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Abstract

We propose a method to analyze complex physical systems using two-dimensional Cell-DEVS models. These problems
are usually modeled with one or more Partial Differential Equations and solved using numerical methods. Our goal is to
improve the definition of such problems by mapping them into the Cell-DEVS formalism, which permits easy integration
with models defined with other formalisms, and its definition using advanced modeling and simulation tools. To show this,
we used two methods for solving PDEs, and deduced the updating rules for their mapping to Cell-DEVS. As our simu-
lation results show, the accuracy of the Cell-DEVS solution is the same of these previous methods, showing that we
can use Cell-DEVS as a tool to obtain numerical solution for systems of PDEs. Simultaneously, this method provides
us with a simpler mechanism for model definition, automated parallelism, and faster execution.
� 2007 Published by Elsevier B.V.
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1. Introduction

The advance in science and technology has usually relied on the definition of models representing properties
of systems under study. Complex problems in the domains of physics, chemistry and biology were usually
modeled with differential equations, and by traditional analysis, these equations were solved analytically
for the desired system. This approach only works for very simple systems with simple geometries and property
distributions. For any real life problem, obtaining an analytical solution is almost impossible unless many
approximations are done. Instead, scientists have to solve variety of problems unthinkable in the earlier stages
of scientific development by using advanced numerical methods, which enabled the solution of very complex
differential equations. The advent of digital computers permitted one of such methods to be widely used, the
finite element analysis [1], which has been successfully used to analyze complex engineering and physical sys-
tems. The basis of this method is to represent the region of calculation by finite subdivisions (or finite ele-
ments). An approximate solution is then calculated over each subdivision. This is obtained by defining a
solution satisfying the partial differential equation on average over a finite element, which is connected to
U
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neighboring elements, and the field under study is analyzed by propagating the current values from one ele-
ment to another through connection points.

In recent years cellular Automata (CA) [3], became popular to represent many models of real systems as
cell spaces [4,5]. CA are defined as infinite n-dimensional lattices of cells whose values are updated according
to a local rule. This is done simultaneous and synchronously using the current state of the cell and the state
of a finite set of nearby cells (known as the neighborhood). CA has several problems when used in modeling
complex systems. CA usually requires large amounts of compute time, mainly due to its synchronous nature.
The use of a discrete time base is also a constraint to the precision of the model. The Cell-DEVS formalism
[6] solved these problems by using the DEVS (Discrete EVents Systems specifications) formalism [7] to define
a cell space where each cell is defined as a DEVS model. This technique permits to build discrete-event cell
spaces, improving their definition by making the timing specification more expressive. Besides this, discret-
izing the model into a bi-dimensional grid poses constraints on the precision that can be achieved by the
model. Finite element analysis, instead, is able to provide higher precision due to the characteristics of
the technique.

We have explored the use of the Cell-DEVS formalism to model and solve problems usually tackled by
FEM. We intend to use FEM as a very precise technique for defining the problem, while having the simplicity
of a cellular approach to facilitate model definition. The use of Cell-DEVS also enables integration with other
existing DEVS [7] and Cell-DEVS models, permitting to define multi-paradigm models. An advantage of this
approach is that, in real life, engineering systems are often composed of continuous and discrete components
interacting together. Finally, in building these models as Cell-DEVS, we can make use of existing infrastruc-
ture, including parallel simulators and distributed environments without changes to the original models. We
describe a method for mapping problems modeled by partial differential equations and solved by finite differ-
ences or FEM, into a Cell-DEVS specification. We first describe the physical system modeled, and show how
to obtain the cell-update rules from an approximate solution.

The work in this paper would fit into a methodology to model and simulate complex systems using DEVS
and Cell-DEVS formalisms. Complex systems usually compose of many smaller subsystems, or components.
Some of these subsystems may be continuous in nature or discrete. Both types of subsystems and components
can be modeled and simulated with Cell-DEVS and DEVS as shown in this paper. The methodology starts by
decomposing a complex system into simpler subsystems; each could be modeled in a simple DEVS or Cell-
DEVS model. It can be summarized as follows:

1. Divide and Conquer: Divide the modeling task of a complex system into smaller manageable tasks of mod-
eling subsystems and components of the larger system at hand.

2. Repeat dividing these subsystems to simpler ones, until reaching components that could be modeled with
single DEVS, if it has discrete behavior, or a single Cell-DEVS model if it is modeled mathematically with
PDE.

3. For components with physical continuous nature, as the one presented in this paper, extract and define cell-
updating rules to build Cell-DEVS models for these components. Methods of Finite elements analysis, or
Finite Differences could be used for this purpose as shown in this paper.

4. Complete the definition of component models either in DEVS or Cell-DEVS, and simulate each one to val-
idate its model.

5. Integrate the smaller models into larger subsystems. This step would be straightforward as all models are
based on DEVS formalism. Then, Integrate subsystems to form the complete model for the problem under
study.

6. Execute the model in a DEVS simulator, and observe system behavior.
7. If a change in design is needed, iterate through steps 2–6 until desired system behavior is obtained, and

hence optimum system design is reached.

The method of modeling and simulation presented in this paper has advantages over conventional methods
for solving similar problems. The most important advantage is that it enables the methodology described
above that integrates models of discrete and continuous behavior, both based on DEVS formalism, into a sin-
gle complex system. Very complex systems could be modeled incrementally using the above methodology. This
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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property enables vendors of engineering component to publish models for their products based on DEVS and
Cell-DEVS formalisms. This would then enable engineers designing complex large systems to model their
designs by integrating these smaller models into their design model, and then simulating their designs.

Another advantage of this approach over conventional simulation approaches is the ability to use different
techniques to shorten the simulation runtime without changing the code or the model. This is achieved by opti-
mizing the simulator executing the model, which is similar to a runtime environment in which models are exe-
cuted. One example is the desire to execute of the simulation on a parallel computer system. Usually executing
a simulation of large and complex systems needs huge computing power. Single processing systems would put
a time-wise limit on simulation practicality for large models. The solution for this is to execute the simulation
on a parallel computing system. However, for conventional simulation methods, this requires simulation code
to be rewritten for the distributed environment. This rewriting of code is not necessarily with the above meth-
odology. The DEVS/Cell-DEVS simulator itself has a version that is implemented as a distributed application
and executes the simulation in parallel. Other possible technique for optimizing the simulator is for the sim-
ulator to cache intermediate execution results of model components, thus eliminating the need to execute some
of the time consuming executions during a simulation run.

2. Background

FEM was originally created to solve problems of structural mechanics, and it was later applied to many
other problems in engineering. FEM provides piecewise approximation of a partial differential equation over
a continuum. A finite element is a discrete piece of that continuum. Two major components can be identified
within each element: field, and potential. The field is a quantity that varies with position within structure ana-
lyzed. The potential can be thought as the driving force for the spread of the field in the material. For example,
in heat transfer, temperature difference would cause a heat flux from one point to another through a material.
The heat flux direction and quantity is related to the difference in temperature (temperature gradient). The
heat flux would then represent the field, and the temperature represents the potential driving this field.

FEM uses a mathematical procedure for satisfying a partial differential equation over an element. By
assuming the potential is following a simple function over the finite element, we can approximate the solution
of the partial differential equation over that element. Elements in the structure are connected together through
the vertices on boundaries of each element, which are called nodes. Accuracy of final approximate solution
would then depend on the assumed function over the element, and the number of elements in the structure.
The better representation of the assumed function to the real potential distribution, the better accuracy we
get. Similarly, by dividing the structure to more number of elements, we would get better accuracy for our
solution. Solving the problem using FEM includes the following:

1. Divide the structure under study into a large number of simple geometry elements.
2. Represent the spatial solution in the element with a simple interpolation or shape function over the element.
3. Solve the differential equation for the element using the assumed shape function of potential.
4. As all the elements in the structure are connected through their nodes, we obtain a system of equations rep-

resented in a form of N · N matrices for the whole structure (where N represents the number of elements in
that structure). These values are used to compute the unknown potential inside the structure.

5. The global equations are solved using a suitable mathematical method. The final solution gives the distri-
bution of the potential over the structure, represented by the values obtained at the nodes of each element.

Cell-DEVS [6] is a novel approach to represent models of real life systems as cell spaces, which uses the
DEVS formalism [7]. This technique permits building discrete-event cell spaces, and improves their definition
by making the timing specification more expressive. In Cell-DEVS, each cell of a cellular model is defined as
an atomic DEVS model. The DEVS formalism provides a framework for the construction of hierarchical
modular models, allowing for model reuse, reducing development and testing times. In DEVS, basic models
(called atomic) are specified as black boxes, and several DEVS models can be integrated together forming a
hierarchical structural model (called coupled). DEVS not only proposes a framework for model construction,
but also defines an abstract simulation mechanism that is independent of the model itself.
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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DEVS ¼ hX ; Y ; S; dext; dint; k; tai
X is the input events set;
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S is the state set;
Y is the output events set;
dint : S! S is the internal transition function;
dext : Q · X! S, is the external transition function; where Q = {(s,e)/s 2 S, and e 2 [0,D(s)]};
k : S! Y is the output function; and
D : S ! Rþ0 [1 is the elapsed time function.

In the absence of external events, a DEVS model will remain in state s 2 S during ta(s). Transitions that
occur due to the expiration of ta(s) are called internal transitions. When an internal transition takes place,
the system outputs the value k(s) 2 Y, and changes to the state defined by dint(s). Upon reception of an external
event, dext(s,e,x) is activated using the input value x 2 X, the current state s and the time elapsed since the last
transition e. Coupled models are defined as

CM ¼ hX ; Y ;D; fMig; fI ig; fZi;jgi
 PX is the set of input events;
R
E
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Y is the set of output events;
D 2 N, D <1 is an index for the components of the coupled model, and "i 2 D, Mi is a basic DEVS
model, where Mi = hIi,Xi,Si,Yi,dinti,dexti, taii or Mi = hXi,Yi,Di, {Md}i, {Id}i, {Zi,j}ii
Ii is the set of influences of model i, and "j 2 Ii, and
Zij : Yi! Xj is the i to j translation function.

Coupled models consist of a set of basic models (Mi, atomic or coupled) connected through the models’
interfaces. Component identifications are stored into an index (D). A translation function (Zij) is defined
by using an index of influences created for each model (Ii). The function defines which outputs of model
Mi are connected to inputs in model Mj.

Cell-DEVS defines a cell as a DEVS atomic model and a cell space as a coupled model. Each cell of a Cell-
DEVS model holds a state variable and a computing function, which updates the cell state by using its present
state and its neighborhood. A Cell-DEVS atomic model is defined as

TDC ¼ hX ; Y ; S;N ; delay;d; dint; dext; s; k;Di
RX � T, #T <1 ^ T 2 {N,Z,R, {0, 1} [ {/}; Y � T; S � T;
U
N

C
O

h = {(s,phase,rqueue, f,r)/s 2 S is the status value for the cell, phase 2 {active,passive}, rqueue ¼
fððv1;r1Þ; . . . ; ðvm;rmÞÞ=m 2 N ^m<1Þ^ aði 2 N ; i 2 ½1;m�Þ; vi 2 S ^ ri 2 Rþ0 [1g; f 2 T; and r 2 Rþ0 [1};
N 2 Sg+l; d 2 Rþ0 , d <1 (with non-deterministic behavior if d = 0);
dint: h! S;
dext: Q · Xb! h, Q = {(s,e)/s 2 h · N · d; e 2 [0,D(s)]};
dcon: h · Xb! S;
s: N! S · {inertial, transport} · d;
k: S! Yb; and
D : h� N � d ! Rþ0 [1.

A cell uses a set of N input values to compute its future state, which is obtained by applying the local func-
tion s. A delay function is associated with each cell, after which, the new state value is sent out. There are two
types of delays: inertial and transport. When a transport delay is used, every value scheduled for output will be
transmitted. Inertial delays use a preemptive policy: any previous scheduled output will be preempted unless
its value is the same as the new computed one. After the basic behavior for a cell is defined, a complete cell
space can be built as a coupled Cell-DEVS:
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Ylist is the output coupling list;
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Xlist is the input coupling list;
X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{t1, . . . , tn} is the number of cells in each of the dimensions;
N is the neighborhood set;
C is the cell space, with C ¼ fCC=c 2 I ^ CC ¼ hIC;X C; Y C; SC;NC; dC; dintC ; dextC ; dconC ; sC; sconC kC;DCig,
where Cc is a Cell-DEVS atomic model, and I={(i1, . . . , in)/(ik 2 N ^ ik 2 [1, tk]) "k 2 [1, n]};
B is the set of border cells; and
Z is the translation function.

A coupled Cell-DEVS is composed of an array of atomic cells (C), each of which is connected to the cells in
the neighborhood (N). The border cells (B) can have a different behavior than the rest of the space. The Z

function defines the internal and external coupling of cells in the model. This function translates the outputs
of mth output port in cell Cij into values for the mth input port of cell Ckl. Each output port will correspond to
one neighbor and each input port will be associated with one cell in the inverse neighborhood. The Xlist and
Ylist are used for defining the coupling with external models.

Using Cell-DEVS has different advantages. First, we have asynchronous model execution, which results in
improved execution times. Timing constructions permit defining complex conditions for the cells in a simple
fashion. As DEVS models are closed under coupling, seamless integration with other types of models in dif-
ferent formalisms is possible. The independent simulation mechanisms permit these models to be executed
interchangeably in single-processor, parallel or real-time simulators without any changes.

The CD++ tool [8] was created for the simulation of DEVS and Cell-DEVS models based on their formal
specifications. This version of the tool and the formalism was used to study a variety of models including traf-
fic, forest fires, biological systems and experiments in chemistry. CD++ was built to implement DEVS and
Cell-DEVS theory. The tool allows defining models according to the specifications introduced in the previous
section. DEVS atomic models can be incorporated into a class hierarchy in C++, while coupled models are
defined using a built-in specification language. The tool also includes an interpreter for a specification lan-
guage that allows describing Cell-DEVS models.

The behavior specification of a Cell-DEVS atomic model is defined using a set of rules, each indicating the
future value for the cell’s state if a precondition is satisfied. The local computing function evaluates the first
rule, and if the precondition does not hold, the following rules are evaluated until one of them is satisfied or
there are no more rules. The behavior of the local computing function is defined using a set of rules with the
form: VALUE DELAY {CONDITION}. These indicate that when the CONDITION is satisfied, the state of the cell
changes to the designated VALUE, and its output is DELAYed for the specified time. The main operators avail-
able to define rules and delays include: boolean, comparison, arithmetic, neighborhood values, time, condi-
tionals, angle conversion, pseudo-random numbers, error rounding and constants (i.e. gravitation,
acceleration, light, Planck, etc.). Fig. 2 shows the specification of a Cell-DEVS model in CD++. The specifi-
cation follows Cell-DEVS coupled model’s formal definitions. In this case, Xlist = Ylist = {;}. The set {m,n}
is defined by width–height, which specifies the size of the cell space (in this example, m = 20, n = 40). The N set
is defined by the lines starting with the neighbors keyword. The border B is wrapped. Using this information,
the tool builds a cell space, and the Z translation function following Cell-DEVS specifications. The local com-
puting function executes very simple rules. The first one indicates that, whenever a cell state is 1 and the sum of
the state values in N is 8 or 10, the cell state remain in 1. This state change is spread to the neighboring cells
after 100 ms. The second rule states that, whenever a cell state is 0 and the sum of the inputs is larger or equal
to 10, the cell value changes to 1. In any other case (t = true), the result remains unchanged, and it is spread to
the neighbors after 150 ms.

FEM models resembles to a large extent Cell-DEVS models, in which changes of a cell value would trigger
its neighboring cells to change themselves, as though a field is propagating through all of them. The following
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Fig. 1. Informal definition of Cell-DEVS [7]Q5 .

Fig. 2. A Cell-DEVS specification in CD++.

6 H. Saadawi, G. Wainer / Simulation Modelling Practice and Theory xxx (2007) xxx–xxx

SIMPAT 594 No. of Pages 24, Model 3+

24 September 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T

sections will be devoted to show how Cell-DEVS can be used to describe FEM models. The idea is to describe
the model in terms of cell behavior, discrete-event interaction and timing delays.

3. Mapping FEM into Cell-DEVS

3.1. One-dimensional heat transfer problem

We will show how FEM models can be mapped into Cell-DEVS using a traditional example found in [1].
This model represents steady-state heat transfer with convection from a fluid into a composite wall of different
materials (resemble the heat flow through a wall of a furnace to ambient air). Heat is transferred by convection
from the hot air to the wall and by conduction through wall material (in this particular example, heat trans-
ferred by radiation is neglected). Steady-state heat flow is defined as a heat flux fixed with regard to time. In
non-steady-state heat transfer, the heat flux value and temperature distributions change over time.

In order to get the updating rules for each cell in our Cell-DEVS model, we first study a subset of the com-
plete problem to solve, in which we consider only two elements connected together through their nodes. Then,
generalize the solution to the complete problem. In Fig. 3(a), we show two layers of the wall, which are con-
nected through the surface in the middle. Each layer i has different physical properties: K1 is the thermal con-
ductivity, Li the length, and Qi the heat flux through that wall. Temperature distribution on each surface on
the walls is denoted as T2, T1, and T0, as shown in Fig. 3(a). Each layer can be represented by one finite ele-
ment, as showed in Fig. 3(b). Elements 1 and 2 contain two nodes, one at each end, and they are connected
through their nodes, making the middle node shared between both of them as in Fig. 3(b). Every node rep-
resents a surface of a wall, and the corresponding node value represents its surface temperature. In our
Cell-DEVS model, we use a cell to represent each node shown in Fig. 3.

To obtain the cell-updating rules for our Cell-DEVS model, we use the basic laws for heat transfer and
energy conservation as explained in detail in the Appendix. From these mathematical manipulations, we
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Pget Eqs. (4) and (5) that would be used as the updating rules for our Cell-DEVS model. Eq. (4) describes the
heat conduction-rule inside the material. It specifies temperature of the middle node T1 as a function of its two
adjacent nodes and constant material properties. Eq. (5) describes temperature of the middle node as a func-
tion of adjacent nodes of fluid temperature T1, and inner node temperature T0 inside the material. This rep-
resents the case as at a convective boundary, and T1 is the surface temperature. Every cell value is a function of
its right cell value, its physical properties, left cell value, and its left cell physical properties. Note that in case
of having identical elements (same K and L), the updating rule for a cell’s temperature would be a simple arith-
metic mean of its two neighboring cell temperatures. After the deduction procedure as shown in the Appendix
we obtain the temperature formulae as follows:

T 1 ¼
K1

L1
T 0 þ K2

L2
T 2

K1

L1
þ K2

L2

For heat conduction; T 1 ¼
hT1 þ K1

L1
T 0

hþ K1

L1

For heat convection:
N
C

O
R

R
E3.2. Two-dimensional heat transfer problem

Let us consider now how to apply the same procedure in a 2D model. We will use, as an example, a heat
transfer model originally presented in [1]. This example represents a steady-state 2D heat transfer in a bar of
rectangular cross section with thermal conductivity coefficient k = 1.5 W/m2 �C. Two opposite sides are kept
at constant temperature of 180 �C; the third side is insulated and the other is exposed to a fluid with temper-
ature of 25 �C and convection heat transfer coefficient h = 50 W/m2 �C. A graphical representation of the
problem is depicted in Fig. 4. In order to define this model using Cell-DEVS, we define a finite grid in the
bar, and we map the equations for each node on the grid into a set of rules for updating the value of a cor-
responding cell in a Cell-DEVS model. We have deduced the Cell-DEVS updating rules by considering two
methods for the numerical solution: finite differences and finite elements.

In the Appendix, we show the full details of mathematical manipulation to deduce the following updating
rules using two methods, Finite Differences and Finite Elements:
UT 0 ¼
T 1 þ T 2 þ T 3 þ T 4

4
Updating Rule for an internal node in the bar

T 0 ¼
T 1 þ T 3 þ 2T 2

4
Updating Rule for a node on the insulated edge

T 0 ¼
T 1=2þ T 3=2þ T 2 þ Tf � h � a=k

2þ h � a=k
Updating Rule for a node on the convective edge
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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4. Cell-DEVS implementation

Once the update rules were obtained, we built the Cell-DEVS models in the CD++ environment. For the heat
transfer model presented in Fig. 3, we obtained a model like the one showed in Fig. 5. Fig. 5(a) represents a com-
posite wall of three materials with layers (numbered 1, 2 and 3). The outer temperature is T0 = 20 �C. Convec-
tion heat transfer takes place on the inner surface of the wall with fluid temperature T4 = 800 �C and film
coefficient h = 25 W/m2 �C. We need to determine the temperature distribution in the wall (i.e. on surfaces of
each layer). Composite layers lengths are L1 = 0.3 m, L2 = L3 = 0.15 m. Conductivities are K1 = 50 W/m �C,
k2 = 25 W/m �C, K3 = 20 W/m �C, for each layer, respectively.

In Fig. 5(b), we show the structure of an equivalent Cell-DEVS coupled model for the problem defined in
(a). We represent each point with temperature measure in Fig. 5(a), with a cell in the bottom row. Thus, cell
(0,0), represents fluid temperature T4, Cell (0, 1) represents T3, cell (0,2) represents T2, cell (0, 3) represents T1,
and cell (0,4) represents T0.

Cells in row 1 store the physical properties corresponding to wall layers, as shown in Fig. 5(b). Cell (1, 0)
contains the value of h, (1, 1) the value of (K3/L3), (1,2) the value K2/L2, cell (1,3) the value k1/l1, (cell (1,4)
U
N

C
O

R

Fig. 5. (a) Steady-state heat transfer through a composite wall. (b) The problem as a Cell-DEVS space.
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value is not used in calculations). Cells in Row 1 are kept constant during the simulation, as physical prop-
erties are independent of temperature distribution. Cells (0, 0) and (0,4) contain constant temperature, which
constitute the boundary conditions. Each element properties are stored in a cell above it. For example, phys-
ical properties of element (0,0) would be in (�1,0), and for element (0,�1) would be in (�1,�1) of the neigh-
borhood as in Fig. 6.

The model is initially loaded with values representing material properties on row 0, boundary values on
cells (1,0) and (1,4), and arbitrary values in other cells. The following is the specification for cell-updating
rules as defined in CD++. The first rule, [conduction-rule] implements Eqs. (4) and (5). Although its name
implies a conduction-rule, it also works for convection as it uses film coefficient value instead of thermal con-
ductivity at cells adjacent to fluid cells. The second rule, [Constants] defines the updating rule for cells in row
zero. The third rule, [Boundary] defines the updating rule for boundary cells. These also are kept fixed during
the simulation.

The specification of the Cell-DEVS coupled model is shown in Fig. 8. In this figure heatcond is a Cell-DEVS
component, built as a bi-dimensional grid (2 rows and 5 columns) using transport delay. Its border is non-
wrapped (we run specific rules for the boundary conditions in the border cells). The neighbors definition show
the cell space neighborhood, which consists of five cells as shown in Fig. 6. Localtransition defines the rule used
for local transition function for a cell (defined previously in Fig. 7). Zone defines group of cells that constitute
a zone with its own updating rule that differs from the general updating rule. Here, we have defined two zones:
one for the constants stored in upper row cells, and another for cells containing boundary conditions values.

After defining the CD++ specification, we executed this model with multiple test cases. The models were
executed until cell values become stable, converging to a solution for our problem that satisfies equilibrium
equations of steady-state heat transfer as defined in Eq. (3a) in Section 3. The resultant values would represent
temperature distribution over the structure. In our first test case, the cells between the hot and cold boundaries
were initialized with a temperature of 20 �C inside the wall. Fig. 9 shows the results for this model. The final
step shows T3 = 304.75 �C, T2 = 119.03 �C, T1 = 57.14 �C, corresponding to nodes temperatures as in Fig. 3.
This same example were solved in [1] using Finite Elements Analysis and gave the following values:
T3 = 304.6 �C, T2 = 119.0 �C, and T1 = 57.1 �C.

This shows that the solution converges to the correct answer after 23 steps. The above results show the solu-
tion converges to the right value with consecutive iterations. This process is in fact equivalent to solving a
U
N

C
O

R
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C

Fig. 6. Neighborhood cells.

Fig. 7. CD++ rules for 1D heat transfer model.
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system of linear equations using Jacobi iterative method. In this method, we solve one equation for one var-
iable, with all other variables fixed. In the Jacobi method, if we have a system of n linear equations on the form
Ax = b, and if the ith equation in the form

Pn
j¼1ai;jxj ¼ bi. We can solve for value of xi while assuming the all

other variables are fixed as xi ¼ ðbi �
P

j 6¼iai;jxjÞ=ai;i and iteratively would be xðkÞi ¼ ðbi �
P

j 6¼iai;jx
ðk�1Þ
j Þ= ai;i

where k is the iteration number.
The method begins by assigning arbitrary values to all variables, and a new value is computed for each var-

iable. During each iteration k, variable values from previous iteration (k � 1) are used to calculate the new
value of xi. Only after iterating with all variables, the variables are updated to their new values. The order
in which the equations are examined is irrelevant, since the Jacobi method treats them independently. The
CD++ execution of our Cell-DEVS model resembles Jacobi method. We have a system of linear equations
defined in our Cell-DEVS model, from applying Eqs. (4) and (5) for every adjacent two elements, thus pro-
ducing n � 1 equations (n = number of elements). From each equation, we update the cell values as a function
of the neighboring cells, and we keep all the cell values from one time step fixed to for use in next time step to
calculate new cell values. The order of evaluation of cell values is irrelevant to the result, which enables parallel
execution of our model. During each time step, cell updates can be done simultaneously as they are indepen-
dent of each other. This exploits the nature of asynchronous updates of Cell-DEVS.

In a second test case for the model shown in Fig. 8 for the problem in Fig. 5, we considered, the nodes T3,
T2, and T1 were initialized with temperatures of 3000 �C, in order to measure speed of convergence to that
solution. We converge into the final correct answer after 30 steps. These are 36% more steps than the first test
case. This shows the impact of choosing cells initial values on the number of steps to converge to the final
solution. Solving the same problem with FEM, we would get a system of linear equations that models the
problem. Then, using a suitable method for solving this system we get the temperature distribution. Usually
the method of Gaussian elimination is used. This does not prevent using an iterative method like Jacobi, which
is equivalent to the way CD++ solves this problem. However, CD++ implementation of Cell-DEVS models
can enhance the Jacobi method performance: if a cell’s neighborhood is unchanged during a simulation time
step, the cell’s external transition function is not executed at next time step. This means that the cell would not
re-calculate.

The last two cases presented are defined to stress on the previous finding that initializing the model cells
with proper values can save valuable simulation time. Assume, for instance, that the hot fluid temperature
T4 is now 850 �C. We need now to solve the new problem, which resembles the old one in every aspect,
but in fluid temperature. This new problem would be modeled the same as the previous model, except that
we use a high temperature equals to 850� in the boundary element [cell (1,0)] instead of old value of 800.
The model cells for T3, T2, and T1 are initialized with values that resulted from solving the previous problem.
As we may expect, the iterative solution in this case starts with cell values near the correct solution, thus saving
some iteration cycles and converging in 20 time steps.

Finally, we initialized the cells with arbitrary values (�3000 �C). The model execution took 35 time steps to
converge. This shows that for complex and large models, we can enhance performance of subsequent model
executions if we initialize all unknown cell values with results coming from the previous simulation for an
almost similar model (see Figs. 10–12).
U
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Fig. 8. Cell-DEVS coupled model definition.
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Fig. 10. Simulation results for initial temperature = 3000 �C.

Fig. 9. Simulation results for initial temperature = 20 �C.

Fig. 11. Changing boundary conditions and initial temperature = 20 �C.

Fig. 12. Changing boundary conditions and arbitrary initial temperature.
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4.1. Two-dimensional heat transfer problem solution with Cell-DEVS

To solve the problem shown in Fig. 4, we defined a 2D version of this model using Cell-DEVS. To do so, we
divide the bar previously presented in Fig. 4 as shown in Fig. 13, which defines a grid of 6 · 4 (containing 7 · 5
nodes). Nodes are located at every lines intersection in the grid. We use the updating rules obtained previously
to model this grid with Cell-DEVS in which, each cell in the model would represent a node on the grid.

Fig. 14 represents the model definition in CD++, considering that cells on the boundaries are initialized
with a constant value of 180 �C.
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Fig. 13. 7 · 5 nodes grid of finite differences.

Fig. 14. Model definition in CD++ for 7 · 5 nodes grid.
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NIn the figure, heatcond is a two-dimensional Cell-DEVS space with seven rows and five columns using

transport delays. The border is nowrapped, hence, border cells are not connected to the opposite side bor-
der cells. Then, we define the neighborhood shape for each cell. Localtransition specifies the name used
for the local computing function, and it is defined as a set of updating rules for each cell depending on its loca-
tion on the grid. By default, each cell would follow the conduction-rule, unless it is located at one of the
defined zones, which define the border conditions. Therefore, [conduction-rule] uses updating rule 1
defined above. Likewise, [Insulated-Boundary] uses updating rule 2, and [Convective] uses updating
rule 3.

When we executed this model in CD++, we have obtained the results shown in Fig. 15. In Fig. 16, we show
CD++ outputs on grid like the one in Fig. 13 for easy reading. The results shown in Fig. 15 include the sim-
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006



E
C

T
E
D

P
R

O
O

F
385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

Fig. 15. Results for 7 · 5 nodes grid of finite differences.

Fig. 16. 7 · 5 nodes grid using finite differences Cell-DEVS.
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Rulation time and cell’s values at each time step. In this output file, each cell value is printed at its corresponding

row and column. Thus, at the start of the simulation, cells (0, 0) to (0,4) and (6, 0) to (6,4) all had a value of
180, and the rest of the cells have a value of 20. At the final two steps, cell values do not change, causing the
simulation to end (there is no cell that would be triggered by a changing neighbor). At this step, cell values
would represent the solution of the problem, namely, the temperature distribution though the bar.

The type of diffusion problems as defined with previous PDE is practically solved using numerical meth-
ods such as FEM or finite differences for the reason that exact analytical solutions can only be obtained for
simple geometries and boundary conditions. Such an analytical exact solution would be an ideal choice to
compare precision of results obtained from CD++. Obtaining an analytical solution for a problem similar
to one defined in Fig. 1, need to consider solving conduction heat transfer PDE in the bar, with applying
an insulated boundary condition at one end, and a convective boundary condition at another. Solving these
equations analytically is difficult and usually not practical for real problems. Due to this difficulty and to
compare our method with FEM, we have compared results obtained in CD++ with those obtained using
the FEM. To solve the problem with FEM, we have used a proven software tool included in [1], and used
the results to validate our simulation. To show convergence of FEM and Cell-DEVS, we solved the prob-
lem with FEM twice, first with a mesh of six elements (we show the execution results in Fig. 17) and again
with 192 elements with 117 distinct nodes as shown in Fig. 18. Similarly, we solved it with Cell-DEVS
twice, first using 35 nodes as shown in Fig. 13, and again using 96 cells with 117 nodes as the results shown
in Table 1.
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Fig. 17. Results for a mesh of six triangular finite elements.

Fig. 18. Half of the bar divided to 96 triangular finite elements.
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The result of FEM second simulation is shown in Table 1 for half of the bar (as it is symmetric around its
middle horizontal line). Every cell in the table contains the corresponding node temperature.

To compare the results shown in Fig. 16 (35 nodes Cell-DEVS) and those in Table 1 we marked corre-
sponding rows of nodes with an asterisk (*). Same points in the bar shown in the table and on the figure
are further written in bold font in Table 1. Temperature values from Table 1 and Fig. 16 match on most nodes;
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Table 1
Tabular form of simulation results for FEM mesh in Fig. 18

180 180 180 180 180 180 180 180 180
169 168.6 167.3 164.8 160.8 154.3 143.7 118.7 68.1
158.9 158 155.6 151.2 144 132.5 122 94.9 52*

150.3 149.3 146 140.3 131.6 119.2 103.2 79 45.1
143.9 142.6 138.9 132.4 122.7 109.6 92.9 72.5 37.3*

139.9 138.5 134.5 127.6 117.4 103.7 86 63.3 42.6
138.5 137.1 133 126 115.7 101.8 84.1 62.6 39.6*

Table 2
96 Cell-DEVS finite differences cells with 117 nodes

180 180 180 180 180 180 180 180 180
169 168.6 167.3 165 161.1 154.9 144.1 123.5 76.9
158.9 158.1 155.7 151.4 144.6 134.1 118.2 93.0 53.4*

150.3 149.3 146.0 140.3 131.6 119 101.4 77.1 45.4
143.8 142.6 138.8 132.3 122.5 109.0 91.2 68.6 41.7*

139.8 138.5 134.4 127.4 117.2 103.4 85.7 64.3 40
138.5 137.1 132.9 125.8 115.4 101.5 84 63 39.5*

139.8 138.5 134.4 127.4 117.2 103.4 85.7 64.3 40
143.8 142.6 138.8 132.3 122.5 109.0 91.2 68.6 41.7
150.3 149.3 146.0 140.3 131.6 119 101.4 77.1 45.4
158.9 158.1 155.7 151.4 144.6 134.1 118.2 93.0 53.4
169 168.6 167.3 165 161.1 154.9 144.1 123.5 76.9
180 180 180 180 180 180 180 180 180
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nevertheless, there is a slight deviation between the two results for nodes on the convective side of the bar. This
deviation results from the fact that this side has the steepest temperature gradient, we need to divide the bar to
more elements to capture details of this steep gradient.

To enhance Cell-DEVS Finite Differences results, and to verify the conversion of the Cell-DEVS simulation
with that of FEM software, we ran another simulation with Cell-DEVS increasing the number of nodes to
13 · 9. The results of this simulation are shown in Table 2. The corresponding cells to those in previous solu-
tions (representing node temperatures) are marked with bold font for comparing the results.

To get the results in Table 2, we changed the model definition from the one shown in Fig. 14 to the one
shown in Fig. 19. We have changed model dimension and zone definitions to express the increased number
of cells in the new model. The results shown in Table 2 represent temperature distribution in the bar under
study. Each cell contains the temperature value corresponding to a node in a mesh of 12 rows and eight col-
umns of rectangular elements. Results of the simulation in Table 2 are symmetric around the horizontal cen-
terline of the bar due to its symmetry in both geometry and boundary conditions. The difference in values
U
N

C
O

Fig. 19. Model definition in CD++ for 13 · 9 nodes grid.
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between the FEM software results, our Cell-DEVS Finite Differences results in Table 1 and those in Table 2
on the convection side comes from the fact that we used a linear triangular element, which is a rough estimate
for the varying field. In this element, temperature gradient is assumed constant throughout the element. This
element is good to study a slow varying field over the material. Other types of elements can be used to capture
the steep variation more precisely, like a quadratic triangular element. In this element, we assume the temper-
ature gradient is linear throughout the element.

5. Conclusion

We showed how to use Cell-DEVS to model problems that traditionally have been solved with other meth-
ods as Finite Elements and Finite Differences. Modeling physical and engineering problems with Cell-DEVS
have some advantages over traditional methods.

• Cell-DEVS enables building coupled systems that are composed of many atomic or coupled components.
These components can simulate discrete or continuous systems. This property can be very useful when sim-
ulating engineering systems as they often compose of many continuous and discrete components and this
property is an enabler to our proposed methodology as described above in this paper.

• Simulation of large and complex models can use the ability of Cell-DEVS models to execute in parallel.
This can be advantageous over other methods of solving continuous systems as FEM, as their parallel exe-
cution may not be straightforward. Parallel execution of Cell-DEVS does not need to be specified by the
user, but it comes as a result of the asynchronous nature of Cell-DEVS technique.

• Advantages in modeling and improved development facilities. Definition of complex equations can be eas-
ily done using the rule specification techniques of CD++, as it could be seen with the examples presented
here. This highly reduces the effort spent by the users in developing the applications. Automated verification
facilities in the toolkit improve testing and reduce delivery time. Likewise, applying changes to the model
only results in slight changes in the model specifications, without any need for code rewriting, which enables
easy analysis of more complex system conditions.

Engineering disciplines could benefit from using Cell-DEVS formalism to build reusable components that
can be used as building blocks to build models for their products. Those models can then be executed to study
system behavior. One or more components in the model can then be replaced with other alternative designs to
reach a desired optimum system behavior.

When using our proposed methodology in engineering design, modeling finalized component designs (or a
final product) would best be done with DEVS, as the component operating characteristics is already known.
For components still under study and continuing optimization, it would be modeled with Cell-DEVS. The sys-
tem would then be built using all the components and simulated for different design criteria. When optimum
system performance point is reached, those components modeled with Cell-DEVS would then be in their opti-
mum designs. The behavior of those components would be studied more to get their characteristics under nor-
mal operating conditions, and then final models for those components can be done using DEVS and
integrated into the overall system model. The process could be repeated to build a large system incrementally
with components possibly from different vendors as long each vendor would supply a DEVS model with their
product component.

Appendix

Obtaining updating rules for one-dimensional heat transfer model

Heat transfer occurs when there is a temperature difference within a body or between a body and its sur-
rounding medium. This temperature difference constitutes the potential driving the heat flux through the mate-
rial. The temperature difference over an infinitely small piece of material would give us the temperature

gradient over this element. Heat flows from hot spots towards cooler ones. Heat conduction in a two-dimen-
sional steady-state isotropic medium is given by Fourier’s law as
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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qx ¼ �k
oT
ox
; qy ¼ �k

oT
oy

ð1Þ

where q is the heat flux (W/m2), qx is the heat flux component in x-direction, qy is the heat flux component in y-
direction, k is the thermal conductivity of the material (W/m �C). T = T(x,y) is the temperature field in the
medium (a function in x and y), and oT/ox and oT/oy are the temperature gradients over x and y, respectively.
The minus sign is to indicate that the direction of heat flux is opposite to direction of increasing temperature.
In convection heat transfer, the heat flux is given by

q ¼ AhðT1 � T sÞ ð2Þ
where h (W/m2 �C) is the film (a property of the fluid around the surface), T1 and Ts are the fluid and surface
temperature, respectively, and A is the surface area exposed to the flow. For a small element in a solid material
(assuming a linear temperature distribution along its unit length, and a unit area perpendicular to heat flow
direction) the heat flux conduction is

q ¼ k
dT
dx
¼ k
ðT h � T lÞ

1
¼ kðT h � T lÞ ð3Þ

where Th, Tl are the high and low temperatures of its ends, respectively. From (3), by assuming a linear tem-
perature distribution along the elements shown in Fig. 3, we get

Q1 ¼ K1=L1 � ðT 2 ��T 1Þ; Q2 ¼ K2=L2 � ðT 1 ��T 0Þ
Having the conservation of energy equation over a control volume containing both elements 1 and 2 (input

heat flux equals output heat flux, and similarly, when we study two elements in which one is a convective and
the other is conductive), we have

Q1 ¼ Q2 ð3aÞ
thus

T 1 ¼
K1

L1
T 0 þ K2

L2
T 2

K1

L1
þ K2

L2

for heat conduction ð4Þ

and

T 1 ¼
hT1 þ K1

L1
T 0

hþ K1

L1

for heat convection ð5Þ
R
U
N

C
O

RObtaining updating rules for two-dimensional heat transfer model

(a) Using finite differences method [2].

With the aim of deducting equations from Finite Differences, we wrote the general partial differential equa-
tions for a steady-state heat transfer through a material, and then we approximated these equations using fi-
nite differences. We applied the basic equations of heat transfer shown earlier, to a one-dimensional element,
assuming a linear temperature distribution along its length. The resulting heat flux equation is q = k(Th � Tl),
where Th, and Tl are the high and low temperatures of its ends, respectively. A steady heat transfer without
heat generation in the body in 2D is represented by the following diffusion equation [2]:

k
o2T
ox2
þ o2T

oy2

� �
¼ 0

To solve this equation, we need to get the second derivative of the temperature gradient. To do so, we study a
steady-state heat transfer in a long rod as represented in Fig. 20. In this figure, we study a very small section of
one-dimensional rod. Points A, B and C along the rod has corresponding temperatures of T1, T2, and T3, respec-
tively. Distances between points in the section are as indicated on the figure. To get the temperature gradient
along small section, we assume a linear temperature change in x-direction over the very small finite space Dx.
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
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Fig. 20. Heat transfer in one dimension.
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ox ¼ ð
T 1�T 2

Dx Þ is the temperature gradient at point A, oT
ox ¼ ð

T 2�T 3

Dx Þ is the temperature gradient at point B, Thus,

the temperature gradient at point C is: o2T
ox2 ¼

½ðT 1�T 2
Dx Þ�ð

T 2�T 3
Dx Þ�

Dx ¼ T 1þT 3�2T 2

Dx2 .

By applying the previous result in a two-dimensional space, we can approximate the solution of the previ-
ous PDE applied to the grid in Fig. 21 as: k½ðT 1þT 3�2T 0

a2 Þ þ ðT 2þT 4�2T 0

a2 Þ� ¼ 0 From which we obtain:
T1 + T2 + T3 + T4 � 4T0 = 0. This equation relates nodes temperatures of the grid. Thus, giving the updating
rule for an internal node (not on any of the sides of the bar) as node 0 to be: T 0 ¼ T 1þT 2þT 3þT 4

4
Updating Rule 1.

These results are for a steady-state heat transfer in a homogeneous medium with constant coefficient of
thermal conductivity k in all directions. We still need the updating rules for a point on the insulated surface,
or on the convective side of the rod. In order to get these rules, we study the grids shown in Figs. 22 and 23,
respectively.

Using a similar procedure (described in detail in [9]), we have deduced the rules for a node on the insulated
boundary and on the convective boundary as follows:

T 0 ¼
T 1 þ T 3 þ 2T 2

4
Updating Rule 2

We evaluate the heat balance at the two closed cells of the grid in Fig. 22 with insulated boundary, i.e. for the
zone of the two closed cells. From energy conservation law, the summation of all heat fluxes entering and
U
N

C
O

R
R

E
C

Fig. 22. Insulated boundary grid.

Fig. 21. Finite differences grid.

Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006



F

533

534

535

537537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552
553

554

555

556

557

Fig. 23. Convective boundary grid.

H. Saadawi, G. Wainer / Simulation Modelling Practice and Theory xxx (2007) xxx–xxx 19

SIMPAT 594 No. of Pages 24, Model 3+

24 September 2007 Disk Used
ARTICLE IN PRESS
O
R

R
E
C

T
E
D

P
R

O
Othose exiting at steady-state case would equal to zero as no energy is accumulated or lost. Similarly, by apply-

ing the heat balance equation on the two closed cells at the grid in Fig. 23, we get the updating rule for node 0
on the convective boundary as

T 0 ¼
T 1=2þ T 3=2þ T 2 þ Tf � h � a=k

2þ h � a=k
Updating Rule 3

(b) Using finite elements method [1].

We have defined a method to deduce Cell-DEVS model updating rules from Finite Elements model for 2D
problems, and we applied it to a triangular finite element with equations of steady-state heat transfer. The ele-
ment shape is shown in Fig. 24. We used a linear change function of the field under study over the element.
After getting the matrix equation for one element, we construct a mesh of elements interconnected, and we
apply equilibrium equations, obtaining the node temperature as a function of its surrounding nodes. This
function used as local computing function in Cell-DEVS model. These updating rules are used for internal
nodes inside the bar. Similarly, we construct another mesh to study boundary nodes on the convective side.

The element has three nodes (each at a vertex of the triangle) each containing a value for the potential under
study (for example temperature values). This type of element (called Constant Strain Triangular) was used
historically to analyze body strain problems. Any internal point in the element as P can be evaluated as a func-
tion of the three nodes. We assume a linear function over the element, that is: Tp = N1T1 + N2T2 + N3T3,
where N1, N2, N3 are linear shape functions. With further manipulations, we can get temperature gradient

inside the element as
oT
ox
oT
oy

� �
¼ BT e where B ¼ 1

2A

y23 y31 y12

x32 x31 x21

� �
, T e ¼

T 1

T 2

T 3

2
4

3
5, y23 = y2 � y3, x32 = x2 � x3, . . .,

and A is the area of the triangular element. The final steady-state equations for all elements in a structure can
be represented in a matrix format as: KT = R, where K is the global stiffness matrix of the structure, T is the
node temperatures vector, and R is the heat rate vector at each node (the underline denotes a Matrix). For
detailed manipulations, please refer to [1,10].

To get the global conductivity matrix K for a mesh of elements in a structure, we need to construct it from
elemental k with a simple summation procedure as described in [1]. For a single element: Ke = kAeB

TB , where
U
N

C

Fig. 24. Triangular element.
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Ke is element conductivity matrix, k is the element material thermal conductivity coefficient, Ae is the element
area. The final matrix K for a single element is

K ¼ k
2

y2
23 þ x2

32 y23y31 þ x32x13 y23y12 þ x32x21

y31y23 þ x31x32 y2
31 þ x2

13 y31y12 þ x13x21

y12y23 þ x21x32 y12y31 þ x21x13 y2
12 þ x2

21

2
64

3
75

Therefore, for a triangular element we have

k
2

y2
23 þ x2

32 y23y31 þ x32x13 y23y12 þ x32x21

y31y23 þ x31x32 y2
31 þ x2

13 y31y12 þ x13x21

y12y23 þ x21x32 y12y31 þ x21x13 y2
12 þ x2

21

2
64

3
75 �

T 1

T 2

T 3

2
64

3
75 ¼

R1

R2

R3

2
64

3
75 ð6Þ

where T1, T2, T3 are node temperatures, and R1, R2, R3 are initial heat rate values applied at the three nodes.
We construct a mesh of elements to represent a recurring pattern inside the structure under study, as in
Fig. 25.

This figure shows a mesh composed of six elements marked as E1,E2, . . . ,E6. Those elements have their
nodes numbered as shown from zero to six. The middle node 0 is shared among all the elements; thus, its value
is a function of all the other elements. By studying this structure, we were able to deduce the updating rules for
node 0, which were then repeat for all similar internal nodes.

We will use the following notation to name the nodes. Each of three nodes in each element is numbered
locally, and it is referred by global numbers as in Fig. 25. Table 3 shows the relation between local node
and global node numbers for each element (local node numbers are located at each column header, while
the global node numbers are in table cells).

As a convention, local nodes for an element are numbered in counterclockwise direction. For example, the
first local node of ‘‘Element 1’’ corresponds to the node globally numbered as 5 as in Fig. 25. The second local
node corresponds to the node globally numbered 0 and its third local node corresponds to the node globally
U
N

C
O

R
R

E
C

T

Fig. 25. Internal mesh of triangular elements.

Table 3
Mapping of local nodes to global nodes

Local nodes

1 2 3

Element 1 5 0 4
Element 2 0 5 6
Element 3 6 1 0
Element 4 2 0 1
Element 5 0 2 3
Element 6 3 4 0
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numbered 4. This mapping is shown in Table 3 for all six elements in Fig. 25. We will use this table whenever
we construct the matrix equation for an element as Eq. (6) above. Using Table 3, and considering the previous
mesh in Fig. 25, we get

k
2

a2 �a2 0

�a2 2a2 �a2

0 �a2 a2

2
64

3
75 �

T 1

T 2

T 3

2
64

3
75 ¼

R5

R0

R4

2
64

3
75 Element 1

where the first row corresponds to the local node 1 (which is globally numbered as 5, as seen in Table 3). The
second row corresponds to global node 0, and the third row corresponds to global node 4:

k
2

a2 �a2 0

�a2 2a2 �a2

0 �a2 a2

2
64

3
75 �

T 1

T 2

T 3

2
64

3
75 ¼

R0

R5

R6

2
64

3
75 Element 2

where the first row corresponds to local node 1 (which is globally numbered as 0, as seen in Table 3), the sec-
ond row corresponds to global node 5, and the third row corresponds to global node 6. Subsequently, we find
the matrix equations for every other element similar to those above (due to symmetry of shape and numbering
scheme for local nodes). The only difference would be the correspondence between rows of the matrix equation
and different global nodes. By taking the summation of heat rate at node 0, we get

� a2T 5 þ 2a2T 0� a2T 4 þ a2T 0� a2T 5 � a2T 1þ a2T 0� a2T 2þ 2a2T 0� a2T 1þ a2T 0� a2T 2� a2T 4þ a2T 0

¼ Rð1Þ0þRð2Þ0þRð3Þ0þRð4Þ0þRð5Þ0þRð6Þ0 ð7Þ

where R(1)0 is the heat rate into node 0 from element 1. In steady state, the input heat rate in any node is equal
to the output from that node (i.e.

Pi¼6
i¼1RðiÞ0 ¼ 0Þ. Therefore, by solving Eq. (7) we obtain: T 0 ¼ T 5þT 1þT 2þT 4

4
,

which resembles the result obtained using the finite differences method for an internal node. In order to get
the updating rules for boundary conditions, we need to construct the mesh in the same way at the insulated
and convective boundaries.

Obtaining node updating rules for node displacements in solid mechanics with two Degrees Of Freedom (DOF)

The previous element used for heat transfer models has only one degree of freedom (DOF) for each node
(the temperature). Hence, it is sufficient to represent each node of the triangular element with one cell of Cell-
DEVS model. Another example, is of solid mechanics, however, has two DOF for each node (strain in X- and
Y-directions).

To solve the solid mechanics problem, we follow the same procedure to obtain the rules of the local com-
puting function in our Cell-DEVS. In problems of solid mechanics, the potential is the displacement, and the
field is the mechanical stress. Engineers study this type of problems to identify points inside the material where
unsafe stresses could occur, thus causing mechanical or structural failure. We used a simple element as shown
in Fig. 26, and worked as in the previous example to get element equations. Then, we built a mesh of elements
and used force equilibrium equations to obtain internal node displacement as a function of surrounding nodes
displacements. This would constitute our updating rules for node displacement in our Cell-DEVS model.
From displacements of each node, stress inside each element can then be calculated.

In the element shown in Fig. 26, we assume a constant strain through the element. Each node has two DOF,
thus it has a strain component in X-direction ux and another in Y-direction uy. All external forces that may act
on an element (either applied by other elements, or is an external load applied on the structure under study)
are assumed concentrated at the nodes.

The mesh showed in Fig. 27 represents a sub-structure that we need to examine. We build the force–strain
relation for each element, and then we apply force equilibrium principle at node numbered 1 to obtain
required relations between strains at node 1 as a function of surrounding nodes strains. Due to equilibrium,
Please cite this article in press as: H. Saadawi, G. Wainer, Modeling physical systems using finite element Cell-DEVS,
Simulat. Modell. Pract. Theory (2007), doi:10.1016/j.simpat.2007.08.006
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Fig. 27. Mesh of constant strain triangular elements.

Fig. 26. Constant strain triangular element.
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summation of all forces acting on node 1 in X-direction should be zero (i.e.
Pi¼6

i¼1f i
x ¼ 0). The same procedure

is repeated for node 1 in Y-direction ð
Pi¼6

i¼1f i
y ¼ 0Þ.

We discuss the algebraic manipulation for this model later in this Appendix to deduce the displacement at
node 1 in X and the displacement of node 1 in Y-direction. Deducing these rules is done as follows: From [10],
we have the following relation between stress–displacement and force on an element in a matrix form:

K � D ¼ F ð1Þ

where K is the 6 · 6 stiffness matrix for the element, D is the 6 · 1 displacement vector for nodal displacements
as shown in Fig. 26 and F is 6 · 1 vector for forces acting on each node in X- and Y-directions. From [10],

K = tABTEB, where t is element thickness; A is area of the element, E ¼ E
1�v2

1 v 0
v 1 0
0 0 1� v=2

2
4

3
5. In addition,

E is Young’s modulus.

BT ¼

y23 y23v x32ð1�vÞ
2

x32v x32
y23ð1�vÞ

2

y31 y31v x13ð1�vÞ
2

x13v x13
y31ð1�vÞ

2

y12 y12v x21ð1�vÞ
2

x21v x21
y12ð1�vÞ

2

2
666666666664

3
777777777775
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K ¼ tE
4Að1� v2Þ

y2
23þx2

32
1�v

2
y23x32

1þv
2

y23y31þx32x13
1�v

2
y23x13vþx32y31

1�v
2

y23y12þx32x21
1�v

2
y23x21vþx32y12

1�v
2

y23x32
1þv

2
x2

32þ y2
23

1�v
2

x32y31vþ y23x13
1�v

2
x32x13þ y23y31

1�v
2

x32y12vþ y23x21
1�v

2
x32x21þ y23y12

1�v
2

y23y31þx32x13
1�v

2
y31x32vþx13y23

1�v
2

y2
31þx2

13
1�v

2
y31x13vþx13y31

1�v
2

y31y12þx13x21
1�v

2
y31x21vþx13y12

ð1�vÞ
2

x13y23vþ y31x32
1�v

2
x13x32þ y31y23

1�v
2

x13y31vþ y31x13
1�v

2
x2

13þ y2
31

1�v
2

x13y12vþ y31x21
1�v

2
x13x21þ y31y12

1�v
2

y12y23þx21y32
1�v

2
y12x32vþx21y23

1�v
2

y12y31þx21x13
1�v

2
y12x13vþx21y31

1�v
2

y2
12þx2

21
1�v

2
y12x21vþx21y12

1�v
2

x21y23vþ y12x32
1�v

2
x21x32þ y12y23

1�v
2

x21y31vþ y12x13
1�v

2
x21x13þ y12y31

1�v
2

x21y12vþ y12x21
1�v

2
x2

21þ y2
12

1�v
2

2
6666666664

3
7777777775

Therefore, the stiffness matrix for each element of Fig. 27 would be

K ¼ tE
4Að1� v2Þ

a2 þ a2 ð1�vÞ
2

�a2 ð1þvÞ
2

�a2 ð1�vÞ
2

a2v �a2 a2 ð1�vÞ
2

�a2 ð1þvÞ
2

a2 þ a2 ð1�vÞ
2
�a2 ð1�vÞ

2
�a2 a2v �a2 ð1�vÞ

2

�a2 ð1�vÞ
2

a2 ð1�vÞ
2

a2 ð1�vÞ
2

0 0 �a2 ð1�vÞ
2

a2v �a2 0 a2 �a2v 0

�a2 a2v 0 �a2v a2 0

a2 ð1�vÞ
2

�a2 ð1�vÞ
2

�a2 ð1�vÞ
2

0 0 a2 ð1�vÞ
2

2
6666666664

3
7777777775

A = Area of element¼ 1
2
ðx13y23 � x23y13Þ. Displacement D and forces F vectors would be

D ¼

ux1

uy1

ux2

uy2

ux3

uy3

2
666666664

3
777777775
; F ¼

fx1

fy1

fx2

fy2

fx3

fy3

2
666666664

3
777777775

By applying the previous matrix equation for each element in the mesh in Fig. 27, we obtain six equations for
node 1. From which, we reach the updating rule for the strains in node 1 as a function of strains in neighboring
nodes. From the equilibrium of forces in X-direction we have

Pi¼6
i¼1f i

x ¼ 0 at node 1, that is total of forces from
each element in X-direction is zero. Similarly, we have in Y-direction

Pi¼6
i¼1f i

y ¼ 0. From Eq. (1), we construct
the matrix equation for each of the 6 elements, and we then get the forces affecting at node 1 from each ele-
ment as

f 1
x ¼

tE
4Að1� v2Þ �a2 1� v2

2
ux4
þ a2 1� v

2
uy4
þ a2 1� v

2
ux1
� a2 1� v

2
uy3

� �

where f 1
x represents force from element 1, ux4

is displacement in X-direction of node 4. Similarly, uy4
is the dis-

placement of node 4 in the X-direction:

f 2
x ¼

tE
4Að1� v2Þ a2 3� v

2
ux1
� a2 1þ v

2
uy1
� a2 1� v

2
ux4
þ a2vuy4

� a2ux5
þ a2 1� v

2
uy5

� �

For element 2:

f 3
x ¼

tE
4Að1� v2Þ ½�a2ux5

þ a2vuy5
� a2vuy6

þ a2ux1
� Element 3

f 4
x ¼

tE
4Að1� v2Þ �a2 1� v

2
ux7
þ a2 1� v

2
uy7
þ a2 1� v

2
ux1
� a2 1� v

2
uy6

� �

f 5
x ¼

tE
4Að1� v2Þ a2 3� v

2
ux1
� a2 1þ v

2
uy1
� a2 1� v

2
ux7
þ a2vuy7

� a2ux2
þ a2 1� v

2
uy2

� �

f 3
x ¼

tE
4Að1� v2Þ ½�a2ux2

þ a2vuy2
� a2vuy3

þ a2ux1
�
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With algebraic manipulations and by applying the equilibrium condition
Pi¼6

i¼1f ix ¼ 0, we reach the updating
rule for the displacement at node 1 in X-direction to be

ux1
¼ 2ux4

ð1� vÞ þ 2uy1
ð1þ vÞ þ ð1þ vÞðuy3

þ uy6
Þ þ 4ðux5

þ ux2
Þ þ ux7

ð1� vÞ � ð1� vÞðuy4
þ uy5

þ uy7
þ uy2

Þ
2ð5� 2vÞ

Similarly, we get the displacement of node 1 in Y-direction as

uy1
¼ 2ux1

ð1þ vÞþ4uy4
þux2

ð1þ vÞþ2uy5
ð1� vÞþux6

ð1þ vÞ4uy7
þ2uy2

ð1� vÞ�ð1þ vÞðux4
þux5

þux7
þux2

Þ
2ð5�2vÞ
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