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Discrete Event System Specification (DEVS) is a sound formalism to describe generic dynamic sys-
tems in a hierarchical and modular way. Cell-DEVS is a DEVS-based formalism intended to model
complex physical systems as cell spaces. This work presents new techniques for executing DEVS
and Cell-DEVS models in parallel and distributed environments based on the WARPED kernel, an im-
plementation of the Time Warp protocol. The optimistic simulator PCD++, built as a new simulation
engine for CD++, is a toolkit that implements the DEVS and Cell-DEVS formalisms. We redesign al-
gorithms in CD++ to carry out optimistic simulations using a non-hierarchical approach that reduces
the communication overhead. The message-passing organization is analyzed using a high-level ab-
straction referred to as wall clock time slice. We propose a two-level user-controlled state-saving
mechanism to achieve efficient and flexible state saving at runtime. Various optimization strategies
are applied to PCD++ and their effects are analyzed quantitatively, including a risk-free message
type-based state-saving strategy to reduce the number of states saved during the simulation sig-
nificantly, and a one log file per node strategy to break the bottleneck caused by file I/O operations.
It is shown that PCD++ markedly outperforms other alternatives and considerable speedups can be
achieved in parallel and distributed simulations.

Keywords: Parallel DEVS models, Cell-DEVS models, discrete event simulation, optimistic synchro-
nization techniques

1. Introduction

Computer-based modeling and simulation (M&S) has be-
come an important tool for analyzing and designing a
broad array of complex systems where a mathematical
analysis is intractable. As a sound formal M&S frame-
work based on generic dynamic system concepts, the
DEVS [1] formalism supports hierarchical and modular
construction of models, allowing model reuse, reducing
development and testing time. Since its first formaliza-
tion, DEVS has been extended into various directions. The
Parallel DEVS or P-DEVS [2] formalism is an extension
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that eliminates the serialization constraints which existed
in the original DEVS definition, allowing increased par-
allelism to be exploited in parallel and distributed sim-
ulations. The Cell-DEVS [3] formalism combines Cel-
lular Automata [4] with DEVS theory to describe n-
dimensional cell spaces as discrete event models, where
each cell is represented as a DEVS basic model that can
be delayed using explicit timing constructions.

Parallel discrete event simulation (PDES) has received
increasing interest as simulations become more time con-
suming and geographically distributed. Synchronization
techniques for PDES systems generally fall into two cat-
egories: conservative approaches that strictly avoid vio-
lating the local causality constraint [5] and optimistic ap-
proaches that allow violations to occur, but provide mech-
anisms to recover from them through a process known
as rollback. Usually, optimistic approaches can exploit a
higher degree of parallelism available in the simulation,
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whereas conservative approaches tend to be overly pes-
simistic and force sequential execution when it is not nec-
essary. Moreover, conservative approaches generally rely
on application-specific information to determine which
events are safe to process. While optimistic algorithms
can execute more efficiently if they exploit such infor-
mation, they are less reliant on the application for cor-
rect execution, allowing greater transparent synchroniza-
tion and simplifying software development. On the other
hand, the overhead of state saving and rollback operations
incurred in optimistic simulations constitutes the primary
bottleneck that may result in degradation of system perfor-
mance. Jefferson’s Time Warp mechanism [6] is by far the
most well known optimistic synchronization protocol that
uses virtual time to model the passage of time in the sim-
ulation. The simulation is executed via several Time Warp
processes interacting with each other by exchanging time-
stamped event messages. The WARPED simulation kernel
[7] is a configurable middleware that implements the Time
Warp mechanism and various optimizations.

CD++ [8] is an M&S toolkit that implements P-DEVS
and Cell-DEVS formalisms. It currently supports both
standalone and parallel conservative simulations [9]. In
this work, we present new techniques for optimistic sim-
ulations in CD++ based on the Time Warp mechanism.
Our optimistic simulator PCD++ is built as a new exten-
sion to the CD++ toolkit. PCD++ employs a layered ar-
chitecture as introduced by Troccoli and Wainer [9]. It
also adopts the flat simulation approach that eliminates
the need for intermediate coordinators [10]. The algo-
rithms for the DEVS processors are redesigned to allow
optimistic simulations in parallel and distributed environ-
ments. The message-passing organization is analyzed us-
ing a high-level abstraction called wall clock time slice
(WCTS). The algorithms for the Cell-DEVS atomic mod-
els are adapted to the asynchronous state transition par-
adigm. Various enhancements and optimizations are pro-
posed and integrated into the PCD++ simulator. We show
that PCD++ markedly outperforms other alternatives and
considerable speedups are achievable in simulations, indi-
cating that PCD++ is well suited for simulating large and
complex models.

2. Parallel DEVS Background

The DEVS [1] formalism provides a framework for the
definition of hierarchical models in a modular way. A real
system modeled using DEVS can be described as a com-
position of behavioral (atomic) and structural (coupled)
components. The P-DEVS [2] formalism eliminates the
restrictions that forced the original DEVS definition to se-
quential execution. It is used as the theoretical foundation
for our research. A P-DEVS atomic model is defined as:

M � �X�Y�S� �int� �ext� �con� �� ta� �

At any time, an atomic model is in some state s � S. If
no external event occurs, it will remain in state s for ta(s).
When ta(s) expires, the atomic model outputs the value
�(s) and changes to a new state given by �int(s). P-DEVS
models employ a bag of inputs (Xb) to allow the execu-
tion of multiple concurrent events. If one or more exter-
nal events occur before ta(s), the atomic model changes
to a new state defined by �ext(s, e, Xb), which combines
the functionality of a number of external transitions into
a single one. A �con function is defined to decide the new
state in cases of collision between external and internal
functions.

P-DEVS coupled models are defined as a set of ba-
sic models (atomic or coupled) interconnected through
the interfaces of the models. A P-DEVS coupled model
is defined as:

DN � �X�Y�D� �Md�d � D��EIC�EOC� IC� �

The specifications for the set of input and output events
(X and Y) and couplings (EIC, EOC and IC) follow the
definitions of DEVS coupled models [1]. The basic com-
ponents (D and Md) are specified by the P-DEVS atomic
model definition.

The Cell-DEVS [3] formalism allows the specification
of discrete event cell spaces, improving their definition by
using explicit timing delays. A Parallel Cell-DEVS atomic
model [11] can be formally defined as:

TDC � �Xb�Yb� S�N� d� �int� �ext� �con� � � � con� ��D
�
�

A cell can interchange data with other neighboring
cells and models outside the cell space via its interface
(Xb, Yb). The input values are used to compute the future
state of the cell by evaluating the local function (� , � con).
New state values are transmitted only after the completion
of the delay time given by the delay function (d). The P-
DEVS transition (�int, �ext, �con) and output (�) functions
are included in each cell. A cell space consisting of multi-
ple cells interconnected by the neighborhood relationship
is defined by a coupled Cell-DEVS model:

GCC � �Xlist�Ylist�X�Y� n� �t1� � � � � tn��N�C�B�Z� �

The cell space (C) is a coupled model defined as an ar-
ray of Cell-DEVS atomic models of fixed size (t1 	. . .	
tn). The neighborhood set (N) gives the relative position
between the origin cell and the surrounding neighbors.
The border of the cell space is specified by the border cells
(B). The Z function allows definition of the coupling be-
tween cells in the model. Figure 1 illustrates the informal
definition of the DEVS and Cell-DEVS formalisms.

Various DEVS-based M&S toolkits have been imple-
mented by different researchers. The following is a brief
survey on some of the existing toolkits intended for dis-
tributed simulation.
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Figure 1. Informal definition of DEVS and Cell-DEVS [1, 11]


 DEVS/CORBA [12] is a runtime infrastructure on
top of CORBA middleware to support distributed
simulation of DEVS components. It is possible to
embed DEVS/CORBA in a larger network-centric
environment to provide a combination of graph-
ical process modeling, discrete-event simulation,
animation, activity-based costing and optimization
functions.


 DEVS/HLA [13] is an HLA-compliant M&S envi-
ronment implemented in C++ that supports high-
level model construction. It greatly simplifies the
underlying programming details required to estab-
lish and participate in an HLA federation.


 DEVSCluster [14] is a CORBA-based, multi-
threaded distributed simulator implemented in Vi-
sual C++. It transforms a hierarchical DEVS model
into a non-hierarchical model to ease the synchro-
nization of the distributed simulation.


 DEVS/Grid [15] is an M&S framework imple-
mented using Java and Globus toolkit for Grid com-
puting infrastructure. It constructs a fully automated
simulation environment based on a set of facili-
ties, including cost-based hierarchical model parti-
tioning, dynamic coupling restructuring, automatic
model deployment and M&S name and directory
service.


 DEVS/P2P [16] is an M&S framework based on P-
DEVS formalism and Peer-to-Peer message com-
munication protocol. It uses a customized DEVS
simulation protocol to achieve decentralized inter-
node communication. Simulators are synchronized
by themselves without involving a coordinator.


 DEVS/RMI [17] is a DEVS-based system that pro-
vides a fully dynamic and re-configurable runtime
infrastructure for handling load balancing and fault
tolerance in distributed simulations. It reduces the
overhead associated with common middleware so-
lutions by using the native support of Java RMI
to achieve the synchronization of local and remote
simulators.

However, none of them supports optimistic simulation
of Cell-DEVS models in parallel and distributed environ-
ments. Nutaro presents a risk-free optimistic simulation
algorithm [18] to simulate the class of systems represented
in the DEVS formalism correctly. In this approach, only
correct outputs with the minimum global time are sent to
avoid the spread of causality errors to remote processes.
This mechanism is well suited for shared memory archi-
tectures, but has limitations in distributed heterogeneous
environments.

As mentioned earlier, the CD++ toolkit is extended in
our research to allow optimistic simulation of complex
and large-scale DEVS and Cell-DEVS models. The op-
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Figure 2. An example distributed processor structure involving two machines

timistic simulator PCD++ is built on top of the WARPED
kernel, which provides services for defining different
types of Time Warp processes (known as simulation ob-
jects) based on Jefferson’s definition. Simulation objects
mapped on a physical processor are grouped by an entity
referred to as logical process (LP). The WARPED kernel
relies on the Message Passing Interface (MPI) for high-
performance communications on both massively parallel
machines and on workstation clusters. The PCD++ sim-
ulator provides two loosely-coupled frameworks: a mod-
eling framework and a simulation framework. The former
consists of a hierarchy of classes rooted at Model to define
the behavior of the DEVS and Cell-DEVS models� the
latter defines a hierarchy of classes rooted at Processor,
which, in turn, derives from the abstract simulation ob-
ject definition in the kernel to implement the simulation
mechanisms. That is, the PCD++ processors are concrete
implementations of simulation objects to realize the ab-
stract DEVS simulators.

3. Optimistic Simulation in PCD++

In the original definition of the abstract simulator [2], the
DEVS processors are specialized into two different simu-
lation engines, namely simulators and coordinators. The
structure of these hierarchical DEVS processors mimics
the DEVS model hierarchy. Basically, the role of a sim-
ulator is to invoke the state transition (internal and ex-
ternal) functions in an atomic model, while a coordina-
tor is attached to a coupled model to translate the output
events between its children and to keep track of the time of
the next imminent dependents. When the CD++ toolkit is
run in standalone and parallel conservative modes, a sin-
gle root coordinator is associated with the top-level cou-
pled model to manage the entire simulation. In addition,
a one-to-one correspondence is established between the
model components and the DEVS processors, increasing
the communication overhead of message passing.

Based on previous research [10], PCD++ employs
a flattened structure consisting of four types of DEVS
processors: Simulator, Flat Coordinator (FC), Node Coor-
dinator (NC), and Root. Introducing the FC and NC elimi-
nates the need for intermediary coordinators in the DEVS
processor hierarchy. Further, the Root coordinator is no
longer the global scheduler in the simulation. Instead, the
simulation is managed by a set of NCs running on differ-
ent machines in a decentralized manner. The simulation is
executed in a message-driven fashion. PCD++ processors
exchange messages that can be classified into two cate-
gories: content messages and synchronization messages.
The former includes the external message (x, t) and out-
put message (y, t), while the latter includes the initializa-
tion message (I, t), collect message (@, t), internal mes-
sage (*, t), and done message (D, t). Figure 2 shows an
example of the distributed processor structure involving
two machines.

A LP is created on each machine, grouping together
the PCD++ processors mapped on that machine. A Root
is created only on LP0. It starts the simulation and per-
forms I/O operations between the simulation system and
the surrounding environment. A NC and a FC are created
on each LP. The FC is in charge of intra-LP communica-
tions between its child Simulators underneath. The NC is
the local central controller on its hosting LP and the end
point of inter-LP communications. A Simulator is respon-
sible for executing the DEVS abstract functions defined in
its associated atomic model.

The original message-processing algorithms for the
PCD++ processors can be found in Glinksy and Wainer
[10]. Some of the algorithms have been redesigned in our
research to allow a more appropriate division of function-
alities among the processors and to address a variety of is-
sues in distributed optimistic simulations. We now present
the redesigned algorithms, including the FC algorithm for
(y, t), and the NC algorithms for (y, t), (x, t), and (D, t).

The FC synchronizes its child Simulators, routes mes-
sages among them, and forwards to the NC messages sent
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Figure 3. FC algorithms for (y, t)

from its children to the environment or to other remote
Simulators. The new FC algorithm for (y, t) is shown in
Figure 3, where Simulators ready for a state transition are
cached in synchronize set.

Upon the arrival of a (y, t), the FC searches the model
coupling information to find its ultimate destinations. A
destination is ultimate if it is an input port on an atomic
model or an output port on the topmost coupled model. If
the (y, t) is sent eventually to remote Simulators or to the
environment, the FC simply forwards the (y, t) itself to the
parent NC. Otherwise, the FC translates the (y, t) into a
(x, t) using the Zi� j translation function and directly sends
the (x, t) to the local receivers, which are recorded in the
synchronize set for later state transitions.

The major portion of our redesign effort is reflected
in the message-processing algorithms for the NC. As the
local central controller, the NC performs a number of im-
portant operations.

1. Inter-LP communications: a structure called NC
Message Bag is introduced to contain the received
external messages from other remote NCs. The time
of the NC Message Bag is defined as the mini-
mum timestamp among the messages contained in
it, while an empty bag has a time of infinity.

2. Handling external events from the environment: the
NC uses a structure called Event List to hold the
external events. The current position in the Event
List is held by the event-pointer, which is defined
in the NC’s state.

3. Driving the simulation on the hosting LP: the NC
advances the local simulation time to the minimum
among the timestamp of the external event pointed
by the event-pointer, the time of the NC Message
Bag, and the closest state transition time given in
the (D, t) received from the FC.

4. Managing the flow of control messages in line with
the P-DEVS formalism: the NC uses next-message-
type to keep track of the type of the control message

(either @ or *) that will be sent in the next simula-
tion cycle.

The redesigned NC algorithm for (y, t) is shown in
Figure 4. If the (y, t) is sent to the environment, the NC
directly forwards it to the Root. In addition, the NC de-
termines the remote machines on which the ultimate re-
ceiving Simulators locate, based on the model coupling
and partition information. The NC then translates the (y,
t) into a (x, t) and sends it to the NC on each of those ma-
chines. On the receiving end, the (x, t) will eventually be
delivered to the receiving Simulators on that machine.

A simplified version of the NC algorithm for (D, t) is
shown in Figure 5. If the next-message-type has a value of
@, the NC calculates the next simulation time, min-time,
based on the three factors as discussed earlier (line 7 to
9). If the min-time is larger than the user-specified stop
time, the NC simply sets a flag, dormant, and exits the al-
gorithm. The usage of the dormant flag will be discussed
shortly. Otherwise, the NC sends the external events (line
15) and external messages (line 21) scheduled at the min-
time, if any, to the FC. It then sends a control message to
the FC and sets the next-message-type accordingly (line 25
to 31). The next-message-type is set to * only after the NC
sends out a (@, t) (line 27), in which case imminent Sim-
ulators exist on the LP and their output functions will be
invoked when the (@, t) arrives. The imminent Simulators
need to perform internal transitions immediately after the
output operations. Therefore, the NC triggers the internal
transitions by sending out a (*, t) in the next simulation
cycle (line 4). On the other hand, if there is no imminent
Simulator at this time, the NC sends a (*, t) whenever ex-
ternal messages are flushed to the FC (line 29) to trigger
the external transitions in the non-imminent Simulators.

In optimistic simulations, some LPs may have pro-
cessed all their local events while waiting for other LPs to
complete the whole simulation. Meanwhile, the lagging-
behind LPs may send messages to the waiting LPs and
thereby reactivate them. To allow proper reactivation of
the simulation on a LP, we define a special state called
dormant for the NC. The NC enters into the dormant state
once the computed min-time is greater than the stop time
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Figure 4. NC algorithms for (y, t)

Figure 5. Simplified NC algorithm for (D, t)
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Figure 6. NC algorithms for (x, t)

(line 11 in Figure 5), indicating that all the local events
on the LP have been processed. The NC exits the dormant
state and reactivates the simulation on its LP upon the ar-
rival of external messages from other remote NCs. In this
case, the NC spontaneously flushes (i.e. without the pres-
ence of a (D, t) from the child FC) the received external
messages with the minimum timestamp in its NC Message
Bag to the FC. It also sends a (*, t) to the FC to trigger the
appropriate state transitions at the receiving Simulators.
The new NC algorithm for (x, t) is shown in Figure 6.

4. Message-Passing Organization

Based on the new message-processing algorithms pre-
sented in the previous section, we now show an exam-
ple message-passing scenario using an event precedence
graph, where a vertex (black dot) represents a message
and an edge (black arrow) represents the action of send-
ing a message with the message type placed nearby. A
line with a solid arrowhead denotes a (synchronous) intra-
LP message and a line with a stick arrowhead denotes an
(asynchronous) inter-LP message. A lifeline (dashed line)
is drawn for each PCD++ processor. The execution se-
quence of messages is marked by the numbers following
the message type.

Figure 7 illustrates the flow of messages on a LP with
four PCD++ processors: a NC, a FC and two Simulators
(S1 and S2). We do not consider the potential out-of-order
execution of messages since the rollback operations are
performed automatically and transparently in the kernel.

From the diagram, we can see that the execution of
messages at any simulation time on a LP can be de-
composed into at most three distinct phases: initializa-
tion phase (I)� collect phase (C)� and transition phase (T),

as demarcated by done messages (bold black arrows) re-
ceived by the NC. Only one initialization phase exists at
the beginning of the simulation (time 0), including mes-
sages in the range of [I1, D7]. The collect phase at simula-
tion time t starts with a (@, t) sent from the NC to the FC
and ends with the following (D, t) received by the NC. For
example, the collect phase at time 0 comprises messages
in the range [@8, D14]. This phase is optional� it happens
if, and only if, there are imminent Simulators on the LP at
that time. Finally, the transition phase at simulation time
t begins with the first (*, t) sent from the NC to the FC
and ends at the last (D, t) received by the NC at time t. In
the diagram, messages in the range of [*15, D32] belong
to the transition phase at time 0. The transition phase is
mandatory for each individual simulation time.

Furthermore, a transition phase may contain multiple
rounds of computations� each starts with zero/one/more
(x, t) followed by a (*, t) sent from the NC to the FC and
ends with a (D, t) returned to the NC. In the example, the
transition phase at time 0 has three rounds: R0 with mes-
sages in range [*15, D19], R1 with messages in [x20, D26],
and R2 with messages in [x27, D32]. During each round,
state transitions are performed incrementally with addi-
tional external messages and/or for potentially extra Sim-
ulators. We will denote a transition phase of (n + 1) rounds
as [R0. . . Rn].

Based on the above analysis, we now present a new
abstraction that allows a higher-level understanding of
the simulation process on each LP. From a computa-
tional standpoint, the sequential simulation on a LP can be
viewed as a sequence of computation units, one for each
group of simultaneous events, transforming the system
mapped on that node according to the P-DEVS formal-
ism. Each computation unit is performed during a span of
time as measured by a physical wall clock. Such compu-
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Figure 7. An example message-passing scenario on a LP

Figure 8. WCTS representation for the simulation on a LP

tation unit is referred to as wall clock time slice (WCTS).
A WCTS comprising simultaneous events occurred at vir-
tual time t is denoted as WCTS-t, and t is called the virtual
time of the WCTS.

Figure 8 illustrates the sequential simulation on a LP in
terms of WCTS. The simulation is viewed as a sequence
of wall clock time slices linked together along the time
axis. Each stands for the execution of simultaneous events
at a specific simulation time on all the PCD++ processors
associated with the LP according to the P-DEVS formal-
ism. Each WCTS-t may contain one mandatory transition
phase and one optional collect phase.

Several properties of the WCTS are summarized as fol-
lows.

1. The simulation on a LP starts with WCTS-0, the
only WCTS with all three phases.

2. Wall clock time slices are linked together by mes-
sages sent from the NC to the FC (black arrows in
Figure 8). When the NC determines the next simu-
lation time at the end of a WCTS, it sends out mes-
sages that will be executed by the FC at the new

simulation time, thus initiating the next WCTS on
the LP.

3. The completion of the simulation on a LP is marked
by a WCTS sending out no linking messages, e.g.
WCTS-tn in the diagram. The whole simulation
finishes only when all participating LPs have com-
pleted their corresponding parts of the simulation.

4. Wall clock time slices are atomic computation units
during rollback operations. A typical rollback sce-
nario is shown in Figure 9.

In the diagram, the simulation on LPi is execut-
ing in WCTS-tn when a straggler or anti-message with
timestamp t2 arrives at the NC (action 1). Based on the
kernel rollback mechanisms, the received straggler or anti-
message is inserted into WCTS-t2 (a message implosion
happens in WCTS-t2 if it is an anti-message) (action 2).
The rollbacks are then propagated among the PCD++
processors, restoring their states to those saved at the end
of WCTS-t1 (action 3), and all messages in WCTS-t2 up to
WCTS-tn are undone. After the rollbacks, the simulation
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Figure 9. Typical rollback scenario shown in terms of wall clock time slices

on LPi resumes forward execution from the unprocessed
linking messages between WCTS-t1 and WCTS-t2 (action
4). Simply put, the arrival of a straggler or anti-message
modifies the WCTS to which it belongs, and the simula-
tion resumes forward execution from the modified WCTS
after the rollbacks, taking the straggler or anti-message
into account.

5. Algorithms for Cell-DEVS Models

As the state transitions are performed incrementally at
the Simulators in the transition phases, the algorithms for
Cell-DEVS atomic models need to be adapted to this asyn-
chronous state transition paradigm to obtain the same
simulation results in PCD++ as in the standalone version
for any given Cell-DEVS model. A brief description of
the new computation model under the asynchronous state
transition paradigm is as follows.

1. Applying preemptive semantics to the state transi-
tion logic. For a transition phase [R0. . . Rn], the state
transitions in all but the last round (Rn) are based
on incomplete information and hence false transi-
tions. Rn has the best chance to perform the correct
transition. (This is the case if no rollback happens
later. Otherwise, the whole transition phase will be
reprocessed after the rollbacks.) Since the state tran-
sition in a later round involves additional external
messages, it has a better chance to perform the cor-
rect computation and generate the correct results.
The state transition logic should therefore be imple-
mented so that the computation of the later round
preempts that of the previous round. In the end, the
potentially correct results obtained in Rn preempt
those erroneously generated in Rn�1, and the sim-
ulation advances to the next virtual time. Both the
value and state of the cell must follow this preemp-
tive logic during the multi-round state transitions.
To do so, the cell needs to record its previous value
and previous state passed in from the previous vir-
tual time at the beginning of R0 for each individual
simulation time. For time 0, the previous value and
state are the cell’s initial value and state defined by

the modeler. With the exception of R0 at time 0, the
entry point of R0 is identified by a change in the
simulation time. Hence, a cell can record its previ-
ous value and state once a time change is detected
at the beginning of the state transition algorithm.
For time 0, this job can be done in the initialization
phase.

2. Handling user-defined state variables. User-
defined state variables may be involved in the
evaluation of local rules. With the multi-round
transition phase, this computation becomes much
more complex. During each round, a potentially
different rule is evaluated and the state variables
referenced in the rule are computed. As a result, po-
tentially wrong values are assigned to the variables
and passed to the next round. The computation
errors accumulate throughout the rounds and the
wrong values are passed to the simulation at the
next virtual time. To ensure correct computation of
the state variables, a cell needs to record the values
of the user-defined state variables at the beginning
of each R0. These recorded values are inherited
from the potentially correct computation of Rn at
the previous simulation time. During the following
rounds at a specific simulation time, the state vari-
ables are first restored to the recorded values. Only
after this restoration operation can a new computa-
tion be performed. Therefore, the cell always uses
the potentially correct values as the basis for a new
computation.

3. Handling external events. In CD++, port-in tran-
sition function (for evaluating external events) is
given a higher priority than the local transition
rules. Under the new asynchronous state transition
paradigm, the computation results of the port-in
transition function may be modified by the local
transition rules in later rounds. In order to preserve
the effect of external events throughout the multi-
round transition phase, we defined an event-flag in
each cell. Whenever the cell’s value is influenced
by an external event or events at a given simulation
time, this flag is set so that no further changes can
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be done to the cell’s value in the following rounds at
this time. This flag will be reset once the preserved
value has been output to other cells. In this case, the
influence of the external event has spread out in the
cell space as expected, and the cell’s value is again
under the control of its local transition rules.

Figure 10 shows the new algorithms for the initializa-
tion and external transition (�ext) functions in Cell-DEVS
models with transport delay, while the output (�) and in-
ternal transition (�int) functions are implemented as in
Troccoli and Wainer [9].

When the initialization function is invoked, the event-
flag is initialized to false. A transient-value is used to
record the tentative value changes throughout the multi-
round state transitions at a given simulation time. It is ini-
tialized to the cell’s initial value. The time-record used to
detect the entry point of R0 is initialized to zero. The cell
also records the initial value of the user-defined state vari-
able in state-variable-record. Then, the cell inserts an el-
ement �0/out = v� into the queue so that its initial value
v can be sent to all its neighbors via its output port out
in the collect phase at time 0. Finally, function holdIn is
invoked, preparing the cell to output its initial value once
the collect phase begins.

The major modifications are made to the �ext function,
which is invoked repeatedly throughout the multi-round
transition phases. The cell detects the entry point of R0
by comparing the time-record with the current simulation
time, current-time. Once found, the cell’s value passed in
from the previous time, previous-value, is retrieved and
recorded in transient-value for use in the later rounds. The
event-flag is then reset to false in case external events have
been processed during the computations of the previous
time, and the current value of the user-defined state vari-
able is recorded in state-variable-record. These house-
keeping operations are performed only at the beginning
of R0 for each individual simulation time. The remaining
logic is common for all the rounds in a transition phase.
The state variable is restored to the recorded value before
rule evaluations (line 21). The event-flag is set (line 30)
if the new value is derived from external events, prevent-
ing further modification to the cell’s value in the following
rounds.

The preemptive transition logic is realized in line 32
to 52. There are three possible cases that can happen in
each round: a new value change occurs (line 33 to 35),
the value is changed back to previous-value (line 37 to
45), or the value is changed further from the result of the
previous round (line 47 to 51). For all these cases, the
transient-value always follows the newly generated new-
value. Once a new value change is detected, the new-value
is inserted into the queue and an output is scheduled. If the
cell’s value is changed back to previous-value, i.e. there is
actually no value change if we consider the computation
up to the current round as a whole, the cell preempts the
result of the previous round by removing the previously

inserted element from the queue, and reschedules output
based on the present queue. On the other hand, if the cell’s
value is changed further, the cell preempts the previous re-
sult by replacing the element with a new one and resched-
ules output accordingly.

Figure 11 shows the new algorithms for the initializa-
tion and external transition (�ext) functions in Cell-DEVS
models with inertial delay. Again, the output (�) and in-
ternal transition (�int) functions are implemented as in [9].

In the initialization function, the cell’s future value f
is initialized to its initial value v, which is also copied
in f-record. Notice that the cell needs to explicitly make
a copy of its state, state-record, and the duration of the
state, delay-record. The other operations are the same
as in the initialization function for cells with transport
delay.

When the �ext is invoked, the cell detects time changes
and does the housekeeping operations at the beginning of
R0 for each simulation time in the manner of an atomic
model with transport delay. It records the current f for ref-
erence in the following rounds of state transitions at this
time. In addition, it copies the current state and the du-
ration of that state in state-record and delay-record, re-
spectively. The user-defined state variable and external
events are handled in the same way as in transport-delay
cells.

The preemption is done once a change in f is detected
(line 38) and the operations are carried out in two steps:
step one preempts the current state of the cell along with
its duration (line 39 to 53), and step two preempts the cur-
rent f of the cell (line 54). If the cell’s current state is
passive, the state preemption is carried out via the holdIn
function (line 40). This operation is common for both
preemption of events which occurred at different times
(i.e. later events preempt earlier events, referred to as
preemption-A) and preemption of events which occurred
at the same time but in different rounds of a transition
phase (i.e. events in a later round preempt those in previ-
ous rounds, referred to as preemption-B). If the cell’s cur-
rent state is active, it should be preempted differently de-
pending on whether the preemption occurs in preemption-
A or in preemption-B. The operations for preemption-A
(line 43 to 45) are defined by the semantics of the inertial
delay [3]. On the other hand, the cell’s f may or may not
be changed to the f-record during the following rounds in
preemption-B. If it is not changed to f-record (line 42),
the preemption logic is the same as in preemption-A. Oth-
erwise, the cell’s current state is recovered to the state-
record (line 47 to 51). Notice that the duration of the state
is also recovered to the delay-record (line 50). The recov-
ery can only occur in the multiple rounds of a transition
phase, as secured by the condition in line 46.
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Figure 10. Algorithms for the Initialization and �ext functions in Cell-DEVS models with transport delay
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Figure 11. Algorithms for the Initialization and �ext functions in Cell-DEVS models with inertial delay
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Figure 12. Using MPI Barrier to avoid rollbacks at virtual time 0 in PCD++

Figure 13. Code snippet for handling rollbacks at time 0 in the NC algorithm for (D, t)

6. Enhancements to PCD++ and Warped Kernel
Algorithms

Before the PCD++ simulator can be used to carry out op-
timistic simulations in parallel and distributed environ-
ments, it must be enhanced to address a variety of is-
sues. This section covers the essential enhancements to
the PCD++ and the WARPED kernel to ensure correct and
efficient execution of simulations.

6.1 Rollbacks at Virtual Time 0

During rollbacks, the state of a process is restored to a
previously saved copy with virtual time strictly less than
the rollback time. However, the problem of handling roll-
backs at virtual time 0 is left unsolved in the WARPED
kernel. If a process receives a straggler with timestamp
0, the state restoration will fail since no state with nega-
tive virtual time can be found in its state queue. There are
two different approaches to solving this problem. One is
to save a special state that has an artificial negative virtual
time at the head of each state queue, and let the process
bounce back from it using the standard rollback mech-
anism. The other is to synchronize the processes at an
appropriate stage with MPI Barriers so that no straggler
message with timestamp 0 will ever be received by any
process in the simulation.

The former approach is purely optimistic in the sense
that no explicit synchronization is used. However, there is
a performance hazard in this approach. The probability of
rollback echoes [5] increases significantly at virtual time
0. In this case, the processes in the system are forced to
restart execution from time 0 repeatedly, resulting in an

unstable situation where there is no progress in simulation
time as the simulation proceeds.

The second approach tries to avoid the problem alto-
gether using explicit synchronizations. In PCD++, the best
place to implement the MPI Barrier is after the collect
phase in WCTS-0, as illustrated in Figure 12.

The underlying assumption in this approach is that all
outgoing inter-LP communication happens only in the col-
lect phase before the corresponding transition phase at any
given virtual time. Hence, messages with timestamp 0 are
sent to remote LPs only in the collect phase of WCTS-0.
The LPs are synchronized by a MPI Barrier at the end of
this collect phase so that these messages can be received
by their destinations before the simulation time advances
beyond time 0. Therefore, no straggler with timestamp 0
will be received by any LP afterwards. Once the LPs exit
from the barrier, they can safely continue optimistic ex-
ecution based on the standard rollback mechanism. The
states saved for the events executed at virtual time zero
provide the necessary cushion for later rollbacks on the
processes. The cost of this approach is small, since the
length of the synchronized execution is trivial when com-
pared with the whole simulation.

The following pseudo-code snippet (Figure 13) is in-
serted between lines 2 and 3 in the NC algorithm for (D,
t) (Figure 5) to implement this approach, where synchro-
nizeLPs is a service function added to the warped kernel
to realize the MPI Barrier. The end of the collect phase in
WCTS-0 is detected by the NC using three conditions: (1)
the current simulation time is zero� (2) the value of sigma
(ta) in the received (D, t) is also zero� and (3) the current
next-message-type is *.

However, this approach also precludes simulation of
some DEVS models that allow the definition of closed
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Figure 14. UCSS structure with CSS and PSS strategies

feedback loops with transient states. That is, the output
port of a component is connected directly to an input port
of the same component or indirectly through other compo-
nents that have states with zero ta functions. In this case,
a LP may still receive straggler messages with timestamp
0 that are echoed back from other LPs after the MPI Bar-
rier, nullifying the above mechanism. Handling rollbacks
at virtual time 0 and, in general, optimistic simulations for
this type of DEVS models will be investigated further in
our future research.

6.2 User-Controlled State-Saving (UCSS)
Mechanism

In the WARPED kernel, the copy state-saving (CSS) strat-
egy is implemented using state managers of type State-
Manager which saves the state of a process after execut-
ing each event. The periodic state-saving (PSS) strategy is
realized using state managers of type InfreqStateManager
that only saves the state of a process infrequently every a
number of events. Simulator developers can choose to use
either type of state managers at compile time. Once se-
lected, all the processes will use the same type of state
managers throughout the simulation. This rigid mecha-
nism has two major disadvantages: (1) it ignores the fact
that simulator developers may have the knowledge as to
how to save states more efficiently to reduce the state-
saving overhead� and (2) it eliminates the possibility that
different processes may use different types of state man-
agers to fulfill their specific needs at runtime. To over-
come these limitations, we introduced a two-level user-
controlled state-saving (UCSS) mechanism in the kernel
so that simulator developers can utilize more flexible and
efficient state-saving strategies at runtime.

A flag called skip-state-saving is defined in each simu-
lation object. The kernel algorithm is modified so that the
CSS policy only takes effect when the flag is false. Oth-
erwise, no state is saved after executing the current event.
Instead, the flag is reset to false so that a new state-saving
decision can be made during the execution of the next
event. That is, the UCSS operates on an event-by-event
basis for each simulation object. When the PSS strategy

is used, an additional flag called do-state-saving with a
lower priority is defined in the InfreqStateManager asso-
ciated with each simulation object. The state-saving algo-
rithm is modified so that, if this flag is set to true by a
simulation object, the InfreqStateManager saves states af-
ter every event, as does the StateManager under the CSS
strategy. By default, both skip-state-saving and do-state-
saving are false. The structure of the UCSS mechanism is
shown in Figure 14.

A PCD++ processor can therefore make state-saving
decisions based on application-specific criteria by setting
the skip-state-saving flag at level zero. Further, it can dy-
namically switch between the CSS and PSS strategies by
virtue of the do-state-saving flag at level 1. Thus, the
UCSS mechanism virtually gives simulator developers the
full power to dynamically choose the best possible com-
bination of state-saving strategies at runtime.

6.3 Messaging Anomalies

In PCD++, the NC calculates the next simulation time
(min-time in Figure 5) based on the time of its NC Mes-
sage Bag. However, more lagging external messages with
timestamp less than the min-time may arrive after the cal-
culation, invalidating the previous computation result. In
this case, the NC’s speculative calculation of the min-time
leads to messaging anomalies that cannot be recovered by
the kernel rollback mechanism alone. Messaging anom-
alies will be detected when the control returns to the NC
in the transition phase at the next (wrong) simulation time.
Once found, the NC needs to perform cleanup operations
to restore the simulation to the status before the previ-
ous wrong computation. An example scenario is shown
in Figure 15, where the simulation on the LP involves
three PCD++ processors (the Simulator is labeled as S1).
The execution sequence of the messages is denoted by the
numbers in the diagram. Only the final portion of WCTS-
ta is illustrated.

Suppose that when the last done message (D1) is exe-
cuted by the NC at the end of WCTS-ta, there is no exter-
nal message in its NC Message Bag and the closest state
transition time carried in D1 is tb. Hence, the NC calcu-
lates the min-time as tb, and sends a collect message (@5)
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Figure 15. Example scenario of messaging anomalies

with send time ta and receive time tb to the FC, initiat-
ing WCTS-tb on the LP. Meanwhile, more lagging exter-
nal messages (x2, x3, x4 and x6) with timestamp less than
tb arrive at the NC, invalidating the previously computed
min-time tb. Thus, the linking messages between WCTS-
ta and WCTS-tb (e.g. @5) are proven to be false mes-
sages. During the execution of D17 at the end of R0 in
WCTS-tb, the NC calculates the min-time again, based on
its present NC Message Bag which now contains the lag-
ging external messages. The resulting min-time is ta, the
timestamp of x2. Hence, the NC sends an external mes-
sage (x18) with send time tb and receive time ta (tb � ta)
to the FC. Since x18 is a straggler message for the FC,
rollbacks propagate from the FC to the other processors
immediately. Nonetheless, these rollbacks violate two as-
sumptions made by the WARPED kernel. (1) The rollback
at the FC is triggered by an abnormal straggler message
(x18) with a send time greater than its receive time. Since
the events are ordered by their send time in the output
queues, this abnormal straggler message is misplaced in
the NC’s output queue, resulting in causality errors and
runtime crash later on during the simulation. (2) The roll-
backs occur right in the middle of executing the done mes-
sage (D17) by the NC. Therefore, the rollbacks are not
transparent to the NC anymore.

Messaging anomalies can be classified into two cate-
gories. (1) In Figure 16(a), if there are lagging external
messages with timestamp ta, e.g. x(ta), inserted into the
NC Message Bag, the abnormal straggler message sent to
the FC will have a timestamp of ta. Hence, the proces-
sors are rolled back to the end of WCTS-tpre, the WCTS
before WCTS-ta. In this case, all the lagging external mes-
sages are removed from the NC Message Bag and no er-
roneous data is left in the state queues. This type of mes-
saging anomalies is referred to as anomaly with empty NC
Message Bag. (2) In Figure 16(b), if no lagging external
message with timestamp ta has arrived at the NC, the ab-
normal straggler message will have a timestamp of t1 (t1
� ta). Hence, the processors are rolled back to the end of
WCTS-ta, and the lagging external messages remain in the

NC Message Bag after the kernel rollbacks. This type of
messaging anomaly is referred to as anomaly with non-
empty NC Message Bag.

Figure 17 shows the cleanup operations for anomalies
with empty NC Message Bag. First, the abnormal strag-
gler message is removed from both the NC’s output queue
and the FC’s input queue. A new function, removeStrag-
glerEvent, is defined in the kernel for removing the pos-
itive straggler from the input queue. Secondly, the state-
saving operation is skipped after processing the current
done message (e.g. D17 in Figure 15). This is achieved by
virtue of the UCSS mechanism (line 4).

The simplified cleanup operations for anomalies with
non-empty NC Message Bag are given in Figure 18. The
abnormal straggler is removed from both the NC’s out-
put queue and the FC’s input queue (line 2 to 3). The
false messages are identified (line 4). The undue exter-
nal events sent along with the false messages, if any, are
unprocessed (line 5 to 8). The false messages are removed
from the queues with the abnormal straggler (line 9 and
10). The state saved at the end of WCTS-ta is removed
from the NC’s state queue to erase the incorrect data con-
tained in that state (line 11 and 12). A flag called break-
point is introduced in the kernel abstract state definition
to allow tracing of the occurrence of previous messaging
anomalies in future rollbacks. The NC sets the breakpoint
flag to true to leave a tag in its state queue (line 14). Then,
the external messages with time t1 are resent to the FC
(line 15 to 18) with the correct send and receive time. The
lagging external messages with timestamp greater than t1
are removed from the NC Message Bag and unprocessed
in the input queue (line 18 to 23). These messages will
be reprocessed when their virtual time comes. Finally, the
NC sends a (*, t) to the FC to initiate a new WCTS-t1 on
the LP (line 24).

The enhanced NC algorithm for (D, t) combines the
logic for normal execution (Figure 5) with the algorithms
for handling rollbacks at time 0 (Figure 13) and both types
of messaging anomalies (Figure 17 and Figure 18).
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Figure 16. Two types of messaging anomalies in PCD++

Figure 17. NC algorithm for handling anomaly with empty NC Message Bag

7. PCD++ Optimizations

Various optimization strategies have been integrated into
the PCD++ simulator. In this section, we discuss two opti-
mizations that are specifically implemented for PCD++,
including a risk-free message type-based state-saving
(MTSS) strategy to reduce the number of states saved dur-
ing the simulation, and a one log file per node strategy to
break the bottleneck caused by file I/O operations.

7.1 Message Type-based State Saving (MTSS)

During rollbacks, the state of a PCD++ processor is al-
ways restored to the last state saved at the end of a WCTS

with virtual time strictly less than the present rollback
time. Hence, it is sufficient for a processor to save its state
only after processing the last event in each WCTS for roll-
back purposes. The state-saving operation can be safely
skipped after executing all the other events. The last event
in a WCTS is processed at the end of Rn in the transition
phase. Although the actual number of rounds in a tran-
sition phase cannot be determined with certainty, we can
at least identify the type of the messages executed at the
end of the transition phases by a given processor. For the
NC and FC, it must be a (D, t) and for the Simulators, it
should be a (*, t). Therefore, PCD++ processors need to
save states only after processing these particular types of
messages. Since the Root only processes output messages,
it still saves state for each event. The resultant state-saving
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Figure 18. NC algorithm for anomalies with non-empty NC Message Bag (simplified)

strategy is referred to as message type-based state-saving
(MTSS), a specific type of UCSS for the PCD++ toolkit.
Considering that there are a large number of messages ex-
ecuted in each WCTS, and that they are dominated by ex-
ternal and output messages, MTSS can significantly re-
duce the number of states saved during the simulation
when compared to the original CSS strategy. Further, the
rollback overhead is also reduced as fewer states need to
be removed from the state queues during rollback oper-
ations. Unlike the PSS strategy, MTSS is risk-free in the
sense that there is no penalty for saving fewer states.

The MTSS strategy can be easily implemented using
the UCSS mechanism. A PCD++ processor simply sets
the skip-state-saving flag to true in all but the algorithm
for the required type of messages. For example, a Simula-
tor will set the flag to true in its algorithms for (I, t), (@,
t), and (x, t). This flag is left untouched with value false in
its algorithm for (*, t) since the Simulator should save its
state after processing such type of messages.

7.2 One Log File per Node

Previously, one log file is created for each PCD++ proces-
sor to log the received messages in a human readable for-
mat. Depending on the size of the model, this can con-
sume many file descriptors. In addition, creating these

files and transferring data to them constitute a large op-
erational overhead, especially when the files are accessed
via a Network File System (NFS) during the simulation.
When considering the overhead in Time Warp optimistic
simulations, the cost is prohibitive since one file queue is
maintained in the kernel for each of these files and all the
file queues participate in rollback operations.

To reduce the overhead of file I/O operations, a new
optimization strategy referred to as one log file per node
is implemented in the toolkit. Based on this strategy, only
one log file is created for the NC on each node. The NC’s
file queue is shared among all the processors on that node.
Messages received by the NC itself are logged directly in
the NC’s file queue, while the other processors on that
node must first get a reference to the local NC (which can
be done in constant time) and then log their received mes-
sages into the NC’s file queue.

There are several advantages associated with the one
log file per node strategy. (1) The required number of file
descriptors for logging purposes is upper-bounded by the
number of machines used in the simulation, rather than in-
creasing linearly with the size of the model. (2) The sim-
ulation bootstrap time is reduced considerably due to the
dramatic decrease in the number of files opened in this
process. (3) The kernel rollback operations are accelerated
since only one operation is needed to restore the single
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Figure 19. Execution and bootstrap time before and after one log file per node strategy on 1 and 4 nodes

file queue maintained in the kernel. (4) The communica-
tion overhead is reduced since the data concentrated in a
single file queue is flushed to the physical file in bigger
chunks, and less frequently, over the network.

8. Experimentation Results

Our experiments were conducted on a HP PROLIANT DL
Server, a cluster of 32 compute nodes (dual 3.2 GHz In-
tel Xeon processors, 1 GB PC2100 266 MHz DDR RAM)
running Linux WS 2.4.21 interconnected through Giga-
bit Ethernet and communicating over MPICH 1.2.6. The
Cell-DEVS models tested in our experiments include a
model for forest fire propagation [19] based on Rother-
mel’s mathematical definition [20] and a 3-D watershed
model representing a hydrology system originally pre-
sented by Moon et al. [21] and enhanced by Ameghino
et al. [19]. The following simulation results are averaged
over 10 independent runs.

We use two different speedups in our analysis. The
overall speedup is calculated from the total execution time
that reflects how much faster the simulation runs on mul-
tiple machines than it does on a single machine, as per-
ceived by the users. The algorithm speedup is calculated
from the actual running time (i.e. without considering the
simulation bootstrap time) that is used to assess the per-
formance gain attributed to the parallel algorithms alone.

8.1 Effect of One Log File per Node

The performance improvement derived from the one log
file per node strategy is tested using the fire propagation
model of 900 cells arranged in a 30	 30 mesh. The model
was executed on 1 and 4 nodes with and without using the
strategy to simulate the behavior of forest fire during a
period of 5 hours. Results are depicted in Figure 19.

Notice that the bootstrap time is even greater than the
actual running time when the strategy is turned off. This
clearly indicates that the bootstrap operation is a bottle-
neck in the simulation. When the strategy is turned on,
the bootstrap time is reduced by 99.1% on 1 node and
by 96.47% on 4 nodes. Further, the running time is de-
creased by 72.08% on 1 node and by 73.02% on 4 nodes
due to more efficient communication, I/O and rollback op-
erations.

The CPU usage monitored in our experiments also sug-
gests that the file I/O operation is a major barrier in the
bootstrap phase. As shown in Figure 20, the CPU is uti-
lized much more efficiently with the one log file per node
strategy. A similar pattern was observed in simulations
running on multiple nodes.

8.2 Effect of MTSS

The same fire propagation model is used to test the effect
of MTSS strategy. The model was executed on 1 and 4
nodes (respectively) with and without the MTSS strategy
(respectively)� results are depicted in Figure 21.

Due to the MTSS strategy, the number of states saved
during the simulation is reduced by 49.29% and 47.74%
on 1 and 4 nodes, respectively. Accordingly, the time
spent on state-saving operations is decreased by 29.9%
and 27.76%.

The corresponding running time and bootstrap times
are shown in Figure 22. While the bootstrap time remains
nearly unchanged in both cases, the actual running time is
reduced by 17.64% and 7.63% on 1 and 4 nodes, respec-
tively, because fewer states are saved in the state queues
and, potentially, removed from the queues during roll-
backs.

Figure 23 shows the time-weighted average and max-
imum memory consumption with and without the strat-
egy for the fire propagation model on 1 and 4 nodes. The
average memory consumption declines by 26% in both
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Figure 20. CPU usage before and after one log file per node strategy on 1 node

Figure 21. Number of saved states and state-saving time before and after MTSS strategy on 1 and 4 nodes

Figure 22. Running and bootstrap time before and after MTSS strategy on 1 and 4 nodes
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Figure 23. Average and maximum memory consumption before and after MTSS strategy

Figure 24. Comparison between optimistic and conservative simulators using the fire model

cases, while the peak memory consumption decreases by
25.13% and 27.44% on 1 and 4 nodes, respectively.

8.3 Performance of the PCD++ Toolkit

The key metrics for evaluating the performance of the
PCD++ simulator are the execution time and speedup.
Both the one log file per node and MTSS strategies were
applied to the simulator in the following experiments. For
all the Cell-DEVS models, a simple partition strategy was
used that evenly divides the cell space into horizontal rec-
tangles. First, the fire propagation model was tested using
different sizes of cell spaces: 20	 20 (400 cells), 25	 25
(625 cells), 30 	 30 (900 cells) and 35 	 35 (1225 cells).

Figure 24 shows a comparison between the PCD++ op-
timistic simulator and the previous conservative simulator
[9] for different model sizes on a set of compute nodes. In
all cases, the optimistic simulator markedly outperforms
the conservative simulator. The total execution time and
running time of the fire model with different sizes, exe-
cuted on 1 up to 4 nodes, is listed in Table 1.

For any given number of nodes, the execution time al-
ways increases with the size of the model. Moreover, the
execution time rises less steeply when more nodes are
used in the simulation. For example, as the model size
increases from 400 to 1225 cells, the execution time in-
creases sharply by nearly 280% (from 2.0733 to 7.8702 s)
on 1 node, whereas it merely rises by 98% (from 1.9254 to
3.8138 s) on 4 nodes. On the other hand, for a fixed model
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Figure 25. Overall and algorithm speedups for fire model of various sizes on a set of nodes

Table 1. Execution time and running time for fire model of various sizes on a set of nodes

Total execution time (sec) Running time (sec)
Number of nodes 20	20 25	25 30	30 35	35 Number of nodes 20	20 25	25 30	30 35	35

1 2.0733 3.2949 5.0442 7.8702 1 1.9515 3.1273 4.3566 7.6428
2 1.9719 2.7959 3.5232 4.7138 2 1.4232 2.1225 2.8838 3.9952
3 1.8787 2.5237 3.1573 3.9667 3 1.3574 1.8953 2.5237 3.2959
4 1.9254 2.6091 3.0922 3.8138 4 1.4296 1.8656 2.3314 3.0224

size, the execution time tends to (but not always) decrease
when more nodes are utilized. The execution time for the
20 	 20 model decreases from 2.0733 to 1.8787 s when
the number of nodes climbs from 1 to 3. However, when
the number of nodes increases further, the downward trend
in execution time is reversed. It increases slightly from
1.8787 to 1.9254 s as the number of nodes rises from 3
to 4. When a model, especially a small one, is partitioned
onto more and more nodes, the increasing overhead in-
volved in inter-LP communication and potential rollbacks
may eventually degrade the performance. Hence, a trade-
off between the benefits of a higher degree of parallelism
and the concomitant overhead costs needs to be reached
when we consider different partition strategies.

From the table, we can also find that better perfor-
mance can be achieved on a larger number of nodes as
the model size increases. The shortest execution time is
achieved on 3 nodes for the 20 	 20 and 25 	 25 mod-
els, while it is obtained on 4 nodes for the other two larger
models. It is clear that we should use more nodes to sim-
ulate larger and more complex models where intensive
computation is the dominant factor in determining the sys-
tem performance.

Using the execution and running time, we can calculate
the overall and algorithm speedups, as shown in Figure 25.
As we can see, higher speedups can be obtained with
larger models. In addition, the algorithm speedup is al-
ways higher than its counterpart overall speedup, evidence
showing that the Time Warp optimistic algorithms are ma-
jor contributors to the overall performance improvement.

A more computation-intensive 3-D watershed model of
size 15 	 15 	 2 (450 cells) was tested to evaluate the
performance of PCD++ for simulating models of com-
plex physical system. Table 2 shows the resulting total
execution time and running time. The best performance
is achieved on 5 nodes with execution and running time of
6.1538 and 5.6743 s, respectively.

The speedups are illustrated in Figure 26. The best
overall and algorithm speedups are 2.7306 and 2.9373, re-
spectively, higher than those obtained with the fire mod-
els.

9. Conclusion

This work tackles the problem of executing DEVS and
Cell-DEVS models in parallel and distributed environ-
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Figure 26. Overall and algorithm speedups for the 15 	 15 	 2 watershed model

Table 2. Execution time and running time for the 15	 15	 2 watershed model on a set of nodes

Number of nodes 1 2 3 4 5
Total execution time (sec) 16.8036 11.7930 8.3285 7.3205 6.1538
Running time (sec) 16.6668 11.1522 7.7191 6.8140 5.6743

ments based on the Time Warp synchronization protocol.
A new extension to the CD++ toolkit, PCD++, was devel-
oped in our research to meet the need for faster and more
efficient simulation of complex models. The algorithms
for the PCD++ processors and Cell-DEVS models with
transport and inertial delays were redesigned to address
the need of distributed optimistic simulation. The simula-
tion process on each LP was abstracted using the notion of
WCTS, which greatly simplifies the task of analyzing the
complex message exchanges between the PCD++ proces-
sors involved in the simulation. A two-level UCSS mecha-
nism was proposed so that simulator developers can utilize
more flexible and efficient state-saving techniques during
the simulation. Mechanisms were provided to handle var-
ious issues in optimistic simulations such as rollbacks at
virtual time 0 and messaging anomalies. Several optimiza-
tion strategies were implemented in PCD++ such as the
MTSS strategy and the one log file per node strategy. We
showed that PCD++ simulator markedly outperforms the
conservative simulator in all testing scenarios. Consider-
able speedups were observed in our experiments, indicat-
ing the optimistic simulator is well suited for simulating
large and complex models.
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