
Chapter 1 Introduction 

Modeling & Simulation approach [Zei00] has received increasing interest for its sound 

mechanism enabling fine representing of the discrete event dynamic systems. A general 

conceptual framework of Modeling & Simulation [Kim01; Zei02; Zei03] constitutes the 

three basic entities: the real system fitting in certain experimental framework, model, and 

simulator. The real system fitting in certain experimental framework represents a real or 

virtual environment in which the source data under analysis of interest to the modeler are 

collected. Model offers two facets of abstractions of the real system. The behavior of 

model is a set of input/output data comparable to that observable in the real system. The 

structure of model is the set of instructions to generate the data. Simulator executes the 

instructions of the model and really generates the behaviors of the model. Two kinds of 

relationships bridge the three basic entities. Modeling relation reflects the approximation 

of the model behaviors to the real system in a specified experimental framework; while 

simulation relation lying between a model and a simulator represents how faithfully the 

simulator carries out the instructions of the model. The M&S framework benefits from the 

separated concerns between modeling and simulation. On one hand, the same model can be 

simulated with different simulators, allowing portability and interoperability at a high level 

of abstraction. On the other hand, well-defined separation facilitates verifications of 

models and simulators independently and reusability in later combination with minimal 

re-verification.  

Benefited from the precise mathematical specification and the underlying sound M&S 

framework, DEVS (Discrete Event System Specification) [Zei76, Zei00] has proved to be 

a universal modeling mechanism for discrete event dynamic systems. The DEVS 



formalism provides a means of specifying a mathematical object called a system, in which 

a time base, inputs, states, outputs, and functions for determining next states and outputs 

given current states and inputs are defined. Certain constellations of such parameters 

render fine system abstractions and allow the possibility to analyze the system behaviors 

thoroughly.  

DEVS-based systematic approach has gained popularity in the real time application due to 

the fact that it enables the smooth transformation from modeling to executing code in real 

time environment with the help of the RT-DEVS [Hon97], an extension of the original 

DEVS formalism. RT-DEVS allows DEVS models interact with surrounding 

environment, such as software components, hardware components or human operators, in 

real time. Aided by RT-DEVS, a real-time DEVS-based experimental framework (eCD++) 

[YuJ07] is devised to facilitate development of real-time embedded systems (RTS). 

eCD++ takes advantage of the hardware-in-the-loop technology [Gli04a] to establish a 

high level DEVS-based experimental environment for the real time embedded systems.  

1.1. Problem Statement 

eCD++ is a systematic toolkit assisting development of embedded real-time systems based 

on P-DEVS formalism [Cho94]. By permitting developing hybrid software and hardware 

systems and smooth transformation from the DEVS models to the hardware counterpart, 

eCD++ provides a DEVS-based real-time experimental framework, on which the 

embedded real-time systems can be designed and implemented effectively and safely.  

As well known, embedded real-time systems [Kop00] are of critical timeliness and 

rigorous correctness of system behaviors. Moreover, most embedded real-time systems 



are highly reactive artificial systems that deliver data from/to devices interacting with the 

surrounding environment (another artificial/natural system). Improper decisions may lead 

to catastrophic consequences for assets or lives. The traditional DEVS simulation 

approaches are too rigid to fit the varied requirements of embedded real-time systems, such 

as adjusting the system structure to respond to the changing environment, recovering from 

the fault automatically and self adaptability etc.  

Due to the absence of dynamic structure, eCD++ fails to meet the challenges the real time 

embedded systems pose. Dynamic structure is a feasible solution to fitting the varied 

environments or recovering from errors automatically. Flexibility and reliability, therefore, 

could be reached by adjusting the structures of models dynamically.  

Our work aims to introduce a Flexible Dynamic Structure DEVS algorithm (FDSDE) 

[Sha06] into eCD++. FDSDE defines a set of new message-passing algorithms [Sha07] to 

support the dynamic structure changes in RTS. The new experimental environment namely 

DS-ECD++ is developed equipped with an improved simulation engine that combines 

FDSDE with the P-DEVS real time simulation engine to adapt to not only the dynamic 

structure real-time simulation but also the real-time embedded system development. 

Dynamic structure DEVS, to some extent, makes it possible for the system designers and 

developers to improve the reliability and performance of the Real-Time embedded 

systems. 

1.2. Contributions 

The purpose of the thesis is to provide revised message-passing algorithms for each 

abstract simulator used in eCD++. The new message-passing algorithms are compatible 



with the functionalities of eCD++ and are capable of conducting dynamic structural 

changes during the running of simulation. The major contributions of the thesis are list as 

the following: 

� The message-passing algorithms for the existed abstract simulators in eCD++ are 

redesigned to allow processing both dynamic structural change and regular 

simulations. The redefined abstract simulators are also compatible with the major 

functionalities of eCD++. 

� We identify the coupled models which are subject to experiencing structural changes 

as structure components. Structure agent is proposed to play as a structural 

representative executing structural changes on behalf of structure components. A set 

of structural change operations are specified structure agents and are invoked by the 

user-defined structure agents. Moreover, a new message-passing algorithm to process 

the behaviors of structure agents are presented. 

� The basic structure change forms and the operation boundaries for the structural 

change operations are discussed. 

� A variety of structural change scenarios are devised and further a couple of structural 

change cases are figured to verify the correctness of the functionalities of DS-eCD++. 

1.3. Thesis Organization 

The rest of the thesis is organized as follows: 

Chapter 2 reviews the related literature. Firstly, the original DEVS formalism and the 

extensions of DEVS formalism including RT-DEVS and P-DEVS are introduced. 

Dynamic structure DEVS formalisms are listed as the underlying theoretical base of this 



work. Moreover, the applications of dynamic structure DEVS are surveyed. Finally, we 

depict the two DEVS-based toolkits: Standalone CD++ and eCD++, which are the base of 

the thesis. 

Chapter 3 depicts the FDSDE algorithm. The message-passing algorithms for each abstract 

simulator are exhibited. The typical message-passing scenarios and simulation phases are 

explained.  

Chapter 4 addresses the software architecture of DS-eCD++. The implementing issues in 

each software component are explicitly described in the following.  The functionalities of 

DS-eCD++ are also discussed in this chapter. 

Chapter 5 puts forward the structural change scenarios. Two cases together with a series of 

experiments are conducted to verify the logic and the functionality of DS-eCD++. 

Chapter 6 draws conclusions of the thesis and discusses the possible future work. 

 

 

 

 

 

 



Chapter 2 Review of the State of The Art 

This chapter presents a review of the state of the art in the filed of DEVS-based modeling 

and simulation technology. Especially, the dynamic structure DEVS and DEVS simulation 

in real-time domain are explored. The original DEVS formalism and two extended DEVS 

formalisms P-DEVS and RT-DEVS are illustrated in the first section. The DSDE and 

dynDEVS shown in the following section are the two extensions of DEVS to dynamic 

structure change. In addition, the dynamic structure DEVS and the applications are 

explored to demonstrate how powerful the dynamic structure change brings to the complex 

physical systems. Moreover, the researches of dynamic structure DEVS modeling and 

simulation in real-time embedded systems are surveyed. Finally, we introduce the 

standalone CD++ and ECD++, which are specific toolkits based on DEVS theory. 

2.1. DEVS Formalisms   

The set-theoretical definition of DEVS and its extensions are presented in this section. 

DEVS formalism is firstly introduced and it is a basis of other extended DEVS formalisms. 

P-DEVS improves the original DEVS formalism by eliminating serialization restrictions. 

RT-DEVS, based on P-DEVS, is a specified DEVS formalism executed in real time.   

2.1.1. DEVS Formalism [Zei76, Zei00] 

DEVS is a formal modeling and simulation framework based on systems theory. DEVS 

has well-defined concepts for coupling of components and hierarchical, modular model 

composition. DEVS defines a complex model as a composite of basic components (called 



atomic model), which can be hierarchically integrated into coupled models. A DEVS 

atomic model is defined as: 

M = <X, S, Y, δint, δext, λ, ta> 

Where X is a set of input events; Y is a set of output events of the atomic model; S is a set 

of partial states associated with the atomic model; ta represents the lifetime of each state in 

S; δext is external transition function, this function is triggered when an input event in X is 

received by the atomic model; λ is output function; δint is internal transition function, if 

there is no external event comes, the current state will be kept for its lifetime ta, then output 

event might be triggered determined by λ and produce output event Y, at the same time 

internal state change will happen determined by internal transition function. 

A DEVS coupled model is defined as: 

CM = <X, Y, D, {M i}, {I i}, {Z ij}, Select> 

Coupled model is defined as a set of atomic models M i (i ∈ D) which certain a set of 

interactions through their interface (X, Y). Mi is a basic DEVS model (atomic or coupled); 

I i is the set of influencees of model i; for each j ∈ Ii, Zij is the i to j translation function to 

convert the output of Mi to the input of Mj. The property, closure under coupling, allows 

coupled model taken equally as atomic model, which enables model reuse. Select is the 

tie-breaking function for imminent components. 

The definition of DEVS formalism may raise two types of ambiguity. One type of 

ambiguity may rise when multiple components in a coupled model are imminent at the 



same time. DEVS formalism employs Select function to solve the ambiguity. By defining 

an order over the imminent components, only one imminent component in a coupled model 

is allowed to execute its internal transition function. Other imminent components are 

divided into two groups: the ones receiving an external event from this model or the 

remaining. The former group invokes the external transition function with e = ta(s); while 

the later group is imminent in the next simulation cycle and may need to be selected again 

to decide the execution sequence. The serializing execution produces message redundancy; 

therefore leads to potential executing bottleneck. The other ambiguity is caused when an 

atomic model receives an external event at exactly same time its internal transition is 

scheduled. The execution sequence is not specified in DEVS formalism. It is the DEVS 

software’s responsibility to determine which function goes first. The serialization 

constraint, however, may not reflect the reality and cause errors. 

2.1.2. P-DEVS Formalism 

P-DEVS [Cho94] is an extended DEVS formalism eliminating the two types of ambiguity 

of the original DEVS formalism. A confluent function is added to the atomic model to 

dispose the transition collisions in atomic models. An atomic model is defined as: 

M = <X, S, Y, δint, δext, δcon, λ, ta> 

Where  

X: a set of input events 

Y: a set of output events 



S: a set of sequential states.  

δint : S�S: internal transition function  

δext: Q x Xb � S: external transition function, Xb is a set of bags over elements in X, 

δext(s, e, Φ) = (s, e). 

δcon: S x Xb � S: confluent transition function.  

λ : S � Yb: output function 

ta : S � R0
+
�
∞ : time advance function,  

with Q = {(s, e) | s ∈S, 0 < e < ta(s)}, e is the elapsed time since last state transition. 

The semantics of the P-DEVS definition introduce confluent transition function, which 

handles the collision behavior when an external event arrives at the same time of its 

internal transition, e = 0 or e = ta(s). The confluent transition function allows processing 

model behavior in parallel instead of serialization.  

The coupled model in P-DEVS presents the following structure: 

CM = <X, Y, D, {M i}, {I i}, {Z ij}> 

Where  

X is a set of input events, 

Y is a set of output events 



D is a set of components 

For each I in D, M is a component 

For each I in D U {self}, Ii is the influencees of i. 

For each j in Ii, Zi,j is a function, the I-to-j output translation. 

P-DEVS formalism furnishes two advantages over the original DEVS formalism by 

eliminating the two types of ambiguity. Each model is equipped with a message bag to 

handle the simultaneous events, by which the tie-breaking function, Select, is removed and 

all imminent components can be activated in parallel. Another type of ambiguity is 

eliminated by employing a confluent transition function in an atomic model. For those 

components experiencing internal and external transitions collide, the confluent transition 

function is invoked instead of either internal or external transition function to calculate the 

new state. The confluent transition function leaves the executing sequence of internal and 

external transitions to the modelers. It is reasonable for the modelers to determine the state 

transition of the models in the presence of collisions according to the system real 

requirement. Since P-DEVS formalism overcomes the deficiencies in DEVS definition, it 

enables more effective and more reasonable modeling of the target systems. The real time 

simulation engine in eCD++ complies with the P-DEVS principle. 

2.1.3. RT-DEVS Formalism 

The real time DEVS formalism [Hon97] is an extension of the DEVS formalism for the 

real time application. An atomic model in RT-DEVS is defined as: 



RTAM = <X, S, Y, δint, δext, δcon, λ, ta, Ψ, A> 

Where, ta is a time interval function given by an interval ta(s)|min ≤ ta(s) ≤ 

ta(s)|max, s ∈S. Ψ: S�A is an activity mapping function. A is a set of activities A = {a| t(a) 

∈I+0,∞ and t(a)≤ ta|max} ∪ Φ.     

A real time DEVS coupled model connects basic real time DEVS models together to 

form a new model. A real time DEVS coupled model is structured as: 

RTCM = <D, {Mi}, {I i}, {Z i,j}> 

Where, D is a set of components. For each i in D, Mi is a basic real time DEVS 

model, Ii is a set of influences of i. For each j in Ii, Zi,j is an i-to-j output translation. 

The RT-DEVS formalism replaces virtual time advance in the DEVS formalism by real 

time advance. The time advance function is no more a fixed value. Instead, a time 

interval is defined. The RT-DEVS simulator checks a specified time advance of a 

RT-DEVS model against a real time clock. Ta(s)|min is an auxiliary parameter used to 

verify the time correctness during simulation. A set of activities associated with a state is 

defined in parametersΨ and A. 

2.2. Dynamic Structure DEVS  

Dynamic structure is also called variable structure. Zeigler coined the term “variable 

structure models” to describe models that contain in descriptions of their behavior the 

possibility of altering their own structure and, consequently, their behavior [Zei86; Zei89; 



Zei91]. Structural changes might concern the model’s behavior rules and attributes or, 

presupposing a compositional construction of models, might refer to a model’s 

components and interactions. Dynamic Structure provides a desirable solution to 

capturing the dynamic nature of the discrete event dynamic systems and allows runtime 

simulation tuning. 

2.2.1. Dynamic Structure DEVS Formalisms 

The structure extensions to the DEVS formalisms have been made to regulate the dynamic 

structure definitions. DSDEVS [Bar95; Bar97] introduces a structural entity called 

network executive to conduct the structural changes for the network model in a centralized 

way. Pawletta [Paw96] employs a structure event condition and structure event action pair 

to represent a structure state of an atomic model or a coupled model. Uhrmacher [Uhr01] 

developed the Pawletta’s algorithm by offering a complete definition in both structural and 

behavioral perspectives of an atomic model or a coupled model. Uhrmacher’s algorithm 

captures the intrinsic reflective nature of variable structure model by offering a recursive 

definition.  In this section, we will explain the formalisms of Barro’s algorithm and 

Uhrmacher’s algorithm.  

DSDE Formalism    

DSDE divides models into two groups: basic and network models. The basic models are 

atomic structure units which cannot be split. The network models are coupled components, 

composed of multiple basic structure models and interconnections that involve structural 

changes. A Network Executive is a modified basic model to conduct structural changes in 

network models. The Network Executive stores all possible states of structural changes and 



their corresponding component sets in each structural state. The two parts are associated 

together through an index function in the Network Executive. A DSDE network is a 4-tuple 

[Bar01]  

DSDENN = (XN, YN, χ, Mχ),  

Where XN is the network input value set; YN is the network output value set; χ is the 

name of the dynamic Network Executive; Mχ is the model of the Network Executiveχ, 

which is a modified basic model and is defined by  

Mχ = (Xχ, s0, χ, Sχ, Yχ, γ, Σ*, δχ, λχ, τχ).  

Here γ: Sχ � Σ* is the structure function, Σ*  is the set of network structures. A 

structure Σα ∈ Σ* associated with the executive partial state sα,χ ∈ Sχ is given by Σα = γ(sα,χ) 

= (Dα {M i,α}, {I i,α}, {Z i,α}), where Dα is the set of component names associated with the 

executive partial state sα,χ; for all i ∈ Dα, Mi,α is the model of the component i; for all i ∈ Dα 

∪ {χ, Ν}, Ζi,α is the set of component influencers of i; for all i ∈ Dα ∪ {χ}, Z i,α is the input 

function of the component i; and ZN,α is the network output function. Changes of a basic 

model include structural changes within the basic model or changes on transition/output 

functions of this basic model. A Network Executive should be used together with the basic 

model to composite a network model (only the Network Executives can conduct structural 

changes).  



DynDEVS Formalism 

The dynamic DEVS formalism [Uhr01] does not introduce an extra component to conduct 

dynamic structural changes. Instead,ρα, a model transition function, is included. There are 

two kinds of dynamic DEVS models: dynDEVS (atomic) and dynNDEVS (coupled). The 

dynDEVS models are atomic structural components with the structure  

dynDEVS =df <X, Y, minit, M(minit)> 

where X, Y are the structured sets of inputs and outputs; minit ∈ M(minit) is the 

initial model, where M(minit) is the least set having the structure{<S, sinit, δext, δint, ρα, λ, 

ta> }. dynNDEVS models are coupled structural components with the structure  

dynNDEVS = df <X, Y, ninit, N(ninit)> 

where X, Y are the structured sets of inputs and outputs; ninit ∈ N(ninit) is the start 

configuration and N(ninit) is the least set having the structure {<D, ρN, {dynDEVSi}, { I}, 

{ Zi, j}, Select>}. A model’s state space, internal and external transition, output, time 

advance, and model transition functions are subject to change during simulation. A 

dynDEVS can be interpreted as a set of DEVS models with the same interface plus a 

transition function that determines which DEVS model succeeds the previous one. Agents 

associated with dynDEVS or dynNDEVS models hold the worldview knowledge of their 

corresponding models and environments. Agents are responsible for initiating structural 

changes and executing the structural change process. 



The dynamic structure DEVS formalisms make it possible to represent discrete event 

dynamic systems more precisely; therefore, enable dynamic structure DEVS to represent 

dynamic structural behaviors in the DEVS simulation, complex systems design and 

developments and so on.  

2.2.2. Dynamic Structure and the Applications 

Dynamic structure DEVS provides a salient supplementary to the DEVS theory to 

represent and simulate the structural changes in interactions, composition, and behavior 

patterns. Dynamic structure DEVS promotes the Modeling & Simulation methodology 

[HuX03] at three levels. 1) It offers natural and effective way to model the complex 

systems which exhibit structural changes and behavioral changes to respond to different 

situations. Adaptive computer architecture [Bra94] is established using dynamic structure 

to achieve a desired computing performance. An ecological system [Uhr93] calls for 

dynamic structure to reflect the evolvements of the elements in the system. It is hard to 

model and simulate the structural changes in the above systems without dynamic structure. 

2) Dynamic structure brings additional flexible to the systems design and development. 

The dynamic distributed robotic system [HuX03] exhibit dynamic reconfigurations as 

robots interact and make decisions in dynamic environments employing dynamic structure. 

A flexible manufacturing system [Her00] is able to switch among the different product 

processes online. Benefited from dynamic structure, the dynamic issues can be captured in 

the system development stage and embodied in the implementations; therefore, the 

flexibility and reliability of the system can be achieved. 3) The dynamic structure permits 

loading only a sub-set of the components for simulation. It is very useful in a very complex 



system containing tremendous members as only the active components are loaded 

dynamically to conduct the simulation.  

2.3. Modeling & Simulation Methodology in Real-Time Systems 

Much research effort has been put in the development of real-time systems. In the real-time 

simulations, the simulation time should be synchronized as closely as possible to the clock 

time of the underlying computer system [Zei93]. The real time simulation frameworks, 

including DEVS-Scheme, The layered design approach for distributed real-time systems 

[Cho00] [Cho01a] and the real-time simulation framework based on RT-DEVS [Cho01b], 

are helpful attempts of applications of Modeling & Simulation methodology in the 

real-time field. Based on the real-time simulation frameworks, a series of methodologies 

are proposed to realize the transformation from the modeling stage to the design stage in 

real-time embedded systems, such as DEVS-on-a-Chip [HuX01], Robot-in-the-loop 

projects [HuX05a] and Hardware-in-the-loop [LiL03; Gli04a; YuJ07] etc. However, the 

static structure allowed in the frameworks makes it difficult to respond to the changes in 

the residing internal / external environments, which always call for dynamic structural or 

behavioural changes to maintain the flexibility and reliability in real-time embedded 

systems.  

Modeling and Simulation with dynamic structure offers necessary modeling of the 

dynamic structural changes and behavioural changes. The dynamic structure can be 

applied in e-Commerce applications [Liu03] enabling a dynamic business process to meet 

the instant requirements, and scale to large and small business activities. In a 

manufacturing system, a routing for a product specifies a given sequence of manufacturing 



workstations or machines. If some workstations or machines are replaced, then the routings 

requiring those machines must be updated accordingly. Dynamic structure is a desirable 

solution to update the routings online in a flexible manufacturing system [Her00]. 

Moreover, dynamic reconfiguration of some components in the real time systems realizes 

runtime simulation tuning [Mit06]. The rapid feedback cycle allows experimentation with 

parameters and structures and results in effective model configuration that is difficult to 

achieve when turnaround requires hours or days. The dynamic team formation in the 

distributed robotic system [HuX05d] is a meaningful attempt of dynamic reconfiguration 

of the components in a real time distributed system. Each robot is taken as an independent 

component and can be reconfigured by establishing the couplings between the robots; 

therefore a Leader-Follower match can be conducted. During this process, the couplings 

between the models can be added and removed, resulting in a variable structure system. 

Also, the real-time implementation enables an execution of hybrid software components 

and hardware components system; therefore promotes a smooth transformation from the 

simulation modeling to design of real time systems. [HuX04] and [HuX05b] present how 

the virtual robot models are replaced by the real robots while maintaining model 

continuity. By studying the cooperative robotic system [HuX05c], a stepwise incremental 

study process for development of the real-time embedded systems with dynamic structural 

changes is also proposed. All of those researches demonstrate that the dynamic structure is 

a desirable solution in the modeling & simulation methodology, especially in the 

development of the real time embedded systems applying the modeling & simulation 

methodology.  



2.4. Introduction to the CD++ Simulation Toolkit 

CD++ [Wai02] is a modeling and simulation software family based on the DEVS theory. 

In which atomic models are defined using a state-based approach (encoded in C++ or an 

interpreted graphical notation); while coupled models contain atomic models composition 

and interconnecting information of those atomic models. CD++ has been widely used in 

various applications from simple queuing systems to complex systems [Mac04] such as 

environmental systems [Wai06] or complex real-time systems [Gli04b]. CD++ employs 

the abstract simulator mechanism to exchange messages among the processors while 

simulation advances. A Simulator component is in charge of executing the behaviour of 

atomic models while a Coordinator component takes charge of the message processing of 

coupled models. The simulation evolves through message-passing, using six kinds of 

messages: I (Initialization), * (Internal), X (Inputs), Y (Output), @ (Collect) and D (Done). 

Different versions of CD++ have been developed to facilitate various applications. Stand 

alone CD++ implements DEVS and Cell-DEVS simulation. Parallel CD++ [Liu06; Liu07] 

is aiming to enhance the performance of Cell-DEVS simulation by distributing calculation 

of different cells over multiple processors. Distributed CD++ [Ma] is developed to 

facilitate the coordination of the different simulating engines in different sites through the 

standard distributed computing protocols. Real time embedded CD++ (eCD++) is a 

DEVS-based systematic developing tool constructed especially for Real-Time embedded 

system.  

eCD++ [YuJ07] is a version of the CD++ software family that has been adapted for real 

time and embedded system applications. eCD++ employs the Model-Driven Architecture 

of real-time systems (MDA) [Wai05] to construct a high level experimental environment 



for the development of real-time systems. The software is modularized as a group of 

components that have well-defined behaviors and have independent functionalities. Four 

major components are included: the Main Simulator, DEVS Modeling Subsystem, 

Simulation Subsystem and Messaging Subsystem. It is based on the P-DEVS formalism, 

which provides the modeling principles to characterize the structural and behavior aspects 

of real-time systems. Moreover, RT-DEVS enables eCD++ to simulate the hybrid software 

and hardware systems. Finally, eCD++ supports smooth transformations from simulation 

models to real components of the systems. The Flat Coordinator in eCD++ provides an 

alternative simulation fashion by eliminating the coordinators in the hierarchy and 

exchanging messages directly between the flat coordinator and simulators. The GGAD 

interpreter (Generic Graphical advanced environment for DEVS modeling and 

simulation) in eCD++ enables to specify atomic models graphically. It is an easier way 

for the non-expert users to build atomic models intuitively. 

 

 

 

 



Chapter 3 the Flexible Dynamic Structure DEVS Algorithm 

Flexible Dynamic Structure DEVS Algorithm is a new structural paradigm based on the 

DSDEVS formalism. The FDSDE supports various structural changes in the DEVS-based 

framework including changes of DEVS models composition, changes of the couplings 

among the DEVS models and changes of input/output ports of the coupled models. The 

structural changes are implemented dynamically during a simulation running according to 

the structural state variables.  

In FDSDE, a conception of a structure component refers to a coupled model subject to the 

structural changes. A structure agent is introduced to execute the structural changes for a 

structure component. As defined in the DSDEVS formalism, the possible model structures 

of a structure component constitute the state space of a structure agent. Each model 

structure of a structure component is mapped into a structural state of its associated 

structure agent and is connected with a structural value. The structural state transitions of a 

structure agent are triggered by a structural change message. A new abstract simulator, 

RevSimulator, specifies the message-passing paradigm for the structure agent. The 

messages related to structural change are defined for the structural change processes.  

Message Definitions 

The simulation is advanced with exchanging different kinds of messages among the 

simulation processors. Two categories of messages are defined for simulation in eCD++: 

control messages and content messages. Control messages consist of the initialization 

message (I), the internal message (*), the collect message (@) and the done message (D); 

while content messages include the external message (x) and the output message (y). The 



external messages and the output messages exchange simulation data between simulation 

models. The initialization message indicates the start of simulation. The collect message 

and the internal messages invoke the output functions and the state transition functions of 

the atomic models respectively. The timing information is carried through D messages for 

synchronization. The introduction of dynamic structure requires extra message types: 

� D (sc)# Structural change request. This message is raised by an atomic model when 

the structural change conditions are satisfied. D (sc) brings the expected structural 

value to the parent coordinator. The structural value indicates the expected model 

structure of a structure component.  

� *(sc)# Structural change message. This message is issued by the Root and passed 

down to each structure component. The structure agent of each structure component 

conducts the structural changes according to the structural value in the message.  

� St Simulation resuming message. This message is sent by a structure component to 

the new models after the structural changes. This message is used to synchronize the 

models. 

# The ‘sc’ in the parenthesis denotes the expected structural value in the message. 

Structure Component and Structure Agent 

Barros[Bar 1997] defines dynamic structure system network as a component that can 

change its structure dynamically. The dynamic structure system network is defined with a 

special component, the network executive. Since the network coupling information is 

located in the state of the executive, transition function can change this state and, in 

consequence, change the structure of the network. In FDSDE, a dynamic structure system 



network, which is called structure component, is a coupled model subject to undergoing 

structural changes. The concept of network executive is represented by structure agent, in 

which the structure information of a structure component is located. The concepts of 

structure component and structure agent are illustrated.  

Structure Component 

In FDSDE, atomic models hold only model behaviours (Internal / External / Confluent 

transition function & output transition function) and no structure information is included; 

therefore atomic models are structure units and cannot be split in terms of structure. 

Instead, coupled models give a well-defined concept of system modularity and component 

couplings. That is to say, coupled models contain structure information. As a result, a 

structure component can be represented by a series of model structure sets including 

modules and couplings between the modules. If a model structure set is taken as a structure 

state of a structure component and connects to a structural change command (Scomm), the 

structure component can shift its model structure among the model structure sets according 

to the indicated structural value. The Fig. 1 demonstrates the relationship between the 

model structure sets and the structural states of a structure component.  

 

 

 

 



 

 

 

 

Fig 1. The Relationship between structure states and structure definitions of 

a structure component 

Structure Agent  

A structure agent defines possible structural states of a structure component and executes 

structural changes in its internal transition function for a structure component. As we have 

described, a structure component defines a series of model structures containing a group of 

modules and the couplings among the modules. Structure agent is employed to achieve the 

separated concerns between the model structure definitions and the structural change 

executions. Structure agent offers more flexibility to modellers who can generate the 

structural behaviours according to the real requirements.  

Model Hierarchy and Processor Hierarchy 

According to the DEVS theory, models are specified independently from the simulation 

mechanism. Two levels of hierarchies are presented in the DEVS-based simulation 

environment: model hierarchy and processor hierarchy. The DEVS model property, 

Closure under Coupling, carries the hierarchical nature of the models. A model of structure 

agent brought by dynamic structure is a leaf model of a structure component in the model 
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hierarchy. A general view of the model hierarchy is presented in Fig. 2. TOP is a structure 

component with a structure agent CEXEC. TOP is located at higher model hierarchical 

level than Coupled2. 

 

 

 

 

Fig 2. The Model Hierarchy 

The straightforward processor hierarchy (Fig. 3) contains the similar structure with the 

corresponding model hierarchy. Root Coordinator is a global simulation governor standing 

at the top of the processor hierarchy. 

 

 

 

 

 

Fig 3. The Processor Hierarchy 
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Although the hierarchical processor structure reflects the nature of the DEVS model 

hierarchy, it performs ineffectively with the deeper model hierarchical complexity for 

communication overheads are unavoidably increased. A flat coordinator technique is a 

more effective processor hierarchy by eliminating the coordinators in the hierarchy and by 

making direct messaging communications between the flat coordinator and the simulators 

(Herny’s thesis). The flattened processor hierarchy is shown in Fig. 4 

 

 

 

 

Fig 4. Flattened Processor Hierarchy 

Message-Processing Algorithms 

Message-processing algorithm defines a series of receive functions for each message type 

in each abstract simulator. Four kinds of abstract simulators namely Root Coordinator, 

Coordinator, Simulator and RevSimulator are used in DS-eCD++. Root Coordinator, 

Coordinator and Simulator which are used in eCD++ are amended to adapt to both the 

dynamic structural changes and the regular simulation. RevSimulator, a new kind of 

abstract simulator, is devised for structure agents. In the following, the message-processing 

mechanism of each abstract simulator is described. 

 

Coordinator1 

Simulator1 RevSimulator Simulator2 Simulator3 

Root Coordinator 



Simulator 

The simulator is capable of processing initial message (I), collect message (@), internal 

message (*), and external message (X). In DS-eCD++, no changes are made in the receive 

functions for collect message and external message. A structural change variable is 

initialized in the initial message. The structural change request detection mechanism is 

applied to the internal message. 

 

 

 

Fig 5. Simulator Algorithm for (I, 0) 

The simulator receives (I, 0) at the beginning of the simulation (Fig. 5). Two timing 

variables, tL and tN, are initialized in (I, 0). The associated atomic model is initialized by 

calling initial function (line 3). Moreover, the structural change variable which is used to 

keep track of the structural state of a structure component is initialized in the following. 

Finally, a (D, tN) is sent to its parent Coordinator with tN, absolute next time, indicating 

the time for next state transition of the atomic model. 

 

 

 

1 When a (I, 0) is received from the parent Coordinator 

2          tL = 0; tN = Infinity 

3          Initialize the variable of the atomic model 

4          struc_var = 0 // struc_var : structural change variable  

5          send (D, tN) to the parent Coordinator 

6 end when 

1. When a (@, t) is received from the parent Coordinator 
2.          if t = tN then 
3.             y = λ(s) 
4.             send (y, t) to the parent Coordinator 
5.             send (D, t) to the parent Coordinator 
6.          end if  
7.          else raise error 
8. end when 



Fig 6. Simulator Algorithm for (@, t) 

 

 

 

 

Fig 7. Simulator Algorithm for (q, t) 

Fig. 6 is the simulator algorithm for (@, t). If the scheduled time tN arrives (t = tN), the 

simulator executes output function (λ) of the atomic model and sends the output to the 

parent coordinator upon receiving (@, t). A (done, t) is sent to the parent coordinator 

indicating the completion of the execution. If a (q, t) arrives (Fig. 7), the Simulator add the 

input event to its message bag. 

 

 

 

 

 

 

1. When a (q, t) is received from the parent Coordinator 
2.           lock the bag 
3.           Add event q to the bag 
4.           unlock the bag 
5. end when 

1. When a (*, t) is received from the parent Coordinator 
2.          case tL ≤ t < tN and bag is not empty 
3.                 e = t – tL 
4.                 s = δext(s, e, bag) 
5.                 if no structural change request is raised 
6.                     empty the bag 
7.                 end if 
8.          end case 
9.          case t = tN and bag is empty 
10.                  s =δint (s) 
11.                  tL = t 
12.                  tN = tL + ta(s) 



 

 

 

 

 

 

 

 

 

Fig 8. Simulator Algorithm for (*, t) 

Simulator uses one (*, t) message to synchronize three different transition functions 

(internal transition function, external transition function and confluent transition function) 

of the atomic model. The one of the three transition functions is executed according to the 

status of the message bag in the atomic model and the timing point when the message is 

received (Fig. 8). The external messages in the message bag would not be consumed if a 

structural change request is raised. Therefore, the external messages in the message bag 

would not be removed. If a structural change request is raised, the new structural value 

indicating the expected model structure is sent to the parent coordinator. The tN in the 

13.           end case 
14.           case t = tN and bag is not empty 
15.                   s =δcon (s, bag) 
16.                   if no structural change request is raised 
17.                       empty the bag 
18.                   tL = t 
19.                   tN = tL + ta(s) 
20.           end case 
21.           case t > tL or t < tN 
22.                   raise error 
23.            end case 
24.            if structural change request is raised 
25.                struc_var = sc 
26.                send (D, tN, sc) to the parent Coordinator  
27.                // sc: new structural value 
28.            else send (D, tN) to the parent Coordinator 
29.            end if 
30. end when 



structural change request indicates the expected structural change time. Otherwise, a (D, 

tN) is sent indicating the completion of the internal message. 

 

 

 

Fig 9. Simulator Algorithm for (St, t) 

If the structural change causes the addition of models, St messages are received (Fig. 9) in 

the new models. The structural change variable is reset and the variable used in the atomic 

model are initialized in (St, t). Scheduled tN is sent out with the D message to the parent 

coordinator for the next simulation cycle. 

RevSimulator 

RevSimulator defines the message-passing mechanism for structure agents. A structure 

agent would not receive content messages for it is absent from input / output ports. 

Moreover, since a structure agent receives a structural change message passively and stays 

at the structural state until next structural state is indicated, it would not be an imminent 

child of the associated structure component. Hence, a structure agent does not receive a 

collect message. A structure agent would not be a receiver of a St message. A structure 

agent is a receiver of an initial message and a structural change message. Initial message is 

used to initialize a structure agent at the beginning of simulation. Structural change 

1. When a (St, t) is received from parent coordinator 
2.         reset the structural change variable 
3.         initialize the variable for the atomic model  
4.         send (D, tN) to parent coordinator 
5. end when 



messages bring the expected structural values to a structure agent and indicate it to conduct 

the structural changes for the structure component. 

During the initialization stage, RevSimulator (Fig. 10) sets the tN as infinity and initializes 

the structure agent by invoking its initial function.  RevSimulator notifies the completion 

of initialization by sending a (D, t) to the parent coordinator. 

When a structural change message arrives at the RevSimulator (Fig. 11), the timing period 

is checked first. The internal transition function of the corresponding structure agent is 

executed. After that, the (D, t) is sent out to the parent coordinator.    

 

 

Fig 10. RevSimulator Algorithm for (I, 0) 

 

 

 

 

Fig 11. RevSimulator Algorithm for (*, t) (sc) 

1. When receive a (*, t) (sc) from parent coordinator 
2.         if t < tL or t > tN then raise error 
3.         else if (message value is not 0) then 
4.                 tN = inf 
5.                 tL = t 
6.                 invoking the internal function of the structure agent 
7.                 send (D, t) to parent coordinator 
8.          end if 
9. end when          

1. When receive a (I, 0) from parent coordinator 
2.        tN = inf 
3.        Initialize Structure Agent by calling the initfunction 
4.        send (D, t) to parent coordinator 
5. end when 



Coordinator 

The Coordinator is in charge of the messages between the parent coordinators and the child 

simulators. The coordinator is able to process the following messages: 

� @ message from the parent coordinator 

� Y message from the child simulator 

� Q message from the parent coordinator 

� * message from the parent coordinator 

� *(sc) message from the parent coordinator 

� D message from the child simulator 

� D(sc) message from the child simulator 

@, Y and Q messages follow the mechanisms used in eCD++. A *(sc) is delivered by a * 

message and distinguishes itself by a non-zero structural value (sc). Similarly, a structural 

change request appends an expected structural value to a D message.  

 

 

 

 

Fig 12. Coordinator Algorithm for (@, t) 

1. When a (@, t) is received from the parent Coordinator 
2.       if t = tN then 
3.          tL = t 
4.          for all imminent child processors i with minimum tN 
5.                send (@, t) to child i 
6.                cache i in the synchronize set 
7.          end for 
8.          wait until (D, t)’s are received from all imminent processors 
9.          send (D, t) to the parent Coordinator 
10.        else raise an error 
11.        end if 
12. end when 



Fig. 12 shows how a @ message is processed in coordinator. The time stamp is checked 

first. If the time stamp is not equal to tN, an error is raised. Only those models that are at 

their state transitioning points will receive the (@, t) message. The coordinator dispatches 

the @ message to all its imminent children and sends the receivers to the synchronization 

set. A D message is sent to its parent coordinator implying the completion of the collect 

phase in the coordinator after all D’s have been received from the imminent children. 

 

 

 

 

 

 

 

Fig 13. Coordinator Algorithm for (y, t) 

Coordinator is responsible for dispatching Y messages to the all influences of the output 

messages. Upon receiving (y, t) (Fig. 13), the coordinator translates the output message 

into the external messages for all the child influences and sends them to the corresponding 

children. The child influences are cached into the synchronization set, in which the models 

are expected to experience state transitions at the next simulation cycle. If the coordinator 

1. When a (y, t) is received from child i 
2.           for all influences, j of child i 
3.                 q = zi,j (y) 
4.                 send (q, t) to child j 
5.                 cache j in the synchronize set 
6.            end for 
7.            wait until all (D, t)’s are received from j’s 

8.            if self ∈I i (y is to be transmitted upward) then 
9.                  y = zi, self (y)  
10.                  send (y, t) to the parent Coordinator 
11.            end if 
12. end when 



is one of the receivers of the output message, a proper output is generated for the 

coordinator and is forwarded upward to its parent coordinator.  

The incoming external message (Fig. 14) is inserted into the equipped message bag for 

later calculation during an internal message processing. 

 

 

Fig 14. Coordinator Algorithm for (q, t) 

Coordinator is capable of processing * and * (sc) messages through a receive function for 

(*, t) (Fig. 15). * (sc) contains a non-zero value while a zero value indicates an internal 

message. * message is received in between the tL (the last transition time) and the tN (the 

next scheduled transition time) of the coordinator. Otherwise, an error is raised. 

If the received message contains a non-zero value, the message is a structural change 

message. In FDSDE, structural changes are executed from bottom to up. That is to say, the 

structural change message is executed in the structure components standing at the lower 

model hierarchical level first, and then it is implemented in the structure components at the 

higher model hierarchical level. Coordinator handles the executing order with the depth 

first policy. The structural change message is passed to the child coordinators provided the 

coupled models associated with the child coordinators are structure components. The child 

coordinators are collected into a structure set first (line4 – line10), and then they get the 

copies of the structural change messages (line12 – line16). At the same time, the structural 

1. When a (q, t) is received from parent Coordinator 
2.           lock the bag 
3.           Add event q to the bag 
4.           unlock the bag 
5. end when 



value is stored (line11) and is used for the structural change in this coordinator.  If no such 

a child coordinator exists, the coordinator passes the structural change message to the 

simulation processor of the structure agent (line17 – line21). Upon the D messages are 

received, the coordinator sends a D message to the parent coordinator to complete the 

structural changes process. 

A zero-valued message indicates an internal message. Firstly, the external events in the 

message bag are routed to the corresponding components according to the coupling 

information preserved by the coupled model associated with the coordinator. The receiving 

components are cached into the synchronization set. Then a * message is sent to the 

components in the synchronization set. Until all D’s are received from the models in the 

synchronization set, the updated tN with a D message is sent to the parent coordinator. 

 

 

 

 

 

 

 

 

1. When a (*, t) is received from the parent Coordinator 
2.      if tL≤t≤tN then 
3.          if the message value is a non-zero value // Structural change message 
4.               for all the child i 
5.                     if i is a coupled model and i is a structural component 
6.                        if i is not in the structure set 
7.                            cache i in the structure set 
8.                        end if 
9.                     end if 
10.               end for 
11.               store the message value // for self structural change 
12.               if structure set is not empty 
13.                  for all j in the structure set 
14.                       send (*, t) (sc) to j 
15.                  end for 
16.               end if          
17.               else if structure set is empty 
18.                    if the associated coupled model is a structural component 
19.                         send (*, t) to the structure agent 
20.                    end if 
21.               else end 
22.               wait until all (D, t)’s are received 
23.               send (D, t) to parent coordinator 
24.            end if 

1. When a (*, t) is received from the parent Coordinator 
2.     if tL≤t≤tN then 
3.       if the message value is a non-zero value // Structural change message 
4.       for all the child i 
5.          if i is a coupled model and i is a structural component 
6.             if i is not in the structure set 
7.                cache i in the structure set 
8.             end if 
9.          end if 
10.       end for 
11.       store the message value // for self structural change 
12.       if structure set is not empty 
13.          for all j in the structure set 
14.              send (*, t) (sc) to j 
15.          end for 
16.        end if          
17.        else if structure set is empty 
18.            if the associated coupled model is a structural component 
19.               send (*, t) to the structure agent 
20.            end if 
21.        else end 
22.        wait until all (D, t)’s are received 
23.        send (D, t) to parent coordinator 
24.     end if 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 15. Figure 17 Coordinator Algorithm for (*, t) 

25.      else if the message value is a zero value // Regular (*, t) message 

26.             for all q ∈bag 

27.                  for all receivers, j ∈Iself and all q ∈bag 
28.                      q = zself, j(q) 
29.                       send (q, t) to j 
30.                      cache j in the synchronize set 
31.                 end for 
32.                 empty bag 
32.                 wait until all (D, t)’s are received 
33.                 for all i in the synchronize set 
34.                       send (*, t) to i 
35.                 end for 
36.                 wait until all (D, tN)’s are received 
37.                 tL = t 
38.                 tN = minimum of components’ tN’s 
39.                 clear the synchronize set 
40.                 send (D, t) to parent coordinator 
41.             end else-if 
42.      else raise an error 
43.  end when 



Coordinator receives and processes D messages according to the different waiting modes 

(Fig. 18). The six waiting modes are set in coordinator. In the case of waiting for 

initialization message, coordinator simply picks the minimum tN and sends (D, tN) to the 

parent coordinator. Coordinator collects all D’s from the children and sends D to the parent 

coordinator when it is in the waitingforCollect mode. When a D message is received in the 

mode of waitingforInternal, the procId is firstly removed from the synchronization set 

indicating the ending of the synchronization stage. If a D (sc) message is received, the 

procId and the message value of the sender are cached into screq (line18 – line20).  The 

coordinator determines whether a D (sc) or a D is sent to the parent coordinator depending 

on which sender(s) is (are) an imminent child. If the sender of the request pair (procId, 

value) is not an imminent child, a D message is sent to the parent coordinator. Otherwise, a 

D (sc) is sent to the parent coordinator when the sender in screq is also an imminent child 

(line25 – line28). When the coordinator receives a D in the mode of 

waitingforStructuralchange which implies a nested structural change process and the 

coordinator is waiting for structural change done messages from its children, the 

coordinator sends * (sc) to its structure agent to trigger the structural change if the 

associated coupled model is a structure component (line27 – line39). Otherwise, a D is sent 

to the parent coordinator (line40 – line43). The mode of waitingforSelfstructurechange 

indicates the coordinator is waiting for a D message from its structure agent. In this case, 

the new atomic models added to the structural change process are sent St messages (lien46 

– line50), and the atomic models to be removed in the structural change process are deleted 

from the synchronization set of the coordinator (line51 – line55). After that the coordinator 

sends D with the minimum tN to the parent coordinator. The mode of waitingforStart is 



waiting for the responses to the St messages sent to the new created models. At this stage, 

the minimum tN is updated and a D is sent to parent coordinator (line62 – line63). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. When a (D, t) is received from child simulators 
2.           case waiting mode is waitingforInit 
3.                    wait for all (D, t)’s are received from child simulators 
4.                     tL = t 
5.                     get the imminent children’s tN 
6.                     send (D, tN) to the parent coordinator 
7.                  end if 
8.            end case 
9.            case waiting mode is waitingforCollect 
10.                    remove the procId from the collectWaitForDoneQ 
11.                    if collectWaitForDoneQ is empty // all D’s are received 
12.                       send  (D, t) to the parent coordinator 
13.                    end if 
14.            end case 
15.            case waiting mode is waitingforInternal 
16.                    tL = t 
17.                    remove the procId from the syncSet 
18.                    if message value != 0 
19.                        add the (procId, value) pair into screq 
20.                   end if 
21.                   wait for all (D, t)’s are received 
22.                   get the imminent children’s tN 
23.                   if screq is not empty  
24.                       get the procId from screq   
25.                       if the procId is in the immiChildren 
26.                sc = value 
27.                send (D, tN) (sc) to parent Coordinator 
28.                       end if 
29.                       clear screq 
30.                   end if 
31.                   else  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 16. Coordinator Algorithm for (D, t) 

45.                case waiting mode is waitingforSelfstructuralchange 
46.                       if there are newly added models 
47.                           for each new model i 
48.                                 send (St, t) to i 
49.                           end for 
50.                       end if 
51.                       if removedmodels is not empty // the models to be deleted 
52.                          for each model i in removedmodels 
53.                             erase i from the synchronization set 
54.                          end for 
55.                       end if 
56.                       else 
57.                            get tN’s from the imminent children 
58.                            send (D, tN) to parent coordinator 
59.                        end else 
60.                end case 
61.                case waiting mode is waitingforStart 
62.                       get tN’s from the imminent children 
63.                       send (D, tN) to parent coordinator 
64.                end case 
65. end when 



Root Coordinator 

Root Coordinator is a global scheduler standing at the top of the processor hierarchy. Root 

Coordinator executes a message loop and advances the simulation according to the timing 

pieces collected from the child processor. If there is no scheduled timing pieces (i.e. the tN 

is equal to infinity), Root Coordinator ends the simulation. The Root Coordinator 

algorithm is shown in Fig. 19. At first, the structural change request variable is initialized 

as 0. During the message loop, Root Coordinator collects the outputs and routes the outputs 

to the proper influences by issuing a @ message. If there is no structural change request is 

raised, Root Coordinator sends * message to trigger the state transitions of the models.  

The structural change process is invoked by a * (sc) if a structural change request is 

detected. The structural change request variable indicates the expected structure set and is 

assigned to the structural change variable in the * (sc).  

 

 

 

 

 

 

 

1. t = tN of the topmost coordinator 
2. sc = request // if a structural change request is raised, request = 1; otherwise request 

= 0 

3. while t≠∞ or more external events to come 
4.      send (@, t) to the topmost coordinator 
5.      wait until (D, t) is received from it 
6.       if sc == 1 
7.            send (*, t) (sc) to the topmost coordinator 
8.            wait until (D, tN) is received from it 
9.       end if 
10.       else if sc == 0 
11.              send (*, t) to the topmost coordinator 
12.              wait until (D, tN) is received from it 
13.        end else 
14.        t = tN of the topmost coordinator     
15.        if an external event arrive 
16.              send (q, t) to the topmost coordinator 
17.        end if 
18.  end while 
19.  raise simulation completed 



Fig 17. Root Coordinator Algorithm 

Message-Passing Scenarios 

The previous section illustrates the message-processing algorithms of each abstract 

simulator in FDSDE. In this section, typical message-passing scenarios are presented to 

present how the messages flow between the simulation processors. The first scenario 

presents the simulation process with a structural change process. The second scenario 

exhibits a nested structural change process. For each scenario, the model structure and the 

processor hierarchy are presented first, and then the message-passing scenarion of the 

given model is described using an event precedent graph. The vertexes (the black dots) are 

used to indicate the events, and the directed edges present the actions of sending messages. 

The message types are placed beside the directed edges. The subscript numbers of the 

message types give the sequence of the messages during the simulation. In the scenarios, 

RC denotes the Root Coordinator; Sx (x = 1, 2, 3,…) represent the simulators in charge of 

message processing of the atomic models. Cx (x = 1, 2,…) indicate coordinators; RSx (x = 

1, 2,…) are the processors of the structure agents.  

Scenario 1: A Simulation with a Structural Change Process 

In this scenario, the structure component Coup1 contains two atomic models: A1 and A2 at 

the initial simulation stage. The structural change in Coup1 adds an atomic model A3 to the 

simulation system. C1 is the coordinator associated with Coup1. S1, S2 and S3 are the 

three simulators generating the model behaviours of A1, A2 and A3 respectively. The 

model structure and the processor hierarchy of the scenario 1 are shown in Fig. 18 and Fig. 

19. 

Coup1                

A1  

A3  

A2  Coup1                

A1  A2 



 

 

Fig 18. The model Structure Change in Coup1 

 

 

Fig 19. The Simulation Hierarchy Change in Scenario 1 

Initially, I1, I2 and I3 are used to initialize C, S1 and S2. As responses, D4, D5 and D6 are 

replied by them. We skip the regular simulation cycles for they are same with scenario 1. 

At the simulation cycle Ti, RC sends *i+1 to C and C sends *i+2 to S1 for S1 is the only 

model that needs to be synchronized at this cycle. Assume S1 raises the structural change at 

this cycle. A Di+3 (sc) is sent back to C. C passes the structural change request to RC with 

Di+4 (sc). Instead of issuing @ message to enter collecting phase, RC issues structural 

change message *i+5 (sc) to C and C delivers the structural change message to the processor 

of its structure agent RS with *i+6 (sc). A message Di+7 is replied by RS after the structural 

changes finishes. Suppose a new simulator processor S3, corresponding to the atomic 

model A3, is added into the simulation. C initializes S3 by sending Sti+8. S3 replies tN to C 

with Di+9. Till this point, C has finished the structural change process and collected the next 

event times from its children. C selects the minimum tN and sends to RC with Di+10 

notifying the completion of the structural change process. In the structural change process, 

S3 joins the simulation. The simulation advances and RC sends @i+11 to collect outputs at the 

S1   RS  S2   

C 1  

RC  

S1   RS  S2   

C 1  

RC  

S3   



simulation cycle Ti+1. Suppose S1 is the receiver of the collect message @i+12. S1 returns 

Y i+13, the output message of S1, and Di+14, the done message of S1, to C. Since S2 and S3 

are the influences of S1, C converts the output message of S1 into the proper input 

messages and routed them to S2 (Xi+15) and S3 (Xi+16) respectively. As a result, S1, S2 and 

S3 are all cached into the synchronized set of C and C sends Di+17 to RC marking the 

ending of the collect phase of Ti+1. At the transition phase of Ti+1, synchronizing messages 

are spread to each model and trigger the transition functions (*i+18, * i+19, * i+20, * i +21). 

Accordingly, tNs are returned to RC with the done messages (Di+22, Di+23, Di+24, Di +25). 

Then RC sends a collect message (@i+26) to start the new simulation cycle Ti+2. 



 

 

 

 

 

 

 

 

 

 

Fig 20. Message flow for a Structural Change Process
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Scenario 2: A Nested Structural Change Process 

In scenario 1, single structural change process responds to a structural change request. 

Sometimes, a nested structural change process involving more than one structure 

components in the model hierarchy is required to respond to a structural change request. In 

case of a nested structural change process, an executing priority of structure components 

should be determined. In FDSDE, nested structural change process is conducted from 

bottom to up. That is, the structure component at lower model hierarchical level executes 

the structural change first, and then one at the higher model hierarchical level executes the 

structural change. Scenario 2 presents a nested structural change process.  

Scenario 2 involves two structure components Coup1 and Coup2. Coup1 governs Coup2 

and an atomic model A1. Coup2 contains an atomic model A2. The structural change adds 

an atomic model A3 to Coup2 and adds a new coupling between A1 and Coup2. S1, S2 and 

S3 represent the simulators for A1, A2 and A3 respectively. C1 and C2 are the two 

coordinators of Coup1 and Coup2. Coup1 has a structure agent SA1 and Coup2 contains a 

structure agent SA2. RS1 and RS2 are the processors of the structure agents SA1 and SA2. 

The model structure change and the simulation hierarchy change in the scenario 2 are 

exhibited in Fig. 21 and Fig. 22. 

 

 

 

Fig 21. The Model Structure Change in Coup1 and Coup2 
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Fig 22. The Simulation Hierarchy Change in Scenario2 

At the beginning of the simulation, all the processors participating the simulation are 

initialized (I1, I2, I3, I4) and the D messages are replied (D5, D6, D7, D8). At simulation cycle 

Ti, S2 raises a structural change request during the transition phase (*i+1, * i+2, * i+3, Di+4 (sc), 

Di+5 (sc), Di+6 (sc)). Once RC receives a structural change request, RC starts a structural 

change process. Suppose it is a nested structural change process involving the structure 

component Coup1 and Coup2. When C1 receives *i+7 (sc) sent from RC, C1 passes (*i+8 

(sc)) to its child C2. C2 is the structure component at the lowest hierarchical level; 

therefore the structural change of C2 is executed first. C2 sends *i+9 (sc) to RS2 to execute 

the structural changes. RS2 returns Di+10 to C2 when the structural change has been done. 

Assume that a new model is added during the structural change. C2 sends Sti+11 to S3, a 

new processor of the atomic model A3, to initialize it. When Di+12 is returned to C2, C2 

then return Di+13 to C1 notifying the structural change has finished at the structure 

component Coup2. Once receiving the structural change done message from C2, C1 sends 

* i+14 (sc) to RS1 to start a structural change. RS1 replies Di+15 to C1 and C1 passes Di+16 to 

RC marking the ends of the structural change at C1. According to the minimum tN, the 

simulation advances to simulation cycle Ti+1. Suppose S3 is not an imminent child of C2. 
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The collect phase of Ti+1 is processed (@i+17, @i+18, @i+19, Di+20, Di+21, Di+22). The 

following transition phase (*i+23, * i+24, * i+25, Di+26, Di+27, Di+28) implements the transition 

functions of S2, which are bypassed during simulation cycle Ti. At simulation cycle Ti+1, 

RC obtains an updated tN and advances the simulation to Ti+2 (Ti+1 + tN). RC sends @i+29 to 

collect outputs at simulation cycle Ti+2. 
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Fig 23. Message flow for Multiple Level Structural Change Process 

Simulation Phases 

In the message-passing scenarios, the simulation phases are clearly identified. In the 

regular simulation process, two phases are distinguished by @ message and * message 

respectively. @ messages dispatched to each processor and the corresponding D 

messages are compose of collect phase. Transition phase consists of * messages routed 

down and the returned D messages. 

Structural change process is included in the regular simulation process. Three 

sub-phases are identified in a structural change process: structural change request, 

structural change and simulation resuming. Each sub-phase is marked by a message by 

which the sub-phase is invoked.  If a (done, tN) (sc) is return to respond to a * message 

in a transition phase, the transition phase is identified as a structural change request 

sub-phase. The real transition phase is bypassed due to the raise of the structural change 

request. Root Coordinator initiates a structural change sub-phase by issuing (*, t) (sc) 

message upon receiving a structural change request. D messages are sent back 

indicating the ends of the structural change sub-phase. A coordinator associated with a 

structure component starts a simulation resuming sub-phase by sending (St, t) message 

to the newly added models. The newly added models return the scheduled tNs, which 

are used to schedule the next imminent simulation event and signals the finishing of the 

simulation resuming sub-phase. 



Chapter 4 Algorithm Implementation and the Functionalities 

An improved simulation engine is developed by combining FDSDE and P-DEVS real 

time simulation engine. Based on the improved simulation engine, the updated 

real-time DEVS-based experimental environment is constructed to support the 

dynamic structure real-time simulation and the real-time embedded system design. The 

new software is called DS-eCD++. The software architecture of DS-eCD++ adopts the 

four software components in eCD++. Various aspects of implementation differ from 

that in eCD++. Introduction of structure component and structure agent requires extra 

classes to represent the components. A structure component involves multiple structure 

options, but only one structure, which is an active structure of a structure component, 

participates in the simulation. The structure shifts call for cooperation among the 

components and the processors in the simulation. Also, the structure shifts brings a 

series of changes in the software architecture of eCD++. This chapter will discuss the 

implementing issues in DS-eCD++. The summary of the revisions are explained in 

section 4.1. The sections from 4.2 to 4.5 depict the implementing details of each 

software component in DS-eCD++. Finally, the functionalities of DS-eCD++ are 

discussed at the section 4.6.  

Software Architecture Overview 

In eCD++, the four software components contain well-defined behaviours and 

corporate with each other to execute real-time DEVS simulations. The following figure 

depicts the major parts of each software components and the relationships among them.  



 

 

 

 

 

 

 

 

 

 

Fig 24. eCD++ Software Architecture 

DS-eCD++ maintains the four software components; however, revisions have been 

made to fit the new features. The revisions of the four software components are 

characterized as: 

1. The Main Simulator assumes the responsibility for loading coupled models, 

atomic models and structure agents. It takes charge of separating the model 

definition into two groups: the active components and the structure 

 



components. It loads the initial model hierarchy at the initial stage of the 

simulation. The model hierarchy is updated through the structure agents of 

structure components as required during the simulation. In a simulation using 

the Flat Coordinator, Main Simulator takes charge of storing the initial model 

composition and the couplings used in the simulation.  

2. The DEVS Modeling Subsystem maintains a model hierarchy tree composed 

of atomic models, coupled models and structure agents. The structure agent 

objects database is created along with the atomic model objects database. The 

Simulation Subsystem, including the Root, the Coordinator, the Simulator and 

the RevSimulator, maintains the processor hierarchy corresponding to the 

model hierarchy. In the Simulation Subsystem, the receive functions for 

different types of messages in the processor class are redefined to implement 

the message-passing algorithms described in the FDSDE algorithm. 

RevSimulator is a class of abstract simulator – RevSimulator which processes 

only the initial messages and the structural change messages. It is a special 

message processor for structure agents. The FlatDEVSCoordinator is 

redefined to implement the Flat Coordinator in the simulation using a flat 

coordinator. The five processor classes constitute the improved simulation 

engine in the Simulation Subsystem in DS-eCD++ supporting the dynamic 

structure real-time simulation. 

3. The extra messages related to structural changes cause the expansion of the 

Messaging Subsystem.  InternalMessage class and DoneMessage class are 



reused to convey the structural change messages and the structural change 

requests by appending a non-zero value in a message. A new message class 

StartMessage is created for St message. 

With the revised software architecture, the high level design walk-through draws an 

overall picture of how dynamic structure works in DS-eCD++.  

1. Main Simulator separates the model definition into two groups: the initial 

model structure in the active component container and the structure 

components in the structure components container. During the initial 

model structure are loaded into simulation system, Main Simulator 

constructs the model hierarchy assisted by the Modeling Subsystem and 

builds the associated processor hierarchy with the help of the Simulation 

Subsystem. The simulation control is passed to Root once upon the 

simulation starts by Main Simulator. In the simulation using a flat 

coordinator, Main Simulator memorizes the initial flattened model 

structure in the simulation. 

2. Once a structural change request is raised by an atomic model, the 

structural change request with the requested structural value is delivered 

upward to the Root provided the request is imminent among the 

simulation events. Root issues a structural change message and routes the 

message to all the structure components in simulation system. The 

structure components hand the structural change message to the 



associated structure agents to process the structural changes. 

3. The structure agents retrieve the expected model structure from the 

structure components container according to the structural values 

appended in the messages. The structure agents compare the two model 

structures. Aided by the structural change operations, the structure agents 

update the model structure in the simulation system. Done messages are 

sent to the structure components. When the done message returns to Root, 

the structural change process ends. 

4. In the simulation with a flat coordinator, the structural change message is 

passed to the flat top and the flat top routes the message to its associated 

structure agent. The structure agent retrieves the expected model structure 

and compares it with the flattened model structure stored in Main 

Simulator. The flattened model structure in the simulation system is 

updated by the structure agent. The done message reaching the Root 

indicates the finishing of the structural change process. 

5. The Root advances the simulation into the next simulation cycle and the 

simulation continues. 

4.2. Main Simulator 

Main Simulator as a subsystem includes three classes: MainSimulator is the very first 

object created during simulation and manages the overall aspects of the simulation. Ini 

is used by MainSimulator to parse the model definition. MainSimulator configures the 



simulation environment through SimLoader. The modifications in Main Simulator are 

listed in the following class diagram.  The tasks performed in Main Simulator are 

summarized as: 

 

 

 

 

 

 

Fig 25. Main Simulator Class Diagram 

1. Models registration. At the beginning of simulation, Main Simulator registers the 

pointers to the objects of the atomic models and the pointers to the objects of the 

structure agents using registerNewAtomics() method.   

2. Models loading. The components, the couplings among the components and the 

input/output ports are loaded in the simulation system by parsing the model 

definition. Structure agents are absent from input/output ports; therefore, no ports 

and couplings are involved. Except for loading the coupled models and the atomic 

models, loadComponents() method loads the structure agents. The model types are 

identified (details in section 4.2.1 and section 4.2.2) through the different separators 
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in the model definition which are parsed and categorized by the operations in the 

class Ini. 

3. Simulation environment configuration. The simulation parameters indicating the 

simulation environment are read in. Main Simulator is responsible for simulation 

environment configuration utilizing a simulation environment loader SimLoader.  

4. Simulation start-up and ending. Once the preparations are ready. Main Simulator 

passes the control to Root Coordinator and simulation starts. Main Simulator 

recovers the control of the simulation and announces the termination at the end of 

the simulation.  

4.2.1. Structure Component Description 

A structure component is furnished with a structure agent to carry out the structural 

changes in the structure component. In DS-eCD++, new syntax is used to extend the 

build-in specification language provided in CD++ to describe the structure components 

and their alternative modeling structures.  

The initial structure and the alternative structures of a structure component are 

explicitly described in the build-in specification language in the model definition.  The 

initial structure of a structure component is defined as the definitions of coupled 

models. However, two new properties are introduced to describe a structure 

component. The following syntax is used:  

− modelName#className. In the component list of a structure component, 

the syntax is used to appoint a structure agent. The separator ‘#’ distinguishes a 



structure agent from other models. 

− Scomm. This describes the structural command of a structure component. The 

structural command is associated with an option of a model structure. The 

atomic model raises a structural change by specifying a structural command. 

According to the designated structural change command, the corresponding 

model structure is called. 

The alternative structures of a structure component are specified using separated groups 

in the model definition. The group name is defined as follows: 

               [CoupledmodelName + “update” + Index] 

The CoupledmodelName presents the name of a structure component. “update” is a key 

word in the build-in specification language indicating an alternative structure of the 

structure component. Index defines the sequence of the model structure of the structure 

component. For example, [Topupdate01] denotes the first alternative structure of the 

structure component TOP. As in the definition of the initial structure, five properties are 

designated in each alternative structure of a structure component: Component, Link, 

In, Out and Scomm. The sample model definition of a structure component is 

presented using the build-in specification language. In Fig. 3, a block heading with a 

model name with a pair of square brackets is a group indicating the definition of a 

coupled model or an alternative model structure definition of a structure component. 

The properties of a group including components, in, out, Scomm and Link, are 



the definitions. The text followed by the definitions after the clone is 

identifications. 

[top] 

components : cu@ECU motor topexec#Topexec 

in : in 

out : out 

Scomm : topstruc1 

Link : in in@cu 

Link : eng_in@cu in@motor 

Link : out@motor sen_out@cu 

Link : out@cu out 

 

[topupdate1] 

components : cu@ECU motor 

in : in 

out : out  

Scomm : topstruc2 

Link : in in@cu 

Link : eng_in@cu in@motor 

Link : eng_test@cu test@motor 

Link : out@motor sen_out@cu 

Link : out@cu out 

Fig 26. A Sample Definition of Structure Components 

4.2.2. Structure Components Parsing and Storage 

The model definition are divided into two groups and stored in two containers. One is 

the active component container storing the active model structure; the other is the 

structure components container including the model structures of the structure 

components. The two containers constitute a model database.  

Method parse() takes two steps to build a model database. Firstly, the key word 

“update” is taken as a sign to separate alternative structures of a structure component 



from the initial structure. The groups whose names contain no “update” are put to the 

active components container. The groups whose names contain “update” are sent to the 

structure components container. Secondly, InsertData() method copies the initial 

model structures of the structure components to the structure components container. 

The components in the active components container are loaded and participate in 

simulation. The structure components container provides an alternative model 

structures database for the structure components. The alternative model structures as 

the structure counterparts of the structure components are exchanged with the active 

model structure of the structure components. Fig. 4 shows the storage mechanism of the 

model definition in DS-eCD++. The method parse() also establishes a scomm map, in 

which a structure command is connected to a structural value. The scomm map is built 

through Scommmap() method and can be retrieved by the method getmap(). The 

scomm map is a structural command – structural value dictionary by which the 

expected model structure of the structure component is located by means of a structural 

value indicated by modellers. 

 

 

 

 

 



 

 

 

 

 

 

 

 

Fig 27. Model Storage and Loading 

Having been stored in the two containers, the model definition is loaded into the 

simulation system step by step. In DS-eCD++, two groups of parsing operations are 

defined in the class Ini. One group of operations parse the model definition in the active 

component container including groupList(), group() and definition(). The operations 

are used in eCD++ to parse the model definition. The other group of parsing operations 

are specified for the structure components container, which are absent in eCD++. The 

stgroupList () accesses the structure components container. strucgroup() method gets 

a whole group indicated by the group name which specifies a structural definition of a 
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structure component. stdefinition () method retrieves the identification line 

indicated by the definition name.  

4.2.2. The Flat Coordinator Technology 

If the simulation runs with a flat coordinator, MainSimulator is responsible for 

flattening the simulation hierarchy by calling loadFlattenLinks() to rewire the 

couplings linking to coupled models directly to the far-end atomic models, calling 

updateOutLinks() to rewire any atomic models’ couplings linking to coupled models 

directly to the far-end atomic models. Since the model structure flattening is 

performed after the model definition storing, the structure components container 

cannot obtained the flattened initial model structure. In order to backup the structure 

in case of recall, MainSimulator uses two data structures to store the flattened 

structure: nameset is a component set memorizing the components in the structure; 

mlinklist is a link list storing the couplings among the components. The two data 

structures are established along with the loading of the initial model structure. 

AddComponent() method adds a component to nameset; while RemoveComponent() 

removes a component from nameset. AddLink() method appends a new coupling to 

mlinklist. On the contrary, RemoveLink() method deletes a coupling from 

mlinklist. The four methods are executed with the flattening of the initial model 

structure. Finally, the initial flattened model structure is stored in nameset and 

mlinklist. 



The Modeling Subsystem 

The Modeling Subsystem organizes the models hierarchically. The class diagram of the 

Modeling Subsystem is shown in Fig. 5. The modifications of each class are presented 

in the class diagram but the inherited methods from eCD++ are not included. 

 

 

 

 

 

 

 

 

 

 

Fig 28. The Modeling Subsystem Class Diagram 
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The class Model provides the model operations theoretically. Three subclasses: Atomic, 

Coupled and RevAtomic, are derived from the class Model and encapsulate the 

implementations of atomic models, coupled models and structure agents. The 

substantial implementations of atomic models (Atomic model 1, …, Atomic model n) 

and structure agents (Structure agent 1, …, Structure agent n), which are derived from 

the virtual classes Atomic and RevAtomic respectively, are specified by modellers. 

Class Coupled possesses the model compositions and the couplings of coupled models. 

In DS-eCD++, the class Coupled also contains the implementations of structure 

components. The class Port encapsulates the implementations of input and output 

ports. In DS-eCD++, the model hierarchy tree has been changed in two ways: on one 

hand, the structure agents bring the changes to the model hierarchy; on the other hand, 

the structural changes of the structure components keep updating the model hierarchy 

during simulation. The class ModelAdmin manages the dynamic model hierarchy tree. 

The revised implementation details of the Modeling Subsystem are characterized as: 

1. ModelAdmin specifying the implementations of Model Manager creates a 

structure agent object by means of registerRevAtomic() method and builds the 

structure agent objects database (a dictionary data structure building the 

relationships between a structure agent’s string name and a pointer to the 

structure agent object). newRevAtomic() method creates a structure agent 

object utilizing the object pointer stored in the objects database. It also 

employs Processor Manager (see section 4.4) to create a processor for the 

structure agent. Once the structure agent objects database has been built, 



Model Manager permits a dual traverse between the structure components and 

the associated structure agents. The execId allows a structure component to 

find its associated structure agent; on the contrary, the parentId 

encapsulated in a structure agent enables it to access its parent model. 

2. The class Model encapsulates the logic implementations of model. There are 

three model types including atomicType, coupledType and 

revatomicType which are included in modelType. delInputport() and 

delOutputport() methods are defined to remove an input/output port from a 

coupled model. strucChange(int &) and strucChange() methods are inherited 

by an instantiated atomic model and call the homonymous methods in the 

simulator associated with the atomic model to assign and retrieve the structural 

value. The structural value is retrieved through strucChange(); while a new 

structural value is assigned via strucChange(int &).  

3. Atomic encapsulates the implementations of atomic models. In eCD++, five 

transition functions, including InitFunction(), ExternalFunction(), 

InternalFunction(), ConfluentFunction() and OutputFunction(), specify 

atomic model behaviours. In DS-eCD++, StartFunction() is introduced to 

re-initialize atomic models when the models join the simulation via structural 

changes.  

4. RevAtomic specifies the implementations of structure agents. Similar with 

atomic models, RevAtomic employs transition functions to describe the 

behaviours of structure agents. InitFunction() is used to initialize a structure 



agent. The structural transitions of a structure agent are specified in 

IntenralFunction(). In addition, RevAtomic encapsulates a group of structural 

change operations (explained in section 4.3.1), which are called by the 

concrete structure agent in their internal structural transition functions.  

5. Coupled encapsulates the implementations of regular coupled models and 

structure components. The implementations of structure components are 

added to Coupled in DS-eCD++. ExecId is an attribute of structure 

components specifying the model ID of the structure agents. This attribute can 

be used to distinguish structure components from regular coupled models. If 

the value of ExecId is a valid integer, the model is a structure component. 

Otherwise, the model is a regular coupled model. executive() method is used to 

retrieve the ExecId. addmodelId() and delmodelId() methods update the 

model composition of a structure component in a structural change. In the 

nested structural change process, the structural change is executed from 

bottom to up. The structure component at higher hierarchical level should 

store the structural change value in strucvalue via setvalue(). getvalue() 

retrieves the structural value when the structural change is recalled at this 

structure component. childs and oldchilds are two lists storing the new 

model composition and the model composition to be changed in a structure 

component. The difference between the two lists occurs when the structure 

component is experiencing a structural change. The model composition stored 

in childs is updated along with the structural change. The model 



composition to be changed is backup in oldchilds using oldchildren() 

method. The differences between the two lists are calculated by 

setnewmodels() method and setremmodels() method. setnewmodels() method 

stores the models to be added in a data member newmodels; while 

setremmodels() method sends the models to be removed in another data 

member removedmodels. getnewmodels() method is invoked by the 

corresponding coordinator to retrieve the models from newmodels. 

getremmodels() method gets the models to be removed from 

removedmodels. These two methods are invoked by the corresponding 

coordinator to adjust its simulating behaviour. The St messages are sent to the 

models in newmodels to re-initialize the models for the next simulation 

cycle. The models in removedmodels are deleted from the synchronized set 

in the coordinator and are removed from simulation system finally.  

6. Port defines a series of implementations of input/output ports. As we have 

explained in 4.2.2, the model structure is flattened if a flat coordinator is 

applied in simulation. flatterninfluences() extends the flattening in the class 

Port to update the influences of a port. 

Structural Change Forms and the Operation Boundaries 

Before introducing the structural change operations, the structural change forms and 

the operation boundaries are discussed. The discussion of structural change form gives 

a clue to investigate the structural change operations; while operation boundaries 

regulate structural changes in a safe and clear scope. The structural change forms also 



provide useful hints in designing structural change scenarios and structural change 

cases. 

In DEVS-based simulation systems, there are three kinds of component elements: 

component (an atomic model or a coupled model), coupling (links between 

components) and port (input port or output port). Structural changes aim to adjust the 

layout of the component elements. Therefore the basic structural change forms can be 

identified in the six types. 1) addition of a component; 2) removal of a component; 3) 

addition of a link between components; 4) removal of a link between components; 5) 

addition of an input / output port; 6) removal of an input / output port. The basic 

structural change forms constitute the structural changes in most cases. Update of a 

component refers to a component is updated by a new version which might have 

totally different behavior or interface from the old one. This can be considered as a 

composition of the basic structural change forms and can be accomplished by simply 

replacing the old component with a new one, which involves the addition and removal 

operations. According to the basic structural change forms, the structural change 

operations are defined. The structural change operations are combined together to 

accomplish most possible structural changes in non-distributed systems. 

Structural changes cause modifications in the model hierarchy. Sometime conflicts 

between the structural change processes occur if the expected model structures call for 

opposite operations such as addition and removal of the same component etc. Operation 



boundaries should be defined to avoid the conflicts and to regulate the structural 

changes operations in a conflict-free and determined range.  

To specify the operation boundaries, the location information in relation to the model 

hierarchy of the all kinds of components should be analyzed. A component of a coupled 

model has knowledge of its parent, children list and the couplings among the children. 

A component of an atomic model is aware of its parent and its input/output ports. The 

components belonging to the same parent are brothers. The brother components are 

independent from each other. A component contains no information of its brother. As 

being defined in FDSDE, a structure agent is introduced to execute the structural 

change for a structure component. The structure agent is taken as a revised atomic 

model aware of only its parent and works on behalf of its parent. We can take a 

structure agent as a structural representative of a structure component. That is to say, a 

structure agent holds as the same structural view as the structure component. With the 

structural views of all the components, the operation boundaries can be defined: 

1. The structural changes in a structure component are conducted by the associated 

structure agent. A structure component and an atomic model have no capability to 

dispose structure change operations. 

2. Addition / removal of a component refer to add or remove an atomic model. A 

structure component is a model structure governor and can switch its model 

structure from one to the other with the help of the associated structure agent. The 

structure component itself would not be added or removed. A structure agent is 



always associated with a structure component; therefore cannot be added or 

removed as well. 

3. An atomic model is a structure unit and involves no structural change in it. The 

ports in an atomic model would not be changed during simulation. If different port 

sets in an atomic model are needed in different simulation stage, the union of the 

port sets are defined in the atomic model definition and the specific port sets are 

used at certain simulation stage.  

4. Addition / removal of input / output ports are used to add or remove input / output 

ports in a structure component. By which the interface of the structure component is 

changed.  

5. A structure component can only add / removed the couplings in which the sender 

and receiver pertain to the structure component. In case of a coupling spanning two 

different structure components, the situation becomes complex. Consider A is the 

sender of the coupling and B is the receiver of the coupling. The DEVS property, 

closure under coupling, ensures that there is a structure component existed to cover 

A and B. That is to say, the structure component is the parent of either A or B and 

the parent of the ancestor of either A or B. The nested structural change process is 

able to handle the situation link this. 

4.3.2. Structural Change Operations 

A group of structural change operations are defined in class RevAtomic, 

including structural change operations and supplementary operations: 



� Structural change operations: 
� GetModels 
� GetLinks 
� GetInputPorts/GetOutputPorts 
� Add/Remove models 
� FullAdd/FullRemove models 
� Add/Remove links 
� Add/Remove input/output ports. 
� DiffLinks 
� DiffModels 
� DiffInputPorts/DiffOutputPort 

� Supplementary operations: 
� FindModel 
� FindInputPort/FindOutputPort 

The structural change operations provide necessary manipulations to the 

component elements (models, links and ports). Get actions retrieve the specified 

component elements. Diff actions aim to calculate the differences between the 

component elements subject to be changed and the component elements expected to 

join. Add/Remove & FullAdd/FullRevmode actions realize the actions of addition / 

removal of the component elements. The operations can be performed in two ways: full 

operations and light operations. In the full operations, the atomic model objects and the 

associated simulator objects are added / removed along with the addition / removal of 

the model references and the processor references in the structure components. Simple 

operations only add or remove the references of the atomic models in the structure 

component while keep the model objects and the associated simulators in the model 

object databases. The former operations are suitable for the new atomic models added 

in the simulation system or the atomic models removed permanently from the 

simulation system. If the models are removed temporarily at the previous simulation 

stage and will be reused at later simulation stage, the simple operations can be applied. 



Two sets of operations offer flexibility to modellers who can keep balance between 

minimum memory usage and fast loading time. Supplementary operations are used to 

locate the component elements. Those operations are called by the concrete structure 

agents to define the real structural change operations in the simulation. 

Simulation Subsystem 

The Simulation Subsystem presents simulators and coordinators hierarchically. 

FDSDE redefines the message-passing algorithms for the abstract simulators. 

Accordingly, the abstract simulator classes in the Simulation Subsystems are revised to 

fit the changes. The class diagram of Simulation Subsystem is presented in Fig. 6. The 

modifications in each class are listed. 

 

 

 

 

 

 

 

Fig 29. The Simulation Subsystem Class Diagram 
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The class processor defines virtual operations for the abstract simulators. The classes 

Root, Coordinator, Simulator and RevSimulator representing the abstract simulators 

are derived from the class processor to execute the corresponding message-passing 

mechanisms (refer to the section 3.3). FlatDEVSCoordinator is another subclass 

derived from the class processor to represent the abstract simulator of the flat 

coordinator. The concrete simulators and coordinators are instantiated from the abstract 

simulator classes. Class ProcessorAdmin plays as a processor manager responsible for 

generating the processors and maintaining a processor objects database (a dictionary 

database building a relationship between a processor id and a pointer to the processor 

object). The modifications in the Simulation Subsystem are concluded as: 

1. The receive functions for the different types of messages received in each abstract 

simulator are replaced with the message-passing algorithms described in the section 

3.3. 

2. generateRevAtomicProc() in ProcessorAdmin is called by NewRevAtomic() in 

ModelAdmin to generate a concrete processor for a structure agent. With the help of 

getProcDB(), the processor objects database can be accessed by a structure agent to 

add / delete a processor when the associated model has been added / deleted. 

3. strucChange(int &) and strucChange() methods are inherited by the concrete 

simulators to assign and retrieve the structural value of the processors. A new 

structural value is assigned through strucChange(int &) method in the internal 

transition function, the external transition function or the confluent transition 

function of an atomic model if the atomic model tries to raise a structural change 



request. Two data members in the corresponding simulator hold the structural value 

and strucChange(int &) method updates the data member struc in the simulator. 

If a new structural value is assigned, struc contains a different value with 

struc_rec. The simulator detects the difference between the two data members 

via strucChange() and determines whether if a structural change request is raised. 

The receiveStartMsg() in Simulator takes charge of message processing of start 

messages which are received in an atomic model.  

4. RevSimulator encapsulates the message-passing algorithm of RevSimulator. The 

processor instantiated from RevSimulator generates the behaviours of structure 

agents. RevSimulator handles initial message, which initializes the model, and the 

structural change messages, which invoke the structural change processes in 

structure agents with the expected structural values.  

Messaging Subsystem 

Message Subsystem is responsible for management of message classes and 

maintenance of a message queue. Virtual attributes and operations of a message are 

defined in Message. Seven message classes are inherited from the virtual class 

encapsulating the corresponding messaging implementations. Classes InitMessage, 

InternalMessage, ExternalMessage, DoneMessage, OutputMessage, CollectMessage 

and StartMessage represent initial message, internal message, external message, done 

message, output message, collect message and start message respectively. The message 

class diagram is shown in Fig. 7.  



1. MessageAdmin as a message manager maintains an unprocessed message queue 

and dispatches messages.  

2. DoneMessage and InternalMessage classes are extended to represent a structural 

change request and a structural change message respectively. In eCD++, done 

message and internal message are used for simulation control purpose and no value 

involved. In DS-eCD++, done message and internal message require message 

values to carry structural values. In DoneMessage class and InternalMessage class, 

setvalue(value) method sets a structural value in the data member value. The 

structural value can be accessed via getvalue() method. The concrete messages are 

the instantiations of the message classes.  

 

 

 

 

 

 

Fig 30. Messaging Subsystem 
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Functionalities of DS_ECD++ 

The functionalities of DS_ECD++ are investigated in this section. The most important 

functionality is dynamic structural change. In Chapter 3, we discussed the basic 

structural change forms. The compositions of those basic structural change forms 

constitute a variety of structural change scenarios. DS_ECD++ is able to perform the 

various structural change scenarios by combining the basic structural change forms. 

The structural changes may be raised at any time. FDSDE specifies that the structural 

change has higher priority over other simulation events. When a structural change 

request becomes imminent, other imminent events have to wait until the next 

simulation cycle. A structural change request can be raised in the internal transition 

function, the external transition function of an atomic model. The message-passing 

paradigms defined FDSDE are in line with the P-DEVS formalism; therefore parallel 

simulation is possible in DS-eCD++. That is to say, a structural change request can be 

handled in the confluent function of an atomic model. Moreover, DS-eCD++ also 

supports the nested dynamic structural change, in which a structural change request 

may cause a series of structural change processes in different structure components in 

the model hierarchy.  

The revised flat coordinator supports dynamic structure simulation with a flat 

coordinator. In the simulation with a flat coordinator, the solo structure agent executes 

the structural change for the structure component – flattop.  



DS-eCD++ supports dynamic structure in real time. Employing the interval time 

function, DS-eCD++ enables to run the simulation with real time advance. Sometime, 

the dynamic structural change in real time simulation takes longer time than that in 

virtual time simulation for the structural change needs more time to process. 

DS-eCD++ is able to cooperate with the GGAD interpreter to implement simulation 

using GGAD-defined DEVS models. Whatever one or more atomic models are 

replaced with the GGAD equivalents, the dynamic structure simulation can run as 

exactly the same as the simulation with C++ language defined models. Also, the 

dynamic structure simulation with the GGAD models fits both virtual time advance and 

real time advance. 

The functionalities of DS-eCD++ can be embodied by the structural change scenarios. 

In the next chapter, the structural change scenarios are devised and the corresponding 

case studies are conducted to test the functionalities.   

 

 

 

 

 

 



Chapter 5 Structural Change Scenarios and Case Studies 

In order to evaluate the FDSDE algorithm and the software logic, the case studies are 

investigated in this chapter. The structural change scenarios presented in the first 

section combines the basic structural change forms described in Chapter 3 and the 

major functionalities in eCD++. In the following sections, two cases: DSAMS 

(Dynamic Structure Automatic Manufacturing System) and MTRS (Motor Tracing and 

Replacement System) are studied. In each case, a series of experiments are provided to 

verify the structural change scenarios. For each case, the model description is 

explained. The structure components in the cases are identified and the formal 

specifications of the structure components based on the DSDEVS formalism are 

exhibited. A series of experiments covering a coupled of the structural change scenarios 

are carried out and the simulation results are analyzed. 

Structural Change Scenarios 

Ten structural change scenarios are presented to evaluate the dynamic structural change 

functionality and the compatibility with eCD++. 

• Scenario 1: Structural change request is raised in the external function of an 

atomic model 

• Scenario 2: Structural change request is raised in the internal function of an 

atomic model 

• Scenario 3: The structural changes involving transition conflicts can be 



properly handled by means of confluent transition function of an atomic model 

• Scenario 4: Addition or/and removal of internal links (The sender and the 

receiver of the links are within a coupled model). 

• Scenario 5: Addition or/and removal of an atomic model 

• Scenario 6: Replacement of a coupled model 

• Scenario 7: A nested structural change process caused by a structural change 

request.  

• Scenario 8: Structural changes in a flat coordinator. 

• Scenario 9: Structural changes of the interface of a coupled model. (changes  

of the input ports or/and output ports of a coupled model) 

• Scenario 10: Running dynamic structure real time simulation using the GGAD 

models 

Case 1 DSAMS 

Description 

DSAMS (Dynamic Structure Automated Manufacturing System) is composed by the 

dedicated stations that perform assembling and painting tasks on different products in a 

manufacturing plant, including a conveyor belt that transports the products to/from 

those workstations. The Controller Unit is an atomic model used to control the actions 

of the Conveyor according to external inputs (which schedule the manufacturing of a 



given product). The Conveyor transports the products being manufactured to the other 

units, as indicated by Controller Unit. The Conveyor itself is a coupled model 

consisting of an Engine (to move the belt) and a Sensor (to detect the current position in 

order to decide when we need to stop the belt). The Engine Assembly workstation (ES) 

is an atomic model, modeling a dedicated workstation standing beside the Conveyor to 

take assembling tasks. The second dedicated workstation - Painting workstation (PS) - 

is a coupled model containing a Painter (which paints the products) and two models of 

painting arms: Chrome and Color. The timing parameters used in DSAMS are shown in 

the table. 

 

 

 

 

 

Fig 31. The Scheme of DSAMS 
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Table 1 The Timing Parameters in DSAMS 

Model 

Name 
Time Variables Duration Description 

Engine 

preparationTime2Start Time(0, 0, 0, 5) start a product  

preparationTime2Stop Time(0, 0, 0, 5) stop a product 

movingTime Time(0, 0, 0, 5) 
move from one station to the 

other 

ES workingTime1 Time(0, 0, 1, 0) Working time during daytime 

ES’ workingTime2 Time(0, 0, 1, 050) Working time during night 

Painter 

workingTime1 Time(0, 0,2, 20) paint color and chrome 

workingTime2 Time(0, 0, 1, 0) paint color  

workingTime3 Time(0, 0, 2, 0) Paint chrome 

Chrome preparationTime Time(0, 0, 0, 10) prepare chrome painting arm 

Color preparationTime Time(0, 0, 0, 20) prepare color painting arm 

Initially, a product is placed on the Conveyor belt besides the ES, waiting for the 

indications from the Controller Unit, which receives the external events from btn1A 

indicating that the product is processed in ES, and from btn2A, which tells that the 

product is processed in PS (as we can see in the table, multiple events are received 

throughout the simulation on each of the buttons). The Controller Unit also receives the 

status of the products on Conveyor from Sensor (from inputs s1a and s2a), and outputs 

them through the output ports sta_disp_a or dirn_disp_a. sta_disp_a displays the 

number of the station that the product has reached (ES = 11 and PS = 21); while 

dirn_disp_a indicates the moving direction of the conveyor (0: stopped, 1: moving 

forward, and 2: moving backward). Two LED output ports, led1 and led2, are 

associated with the two stations (ES and PS). The corresponding LED turns on (value = 

1) when the destined station is assigned, and turns off (value = 0) when the product 



reaches the station. The completion of the tasks in the stations is indicated by the two 

output ports st1_a and st2_a respectively. The Engine receives indications from the 

Controller Unit via active_a and direction_eng_a. The expected station is input 

through active_a indicating the destination the Engine moves to. The moving direction 

of the Engine is designated via direction_eng_a. s1a_eng tells the Sensor the current 

station the Engine reached. The Engine starts ES and receives the ending signal from ES 

via es_in and es_out. ps_in and ps_out are used to signals PS and reports the task 

completion in PS. The Painter initiates chrome arm and color arm via chrome_in and 

color_in. The preparation done messages are returned from the Chrome and the Color 

through chrome_out and color_out. 

Two kinds of changes are considered in the DSAMS:  

1) Variation of the duty shift, which will produce a change between ES and ES1. For 

the simulation, it is supposed that the duty time is 10 minutes for both ES and ES1. 

2) Switch of painting modes. Some products need painting both color and chrome 

(painting mode = 1) while other products require painting either color (painting 

mode = 2) or chrome (painting mode = 3). The painting mode is indicated by the 

CU, which will generate an external event representing the corresponding 

painting mode.  



Formal Specifications 

The structure components in DSAMS are shown in a formal diagram, in which a 

rectangle with a name represents a model, while an ellipse with Zi, j denotes a transition 

function (i is the model name, j refers to its structural state). χ indicates the structure 

agent associated with the structure component. Zχ is the internal transition function of 

the structure agent. 

The formal specifications give formal definitions of the structure components. ζ 

represents the structure component TOP; while π denotes the structure component PS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)  
 
 
 
 
 
 
 
 

ς = (Xς, Yς, χ, Mχ)  Xς = {activate}  Yς = {out}  Mχ = {Xχ, s0,χ, Sχ, δχ, τχ} 

Xχ = {struc1, struc2}  Sχ = {s0, χ, s1, χ }  τ s0, χ = τ s1, χ = 10 minutes 
δχ (s0, χ, e, change) = s1, χ   δχ (s1, χ, e, change) = s0, χ 

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}}  γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}} 

D0 = {CU, Conveyor, PS, ES}  D1 = {CU, Conveyor, PS, ES’} 

Mcu,0 = Mcu,1 = { Xcu, s0, cu, Scu, Ycu, δcu, λcu, τcu} 

Mco,0 = Mco,1  = { Xco, s0, co, Scc, Ycc, δcc, λcc, τcc} 

Mps,0 = Mps,1 = { Xps, s0, ps, Sps, Yps, δps, λps, τps} 

Mes,0 = { Xes, s0, es, Ses, Yes, δes, λes, τes} 

Mes’,0 = { Xes’, s0, es’, Ses’, Yes’, δes’, λes’, τes’} 

Icu = { ς }  Ico = {CU}  Icp = {Conveyor}  Icc = {Conveyor}  Ice = {Conveyor}  Ips = {PS}  Ies 

= {ES }  Ies’ = {ES’}  Iχ,0 = Iχ,1 = {ς}   

Zχ,0 = Zχ,1 = Zχ  Zχ: Xς � Xχ Zcu,0 = Zcu,1 = Zcu Zcu : Xς --> Xcu  

Zcc,0 = Zcc,1 = Zcc Zcc : Xcu �Xco  Zco,0 = Zco,1 = Zco Zco : Xco �Xcu 

Zps,0 = Zps,1 = Zps Zps : Xps �Xco  Zcp,0 = Zcp,1 = Zcp Zcp : Xco �Xps 

Zes,0 : Xes �Xco  Zce,0 Zce : Xce �Xco  Zes’,1 : Xes’ �Xco  Zce,1 : Xco �Xes’ 



 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 32. a) The Model Structure of the TOP including ES  b) The Model 

Structure of the TOP including ES’  c) Formal specification of the 

structure component TOP 
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c) 
 
 
 

 

 

 

 

π = (Xπ, Yπ, χ, Mχ) Xπ = {activate} Yπ = {out}  Mχ = {Xχ, s0, χ, Sχ, δχ, τχ} 

Xχ = {changemode1, changemode2, changemode3} 

Sχ = {s0, χ, s1, χ, s2, χ } 
τ s0, χ = workingTime1  τ s1, χ = workingTime2  τ s2, χ = workingTime3 
δχ (s0, χ, e, changemode2) = s1, χ  δχ (s1, χ, e, changemode3) = s2, χ 

δχ (s0, χ, e, changemode3) = s2, χ   δχ (s1, χ, e, changemode1) = s0, χ 

δχ (s2, χ, e, changemode1) = s0, χ  δχ (s2, χ, e, changemode2) = s1, χ 

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}} γ (s2, χ) = {D2, {Mi,2}, {Ii,2}, {Zi,2}} 

D0 = {Color, Painter} D1 = {Color, Chrome, Painter} D2 = {Chrome, Painter} 

Mcc,0 = Mcc,1 = { Xcc, s0, c, Sc, Yc, δcc, λccl, τcc} 

Mpan,0 = Mpan,1  = { Xpa, s0, pa, Spa, Ypa, δpa, λpa, τpa} 

Mch,1 = Mch,2 = { Xch s0, ch, Sch, Ych, δch, λch, τch} 

Icc,0 = Icc,1 = {Painter} Ipa,0 = {π, Color} Ipa,1 = {π, Color, Chrome} Ipa,2 = {π, Chrome} 

χχχχ 

Zpa, 2 Zπ,2 
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Fig 33. a) PS workstation with color painting arm  b) PS workstation with 

color and chrome painting arms c) PS workstation with chrome painting 

arm d)Formal specification of the structure component PS 

Model Definitions 

The model definition of DSAMS using CD++ build-in specification language is listed 

in the following figure. In the model definition, the model structures of the two 

structure components are specified. TOP has two structural states and PS has three 

structural states. 

 

 

 

 

 

 

 

[top] 

components :  conveyorA topexec#TOPEXEC 

components :  dsecu@DSECU es@ES ps  

in :  btn1A btn2A st1A_in st2A_in  

out :  led1 led2 stn_disp_A dirn_disp_A st1_A st2_A  

Scomm :  struc1 

Link :  btn1A b1A@dsecu       Link :  btn2A b2A@dsecu 

Link :  activate_A@dsecu  activate_A@conveyorA 

Link :  direction_eng_A@dsecu direction_eng_A@conveyorA 

Link :  pmodeA@dsecu pmode_in@conveyorA 

Link :  es_in@conveyorA inA@es    Link : ps_in@conveyorA inA@ps 

Link :  outA@es es_out@conveyorA  Link :  outA@ps ps_out@conveyorA 

Link :  s1A@conveyorA s1A@dsecu   Link : s2A@conveyorA s2A@dsecu 

Link :  st1@conveyorA st1A_in@dsecu Link :  st2@conveyorA st2A_in@dsecu 

Link :  l1@dsecu led1               Link : l2@dsecu led2 

Link :  station_display_A@dsecu stn_disp_A 

Link :  direction_display_A@dsecu dirn_disp_A 

Link :  st1_A@dsecu st1_A        Link : st2_A@dsecu st2_A 

Link :  st1_out@engA st1         Link :  st2_out@engA st2 

Iχ,0 = Iχ,1 = Iχ,2 = {π} 

Zχ,0 = Zχ,1 = = Zχ,1 = Zχ and Zχ: Xπ � Xχ     Zcc,0 = Zcc,1  = Zcc  Zcc: Xpa � Xcc 

Zch,1 = Zch,2 = Zch Zch: Xpa �Xch  Zpa,0 = Xcc, 0 x  Xπ    Zpa,1 = Xcc × Xch  x Xπ  Zpa,2 = Xch  x Xπ   

Zπ,0  = Ypa,0   Zπ,1  = Ypa,1   Zπ,2  = Ypa,2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[conveyorA] 

components :  engA@engineA dsscA@dssensorboxA 

in :  activate_A direction_eng_A pmode_in es_out ps_out 

out :  s1A s2A st1 st2 es_in ps_in  

Link :  activate_A startstop@engA 

Link :  direction_eng_A engdirection@engA 

Link :  es_out es_out@engA       Link : ps_out ps_out@engA 

Link : pmode_in pmode_in@engA  Link :  floor@engA s1A_eng@dsscA 

Link : sen1A@dsscA s1A          Link : sen2A@dsscA s2A 

Link : es_in@engA es_in         Link :  ps_in@engA ps_in 

[ps]  

components :  painter@Painter color@Color chrome@Chrome psexec#PSEXEC 

in :  inA   out : outA  SSSSccccomm : omm : omm : omm : struc1 

Link : Link : Link : Link : inA inA@painter           Link :Link :Link :Link : outcolor@painter in@color        

Link : Link : Link : Link : outchrome@painter in@chrome    Link :Link :Link :Link : out@chrome inchrome@painter 

Link :Link :Link :Link : out@color incolor@painter Link : Link : Link : Link : outA@painter outA 

[topUpdate1][topUpdate1][topUpdate1][topUpdate1]    

components :  conveyorA dsecu@DSECU es1@ES1 ps  

in :  btn1A btn2A st1A_in st2A_in  

out :  led1 led2 stn_disp_A dirn_disp_A st1_A st2_A  

Scomm :  struc2 

… 
Link :  es_in@conveyorA inA@es1   Link : ps_in@conveyorA inA@ps 

Link :  outA@es1 es_out@conveyorA Link : outA@ps ps_out@conveyorA 

… 

[psUpdate1][psUpdate1][psUpdate1][psUpdate1]    

components :components :components :components : color@Color painter@Painter  

in : in : in : in : inA  out : out : out : out : outA   Scomm : Scomm : Scomm : Scomm : struc2 

Link :Link :Link :Link : inA inA@painter             Link :Link :Link :Link : outcolor@painter in@color 

Link :Link :Link :Link : out@color incolor@painter   Link :Link :Link :Link : outA@painter outA 

[psUpdate2][psUpdate2][psUpdate2][psUpdate2]    



Fig 34. Model Definitions of DSAMS 

The DSAMS Experiments Using DS-eCD++ 

Experiment 1 

This experiment aims to verify the dynamic structure of the simulation environment. 

The atomic models of the DSAMS were defined in C++, and the compositions and the 

couplings are specified in the coupled models. PSEXEC is a structure agent executing 

the structural changes on behalf of PS according to the indicated painting modes. 

TOPEXEC is another structure agent taking charge of the duty shifts between ES1 and 

ES on behalf of TOP.  

The simulation ran in real time mode and the following table of the external events was 

scheduled and sent to the Controller Unit. The first job in the table arrived at time 

00:00:01:500 from the input port btn1A, which means to put the product at ES (ES’). 

The value received in btn1A in the last column indicated the working mode in ES (ES’). 

ES (ES’) has the only one possible working model (value = 1). Also, the associated 

output port of the job was st1_A. The output time should be no later than 00:00:03:500. 

The remaining jobs scheduler for ES (ES’) are the fourth job at 00:00:12: 500, the sixth 

job at 00:00:19:985 and the seventh job at 00:00:25:000. The jobs scheduled for PS 

were the second job at 00:00:10:500, the third job at 00:00:10:500 and the fifth job at 

00:00:15:000. Among them, the third one was in the painting mode 2 and the fifth one 

was in the painting mode 3.  



Table 2 The Table of the External Events 

Event time Deadline Input port Output port Value 
00:00:01:500 00:00:03:500 btn1A st1_A 1 

00:00:04:500 00:00:08:500 btn2A st2_A 1 

00:00:10:500 00:00:13:500 btn2A st2_A 2 

00:00:12:500 00:00:14:500 btn1A st1_A 1 

00:00:15:000 00:00:17:500 btn2A st2_A 3 

00:00:19:985 00:00:23:000 btn1A st1_A 1 

00:00:25:000 00:00:27:500 btn1A st1_A 1 

Four dynamic structure changes were identified during the simulation: 

1). At 00:00:10:000, the scheduled duty time of ES was expired and a duty shift 

between ES and ES1 occurred.  

2). At 00:00:10:505 (5ms was used to start the Engine), PS switched its painting mode 

from 1 to 2. The Chrome model was removed, while the models of Painter and Color 

were maintained. 

3). At 00:00:15:015 (Engine took 15ms to be activated and moved to PS), PS switched 

its painting mode from 2 to 3. The Color model was removed while the Chrome model 

was added to PS. 

4). At 00:00:20:000, ES1 shifted the duty to ES. It was noticed that the input event 

arrived at ES1 at the time 00:00:20:000. Simultaneously, the scheduled internal state of 

ES1 was expired. As a result, the confluent function of ES1 was invoked at 

00:00:20:000. In the confluent function of ES1, the external transition function was 



given a higher priority over the internal transition function. At 00:00:20:000, the ES1 

executes assembling task first, and then the duty shift happens.   

Fig. 5 exhibits the structural changes in PS. Initially, PS was in painting mode 1 

(structural state is PS1), which included both the color arm and the chrome arm. At 

00:00:10:505, the painting mode switched to 2 (structural state is PS2), which included 

the color arm. PSEXEC executed the structural changes transferring the structural state 

of PS from PS1 to PS2.  

 

 

 

 

 

 

 

Fig 35. The Structural Changes in PS 

Structural Operations in PSEXEC (PS1 � PS2): 

1. DelModel (“ps”, “Chrome”) 
2. DelLink (“ps”, outlink) (outlink : out@Chrome inchrome@Painter) 

PS1 PSEXEC 

Painter 

Color Chrome 

In Out 

PS2 PSEXEC 

Painter 

Color 

In Out 

PS3 PSEXEC 

Painter 

Chrome 

In Out 



3. DelLink (“ps”, inlink) (inlink : outchrome@Painter in@Chrome) 

The painting mode shifted to 3 (structural state is PS3) at 00:00:15:015. The structural 

state of PS is changed from PS2 to PS3. 

Structural Operations in PSEXEC: 

1. DelLink (“ps”, outlink) (outlink : out@Color incolor@Painter) 
2. DelLink (“ps”, inlink) (inlink : outcolor@Color, in@Color) 
3. DelModel (“ps”, “Color”) 
4. AddModel (“ps”, “Chrome”) 
5. AddLink (“ps”, outlink) (outlink : out@Chrome inchrome@Painter) 
6. AddLink (“ps”, inlink) (inlink : outchrome@Painter in@Chrome) 

 

 

 

 

 

 

 

 

Fig 36. The Structural Changes in TOP 
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Fig. 6 presents the structural changes in TOP. TOPEXEC executed the structural 

changes on behalf of TOP. ES and ES1 switched every 10 minutes. At 00:00:10:000, ES 

(structural state is TOP1) was replaced by ES1 (structural state is TOP2). The structural 

operations in TOPEXEC are:  

1. DelLink (“top”, outlink) (outlink : out@ES es_in@Conveyor) 
2. DelLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES) 
3. FullDelModel (“top”, “ES”) 
4. FullAddModel (“top”, “ES1”) 
5. AddLink (“top”, outlink) (outlink : out@ES1 es_in@Conveyor) 
6. AddLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES1) 

As scheduled, the duty shift from ES1 to ES would occur at 00:00:20:000. The real duty 

shift occurred at 00:00:21:500 for the confluent function gave higher priority to the 

external function of ES1. Consequently, the structural change, which happened in the 

internal function of ES1, has been delayed. The structural operations from the structural 

state TOP2 to the structural state TOP1 are: 

1. DelLink (“top”, outlink) (outlink : out@ES1 es_in@Conveyor) 
2. DelLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES1) 
3. FullDelModel (“top”, “ES1”) 
4. FullAddModel (“top”, “ES”) 
5. AddLink (“top”, outlink) (outlink : out@ES es_in@Conveyor) 
6. AddLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES) 

The Experiment 1 involved the five structural change scenarios described in the first 

section of this Chapter. The switch of painting mode in PS depended on the external 

value received in the input port ps_in of the Painter. Therefore the structural changes in 

PS were caused from the external transition function of the Painter (scenario 1). The 

duty shifts between ES and ES’ were raised by the internal transition function of ES 



(ES’) (scenario 2), in which the duty time was counted and the structural change is 

raised when the duty time was expired. As we have described, the fifth job brought 

transition conflict between the internal transition and the external transition of ES’; 

therefore, the confluent transition function of ES’ was invoked to handle the conflict. In 

the confluent transition function, the internal transition function gives higher priority to 

the external transition function. Consequently, the duty shift from ES’ to ES was 

delayed until the end of the external transition function. That is to say, the conflicts can 

be properly handled in DS-eCD++ employing the confluent transition function 

(scenario 3). The structural changes in PS and TOP involved the addition&removal of 

the internal links and the atomic models (scenario 4 and scenario 5).  

The simulation results are listed in Table 3. The first column shows the wall-clock 

value (the time elapsed since the beginning of the simulation execution) at which the 

outputs have been sent out. The second column is the expected deadlines. The results 

and the output ports are displayed in the third and the fourth column. The fifth column 

presents the values output from the output ports. According to the external event time 

and the timing parameters shown in the table 1 and the table 2, we have verified that the 

results reflect the external events correctly and meet the expected deadlines.  

Table 3. Simulation Results in Experiment 1 

Output time Deadline Result Output Port Value 
00:00:02:510 00:00:03:500 Succeed st1_A 1 

00:00:04:500 No deadline  Led2 1 

00:00:04:500 No deadline  dirn_disp_a 1 

00:00:04:510 No deadline  sta_disp_a 21 



00:00:04:510 No deadline  dirn_disp_a 0 

00:00:04:510 No deadline  led2 0 

00:00:06:560 00:00:08:500 Succeed st2_A 1 

00:00:11:520 00:00:13:500 Succeed st2_A 1 

00:00:12:500 No deadline  led1 1 

00:00:12:500 No deadline  dirn_disp_a 2 

00:00:12:510 No deadline  sta_disp_a 11 

00:00:12:510 No deadline  dirn_disp_a 0 

00:00:12:510 No deadline  led1 0 

00:00:14:030 00:00:14:500 Succeed st1_a 1 

00:00:15:000 No deadline  led2 1 

00:00:15:000 No deadline  dirn_disp_a 1 

00:00:15:010 No deadline  sta_disp_a 21 

00:00:15:010 No deadline  dirn_disp_a 0 

00:00:15:010 No deadline  led2 0 

00:00:17:040 00:00:17:500 Succeed st2_A 1 

00:00:19:985 No deadline  led1 1 

00:00:19:985 No deadline  dirn_disp_a 2 

00:00:19:995 No deadline  sta_disp_a 11 

00:00:19:995 No deadline  dirn_disp_a 0 

00:00:19:995 No deadline  led1 0 

00:00:21:510 00:00:23:000 Succeed st1_a 1 

00:00:26:020 00:00:27:000 Succeed st1_a 1 

The messages log the simulation details. It is noticed that the light operations were used 

in the structural changes in PS; while the full operations were applied in the structural 

changes in TOP. When the simulation starts, the model ids are designated (shown in the 

figure). In the third job, the Chrome model is removed using the light operation 

DelModel(). When the Chrome model was reused in the fifth job, the model reference 

(id = 10) was simply added into the children list of PS (figure ). The model id of ES 

model was 06 at the beginning of the simulation. The ES model was removed with 

FullDelModel() during the duty shift at 00:00::10:000. The new model id (id = 16) was 

assigned to ES model when ES rejoins the simulation at 00:00:21:500. 



 

 

 

 

 

 

 

 

 

Fig 37. The initialization of the Simulation 

 

 

 

 

 

MSG: I / 00:00:00:000 / Root(00) TO top(01) 

MSG: I / 00:00:00:000 / top(01) TO conveyora(02) 

MSG: I / 00:00:00:000 / top(01) TO dsecu(05) 

MSG: I / 00:00:00:000 / top(01) TO es(06) 

MSG: I / 00:00:00:000 / top(01) TO ps(07) 

MSG: I / 00:00:00:000 / top(01) TO topexec(13) 

MSG: I / 00:00:00:000 / conveyora(02) TO enga(03) 

MSG: I / 00:00:00:000 / conveyora(02) TO dssca(04) 

MSG: D / 00:00:00:000 / dsecu(05) / ... /      0.00000 TO top(01) 

MSG: D / 00:00:00:000 / es(06) / 00:00:10:000 /      0.00000 TO top(01) 

MSG: I / 00:00:00:000 / ps(07) TO painter(08) 

MSG: I / 00:00:00:000 / ps(07) TO color(09) 

MSG: I / 00:00:00:000 / ps(07) TO chrome(10) 

MSG: I / 00:00:00:000 / ps(07) TO psexec(11) 

MSG: D / 00:00:00:000 / topexec(13) / ... /      0.00000 TO top(01) 

MSG: D / 00:00:00:000 / enga(03) / ... /      0.00000 TO conveyora(02) 

MSG: D / 00:00:00:000 / dssca(04) / ... /      0.00000 TO conveyora(02) 

MSG: X / 00:00:15:015 / ps(07) / ina /      3.00000 TO painter(08) 

MSG: * / 00:00:15:015 / ps(07) /      0.00000 TO painter(08) 

MSG: D / 00:00:15:015 / enga(03) / ... /      0.00000 TO conveyora(02) 

MSG: D / 00:00:15:015 / painter(08) / 00:00:00:000 /      3.00000 TO ps(07) 

MSG: D / 00:00:15:015 / conveyora(02) / ... /      0.00000 TO top(01) 

MSG: D / 00:00:15:015 / ps(07) / 00:00:00:000 /      3.00000 TO top(01) 

MSG: D / 00:00:15:015 / top(01) / 00:00:00:000 /      3.00000 TO Root(00) 

MSG: * / 00:00:15:015 / Root(00) /      3.00000 TO top(01) 

MSG: * / 00:00:15:015 / top(01) /      3.00000 TO ps(07) 

MSG: * / 00:00:15:015 / ps(07) /      3.00000 TO psexec(11) 

MSG: D / 00:00:15:015 / psexec(11) / ... /      0.00000 TO ps(07) 

MSG: St / 00:00:15:015 / ps(07) TO chrome(10) 

MSG: D / 00:00:15:015 / chrome(10) / ... /      0.00000 TO ps(07) 

MSG: D / 00:00:15:015 / ps(07) / 00:00:00:000 /      0.00000 TO top(01) 

MSG: D / 00:00:15:015 / top(01) / 00:00:00:000 /      0.00000 TO Root(00) 

MSG: D / 00:00:00:000 / painter(08) / ... /      0.00000 TO ps(07) 

MSG: D / 00:00:00:000 / color(09) / ... /      0.00000 TO ps(07) 

MSG: D / 00:00:00:000 / chrome(10) / ... /      0.00000 TO ps(07) 

MSG: D / 00:00:00:000 / psexec(11) / ... /      0.00000 TO ps(07) 



Fig 38. The Structural State Transition from PS2 to PS3 

 

 

 

 

 

Fig 39. The Structural State Transition from TOP2 to TOP1 

Experiment 2 

This experiment replaced the Sensor model with GGAD notation equivalent and 

executed the simulation using the table of the external events presented in the table 

(scenario 10). Fig. 6 and Fig. 7 display GGAD definitions of Sensor, which is used to 

replace the Sensor defined with C++. It was found that the Sensor defined in the two 

ways behaved exactly the same and had the same simulation results. Since the GGAD 

notation can build equivalent atomic models with less effort than the C++ definitions, it 

is useful for non-expert modellers. This experiment verified that DS-eCD++ can 

connect to the GGAD interpreter to execute GGAD models correctly (scenario 10). 

 

 

MSG: D / 00:00:21:500 / es1(15) / 00:00:00:000 /      4.00000 TO top(01) 

MSG: D / 00:00:21:500 / enga(03) / 00:00:00:000 /      0.00000 TO conveyora(02) 

MSG: D / 00:00:21:500 / conveyora(02) / 00:00:00:000 /      0.00000 TO top(01) 

MSG: D / 00:00:21:500 / top(01) / 00:00:00:000 /      4.00000 TO Root(00) 

MSG: * / 00:00:21:500 / Root(00) /      4.00000 TO top(01) 

MSG: * / 00:00:21:500 / top(01) /      4.00000 TO ps(07) 

MSG: * / 00:00:21:500 / ps(07) /      4.00000 TO psexec(11) 

MSG: D / 00:00:21:500 / psexec(11) / ... /      0.00000 TO ps(07) 

MSG: D / 00:00:21:500 / ps(07) / ... /      0.00000 TO top(01) 

MSG: * / 00:00:21:500 / top(01) /      4.00000 TO topexec(13) 

MSG: D / 00:00:21:500 / topexec(13) / ... /      0.00000 TO top(01) 

MSG: St / 00:00:21:500 / top(01) TO es(16) 

MSG: D / 00:00:21:500 / es(16) / 00:00:10:000 /      0.00000 TO top(01) 

MSG: D / 00:00:21:500 / top(01) / 00:00:00:000 /      0.00000 TO Root(00) 



 

 

 

 

 

Fig 40. GGAD Graphical Definition of the Sensor 

[Sensor] 

in: s1A_eng     

out: sen1A sen2A 

var : cur_value last_value  

state: idle position1 position2 

initial: idle 

ext: idle position1 equal(s1A_eng, 1)?1 {cur_value = s1A_eng;} 

ext: idle position2 equal(s1A_eng, 2)?1 {cur_value = s1A_eng;} 

int: position1 idle sen1A!1 {last_value = cur_value;} 

int: position2 idle sen2A!1 {last_value = cur_value;} 

idle: infinite   

position1: 0:0:0:0   

position2: 0:0:0:0 

GGAD notation Definition of Sensor 

Experiment 3 

A different test applied the flat coordinator technique to the dynamic structure 

simulation of DSAMS (scenario 9). The Flat Coordinator helps to improve the 

simulation performance by flattening the model hierarchy and reducing the number of 

messages delivered among the models dramatically. The Flat Coordinator in DSAMS 

s1a_eng:  

sen1A:      

sen2A:    
Idle      

Position2    

①   ② 

Position1    

③   ④   

① equal (s1A_eng, 1)?1 {cur_value = s1A_eng;}     

② equal (s1A_eng, 2)?1 {cur_value = s1A_eng;}     



enables the atomic models to exchange messages with the FLATTOP directly. 

FTOPEXEC is the solo structure agent taking charge of the structural changes on behalf 

of FLATTOP.  

Fig. 12 exhibits the processor hierarchy using the flat coordinator. The coordinators of 

the structure components PS and TOP are replaced with the flat coordinator. The 

FLATTOP exchanges the messages directly with the atomic models, while FTOPEXEC 

executes the structural changes on behalf of FLATTOP. The simulation with the flat 

coordinator produces the same simulation results as those of Experiment 1, but played a 

higher simulating performance. The total messages exchanged among the processors in 

Experiment 1 are 1,104; while the total messages delivered in Experiment 2 are 703. 

The improvement ratio is (1104 - 703) / 1104 = 36.32%. The comparison of the 

numbers of messages between the two experiments is shown in Fig.13. The sample 

messages generated in the simulation of DSAMS using the flat coordinator are 

presented in the figure. 

 

 

 

Fig 41. Simulation Hierarchy with a Flat Coordinator 
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Fig 42. Comparison of the Number of Messages between the two 

simulation fashions 

 

 

 

 

 

 

 

 

Fig 43. The Message Flows in the Simulation using the flat coordinator 

MSG: D / 00:00:10:000 / ftopexec(11) / ... /      0.00000 TO flattop(01) 

MSG: St / 00:00:10:000 / flattop(01) TO es1(13) 

MSG: D / 00:00:10:000 / es1(13) / 00:00:10:000 /      0.00000 TO flattop(01) 

MSG: D / 00:00:10:000 / flattop(01) / 00:00:10:000 /      0.00000 TO Root(00) 

… 

MSG: D / 00:00:10:505 / enga(03) / ... /      0.00000 TO flattop(01) 

MSG: D / 00:00:10:505 / painter(08) / 00:00:00:000 /      2.00000 TO flattop(01) 

MSG: D / 00:00:10:505 / flattop(01) / 00:00:00:000 /      2.00000 TO Root(00) 

MSG: * / 00:00:10:505 / Root(00) /      2.00000 TO flattop(01) 

MSG: I / 00:00:00:000 / Root(00) TO flattop(01) 

MSG: D / 00:00:00:000 / flattop(01) / 00:00:10:000 /      0.00000 TO Root(00) 

… 

MSG: D / 00:00:10:000 / es(06) / 00:00:00:000 /      5.00000 TO flattop(01) 



Case 2: Motor Tracing and Replacement System (MTRS) 

Description 

Motor tracing and replacement system aims to trace and control the moving motor in 

real time. When the motor fails report its states within the given period, the motor 

malfunction is considered and a new motor is started to replace the old one. Controller 

Unit is an atomic model to control and trace the target motor. A motor is a coupled 

model containing two atomic models: Engine and Sensor. The Engine drives the motor 

moving according to the directions indicated by the Controller Unit. The Sensor senses 

the position of the motor and reports it to the Controller Unit.  

 

 

 

Fig 44.  The Scheme of MTRS 

Table 4 The Timing Parameters in MTRS 

Model 

Name 
Time Variables Duration Description 

Engine 

preparationTime2Start Time(0, 0, 0, 5) 
Time used to start moving a 

product  

preparationTime2Stop Time(0, 0, 0, 5) 
Time used to stop moving a 

product 

movingTime Time(0, 0, 0, 10) 
Time used to move from one 

station to the other 

Controller Unit 

Engine Sensor 
 
 

Motor 

in out 

eng_in sen_out 

sen_in 



turningTime Time(0, 0, 0, 5) 
Time used from direction 

turning 

CU period Time(0, 0, 0, 40) 

Motor should report its states 

within the period, otherwise a 

failure is raised 

Initially, the motor stops to the north. When the Controller Unit receives an instruction 

(the moving directions with north: 1, east: 2, south: 3, west: 4) from in, the Controller 

Unit passes the instruction to the Engine through eng_in. The Engine drives the motor 

to move at the indicated direction for up to 10 seconds. If a new instruction comes 

during the moving of the motor, the moving will be interrupted and act according to the 

new instruction. Otherwise, the motor stops. The Sense senses the position of the motor 

via its input port sen_in and report is to the Controller Unit through sen_out. The 

directions that have been acted successfully are output through the out port of the 

Controller Unit. 

In MTRS, the motor is replaced by another motor when it fails to report the status to the 

Controller Unit within the given period. The motor is a structure component, in which 

the Engine and the Sensor may be changed by the counterparts. The TOP is another 

structure component, in which a new coupling from the test in the Controller Unit to the 

test in motor is added. 

Formal Specifications 

The formal specification of the structure component in MTRS is presented based on the 

DSDEVS formalism. In the figure, S represents the structure component motor. The 

Engine and the Sensor in the fig. a) are replaced by the Engine1 and the Sensor1 in the 



fig. b). The fig. c) is the formal specification of motor. The figure xx shows the formal 

specification of the TOP. The structural change of the interface of the coupled model 

lies in the transition function between the Controller Unit and the structure component 

motor (Zmo,0 � Zmo,1).  

 

 

a) 

 

 

b) 

 

 

 

 

 

c) 

S = (XS, YS, χ, Mχ) XS = {1, 2, 3, 4} YS = {1, 2, 3, 4}  Mχ = {Xχ, s0, χ, Sχ, δχ, τχ} 

Xχ = {Timeout}  Sχ = {s0, χ, s1, χ,}  τ s0, χ = τ s1, χ = Inf  δχ (s0, χ, e, Timeout) = s1, χ   

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}}  

D0 = {Engine, Sensor} D1 = {Engine1, Sensor1} 

Men,0 = { Xen, s0, en, Sen, Yen, δen, λen, τen} 

Mse,0= { Xse s0, se, Sse, Yse, δse, λse, τse} 

Men1,1 = { Xen1, s0, en1, Sen1, Yen1, δen1, λen1, τen1} 

Mse1,1= { Xse1 s0, se1, Sse1, Yse1, δse1, λse1, τse1} 

Ien,0 = {S} Ien1,1 = {S} 

Ise, 0 = {Engine} Ise1, 1 = {Engine1}  

Iχ,0 = Iχ,1 = {S} 

Zχ,0 = Zχ,1 = Zχ and Zχ: XS � Xχ    Zen,0: XS,0 � Xen,0  Zen1,1: XS,1 � Xen1,1  Zse,0: Xen,0 � 

Xse,0  Zse1,1: Xen,1 � Xse1,1 

ZS,0 Yse,0 � YS,0   ZS,1 Yse,1 � YS,1   

Engine1 Sensor1 
Zen, 1 Zse,1 

S Zχχχχ χχχχ 

ZS,1 

Engine0 Sensor 
Zen,0 Zse,0 

S Zχχχχ χχχχ 

ZS,0 



Fig 45. a) The Motor1 is controlled by the Controller Unit  b) The Motor2 is 

controlled by the Controller Unit  c) Formal specification of the structure 

component motor 

 

 

 

a) 
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 c) 

P = (Xp, Yp, χ, Mχ) Xp = {1, 2, 3, 4} Yp = {1, 2, 3, 4}  Mχ = {Xχ, s0, χ, Pχ, δχ, τχ} 

Xχ = {Timeout}  Sχ = {s0, χ, s1, χ,}  τ s0, χ = τ s1, χ = Inf  δχ (s0, χ, e, Timeout) = s1, χ   

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}}  

D0 = {Controller Unit, motor} D1 = {Controller Unit, motor} 

Mcu,0 = Mcu,1 = { Xcu, s0, cu, Scu, Ycu, δcu, λcu, τcu} 

Mmo,0= Mmo,1 = { Xmo s0, mo, Smo, Ymo, δmo, λmo, τmo} 

Icu,0 = {P} Icu1,1 = {P} 

Imo, 0 = {Controller Unit} Imo, 1 = {Controller Unit}  

Iχ,0 = Iχ,1 = {Controller Unit} 

Zχ,0 = Zχ,1 = Zχ and Zχ: XP � Xχ    Zcu,0: XP,0 � Xcu,0  Zcu,1: XP,1 � Xcu,1  Zmo,0: Xcu,0 � 

Xmo,0  Zmo,1: Xcu,1 � Xmo,1 

ZP,0 Ycu,0 � YP,0   ZP,1 Ycu,1 � YP,1   

CU motor1 
Zcu, 0 Zmo,0 

P Zχχχχ χχχχ 

ZP,0 

CU motor2 
Zcu, 0 Zmo,1 

P Zχχχχ χχχχ 

ZP,1 



Fig 46. a) The Controller Unit Connected with Motor1. b) The Controller 

Unit Connected with Motor2. c) The Formal Specification of the 

Structure Component TOP.  

Model Definitions 

The model definition of MTRS is shown in the Fig. 18. The model structure described 

in the group [Topupdate1] is the alternative model structure of the structure 

component TOP. The alternative model structure of motor is presented in the group 

[motorupdate1]. For each group, the structural command is designated to take as a code 

name of the corresponding model structure. 

 

 

 

 

 

 

 

Fig 47. Model Definition of MTRS 

[top][top][top][top]    

components components components components : cu@ECU motor topexec#ExecTop 

inininin : in  out out out out : out  Scomm Scomm Scomm Scomm : topstruc1 

Link Link Link Link : in in@cu  Link Link Link Link : eng_in@cu in@motor 

Link Link Link Link : out@motor sen_out@cu  Link Link Link Link : out@cu out 

[top[top[top[topupdate1]update1]update1]update1]    

components components components components : cu@ECU motor 

in in in in : in  outoutoutout : out Scomm Scomm Scomm Scomm : topstruc2 

Link Link Link Link : in in@cu LinkLinkLinkLink : eng_in@cu in@motor LinkLinkLinkLink : eng_test@cu test@motor 

LinkLinkLinkLink : out@motor sen_out@cu LinkLinkLinkLink : out@cu out 



The MTRS Experiments Using DS-eCD++ 

Experiment 1 

The MTRS is simulated in real time with the external events in the following. Initially, 

motor1 is controlled by the Controller Unit including the Engine and the Sensor. The 

Engine contains one input port in. A soft fault was set in the Engine, which makes the 

Engine cannot report its status when the direction is west (value = 4). Motor2 including 

the Engine1 and the Sensor1 starts to replace motor1. Suppose motor2 containes two 

input ports in and test. The instructions from the Controller Unit are received via in, 

while test allows receiving more information from the Controller Unit.  

A nested structural change process was involved in the experiment. MotorEXEC 

replaceed the components and the couplings of motor1 with the counterparts of motor2 

on behalf of the structure component motor. TOPEXEC took charge of building a new 

coupling between Controller Unit and motor2 on behalf of the structure component 

TOP. 

Table 5 The Table of the External Events 

Event time Deadline Input port Output port Value 
00:00:01:500 00:00:01:535 in out 2 

00:00:04:500 00:00:04:535 in out 3 

00:00:10:500 00:00:10:535 in out 1 

00:00:15:000 00:00:15:035 in out 4 

00:00:20:000 00:00:20:035 in out 3 

At 00:00:15:000, an instruction was sent to the Controller Unit. The instruction comes 

to the Engine of at 00:00:15:010. Due to the soft fault in the Engine, the instruction was 



not executed properly. Therefore, the Controller Unit did not receive the report from 

the Sensor. The Controller Unit considered the malfunction of the motor1. At 

00:00:15:040, the Controller Unit sent an output with value 9 indicating the failure of 

the motor1. A structural change request is raised by the Controller Unit once upon the 

failure report. The structural change request caused the structural changes both in the 

motor and the TOP as in the figure 19. The structural change in the motor was executed 

first. MotorEXEC replaces the couplings and the atomic models in the motor. The 

structural change operations in MotorEXEC were: 

1. DelLink (“motor”, link1) (link1: in in@engine) 
2. DelLink (“motor”, link2) (link2 : out@engine in@sensor) 
3. DelLink (“motor”, link3) (link3 : out@sensor out) 
4. DelModel (“motor”, “Engine”) 
5. DelModel (“motor”, “Sensor”) 
6. AddModel (“motor”, “Engine1”) 
7. AddModel (“motor”, “Sensor1”) 
8. AddInputPort (“motor”, “test”) 
9. AddLink (“motor”, link1) (link1: in in@engine1) 
10. AddLink (“motor”, link2) (link2 : test test@engine) 
11. AddLink (“motor”, link3) (link3 : out@engine1 in@sensor1) 
12. AddLink (“motor”, link4) (link4 : out@sensor1 out) 

After MotorEXEC finished the structural change execution, the structural change 

message was delivered to the TOP. TOPEXEC adds a coupling in the TOP. TOPEXEC 

implements the following structural change operations: 

1. AddLink (“TOP”, link) (link : eng_test@CU test@Motor)  

 

 



 

 

 

 

 

 

 

Fig 48. The Structural Changes in MTRS 

The Table 6 reflects the simulation results. In this experiment, the first three external 

events have been executed and reported correctly. The fourth event is input at 

00:00:15:000 with the direction 4. The Engine1 failed to report the action to this 

instruction and caused the structural changes in MTRS.  

Three structural change scenarios were involved in the experiment. The motor1 was 

replaced by the motor2. That is to say, the coupled model motor has been replaced by 

the new one (scenario 6) although the same name is used in the simulation. A nested 

structural change process (scenario 7) involved the two structure components – the 

motor and the TOP. The new coupling from the output port eng_test of the Controller 

Unit to the input port test of the motor changes the interface of the motor to the 
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Controller Unit (scenario 9). At 00:00:15:040, the value 9 is output indicating the 

malfunction of the controlled motor. And then a structural change request was raised in 

the Controller Unit. MotorEXEC and TOPEXEC complete the structural changes for 

their structure component respectively. As a result, the motor2 replaced the motor1 to 

receive the instructions from the Controller Unit. At real time 00:00:20:020, the motor2 

reacted the instruction arriving at 00:00:20:000 and sent its status correctly.  

Table 6 The Simulation Results in the MTRS Simulation 

Output time Deadline Result Output Port Value 
00:00:01:510 00:00:01:535 Succeed out 2 

00:00:04:510 00:00:04:535 Succeed out 3 

00:00:10:520 00:00:10:535 Succeed out 1 

00:00:15:040 00:00:15:035 Not Succeed out 9 

00:00:20:020 00:00:20:035 Succeed out 3 

The following message flows presents the detailed logging information. The Fig. 20 

shows the failure report of the Controller Unit. At 00:00:15:040, the Controller Unit 

sent 9 to the output port out. The nested structural change processor followed the failure 

report. The lines with shadow in the Fig. 21 indicate that the structural change messages 

were sent to the structure agents of the structure component and the structure agents 

returned done messages to the structure components. From the figure, we can see that 

the structural change in the motor was executed first. The Engine1 and the Sensor1 join 

the simulation. Afterward the structural change in the TOP was implemented. At 

00:00:20:000, the new coupling was used to deliver messages.  

 



 

 

Fig 49. Failure Report from the Controller Unit 

 

 

 

 

 

 

Fig 50. The Message Flows in the Nested Structural Change Process 

 

 

 

 

 

MSG: @ / 00:00:15:040 / Root(00) TO top(01) 

MSG: @ / 00:00:15:040 / top(01) TO cu(02) 

MSG: Y / 00:00:15:040 / cu(02) / out /      9.00000 TO top(01) 

MSG: D / 00:00:15:040 / top(01) / 00:00:00:000 /      0.00000 TO Root(00) 

MSG: * / 00:00:15:040 / Root(00) /      0.00000 TO top(01) 

MSG: * / 00:00:15:040 / top(01) /      0.00000 TO cu(02) 

MSG: D / 00:00:15:040 / cu(02) / 00:00:00:000 /      2.00000 TO top(01) 

MSG: D / 00:00:15:040 / top(01) / 00:00:00:000 /      2.00000 TO Root(00) 

MSG: * / 00:00:15:040 / Root(00) /      2.00000 TO top(01) 

MSG: * / 00:00:15:040 / top(01) /      2.00000 TO motor(03) 

MSG: * / 00:00:15:040 / motor(03) /      2.00000 TO motorexec(06) 

MSG: D / 00:00:15:040 / motorexec(06) / ... /      0.00000 TO motor(03) 

MSG: X / 00:00:20:000 / Root(00) / in /      3.00000 TO top(01) 

MSG: * / 00:00:20:000 / Root(00) /      0.00000 TO top(01) 

MSG: X / 00:00:20:000 / top(01) / in /      3.00000 TO cu(02) 

MSG: * / 00:00:20:000 / top(01) /      0.00000 TO cu(02) 

MSG: D / 00:00:20:000 / cu(02) / 00:00:00:000 /      0.00000 TO top(01) 

MSG: D / 00:00:20:000 / top(01) / 00:00:00:000 /      0.00000 TO Root(00) 

MSG: @ / 00:00:20:000 / Root(00) TO top(01) 

MSG: @ / 00:00:20:000 / top(01) TO cu(02) 



 

 

 

 

Fig 51. The Message Flows Using the New Coupling At 00:00:20:000 

 

 

 

 

 

 

 

 

 

 

MSG: * / 00:00:20:000 / top(01) /      0.00000 TO cu(02) 

MSG: * / 00:00:20:000 / top(01) /      0.00000 TO motor(03) 

MSG: D / 00:00:20:000 / cu(02) / 00:00:00:040 /      0.00000 TO top(01) 

MSG: X / 00:00:20:000 / motor(03) / in /      3.00000 TO engine1(10) 

MSG: X / 00:00:20:000 / motor(03) / test /      3.00000 TO engine1(10) 



Chapter 6 Conclusions and Future Work 

Based on the proposed FDSDE algorithm and the P-DEVS real time simulation engine, 

DS-eCD++ is developed to be an advanced DEVS-based real time experimental 

environment supporting both the dynamic structure function and the real-time 

simulation. This work advanced the functionality of eCD++ to meet the rigorous 

requirements in modeling and design of real time embedded systems.  

An advanced simulation engine combining FDSDE and P-DEVS real time simulation 

engine is defined. The Root Coordinator, the Coordinator and the Simulator, which 

constitute the real time simulation engine in eCD++, are redefined to fit dynamic 

structure and real time simulations. The concept of structure component is introduced 

in DS-eCD++ to represent the coupled models which are subject to structural changes. 

Each structure component is furnished with a structure agent to specify the structural 

changes for the structure component. A new abstract simulator RevSimulaor is 

introduced to generate the model behaviours of structure agents. Moreover, two typical 

message passing scenarios, one structural change process and nested structural change 

process, are presented to exhibit how the message flow among the processor at a global 

view. In the message passing scenarios, the simulation phases are clearly identified.  

DS-eCD++ takes advantage of the major four software components in eCD++. 

However, the revisions have been made to accommodate to the dynamic structural 

changes in the real time simulation. The modifications of the Main Simulator, The 

Modeling Subsystem, The Simulation Subsystem and The Messaging Subsystem are 



explained. Moreover, the structure component identification and the structural change 

operation in structure agents are highlighted to present how the dynamic structure is 

implemented. The functionalities of DS-eCD++ are discussed showing the expected 

performance. 

In order to verify the logics and implementations of the algorithm, a series of 

experiments are conducted. The devised structural change scenarios are firstly 

enumerated presenting a functional profile of DS-eCD++. The cases corresponding to 

the different structural change scenarios are implemented and analyzed in the following 

section. It has been verified that DS-eCD++ not only performs real time simulation in 

the different structural change scenarios but also is able to implement GGAD notation 

models and the simulation with the flat coordinator. We even expect that DS-eCD++ 

can further serves as a DEVS-based Real-Time experimental environment for real time 

embedded systems modeling and design. Besides enabling the implementation of the 

hybrid software and hardware systems and the seamless transformation from the 

simulation stage to the design stage of real-time systems, DS-eCD++ allows defining 

both the structural changes and the behavioural changes of systems therefore achieve 

high flexibility and reliability of the real time embedded systems. 

6.1. Future Works 

We have proved that FDSDE algorithm performs well in the DS-eCD++ environment. 

However, the further studies should be investigated to improve the functionality and 

performance of DS-ECD++. 



1. Performance evaluation. With the devised structural change scenarios, the 

functionality is the major concern of this work. Whereas, in order to achieve the 

critical requirements of the real-time embedded systems, the performance 

evaluation is another key issue to be conducted. The performance evaluating 

metrics are necessary to provide an evaluating environment. The performance 

experiments should be conducted to ensure the sensitive detection of the structural 

change conditions and the fast response to the conditions.  

2. Real environment examination. The case studies are conducted in the virtual 

environment. The real environment calls for more rigorous timing and memory 

requirements to maintain the reliability of the systems. Further experiments in real 

environment should be done to test the capabilities of handling the real situations in 

DS-eCD++. 

3. Algorithm optimization. More experiments, especially the structural changes in the 

complex real-time embedded systems, should be implemented to refine the 

implementation of the algorithm. More structural changes should be tried to test 

the accuracy of the implementation. 

4. Distributed and parallel implementations [Liu07]. DCD++ and PCD++ realize the 

DEVS simulation in distributed and parallel environment. The structural changes 

in the distributed and parallel environments may span different simulation nodes. 

Under the conditions, the structural changes may require several structure agents to 

cooperate together to implement the structural change tasks. The coordinating 

messages should be handled in the structure agent processors. The structural 



changes in the advanced simulation environment should be further explored in the 

future research. 
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