 

the simulation object has exceeded max_rollbacks, thus the simulation 

object gets suspended for the entire duration of the current GRFM period. 

The main difference of GRFM and LRFM is the way max_rollbacks is initialized. In 

LRFM, maximum allowable rollbacks is predefined by the user at run time, while in 

GRFM maximum allowable rollbacks is set to the largest number of rollbacks of all 
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participating simulation objects. That is, whenever a simulation objects is scheduled to 

execute, it must send the number of rollbacks it had so far to all other simulation objects, 

both local and remote ones. As a result, at any time max_rollbacks is the largest number 

of rollbacks among all the existing simulation objects. 

By implementing LRFM and GRFM protocols in our optimistic PCD++ 

simulator, different simulation results can be collected since the RFM period (and in case 

of LRFM the max_rollbacks) can be modified very easily at the beginning of the 

simulation. This is done by changing these values in the configuration files right before 

the simulation starts and therefore, there is no need to rebuild the whole simulator in 

order for these modifications to have effect. Chapter 7 will discuss the performance of 

these two algorithms by testing those models which were presented in Chapter 5. 
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CHAPTER 7 EXPERIMENTS AND PERFORMANCE ANALYSIS  

As part of the contribution of this research, we have run a variety of tests to analyze the 

performance of our existing PCD++ simulators; the optimistic and the conservative as 

well as our LRFM and GRFM Time Warp-based protocols. The main goal of this section 

is to show the capability of PCD++ simulators in terms of handling the number of nodes 

driving the simulation, complexity of the model, and the size of the model. As was 

mentioned earlier in Chapter 5, we have selected different models with distinguishable 

functionality, complexity, and size to better judge the capability of the simulators. Our 

experiments were carried out on a HP PROLIANT DL Server, a cluster of 32 compute 

nodes (dual 3.2GHz Intel Xeon processors, 1GB PC2100 266MHz DDR RAM) running 

Linux WS 2.4.21 interconnected through Gigabit Ethernet and communicating over 

MPICH 1.2.6. A description on how to run Cell-DEVS models is given in Section 7.1. 

The performance metrics are presented in Section 7.2. Finally, Section 7.3 will present 

the execution results of the Cell-DEVS models and the improvements achieved by using 

different simulators/protocols.  

7.1. RUNNING CELL-DEVS MODELS 

Each Cell-DEVS model consists of a number of necessary and optional files grouped 

together in a package. Since the simulation can be distributed among 1 to 32 nodes of the 

cluster, we used a partitioning mechanism implemented earlier in [Tro01, Liu06] which 

evenly divides the cell space into horizontal rectangles, as illustrated in Figure 65 which 

represents the partitioning of a 30×30 (900 cells) model over 3 nodes. Different 

partitioning strategies can be implemented which in return result in a significant impact 

on the performance of the simulation.  



  89

(0,0)

(10,0)

(20,0)

(29,0)

(0,29)

(10,29)

(20,29)

(29,29)

Node 0

Node 1

Node 2

...

...

...

 
Figure 65. A simple partition strategy for a 30x30 Cell-DEVS model [Liu06] 

PCD++ simulators enable user to modify a partition configuration file prior to the 

simulation by entering the desired number of nodes that the simulation will be carried on. 

Figure 66 illustrates the content of the partition file of the fire propagation model where 

the user had selected 3 nodes for running the simulation. 

 
Figure 66. The partition file of fire propagation model for simulation on 3 nodes 

Once the partitioning is performed, the model simulation can start by running the  

execution script. An extract of the simulation results of the 30x30 fire model execution 

on two nodes is illustrated in Figure 67. As shown on the figure, the statistical details of 

each logical process (LP0 and LP1) are presented. The important statistics for each LP 

include: number of rollbacks (RB), length of rollback (LRB), bootstrap time (BT), 

running time (RT), events received (ER), events executed (EE), and the number of local 

objects. Once the simulation is over, the start time, end time, and the total elapsed time is 

printed out. The value shown as “total elapsed time” is the total simulation time which 

includes the bootstrap time as well as the running time (i.e. T = BT + RT). 
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[sjafer@node01 fire_30_2M]$ runfire.sh
        Run on ->node02
        Run on ->node01
PCD++: A Tool to Implement n-Dimensional Cell-DEVS models
----------------------------------------------------------
Stop at time: 05:00:00:000
[1] Local objects  : 453
[0] Local objects  : 455
Total objects : 908 / Total machines : 2
Using a period of 15000 to calculate GVT

-------- Configuration for this simulation run --------
--> LTSF Scheduling 
--> Saving state information every event 
--> Message type-based state saving
--> pGVT algorithm for GVT estimation 
--> System's memory manager 
--> Aggressive cancellation strategy 

-------------------------------------------------------

-LY is off, create log files for NodeCoordinators only.
Create output file for Root.
GVT [0]: 00:00:00:000
GVT [1]: 00:00:00:000
GVT [1]: 00:37:00:561
GVT [1]: 02:00:28:888
GVT [0]: 02:00:28:888
Simulation complete!
-------------------------- Statistics ---------------------------
LP[0] (ER) = 24471 / (EI) = 2954 / (PR) = 25 / (SR) = 459 / (RB) = 484 / (RBL) = 2451
LP[0] localObjs = 455 / (SS) = 12749 / (SK) = 12082 / (SR) = 0 / (EE) = 24376 / (CFL) = 0
LP[0] (LH) = 0 / (LM) = 0
LP[0] (ST) = 7.54898e+08 ns  / (ET) = 2.61378e+09 ns  / (CT) = 0 ns / (RT) = 5.6514e+07 ns
LP[0] (BT) = 8.5956e+08 ns
LP[0] (DT) = 2.86839e+08 ns
(Inter-LP Message Size) = 116 bytes
Simulation ended!
-------------------------- Statistics ---------------------------
LP[1] (ER) = 26844 / (EI) = 5487 / (PR) = 34 / (SR) = 953 / (RB) = 987 / (RBL) = 4447
LP[1] localObjs = 453 / (SS) = 14183 / (SK) = 12957 / (SR) = 0 / (EE) = 26687 / (CFL) = 0
LP[1] (LH) = 0 / (LM) = 0
LP[1] (ST) = 7.3481e+08 ns  / (ET) = 3.09227e+09 ns  / (CT) = 0 ns / (RT) = 1.10897e+08 ns
LP[1] (BT) = 7.99848e+08 ns
LP[1] (DT) = 0 ns
--------------------------------------------------------
START_STRING = 48:56:004186000
Start time: min=48, sec=56, neno=4186000
END_STRING = 49:01:602353000
End time  : min=49, sec=1, neno=602353000
Total elapsed time (seconds):5.5981
[sjafer@node01 fire_30_2M]$ 

 
Figure 67. Execution results of running 30x30 fire model using the optimistic PCD++ simulator 

7.2. PERFORMANCE METRICS 

The total elapsed time value was collected from the execution environment to measure 

the performance of the simulators in terms of execution time. Also, the speedups with 

respect to changing the number of simulating nodes were calculated to show how the 

parallel simulation outperforms the sequential one (using only one node). The overall 

speedup for N nodes is given as follows.  
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 Where T (1) represents the serial execution time measured on one node, and T (N) 

is the total execution time taken by the simulation running on N nodes. Each of the 

models which were presented in Chapter 5 is executed on four different simulators: 

€ The optimistic PCD++ simulator [Liu06]; 

€ The conservative PCD++ simulator [Tro01]; 

€ The optimistic PCD++ simulator implementing LRFM protocol; and 

€ The optimistic PCD++ simulator implementing GRFM protocol. 

The goal is to identify the execution performance of each simulator as we increase the 

number of participating nodes. Due to the partitioning mechanism that is used by our 

optimistic and conservative simulators, we can only increase the number of nodes to a 

certain limit. That is, the maximum number of nodes that a model can be simulated on is 

equal to the number of rows of the cell gird for that particular model. For instance, if we 

have a model of 400 cells arranged in a 20x20 mesh, we can run the model on 1 to 20 

nodes. In order to obtain stable results, for each model, simulations were run on 1 to N 

nodes and for each scenario five trials were collected. The execution results which will be 

presented in the next section reflect the average of these five trials which are within a 

confidence interval of 95%. 

7.3. SIMULATION RESULTS 

In the following points we will present the simulation results of executing our four 

models discussed in Chapter 5.  

 

€ Game of Life Model  

This model consists of 1200 cells arranged in a 30x40 mesh with a total execution 

time of 4.6723 seconds when run on standalone CD++. Figure 68 represents the 

execution time resulting from running the model with four different simulators on 1 to 6 

nodes.  
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Figure 68. Game of life model execution time on 4 different simulators 

From the execution time graph, we can see that the optimistic, LRFM-based, and 

GRM-based simulators outperform the conservative one on 1 to 6 nodes and at the same 

time produce very close results. However, as the number of machines goes beyond 3, the 

conservative simulator starts dropping down the execution time. Among the three 

optimistic simulators, the GRFM-based simulator takes longer time due to its time 

consuming mechanism in broadcasting information about each LP’s rollbacks among the 

participating nodes. 

 The speedups of the model execution times with respect to execution on one node 

for each particular simulator are given in Figure 69. The speedups graph only represents 

the performance of 1 to 3 nodes which showed significant performance. 
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Figure 69. Game of life model speedups with regards to execution on one node 

 

 

€ Synapsin-Vesicle Reaction Model 

This model consists of 676 cells arranged in a 26x26 mesh with a total execution 

time of 3.7621 seconds when run on standalone CD++. Figure 70 represents the 

execution time resulting from running the model with four different simulators on 1 to 8 

nodes.  
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Figure 70. Synapsin-vesicle model execution time on 4 different simulators 
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From the graph, we can see that the optimistic and LRFM-based simulators, 

produce very close results on 1 to 8 nodes. Also, the GRFM-based simulator has similar 

results for 1, 2, 3, and 5 nodes. However, it degrades the performance when 4, 6, 7, and 8 

nodes are participating. On the other hand, the conservative simulator shows different 

behavior as the number of nodes increases. As seen on the graph, the conservative 

simulator improves the total execution time significantly when more than 2 nodes are 

available. Again, as in the previously discussed models, as the number of computing 

nodes increases, the GRFM-based simulator has the lowest performance among other 

ones. The main reason is communication overhead among the participating LPs which 

leads in a noticeable time added to the duration of the model execution. 

Figure 71 represents the speedups of the model execution times with respect to 

execution on one node for each particular simulator. 
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Figure 71. Synapsin-vesicle model speedups with regards to execution on one node 

 

€ Fire Propagation Model 

This model consists of 900 cells arranged in a 30x30 mesh with a total execution 

time of 6.2145 seconds when run on standalone CD++. Figure 72 represents the 

execution time resulting from running the model with four different simulators on 1 to 8 

nodes.  
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Figure 72. Fire propagation model execution time on 4 different simulators 

 

As seen on the graph, our parallel simulators significantly improved the execution 

time of the fire propagation model. The three optimistic simulators produced very similar 

results on 1 to 7 nodes. For this model, we can definitely remark that the optimistic 

simulators outperform the conservative one. For the optimistic simulators the best results 

were achieved on 5 nodes, while the conservative one had its lowest execution time on 4 

nodes. The speedups of the model execution times with respect to execution on one node 

for each particular simulator are given in Figure 73, which provides a better explanation 

of the performances achieved.  
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Figure 73. Fire propagation model speedups with regards to execution on one node 

€ Ship Evacuation Model 

This model consists of 400 cells arranged in a 20x20 mesh with a total execution 

time of 6.4327 seconds when run on standalone CD++. Figure 74 represents the 

execution time resulting from running the model with four different simulators on 1 to 8 

nodes.  
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Figure 74. Ship evacuation model execution time on 4 different simulators 

From the execution time graph, we can see that the conservative simulator 

outperforms the other three simulators. This is due to the causality-error avoidance 
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mechanism of this simulator which avoids rollbacks and anti-message flows. The 

optimistic and LRFM-based simulators produce very similar results for 2 to 6, and 8 

nodes. However, the GRFM-based simulator does not present good results. This is 

mainly due to the huge message-passing mechanism among the LPs who are sending 

messages back and forth reporting information about their rollbacks. To prove this, we 

can see that the GRFM-based simulator reduces the execution time when there are two 

computing nodes, but as the number of nodes increases, the performance degrades. The 

speedups of the model execution times with respect to execution on one node for each 

particular simulator are given in Figure 75. The speedups graph shows that except for the 

GRFM-based simulator, the other simulators have improved the execution time. 
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Figure 75. Ship evacuation model speedups with regards to execution on one node 

7.4.  ADDITIONAL TESTINGS OF PCD++ SIMULATOR 

In this section we show a different sort of tests that we used. For this purpose, we built a 

simple model consisting of an n by n grid with initial value of zero for all the cells 

(except the one located in the center of the grid). As the simulation runs, the value “1” 

propagates through all cells starting from the central cell towards four directions 

(N/S/E/W) until the value of all cells are changed from “0” to “1”. We collected similar 

tests for the model but changing the size to 5x5, 10x10, and 30x30 cell space. Figure 76 
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and Figure 77 Represent the 5x5 Grid model definition in CD++ and the propagation of 

“1” throughout the grid respectively. 

[grid-rule] 

type : cell 

dim : (5,5) 

delay : transport 

defaultDelayTime : 100 

border : nowrapped   

neighbors : grid-rule(-1,0)   

neighbors : grid-rule(0,-1)   grid-rule(0,0)  grid-rule(0,1) 

neighbors : grid-rule(1,0)   

initialvalue : 0 

initialrowvalue :  0     00000

initialrowvalue :  1     00000

initialrowvalue :  2     00100

initialrowvalue :  3     00000

initialrowvalue :  4     00000

localtransition : myrule 

[myrule] 

rule : 1 100 { trueCount>1 } 

rule : {(0,0)} 100 { t } 
 

Figure 76. 5x5 Grid model definition in CD++ 
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Figure 77. Propagation of “1” throughout the grid 

This model allows observing the performance of the simulator when the grid’s 

size is increased incrementally. Two different types of tests were collected: 1) analyzing 

the performance of the simulator by introducing fixed and variable delays into the cells’ 

evaluation rules, 2) testing the robustness of the simulator as the complexity of the model 

is increased. The following sections explain these two testing scenarios in details.  
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7.4.1. Performance of PCD++ 

The first testing scenario was running the Grid model on 1 to n machines where n is the 

size of the model (n x n). Every set of simulation was performed on optimistic PCD++, 

LRFM-based PCD++, and GRFM-based PCD++ simulator. The following figures will 

illustrate the simulation time behavior as well as the speedups. For very n x n Grid model 

first the simulations were collected by inserting fixed delay time in the rules evaluating 

cells’ states. Secondly, the same sets of simulations were performed but this time 

modifying the delay to be variable. 

 

Figure 78 shows the difference between fixed and variable delayed rules. 

 
Figure 78. (a) Grid rule with fixed delay, (b) Grid rule with variable delay 

€ 5x5 Grid Model with fixed and variable delays 

The model consisted of 25 cells arranged in a 5x5 mesh. Figure 79 and Figure 80 

represent the execution time resulting from running the model with three different 

simulators on 1 to 5 computing nodes with fixed and variable delays.  
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Figure 79. Simulation results of 5x5 Grid model with fixed delay 

5x5 Grid Execution Time (Variable Delay)
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Figure 80. Simulation results of 5x5 Grid model with variable delay 

As the graphs show, the execution times of the 5x5 Grid model with variable and 

fixed delay are very close to each other. This is mainly due to the small size of the model 

where does not get affected by changing the delay type at which cells’ states are changed. 

Aside from this, again due to the small size of the model increasing the number of 

computing nodes does not improve the execution time, rather it worsens the situation. 

The reason is that the actual execution time of the model is noticeably smaller than the 

time needed to initialize the additional nodes plus the significant communication 

overhead among them. The following speedup graphs clarify this fact. 
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Figure 81. Speedup results of the 5x5 Grid model with fixed delay 

5x5 Grid Speedups (Variable Delay)
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Figure 82. Speedup results of the 5x5 Grid model with fixed delay 

 

€ 10x10 Grid Model with fixed and variable delays 

By expanding the Grid model into a 10x10 mesh consisting of 100 cells, the effect 

of different type of delay can be observed. However, the model’s size is still small and 

the additional computing nodes do not improve the execution time. For the 10x10 Grid 

model we have only run the simulation on the optimistic PCD++. Figure 83 represents 

these results.  
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Figure 83. Simulation results of 10x10 Grid model with fixed and variable delay 

As seen on the graph, the variable delay adds up a noticeable computing time to 

the simulation. Figure 84 illustrates the resulting speedups which prove that the model is 

too small to be executed on more than one machine. 
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Figure 84. Speedup results of the 10x10 Grid model with fixed and variable delay 

 

€ 30x30 Grid Model with fixed and variable delays 

To observe the performance of the optimistic PCD++ simulator, we repeated the 

simulation scenarios of the 10x10 Grid model by expanding the model into 900 cells 

arranged in a 30x30 mesh. Figure 85 illustrates the execution results. 
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Figure 85. Simulation results of 30x30 Grid model with fixed and variable delay 

From the above graph we can see interesting results where the model with 

variable delays outperforms the one with fixed delay. The size of the model looks ideal 

enough to be executed on multiple nodes in contrast to the 5x5 and 10x10 Grid model. 

For both types of delays, running the model on 2 to 8 nodes reduces the execution time 

compared to simulation on single node. Almost after 8 nodes, adding extra computing 

nodes increased the execution time. As mentioned before, this is due the significant 

startup time and communication overheads which exceed the execution time on single 

machine. The speedup graphs prove these results. 
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Figure 86. Speedup results of the 30x30 Grid model with fixed and variable delay 
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To better illustrate the result achieved from analyzing the performance of PCD++ 

in handling different model sizes we are presenting the execution results of the 5x5, 

10x10, and 30x30 Grid model on single graphical presentations. The following 3-D 

graphs reflect these combinations for both fixed and variable delay model.  

1 2 3 4 5

5x5 Grid

30x30 Grid
0

0.5

1

1.5

2

2.5

3

Execution 
time (sec)

Numbero of machine

Grid Model Execution Time (Fixed Delay)

5x5 Grid

10x10 Grid

30x30 Grid

 
Figure 87. 3-D representation of Grid model with fixed delay 
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Figure 88. 3-D representation of Grid model with variable delay 

7.4.2. Robustness of PCD++ 

The second testing scenario was running the 5x5, 10x10, and 30x30 Grid model on single 

machine and each time changing the complexity level of the model. The complexity level 

was modified by adding extra computations within the cells’ evaluation rules. For 

example, in the Grid model when a cell has one or more neighbors holding the value “1”, 

after a fixed or variable delay the cell’s value is changed from “0” to “1”. In normal case 

this can be done by simply changing the cell’s state value instantly. However, to add 
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complexity to the model we added extra computation to increase the total time at which a 

cell’s state is changed from “0” to “1”. We have increased the complexity level by 

introducing a function in the CD++ simulator that loops for n times. The complexity level 

(i.e. value of n) can be modified by the user at run time. The following snapshot 

represents the Grid model’s rule that uses complexity levels. The function 

ComplexityFunc takes two parameters: n is the complexity level (represents the number 

of nested loops which will add extra computation time), the second parameter defined the 

new value of the cell for which the rule is evaluated (i.e. modifying the cell’s state to “1” 

if it has neighbors with state equal to “1”).  

 
Figure 89.  Adding complexity level to cells’ evaluation rules 

The purpose of using complexity levels on one machine was to increase the 

execution time without modifying the model’s size. Although we have run the 

complexity tests on 5x5, 10x10, and 30x30 Grid model, but we wanted to take a deeper 

look at the performance of the optimistic PCD++ simulator and observe how it performs 

in the presence of complex and long-time simulations. As in the first testing scenario, we 

have used both types of delays (i.e. fixed and variable). The following graphs provide the 

simulation results. 
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Figure 90.  Execution results of 5x5 Grid model under 12 different complexity levels 

As seen on Figure 90, due to the small size of the model, both types of delays 

produce similar results. The complexity level is increased gradually and as a result the 
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execution time is increased from a couple of seconds to almost 850. Next we present the 

10x10 Grid model’s simulation results.  
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Figure 91. Execution results of 10x10 Grid model under 10 different complexity levels 

 The execution time of the 10x10 Grid model reflects the effect of complexity 

levels more clearly than the 5x5 model. Since the model is four times larger, therefore the 

execution time is noticeably higher and more sensitive to complexity levels. 

 Finally the complexity simulations were tested for the 30x30 model. Results are 

presented in Figure 92.  
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Figure 92. Execution results of 30x30 Grid model under 3 different complexity levels 
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 As seen on the graph, due to the large size of the model the effect of complexity 

on increasing the execution time is very sensible and only three levels of complexity 

present the behavior that was obtained in 10x10 Grid model in 10 complexity levels.  

The following graphs represent the 3-D illustration of the complexity-based tests. 

Figure 93 shows the scenario of fixed delay Grid model, while Figure 94 represents the 

variable delay version of the model with three different complexity levels.  
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Figure 93. 3-D representation of fixed delay Grid model with three levels of complexity 
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Figure 94. 3-D representation of varible delay Grid model with three levels of complexity 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK  

This work presented the parallel simulation of DEVS and Cell-DEVS models using 

PCD++, a parallel and distributed environment based on the Time Warp optimistic 

synchronization protocol. PCD++ serves as an extension to the CD++ toolkit which was 

developed by previous researcher [Liu06] aiming at exploiting parallelism for the 

purpose of fast and efficient simulation of complex models. The concept of Parallel and 

Distributed Simulation was presented. 

The most challenging problem of parallel and distributed simulation i.e. 

Synchronization among nodes (LPs) was discussed by over viewing the three different 

types of synchronization strategies for event driven simulations: no synchronization at 

all, pessimistic (conservative) synchronization, and optimistic synchronization. 

 We illustrated the software architecture of the purely optimistic parallel CD++ 

simulator (PCD++). The layered architecture of the optimistic PCD++ simulator consists 

of five layers (from top to bottom): model, PCD++, Time Warp - WARPED, and the 

operating system, where ach layer was explained in details. A variety of optimization 

strategies of the Time Warp kernel were pointed out and discussed thoroughly. Some 

optimizations in terms of GVT calculation, dynamic memory management, and state 

management were mentioned. 

We have analyzed the performance of our two existing parallel CD++ simulators, 

namely Conservative PCD++ simulator [Tro01] and Optimistic PCD++ simulator 

[Liu06]. We looked at the design and implementation of these two simulators and 

compared their structures as well as functionalities in parallel and distributed simulations.  

The hierarchical structure of the conservative PCD++ simulator was compared 

against the flattened structure of the optimistic PCD++ simulator. The migration from a 

hierarchical structure to a flattened structure was illustrated as two major modifications; 

i.e. the departure from conservative-based simulator to an optimistic-based simulator, and 

flattening the structure of the simulator. Then it was illustrated how the optimistic 

PCD++ simulator deals with the communication overhead dilemma by using the flattened 

structure. 
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A set of models were designed and implemented in CD++, and they were 

presented to illustrate the capability of Cell-DEVS formalism in building such models. 

The Ship Evacuation model illustrated an emergency ship evacuation scenario. Synapsin-

Vesicle Reaction model presented the reserve pool of synaptic vesicles in a presynaptic 

nerve terminal. The Fire Spread model represented a fire propagation scenario in forest 

based on Rothermel’s mathematical definition. The Game of Life model defined the 

standard Game of Life using a two-dimensional grid. 

Aiming at improving the performance of the optimistic simulator, we modified 

the WARPED kernel to handle rollbacks in a more efficient way. We presented two new 

algorithms that we have implemented in WARPED kernel. The Near-perfect State 

Information protocol was discussed and after that our new algorithms; Local Rollback 

Frequency Model (LRFM) and Global Rollback Frequency Model (GFRM) were 

presented. 

Finally, we have run a variety of tests to analyze the performance of our existing 

PCD++ simulators; the optimistic and the conservative as well as our LRFM and GRFM 

Time Warp-based protocols. The main goal of these tests was to show the maximum 

capability of the two mentioned PCD++ simulators in terms of handling the number of 

nodes driving the simulation, complexity of the model, and the size of the model for the 

models introduced in Chapter 5. 

7.1. FUTURE WORK 

With regard to testing the performance of PCD++, there are several topics of interest for 

future research: 

€ Models with longer execution time are required to be run on PCD++. This 

gives the chance to catch unexpected errors especially in terms of timeouts 

and broken pipes. In most of the cases, the MPI communication interface 

was not able to handle timings (long waits due to the size and complexity 

of the model) properly. Thus, a deeper investigation at the MPI level is 

suggested. 
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€ Testing different partitioning strategies as opposed to the one used by 

current PCD++ would provide lots of feedback about the capability of the 

simulator. 

€ A dynamic load balancing mechanism which allows for run-time 

balancing of the load would be a great solution to ensure that load is 

divided equally among the available nodes. 

€ Incorporating algorithms such as moving time windows (MTW) [Fuj00, 

Fuj03] and the Filter algorithm [Pra91] and comparing the resulted 

simulators with LRFM- and GRFM-based simulators gives key ideas on 

how to control optimism efficiently. 

€ Aside from different testing strategies, profiling the simulator would 

provide very detailed information and could be used to modify the 

underlying C++ codes to reduce runtime. 
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