

 Abstract— CD++ is a toolkit developed to execute dis-
crete event simulations following the DEVS and Cell-
DEVS formalisms. Three different versions of CD++ were
developed to support different platforms: the stand-alone
version runs on workstations, a real-time version runs on
embedded platforms, and the parallel version is capable of
running on clustered computers. Web service technologies
have emerged in recent years to establish new platform for
application deployment. We present a way of developing a
web-service wrapper to expose the functionality of the
CD++ toolkit as a web-service, allowing clients to interact
with the toolkit through SOAP messages. In addition, we
present a proposed architectural view of how web services
can be used to integrate different versions of the CD++
toolkit to be able to run distributed simulations.

Terms— DEVS, Cell-DEVS, CD++, Web Services.

I. INTRODUCTION

EVS is a mathematically sound formalism for modeling
and simulating discrete event systems where the system of
interest has discrete state at any point of time [1]. It de-

pends on splitting the model into components, called atomic
DEVS models. Coupled DEVS models can be realized by in-
tegrating group of DEVS (atomic and coupled) models. The
coupling scheme determines the interconnectivity between the
models, as well as the relation with the external world. Cell-
DEVS [2] is a formalism used to model systems that can be
split into cells. It is an extension to the traditional cellular
automata allowing for executing the cells asynchronously with
different time delays.

 CD++ [3] is a modeling and simulation toolkit built to exe-
cute DEVS and Cell-DEVS models. Different versions of
CD++ were developed to support different platforms. The
standalone version works on Unix/Linux and Windows plat-
forms. The real-time version [4] works on specialized hard-
ware and interacts with the environment to perform real time
simulations. The parallel version of CD++ [5] works on dis-
tributed memory clusters to execute complex models that
would take long time to run on the stand alone version.

This work stems from the need to provide a robust platform
to integrate CD++ with other systems (visualization, remote
session management, network resources, etc) in a collaborative
environment in order to provide a user-friendly interface.

Rami Madhoun, Bo Feng and Gabriel Wainer are in the Department of

Systems and Computer Engineering, Carleton University, Ottawa, ON,
CANADA, K1S-5B6 (email: gwainer@sce.carleton.ca).

Web service technologies have emerged in recent years to

establish new platform for application deployment. It depends
on using standard specifications and languages in order to pro-
vide machine-consumable services, as opposed to applications
consumed by humans, i.e. web applications. In this paper, we
present a way of developing a web-service wrapper to expose
the functionality of the CD++ toolkit as web-service, allowing
clients to interact with the toolkit through SOAP messages. In
addition, we present a proposed architectural view of how web
services can be used to integrate different versions of the
CD++ toolkit to be able to run distributed simulations.

II. WEB SERVICE-BASED CD++

 Web service technologies rely on standard languages and
specifications, which has led to a wide acceptance among pro-
grammers and IT professionals. A web service differs from
traditional web applications in that it can be accessed “con-
sumed” by another web service/application, dispensing with
the need for human interaction required with traditional web
pages/applications. In addition, it provides platform independ-
ence. The main tools and technologies that have enabled web
services can be listed as follows:
• XML [6]: a flexible language used to represent data in

machine understandable form. Its semantics is flexible
enough to allow the programmer to define the document
structure according to the application requirements.

• WSDL [7]: an XML-based language to define and de-
scribe the public interface of the service. It contains in-
formation for the client to consume the web service.

• WSDD: an XML-based language to define different de-
ployment parameters necessary to deploy the web service.

• UDDI [8]: an XML-based language used to register and
query the web service (using UDDI registries).

• XML-Schema [9]: an XML-based language used to define
custom data structures within an XML document.

• X-Path [10]: it is an XML-based language used to find
different elements within an XML document.

• SOAP [11]: a messaging protocol designed to carry in-
formation between different web services. A SOAP mes-
sage consists of an envelope which has an optional header
and a mandatory body.

In the context of our modeling and simulation environment,
web services are used to achieve two main objectives:
• To expose the functionality of the CD++ toolkit as a web

service, allowing for executing simulations and retrieving
the results through web service technologies.

On the Creation of Distributed Simulation Web-
Services in CD++
Rami Madhoun, Bo Feng, Gabriel Wainer,

D

• To use web service technologies, such as SOAP messing,
to introduce a mechanism for integrating the different ver-
sions of CD++ in a distributed environment.

III. WEB SERVICE-BASED CD++

 The CD++ toolkit is capable of executing two kinds of mod-
els, DEVS and Cell-DEVS. To execute DEVS models, the
modeler needs to define each atomic DEVS model as a C++
class that is to be integrated in the class hierarchy of CD++.
For coupled DEVS models, and Cell-DEVS models, the mod-
eler needs to provide a configuration file in a text format. The
configuration file includes (among other things) the coupling
scheme for the coupled model, initial values for the cells, rule
definition to calculate the state of the cells, etc. In regular in-
vocation of CD++, the user submits the model definition and
configuration files to the simulator as arguments. Once the
simulation is over, results are written in an output file (if the
top level coupled model has output port(s), and log file(s) that
is/are used to show and animate the progress of the simulation
(using the tools included in the CD++ toolkit). In addition,
there are some additional files used for debugging, generated
only upon request. In order to integrate the web service tech-
nologies in the CD++ toolkit, a web service wrapper was de-
veloped to interact with the CD++ toolkit and wrap its func-
tionality to be accessed by web service clients.

Java Native Interface (JNI) [12] was used to establish the
interface between the two parts of the wrapper. JNI is a collec-
tion of APIs and is part of the Java Virtual Machine (JVM)
developed by Sun. It allows Java programs to access functions
written in native C/C++ code. In addition, it allows programs
written in C/C++ to execute and access Java objects.

Fig. 1. Components of the web service wrapper

The wrapper functions as a web service interface for the CD++
toolkit that allows the client to:
• Receive the required files to define the model and execute

the simulation. These files include: C++ (for DEVS
atomic models), coupled model and external inputs.

• Execute the simulation providing the client with the op-
tion to check the progress of and terminate the simulation.

• Send the simulation results to the client, including simula-
tion log files or debug information.

We used Apache Axis [13], an open source SOAP engine
with HTTP server functionality, which can run as a web appli-
cation within an application server (in our case, Tomcat appli-
cation server [14]). The following figure shows a typical inter-
action between a WS client and CD++ through SOAP.

Fig. 2. A typical invocation of the CD++ web service

In order to use the CD++ web service, the client needs to
have access to the WSDL document defining the service inter-
face. Then, the client can choose either to generate client-side
stubs (in which case he/she can deal with the functions offered
by as local methods), or dynamically invoke the service meth-
ods through dynamic creation of SOAP messages. The WSDL
document consists of five main elements; some of them are
used to define an abstract service/process, while others define
a concrete service/process. The abstract service description
involves describing the interface of the service in terms of the
parameters used and return values. On the other hand, the con-
crete web service description describes the actual binding of
the web service to an actual network protocol (SOAP mes-
sages are usually transported over HTTP, because it is one of
the most widely used protocols on the Internet). The following
figure shows an excerpt of each of the main elements of the
WSDL document defining the CD++ web service interface.

<wsdl:message name="setDEVSModelRequest">
<wsdl:part name="in0" type="soapenc:string" />
<wsdl:part name="in1"type="apachesoap:DataHandler"/>
<wsdl:part name="in2" type="soapenc:string" />
<wsdl:part name="in3"type="apachesoap:DataHandler"/>
</wsdl:message>
<wsdl:message name="setDEVSModelResponse">
 <wsdl:part name="setDEVSModelReturn"
 type="soapenc:string" />

Fig. 3. Excerpt of the message element definition

WSDL type elements define non-standard attributes of the
messages exchanged between the web service and client. The
message element defines request and response SOAP mes-
sages. In Fig. 3, setDEVSModel takes four arguments (through
the message setDEVSModelRequest): the name of the header
file for the class, a DataHandler representing the file (sent as a
SOAP attachment), a C++ file including the DEVS class im-
plementation, and a DataHandler object representing the C++
file. DataHandler is “a class that provides a consistent inter-
face to data available in many different sources and formats”
[15], in our case, the DataHandler represents a file serialized
by the Axis server into a SOAP attachment, and deserialized to
a file on the other end of the transport process. setDEVS-
ModelResponse represents the return type of setDEVSModel
(a string stating whether the operation was successful or not).

<wsdl:portType name="SimulationPortType">
 <wsdl:operation name="setDEVSModel"
 parameterOrder="in0 in1 in2 in3">
 <wsdl:input message="impl:setDEVSModelRequest"
 name="setDEVSModelRequest" />
 <wsdl:output message="impl:setDEVSModelResponse"
 name="setDEVSModelResponse" />
</wsdl:operation>
Fig. 4. Excerpt of the portType element definition

The portType element defines a collection of operations,
each having an input and output. In this case, the input is the
setDEVSModelRequest message and the output is the set-
DEVSModelResponse message. portType is analogous to the
Interface concept in the Java programming language.

<wsdl:binding name="SimulationServiceSoapBinding"

type="impl:SimulationPortType">
<wsdlsoap:binding style="rpc" transport =

"http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="setDEVSModel">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="setDEVSModelRequest">
<wsdlsoap:body encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/" name-
space="http://www.sce.carleton.ca/ARS/SimulationService"
use="encoded" />
</wsdl:input>
<wsdl:output name="setDEVSModelResponse">
 <wsdlsoap:body encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/" name-
space="http://www.sce.carleton.ca/ARS/SimulationService"
use="encoded" />

Fig. 5. Excerpt of the binding element definition

Binding defines the binding of the web service messages to
an actual protocol (HTTP or SMTP). In addition, it defines the
encoding style (RPC/message) and type (encoded/literal).

<wsdl:service name="SimulationPortTypeService">
<wsdl:port binding="impl: SimulationServiceSoapBinding"
name= "SimulationService">
<wsdlsoap:address location= "http:
//localhost:8080/axis/Service/SimulationService"/>

Fig. 6. Excerpt of the service element definition

The service element groups a number of ports together.
Each port links a binding type to a specific Uniform Resource
Identifier (URI) used to access the service. The operations of-
fered by the CD++ web service are:
• authenticate: it is responsible for authenticating users and

initializing a new session for each successful login.
• setMAFile: it is used to set the model definition file.
• setDEVSModel: it is used to set a DEVS model by C++

header and implementation files.
• setEventFile: set the external input events file.
• setSupportFile: set support files that need to be available

to the simulator, such as a file containing the initial values
of the cells (in case of Cell-DEVS models).

• setExecutionTime: set the simulation end time.
• enableParsingInfo: informs the simulator to generate in-

formation for debugging the Cell-DEVS model.
• startSimulationService: it starts the simulation.
• isSimRunning: check whether the simulation is running.
• getCurrentSimulationTime: checks the current simulation

time.
• insertExternalEvent: it is used to insert external events to

the model while the simulation is running.
• killSimulation: it is used to terminate the simulation.
• retreiveLogFile: it is used to retrieve the log file gener-

ated by the simulator.
• retreiveOutputFile: it is used to retrieve the output file

generated by the simulator.
• retrieveParsingInfoFile: retrieves the generated informa-

tion file that can be used to debug Cell-DEVS models.

• retrieveSessionLogFile: retrieves the session log file
which includes the output messages generated by the
simulator while running.

• logoff: logs the current user off and terminate the session.

IV. IMPLEMENTATION DETAILS

JVM cannot load the same native shared library more than
once during the lifetime of the class loader used to load the li-
brary. In addition, the same library cannot be loaded by two
different class loaders. This restriction was imposed on the
JVM as of Java 1.2 to avoid class name conflicts [12]. Consid-
ering these issues, the wrapper designed to avoid the limita-
tions of the JVM and provide a robust environment for running
different simulation sessions concurrently and independently.
The wrapper was designed to overcome these limitations with
two goals in mind:
• Providing a separate running workspace for each simula-

tion session.
• Making the part of the wrapper responsible for accessing

the internal data structures of the simulator a shared li-
brary, which should be able to handle all active sessions.

Fig. 7. CD++ wrapper using JNI and message queues

Once the Axis server is started, the CD++ wrapper is loaded
and is ready to receive new user connections. Once the user
invokes the static method authenticate, his/her credentials are
verified against a password file stored locally on the server. If
the authentication is successful, a new instance of the wrapper
is created, and the following steps are performed:
• A new session ID is created and assigned to the user.
• A new directory is created on the server to provide work-

ing space for the new session. The source files of the
simulator are copied to the new session folder.

• The wrapper invokes a method in the proxy to initialize a
new session. This proxy is responsible for the communica-
tions between the wrapper instance and the wrapper of the
corresponding CD++ session. The proxy is implemented
as a shared library and is loaded only once during the life-
time of the Axis server, avoiding the constraint of JVM.

• The proxy creates two message queues, one to send mes-
sages from the wrapper to the corresponding CD++ ses-
sions, and the other to receive CD++ messages.

• After initialization at the point of authentication, the user
can set the different files and parameters for the model.

• If the user chooses to set DEVS models by sending C++
files, the wrapper will update the makefile (used to com-
pile the simulator and the models) to incorporate the
newly added models. In addition, the source code of the
simulator is updated to register the new DEVS models.

• When the user starts the simulation, if there is at least one
DEVS model, the wrapper will compile the source code of
the simulator with the newly added models.

• On CD++, two additional parameters are provided: the
full path of the session directory, and the session ID.

• Once the user invokes the startSimulationService, CD++
will invoke a method to initialize the session through the
wrapper. CD++ will use the full path of the session to
query the kernel for the message queues created by the
wrapper proxy. These queues are used to communicate
with the wrapper instance associated with the current
simulation session, as follows:

 Fig. 8. Message queues for CD++ wrapper proxy

For each session there are two Java and two Linux-POSIX
threads. One Java thread executes CD++ and streams its
output into the sessions log file; the other is responsible
for responding to the client requests while the simulation
is running such as getting the current simulation time, in-
serting external events, etc. On the CD++ side, one thread
runs the main simulator, and the other monitors the mes-
sage queues for an incoming message from the wrapper.

• Once the simulation is over, the user can get the log and
output files generated by the simulator.

V. DEFINING CD++ WEB-SERVICE WITH J2EE

 We have followed a similar approach using the J2EE platform
to provide the server side and client side support for develop-
ing the web services. J2EE consists of technologies that sup-
port the development of distributed enterprise applications and
services. These technologies fall into three broad categories:
components, service and communication [16].
• Component Technologies: used by to create the essential

parts of a web service. Client components provide support
for different types of clients to interact with components
on the server side. Web components provide a response to
requests received via HTTP. Enterprise JavaBeans com-
ponents are designed for business logic. Using these com-
ponent technologies ensures standardization of the appli-
cation or service, enabling reusability and portability.

• Service Technologies: support the J2EE container to func-
tion properly. Among the required services, we can in-
clude naming, deployment, transaction and security.

• Communication Technologies: J2EE requires a set of
standard communication mechanisms to bring the compo-
nents and services together, including Internet protocols
(TCP/IP, HTTP, SSL), Remote Method Invocation (RMI)
protocols, Messaging and web service technologies.

These technologies offer different benefits: they simplify ar-
chitecture and development, ensure support for emerging web
service standards, allows integration with existing information
systems, and it is scalable. Fig. 9 shows the definition of the
CD++ web service architecture in J2EE platform.

Fig. 9. CD++ web service Architecture

CD++ (Client application) invokes methods on generated
stubs based on the contents of a WSDL description of a ser-
vice. These stubs are configured with information about the
CD++ web service and its endpoint. The stubs invoke remote
methods available in the CD++ web service endpoint. In J2EE,
the CD++ web service is described as a set of communication
endpoints capable of exchanging messages. An endpoint is
made of two parts: the abstract definition of operations (and
messages); and the concrete binding of those abstract defini-
tions to a concrete protocol (SOAP over HTTP with a message
format). The idea of this separation is to allow the reuse of ab-
stract definitions regardless of the present or future network
protocols. The compiler generates the stubs for the client and
the skeleton code for the server side. JAX-RPC (Java API for
XML-based RPC) is a runtime library that provides services
for JAX-RPC mechanisms and APIs. Besides invoking a web
service, WSDL can be used to discover a web service through
service registries. If a web service is described by its WSDL, a
potential client can read the description, decide whether the
service meets his needs, and invoke the service automatically.

The following WSDL segment is used:
<message name="runMakeFileResponse">
<part name="parameters" element="tns:runMakeFileResponse"/>
</message>
<portType name="GenerateMakeFile">
 <operation name="runMakeFile">
 <input message="tns:runMakeFile"/>
 <output message="tns:runMakeFileResponse"/>
 </operation>
</portType>
<binding name="GenerateMakeFilePortBinding"
 type="tns:GenerateMakeFile">
<soap:binding transport=
 "http://schemas.xmlsoap.org/soap/http" style="document"/>

 <operation name="runMakeFile">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>

In our case, GenerateMakeFile is a web service containing
the runMakeFile function. The WSDL document specifies the
binding of a port type (which is a collection of abstract opera-
tions), to a concrete transport protocol and data format. There-
fore, our port type is bound to SOAP/HTTP as the communica-
tion protocol. SOAP can support either document style or RPC
style (we used the document style). The runMakeFile is for
DEVS model and it generates Dependencies Files, creates new
Makefiles, run them and generates a simulator.

Fig. 10 illustrates this process. We use FTP to upload
DEVS models to a CD++ server; then, we invoke the Gener-
ateMakeFile web service. Once the service is running, run-
MakeFile will execute the above procedures step by step and
finally generate a simulator including the new model.

Fig. 10. The runMakeFile function

A different web service we created is SimuModel, which is
used to execute the model simulators as follows:

Fig. 11. The execSimu function

J2EE also provides API to create web service clients. For
example, we can create a Java application with NetBeans, and
then add a web service by specifying WSDL URL, finally con-
sumes the web service. Client applications follow certain steps
to use a web service. They must first lookup or locate the ser-
vice, make a call to the service, and process any returned data.
Client applications that run in J2EE environments use the
JNDI InitialContext.lookup method to locate a service, and to
use the javax.xml.rpc Service interface API to access the web
service. Fig. 12 shows the generics of a Java application
named JavaCdppClient. The application has two web service
references (GenerateMakeFileService and SimuModelSer-
vice) that bind each port to an associated function. For this
case, runMakeFile and execSimu functions are used. The
CD++ web client can invoke these functions as if they were lo-
cal functions. Web, EJB, and J2EE application client module
deployment descriptors use service references to locate the
JAX-RPC mapping files as well as the service’s WSDL file.

Fig. 12. The CD++ web service on J2EE platform

The service reference element maps a service to a JNDI re-
source name and also specifies the service endpoint interface
for those clients using stubs and dynamic proxies. It also speci-
fies the WSDL file for the service and the qualified name for
the service in the WSDL file. The JAX-RPC mapping file
specifies the package name containing the generated runtime
classes and defines the namespace URI for the service.

Figure 13 shows the interface of CD++ web service client. The
application can connect to the CD++ web server, download or upload
files, compile and simulate DEVS and Cell-DEVS models.

 Fig. 13. CD++ client application

VI. CONCLUSION

We have presented a mechanism for web-service wrappers to
expose the functionality of the CD++ toolkit as a web service,
allowing clients to interact with the toolkit through SOAP
messages. CD++ is a toolkit developed to execute discrete
event simulations following the DEVS (Discrete Event System
Specification) and Cell-DEVS formalisms.

In order to introduce the web service capabilities to the CD++
toolkit, two approaches were described. The first one depends
on developing the simulation service as two main components
(C++ and Java) interfaced together through the WrapperProxy.
The advantage of this approach is that C++ and Java were used
were they fit the best. C++ is fast and well-integrated with the
original CD++ code, and Java is well-supported by web ser-
vice middleware. The other approach depends on using J2EE
platform in order to expose the functionality using web ser-
vices, as shown in the following figure.

Fig. 18. CD++ Middleware

J2EE can be used to develop web service clients using EJB
components, which may themselves be service endpoints as
well as clients for other web services. So it is possible to create
CD++ middleware with J2EE API. We can integrate various
CD++ web services in the middleware and provide high per-
formance for the CD++ clients.

The web service functionality of the CD++ service has two
main applications. The first application is it allows for devel-
oping a distributed simulation engine to execute complex
models in a heterogeneous environment. The other application
is a collaborative system that integrates the simulation capa-

bilities of CD++ with visualization capabilities, network man-
agement, and resource management resources, as shown in
Figure 19.

Fig. 14. Parallel simulation and visualization environment
based on web-service CD++

In the latter application, the user has a friendly interface to
submit the model for execution using SOAP (and its exten-
sions) to the CD++ service and then examine the simulation
progress through high-end visualization of the model compo-
nents. This will dispense the user with the need to examine the
details of the original log files generated by CD++.

REFERENCES
[1] B. Zeigler; T. Kim; H. Praehofer: Theory of Modeling and Simulation: In-
tegrating Discrete Event and Continuous Complex Dynamic Systems, Aca-
demic Press, 2000.
[2] G. Wainer; N. Giambiasi: "Application of the Cell-DEVS Paradigm for
Cell Spaces Modeling and Simulation", Simulation, Vol. 71, No. 1, pp. 22-
39, January 2001.
[3] G. Wainer: "CD++: a Toolkit to Define Discrete-Event Models", Soft-
ware, Practice and Experience, Wiley, Vol. 32, No 3. pp. 1261-1306. No-
vember 2002
[4] E. Glinsky; G. Wainer: "Performance Analysis of Real-Time DEVS mod-
els", In Proceedings of 2002 Winter Simulation Conference, San Diego,
U.S.A.
[5] A. Troccoli; G. Wainer: “Implementing Parallel Cell-DEVS”, In Proceed-
ings of Annual Simulation Symposium. Orlando, FL. U.S.A. 2003.
[6] World Wide Web Consortium (W3C), Extensible Markup Language,
http://www.w3.org/XML/
[7] World Wide Web Consortium (W3C), Web Service Description Language
1.1. http://www.w3.org/TR/wsdl
[8] Organization for the Advancement of Structured Information Standards
(OASIS), UDDI technical committee, http://www.uddi.org/
[9] World Wide Web Consortium (W3C), XML-Schema,
http://www.w3.org/XML/Schema
[10] World Wide Web Consortium (W3C), X-Path,
http://www.w3.org/TR/xpath
[11] World Wide Web Consortium (W3C), http://www.w3.org/TR/soap/
[12] S. Liang: Java Native Interface (JNI), Programmer’s Guide and Specifi-
cation, Addison-Wesley, 1999
[13] Web Services-Axis, http://ws.apache.org/axis/
[14] Apache Tomcat, http://tomcat.apache.org/
[15] JavaBean Activation Framework API Documentation,
http://java.sun.com/products/javabeans/glasgow/javadocs/javax/activation/pa
ckage-summary.html
[16] http://www.netbeans.org/
[17] http://java.sun.com/javaee/

