
Chapter 1 Introduction

Modeling & Simulation approach [Zei00] has received increasing interest for its sound

mechanism enabling fine representing of the discrete event dynamic systems. A general

conceptual framework of Modeling & Simulation [Kim01; Zei02; Zei03] constitutes the

three basic entities: the real system fitting in certain experimental framework, model, and

simulator. The real system fitting in certain experimental framework represents a real or

virtual environment in which the source data under analysis of interest to the modeler are

collected. Model offers two facets of abstractions of the real system. The behavior of

model is a set of input/output data comparable to that observable in the real system. The

structure of model is the set of instructions to generate the data. Simulator executes the

instructions of the model and really generates the behaviors of the model. Two kinds of

relationships bridge the three basic entities. Modeling relation reflects the approximation

of the model behaviors to the real system in a specified experimental framework; while

simulation relation lying between a model and a simulator represents how faithfully the

simulator carries out the instructions of the model. The M&S framework benefits from the

separated concerns between modeling and simulation. On one hand, the same model can be

simulated with different simulators, allowing portability and interoperability at a high level

of abstraction. On the other hand, well-defined separation facilitates verifications of

models and simulators independently and reusability in later combination with minimal

re-verification.

Benefited from the precise mathematical specification and the underlying sound M&S

framework, DEVS (Discrete Event System Specification) [Zei76, Zei00] has proved to be

a universal modeling mechanism for discrete event dynamic systems. The DEVS

formalism provides a means of specifying a mathematical object called a system, in which

a time base, inputs, states, outputs, and functions for determining next states and outputs

given current states and inputs are defined. Certain constellations of such parameters

render fine system abstractions and allow the possibility to analyze the system behaviors

thoroughly.

DEVS-based systematic approach has gained popularity in the real time application due to

the fact that it enables the smooth transformation from modeling to executing code in real

time environment with the help of the RT-DEVS [Hon97], an extension of the original

DEVS formalism. RT-DEVS allows DEVS models interact with surrounding

environment, such as software components, hardware components or human operators, in

real time. Aided by RT-DEVS, a real-time DEVS-based experimental framework (eCD++)

[YuJ07] is devised to facilitate development of real-time embedded systems (RTS).

eCD++ takes advantage of the hardware-in-the-loop technology [Gli04a] to establish a

high level DEVS-based experimental environment for the real time embedded systems.

1.1. Problem Statement

eCD++ is a systematic toolkit assisting development of embedded real-time systems based

on P-DEVS formalism [Cho94]. By permitting developing hybrid software and hardware

systems and smooth transformation from the DEVS models to the hardware counterpart,

eCD++ provides a DEVS-based real-time experimental framework, on which the

embedded real-time systems can be designed and implemented effectively and safely.

As well known, embedded real-time systems [Kop00] are of critical timeliness and

rigorous correctness of system behaviors. Moreover, most embedded real-time systems

are highly reactive artificial systems that deliver data from/to devices interacting with the

surrounding environment (another artificial/natural system). Improper decisions may lead

to catastrophic consequences for assets or lives. The traditional DEVS simulation

approaches are too rigid to fit the varied requirements of embedded real-time systems, such

as adjusting the system structure to respond to the changing environment, recovering from

the fault automatically and self adaptability etc.

Due to the absence of dynamic structure, eCD++ fails to meet the challenges the real time

embedded systems pose. Dynamic structure is a feasible solution to fitting the varied

environments or recovering from errors automatically. Flexibility and reliability, therefore,

could be reached by adjusting the structures of models dynamically.

Our work aims to introduce a Flexible Dynamic Structure DEVS algorithm (FDSDE)

[Sha06] into eCD++. FDSDE defines a set of new message-passing algorithms [Sha07] to

support the dynamic structure changes in RTS. The new experimental environment namely

DS-ECD++ is developed equipped with an improved simulation engine that combines

FDSDE with the P-DEVS real time simulation engine to adapt to not only the dynamic

structure real-time simulation but also the real-time embedded system development.

Dynamic structure DEVS, to some extent, makes it possible for the system designers and

developers to improve the reliability and performance of the Real-Time embedded

systems.

1.2. Contributions

The purpose of the thesis is to provide revised message-passing algorithms for each

abstract simulator used in eCD++. The new message-passing algorithms are compatible

with the functionalities of eCD++ and are capable of conducting dynamic structural

changes during the running of simulation. The major contributions of the thesis are list as

the following:

� The message-passing algorithms for the existed abstract simulators in eCD++ are

redesigned to allow processing both dynamic structural change and regular

simulations. The redefined abstract simulators are also compatible with the major

functionalities of eCD++.

� We identify the coupled models which are subject to experiencing structural changes

as structure components. Structure agent is proposed to play as a structural

representative executing structural changes on behalf of structure components. A set

of structural change operations are specified structure agents and are invoked by the

user-defined structure agents. Moreover, a new message-passing algorithm to process

the behaviors of structure agents are presented.

� The basic structure change forms and the operation boundaries for the structural

change operations are discussed.

� A variety of structural change scenarios are devised and further a couple of structural

change cases are figured to verify the correctness of the functionalities of DS-eCD++.

1.3. Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 reviews the related literature. Firstly, the original DEVS formalism and the

extensions of DEVS formalism including RT-DEVS and P-DEVS are introduced.

Dynamic structure DEVS formalisms are listed as the underlying theoretical base of this

work. Moreover, the applications of dynamic structure DEVS are surveyed. Finally, we

depict the two DEVS-based toolkits: Standalone CD++ and eCD++, which are the base of

the thesis.

Chapter 3 depicts the FDSDE algorithm. The message-passing algorithms for each abstract

simulator are exhibited. The typical message-passing scenarios and simulation phases are

explained.

Chapter 4 addresses the software architecture of DS-eCD++. The implementing issues in

each software component are explicitly described in the following. The functionalities of

DS-eCD++ are also discussed in this chapter.

Chapter 5 puts forward the structural change scenarios. Two cases together with a series of

experiments are conducted to verify the logic and the functionality of DS-eCD++.

Chapter 6 draws conclusions of the thesis and discusses the possible future work.

Chapter 2 Review of the State of The Art

This chapter presents a review of the state of the art in the filed of DEVS-based modeling

and simulation technology. Especially, the dynamic structure DEVS and DEVS simulation

in real-time domain are explored. The original DEVS formalism and two extended DEVS

formalisms P-DEVS and RT-DEVS are illustrated in the first section. The DSDE and

dynDEVS shown in the following section are the two extensions of DEVS to dynamic

structure change. In addition, the dynamic structure DEVS and the applications are

explored to demonstrate how powerful the dynamic structure change brings to the complex

physical systems. Moreover, the researches of dynamic structure DEVS modeling and

simulation in real-time embedded systems are surveyed. Finally, we introduce the

standalone CD++ and ECD++, which are specific toolkits based on DEVS theory.

2.1. DEVS Formalisms

The set-theoretical definition of DEVS and its extensions are presented in this section.

DEVS formalism is firstly introduced and it is a basis of other extended DEVS formalisms.

P-DEVS improves the original DEVS formalism by eliminating serialization restrictions.

RT-DEVS, based on P-DEVS, is a specified DEVS formalism executed in real time.

2.1.1. DEVS Formalism [Zei76, Zei00]

DEVS is a formal modeling and simulation framework based on systems theory. DEVS

has well-defined concepts for coupling of components and hierarchical, modular model

composition. DEVS defines a complex model as a composite of basic components (called

atomic model), which can be hierarchically integrated into coupled models. A DEVS

atomic model is defined as:

M = <X, S, Y, δint, δext, λ, ta>

Where X is a set of input events; Y is a set of output events of the atomic model; S is a set

of partial states associated with the atomic model; ta represents the lifetime of each state in

S; δext is external transition function, this function is triggered when an input event in X is

received by the atomic model; λ is output function; δint is internal transition function, if

there is no external event comes, the current state will be kept for its lifetime ta, then output

event might be triggered determined by λ and produce output event Y, at the same time

internal state change will happen determined by internal transition function.

A DEVS coupled model is defined as:

CM = <X, Y, D, {M i}, {I i}, {Z ij}, Select>

Coupled model is defined as a set of atomic models M i (i ∈ D) which certain a set of

interactions through their interface (X, Y). Mi is a basic DEVS model (atomic or coupled);

I i is the set of influencees of model i; for each j ∈ Ii, Zij is the i to j translation function to

convert the output of Mi to the input of Mj. The property, closure under coupling, allows

coupled model taken equally as atomic model, which enables model reuse. Select is the

tie-breaking function for imminent components.

The definition of DEVS formalism may raise two types of ambiguity. One type of

ambiguity may rise when multiple components in a coupled model are imminent at the

same time. DEVS formalism employs Select function to solve the ambiguity. By defining

an order over the imminent components, only one imminent component in a coupled model

is allowed to execute its internal transition function. Other imminent components are

divided into two groups: the ones receiving an external event from this model or the

remaining. The former group invokes the external transition function with e = ta(s); while

the later group is imminent in the next simulation cycle and may need to be selected again

to decide the execution sequence. The serializing execution produces message redundancy;

therefore leads to potential executing bottleneck. The other ambiguity is caused when an

atomic model receives an external event at exactly same time its internal transition is

scheduled. The execution sequence is not specified in DEVS formalism. It is the DEVS

software’s responsibility to determine which function goes first. The serialization

constraint, however, may not reflect the reality and cause errors.

2.1.2. P-DEVS Formalism

P-DEVS [Cho94] is an extended DEVS formalism eliminating the two types of ambiguity

of the original DEVS formalism. A confluent function is added to the atomic model to

dispose the transition collisions in atomic models. An atomic model is defined as:

M = <X, S, Y, δint, δext, δcon, λ, ta>

Where

X: a set of input events

Y: a set of output events

S: a set of sequential states.

δint : S�S: internal transition function

δext: Q x Xb � S: external transition function, Xb is a set of bags over elements in X,

δext(s, e, Φ) = (s, e).

δcon: S x Xb � S: confluent transition function.

λ : S � Yb: output function

ta : S � R0
+
�
∞ : time advance function,

with Q = {(s, e) | s ∈S, 0 < e < ta(s)}, e is the elapsed time since last state transition.

The semantics of the P-DEVS definition introduce confluent transition function, which

handles the collision behavior when an external event arrives at the same time of its

internal transition, e = 0 or e = ta(s). The confluent transition function allows processing

model behavior in parallel instead of serialization.

The coupled model in P-DEVS presents the following structure:

CM = <X, Y, D, {M i}, {I i}, {Z ij}>

Where

X is a set of input events,

Y is a set of output events

D is a set of components

For each I in D, M is a component

For each I in D U {self}, Ii is the influencees of i.

For each j in Ii, Zi,j is a function, the I-to-j output translation.

P-DEVS formalism furnishes two advantages over the original DEVS formalism by

eliminating the two types of ambiguity. Each model is equipped with a message bag to

handle the simultaneous events, by which the tie-breaking function, Select, is removed and

all imminent components can be activated in parallel. Another type of ambiguity is

eliminated by employing a confluent transition function in an atomic model. For those

components experiencing internal and external transitions collide, the confluent transition

function is invoked instead of either internal or external transition function to calculate the

new state. The confluent transition function leaves the executing sequence of internal and

external transitions to the modelers. It is reasonable for the modelers to determine the state

transition of the models in the presence of collisions according to the system real

requirement. Since P-DEVS formalism overcomes the deficiencies in DEVS definition, it

enables more effective and more reasonable modeling of the target systems. The real time

simulation engine in eCD++ complies with the P-DEVS principle.

2.1.3. RT-DEVS Formalism

The real time DEVS formalism [Hon97] is an extension of the DEVS formalism for the

real time application. An atomic model in RT-DEVS is defined as:

RTAM = <X, S, Y, δint, δext, δcon, λ, ta, Ψ, A>

Where, ta is a time interval function given by an interval ta(s)|min ≤ ta(s) ≤

ta(s)|max, s ∈S. Ψ: S�A is an activity mapping function. A is a set of activities A = {a| t(a)

∈I+0,∞ and t(a)≤ ta|max} ∪ Φ.

A real time DEVS coupled model connects basic real time DEVS models together to

form a new model. A real time DEVS coupled model is structured as:

RTCM = <D, {Mi}, {I i}, {Z i,j}>

Where, D is a set of components. For each i in D, Mi is a basic real time DEVS

model, Ii is a set of influences of i. For each j in Ii, Zi,j is an i-to-j output translation.

The RT-DEVS formalism replaces virtual time advance in the DEVS formalism by real

time advance. The time advance function is no more a fixed value. Instead, a time

interval is defined. The RT-DEVS simulator checks a specified time advance of a

RT-DEVS model against a real time clock. Ta(s)|min is an auxiliary parameter used to

verify the time correctness during simulation. A set of activities associated with a state is

defined in parametersΨ and A.

2.2. Dynamic Structure DEVS

Dynamic structure is also called variable structure. Zeigler coined the term “variable

structure models” to describe models that contain in descriptions of their behavior the

possibility of altering their own structure and, consequently, their behavior [Zei86; Zei89;

Zei91]. Structural changes might concern the model’s behavior rules and attributes or,

presupposing a compositional construction of models, might refer to a model’s

components and interactions. Dynamic Structure provides a desirable solution to

capturing the dynamic nature of the discrete event dynamic systems and allows runtime

simulation tuning.

2.2.1. Dynamic Structure DEVS Formalisms

The structure extensions to the DEVS formalisms have been made to regulate the dynamic

structure definitions. DSDEVS [Bar95; Bar97] introduces a structural entity called

network executive to conduct the structural changes for the network model in a centralized

way. Pawletta [Paw96] employs a structure event condition and structure event action pair

to represent a structure state of an atomic model or a coupled model. Uhrmacher [Uhr01]

developed the Pawletta’s algorithm by offering a complete definition in both structural and

behavioral perspectives of an atomic model or a coupled model. Uhrmacher’s algorithm

captures the intrinsic reflective nature of variable structure model by offering a recursive

definition. In this section, we will explain the formalisms of Barro’s algorithm and

Uhrmacher’s algorithm.

DSDE Formalism

DSDE divides models into two groups: basic and network models. The basic models are

atomic structure units which cannot be split. The network models are coupled components,

composed of multiple basic structure models and interconnections that involve structural

changes. A Network Executive is a modified basic model to conduct structural changes in

network models. The Network Executive stores all possible states of structural changes and

their corresponding component sets in each structural state. The two parts are associated

together through an index function in the Network Executive. A DSDE network is a 4-tuple

[Bar01]

DSDENN = (XN, YN, χ, Mχ),

Where XN is the network input value set; YN is the network output value set; χ is the

name of the dynamic Network Executive; Mχ is the model of the Network Executiveχ,

which is a modified basic model and is defined by

Mχ = (Xχ, s0, χ, Sχ, Yχ, γ, Σ*, δχ, λχ, τχ).

Here γ: Sχ � Σ* is the structure function, Σ* is the set of network structures. A

structure Σα ∈ Σ* associated with the executive partial state sα,χ ∈ Sχ is given by Σα = γ(sα,χ)

= (Dα {M i,α}, {I i,α}, {Z i,α}), where Dα is the set of component names associated with the

executive partial state sα,χ; for all i ∈ Dα, Mi,α is the model of the component i; for all i ∈ Dα

∪ {χ, Ν}, Ζi,α is the set of component influencers of i; for all i ∈ Dα ∪ {χ}, Z i,α is the input

function of the component i; and ZN,α is the network output function. Changes of a basic

model include structural changes within the basic model or changes on transition/output

functions of this basic model. A Network Executive should be used together with the basic

model to composite a network model (only the Network Executives can conduct structural

changes).

DynDEVS Formalism

The dynamic DEVS formalism [Uhr01] does not introduce an extra component to conduct

dynamic structural changes. Instead,ρα, a model transition function, is included. There are

two kinds of dynamic DEVS models: dynDEVS (atomic) and dynNDEVS (coupled). The

dynDEVS models are atomic structural components with the structure

dynDEVS =df <X, Y, minit, M(minit)>

where X, Y are the structured sets of inputs and outputs; minit ∈ M(minit) is the

initial model, where M(minit) is the least set having the structure{<S, sinit, δext, δint, ρα, λ,

ta> }. dynNDEVS models are coupled structural components with the structure

dynNDEVS = df <X, Y, ninit, N(ninit)>

where X, Y are the structured sets of inputs and outputs; ninit ∈ N(ninit) is the start

configuration and N(ninit) is the least set having the structure {<D, ρN, {dynDEVSi}, { I},

{ Zi, j}, Select>}. A model’s state space, internal and external transition, output, time

advance, and model transition functions are subject to change during simulation. A

dynDEVS can be interpreted as a set of DEVS models with the same interface plus a

transition function that determines which DEVS model succeeds the previous one. Agents

associated with dynDEVS or dynNDEVS models hold the worldview knowledge of their

corresponding models and environments. Agents are responsible for initiating structural

changes and executing the structural change process.

The dynamic structure DEVS formalisms make it possible to represent discrete event

dynamic systems more precisely; therefore, enable dynamic structure DEVS to represent

dynamic structural behaviors in the DEVS simulation, complex systems design and

developments and so on.

2.2.2. Dynamic Structure and the Applications

Dynamic structure DEVS provides a salient supplementary to the DEVS theory to

represent and simulate the structural changes in interactions, composition, and behavior

patterns. Dynamic structure DEVS promotes the Modeling & Simulation methodology

[HuX03] at three levels. 1) It offers natural and effective way to model the complex

systems which exhibit structural changes and behavioral changes to respond to different

situations. Adaptive computer architecture [Bra94] is established using dynamic structure

to achieve a desired computing performance. An ecological system [Uhr93] calls for

dynamic structure to reflect the evolvements of the elements in the system. It is hard to

model and simulate the structural changes in the above systems without dynamic structure.

2) Dynamic structure brings additional flexible to the systems design and development.

The dynamic distributed robotic system [HuX03] exhibit dynamic reconfigurations as

robots interact and make decisions in dynamic environments employing dynamic structure.

A flexible manufacturing system [Her00] is able to switch among the different product

processes online. Benefited from dynamic structure, the dynamic issues can be captured in

the system development stage and embodied in the implementations; therefore, the

flexibility and reliability of the system can be achieved. 3) The dynamic structure permits

loading only a sub-set of the components for simulation. It is very useful in a very complex

system containing tremendous members as only the active components are loaded

dynamically to conduct the simulation.

2.3. Modeling & Simulation Methodology in Real-Time Systems

Much research effort has been put in the development of real-time systems. In the real-time

simulations, the simulation time should be synchronized as closely as possible to the clock

time of the underlying computer system [Zei93]. The real time simulation frameworks,

including DEVS-Scheme, The layered design approach for distributed real-time systems

[Cho00] [Cho01a] and the real-time simulation framework based on RT-DEVS [Cho01b],

are helpful attempts of applications of Modeling & Simulation methodology in the

real-time field. Based on the real-time simulation frameworks, a series of methodologies

are proposed to realize the transformation from the modeling stage to the design stage in

real-time embedded systems, such as DEVS-on-a-Chip [HuX01], Robot-in-the-loop

projects [HuX05a] and Hardware-in-the-loop [LiL03; Gli04a; YuJ07] etc. However, the

static structure allowed in the frameworks makes it difficult to respond to the changes in

the residing internal / external environments, which always call for dynamic structural or

behavioural changes to maintain the flexibility and reliability in real-time embedded

systems.

Modeling and Simulation with dynamic structure offers necessary modeling of the

dynamic structural changes and behavioural changes. The dynamic structure can be

applied in e-Commerce applications [Liu03] enabling a dynamic business process to meet

the instant requirements, and scale to large and small business activities. In a

manufacturing system, a routing for a product specifies a given sequence of manufacturing

workstations or machines. If some workstations or machines are replaced, then the routings

requiring those machines must be updated accordingly. Dynamic structure is a desirable

solution to update the routings online in a flexible manufacturing system [Her00].

Moreover, dynamic reconfiguration of some components in the real time systems realizes

runtime simulation tuning [Mit06]. The rapid feedback cycle allows experimentation with

parameters and structures and results in effective model configuration that is difficult to

achieve when turnaround requires hours or days. The dynamic team formation in the

distributed robotic system [HuX05d] is a meaningful attempt of dynamic reconfiguration

of the components in a real time distributed system. Each robot is taken as an independent

component and can be reconfigured by establishing the couplings between the robots;

therefore a Leader-Follower match can be conducted. During this process, the couplings

between the models can be added and removed, resulting in a variable structure system.

Also, the real-time implementation enables an execution of hybrid software components

and hardware components system; therefore promotes a smooth transformation from the

simulation modeling to design of real time systems. [HuX04] and [HuX05b] present how

the virtual robot models are replaced by the real robots while maintaining model

continuity. By studying the cooperative robotic system [HuX05c], a stepwise incremental

study process for development of the real-time embedded systems with dynamic structural

changes is also proposed. All of those researches demonstrate that the dynamic structure is

a desirable solution in the modeling & simulation methodology, especially in the

development of the real time embedded systems applying the modeling & simulation

methodology.

2.4. Introduction to the CD++ Simulation Toolkit

CD++ [Wai02] is a modeling and simulation software family based on the DEVS theory.

In which atomic models are defined using a state-based approach (encoded in C++ or an

interpreted graphical notation); while coupled models contain atomic models composition

and interconnecting information of those atomic models. CD++ has been widely used in

various applications from simple queuing systems to complex systems [Mac04] such as

environmental systems [Wai06] or complex real-time systems [Gli04b]. CD++ employs

the abstract simulator mechanism to exchange messages among the processors while

simulation advances. A Simulator component is in charge of executing the behaviour of

atomic models while a Coordinator component takes charge of the message processing of

coupled models. The simulation evolves through message-passing, using six kinds of

messages: I (Initialization), * (Internal), X (Inputs), Y (Output), @ (Collect) and D (Done).

Different versions of CD++ have been developed to facilitate various applications. Stand

alone CD++ implements DEVS and Cell-DEVS simulation. Parallel CD++ [Liu06; Liu07]

is aiming to enhance the performance of Cell-DEVS simulation by distributing calculation

of different cells over multiple processors. Distributed CD++ [Ma] is developed to

facilitate the coordination of the different simulating engines in different sites through the

standard distributed computing protocols. Real time embedded CD++ (eCD++) is a

DEVS-based systematic developing tool constructed especially for Real-Time embedded

system.

eCD++ [YuJ07] is a version of the CD++ software family that has been adapted for real

time and embedded system applications. eCD++ employs the Model-Driven Architecture

of real-time systems (MDA) [Wai05] to construct a high level experimental environment

for the development of real-time systems. The software is modularized as a group of

components that have well-defined behaviors and have independent functionalities. Four

major components are included: the Main Simulator, DEVS Modeling Subsystem,

Simulation Subsystem and Messaging Subsystem. It is based on the P-DEVS formalism,

which provides the modeling principles to characterize the structural and behavior aspects

of real-time systems. Moreover, RT-DEVS enables eCD++ to simulate the hybrid software

and hardware systems. Finally, eCD++ supports smooth transformations from simulation

models to real components of the systems. The Flat Coordinator in eCD++ provides an

alternative simulation fashion by eliminating the coordinators in the hierarchy and

exchanging messages directly between the flat coordinator and simulators. The GGAD

interpreter (Generic Graphical advanced environment for DEVS modeling and

simulation) in eCD++ enables to specify atomic models graphically. It is an easier way

for the non-expert users to build atomic models intuitively.

Chapter 3 the Flexible Dynamic Structure DEVS Algorithm

Flexible Dynamic Structure DEVS Algorithm is a new structural paradigm based on the

DSDEVS formalism. The FDSDE supports various structural changes in the DEVS-based

framework including changes of DEVS models composition, changes of the couplings

among the DEVS models and changes of input/output ports of the coupled models. The

structural changes are implemented dynamically during a simulation running according to

the structural state variables.

In FDSDE, a conception of a structure component refers to a coupled model subject to the

structural changes. A structure agent is introduced to execute the structural changes for a

structure component. As defined in the DSDEVS formalism, the possible model structures

of a structure component constitute the state space of a structure agent. Each model

structure of a structure component is mapped into a structural state of its associated

structure agent and is connected with a structural value. The structural state transitions of a

structure agent are triggered by a structural change message. A new abstract simulator,

RevSimulator, specifies the message-passing paradigm for the structure agent. The

messages related to structural change are defined for the structural change processes.

Message Definitions

The simulation is advanced with exchanging different kinds of messages among the

simulation processors. Two categories of messages are defined for simulation in eCD++:

control messages and content messages. Control messages consist of the initialization

message (I), the internal message (*), the collect message (@) and the done message (D);

while content messages include the external message (x) and the output message (y). The

external messages and the output messages exchange simulation data between simulation

models. The initialization message indicates the start of simulation. The collect message

and the internal messages invoke the output functions and the state transition functions of

the atomic models respectively. The timing information is carried through D messages for

synchronization. The introduction of dynamic structure requires extra message types:

� D (sc)# Structural change request. This message is raised by an atomic model when

the structural change conditions are satisfied. D (sc) brings the expected structural

value to the parent coordinator. The structural value indicates the expected model

structure of a structure component.

� *(sc)# Structural change message. This message is issued by the Root and passed

down to each structure component. The structure agent of each structure component

conducts the structural changes according to the structural value in the message.

� St Simulation resuming message. This message is sent by a structure component to

the new models after the structural changes. This message is used to synchronize the

models.

The ‘sc’ in the parenthesis denotes the expected structural value in the message.

Structure Component and Structure Agent

Barros[Bar 1997] defines dynamic structure system network as a component that can

change its structure dynamically. The dynamic structure system network is defined with a

special component, the network executive. Since the network coupling information is

located in the state of the executive, transition function can change this state and, in

consequence, change the structure of the network. In FDSDE, a dynamic structure system

network, which is called structure component, is a coupled model subject to undergoing

structural changes. The concept of network executive is represented by structure agent, in

which the structure information of a structure component is located. The concepts of

structure component and structure agent are illustrated.

Structure Component

In FDSDE, atomic models hold only model behaviours (Internal / External / Confluent

transition function & output transition function) and no structure information is included;

therefore atomic models are structure units and cannot be split in terms of structure.

Instead, coupled models give a well-defined concept of system modularity and component

couplings. That is to say, coupled models contain structure information. As a result, a

structure component can be represented by a series of model structure sets including

modules and couplings between the modules. If a model structure set is taken as a structure

state of a structure component and connects to a structural change command (Scomm), the

structure component can shift its model structure among the model structure sets according

to the indicated structural value. The Fig. 1 demonstrates the relationship between the

model structure sets and the structural states of a structure component.

Fig 1. The Relationship between structure states and structure definitions of

a structure component

Structure Agent

A structure agent defines possible structural states of a structure component and executes

structural changes in its internal transition function for a structure component. As we have

described, a structure component defines a series of model structures containing a group of

modules and the couplings among the modules. Structure agent is employed to achieve the

separated concerns between the model structure definitions and the structural change

executions. Structure agent offers more flexibility to modellers who can generate the

structural behaviours according to the real requirements.

Model Hierarchy and Processor Hierarchy

According to the DEVS theory, models are specified independently from the simulation

mechanism. Two levels of hierarchies are presented in the DEVS-based simulation

environment: model hierarchy and processor hierarchy. The DEVS model property,

Closure under Coupling, carries the hierarchical nature of the models. A model of structure

agent brought by dynamic structure is a leaf model of a structure component in the model

Structure

State 1

Structure
State2

Structure
State 3

Components: …
Ports:
Link: …
SComm: struc1

Components: …
Ports:
Link: …
SComm: struc3

Components: …
Ports:
Link: …
SComm: struc2

struc1

struc2

struc2
struc1

struc3

struc3

hierarchy. A general view of the model hierarchy is presented in Fig. 2. TOP is a structure

component with a structure agent CEXEC. TOP is located at higher model hierarchical

level than Coupled2.

Fig 2. The Model Hierarchy

The straightforward processor hierarchy (Fig. 3) contains the similar structure with the

corresponding model hierarchy. Root Coordinator is a global simulation governor standing

at the top of the processor hierarchy.

Fig 3. The Processor Hierarchy

TOP

Coupled2 Atomic1 CEXEC

Atomic2 Atomic3

top M
o

d
el H

ierarch
ical L

eve
l

low

Level 1

Level 2

Level 3

Coordinator1

Coordinator2 Simulator1 RevSimulator

Simulator2 Simulator3

Root Coordinator

Level 1

Level 2

Level 3

top

low

S
im

u
latio

n
 H

ierarch
ical Level

Although the hierarchical processor structure reflects the nature of the DEVS model

hierarchy, it performs ineffectively with the deeper model hierarchical complexity for

communication overheads are unavoidably increased. A flat coordinator technique is a

more effective processor hierarchy by eliminating the coordinators in the hierarchy and by

making direct messaging communications between the flat coordinator and the simulators

(Herny’s thesis). The flattened processor hierarchy is shown in Fig. 4

Fig 4. Flattened Processor Hierarchy

Message-Processing Algorithms

Message-processing algorithm defines a series of receive functions for each message type

in each abstract simulator. Four kinds of abstract simulators namely Root Coordinator,

Coordinator, Simulator and RevSimulator are used in DS-eCD++. Root Coordinator,

Coordinator and Simulator which are used in eCD++ are amended to adapt to both the

dynamic structural changes and the regular simulation. RevSimulator, a new kind of

abstract simulator, is devised for structure agents. In the following, the message-processing

mechanism of each abstract simulator is described.

Coordinator1

Simulator1 RevSimulator Simulator2 Simulator3

Root Coordinator

Simulator

The simulator is capable of processing initial message (I), collect message (@), internal

message (*), and external message (X). In DS-eCD++, no changes are made in the receive

functions for collect message and external message. A structural change variable is

initialized in the initial message. The structural change request detection mechanism is

applied to the internal message.

Fig 5. Simulator Algorithm for (I, 0)

The simulator receives (I, 0) at the beginning of the simulation (Fig. 5). Two timing

variables, tL and tN, are initialized in (I, 0). The associated atomic model is initialized by

calling initial function (line 3). Moreover, the structural change variable which is used to

keep track of the structural state of a structure component is initialized in the following.

Finally, a (D, tN) is sent to its parent Coordinator with tN, absolute next time, indicating

the time for next state transition of the atomic model.

1 When a (I, 0) is received from the parent Coordinator

2 tL = 0; tN = Infinity

3 Initialize the variable of the atomic model

4 struc_var = 0 // struc_var : structural change variable

5 send (D, tN) to the parent Coordinator

6 end when

1. When a (@, t) is received from the parent Coordinator
2. if t = tN then
3. y = λ(s)
4. send (y, t) to the parent Coordinator
5. send (D, t) to the parent Coordinator
6. end if
7. else raise error
8. end when

Fig 6. Simulator Algorithm for (@, t)

Fig 7. Simulator Algorithm for (q, t)

Fig. 6 is the simulator algorithm for (@, t). If the scheduled time tN arrives (t = tN), the

simulator executes output function (λ) of the atomic model and sends the output to the

parent coordinator upon receiving (@, t). A (done, t) is sent to the parent coordinator

indicating the completion of the execution. If a (q, t) arrives (Fig. 7), the Simulator add the

input event to its message bag.

1. When a (q, t) is received from the parent Coordinator
2. lock the bag
3. Add event q to the bag
4. unlock the bag
5. end when

1. When a (*, t) is received from the parent Coordinator
2. case tL ≤ t < tN and bag is not empty
3. e = t – tL
4. s = δext(s, e, bag)
5. if no structural change request is raised
6. empty the bag
7. end if
8. end case
9. case t = tN and bag is empty
10. s =δint (s)
11. tL = t
12. tN = tL + ta(s)

Fig 8. Simulator Algorithm for (*, t)

Simulator uses one (*, t) message to synchronize three different transition functions

(internal transition function, external transition function and confluent transition function)

of the atomic model. The one of the three transition functions is executed according to the

status of the message bag in the atomic model and the timing point when the message is

received (Fig. 8). The external messages in the message bag would not be consumed if a

structural change request is raised. Therefore, the external messages in the message bag

would not be removed. If a structural change request is raised, the new structural value

indicating the expected model structure is sent to the parent coordinator. The tN in the

13. end case
14. case t = tN and bag is not empty
15. s =δcon (s, bag)
16. if no structural change request is raised
17. empty the bag
18. tL = t
19. tN = tL + ta(s)
20. end case
21. case t > tL or t < tN
22. raise error
23. end case
24. if structural change request is raised
25. struc_var = sc
26. send (D, tN, sc) to the parent Coordinator
27. // sc: new structural value
28. else send (D, tN) to the parent Coordinator
29. end if
30. end when

structural change request indicates the expected structural change time. Otherwise, a (D,

tN) is sent indicating the completion of the internal message.

Fig 9. Simulator Algorithm for (St, t)

If the structural change causes the addition of models, St messages are received (Fig. 9) in

the new models. The structural change variable is reset and the variable used in the atomic

model are initialized in (St, t). Scheduled tN is sent out with the D message to the parent

coordinator for the next simulation cycle.

RevSimulator

RevSimulator defines the message-passing mechanism for structure agents. A structure

agent would not receive content messages for it is absent from input / output ports.

Moreover, since a structure agent receives a structural change message passively and stays

at the structural state until next structural state is indicated, it would not be an imminent

child of the associated structure component. Hence, a structure agent does not receive a

collect message. A structure agent would not be a receiver of a St message. A structure

agent is a receiver of an initial message and a structural change message. Initial message is

used to initialize a structure agent at the beginning of simulation. Structural change

1. When a (St, t) is received from parent coordinator
2. reset the structural change variable
3. initialize the variable for the atomic model
4. send (D, tN) to parent coordinator
5. end when

messages bring the expected structural values to a structure agent and indicate it to conduct

the structural changes for the structure component.

During the initialization stage, RevSimulator (Fig. 10) sets the tN as infinity and initializes

the structure agent by invoking its initial function. RevSimulator notifies the completion

of initialization by sending a (D, t) to the parent coordinator.

When a structural change message arrives at the RevSimulator (Fig. 11), the timing period

is checked first. The internal transition function of the corresponding structure agent is

executed. After that, the (D, t) is sent out to the parent coordinator.

Fig 10. RevSimulator Algorithm for (I, 0)

Fig 11. RevSimulator Algorithm for (*, t) (sc)

1. When receive a (*, t) (sc) from parent coordinator
2. if t < tL or t > tN then raise error
3. else if (message value is not 0) then
4. tN = inf
5. tL = t
6. invoking the internal function of the structure agent
7. send (D, t) to parent coordinator
8. end if
9. end when

1. When receive a (I, 0) from parent coordinator
2. tN = inf
3. Initialize Structure Agent by calling the initfunction
4. send (D, t) to parent coordinator
5. end when

Coordinator

The Coordinator is in charge of the messages between the parent coordinators and the child

simulators. The coordinator is able to process the following messages:

� @ message from the parent coordinator

� Y message from the child simulator

� Q message from the parent coordinator

� * message from the parent coordinator

� *(sc) message from the parent coordinator

� D message from the child simulator

� D(sc) message from the child simulator

@, Y and Q messages follow the mechanisms used in eCD++. A *(sc) is delivered by a *

message and distinguishes itself by a non-zero structural value (sc). Similarly, a structural

change request appends an expected structural value to a D message.

Fig 12. Coordinator Algorithm for (@, t)

1. When a (@, t) is received from the parent Coordinator
2. if t = tN then
3. tL = t
4. for all imminent child processors i with minimum tN
5. send (@, t) to child i
6. cache i in the synchronize set
7. end for
8. wait until (D, t)’s are received from all imminent processors
9. send (D, t) to the parent Coordinator
10. else raise an error
11. end if
12. end when

Fig. 12 shows how a @ message is processed in coordinator. The time stamp is checked

first. If the time stamp is not equal to tN, an error is raised. Only those models that are at

their state transitioning points will receive the (@, t) message. The coordinator dispatches

the @ message to all its imminent children and sends the receivers to the synchronization

set. A D message is sent to its parent coordinator implying the completion of the collect

phase in the coordinator after all D’s have been received from the imminent children.

Fig 13. Coordinator Algorithm for (y, t)

Coordinator is responsible for dispatching Y messages to the all influences of the output

messages. Upon receiving (y, t) (Fig. 13), the coordinator translates the output message

into the external messages for all the child influences and sends them to the corresponding

children. The child influences are cached into the synchronization set, in which the models

are expected to experience state transitions at the next simulation cycle. If the coordinator

1. When a (y, t) is received from child i
2. for all influences, j of child i
3. q = zi,j (y)
4. send (q, t) to child j
5. cache j in the synchronize set
6. end for
7. wait until all (D, t)’s are received from j’s

8. if self ∈I i (y is to be transmitted upward) then
9. y = zi, self (y)
10. send (y, t) to the parent Coordinator
11. end if
12. end when

is one of the receivers of the output message, a proper output is generated for the

coordinator and is forwarded upward to its parent coordinator.

The incoming external message (Fig. 14) is inserted into the equipped message bag for

later calculation during an internal message processing.

Fig 14. Coordinator Algorithm for (q, t)

Coordinator is capable of processing * and * (sc) messages through a receive function for

(*, t) (Fig. 15). * (sc) contains a non-zero value while a zero value indicates an internal

message. * message is received in between the tL (the last transition time) and the tN (the

next scheduled transition time) of the coordinator. Otherwise, an error is raised.

If the received message contains a non-zero value, the message is a structural change

message. In FDSDE, structural changes are executed from bottom to up. That is to say, the

structural change message is executed in the structure components standing at the lower

model hierarchical level first, and then it is implemented in the structure components at the

higher model hierarchical level. Coordinator handles the executing order with the depth

first policy. The structural change message is passed to the child coordinators provided the

coupled models associated with the child coordinators are structure components. The child

coordinators are collected into a structure set first (line4 – line10), and then they get the

copies of the structural change messages (line12 – line16). At the same time, the structural

1. When a (q, t) is received from parent Coordinator
2. lock the bag
3. Add event q to the bag
4. unlock the bag
5. end when

value is stored (line11) and is used for the structural change in this coordinator. If no such

a child coordinator exists, the coordinator passes the structural change message to the

simulation processor of the structure agent (line17 – line21). Upon the D messages are

received, the coordinator sends a D message to the parent coordinator to complete the

structural changes process.

A zero-valued message indicates an internal message. Firstly, the external events in the

message bag are routed to the corresponding components according to the coupling

information preserved by the coupled model associated with the coordinator. The receiving

components are cached into the synchronization set. Then a * message is sent to the

components in the synchronization set. Until all D’s are received from the models in the

synchronization set, the updated tN with a D message is sent to the parent coordinator.

1. When a (*, t) is received from the parent Coordinator
2. if tL≤t≤tN then
3. if the message value is a non-zero value // Structural change message
4. for all the child i
5. if i is a coupled model and i is a structural component
6. if i is not in the structure set
7. cache i in the structure set
8. end if
9. end if
10. end for
11. store the message value // for self structural change
12. if structure set is not empty
13. for all j in the structure set
14. send (*, t) (sc) to j
15. end for
16. end if
17. else if structure set is empty
18. if the associated coupled model is a structural component
19. send (*, t) to the structure agent
20. end if
21. else end
22. wait until all (D, t)’s are received
23. send (D, t) to parent coordinator
24. end if

1. When a (*, t) is received from the parent Coordinator
2. if tL≤t≤tN then
3. if the message value is a non-zero value // Structural change message
4. for all the child i
5. if i is a coupled model and i is a structural component
6. if i is not in the structure set
7. cache i in the structure set
8. end if
9. end if
10. end for
11. store the message value // for self structural change
12. if structure set is not empty
13. for all j in the structure set
14. send (*, t) (sc) to j
15. end for
16. end if
17. else if structure set is empty
18. if the associated coupled model is a structural component
19. send (*, t) to the structure agent
20. end if
21. else end
22. wait until all (D, t)’s are received
23. send (D, t) to parent coordinator
24. end if

Fig 15. Figure 17 Coordinator Algorithm for (*, t)

25. else if the message value is a zero value // Regular (*, t) message

26. for all q ∈bag

27. for all receivers, j ∈Iself and all q ∈bag
28. q = zself, j(q)
29. send (q, t) to j
30. cache j in the synchronize set
31. end for
32. empty bag
32. wait until all (D, t)’s are received
33. for all i in the synchronize set
34. send (*, t) to i
35. end for
36. wait until all (D, tN)’s are received
37. tL = t
38. tN = minimum of components’ tN’s
39. clear the synchronize set
40. send (D, t) to parent coordinator
41. end else-if
42. else raise an error
43. end when

Coordinator receives and processes D messages according to the different waiting modes

(Fig. 18). The six waiting modes are set in coordinator. In the case of waiting for

initialization message, coordinator simply picks the minimum tN and sends (D, tN) to the

parent coordinator. Coordinator collects all D’s from the children and sends D to the parent

coordinator when it is in the waitingforCollect mode. When a D message is received in the

mode of waitingforInternal, the procId is firstly removed from the synchronization set

indicating the ending of the synchronization stage. If a D (sc) message is received, the

procId and the message value of the sender are cached into screq (line18 – line20). The

coordinator determines whether a D (sc) or a D is sent to the parent coordinator depending

on which sender(s) is (are) an imminent child. If the sender of the request pair (procId,

value) is not an imminent child, a D message is sent to the parent coordinator. Otherwise, a

D (sc) is sent to the parent coordinator when the sender in screq is also an imminent child

(line25 – line28). When the coordinator receives a D in the mode of

waitingforStructuralchange which implies a nested structural change process and the

coordinator is waiting for structural change done messages from its children, the

coordinator sends * (sc) to its structure agent to trigger the structural change if the

associated coupled model is a structure component (line27 – line39). Otherwise, a D is sent

to the parent coordinator (line40 – line43). The mode of waitingforSelfstructurechange

indicates the coordinator is waiting for a D message from its structure agent. In this case,

the new atomic models added to the structural change process are sent St messages (lien46

– line50), and the atomic models to be removed in the structural change process are deleted

from the synchronization set of the coordinator (line51 – line55). After that the coordinator

sends D with the minimum tN to the parent coordinator. The mode of waitingforStart is

waiting for the responses to the St messages sent to the new created models. At this stage,

the minimum tN is updated and a D is sent to parent coordinator (line62 – line63).

1. When a (D, t) is received from child simulators
2. case waiting mode is waitingforInit
3. wait for all (D, t)’s are received from child simulators
4. tL = t
5. get the imminent children’s tN
6. send (D, tN) to the parent coordinator
7. end if
8. end case
9. case waiting mode is waitingforCollect
10. remove the procId from the collectWaitForDoneQ
11. if collectWaitForDoneQ is empty // all D’s are received
12. send (D, t) to the parent coordinator
13. end if
14. end case
15. case waiting mode is waitingforInternal
16. tL = t
17. remove the procId from the syncSet
18. if message value != 0
19. add the (procId, value) pair into screq
20. end if
21. wait for all (D, t)’s are received
22. get the imminent children’s tN
23. if screq is not empty
24. get the procId from screq
25. if the procId is in the immiChildren
26. sc = value
27. send (D, tN) (sc) to parent Coordinator
28. end if
29. clear screq
30. end if
31. else

Fig 16. Coordinator Algorithm for (D, t)

45. case waiting mode is waitingforSelfstructuralchange
46. if there are newly added models
47. for each new model i
48. send (St, t) to i
49. end for
50. end if
51. if removedmodels is not empty // the models to be deleted
52. for each model i in removedmodels
53. erase i from the synchronization set
54. end for
55. end if
56. else
57. get tN’s from the imminent children
58. send (D, tN) to parent coordinator
59. end else
60. end case
61. case waiting mode is waitingforStart
62. get tN’s from the imminent children
63. send (D, tN) to parent coordinator
64. end case
65. end when

Root Coordinator

Root Coordinator is a global scheduler standing at the top of the processor hierarchy. Root

Coordinator executes a message loop and advances the simulation according to the timing

pieces collected from the child processor. If there is no scheduled timing pieces (i.e. the tN

is equal to infinity), Root Coordinator ends the simulation. The Root Coordinator

algorithm is shown in Fig. 19. At first, the structural change request variable is initialized

as 0. During the message loop, Root Coordinator collects the outputs and routes the outputs

to the proper influences by issuing a @ message. If there is no structural change request is

raised, Root Coordinator sends * message to trigger the state transitions of the models.

The structural change process is invoked by a * (sc) if a structural change request is

detected. The structural change request variable indicates the expected structure set and is

assigned to the structural change variable in the * (sc).

1. t = tN of the topmost coordinator
2. sc = request // if a structural change request is raised, request = 1; otherwise request

= 0

3. while t≠∞ or more external events to come
4. send (@, t) to the topmost coordinator
5. wait until (D, t) is received from it
6. if sc == 1
7. send (*, t) (sc) to the topmost coordinator
8. wait until (D, tN) is received from it
9. end if
10. else if sc == 0
11. send (*, t) to the topmost coordinator
12. wait until (D, tN) is received from it
13. end else
14. t = tN of the topmost coordinator
15. if an external event arrive
16. send (q, t) to the topmost coordinator
17. end if
18. end while
19. raise simulation completed

Fig 17. Root Coordinator Algorithm

Message-Passing Scenarios

The previous section illustrates the message-processing algorithms of each abstract

simulator in FDSDE. In this section, typical message-passing scenarios are presented to

present how the messages flow between the simulation processors. The first scenario

presents the simulation process with a structural change process. The second scenario

exhibits a nested structural change process. For each scenario, the model structure and the

processor hierarchy are presented first, and then the message-passing scenarion of the

given model is described using an event precedent graph. The vertexes (the black dots) are

used to indicate the events, and the directed edges present the actions of sending messages.

The message types are placed beside the directed edges. The subscript numbers of the

message types give the sequence of the messages during the simulation. In the scenarios,

RC denotes the Root Coordinator; Sx (x = 1, 2, 3,…) represent the simulators in charge of

message processing of the atomic models. Cx (x = 1, 2,…) indicate coordinators; RSx (x =

1, 2,…) are the processors of the structure agents.

Scenario 1: A Simulation with a Structural Change Process

In this scenario, the structure component Coup1 contains two atomic models: A1 and A2 at

the initial simulation stage. The structural change in Coup1 adds an atomic model A3 to the

simulation system. C1 is the coordinator associated with Coup1. S1, S2 and S3 are the

three simulators generating the model behaviours of A1, A2 and A3 respectively. The

model structure and the processor hierarchy of the scenario 1 are shown in Fig. 18 and Fig.

19.

Coup1

A1

A3

A2 Coup1

A1 A2

Fig 18. The model Structure Change in Coup1

Fig 19. The Simulation Hierarchy Change in Scenario 1

Initially, I1, I2 and I3 are used to initialize C, S1 and S2. As responses, D4, D5 and D6 are

replied by them. We skip the regular simulation cycles for they are same with scenario 1.

At the simulation cycle Ti, RC sends *i+1 to C and C sends *i+2 to S1 for S1 is the only

model that needs to be synchronized at this cycle. Assume S1 raises the structural change at

this cycle. A Di+3 (sc) is sent back to C. C passes the structural change request to RC with

Di+4 (sc). Instead of issuing @ message to enter collecting phase, RC issues structural

change message *i+5 (sc) to C and C delivers the structural change message to the processor

of its structure agent RS with *i+6 (sc). A message Di+7 is replied by RS after the structural

changes finishes. Suppose a new simulator processor S3, corresponding to the atomic

model A3, is added into the simulation. C initializes S3 by sending Sti+8. S3 replies tN to C

with Di+9. Till this point, C has finished the structural change process and collected the next

event times from its children. C selects the minimum tN and sends to RC with Di+10

notifying the completion of the structural change process. In the structural change process,

S3 joins the simulation. The simulation advances and RC sends @i+11 to collect outputs at the

S1 RS S2

C 1

RC

S1 RS S2

C 1

RC

S3

simulation cycle Ti+1. Suppose S1 is the receiver of the collect message @i+12. S1 returns

Y i+13, the output message of S1, and Di+14, the done message of S1, to C. Since S2 and S3

are the influences of S1, C converts the output message of S1 into the proper input

messages and routed them to S2 (Xi+15) and S3 (Xi+16) respectively. As a result, S1, S2 and

S3 are all cached into the synchronized set of C and C sends Di+17 to RC marking the

ending of the collect phase of Ti+1. At the transition phase of Ti+1, synchronizing messages

are spread to each model and trigger the transition functions (*i+18, * i+19, * i+20, * i +21).

Accordingly, tNs are returned to RC with the done messages (Di+22, Di+23, Di+24, Di +25).

Then RC sends a collect message (@i+26) to start the new simulation cycle Ti+2.

Fig 20. Message flow for a Structural Change Process

RC

S1

S2

S3

C1
I 1

I 2

I 3

D

4
D

5
D

6

Init Collect
Phase

Trans.
Phase

T0

Simulation time

D

i+
3
(s

c)
 D

i +
4(

sc
)

@
i+

11

@
i+

12

* i
+

1
* i

+
2

* i
+

5(
sc

)

* i
+

6(
sc

)

D
i+

7
S

t i+
8

D
i+

9

Y
i+

13

D
i+

14

X
i+

15

X
i+

16

D
i+

17

* i
+

18

* i
+

19

* i
+

20

* i
+

21

D
i+

22

D
i+

23

D
i+

24

D
i+

25

@
i+

26

…
Structural Change Process

SC Req. SC Proc. Simu. Resu.

T i T i+1 T i+2

D
i+

10

RS1

Scenario 2: A Nested Structural Change Process

In scenario 1, single structural change process responds to a structural change request.

Sometimes, a nested structural change process involving more than one structure

components in the model hierarchy is required to respond to a structural change request. In

case of a nested structural change process, an executing priority of structure components

should be determined. In FDSDE, nested structural change process is conducted from

bottom to up. That is, the structure component at lower model hierarchical level executes

the structural change first, and then one at the higher model hierarchical level executes the

structural change. Scenario 2 presents a nested structural change process.

Scenario 2 involves two structure components Coup1 and Coup2. Coup1 governs Coup2

and an atomic model A1. Coup2 contains an atomic model A2. The structural change adds

an atomic model A3 to Coup2 and adds a new coupling between A1 and Coup2. S1, S2 and

S3 represent the simulators for A1, A2 and A3 respectively. C1 and C2 are the two

coordinators of Coup1 and Coup2. Coup1 has a structure agent SA1 and Coup2 contains a

structure agent SA2. RS1 and RS2 are the processors of the structure agents SA1 and SA2.

The model structure change and the simulation hierarchy change in the scenario 2 are

exhibited in Fig. 21 and Fig. 22.

Fig 21. The Model Structure Change in Coup1 and Coup2

Coup1

A1

A3

A2
Coup1

A1

Coup2

A2

Coup2

Fig 22. The Simulation Hierarchy Change in Scenario2

At the beginning of the simulation, all the processors participating the simulation are

initialized (I1, I2, I3, I4) and the D messages are replied (D5, D6, D7, D8). At simulation cycle

Ti, S2 raises a structural change request during the transition phase (*i+1, * i+2, * i+3, Di+4 (sc),

Di+5 (sc), Di+6 (sc)). Once RC receives a structural change request, RC starts a structural

change process. Suppose it is a nested structural change process involving the structure

component Coup1 and Coup2. When C1 receives *i+7 (sc) sent from RC, C1 passes (*i+8

(sc)) to its child C2. C2 is the structure component at the lowest hierarchical level;

therefore the structural change of C2 is executed first. C2 sends *i+9 (sc) to RS2 to execute

the structural changes. RS2 returns Di+10 to C2 when the structural change has been done.

Assume that a new model is added during the structural change. C2 sends Sti+11 to S3, a

new processor of the atomic model A3, to initialize it. When Di+12 is returned to C2, C2

then return Di+13 to C1 notifying the structural change has finished at the structure

component Coup2. Once receiving the structural change done message from C2, C1 sends

* i+14 (sc) to RS1 to start a structural change. RS1 replies Di+15 to C1 and C1 passes Di+16 to

RC marking the ends of the structural change at C1. According to the minimum tN, the

simulation advances to simulation cycle Ti+1. Suppose S3 is not an imminent child of C2.

S1 RS1 C2

C 1

RC

RS2 S2

S1 RS1 C2

C 1

RC

RS2 S2 S3

The collect phase of Ti+1 is processed (@i+17, @i+18, @i+19, Di+20, Di+21, Di+22). The

following transition phase (*i+23, * i+24, * i+25, Di+26, Di+27, Di+28) implements the transition

functions of S2, which are bypassed during simulation cycle Ti. At simulation cycle Ti+1,

RC obtains an updated tN and advances the simulation to Ti+2 (Ti+1 + tN). RC sends @i+29 to

collect outputs at simulation cycle Ti+2.

 RC

S1

S2

S3

C1

RS1

C2

RS2

I 1

I 2

I 4

D
5

D
6

D
7

D
8

* i
+

1
* i

+
2

* i
+

3 D
i+

4
(s

c)

D
i+

6
(s

c)

D
i+

5
(s

c)
 * i

+
7(

sc
)

* i
+

8
(s

c)

* i
+

9
(s

c)

D
i+

10

S
t i+

11

D
i+

12

D
i+

13

* i
+

14
 (s

c)

D
i+

15

D
i+

16

@
i+

17

@
i+

18

@
i+

19

D
i+

20

D
i+

21

D
i+

22

* i
+

23

* i
+

24

* i
+

25
 D

i+
26

D

i+
27

D

i+
28

@
i+

29

Init. Phase Structural Change Process I Stru. Chan.
Proc.II

T i+1 T0 T i Simulation time
…

I 3

Collect
Phase

Trans.
Phase

T i+2

Fig 23. Message flow for Multiple Level Structural Change Process

Simulation Phases

In the message-passing scenarios, the simulation phases are clearly identified. In the

regular simulation process, two phases are distinguished by @ message and * message

respectively. @ messages dispatched to each processor and the corresponding D

messages are compose of collect phase. Transition phase consists of * messages routed

down and the returned D messages.

Structural change process is included in the regular simulation process. Three

sub-phases are identified in a structural change process: structural change request,

structural change and simulation resuming. Each sub-phase is marked by a message by

which the sub-phase is invoked. If a (done, tN) (sc) is return to respond to a * message

in a transition phase, the transition phase is identified as a structural change request

sub-phase. The real transition phase is bypassed due to the raise of the structural change

request. Root Coordinator initiates a structural change sub-phase by issuing (*, t) (sc)

message upon receiving a structural change request. D messages are sent back

indicating the ends of the structural change sub-phase. A coordinator associated with a

structure component starts a simulation resuming sub-phase by sending (St, t) message

to the newly added models. The newly added models return the scheduled tNs, which

are used to schedule the next imminent simulation event and signals the finishing of the

simulation resuming sub-phase.

Chapter 4 Algorithm Implementation and the Functionalities

An improved simulation engine is developed by combining FDSDE and P-DEVS real

time simulation engine. Based on the improved simulation engine, the updated

real-time DEVS-based experimental environment is constructed to support the

dynamic structure real-time simulation and the real-time embedded system design. The

new software is called DS-eCD++. The software architecture of DS-eCD++ adopts the

four software components in eCD++. Various aspects of implementation differ from

that in eCD++. Introduction of structure component and structure agent requires extra

classes to represent the components. A structure component involves multiple structure

options, but only one structure, which is an active structure of a structure component,

participates in the simulation. The structure shifts call for cooperation among the

components and the processors in the simulation. Also, the structure shifts brings a

series of changes in the software architecture of eCD++. This chapter will discuss the

implementing issues in DS-eCD++. The summary of the revisions are explained in

section 4.1. The sections from 4.2 to 4.5 depict the implementing details of each

software component in DS-eCD++. Finally, the functionalities of DS-eCD++ are

discussed at the section 4.6.

Software Architecture Overview

In eCD++, the four software components contain well-defined behaviours and

corporate with each other to execute real-time DEVS simulations. The following figure

depicts the major parts of each software components and the relationships among them.

Fig 24. eCD++ Software Architecture

DS-eCD++ maintains the four software components; however, revisions have been

made to fit the new features. The revisions of the four software components are

characterized as:

1. The Main Simulator assumes the responsibility for loading coupled models,

atomic models and structure agents. It takes charge of separating the model

definition into two groups: the active components and the structure

components. It loads the initial model hierarchy at the initial stage of the

simulation. The model hierarchy is updated through the structure agents of

structure components as required during the simulation. In a simulation using

the Flat Coordinator, Main Simulator takes charge of storing the initial model

composition and the couplings used in the simulation.

2. The DEVS Modeling Subsystem maintains a model hierarchy tree composed

of atomic models, coupled models and structure agents. The structure agent

objects database is created along with the atomic model objects database. The

Simulation Subsystem, including the Root, the Coordinator, the Simulator and

the RevSimulator, maintains the processor hierarchy corresponding to the

model hierarchy. In the Simulation Subsystem, the receive functions for

different types of messages in the processor class are redefined to implement

the message-passing algorithms described in the FDSDE algorithm.

RevSimulator is a class of abstract simulator – RevSimulator which processes

only the initial messages and the structural change messages. It is a special

message processor for structure agents. The FlatDEVSCoordinator is

redefined to implement the Flat Coordinator in the simulation using a flat

coordinator. The five processor classes constitute the improved simulation

engine in the Simulation Subsystem in DS-eCD++ supporting the dynamic

structure real-time simulation.

3. The extra messages related to structural changes cause the expansion of the

Messaging Subsystem. InternalMessage class and DoneMessage class are

reused to convey the structural change messages and the structural change

requests by appending a non-zero value in a message. A new message class

StartMessage is created for St message.

With the revised software architecture, the high level design walk-through draws an

overall picture of how dynamic structure works in DS-eCD++.

1. Main Simulator separates the model definition into two groups: the initial

model structure in the active component container and the structure

components in the structure components container. During the initial

model structure are loaded into simulation system, Main Simulator

constructs the model hierarchy assisted by the Modeling Subsystem and

builds the associated processor hierarchy with the help of the Simulation

Subsystem. The simulation control is passed to Root once upon the

simulation starts by Main Simulator. In the simulation using a flat

coordinator, Main Simulator memorizes the initial flattened model

structure in the simulation.

2. Once a structural change request is raised by an atomic model, the

structural change request with the requested structural value is delivered

upward to the Root provided the request is imminent among the

simulation events. Root issues a structural change message and routes the

message to all the structure components in simulation system. The

structure components hand the structural change message to the

associated structure agents to process the structural changes.

3. The structure agents retrieve the expected model structure from the

structure components container according to the structural values

appended in the messages. The structure agents compare the two model

structures. Aided by the structural change operations, the structure agents

update the model structure in the simulation system. Done messages are

sent to the structure components. When the done message returns to Root,

the structural change process ends.

4. In the simulation with a flat coordinator, the structural change message is

passed to the flat top and the flat top routes the message to its associated

structure agent. The structure agent retrieves the expected model structure

and compares it with the flattened model structure stored in Main

Simulator. The flattened model structure in the simulation system is

updated by the structure agent. The done message reaching the Root

indicates the finishing of the structural change process.

5. The Root advances the simulation into the next simulation cycle and the

simulation continues.

4.2. Main Simulator

Main Simulator as a subsystem includes three classes: MainSimulator is the very first

object created during simulation and manages the overall aspects of the simulation. Ini

is used by MainSimulator to parse the model definition. MainSimulator configures the

simulation environment through SimLoader. The modifications in Main Simulator are

listed in the following class diagram. The tasks performed in Main Simulator are

summarized as:

Fig 25. Main Simulator Class Diagram

1. Models registration. At the beginning of simulation, Main Simulator registers the

pointers to the objects of the atomic models and the pointers to the objects of the

structure agents using registerNewAtomics() method.

2. Models loading. The components, the couplings among the components and the

input/output ports are loaded in the simulation system by parsing the model

definition. Structure agents are absent from input/output ports; therefore, no ports

and couplings are involved. Except for loading the coupled models and the atomic

models, loadComponents() method loads the structure agents. The model types are

identified (details in section 4.2.1 and section 4.2.2) through the different separators

MainSimulator

~ini ~sloader

~nameset ~mlinklist

~registerNewAtomics()

~GetComponentSet()

~GetLinkList()

~loadComponent()

~AddComponent()

~RemoveComponent()

~AddLink()

~RemoveLink()

~LoadFlattenLinks()

~addFlattenedLinksToFlatTop()

~updateOutLinks()

SimLoader

Ini

~groupList()

~group()

~definition()

~stgroupList ()

~stdefinition ()

~strucgroup ()

~stgroups

~stmap

~parse ()

~getmap ()

~InsertData()

~ScommMap()

in the model definition which are parsed and categorized by the operations in the

class Ini.

3. Simulation environment configuration. The simulation parameters indicating the

simulation environment are read in. Main Simulator is responsible for simulation

environment configuration utilizing a simulation environment loader SimLoader.

4. Simulation start-up and ending. Once the preparations are ready. Main Simulator

passes the control to Root Coordinator and simulation starts. Main Simulator

recovers the control of the simulation and announces the termination at the end of

the simulation.

4.2.1. Structure Component Description

A structure component is furnished with a structure agent to carry out the structural

changes in the structure component. In DS-eCD++, new syntax is used to extend the

build-in specification language provided in CD++ to describe the structure components

and their alternative modeling structures.

The initial structure and the alternative structures of a structure component are

explicitly described in the build-in specification language in the model definition. The

initial structure of a structure component is defined as the definitions of coupled

models. However, two new properties are introduced to describe a structure

component. The following syntax is used:

− modelName#className. In the component list of a structure component,

the syntax is used to appoint a structure agent. The separator ‘#’ distinguishes a

structure agent from other models.

− Scomm. This describes the structural command of a structure component. The

structural command is associated with an option of a model structure. The

atomic model raises a structural change by specifying a structural command.

According to the designated structural change command, the corresponding

model structure is called.

The alternative structures of a structure component are specified using separated groups

in the model definition. The group name is defined as follows:

 [CoupledmodelName + “update” + Index]

The CoupledmodelName presents the name of a structure component. “update” is a key

word in the build-in specification language indicating an alternative structure of the

structure component. Index defines the sequence of the model structure of the structure

component. For example, [Topupdate01] denotes the first alternative structure of the

structure component TOP. As in the definition of the initial structure, five properties are

designated in each alternative structure of a structure component: Component, Link,

In, Out and Scomm. The sample model definition of a structure component is

presented using the build-in specification language. In Fig. 3, a block heading with a

model name with a pair of square brackets is a group indicating the definition of a

coupled model or an alternative model structure definition of a structure component.

The properties of a group including components, in, out, Scomm and Link, are

the definitions. The text followed by the definitions after the clone is

identifications.

[top]

components : cu@ECU motor topexec#Topexec

in : in

out : out

Scomm : topstruc1

Link : in in@cu

Link : eng_in@cu in@motor

Link : out@motor sen_out@cu

Link : out@cu out

[topupdate1]

components : cu@ECU motor

in : in

out : out

Scomm : topstruc2

Link : in in@cu

Link : eng_in@cu in@motor

Link : eng_test@cu test@motor

Link : out@motor sen_out@cu

Link : out@cu out

Fig 26. A Sample Definition of Structure Components

4.2.2. Structure Components Parsing and Storage

The model definition are divided into two groups and stored in two containers. One is

the active component container storing the active model structure; the other is the

structure components container including the model structures of the structure

components. The two containers constitute a model database.

Method parse() takes two steps to build a model database. Firstly, the key word

“update” is taken as a sign to separate alternative structures of a structure component

from the initial structure. The groups whose names contain no “update” are put to the

active components container. The groups whose names contain “update” are sent to the

structure components container. Secondly, InsertData() method copies the initial

model structures of the structure components to the structure components container.

The components in the active components container are loaded and participate in

simulation. The structure components container provides an alternative model

structures database for the structure components. The alternative model structures as

the structure counterparts of the structure components are exchanged with the active

model structure of the structure components. Fig. 4 shows the storage mechanism of the

model definition in DS-eCD++. The method parse() also establishes a scomm map, in

which a structure command is connected to a structural value. The scomm map is built

through Scommmap() method and can be retrieved by the method getmap(). The

scomm map is a structural command – structural value dictionary by which the

expected model structure of the structure component is located by means of a structural

value indicated by modellers.

Fig 27. Model Storage and Loading

Having been stored in the two containers, the model definition is loaded into the

simulation system step by step. In DS-eCD++, two groups of parsing operations are

defined in the class Ini. One group of operations parse the model definition in the active

component container including groupList(), group() and definition(). The operations

are used in eCD++ to parse the model definition. The other group of parsing operations

are specified for the structure components container, which are absent in eCD++. The

stgroupList () accesses the structure components container. strucgroup() method gets

a whole group indicated by the group name which specifies a structural definition of a

[top]

Components : coupled1

Components : coupled2

Scomm : topstruc1

[coupled1]

Components :

…

[coupled2]

Components :

…

[topupdate1]

Components :

…

Scomm : topstruc2

Active

Components

Container

Structure

Components

Container

Models

Hierarchy

Processors

Hierarchy

Mapping

Relationship

Exchange Model Structure

Load Active Model Structure

structure component. stdefinition () method retrieves the identification line

indicated by the definition name.

4.2.2. The Flat Coordinator Technology

If the simulation runs with a flat coordinator, MainSimulator is responsible for

flattening the simulation hierarchy by calling loadFlattenLinks() to rewire the

couplings linking to coupled models directly to the far-end atomic models, calling

updateOutLinks() to rewire any atomic models’ couplings linking to coupled models

directly to the far-end atomic models. Since the model structure flattening is

performed after the model definition storing, the structure components container

cannot obtained the flattened initial model structure. In order to backup the structure

in case of recall, MainSimulator uses two data structures to store the flattened

structure: nameset is a component set memorizing the components in the structure;

mlinklist is a link list storing the couplings among the components. The two data

structures are established along with the loading of the initial model structure.

AddComponent() method adds a component to nameset; while RemoveComponent()

removes a component from nameset. AddLink() method appends a new coupling to

mlinklist. On the contrary, RemoveLink() method deletes a coupling from

mlinklist. The four methods are executed with the flattening of the initial model

structure. Finally, the initial flattened model structure is stored in nameset and

mlinklist.

The Modeling Subsystem

The Modeling Subsystem organizes the models hierarchically. The class diagram of the

Modeling Subsystem is shown in Fig. 5. The modifications of each class are presented

in the class diagram but the inherited methods from eCD++ are not included.

Fig 28. The Modeling Subsystem Class Diagram

Model

~ModelType

~delInputport()

~delOutputport()

~strucChange()

~strucChange(int &)

Atomic

~initFunction()

~internalFunction()

~externalFunction()

~outputFunction()

~confluentFunction()

~StartFunction()

Coupled

~ExecId ~newmodels

~removedmodels

~childs ~oldchilds

~strucvalue

~getvalue() ~setvalue()

~executive()

~addmodelId() delmodelId()

~oldchildren()

~setnewmodels()

~getnewmodels()

~setremmodels()

~getremmodels()

RevAtomic

~modelType

~parentId

~InitFunction()

~InternalFunction()

~addmodel() ~delmodel()

~addlink() ~dellink()

~findmodel() ~findports()

~addport() ~delport()

~diffmodel() ~difflink()

~getmodelset()

~getlinkset()

~getportset()

Atomic model 1 Atomic model n Structure Agent 1 Structure Agent n
…

…

Port

~flatterninfluences()

ModelAdmin

~StructureAgentDataBase

~registerRevAtomic()

~newRevAtomic()

The class Model provides the model operations theoretically. Three subclasses: Atomic,

Coupled and RevAtomic, are derived from the class Model and encapsulate the

implementations of atomic models, coupled models and structure agents. The

substantial implementations of atomic models (Atomic model 1, …, Atomic model n)

and structure agents (Structure agent 1, …, Structure agent n), which are derived from

the virtual classes Atomic and RevAtomic respectively, are specified by modellers.

Class Coupled possesses the model compositions and the couplings of coupled models.

In DS-eCD++, the class Coupled also contains the implementations of structure

components. The class Port encapsulates the implementations of input and output

ports. In DS-eCD++, the model hierarchy tree has been changed in two ways: on one

hand, the structure agents bring the changes to the model hierarchy; on the other hand,

the structural changes of the structure components keep updating the model hierarchy

during simulation. The class ModelAdmin manages the dynamic model hierarchy tree.

The revised implementation details of the Modeling Subsystem are characterized as:

1. ModelAdmin specifying the implementations of Model Manager creates a

structure agent object by means of registerRevAtomic() method and builds the

structure agent objects database (a dictionary data structure building the

relationships between a structure agent’s string name and a pointer to the

structure agent object). newRevAtomic() method creates a structure agent

object utilizing the object pointer stored in the objects database. It also

employs Processor Manager (see section 4.4) to create a processor for the

structure agent. Once the structure agent objects database has been built,

Model Manager permits a dual traverse between the structure components and

the associated structure agents. The execId allows a structure component to

find its associated structure agent; on the contrary, the parentId

encapsulated in a structure agent enables it to access its parent model.

2. The class Model encapsulates the logic implementations of model. There are

three model types including atomicType, coupledType and

revatomicType which are included in modelType. delInputport() and

delOutputport() methods are defined to remove an input/output port from a

coupled model. strucChange(int &) and strucChange() methods are inherited

by an instantiated atomic model and call the homonymous methods in the

simulator associated with the atomic model to assign and retrieve the structural

value. The structural value is retrieved through strucChange(); while a new

structural value is assigned via strucChange(int &).

3. Atomic encapsulates the implementations of atomic models. In eCD++, five

transition functions, including InitFunction(), ExternalFunction(),

InternalFunction(), ConfluentFunction() and OutputFunction(), specify

atomic model behaviours. In DS-eCD++, StartFunction() is introduced to

re-initialize atomic models when the models join the simulation via structural

changes.

4. RevAtomic specifies the implementations of structure agents. Similar with

atomic models, RevAtomic employs transition functions to describe the

behaviours of structure agents. InitFunction() is used to initialize a structure

agent. The structural transitions of a structure agent are specified in

IntenralFunction(). In addition, RevAtomic encapsulates a group of structural

change operations (explained in section 4.3.1), which are called by the

concrete structure agent in their internal structural transition functions.

5. Coupled encapsulates the implementations of regular coupled models and

structure components. The implementations of structure components are

added to Coupled in DS-eCD++. ExecId is an attribute of structure

components specifying the model ID of the structure agents. This attribute can

be used to distinguish structure components from regular coupled models. If

the value of ExecId is a valid integer, the model is a structure component.

Otherwise, the model is a regular coupled model. executive() method is used to

retrieve the ExecId. addmodelId() and delmodelId() methods update the

model composition of a structure component in a structural change. In the

nested structural change process, the structural change is executed from

bottom to up. The structure component at higher hierarchical level should

store the structural change value in strucvalue via setvalue(). getvalue()

retrieves the structural value when the structural change is recalled at this

structure component. childs and oldchilds are two lists storing the new

model composition and the model composition to be changed in a structure

component. The difference between the two lists occurs when the structure

component is experiencing a structural change. The model composition stored

in childs is updated along with the structural change. The model

composition to be changed is backup in oldchilds using oldchildren()

method. The differences between the two lists are calculated by

setnewmodels() method and setremmodels() method. setnewmodels() method

stores the models to be added in a data member newmodels; while

setremmodels() method sends the models to be removed in another data

member removedmodels. getnewmodels() method is invoked by the

corresponding coordinator to retrieve the models from newmodels.

getremmodels() method gets the models to be removed from

removedmodels. These two methods are invoked by the corresponding

coordinator to adjust its simulating behaviour. The St messages are sent to the

models in newmodels to re-initialize the models for the next simulation

cycle. The models in removedmodels are deleted from the synchronized set

in the coordinator and are removed from simulation system finally.

6. Port defines a series of implementations of input/output ports. As we have

explained in 4.2.2, the model structure is flattened if a flat coordinator is

applied in simulation. flatterninfluences() extends the flattening in the class

Port to update the influences of a port.

Structural Change Forms and the Operation Boundaries

Before introducing the structural change operations, the structural change forms and

the operation boundaries are discussed. The discussion of structural change form gives

a clue to investigate the structural change operations; while operation boundaries

regulate structural changes in a safe and clear scope. The structural change forms also

provide useful hints in designing structural change scenarios and structural change

cases.

In DEVS-based simulation systems, there are three kinds of component elements:

component (an atomic model or a coupled model), coupling (links between

components) and port (input port or output port). Structural changes aim to adjust the

layout of the component elements. Therefore the basic structural change forms can be

identified in the six types. 1) addition of a component; 2) removal of a component; 3)

addition of a link between components; 4) removal of a link between components; 5)

addition of an input / output port; 6) removal of an input / output port. The basic

structural change forms constitute the structural changes in most cases. Update of a

component refers to a component is updated by a new version which might have

totally different behavior or interface from the old one. This can be considered as a

composition of the basic structural change forms and can be accomplished by simply

replacing the old component with a new one, which involves the addition and removal

operations. According to the basic structural change forms, the structural change

operations are defined. The structural change operations are combined together to

accomplish most possible structural changes in non-distributed systems.

Structural changes cause modifications in the model hierarchy. Sometime conflicts

between the structural change processes occur if the expected model structures call for

opposite operations such as addition and removal of the same component etc. Operation

boundaries should be defined to avoid the conflicts and to regulate the structural

changes operations in a conflict-free and determined range.

To specify the operation boundaries, the location information in relation to the model

hierarchy of the all kinds of components should be analyzed. A component of a coupled

model has knowledge of its parent, children list and the couplings among the children.

A component of an atomic model is aware of its parent and its input/output ports. The

components belonging to the same parent are brothers. The brother components are

independent from each other. A component contains no information of its brother. As

being defined in FDSDE, a structure agent is introduced to execute the structural

change for a structure component. The structure agent is taken as a revised atomic

model aware of only its parent and works on behalf of its parent. We can take a

structure agent as a structural representative of a structure component. That is to say, a

structure agent holds as the same structural view as the structure component. With the

structural views of all the components, the operation boundaries can be defined:

1. The structural changes in a structure component are conducted by the associated

structure agent. A structure component and an atomic model have no capability to

dispose structure change operations.

2. Addition / removal of a component refer to add or remove an atomic model. A

structure component is a model structure governor and can switch its model

structure from one to the other with the help of the associated structure agent. The

structure component itself would not be added or removed. A structure agent is

always associated with a structure component; therefore cannot be added or

removed as well.

3. An atomic model is a structure unit and involves no structural change in it. The

ports in an atomic model would not be changed during simulation. If different port

sets in an atomic model are needed in different simulation stage, the union of the

port sets are defined in the atomic model definition and the specific port sets are

used at certain simulation stage.

4. Addition / removal of input / output ports are used to add or remove input / output

ports in a structure component. By which the interface of the structure component is

changed.

5. A structure component can only add / removed the couplings in which the sender

and receiver pertain to the structure component. In case of a coupling spanning two

different structure components, the situation becomes complex. Consider A is the

sender of the coupling and B is the receiver of the coupling. The DEVS property,

closure under coupling, ensures that there is a structure component existed to cover

A and B. That is to say, the structure component is the parent of either A or B and

the parent of the ancestor of either A or B. The nested structural change process is

able to handle the situation link this.

4.3.2. Structural Change Operations

A group of structural change operations are defined in class RevAtomic,

including structural change operations and supplementary operations:

� Structural change operations:
� GetModels
� GetLinks
� GetInputPorts/GetOutputPorts
� Add/Remove models
� FullAdd/FullRemove models
� Add/Remove links
� Add/Remove input/output ports.
� DiffLinks
� DiffModels
� DiffInputPorts/DiffOutputPort

� Supplementary operations:
� FindModel
� FindInputPort/FindOutputPort

The structural change operations provide necessary manipulations to the

component elements (models, links and ports). Get actions retrieve the specified

component elements. Diff actions aim to calculate the differences between the

component elements subject to be changed and the component elements expected to

join. Add/Remove & FullAdd/FullRevmode actions realize the actions of addition /

removal of the component elements. The operations can be performed in two ways: full

operations and light operations. In the full operations, the atomic model objects and the

associated simulator objects are added / removed along with the addition / removal of

the model references and the processor references in the structure components. Simple

operations only add or remove the references of the atomic models in the structure

component while keep the model objects and the associated simulators in the model

object databases. The former operations are suitable for the new atomic models added

in the simulation system or the atomic models removed permanently from the

simulation system. If the models are removed temporarily at the previous simulation

stage and will be reused at later simulation stage, the simple operations can be applied.

Two sets of operations offer flexibility to modellers who can keep balance between

minimum memory usage and fast loading time. Supplementary operations are used to

locate the component elements. Those operations are called by the concrete structure

agents to define the real structural change operations in the simulation.

Simulation Subsystem

The Simulation Subsystem presents simulators and coordinators hierarchically.

FDSDE redefines the message-passing algorithms for the abstract simulators.

Accordingly, the abstract simulator classes in the Simulation Subsystems are revised to

fit the changes. The class diagram of Simulation Subsystem is presented in Fig. 6. The

modifications in each class are listed.

Fig 29. The Simulation Subsystem Class Diagram

Processor

~strucChange()

~strucChange(int &)

`

Simulator

~struc ~struc_rec

~receiveInitMsg()

~receiveIniternalMsg()

~receiveExternalMsg()

~receiveCollectMsg()

~receiveStartMsg()

Coordinator

~waitingMode

~screq

~receiveInitMsg()

~receiveInternalMsg()

~receiveExternalMsg()

~receiveCollectMsg()

~receiveOutputMsg()

~receiveDoneMsg()

RevSimulator

~receiveInitMsg()

~receiveIniternalMsg()

ProcessorAdmin

~generateRevAtomicProc()`

~getProcDB()

Root

~receiveDoneMsg()

FlatDEVSCoordi

nator

~waitingMode

~screq

~receiveInitMsg()

~receiveInternalMsg()

~receiveExternalMsg()

~receiveCollectMsg()

~receiveOutputMsg()

~receiveDoneMsg()

The class processor defines virtual operations for the abstract simulators. The classes

Root, Coordinator, Simulator and RevSimulator representing the abstract simulators

are derived from the class processor to execute the corresponding message-passing

mechanisms (refer to the section 3.3). FlatDEVSCoordinator is another subclass

derived from the class processor to represent the abstract simulator of the flat

coordinator. The concrete simulators and coordinators are instantiated from the abstract

simulator classes. Class ProcessorAdmin plays as a processor manager responsible for

generating the processors and maintaining a processor objects database (a dictionary

database building a relationship between a processor id and a pointer to the processor

object). The modifications in the Simulation Subsystem are concluded as:

1. The receive functions for the different types of messages received in each abstract

simulator are replaced with the message-passing algorithms described in the section

3.3.

2. generateRevAtomicProc() in ProcessorAdmin is called by NewRevAtomic() in

ModelAdmin to generate a concrete processor for a structure agent. With the help of

getProcDB(), the processor objects database can be accessed by a structure agent to

add / delete a processor when the associated model has been added / deleted.

3. strucChange(int &) and strucChange() methods are inherited by the concrete

simulators to assign and retrieve the structural value of the processors. A new

structural value is assigned through strucChange(int &) method in the internal

transition function, the external transition function or the confluent transition

function of an atomic model if the atomic model tries to raise a structural change

request. Two data members in the corresponding simulator hold the structural value

and strucChange(int &) method updates the data member struc in the simulator.

If a new structural value is assigned, struc contains a different value with

struc_rec. The simulator detects the difference between the two data members

via strucChange() and determines whether if a structural change request is raised.

The receiveStartMsg() in Simulator takes charge of message processing of start

messages which are received in an atomic model.

4. RevSimulator encapsulates the message-passing algorithm of RevSimulator. The

processor instantiated from RevSimulator generates the behaviours of structure

agents. RevSimulator handles initial message, which initializes the model, and the

structural change messages, which invoke the structural change processes in

structure agents with the expected structural values.

Messaging Subsystem

Message Subsystem is responsible for management of message classes and

maintenance of a message queue. Virtual attributes and operations of a message are

defined in Message. Seven message classes are inherited from the virtual class

encapsulating the corresponding messaging implementations. Classes InitMessage,

InternalMessage, ExternalMessage, DoneMessage, OutputMessage, CollectMessage

and StartMessage represent initial message, internal message, external message, done

message, output message, collect message and start message respectively. The message

class diagram is shown in Fig. 7.

1. MessageAdmin as a message manager maintains an unprocessed message queue

and dispatches messages.

2. DoneMessage and InternalMessage classes are extended to represent a structural

change request and a structural change message respectively. In eCD++, done

message and internal message are used for simulation control purpose and no value

involved. In DS-eCD++, done message and internal message require message

values to carry structural values. In DoneMessage class and InternalMessage class,

setvalue(value) method sets a structural value in the data member value. The

structural value can be accessed via getvalue() method. The concrete messages are

the instantiations of the message classes.

Fig 30. Messaging Subsystem

Message

InitMessage

ExternalMessage InternalMessage

~value

~getvalue()

~setvalue(value)

MessageAdmin

CollectMessage

DoneMessage

~value ~getvalue()

~setvalue(value)

StartMessage

MessageBag

OutputMessage

Functionalities of DS_ECD++

The functionalities of DS_ECD++ are investigated in this section. The most important

functionality is dynamic structural change. In Chapter 3, we discussed the basic

structural change forms. The compositions of those basic structural change forms

constitute a variety of structural change scenarios. DS_ECD++ is able to perform the

various structural change scenarios by combining the basic structural change forms.

The structural changes may be raised at any time. FDSDE specifies that the structural

change has higher priority over other simulation events. When a structural change

request becomes imminent, other imminent events have to wait until the next

simulation cycle. A structural change request can be raised in the internal transition

function, the external transition function of an atomic model. The message-passing

paradigms defined FDSDE are in line with the P-DEVS formalism; therefore parallel

simulation is possible in DS-eCD++. That is to say, a structural change request can be

handled in the confluent function of an atomic model. Moreover, DS-eCD++ also

supports the nested dynamic structural change, in which a structural change request

may cause a series of structural change processes in different structure components in

the model hierarchy.

The revised flat coordinator supports dynamic structure simulation with a flat

coordinator. In the simulation with a flat coordinator, the solo structure agent executes

the structural change for the structure component – flattop.

DS-eCD++ supports dynamic structure in real time. Employing the interval time

function, DS-eCD++ enables to run the simulation with real time advance. Sometime,

the dynamic structural change in real time simulation takes longer time than that in

virtual time simulation for the structural change needs more time to process.

DS-eCD++ is able to cooperate with the GGAD interpreter to implement simulation

using GGAD-defined DEVS models. Whatever one or more atomic models are

replaced with the GGAD equivalents, the dynamic structure simulation can run as

exactly the same as the simulation with C++ language defined models. Also, the

dynamic structure simulation with the GGAD models fits both virtual time advance and

real time advance.

The functionalities of DS-eCD++ can be embodied by the structural change scenarios.

In the next chapter, the structural change scenarios are devised and the corresponding

case studies are conducted to test the functionalities.

Chapter 5 Structural Change Scenarios and Case Studies

In order to evaluate the FDSDE algorithm and the software logic, the case studies are

investigated in this chapter. The structural change scenarios presented in the first

section combines the basic structural change forms described in Chapter 3 and the

major functionalities in eCD++. In the following sections, two cases: DSAMS

(Dynamic Structure Automatic Manufacturing System) and MTRS (Motor Tracing and

Replacement System) are studied. In each case, a series of experiments are provided to

verify the structural change scenarios. For each case, the model description is

explained. The structure components in the cases are identified and the formal

specifications of the structure components based on the DSDEVS formalism are

exhibited. A series of experiments covering a coupled of the structural change scenarios

are carried out and the simulation results are analyzed.

Structural Change Scenarios

Ten structural change scenarios are presented to evaluate the dynamic structural change

functionality and the compatibility with eCD++.

• Scenario 1: Structural change request is raised in the external function of an

atomic model

• Scenario 2: Structural change request is raised in the internal function of an

atomic model

• Scenario 3: The structural changes involving transition conflicts can be

properly handled by means of confluent transition function of an atomic model

• Scenario 4: Addition or/and removal of internal links (The sender and the

receiver of the links are within a coupled model).

• Scenario 5: Addition or/and removal of an atomic model

• Scenario 6: Replacement of a coupled model

• Scenario 7: A nested structural change process caused by a structural change

request.

• Scenario 8: Structural changes in a flat coordinator.

• Scenario 9: Structural changes of the interface of a coupled model. (changes

of the input ports or/and output ports of a coupled model)

• Scenario 10: Running dynamic structure real time simulation using the GGAD

models

Case 1 DSAMS

Description

DSAMS (Dynamic Structure Automated Manufacturing System) is composed by the

dedicated stations that perform assembling and painting tasks on different products in a

manufacturing plant, including a conveyor belt that transports the products to/from

those workstations. The Controller Unit is an atomic model used to control the actions

of the Conveyor according to external inputs (which schedule the manufacturing of a

given product). The Conveyor transports the products being manufactured to the other

units, as indicated by Controller Unit. The Conveyor itself is a coupled model

consisting of an Engine (to move the belt) and a Sensor (to detect the current position in

order to decide when we need to stop the belt). The Engine Assembly workstation (ES)

is an atomic model, modeling a dedicated workstation standing beside the Conveyor to

take assembling tasks. The second dedicated workstation - Painting workstation (PS) -

is a coupled model containing a Painter (which paints the products) and two models of

painting arms: Chrome and Color. The timing parameters used in DSAMS are shown in

the table.

Fig 31. The Scheme of DSAMS

Sensor

ES Painter PS

C
onveyor

C
ontroller U

nit
btn1a

btn2a

s1a

s2a

active_a

direction

_eng_a

sta_disp_a

dirn_disp_a

led1

led2

st1a

st2a

es_in

es_out

ps_in

ps_out

Chrome Color

s1a_eng st1_a

st2_a

Engine

chrom
e_in

chrom
e_out

color_in

color_out

Table 1 The Timing Parameters in DSAMS

Model

Name
Time Variables Duration Description

Engine

preparationTime2Start Time(0, 0, 0, 5) start a product

preparationTime2Stop Time(0, 0, 0, 5) stop a product

movingTime Time(0, 0, 0, 5)
move from one station to the

other

ES workingTime1 Time(0, 0, 1, 0) Working time during daytime

ES’ workingTime2 Time(0, 0, 1, 050) Working time during night

Painter

workingTime1 Time(0, 0,2, 20) paint color and chrome

workingTime2 Time(0, 0, 1, 0) paint color

workingTime3 Time(0, 0, 2, 0) Paint chrome

Chrome preparationTime Time(0, 0, 0, 10) prepare chrome painting arm

Color preparationTime Time(0, 0, 0, 20) prepare color painting arm

Initially, a product is placed on the Conveyor belt besides the ES, waiting for the

indications from the Controller Unit, which receives the external events from btn1A

indicating that the product is processed in ES, and from btn2A, which tells that the

product is processed in PS (as we can see in the table, multiple events are received

throughout the simulation on each of the buttons). The Controller Unit also receives the

status of the products on Conveyor from Sensor (from inputs s1a and s2a), and outputs

them through the output ports sta_disp_a or dirn_disp_a. sta_disp_a displays the

number of the station that the product has reached (ES = 11 and PS = 21); while

dirn_disp_a indicates the moving direction of the conveyor (0: stopped, 1: moving

forward, and 2: moving backward). Two LED output ports, led1 and led2, are

associated with the two stations (ES and PS). The corresponding LED turns on (value =

1) when the destined station is assigned, and turns off (value = 0) when the product

reaches the station. The completion of the tasks in the stations is indicated by the two

output ports st1_a and st2_a respectively. The Engine receives indications from the

Controller Unit via active_a and direction_eng_a. The expected station is input

through active_a indicating the destination the Engine moves to. The moving direction

of the Engine is designated via direction_eng_a. s1a_eng tells the Sensor the current

station the Engine reached. The Engine starts ES and receives the ending signal from ES

via es_in and es_out. ps_in and ps_out are used to signals PS and reports the task

completion in PS. The Painter initiates chrome arm and color arm via chrome_in and

color_in. The preparation done messages are returned from the Chrome and the Color

through chrome_out and color_out.

Two kinds of changes are considered in the DSAMS:

1) Variation of the duty shift, which will produce a change between ES and ES1. For

the simulation, it is supposed that the duty time is 10 minutes for both ES and ES1.

2) Switch of painting modes. Some products need painting both color and chrome

(painting mode = 1) while other products require painting either color (painting

mode = 2) or chrome (painting mode = 3). The painting mode is indicated by the

CU, which will generate an external event representing the corresponding

painting mode.

Formal Specifications

The structure components in DSAMS are shown in a formal diagram, in which a

rectangle with a name represents a model, while an ellipse with Zi, j denotes a transition

function (i is the model name, j refers to its structural state). χ indicates the structure

agent associated with the structure component. Zχ is the internal transition function of

the structure agent.

The formal specifications give formal definitions of the structure components. ζ

represents the structure component TOP; while π denotes the structure component PS.

a)

ς = (Xς, Yς, χ, Mχ) Xς = {activate} Yς = {out} Mχ = {Xχ, s0,χ, Sχ, δχ, τχ}

Xχ = {struc1, struc2} Sχ = {s0, χ, s1, χ } τ s0, χ = τ s1, χ = 10 minutes
δχ (s0, χ, e, change) = s1, χ δχ (s1, χ, e, change) = s0, χ

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}}

D0 = {CU, Conveyor, PS, ES} D1 = {CU, Conveyor, PS, ES’}

Mcu,0 = Mcu,1 = { Xcu, s0, cu, Scu, Ycu, δcu, λcu, τcu}

Mco,0 = Mco,1 = { Xco, s0, co, Scc, Ycc, δcc, λcc, τcc}

Mps,0 = Mps,1 = { Xps, s0, ps, Sps, Yps, δps, λps, τps}

Mes,0 = { Xes, s0, es, Ses, Yes, δes, λes, τes}

Mes’,0 = { Xes’, s0, es’, Ses’, Yes’, δes’, λes’, τes’}

Icu = { ς } Ico = {CU} Icp = {Conveyor} Icc = {Conveyor} Ice = {Conveyor} Ips = {PS} Ies

= {ES } Ies’ = {ES’} Iχ,0 = Iχ,1 = {ς}

Zχ,0 = Zχ,1 = Zχ Zχ: Xς � Xχ Zcu,0 = Zcu,1 = Zcu Zcu : Xς --> Xcu

Zcc,0 = Zcc,1 = Zcc Zcc : Xcu �Xco Zco,0 = Zco,1 = Zco Zco : Xco �Xcu

Zps,0 = Zps,1 = Zps Zps : Xps �Xco Zcp,0 = Zcp,1 = Zcp Zcp : Xco �Xps

Zes,0 : Xes �Xco Zce,0 Zce : Xce �Xco Zes’,1 : Xes’ �Xco Zce,1 : Xco �Xes’

b)

Fig 32. a) The Model Structure of the TOP including ES b) The Model

Structure of the TOP including ES’ c) Formal specification of the

structure component TOP

Zcu,1

Zςςςς,1

ςςςς

Zcc,1

Zco,1

Conveyor CU

ES’

PS

Zps,1 Zcp,1

Zes,1 Zce,1

χχχχ Zχχχχ

Zcu,0

Zςςςς,0

ςςςς

Zcc,0

Zco,0

Conveyor CU

ES

PS

Zps,0 Zcp,0

Zes,0 Zce,0

χχχχ Zχχχχ

χχχχ

Zpa, 0 Zπ, 0

Zcc, 0

Color

Painter

Zph 0

Chrome

Zpc, 0 Zch, 0

Zχχχχ π

a)

b)

c)

π = (Xπ, Yπ, χ, Mχ) Xπ = {activate} Yπ = {out} Mχ = {Xχ, s0, χ, Sχ, δχ, τχ}

Xχ = {changemode1, changemode2, changemode3}

Sχ = {s0, χ, s1, χ, s2, χ }
τ s0, χ = workingTime1 τ s1, χ = workingTime2 τ s2, χ = workingTime3
δχ (s0, χ, e, changemode2) = s1, χ δχ (s1, χ, e, changemode3) = s2, χ

δχ (s0, χ, e, changemode3) = s2, χ δχ (s1, χ, e, changemode1) = s0, χ

δχ (s2, χ, e, changemode1) = s0, χ δχ (s2, χ, e, changemode2) = s1, χ

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}} γ (s2, χ) = {D2, {Mi,2}, {Ii,2}, {Zi,2}}

D0 = {Color, Painter} D1 = {Color, Chrome, Painter} D2 = {Chrome, Painter}

Mcc,0 = Mcc,1 = { Xcc, s0, c, Sc, Yc, δcc, λccl, τcc}

Mpan,0 = Mpan,1 = { Xpa, s0, pa, Spa, Ypa, δpa, λpa, τpa}

Mch,1 = Mch,2 = { Xch s0, ch, Sch, Ych, δch, λch, τch}

Icc,0 = Icc,1 = {Painter} Ipa,0 = {π, Color} Ipa,1 = {π, Color, Chrome} Ipa,2 = {π, Chrome}

χχχχ

Zpa, 2 Zπ,2

π

Zch, 2

Chrome

Painter

Zph,2

Zχχχχ

χχχχ

Zpa, 1 Zπ,1

π

Zcc, 1

Color

Painter

Zpc,1

Zχχχχ

Fig 33. a) PS workstation with color painting arm b) PS workstation with

color and chrome painting arms c) PS workstation with chrome painting

arm d)Formal specification of the structure component PS

Model Definitions

The model definition of DSAMS using CD++ build-in specification language is listed

in the following figure. In the model definition, the model structures of the two

structure components are specified. TOP has two structural states and PS has three

structural states.

[top]

components : conveyorA topexec#TOPEXEC

components : dsecu@DSECU es@ES ps

in : btn1A btn2A st1A_in st2A_in

out : led1 led2 stn_disp_A dirn_disp_A st1_A st2_A

Scomm : struc1

Link : btn1A b1A@dsecu Link : btn2A b2A@dsecu

Link : activate_A@dsecu activate_A@conveyorA

Link : direction_eng_A@dsecu direction_eng_A@conveyorA

Link : pmodeA@dsecu pmode_in@conveyorA

Link : es_in@conveyorA inA@es Link : ps_in@conveyorA inA@ps

Link : outA@es es_out@conveyorA Link : outA@ps ps_out@conveyorA

Link : s1A@conveyorA s1A@dsecu Link : s2A@conveyorA s2A@dsecu

Link : st1@conveyorA st1A_in@dsecu Link : st2@conveyorA st2A_in@dsecu

Link : l1@dsecu led1 Link : l2@dsecu led2

Link : station_display_A@dsecu stn_disp_A

Link : direction_display_A@dsecu dirn_disp_A

Link : st1_A@dsecu st1_A Link : st2_A@dsecu st2_A

Link : st1_out@engA st1 Link : st2_out@engA st2

Iχ,0 = Iχ,1 = Iχ,2 = {π}

Zχ,0 = Zχ,1 = = Zχ,1 = Zχ and Zχ: Xπ � Xχ Zcc,0 = Zcc,1 = Zcc Zcc: Xpa � Xcc

Zch,1 = Zch,2 = Zch Zch: Xpa �Xch Zpa,0 = Xcc, 0 x Xπ Zpa,1 = Xcc × Xch x Xπ Zpa,2 = Xch x Xπ

Zπ,0 = Ypa,0 Zπ,1 = Ypa,1 Zπ,2 = Ypa,2

[conveyorA]

components : engA@engineA dsscA@dssensorboxA

in : activate_A direction_eng_A pmode_in es_out ps_out

out : s1A s2A st1 st2 es_in ps_in

Link : activate_A startstop@engA

Link : direction_eng_A engdirection@engA

Link : es_out es_out@engA Link : ps_out ps_out@engA

Link : pmode_in pmode_in@engA Link : floor@engA s1A_eng@dsscA

Link : sen1A@dsscA s1A Link : sen2A@dsscA s2A

Link : es_in@engA es_in Link : ps_in@engA ps_in

[ps]

components : painter@Painter color@Color chrome@Chrome psexec#PSEXEC

in : inA out : outA SSSSccccomm : omm : omm : omm : struc1

Link : Link : Link : Link : inA inA@painter Link :Link :Link :Link : outcolor@painter in@color

Link : Link : Link : Link : outchrome@painter in@chrome Link :Link :Link :Link : out@chrome inchrome@painter

Link :Link :Link :Link : out@color incolor@painter Link : Link : Link : Link : outA@painter outA

[topUpdate1][topUpdate1][topUpdate1][topUpdate1]

components : conveyorA dsecu@DSECU es1@ES1 ps

in : btn1A btn2A st1A_in st2A_in

out : led1 led2 stn_disp_A dirn_disp_A st1_A st2_A

Scomm : struc2

…
Link : es_in@conveyorA inA@es1 Link : ps_in@conveyorA inA@ps

Link : outA@es1 es_out@conveyorA Link : outA@ps ps_out@conveyorA

…

[psUpdate1][psUpdate1][psUpdate1][psUpdate1]

components :components :components :components : color@Color painter@Painter

in : in : in : in : inA out : out : out : out : outA Scomm : Scomm : Scomm : Scomm : struc2

Link :Link :Link :Link : inA inA@painter Link :Link :Link :Link : outcolor@painter in@color

Link :Link :Link :Link : out@color incolor@painter Link :Link :Link :Link : outA@painter outA

[psUpdate2][psUpdate2][psUpdate2][psUpdate2]

Fig 34. Model Definitions of DSAMS

The DSAMS Experiments Using DS-eCD++

Experiment 1

This experiment aims to verify the dynamic structure of the simulation environment.

The atomic models of the DSAMS were defined in C++, and the compositions and the

couplings are specified in the coupled models. PSEXEC is a structure agent executing

the structural changes on behalf of PS according to the indicated painting modes.

TOPEXEC is another structure agent taking charge of the duty shifts between ES1 and

ES on behalf of TOP.

The simulation ran in real time mode and the following table of the external events was

scheduled and sent to the Controller Unit. The first job in the table arrived at time

00:00:01:500 from the input port btn1A, which means to put the product at ES (ES’).

The value received in btn1A in the last column indicated the working mode in ES (ES’).

ES (ES’) has the only one possible working model (value = 1). Also, the associated

output port of the job was st1_A. The output time should be no later than 00:00:03:500.

The remaining jobs scheduler for ES (ES’) are the fourth job at 00:00:12: 500, the sixth

job at 00:00:19:985 and the seventh job at 00:00:25:000. The jobs scheduled for PS

were the second job at 00:00:10:500, the third job at 00:00:10:500 and the fifth job at

00:00:15:000. Among them, the third one was in the painting mode 2 and the fifth one

was in the painting mode 3.

Table 2 The Table of the External Events

Event time Deadline Input port Output port Value
00:00:01:500 00:00:03:500 btn1A st1_A 1

00:00:04:500 00:00:08:500 btn2A st2_A 1

00:00:10:500 00:00:13:500 btn2A st2_A 2

00:00:12:500 00:00:14:500 btn1A st1_A 1

00:00:15:000 00:00:17:500 btn2A st2_A 3

00:00:19:985 00:00:23:000 btn1A st1_A 1

00:00:25:000 00:00:27:500 btn1A st1_A 1

Four dynamic structure changes were identified during the simulation:

1). At 00:00:10:000, the scheduled duty time of ES was expired and a duty shift

between ES and ES1 occurred.

2). At 00:00:10:505 (5ms was used to start the Engine), PS switched its painting mode

from 1 to 2. The Chrome model was removed, while the models of Painter and Color

were maintained.

3). At 00:00:15:015 (Engine took 15ms to be activated and moved to PS), PS switched

its painting mode from 2 to 3. The Color model was removed while the Chrome model

was added to PS.

4). At 00:00:20:000, ES1 shifted the duty to ES. It was noticed that the input event

arrived at ES1 at the time 00:00:20:000. Simultaneously, the scheduled internal state of

ES1 was expired. As a result, the confluent function of ES1 was invoked at

00:00:20:000. In the confluent function of ES1, the external transition function was

given a higher priority over the internal transition function. At 00:00:20:000, the ES1

executes assembling task first, and then the duty shift happens.

Fig. 5 exhibits the structural changes in PS. Initially, PS was in painting mode 1

(structural state is PS1), which included both the color arm and the chrome arm. At

00:00:10:505, the painting mode switched to 2 (structural state is PS2), which included

the color arm. PSEXEC executed the structural changes transferring the structural state

of PS from PS1 to PS2.

Fig 35. The Structural Changes in PS

Structural Operations in PSEXEC (PS1 � PS2):

1. DelModel (“ps”, “Chrome”)
2. DelLink (“ps”, outlink) (outlink : out@Chrome inchrome@Painter)

PS1 PSEXEC

Painter

Color Chrome

In Out

PS2 PSEXEC

Painter

Color

In Out

PS3 PSEXEC

Painter

Chrome

In Out

3. DelLink (“ps”, inlink) (inlink : outchrome@Painter in@Chrome)

The painting mode shifted to 3 (structural state is PS3) at 00:00:15:015. The structural

state of PS is changed from PS2 to PS3.

Structural Operations in PSEXEC:

1. DelLink (“ps”, outlink) (outlink : out@Color incolor@Painter)
2. DelLink (“ps”, inlink) (inlink : outcolor@Color, in@Color)
3. DelModel (“ps”, “Color”)
4. AddModel (“ps”, “Chrome”)
5. AddLink (“ps”, outlink) (outlink : out@Chrome inchrome@Painter)
6. AddLink (“ps”, inlink) (inlink : outchrome@Painter in@Chrome)

Fig 36. The Structural Changes in TOP

CU Conveyor

PS1 ES

T
O

P
E

X
E

In
Out

Painter

Color Chrome

P
S

E
X

E
C

TOP1

CU Conveyor

PS2 ES1

T
O

P
E

X
E

In
Out

Painter P
S

E
X

E
C

TOP2

Color Chrome

Fig. 6 presents the structural changes in TOP. TOPEXEC executed the structural

changes on behalf of TOP. ES and ES1 switched every 10 minutes. At 00:00:10:000, ES

(structural state is TOP1) was replaced by ES1 (structural state is TOP2). The structural

operations in TOPEXEC are:

1. DelLink (“top”, outlink) (outlink : out@ES es_in@Conveyor)
2. DelLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES)
3. FullDelModel (“top”, “ES”)
4. FullAddModel (“top”, “ES1”)
5. AddLink (“top”, outlink) (outlink : out@ES1 es_in@Conveyor)
6. AddLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES1)

As scheduled, the duty shift from ES1 to ES would occur at 00:00:20:000. The real duty

shift occurred at 00:00:21:500 for the confluent function gave higher priority to the

external function of ES1. Consequently, the structural change, which happened in the

internal function of ES1, has been delayed. The structural operations from the structural

state TOP2 to the structural state TOP1 are:

1. DelLink (“top”, outlink) (outlink : out@ES1 es_in@Conveyor)
2. DelLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES1)
3. FullDelModel (“top”, “ES1”)
4. FullAddModel (“top”, “ES”)
5. AddLink (“top”, outlink) (outlink : out@ES es_in@Conveyor)
6. AddLink (“top”, inlink) (inlink : es_out@Conveyor, in@ES)

The Experiment 1 involved the five structural change scenarios described in the first

section of this Chapter. The switch of painting mode in PS depended on the external

value received in the input port ps_in of the Painter. Therefore the structural changes in

PS were caused from the external transition function of the Painter (scenario 1). The

duty shifts between ES and ES’ were raised by the internal transition function of ES

(ES’) (scenario 2), in which the duty time was counted and the structural change is

raised when the duty time was expired. As we have described, the fifth job brought

transition conflict between the internal transition and the external transition of ES’;

therefore, the confluent transition function of ES’ was invoked to handle the conflict. In

the confluent transition function, the internal transition function gives higher priority to

the external transition function. Consequently, the duty shift from ES’ to ES was

delayed until the end of the external transition function. That is to say, the conflicts can

be properly handled in DS-eCD++ employing the confluent transition function

(scenario 3). The structural changes in PS and TOP involved the addition&removal of

the internal links and the atomic models (scenario 4 and scenario 5).

The simulation results are listed in Table 3. The first column shows the wall-clock

value (the time elapsed since the beginning of the simulation execution) at which the

outputs have been sent out. The second column is the expected deadlines. The results

and the output ports are displayed in the third and the fourth column. The fifth column

presents the values output from the output ports. According to the external event time

and the timing parameters shown in the table 1 and the table 2, we have verified that the

results reflect the external events correctly and meet the expected deadlines.

Table 3. Simulation Results in Experiment 1

Output time Deadline Result Output Port Value
00:00:02:510 00:00:03:500 Succeed st1_A 1

00:00:04:500 No deadline Led2 1

00:00:04:500 No deadline dirn_disp_a 1

00:00:04:510 No deadline sta_disp_a 21

00:00:04:510 No deadline dirn_disp_a 0

00:00:04:510 No deadline led2 0

00:00:06:560 00:00:08:500 Succeed st2_A 1

00:00:11:520 00:00:13:500 Succeed st2_A 1

00:00:12:500 No deadline led1 1

00:00:12:500 No deadline dirn_disp_a 2

00:00:12:510 No deadline sta_disp_a 11

00:00:12:510 No deadline dirn_disp_a 0

00:00:12:510 No deadline led1 0

00:00:14:030 00:00:14:500 Succeed st1_a 1

00:00:15:000 No deadline led2 1

00:00:15:000 No deadline dirn_disp_a 1

00:00:15:010 No deadline sta_disp_a 21

00:00:15:010 No deadline dirn_disp_a 0

00:00:15:010 No deadline led2 0

00:00:17:040 00:00:17:500 Succeed st2_A 1

00:00:19:985 No deadline led1 1

00:00:19:985 No deadline dirn_disp_a 2

00:00:19:995 No deadline sta_disp_a 11

00:00:19:995 No deadline dirn_disp_a 0

00:00:19:995 No deadline led1 0

00:00:21:510 00:00:23:000 Succeed st1_a 1

00:00:26:020 00:00:27:000 Succeed st1_a 1

The messages log the simulation details. It is noticed that the light operations were used

in the structural changes in PS; while the full operations were applied in the structural

changes in TOP. When the simulation starts, the model ids are designated (shown in the

figure). In the third job, the Chrome model is removed using the light operation

DelModel(). When the Chrome model was reused in the fifth job, the model reference

(id = 10) was simply added into the children list of PS (figure). The model id of ES

model was 06 at the beginning of the simulation. The ES model was removed with

FullDelModel() during the duty shift at 00:00::10:000. The new model id (id = 16) was

assigned to ES model when ES rejoins the simulation at 00:00:21:500.

Fig 37. The initialization of the Simulation

MSG: I / 00:00:00:000 / Root(00) TO top(01)

MSG: I / 00:00:00:000 / top(01) TO conveyora(02)

MSG: I / 00:00:00:000 / top(01) TO dsecu(05)

MSG: I / 00:00:00:000 / top(01) TO es(06)

MSG: I / 00:00:00:000 / top(01) TO ps(07)

MSG: I / 00:00:00:000 / top(01) TO topexec(13)

MSG: I / 00:00:00:000 / conveyora(02) TO enga(03)

MSG: I / 00:00:00:000 / conveyora(02) TO dssca(04)

MSG: D / 00:00:00:000 / dsecu(05) / ... / 0.00000 TO top(01)

MSG: D / 00:00:00:000 / es(06) / 00:00:10:000 / 0.00000 TO top(01)

MSG: I / 00:00:00:000 / ps(07) TO painter(08)

MSG: I / 00:00:00:000 / ps(07) TO color(09)

MSG: I / 00:00:00:000 / ps(07) TO chrome(10)

MSG: I / 00:00:00:000 / ps(07) TO psexec(11)

MSG: D / 00:00:00:000 / topexec(13) / ... / 0.00000 TO top(01)

MSG: D / 00:00:00:000 / enga(03) / ... / 0.00000 TO conveyora(02)

MSG: D / 00:00:00:000 / dssca(04) / ... / 0.00000 TO conveyora(02)

MSG: X / 00:00:15:015 / ps(07) / ina / 3.00000 TO painter(08)

MSG: * / 00:00:15:015 / ps(07) / 0.00000 TO painter(08)

MSG: D / 00:00:15:015 / enga(03) / ... / 0.00000 TO conveyora(02)

MSG: D / 00:00:15:015 / painter(08) / 00:00:00:000 / 3.00000 TO ps(07)

MSG: D / 00:00:15:015 / conveyora(02) / ... / 0.00000 TO top(01)

MSG: D / 00:00:15:015 / ps(07) / 00:00:00:000 / 3.00000 TO top(01)

MSG: D / 00:00:15:015 / top(01) / 00:00:00:000 / 3.00000 TO Root(00)

MSG: * / 00:00:15:015 / Root(00) / 3.00000 TO top(01)

MSG: * / 00:00:15:015 / top(01) / 3.00000 TO ps(07)

MSG: * / 00:00:15:015 / ps(07) / 3.00000 TO psexec(11)

MSG: D / 00:00:15:015 / psexec(11) / ... / 0.00000 TO ps(07)

MSG: St / 00:00:15:015 / ps(07) TO chrome(10)

MSG: D / 00:00:15:015 / chrome(10) / ... / 0.00000 TO ps(07)

MSG: D / 00:00:15:015 / ps(07) / 00:00:00:000 / 0.00000 TO top(01)

MSG: D / 00:00:15:015 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

MSG: D / 00:00:00:000 / painter(08) / ... / 0.00000 TO ps(07)

MSG: D / 00:00:00:000 / color(09) / ... / 0.00000 TO ps(07)

MSG: D / 00:00:00:000 / chrome(10) / ... / 0.00000 TO ps(07)

MSG: D / 00:00:00:000 / psexec(11) / ... / 0.00000 TO ps(07)

Fig 38. The Structural State Transition from PS2 to PS3

Fig 39. The Structural State Transition from TOP2 to TOP1

Experiment 2

This experiment replaced the Sensor model with GGAD notation equivalent and

executed the simulation using the table of the external events presented in the table

(scenario 10). Fig. 6 and Fig. 7 display GGAD definitions of Sensor, which is used to

replace the Sensor defined with C++. It was found that the Sensor defined in the two

ways behaved exactly the same and had the same simulation results. Since the GGAD

notation can build equivalent atomic models with less effort than the C++ definitions, it

is useful for non-expert modellers. This experiment verified that DS-eCD++ can

connect to the GGAD interpreter to execute GGAD models correctly (scenario 10).

MSG: D / 00:00:21:500 / es1(15) / 00:00:00:000 / 4.00000 TO top(01)

MSG: D / 00:00:21:500 / enga(03) / 00:00:00:000 / 0.00000 TO conveyora(02)

MSG: D / 00:00:21:500 / conveyora(02) / 00:00:00:000 / 0.00000 TO top(01)

MSG: D / 00:00:21:500 / top(01) / 00:00:00:000 / 4.00000 TO Root(00)

MSG: * / 00:00:21:500 / Root(00) / 4.00000 TO top(01)

MSG: * / 00:00:21:500 / top(01) / 4.00000 TO ps(07)

MSG: * / 00:00:21:500 / ps(07) / 4.00000 TO psexec(11)

MSG: D / 00:00:21:500 / psexec(11) / ... / 0.00000 TO ps(07)

MSG: D / 00:00:21:500 / ps(07) / ... / 0.00000 TO top(01)

MSG: * / 00:00:21:500 / top(01) / 4.00000 TO topexec(13)

MSG: D / 00:00:21:500 / topexec(13) / ... / 0.00000 TO top(01)

MSG: St / 00:00:21:500 / top(01) TO es(16)

MSG: D / 00:00:21:500 / es(16) / 00:00:10:000 / 0.00000 TO top(01)

MSG: D / 00:00:21:500 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

Fig 40. GGAD Graphical Definition of the Sensor

[Sensor]

in: s1A_eng

out: sen1A sen2A

var : cur_value last_value

state: idle position1 position2

initial: idle

ext: idle position1 equal(s1A_eng, 1)?1 {cur_value = s1A_eng;}

ext: idle position2 equal(s1A_eng, 2)?1 {cur_value = s1A_eng;}

int: position1 idle sen1A!1 {last_value = cur_value;}

int: position2 idle sen2A!1 {last_value = cur_value;}

idle: infinite

position1: 0:0:0:0

position2: 0:0:0:0

GGAD notation Definition of Sensor

Experiment 3

A different test applied the flat coordinator technique to the dynamic structure

simulation of DSAMS (scenario 9). The Flat Coordinator helps to improve the

simulation performance by flattening the model hierarchy and reducing the number of

messages delivered among the models dramatically. The Flat Coordinator in DSAMS

s1a_eng:

sen1A:

sen2A:
Idle

Position2

① ②

Position1

③ ④

① equal (s1A_eng, 1)?1 {cur_value = s1A_eng;}

② equal (s1A_eng, 2)?1 {cur_value = s1A_eng;}

enables the atomic models to exchange messages with the FLATTOP directly.

FTOPEXEC is the solo structure agent taking charge of the structural changes on behalf

of FLATTOP.

Fig. 12 exhibits the processor hierarchy using the flat coordinator. The coordinators of

the structure components PS and TOP are replaced with the flat coordinator. The

FLATTOP exchanges the messages directly with the atomic models, while FTOPEXEC

executes the structural changes on behalf of FLATTOP. The simulation with the flat

coordinator produces the same simulation results as those of Experiment 1, but played a

higher simulating performance. The total messages exchanged among the processors in

Experiment 1 are 1,104; while the total messages delivered in Experiment 2 are 703.

The improvement ratio is (1104 - 703) / 1104 = 36.32%. The comparison of the

numbers of messages between the two experiments is shown in Fig.13. The sample

messages generated in the simulation of DSAMS using the flat coordinator are

presented in the figure.

Fig 41. Simulation Hierarchy with a Flat Coordinator

Flattened Coordinator

Root

CU Color Sensor FTOPEXEC Painter Engine ES Chrome

1 12

185

262

302

434

27

134

72
102 113

156

3 4

0

50

100

150

200

250

300

350

400

450

N
um

be
r

of
 M

es
sa

ge
s

I * D Y X @ St
Message Types

Simulation w ith the Flat Coordinator Simulation w ith the Hierarchical Simulators/Coordinators

Fig 42. Comparison of the Number of Messages between the two

simulation fashions

Fig 43. The Message Flows in the Simulation using the flat coordinator

MSG: D / 00:00:10:000 / ftopexec(11) / ... / 0.00000 TO flattop(01)

MSG: St / 00:00:10:000 / flattop(01) TO es1(13)

MSG: D / 00:00:10:000 / es1(13) / 00:00:10:000 / 0.00000 TO flattop(01)

MSG: D / 00:00:10:000 / flattop(01) / 00:00:10:000 / 0.00000 TO Root(00)

…

MSG: D / 00:00:10:505 / enga(03) / ... / 0.00000 TO flattop(01)

MSG: D / 00:00:10:505 / painter(08) / 00:00:00:000 / 2.00000 TO flattop(01)

MSG: D / 00:00:10:505 / flattop(01) / 00:00:00:000 / 2.00000 TO Root(00)

MSG: * / 00:00:10:505 / Root(00) / 2.00000 TO flattop(01)

MSG: I / 00:00:00:000 / Root(00) TO flattop(01)

MSG: D / 00:00:00:000 / flattop(01) / 00:00:10:000 / 0.00000 TO Root(00)

…

MSG: D / 00:00:10:000 / es(06) / 00:00:00:000 / 5.00000 TO flattop(01)

Case 2: Motor Tracing and Replacement System (MTRS)

Description

Motor tracing and replacement system aims to trace and control the moving motor in

real time. When the motor fails report its states within the given period, the motor

malfunction is considered and a new motor is started to replace the old one. Controller

Unit is an atomic model to control and trace the target motor. A motor is a coupled

model containing two atomic models: Engine and Sensor. The Engine drives the motor

moving according to the directions indicated by the Controller Unit. The Sensor senses

the position of the motor and reports it to the Controller Unit.

Fig 44. The Scheme of MTRS

Table 4 The Timing Parameters in MTRS

Model

Name
Time Variables Duration Description

Engine

preparationTime2Start Time(0, 0, 0, 5)
Time used to start moving a

product

preparationTime2Stop Time(0, 0, 0, 5)
Time used to stop moving a

product

movingTime Time(0, 0, 0, 10)
Time used to move from one

station to the other

Controller Unit

Engine Sensor

Motor

in out

eng_in sen_out

sen_in

turningTime Time(0, 0, 0, 5)
Time used from direction

turning

CU period Time(0, 0, 0, 40)

Motor should report its states

within the period, otherwise a

failure is raised

Initially, the motor stops to the north. When the Controller Unit receives an instruction

(the moving directions with north: 1, east: 2, south: 3, west: 4) from in, the Controller

Unit passes the instruction to the Engine through eng_in. The Engine drives the motor

to move at the indicated direction for up to 10 seconds. If a new instruction comes

during the moving of the motor, the moving will be interrupted and act according to the

new instruction. Otherwise, the motor stops. The Sense senses the position of the motor

via its input port sen_in and report is to the Controller Unit through sen_out. The

directions that have been acted successfully are output through the out port of the

Controller Unit.

In MTRS, the motor is replaced by another motor when it fails to report the status to the

Controller Unit within the given period. The motor is a structure component, in which

the Engine and the Sensor may be changed by the counterparts. The TOP is another

structure component, in which a new coupling from the test in the Controller Unit to the

test in motor is added.

Formal Specifications

The formal specification of the structure component in MTRS is presented based on the

DSDEVS formalism. In the figure, S represents the structure component motor. The

Engine and the Sensor in the fig. a) are replaced by the Engine1 and the Sensor1 in the

fig. b). The fig. c) is the formal specification of motor. The figure xx shows the formal

specification of the TOP. The structural change of the interface of the coupled model

lies in the transition function between the Controller Unit and the structure component

motor (Zmo,0 � Zmo,1).

a)

b)

c)

S = (XS, YS, χ, Mχ) XS = {1, 2, 3, 4} YS = {1, 2, 3, 4} Mχ = {Xχ, s0, χ, Sχ, δχ, τχ}

Xχ = {Timeout} Sχ = {s0, χ, s1, χ,} τ s0, χ = τ s1, χ = Inf δχ (s0, χ, e, Timeout) = s1, χ

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}}

D0 = {Engine, Sensor} D1 = {Engine1, Sensor1}

Men,0 = { Xen, s0, en, Sen, Yen, δen, λen, τen}

Mse,0= { Xse s0, se, Sse, Yse, δse, λse, τse}

Men1,1 = { Xen1, s0, en1, Sen1, Yen1, δen1, λen1, τen1}

Mse1,1= { Xse1 s0, se1, Sse1, Yse1, δse1, λse1, τse1}

Ien,0 = {S} Ien1,1 = {S}

Ise, 0 = {Engine} Ise1, 1 = {Engine1}

Iχ,0 = Iχ,1 = {S}

Zχ,0 = Zχ,1 = Zχ and Zχ: XS � Xχ Zen,0: XS,0 � Xen,0 Zen1,1: XS,1 � Xen1,1 Zse,0: Xen,0 �

Xse,0 Zse1,1: Xen,1 � Xse1,1

ZS,0 Yse,0 � YS,0 ZS,1 Yse,1 � YS,1

Engine1 Sensor1
Zen, 1 Zse,1

S Zχχχχ χχχχ

ZS,1

Engine0 Sensor
Zen,0 Zse,0

S Zχχχχ χχχχ

ZS,0

Fig 45. a) The Motor1 is controlled by the Controller Unit b) The Motor2 is

controlled by the Controller Unit c) Formal specification of the structure

component motor

a)

b)

 c)

P = (Xp, Yp, χ, Mχ) Xp = {1, 2, 3, 4} Yp = {1, 2, 3, 4} Mχ = {Xχ, s0, χ, Pχ, δχ, τχ}

Xχ = {Timeout} Sχ = {s0, χ, s1, χ,} τ s0, χ = τ s1, χ = Inf δχ (s0, χ, e, Timeout) = s1, χ

γ (s0, χ) = {D0, {Mi,0}, {Ii,0}, {Zi,0}} γ (s1, χ) = {D1, {Mi,1}, {Ii,1}, {Zi,1}}

D0 = {Controller Unit, motor} D1 = {Controller Unit, motor}

Mcu,0 = Mcu,1 = { Xcu, s0, cu, Scu, Ycu, δcu, λcu, τcu}

Mmo,0= Mmo,1 = { Xmo s0, mo, Smo, Ymo, δmo, λmo, τmo}

Icu,0 = {P} Icu1,1 = {P}

Imo, 0 = {Controller Unit} Imo, 1 = {Controller Unit}

Iχ,0 = Iχ,1 = {Controller Unit}

Zχ,0 = Zχ,1 = Zχ and Zχ: XP � Xχ Zcu,0: XP,0 � Xcu,0 Zcu,1: XP,1 � Xcu,1 Zmo,0: Xcu,0 �

Xmo,0 Zmo,1: Xcu,1 � Xmo,1

ZP,0 Ycu,0 � YP,0 ZP,1 Ycu,1 � YP,1

CU motor1
Zcu, 0 Zmo,0

P Zχχχχ χχχχ

ZP,0

CU motor2
Zcu, 0 Zmo,1

P Zχχχχ χχχχ

ZP,1

Fig 46. a) The Controller Unit Connected with Motor1. b) The Controller

Unit Connected with Motor2. c) The Formal Specification of the

Structure Component TOP.

Model Definitions

The model definition of MTRS is shown in the Fig. 18. The model structure described

in the group [Topupdate1] is the alternative model structure of the structure

component TOP. The alternative model structure of motor is presented in the group

[motorupdate1]. For each group, the structural command is designated to take as a code

name of the corresponding model structure.

Fig 47. Model Definition of MTRS

[top][top][top][top]

components components components components : cu@ECU motor topexec#ExecTop

inininin : in out out out out : out Scomm Scomm Scomm Scomm : topstruc1

Link Link Link Link : in in@cu Link Link Link Link : eng_in@cu in@motor

Link Link Link Link : out@motor sen_out@cu Link Link Link Link : out@cu out

[top[top[top[topupdate1]update1]update1]update1]

components components components components : cu@ECU motor

in in in in : in outoutoutout : out Scomm Scomm Scomm Scomm : topstruc2

Link Link Link Link : in in@cu LinkLinkLinkLink : eng_in@cu in@motor LinkLinkLinkLink : eng_test@cu test@motor

LinkLinkLinkLink : out@motor sen_out@cu LinkLinkLinkLink : out@cu out

The MTRS Experiments Using DS-eCD++

Experiment 1

The MTRS is simulated in real time with the external events in the following. Initially,

motor1 is controlled by the Controller Unit including the Engine and the Sensor. The

Engine contains one input port in. A soft fault was set in the Engine, which makes the

Engine cannot report its status when the direction is west (value = 4). Motor2 including

the Engine1 and the Sensor1 starts to replace motor1. Suppose motor2 containes two

input ports in and test. The instructions from the Controller Unit are received via in,

while test allows receiving more information from the Controller Unit.

A nested structural change process was involved in the experiment. MotorEXEC

replaceed the components and the couplings of motor1 with the counterparts of motor2

on behalf of the structure component motor. TOPEXEC took charge of building a new

coupling between Controller Unit and motor2 on behalf of the structure component

TOP.

Table 5 The Table of the External Events

Event time Deadline Input port Output port Value
00:00:01:500 00:00:01:535 in out 2

00:00:04:500 00:00:04:535 in out 3

00:00:10:500 00:00:10:535 in out 1

00:00:15:000 00:00:15:035 in out 4

00:00:20:000 00:00:20:035 in out 3

At 00:00:15:000, an instruction was sent to the Controller Unit. The instruction comes

to the Engine of at 00:00:15:010. Due to the soft fault in the Engine, the instruction was

not executed properly. Therefore, the Controller Unit did not receive the report from

the Sensor. The Controller Unit considered the malfunction of the motor1. At

00:00:15:040, the Controller Unit sent an output with value 9 indicating the failure of

the motor1. A structural change request is raised by the Controller Unit once upon the

failure report. The structural change request caused the structural changes both in the

motor and the TOP as in the figure 19. The structural change in the motor was executed

first. MotorEXEC replaces the couplings and the atomic models in the motor. The

structural change operations in MotorEXEC were:

1. DelLink (“motor”, link1) (link1: in in@engine)
2. DelLink (“motor”, link2) (link2 : out@engine in@sensor)
3. DelLink (“motor”, link3) (link3 : out@sensor out)
4. DelModel (“motor”, “Engine”)
5. DelModel (“motor”, “Sensor”)
6. AddModel (“motor”, “Engine1”)
7. AddModel (“motor”, “Sensor1”)
8. AddInputPort (“motor”, “test”)
9. AddLink (“motor”, link1) (link1: in in@engine1)
10. AddLink (“motor”, link2) (link2 : test test@engine)
11. AddLink (“motor”, link3) (link3 : out@engine1 in@sensor1)
12. AddLink (“motor”, link4) (link4 : out@sensor1 out)

After MotorEXEC finished the structural change execution, the structural change

message was delivered to the TOP. TOPEXEC adds a coupling in the TOP. TOPEXEC

implements the following structural change operations:

1. AddLink (“TOP”, link) (link : eng_test@CU test@Motor)

Fig 48. The Structural Changes in MTRS

The Table 6 reflects the simulation results. In this experiment, the first three external

events have been executed and reported correctly. The fourth event is input at

00:00:15:000 with the direction 4. The Engine1 failed to report the action to this

instruction and caused the structural changes in MTRS.

Three structural change scenarios were involved in the experiment. The motor1 was

replaced by the motor2. That is to say, the coupled model motor has been replaced by

the new one (scenario 6) although the same name is used in the simulation. A nested

structural change process (scenario 7) involved the two structure components – the

motor and the TOP. The new coupling from the output port eng_test of the Controller

Unit to the input port test of the motor changes the interface of the motor to the

TOP1

CU

Engine

Motor1

Sensor

M
otorE

X
E

C

In Out

TOP2

CU

Engine1

Motor2

Sensor1

M
otorE

X
E

C

In Out

TOPEXEC

TOPEXEC

Controller Unit (scenario 9). At 00:00:15:040, the value 9 is output indicating the

malfunction of the controlled motor. And then a structural change request was raised in

the Controller Unit. MotorEXEC and TOPEXEC complete the structural changes for

their structure component respectively. As a result, the motor2 replaced the motor1 to

receive the instructions from the Controller Unit. At real time 00:00:20:020, the motor2

reacted the instruction arriving at 00:00:20:000 and sent its status correctly.

Table 6 The Simulation Results in the MTRS Simulation

Output time Deadline Result Output Port Value
00:00:01:510 00:00:01:535 Succeed out 2

00:00:04:510 00:00:04:535 Succeed out 3

00:00:10:520 00:00:10:535 Succeed out 1

00:00:15:040 00:00:15:035 Not Succeed out 9

00:00:20:020 00:00:20:035 Succeed out 3

The following message flows presents the detailed logging information. The Fig. 20

shows the failure report of the Controller Unit. At 00:00:15:040, the Controller Unit

sent 9 to the output port out. The nested structural change processor followed the failure

report. The lines with shadow in the Fig. 21 indicate that the structural change messages

were sent to the structure agents of the structure component and the structure agents

returned done messages to the structure components. From the figure, we can see that

the structural change in the motor was executed first. The Engine1 and the Sensor1 join

the simulation. Afterward the structural change in the TOP was implemented. At

00:00:20:000, the new coupling was used to deliver messages.

Fig 49. Failure Report from the Controller Unit

Fig 50. The Message Flows in the Nested Structural Change Process

MSG: @ / 00:00:15:040 / Root(00) TO top(01)

MSG: @ / 00:00:15:040 / top(01) TO cu(02)

MSG: Y / 00:00:15:040 / cu(02) / out / 9.00000 TO top(01)

MSG: D / 00:00:15:040 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

MSG: * / 00:00:15:040 / Root(00) / 0.00000 TO top(01)

MSG: * / 00:00:15:040 / top(01) / 0.00000 TO cu(02)

MSG: D / 00:00:15:040 / cu(02) / 00:00:00:000 / 2.00000 TO top(01)

MSG: D / 00:00:15:040 / top(01) / 00:00:00:000 / 2.00000 TO Root(00)

MSG: * / 00:00:15:040 / Root(00) / 2.00000 TO top(01)

MSG: * / 00:00:15:040 / top(01) / 2.00000 TO motor(03)

MSG: * / 00:00:15:040 / motor(03) / 2.00000 TO motorexec(06)

MSG: D / 00:00:15:040 / motorexec(06) / ... / 0.00000 TO motor(03)

MSG: X / 00:00:20:000 / Root(00) / in / 3.00000 TO top(01)

MSG: * / 00:00:20:000 / Root(00) / 0.00000 TO top(01)

MSG: X / 00:00:20:000 / top(01) / in / 3.00000 TO cu(02)

MSG: * / 00:00:20:000 / top(01) / 0.00000 TO cu(02)

MSG: D / 00:00:20:000 / cu(02) / 00:00:00:000 / 0.00000 TO top(01)

MSG: D / 00:00:20:000 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

MSG: @ / 00:00:20:000 / Root(00) TO top(01)

MSG: @ / 00:00:20:000 / top(01) TO cu(02)

Fig 51. The Message Flows Using the New Coupling At 00:00:20:000

MSG: * / 00:00:20:000 / top(01) / 0.00000 TO cu(02)

MSG: * / 00:00:20:000 / top(01) / 0.00000 TO motor(03)

MSG: D / 00:00:20:000 / cu(02) / 00:00:00:040 / 0.00000 TO top(01)

MSG: X / 00:00:20:000 / motor(03) / in / 3.00000 TO engine1(10)

MSG: X / 00:00:20:000 / motor(03) / test / 3.00000 TO engine1(10)

Chapter 6 Conclusions and Future Work

Based on the proposed FDSDE algorithm and the P-DEVS real time simulation engine,

DS-eCD++ is developed to be an advanced DEVS-based real time experimental

environment supporting both the dynamic structure function and the real-time

simulation. This work advanced the functionality of eCD++ to meet the rigorous

requirements in modeling and design of real time embedded systems.

An advanced simulation engine combining FDSDE and P-DEVS real time simulation

engine is defined. The Root Coordinator, the Coordinator and the Simulator, which

constitute the real time simulation engine in eCD++, are redefined to fit dynamic

structure and real time simulations. The concept of structure component is introduced

in DS-eCD++ to represent the coupled models which are subject to structural changes.

Each structure component is furnished with a structure agent to specify the structural

changes for the structure component. A new abstract simulator RevSimulaor is

introduced to generate the model behaviours of structure agents. Moreover, two typical

message passing scenarios, one structural change process and nested structural change

process, are presented to exhibit how the message flow among the processor at a global

view. In the message passing scenarios, the simulation phases are clearly identified.

DS-eCD++ takes advantage of the major four software components in eCD++.

However, the revisions have been made to accommodate to the dynamic structural

changes in the real time simulation. The modifications of the Main Simulator, The

Modeling Subsystem, The Simulation Subsystem and The Messaging Subsystem are

explained. Moreover, the structure component identification and the structural change

operation in structure agents are highlighted to present how the dynamic structure is

implemented. The functionalities of DS-eCD++ are discussed showing the expected

performance.

In order to verify the logics and implementations of the algorithm, a series of

experiments are conducted. The devised structural change scenarios are firstly

enumerated presenting a functional profile of DS-eCD++. The cases corresponding to

the different structural change scenarios are implemented and analyzed in the following

section. It has been verified that DS-eCD++ not only performs real time simulation in

the different structural change scenarios but also is able to implement GGAD notation

models and the simulation with the flat coordinator. We even expect that DS-eCD++

can further serves as a DEVS-based Real-Time experimental environment for real time

embedded systems modeling and design. Besides enabling the implementation of the

hybrid software and hardware systems and the seamless transformation from the

simulation stage to the design stage of real-time systems, DS-eCD++ allows defining

both the structural changes and the behavioural changes of systems therefore achieve

high flexibility and reliability of the real time embedded systems.

6.1. Future Works

We have proved that FDSDE algorithm performs well in the DS-eCD++ environment.

However, the further studies should be investigated to improve the functionality and

performance of DS-ECD++.

1. Performance evaluation. With the devised structural change scenarios, the

functionality is the major concern of this work. Whereas, in order to achieve the

critical requirements of the real-time embedded systems, the performance

evaluation is another key issue to be conducted. The performance evaluating

metrics are necessary to provide an evaluating environment. The performance

experiments should be conducted to ensure the sensitive detection of the structural

change conditions and the fast response to the conditions.

2. Real environment examination. The case studies are conducted in the virtual

environment. The real environment calls for more rigorous timing and memory

requirements to maintain the reliability of the systems. Further experiments in real

environment should be done to test the capabilities of handling the real situations in

DS-eCD++.

3. Algorithm optimization. More experiments, especially the structural changes in the

complex real-time embedded systems, should be implemented to refine the

implementation of the algorithm. More structural changes should be tried to test

the accuracy of the implementation.

4. Distributed and parallel implementations [Liu07]. DCD++ and PCD++ realize the

DEVS simulation in distributed and parallel environment. The structural changes

in the distributed and parallel environments may span different simulation nodes.

Under the conditions, the structural changes may require several structure agents to

cooperate together to implement the structural change tasks. The coordinating

messages should be handled in the structure agent processors. The structural

changes in the advanced simulation environment should be further explored in the

future research.

References

1. [Bar94] Barros, F.J.; M. T. Mendes and B.P.Zeigler. “Variable DEVS – Variable

Structure Modeling Formalism: An Adaptive Computer Architecture

Application”. AI, Simulation, and Planning in High Automomy Systems,

“Distributed Interactive Simulation Environments”. Proceedings of the Fifth

Annual Conference. 1994.

2. [Bar95]Barros, F.J. 1995. “Dynamic Structure Discrete Event System

Specifications: A New Formalism for Dynamic Structure Modeling and

Simulation”. In the Proceedings of the 1995 Winter Simulation Conference,

pp.781-785. Arlington, USA.

3. [Bar97]Barros, F.J. 1997. “Modelling Formalisms for Dynamic Structure

Systems”. ACM Transactions on Modeling and Computer Simulation, Vol. 7, No.

4, pp. 501-515.

4. [Bar98a]Barros, F. J.; Zeigler, B. P.; Fishwick, P. A. “Multimodels and Dynamic

Structure Models: An Integration of DSDE/DEVS and OOPM”, Proceedings of

the 1998 Winter Simulation Conference.

5. [Bar98b]Barros, F.J. 1998. “Abstract Simulators for the DSDE Formalism”. In

the Proceedings of the 1998 Winter Simulation Conference, pp.407-412.

Washington DC, USA.

6. [Bar01]Barros, F.J. “Representation of Dynamic Structure Discrete Event Models:

A Systems Theory Approach”, Discrete event modeling and simulation

technologies: a tapestry of systems and AI-based theories and methodologies pages

167-185, Springer-Verlag, New York, 2001.

7. [Bar03a]Barros, F.J and Zeigler. B.P. “Model Interoperability in the Discrete

Event Paradigm: Representation of Continuous Models”. In Modeling and

Simulation; Theory and Practice, G.A. Bekey e B.Y.Ko, January, pp.103-126,

2003

8. [Bar03b] Barros, F.J. “Dynamic Structure Multiparadigm Modeling and

Simulation” ACM Transactions on Modeling and Computer Simulation, Vol. 13,

No. 3, July 2003, pp. 259-275

9. [Bar05] Barros, F.J. 2005. “Requirements for Modeling and Simulation of

Self-Adaptive Systems: A Hierarchical and Modular Approach”. Proceedings of

the 16th International Workshop on Database and Expert Systems Applications

(DEXA’05).

10. [Cho94] Chow, A. C.; Zeigler, B. “Parallel DEVS: A parallel, hierarchical,

modular modeling formalism”. Proceedings of the Winter Computer Simulation

Conference. Orlando, FL. USA. 1994.

11. [Cho00] Cho, Y. K., B.P. Zeigler, H. J. Cho, H. S. Sarjoughian, and S. Sen. 2000.

“Design Considerations for Distributed Real-Time DEVS”. AIS 2000. Tucson,

USA.

12. [Cho01a] Cho. Y.K., Zeigler, B.P. and Sarjoughian, H.S. “Design and

Implementation of distributed real-time DEVS/CORBA”. IEEE International

Conference on System, Man, and Cybernetics. Tucson, AZ. October 2001.

13. [Cho01b] Cho, S., and T.G. Kim. 2001. “Real Time Simulation Framework for

RT-DEVS Models”. Transactions of the Society for Computer Simulation

International. Vol. 18, No. 4, pp. 203 – 215.

14. [Gli04a]Glinsky, E., and G. Wainer. “Modeling and Simulation of Systems with

Hardware-in-the-loop”. In the Proceedings of the 2004 Winter Simulation

Conference. Washington DC, USA. 2004.

15. [Gli04b]Glinsky, E., and G. Wainer. “Model-Based Development of Embedded

Systems with RT-CD++”. In the Proceedings of the WIP session, IEEE Real-Time

and Embedded Technology and Applications Symposium. Toronto, Canada. 2004.

16. [Her00]Herrman, J.W.; E. Lin; B. Ram and S. Sarin. “Adaptable simulation

models for manufacturing”. Proceedings of the 10th International Conference on

Flexible Automation and Intelligent Manufacturing, College Park, Maryland,

USA, Volume 2, pp. 989-995. 2000.

17. [Hon97] Hong, J., H. Song, T.G. Kim, and K.H. Park. A Real-time Discrete Event

System Specification Formalism for Seamless Real-time Software Development.

Discrete Event Dynamic systems: Theory and Applications, Vol. 7, No. 4, pp.

355-375. 1997.

18. [HuX03] Hu, X.; Zeigler, B.P. and Mittal, S. “Dynamic Reconfiguration in DEVS

Component-Based Modeling and Simulaiton”, Simulation: Transactions of the

Society of Modeling and Simulation International, November 2003.

19. [HuX04]Hu, X.; Zeigler, B. P. “Model Continuity to Support Software

Development for Distributed Robotic Systems: A Team Formation Example”.

Journal of Intelligent and robotic Systems 39: pp. 71- 87. 2004.

20. [HuX05a] Hu, X.; Ganapathy N.; Zeigler, B. P. “Robots in the loop: Supporting an

Incremental Simulation-based Design Process”. IEEE International Conference on

Systems, Man, and Cybernetics, October, 2005.

21. [HuX05b] Hu. X.; Zeigler, B. P. “Model Continuity in the Design of Dynamic

Distributed Real-Time Systems”. IEEE Transactions on Systems, Man, and

Cybernetics – Part A: Systems and Humans, Vol., 35, NO. 6, November, pp. 867-

878. 2005.

22. [HuX05c] Hu, X.; Zeigler, B. P. “A Simulation-based Virtual Environment to

Study Cooperative Robotic Systems”. Integrated Computer-Aided Engineering 12

(2005) IOS Press. pp. 353 – 367.2005.

23. [HuX05d] Hu. X.; B.P. Zeigler, and S. Mittal. “Variable Structure in DEVS

Component-Based Modeling and Simulation”. Simulation: Transactions of the

Society for Modeling and Simulation International, Vol. 81, No. 2, pp. 91-102,

2005.

24. [Kim01] Kim, T.G., S.M. Cho, and W.B. Lee. DEVS Framework for Systems

Development. Discrete Event Modeling & Simulation: Enabling Future

Technologies. Springer-Verlag. 2001.

25. [Kop00] Kopetz, H. “Software Engineering for Real-Time: A Roadmap”. In the

Proceedings of the Conference on the Future of Software Engineering, pp.201-211,

Limerick, Ireland. 2000.

26. [LiL03] Li, L.; Pearce, T.W. and Wainer, G. “Interfacing Real-time DEVS models

with a DSP platform”. In proceedings of the Industrial Simulation Symposium.

Valencia, Spain. 2003

27. [Liu03] Liu, S.; J. Wei; and W. Xu. “Towards Dynamic Process with Variable

Structure by Reflection”. Proceedings of the 27th Annual International Computer

Software and Applications Conference (COMPSAC’03). 2003.

28. [Liu06] Liu, Q. “Distributed Optimistic Simulation of DEVS and Cell-DEVS

Models with PCD++”. M. A. Sc. Thesis. Carleton University. Canada. 2006.

29. [Liu07] Liu, Q.; and Wainer, G. “Improving CD++ Parallel simulation engine”. In

Proceedings of the 39th IEEE/SCS Annual Simulation Symposium. Norfo7lk, VA.

USA. 2007

30. [Mac04] MacSween, P. and Wainer, G. “On the construction of Complex models

using reusable Components”, In Proceedings of SISO Spring Interoperability

Workshop. Arlington, VA. U.S.A. 2004

31. [Mit06] Mittal, S.; E. Mak and J. J. Nutaro. “DEVS-Based Dynamic Model

Reconfiguration and Simulation Control in the Enhanced DoDAF Design

Process”. The Society for Modeling and Simulation International. JDMS, Vol. 3,

Issue 4, pp. 95-123. 2006.

32. [Paw96] Pawletta, T.; Lampe, B.; Pawletta, S. And Drewelow, W. “A New

Approach for Simulation of Variable Structure Systems”. In Proceedings of the

41th Conference, KoREMA, Aagreb, Croatia. 1996.

33. [Pea03] Pearce, T. W.; “Simulation-Driven Architecture in the Engineering of

Real-Time Embedded Systems”. Real-Time System Symposium,

Work-in-Progress Session. Cancun, Mexico. 2003.

34. [Mad07] Madhoun, R. and Wainer, G. “Performance analysis of Web-Based

CD++”. In proceedings of DEVS Symposium 2007. Norfolk, VA. 2007.

35. [Sha06] Shang, H..; Wainer, G. “A Simulation Algorithm for Dynamic Structure

DEVS Modeling”. Proceedings of the 2006 Winter Simulation Conference.

Monterey, CA. USA.

36. [Sha07] Shang. H.; Wainer, G. “A Flexible Dynamic Structure DEVS Algorithm

towards Real-Time Systems”. Proceedings of the 2007 Summer Computer

Simulation Conference. Sandiego, CA. USA

37. [Uhr93] Uhrmacher, A.M. “Variable Structure Models: Autonomy and Control –

Answers from Two Different Modeling Approaches”. Proc. AI, Simulation, and

Planning in High Autonomy Systems. IEEE Computer Society Press, 1993, pp.

133-139

38. [Uhr01] Uhrmacher, A. M. 2001. “Dynamic Structure in Modeling and

Simulation: A Reflective Approach”. ACM Transactions on Modeling and

Computer Simulation. Vol. 11, No. 2, pp. 206-232.

39. [Uhr04] Uhrmacher, A.M., and J. Himmeelspach. 2004. “Processing dynamic

PDEVS models”. In the Proceedings of the IEEE Computer Society’s 12th Annual

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems (MASCOTS’04). Volenlam, Netherlands.

40. [Uhr06] Uhrmacher, A. M.; Himmelspach, J.; Rohl, M.; and Ewald, R.

“Introducing Variable Ports and Multi-couplings for Cell Biological Modeling in

DEVS”. Proceedings of the 2006 Winter Simulation Conference, Monterey, CA.,

USA.

41. [Wai02] Wainer, G. 2002. “CD++: a toolkit to define discrete-event models”. In

Software, Practice and Experience. Wiley. Vol. 32, No.3, pp. 1261-130.

42. [Wai05] Wainer, G., E. Glinsky, and P. Macsween. 2005. Model-Driven

Architecture of Real-Time Systems. Model-driven Software Development -

Volume II of Research and Practice in Software Engineering. S. Beydeda and V.

Gruhn eds., Springer-Verlag.

43. [Wai06] Wainer, G. “Applying Cell-DEVS Methodology for Modeling the

Environment”. In Simulation, Transactions of the SCS. Vol. 82, No. 10, 635-660.

October 2006

44. [YuJ07] Yu, J. and Wainer, G. “E-CD++: a tool for modeling embedded real-time

applications”. In proceedings of the 2007 SCS Summer Computer Simulation

Conference. San Diego, CA. 2007

45. [Zei76] Zeigler B.P. Theory of modeling and simulation. John Wiley Editor, New

York, 1976.

46. [Zei84] Zeigler B.P. Multifaceted Modeling and Discrete Event Simulation.

Academic Press, London UK,1984.

47. [Zei86] Zeigler, B. P. 1986. Toward a simulation methodology for variable

structure modeling. In Modelling and Simulation Methodology in the Artificial

Intelligence Era, M. Elzas, B. Zeigler, and T. Oeren, Eds. Elsevier Sci. Pub. B. V.,

Amsterdam, the Netherlands, 195–210.

48. [Zei89] Zeigler, B. P. 1989. Concepts for distributed knowledge maintenance in

variable structure models. In Modelling and Simulation Methodology -

Knowledge Systems Paradigm, B. Zeigler, M. Elzas, and T. Oeren, Eds. Elsevier

North-Holland, Inc., Amsterdam, the Netherlands, 45–54.

49. [Zei91] Zeigler B. P., Kim, T. G.,and Lee, C. 1991. Variable structure modeling

methodology: An adaptive computer architecture example. Trans. Soc. Comput.

Simul. 7, 4 (Dec. 1990), 291–318.

50. [Zei93] Zeigler, B.; Jimwoo, K. “Extending the DEVS-Scheme Knowledge-Based

Simulation Environment for Real-Time Event-Based Control”. IEEE Transactions

on Robotics and Automation, Vol., 9, NO., 3, JUNE, pp.351-356, 1993.

51. [Zei00] Zeigler, B.P., Kim, T.G. and Praehofer, H. “Theory of Modeling and

Simulation”, 2nd Edition, Academic Press. New York, NY, 2000.

52. [Zei02] Zeigler, B.; Sarjoughian, H. S. “DEVS Component-Based M&S

Framework: An Introduction”. Proceedings of AI, Simulation and Planning in

High Autonomy. 2002

53. [Zei03] Zeigler, B. “DEVS Today: Recent Advances in Discrete Event-Based

Information Technology”. Proceedings of the 11th IEEE/ACM International

Symposium on Modeling, Analysis and Simulation of Computer

Telecommunications Systems (MASCOTS’03). 2003.

