Chapter 1 Introduction

Modeling & Simulation approach [Zei00] has receivadreasing interest for its sound
mechanism enabling fine representing of the discesent dynamic systems. A general
conceptual framework of Modeling & Simulation [Kih0Zei02; Zei03] constitutes the
three basic entities: the real system fitting irtade experimental framework, model, and
simulator. The real system fitting in certain expmmtal framework represents a real or
virtual environment in which the source data uraglysis of interest to the modeler are
collected. Model offers two facets of abstracti@mighe real system. The behavior of
model is a set of input/output data comparabld&b observable in the real system. The
structure of model is the set of instructions toegate the data. Simulator executes the
instructions of the model and really generatesbiteaviors of the model. Two kinds of
relationships bridge the three basic entities. Nfaderelation reflects the approximation
of the model behaviors to the real system in aifpdoexperimental framework; while
simulation relation lying between a model and auator represents how faithfully the
simulator carries out the instructions of the modéke M&S framework benefits from the
separated concerns between modeling and simul&imone hand, the same model can be
simulated with different simulators, allowing pdriigty and interoperability at a high level
of abstraction. On the other hand, well-definedasafion facilitates verifications of
models and simulators independently and reusabiitater combination with minimal

re-verification.

Benefited from the precise mathematical specifocatand the underlying sound M&S
framework, DEVS (Discrete Event System Specificati@ei76, Zei00] has proved to be

a universal modeling mechanism for discrete evemanhic systems. The DEVS

formalism provides a means of specifying a matharalabbject called a system, in which

a time base, inputs, states, outputs, and funcfammdetermining next states and outputs
given current states and inputs are defined. Gertanstellations of such parameters
render fine system abstractions and allow the piisgito analyze the system behaviors

thoroughly.

DEVS-based systematic approach has gained populatite real time application due to
the fact that it enables the smooth transformdtiom modeling to executing code in real
time environment with the help of the RT-DEVS [H@Hh9an extension of the original
DEVS formalism. RT-DEVS allows DEVS models interagtith surrounding
environment, such as software components, hardezamponents or human operators, in
real time. Aided by RT-DEVS, a real-time DEVS-basggerimental framework (eCD++)
[YuJdO7] is devised to facilitate development of lvié@me embedded systems (RTS).
eCD++ takes advantage of the hardware-in-the-lecpriology [GliO4a] to establish a

high level DEVS-based experimental environmentlierreal time embedded systems.

1.1. Problem Statement

eCD++ is a systematic toolkit assisting developneémbedded real-time systems based
on P-DEVS formalism [Cho94]. By permitting develogihybrid software and hardware
systems and smooth transformation from the DEVSeisotb the hardware counterpart,
eCD++ provides a DEVS-based real-time experimeftamework, on which the

embedded real-time systems can be designed andnmapted effectively and safely.

As well known, embedded real-time systems [KopOfd af critical timeliness and

rigorous correctness of system behaviors. Moreaweist embedded real-time systems

are highly reactive artificial systems that delidata from/to devices interacting with the
surrounding environment (another artificial/natuwsgstem). Improper decisions may lead
to catastrophic consequences for assets or lives. tfaditional DEVS simulation
approaches are too rigid to fit the varied requeata of embedded real-time systems, such
as adjusting the system structure to respond toltaeging environment, recovering from

the fault automatically and self adaptability etc.

Due to the absence of dynamic structure, eCD+% failmeet the challenges the real time
embedded systems pose. Dynamic structure is abfeasdlution to fitting the varied
environments or recovering from errors automatyc&lexibility and reliability, therefore,

could be reached by adjusting the structures ofatsodlynamically.

Our work aims to introduce a Flexible Dynamic Stawe DEVS algorithm (FDSDE)
[Sha06] into eCD++. FDSDE defines a set of new mgsgpassing algorithms [Sha07] to
support the dynamic structure changes in RTS. Eeaxperimental environment namely
DS-ECD++ is developed equipped with an improvedusation engine that combines
FDSDE with the P-DEVS real time simulation engineatlapt to not only the dynamic
structure real-time simulation but also the realetiembedded system development.
Dynamic structure DEVS, to some extent, makes ssjimbe for the system designers and
developers to improve the reliability and performanof the Real-Time embedded

systems.

1.2. Contributions

The purpose of the thesis is to provide revisedsages-passing algorithms for each

abstract simulator used in eCD++. The new messagsimy algorithms are compatible

with the functionalities of eCD++ and are capabfeconducting dynamic structural

changes during the running of simulation. The magortributions of the thesis are list as

the following:

*

The message-passing algorithms for the existedambstimulators in eCD++ are
redesigned to allow processing both dynamic strattchange and regular
simulations. The redefined abstract simulators aédse compatible with the major
functionalities of eCD++.

We identify the coupled models which are subjeaxperiencing structural changes
as structure components. Structure agent is prdpdseplay as a structural
representative executing structural changes onlbehstructure components. A set
of structural change operations are specified siracagents and are invoked by the
user-defined structure agents. Moreover, a new agespassing algorithm to process
the behaviors of structure agents are presented.

The basic structure change forms and the operdttamdaries for the structural
change operations are discussed.

A variety of structural change scenarios are delvesel further a couple of structural

change cases are figured to verify the correctoegee functionalities of DS-eCD++.

1.3. Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 reviews the related literature. Firsthe original DEVS formalism and the

extensions of DEVS formalism including RT-DEVS aRiDEVS are introduced.

Dynamic structure DEVS formalisms are listed astthderlying theoretical base of this

work. Moreover, the applications of dynamic struetDEVS are surveyed. Finally, we
depict the two DEVS-based toolkits: Standalone Cmét eCD++, which are the base of

the thesis.

Chapter 3 depicts the FDSDE algorithm. The mespagsing algorithms for each abstract
simulator are exhibited. The typical message-pgsstenarios and simulation phases are

explained.

Chapter 4 addresses the software architecture e#@CI3++. The implementing issues in
each software component are explicitly describetiénfollowing. The functionalities of

DS-eCD++ are also discussed in this chapter.

Chapter 5 puts forward the structural change sanafwo cases together with a series of

experiments are conducted to verify the logic drdftinctionality of DS-eCD++.

Chapter 6 draws conclusions of the thesis and ss®=uthe possible future work.

Chapter 2 Review of the State of The Art

This chapter presents a review of the state o&then the filed of DEVS-based modeling
and simulation technology. Especially, the dynastiacture DEVS and DEVS simulation
in real-time domain are explored. The original DEM8nalism and two extended DEVS
formalisms P-DEVS and RT-DEVS are illustrated ie first section. The DSDE and
dynDEVS shown in the following section are the texdensions of DEVS to dynamic
structure change. In addition, the dynamic strectDEVS and the applications are
explored to demonstrate how powerful the dynanmigcsire change brings to the complex
physical systems. Moreover, the researches of dgnatructure DEVS modeling and
simulation in real-time embedded systems are sexeyinally, we introduce the

standalone CD++ and ECD++, which are specific it®lased on DEVS theory.

2.1. DEVS Formalisms

The set-theoretical definition of DEVS and its emdiens are presented in this section.
DEVS formalism is firstly introduced and it is adimof other extended DEVS formalisms.
P-DEVS improves the original DEVS formalism by dlating serialization restrictions.

RT-DEVS, based on P-DEVS, is a specified DEVS fdisnaexecuted in real time.

2.1.1. DEVS Formalism [Zei76, Zei00]

DEVS is a formal modeling and simulation framewbdsed on systems theory. DEVS
has well-defined concepts for coupling of composearid hierarchical, modular model

composition. DEVS defines a complex model as a awitg of basic components (called

atomic model), which can be hierarchically integdainto coupled models. A DEVS

atomic model is defined as:

M = <X! S1 Y16int, 6eXt1 Al ta>

Where X is a set of input events; Y is a set opatievents of the atomic model; S is a set
of partial states associated with the atomic mddetepresents the lifetime of each state in
S; dext IS external transition function, this functiontigggered when an input event in X is
received by the atomic mod@\;is output functiony is internal transition function, if
there is no external event comes, the current siitbe kept for its lifetime ta, then output
event might be triggered determined wnd produce output event Y, at the same time

internal state change will happen determined il transition function.

A DEVS coupled model is defined as:

CM=<X,Y,D, {M}, {l i}, {Z ij}y Select>

Coupled model is defined as a set of atomic molgl§ 1 D) which certain a set of
interactions through their interface (X, Y), M a basic DEVS model (atomic or coupled);
liis the set of influencees of model i; for each |, Z; is the i to j translation function to
convert the output of Mo the input of M The property, closure under coupling, allows
coupled model taken equally as atomic model, wieichbles model reuse. Select is the

tie-breaking function for imminent components.

The definition of DEVS formalism may raise two tgpef ambiguity. One type of

ambiguity may rise when multiple components in apted model are imminent at the

same time. DEVS formalism employs Select functmsdlve the ambiguity. By defining
an order over the imminent components, only oneilmant component in a coupled model
is allowed to execute its internal transition fuoct Other imminent components are
divided into two groups: the ones receiving an dkevent from this model or the
remaining. The former group invokes the exterregition function with e = ta(s); while
the later group is imminent in the next simulataycle and may need to be selected again
to decide the execution sequence. The serializiagwgion produces message redundancy;
therefore leads to potential executing bottlenddie other ambiguity is caused when an
atomic model receives an external event at exageiye time its internal transition is
scheduled. The execution sequence is not spedfi@EVS formalism. It is the DEVS
software’s responsibility to determine which fuocti goes first. The serialization

constraint, however, may not reflect the realitg aause errors.

2.1.2. P-DEVS Formalism

P-DEVS [Cho94] is an extended DEVS formalism eliating the two types of ambiguity
of the original DEVS formalism. A confluent funatias added to the atomic model to

dispose the transition collisions in atomic modgls.atomic model is defined as:

M=<XS, Y,6int, Oexts Ocon, A, ta>

Where

X: a set of input events

Y: a set of output events

S: a set of sequential states.
Oint : S2S: internal transition function

Sexi Q X X° > S: external transition functionXs a set of bags over elements in X,

Oexi(S, €,P) = (s, €).
Ocon S X X° > S: confluent transition function.
A : S Y®: output function

ta:S> R0+eoo - time advance function,

with Q ={(s, e) | €S, 0 < e <ta(s)}, e is the elapsed time sinceslage transition.

The semantics of the P-DEVS definition introducefieent transition function, which
handles the collision behavior when an externahewegrives at the same time of its
internal transition, e = 0 or e = ta(s). The coaflutransition function allows processing

model behavior in parallel instead of serialization

The coupled model in P-DEVS presents the follovatrgcture:
CM=<X,Y,D, {M}, {l }, {Zi}>
Where
X is a set of input events,

Y is a set of output events

D is a set of components

For each | in D, M is a component

For each | in D U {self}, llis the influencees of i.

For each j inj| Z; is a function, the I-to-j output translation.

P-DEVS formalism furnishes two advantages over dhginal DEVS formalism by
eliminating the two types of ambiguity. Each modekquipped with a message bag to
handle the simultaneous events, by which the &&#ing function, Select, is removed and
all imminent components can be activated in pdralaother type of ambiguity is
eliminated by employing a confluent transition ftias in an atomic model. For those
components experiencing internal and external itians collide, the confluent transition
function is invoked instead of either internal mtegnal transition function to calculate the
new state. The confluent transition function leaesexecuting sequence of internal and
external transitions to the modelers. It is reabtmtor the modelers to determine the state
transition of the models in the presence of callisi according to the system real
requirement. Since P-DEVS formalism overcomes #fei@ncies in DEVS definition, it
enables more effective and more reasonable modeditige target systems. The real time

simulation engine in eCD++ complies with the P-DEM®iciple.

2.1.3. RT-DEVS Formalism

The real time DEVS formalism [Hon97] is an extensal the DEVS formalism for the

real time application. An atomic model in RT-DE\&Sdefined as:

RTAM = <X! Sl Y16int, 66Xt1 6COI’h)\l taylPi A>

Where, ta is a time interval function given by aterval ta(s)jin < ta(s) <

ta(s)hax S €S.¥: S2>A is an activity mapping function. A is a set ofigities A = {a| t(a)

el*o. and t(a)< tajhag O .

A real time DEVS coupled model connects basic teaé DEVS models together to

form a new model. A real time DEVS coupled modaeitisictured as:
RTCM =<D, {Mi}, {| i}, {Z i,j}>

Where, D is a set of components. For each i in PBs M basic real time DEVS

model, | is a set of influences of i. For each jind; is an i-to-j output translation.

The RT-DEVS formalism replaces virtual time advait¢he DEVS formalism by real

time advance. The time advance function is no narixed value. Instead, a time
interval is defined. The RT-DEVS simulator checkssgecified time advance of a
RT-DEVS model against a real time clock. Ta{g)is an auxiliary parameter used to
verify the time correctness during simulation. A gkactivities associated with a state is

defined in parameteisand A.

2.2. Dynamic Structure DEVS

Dynamic structure is also called variable structteigler coined the term “variable
structure models” to describe models that containlg@scriptions of their behavior the

possibility of altering their own structure andnsequently, their behavior [Zei86; Zei89;

Zei91]. Structural changes might concern the made&havior rules and attributes or,
presupposing a compositional construction of mqdatsght refer to a model's

components and interactions. Dynamic Structure igesv a desirable solution to
capturing the dynamic nature of the discrete edgnamic systems and allows runtime

simulation tuning.

2.2.1. Dynamic Structure DEVS Formalisms

The structure extensions to the DEVS formalismshseen made to regulate the dynamic
structure definitions. DSDEVS [Bar95; Bar97] inttmeés a structural entity called
network executive to conduct the structural charigethe network model in a centralized
way. Pawletta [Paw96] employs a structure eventlitmm and structure event action pair
to represent a structure state of an atomic madalcmupled model. Uhrmacher [Uhr01]
developed the Pawletta’s algorithm by offering enptete definition in both structural and
behavioral perspectives of an atomic model or glembimodel. Uhrmacher’s algorithm
captures the intrinsic reflective nature of vamabtructure model by offering a recursive
definition. In this section, we will explain thermalisms of Barro’s algorithm and

Uhrmacher’s algorithm.

DSDE Formalism

DSDE divides models into two groups: basic and pétwnodels. The basic models are
atomic structure units which cannot be split. Tegvork models are coupled components,
composed of multiple basic structure models aneraannections that involve structural

changes. A Network Executive is a modified basidet@o conduct structural changes in

network models. The Network Executive stores adigilde states of structural changes and

their corresponding component sets in each straicsiate. The two parts are associated
together through an index function in the Netwoxrle&utive. A DSDE network is a 4-tuple

[Bar01]
DSDENy = (Xn, Yn, X, My),

Where X is the network input value setjy¥ the network output value sgtis the
name of the dynamic Network Executivey M the model of the Network Executje

which is a modified basic model and is defined by

MX = (XX1 S),Xl S(s YX; y, Z*y 6)(, Ax, Tx)

Herey: S, > I is the structure functiory, is the set of network structures. A
structurez, 0 =" associated with the executive partial statels S, is given byxq =y(Suy)
= (Do {Mia}, {lia}, {Zia}), where Dy is the set of component names associated with the
executive partial statg g, for all i] Dq, M o is the model of the component i; for alliDy
O {X, N}, Zi« is the set of component influencers of i; forn&llD, O {X}, Zi« is the input
function of the component i; andy£is the network output function. Changes of a basic
model include structural changes within the basodeh or changes on transition/output
functions of this basic model. A Network Executsleuld be used together with the basic
model to composite a network model (only the Nekwexecutives can conduct structural

changes).

DynDEVS Formalism

The dynamic DEVS formalism [Uhr01] does not introdwanextra component to conduct
dynamic structural changes. Instgada model transition function, is included. There a
two kinds of dynamic DEVS models: dynDEVS (atoraod dynNDEVS (coupled). The

dynDEVS models are atomic structural components thi¢ structure

dynDEVS =df <X, Y, minit, M(minit)>

whereX, Y are the structured sets of inputs and outpuisit 0 M(minit) is the
initial model, where Mfinit) is the least set having the structurg{sinit, sext, dint, pa, A,

ta> }. dynNDEVS models are coupled structural compuasevith the structure

dynNDEVS = df <X, Y, ninit, N(ninit)>

whereX, Y are the structured sets of inputs and outpuitst (1 N(ninit) is the start

configuration and Nfinit) is the least set having the structur®{<$n, {dynDEVS}, {1},
{2, j}, Sdect>}. A model’'s state space, internal and externahgition, output, time
advance, and model transition functions are suljecthange during simulation. A
dynDEVS can be interpreted as a set of DEVS modéls the same interface plus a
transition function that determines which DEVS maleceeds the previous one. Agents
associated with dynDEVS or dynNDEVS models holdwieeldview knowledge of their
corresponding models and environments. Agentsemgonsible for initiating structural

changes and executing the structural change process

The dynamic structure DEVS formalisms make it gussio represent discrete event
dynamic systems more precisely; therefore, enajphardic structure DEVS to represent
dynamic structural behaviors in the DEVS simulati@omplex systems design and

developments and so on.

2.2.2. Dynamic Structure and the Applications

Dynamic structure DEVS provides a salient suppldaargnto the DEVS theory to
represent and simulate the structural changestémaictions, composition, and behavior
patterns. Dynamic structure DEVS promotes the Made& Simulation methodology
[HuXO03] at three levels. 1) It offers natural anifleetive way to model the complex
systems which exhibit structural changes and behalvchanges to respond to different
situations. Adaptive computer architecture [Bra@4@stablished using dynamic structure
to achieve a desired computing performance. Anogpcdl system [Uhr93] calls for
dynamic structure to reflect the evolvements of éleaments in the system. It is hard to
model and simulate the structural changes in tbeabystems without dynamic structure.
2) Dynamic structure brings additional flexiblettee systems design and development.
The dynamic distributed robotic system [HuX03] dathidynamic reconfigurations as
robots interact and make decisions in dynamic enwrents employing dynamic structure.
A flexible manufacturing system [Her00] is ableswitch among the different product
processes online. Benefited from dynamic structinedynamic issues can be captured in
the system development stage and embodied in tipdenmentations; therefore, the
flexibility and reliability of the system can belaeved. 3) The dynamic structure permits

loading only a sub-set of the components for situtalt is very useful in a very complex

system containing tremendous members as only thigeacomponents are loaded

dynamically to conduct the simulation.

2.3. Modeling & Simulation Methodology in Real-TimeSystems

Much research effort has been put in the developoferal-time systems. In the real-time
simulations, the simulation time should be synclrea as closely as possible to the clock
time of the underlying computer system [Zei93]. Tkal time simulation frameworks,
including DEVS-Scheme, The layered design apprdachlistributed real-time systems
[Cho00] [Cho01a] and the real-time simulation fravoek based on RT-DEVS [Cho01b],
are helpful attempts of applications of Modeling Simulation methodology in the
real-time field. Based on the real-time simulatimmeworks, a series of methodologies
are proposed to realize the transformation fromntioeleling stage to the design stage in
real-time embedded systems, such as DEVS-on-a-(HfX01], Robot-in-the-loop
projects [HuX05a] and Hardware-in-the-loop [LiLO3|i04a; YuJO7] etc. However, the
static structure allowed in the frameworks makedifftcult to respond to the changes in
the residing internal / external environments, \whadways call for dynamic structural or
behavioural changes to maintain the flexibility amdiability in real-time embedded

systems.

Modeling and Simulation with dynamic structure offenecessary modeling of the
dynamic structural changes and behavioural changles. dynamic structure can be
applied in e-Commerce applications [Liu03] enabkndynamic business process to meet
the instant requirements, and scale to large andll sbusiness activities. In a

manufacturing system, a routing for a product dpeca given sequence of manufacturing

workstations or machines. If some workstations acinines are replaced, then the routings
requiring those machines must be updated accosdiByinamic structure is a desirable
solution to update the routings online in a flegibhanufacturing system [Her0O0].
Moreover, dynamic reconfiguration of some composémthe real time systems realizes
runtime simulation tuning [Mit06]. The rapid feediecycle allows experimentation with
parameters and structures and results in effeativdel configuration that is difficult to
achieve when turnaround requires hours or days. dijimamic team formation in the
distributed robotic system [HuX05d] is a meaningittempt of dynamic reconfiguration
of the components in a real time distributed systeach robot is taken as an independent
component and can be reconfigured by establisthegcbuplings between the robots;
therefore a Leader-Follower match can be condu@®@edng this process, the couplings
between the models can be added and removed,imgsmta variable structure system.
Also, the real-time implementation enables an etteawf hybrid software components
and hardware components system; therefore pronaosesooth transformation from the
simulation modeling to design of real time systefrs1X04] and [HuX05b] present how
the virtual robot models are replaced by the reddots while maintaining model
continuity. By studying the cooperative roboticteys [HuX05c], a stepwise incremental
study process for development of the real-time etdbd systems with dynamic structural
changes is also proposed. All of those researatr®strate that the dynamic structure is
a desirable solution in the modeling & simulatiorethodology, especially in the
development of the real time embedded systems iagpthhe modeling & simulation

methodology.

2.4. Introduction to the CD++ Simulation Toolkit

CD++ [Wai02] is a modeling and simulation softwéaenily based on the DEVS theory.
In which atomic models are defined using a stasetiapproach (encoded in C++ or an
interpreted graphical notation); while coupled med®ntain atomic models composition
and interconnecting information of those atomic eledCD++ has been widely used in
various applications from simple queuing systemsadmplex systems [Mac04] such as
environmental systems [Wai06] or complex real-tisystems [Gli04b]. CD++ employs
the abstract simulator mechanism to exchange messagong the processors while
simulation advances. Aimulator component is in charge of executing the behavidur
atomic models while €oordinator component takes charge of the message procedsing o
coupled models. The simulation evolves through amsgpassing, using six kinds of
messages: | (Initialization), * (Internal), X (Ings), Y (Output), @ (Collect) and D (Done).
Different versions of CD++ have been developedatilifate various applications. Stand
alone CD++ implements DEVS and Cell-DEVS simulatidarallel CD++ [Liu06; Liu07]

is aiming to enhance the performance of Cell-DEM3utation by distributing calculation
of different cells over multiple processors. Distied CD++ [Ma] is developed to
facilitate the coordination of the different simiihg engines in different sites through the
standard distributed computing protocols. Real temebedded CD++ (eCD++) is a
DEVS-based systematic developing tool constructpeaally for Real-Time embedded

system.

eCD++ [YuJO7] is a version of the CD++ software fignthat has been adapted for real
time and embedded system applications. eCD++ ermapl®yModel-Driven Architecture

of real-time systems (MDA) [Wai05] to construct ighlevel experimental environment

for the development of real-time systems. The saféwis modularized as a group of
components that have well-defined behaviors an& radependent functionalities. Four
major components are included: the Main Simula@EVS Modeling Subsystem,
Simulation Subsystem and Messaging Subsystembhlsed on the P-DEVS formalism,
which provides the modeling principles to chardegethe structural and behavior aspects
of real-time systems. Moreover, RT-DEVS enables €€® simulate the hybrid software
and hardware systems. Finally, eCD++ supports dmibansformations from simulation
models to real components of the systems. TheG#atdinator in eCD++ provides an
alternative simulation fashion by eliminating theoddinators in the hierarchy and
exchanging messages directly between the flat coatat and simulators. The GGAD
interpreter (Generic Graphical advanced environmémt DEVS modeling and
simulation) in eCD++ enables to specify atomic niedgaphically. It is an easier way

for the non-expert users to build atomic modelsitiviely.

Chapter 3 the Flexible Dynamic Structure DEVS Algoithm

Flexible Dynamic Structure DEVS Algorithm is a newuctural paradigm based on the
DSDEVS formalism. The FDSDE supports various stmatchanges in the DEVS-based
framework including changes of DEVS models compasjtchanges of the couplings
among the DEVS models and changes of input/outpus mf the coupled models. The
structural changes are implemented dynamicallynduai simulation running according to

the structural state variables.

In FDSDE, a conception of a structure componemrseio a coupled model subject to the
structural changes. A structure agent is introduoeekecute the structural changes for a
structure component. As defined in the DSDEVS fdisna the possible model structures

of a structure component constitute the state spéce structure agent. Each model
structure of a structure component is mapped insiractural state of its associated
structure agent and is connected with a structalake. The structural state transitions of a
structure agent are triggered by a structural changssage. A new abstract simulator,
RevSimulator, specifies the message-passing panaday the structure agent. The

messages related to structural change are defomedd structural change processes.

Message Definitions

The simulation is advanced with exchanging differkimds of messages among the
simulation processors. Two categories of messagededined for simulation in eCD++:
control messages and content messages. Controhgesssonsist of the initialization
message (I), the internal message (*), the coffextsage (@) and the done message (D);

while content messages include the external megsa@ad the output message (y). The

external messages and the output messages exctiangation data between simulation
models. The initialization message indicates thet sif simulation. The collect message
and the internal messages invoke the output fumetmd the state transition functions of
the atomic models respectively. The timing inforimis carried through D messages for

synchronization. The introduction of dynamic sturetrequires extra message types:

+ D (scf Structural change request. This message is rhisad atomic model when
the structural change conditions are satisfiedsd) rings the expected structural
value to the parent coordinator. The structurali@ahdicates the expected model
structure of a structure component.

o *(sc)’ Structural change message. This message is issutted Root and passed
down to each structure component. The structuretaeach structure component
conducts the structural changes according to thetstal value in the message.

+ St Simulation resuming message. This message idgenstructure component to
the new models after the structural changes. Thssage is used to synchronize the

models.

* The ‘sc’ in the parenthesis denotes the expedctadtaral value in the message.

Structure Component and Structure Agent

Barros[Bar 1997] defineglynamic structure system network as a component that can
change its structure dynamically. The dynamic $tmacsystem network is defined with a
special component, theetwork executive. Since the network coupling information is
located in the state of the executive, transitioncfion can change this state and, in

consequence, change the structure of the netwoikDEDE, a dynamic structure system

network, which is calledtructure component, is a coupled model subject to undergoing
structural changes. The concept of network exeeusivepresented ksgiructure agent, in
which the structure information of a structure comgnt is located. The concepts of

structure component and structure agent are itedr

Structure Component

In FDSDE, atomic models hold only model behavioinsernal / External / Confluent
transition function & output transition functionfjidno structure information is included;
therefore atomic models are structure units anchaabe split in terms of structure.
Instead, coupled models give a well-defined conoépystem modularity and component
couplings. That is to say, coupled models cont&inctire information. As a result, a
structure component can be represented by a sefriesodel structure sets including
modules and couplings between the modules. If eefrgitlicture set is taken as a structure
state of a structure component and connects taetstal change command (Scomm), the
structure component can shift its model structunerag the model structure sets according
to the indicated structural value. The Fig. 1 dest@tes the relationship between the

model structure sets and the structural statestifiature component.

Structure Components: ...
State 1 Ports:
Link: ...

SComm: strucl

Components: ...
Ports:

Link: ...
SComm: struc2

Components: ...
Ports:

Link: ...
SComm: struc3

Fig 1. The Relationship between structure states and structure definitions of

a structure component

Structure Agent

A structure agent defines possible structural statea structure component and executes
structural changes in its internal transition fumecffor a structure component. As we have
described, a structure component defines a sdrresael structures containing a group of
modules and the couplings among the modules. 8teiagent is employed to achieve the
separated concerns between the model structuraeitdefs and the structural change
executions. Structure agent offers more flexibility modellers who can generate the

structural behaviours according to the real requoéets.

Model Hierarchy and Processor Hierarchy

According to the DEVS theory, models are specifiegependently from the simulation
mechanism. Two levels of hierarchies are presemethe DEVS-based simulation
environment: model hierarchy and processor hieyardihe DEVS model property,
Closure under Coupling, carries the hierarchicalmeof the models. A model of structure

agent brought by dynamic structure is a leaf modflel structure component in the model

hierarchy. A general view of the model hierarchpngsented in Fig. 2. TOP is a structure
component with a structure agent CEXEC. TOP istextat higher model hierarchical

level than Coupled?.

top
<
AS
Level 1 TOP =
I
Y o
Level z | CEXEC || Atomicl Coupled2 %
/\ 5
L
Level & Atomic2 || Atomic3 o
<
Y=
low

Fig 2. The Model Hierarchy

The straightforward processor hierarchy (Fig. 3)tams the similar structure with the
corresponding model hierarchy. Root Coordinatargéobal simulation governor standing

at the top of the processor hierarchy.

) top,

Root Coordinator A g

v 5

) o

Level 1 Coordinatorl ;
/V\ g

Level Z RevSimulator Simulatorl Coordinator2 §.
Level = Simulator2 | | Simulator3| Y &
low=<

Fig 3. The Processor Hierarchy

Although the hierarchical processor structure otflethe nature of the DEVS model
hierarchy, it performs ineffectively with the deepwaodel hierarchical complexity for
communication overheads are unavoidably increa&eftht coordinator technique is a
more effective processor hierarchy by eliminatimg ¢oordinators in the hierarchy and by
making direct messaging communications betweefiagheoordinator and the simulators

(Herny’s thesis) The flattened processor hierarchy is shown in &ig

Root Coordinator

Y
Coordinatorl

v
Y v \

RevSimulator Simulatorl || Simulator2 || Simulator3

Fig 4. Flattened Processor Hierarchy

Message-Processing Algorithms

Message-processing algorithm defines a seriescefue functions for each message type
in each abstract simulator. Four kinds of abstsatiulators namely Root Coordinator,
Coordinator, Simulator and RevSimulator are used®#eCD++. Root Coordinator,
Coordinator and Simulator which are used in eCD#eramended to adapt to both the
dynamic structural changes and the regular sinanlatRevSimulator, a new kind of
abstract simulator, is devised for structure agéntthe following, the message-processing

mechanism of each abstract simulator is described.

Simulator

The simulator is capable of processing initial rages(l), collect message (@), internal
message (*), and external message (X). In DS-eCbha-€hanges are made in the receive
functions for collect message and external messAgstructural change variable is

initialized in the initial message. The structucabnge request detection mechanism is

applied to the internal message.

When a (I, 0) is received from the parent Coordinat
tL = 0; tN = Infinity

Initialize the variable of the atomic mbde

1

2

3

4 struc_var = 0 // struc_var : structurahmpe variable
5 send (D, tN) to the parent Coordinator

6

end when

Fig5. Simulator Algorithm for (I, 0)

The simulator receives (I, 0) at the beginning leé simulation (Fig. 5). Two timing
variables, tL and tN, are initialized in (I, 0). dlassociated atomic model is initialized by
calling initial function (line 3). Moreover, thergttural change variable which is used to
keep track of the structural state of a structunmmonent is initialized in the following.
Finally, a (D, tN) is sent to its parent Coordimatath tN, absolute next time, indicating

the time for next state transition of the atomicdelo

When a (@, t) is received from the parent Coordinat
if t = tN then
y =\(s)
send (y, t) to the parent Coordinator
send (D, t) to the parent Coordinator
end if
else raise error
end whel

NGO RONE

Fig 6. Simulator Algorithm for (@, t)

1. When a(q, t) is received from the parent Coordinat
2. lock the bag

3. Add event g to the bag

4 unlock the bag

5. end whei

Fig 7. Simulator Algorithm for (q, t)

Fig. 6 is the simulator algorithm for (@, t). Ifetlscheduled time tN arrives (t = tN), the
simulator executes output functiok) (of the atomic model and sends the output to the
parent coordinator upon receiving (@, t). A (dot)els sent to the parent coordinator
indicating the completion of the execution. If atjcarrives (Fig. 7), the Simulator add the

input event to its message bag.

1. When a (* t) is received from the parent Coordinat
2 case tk t < tN and bag is not empty

3 e=t-tL

4, S %ext(S, e, bag)

5. if no structural change requestised
6 empty the bag

7 end if

8 end case

9. case t = tN and bag is empty

10. S &int (S)

11. tL=t

12, tN = tL + ta(s

13. end case

14. case t = tN and bag is not empty

15. S &on(S, bag)

16. if no structural change requestised
17. empty the bag

18. tL=t

19. tN = tL + ta(s)

20. end case

21. caset>tLort<tN

22. raise error

23. end case

24. if structural change request is raised

25. struc_var = sc

26. send (D, tN, sc) to the parent Cowatbr
27. /I sc: new structural value

28. else send (D, tN) to the parent Coortaina
29. end if

30. end when

Fig 8. Simulator Algorithm for (*, t)

Simulator uses one (* t) message to synchronizeethlifferent transition functions
(internal transition function, external transitifumction and confluent transition function)
of the atomic model. The one of the three transitimctions is executed according to the
status of the message bag in the atomic modeltentning point when the message is
received (Fig. 8). The external messages in thesagesbag would not be consumed if a
structural change request is raised. Thereforegxiternal messages in the message bag
would not be removed. If a structural change regisesised, the new structural value

indicating the expected model structure is serthéoparent coordinator. The tN in the

structural change request indicates the expectadtgtal change time. Otherwise, a (D,

tN) is sent indicating the completion of the in@rmessage.

1. When a (St, t) is received from parent coordinator
2. reset the structural change variable

3. initialize the variable for the atomic mbde
4 send (D, tN) to parent coordinator

5. end when

Fig 9. Simulator Algorithm for (St, t)

If the structural change causes the addition ofet®ydt messages are received (Fig. 9) in
the new models. The structural change variablesstrand the variable used in the atomic
model are initialized in (St, t). Scheduled tN entsout with the D message to the parent

coordinator for the next simulation cycle.

RevSimulator

RevSimulator defines the message-passing mechdoisstructure agents. A structure
agent would not receive content messages for @bmsent from input / output ports.
Moreover, since a structure agent receives a stralathange message passively and stays
at the structural state until next structural statendicated, it would not be an imminent
child of the associated structure component. Heac#ructure agent does not receive a
collect message. A structure agent would not becaiver of a St message. A structure
agent is a receiver of an initial message anduatstral change message. Initial message is

used to initialize a structure agent at the begignof simulation. Structural change

messages bring the expected structural valuesttacture agent and indicate it to conduct

the structural changes for the structure component.

During the initialization stage, RevSimulator (Fi) sets the tN as infinity and initializes
the structure agent by invoking its initial funetio RevSimulator notifies the completion

of initialization by sending a (D, t) to the pareobrdinator.

When a structural change message arrives at th8iRelator (Fig. 11), the timing period
is checked first. The internal transition functiohthe corresponding structure agent is

executed. After that, the (D, t) is sent out toplheent coordinator.

1. When receive a (I, 0) from parent coordinator

2. tN = inf

3. Initialize Structure Agent by calling thatfanction
4 send (D, t) to parent coordinator

5. end when

Fig 10. RevSimulator Algorithm for (1, 0)

1. When receive a (*, t) (sc) from parent coordinator

2 if t <tL or t > tN then raise error

3 else if (message value is not 0) then

4. tN = inf

5. tL=t

6 invoking the internal function diet structure agent
7 send (D, t) to parent coordinator

8 end if

9. end when

Fig 11. RevSimulator Algorithm for (*, t) (sc)

Coordinator

The Coordinator is in charge of the messages bettireeparent coordinators and the child

simulators. The coordinator is able to procesgdhewing messages:

o @ message from the parent coordinator

o Y message from the child simulator

o Q message from the parent coordinator

o *message from the parent coordinator

o *(sc) message from the parent coordinator
o D message from the child simulator

o D(sc) message from the child simulator

@, Y and Q messages follow the mechanisms use@+¢. A *(sc) is delivered by a *
message and distinguishes itself by a non-zerotstal value (sc). Similarly, a structural

change request appends an expected structural teeéub message.

1. Whena (@, t) is received from the parent Coordinat

2 if t = tN then

3 tL=t

4. for all imminent child processors i withnimum tN
5 send (@, t) to child i

6 cache i in the synchronize set

7 end for

8. wait until (D, t)’s are received from atiminent processors
9. send (D, t) to the parent Coordinator

10. else raise an error

11. end if

12. end whe

Fig 12. Coordinator Algorithm for (@, t)

Fig. 12 shows how a @ message is processed ininatyd The time stamp is checked
first. If the time stamp is not equal to tN, anoeris raised. Only those models that are at
their state transitioning points will receive ti@,(t) message. The coordinator dispatches
the @ message to all its imminent children and s¢ine receivers to the synchronization
set. A D message is sent to its parent coordinatplying the completion of the collect

phase in the coordinator after all D’s have beeeixed from the imminent children.

1. When a (y, t) is received from child i

2 for all influences, j of child i

3. q=i(y)

4. send (g, t) to child |

5 cache j in the synchronize set

6 end for

7 wait until all (D, t)’s are received froj’s
8. if selfel; (y is to be transmitted upward) then
9. Y =iZsel(Y)

10. send (y, t) to the parent Coortbna
11. end if

12 oand whao

Fig 13. Coordinator Algorithm for (y, t)

Coordinator is responsible for dispatching Y messag the all influences of the output
messages. Upon receiving (y, t) (Fig. 13), the doator translates the output message
into the external messages for all the child infleess and sends them to the corresponding
children. The child influences are cached intosyrechronization set, in which the models

are expected to experience state transitions atakesimulation cycle. If the coordinator

is one of the receivers of the output message,opeproutput is generated for the

coordinator and is forwarded upward to its par@uotrdinator.

The incoming external message (Fig. 14) is inser&m the equipped message bag for

later calculation during an internal message pisings

1. When a(q, t) is received from parent Coordinator
2. lock the bag

3. Add event g to the bag

4 unlock the bag

5. end when

Fig 14. Coordinator Algorithm for (g, t)

Coordinator is capable of processing * and * (sepssages through a receive function for
(*, t) (Fig. 15). * (sc) contains a non-zero valkile a zero value indicates an internal
message. * message is received in between thaelgst transition time) and the tN (the

next scheduled transition time) of the coordina@therwise, an error is raised.

If the received message contains a non-zero véhgemessage is a structural change
message. In FDSDE, structural changes are exefrotedbottom to up. That is to say, the
structural change message is executed in the steucomponents standing at the lower
model hierarchical level first, and then it is implented in the structure components at the
higher model hierarchical level. Coordinator hasdiee executing order with the depth
first policy. The structural change message isquhss the child coordinators provided the
coupled models associated with the child coordisedice structure components. The child
coordinators are collected into a structure sst fiine4 — linel0), and then they get the

copies of the structural change messages (lindih216). At the same time, the structural

value is stored (linell) and is used for the stmattchange in this coordinator. If no such
a child coordinator exists, the coordinator padbkesstructural change message to the
simulation processor of the structure agent (linellihe21). Upon the D messages are
received, the coordinator sends a D message tpafrent coordinator to complete the

structural changes process.

A zero-valued message indicates an internal messagdly, the external events in the
message bag are routed to the corresponding comygoaecording to the coupling

information preserved by the coupled model assediaith the coordinator. The receiving
components are cached into the synchronizationT¢®n a * message is sent to the
components in the synchronization set. Until ak Rre received from the models in the

synchronization set, the updated tN with a D messagent to the parent coordinator.

1. When a (* t) is received from the parent Coordinat

2 if t(L<t<tN then

3 if the message value is a non-zero valugrdc&iral change message
4. for all the child i

5. if i is a coupled model and i is a struaticomponent

6 if i is not in the structure set

7 cache i in the structure set

8

. end if
9. end if
10. end for
11. store the message value // for self struttirange
12. if structure set is not empty
13. for all j in the structure set
14. send (*, t) (sc) toj
15. end for
16. end if
17. else if structure set is empty
18. if the associated coupled model is acstiral component
19. send (*, t) to the structure agent
20. end if
21. else end
22. wait until all (D, t)’s are received
23. send (D, t) to parent coordinator
24. end if

24, end if

25. else if the message value is a zero valuedguRr (*, t) message
26. for all ebag

27. for all receiversgjseirand all gebag
28. q =sr,{0)

29. send (g, t) to]

30. cache j in the synchronize set
31. end for

32. empty bag

32. wait until all (D, t)’'s are receive

33. for all i in the synchronize set

34. send (*,t) to i

35. end for

36. wait until all (D, tN)’s are recei
37. tL=t

38. tN = minimum of components’ tN’s
39. clear the synchronize set

40. send (D, t) to parent coordinator
41. end else-if

42. else raise an error

43. end whe

Fig 15. Figure 17 Coordinator Algorithm for (*, t)

Coordinator receives and processes D messagesiagrto the different waiting modes
(Fig. 18). The six waiting modes are set in coathn In the case of waiting for
initialization message, coordinator simply picke thinimum tN and sends (D, tN) to the
parent coordinator. Coordinator collects all Danfrthe children and sends D to the parent
coordinator when it is in the waitingforCollect neodVhen a D message is received in the
mode of waitingforinternal, the procld is firstlgmoved from the synchronization set
indicating the ending of the synchronization stdf@ D (sc) message is received, the
procld and the message value of the sender aredactoscreq (linel8 — line20) The
coordinator determines whether a D (sc) or a [2d & the parent coordinator depending
on which sender(s) is (are) an imminent child.h# sender of the request pair (procld,
value) is not an imminent child, a D message i$ teetine parent coordinator. Otherwise, a
D (sc) is sent to the parent coordinator when émalsr inscreqgis also an imminent child
(line25 - line28). When the coordinator receives a in the mode of
waitingforStructuralchange which implies a nestédictural change process and the
coordinator is waiting for structural change donessages from its children, the
coordinator sends * (sc) to its structure agentrigger the structural change if the
associated coupled model is a structure compohee2{ — line39). Otherwise, a D is sent
to the parent coordinator (line40 — line43). Thedmaof waitingforSelfstructurechange
indicates the coordinator is waiting for a D megstigm its structure agent. In this case,
the new atomic models added to the structural ah@ngcess are sent St messages (lien46
—line50), and the atomic models to be removetderstructural change process are deleted
from the synchronization set of the coordinatorglil — line55). After that the coordinator

sends D with the minimum tN to the parent coordinalhe mode of waitingforStart is

waiting for the responses to the St messages céim hew created models. At this stage,

the minimum tN is updated and a D is sent to paceatdinator (line62 — line63).

1. When a (D, t) is received from child simulators

2. case waiting mode is waitingforlInit

3. wait for all (D, t)’s are recen from child simulators
4, tL=t

5. get the imminent children’s tN

6. send (D, tN) to the parent cihoator

7. end if

8. end case

9. case waiting mode is waitingforCollect

10. remove the procld from the cct\&aitForDoneQ
11. if collectWaitForDoneQ is emptyll D’s are received
12. send (D, t) to the parentrcinator
13. end if

14. end case

15. case waiting mode is waitingforinternal

16. tL=t

17. remove the procld from the sy&icS
18. if message value =0

19. add the (procld, value) paip screq
20. end if

21. wait for all (D, t)’s are recedre

22. get the imminent children’s tN

23. if screq is not empty

24. get the procld from screq

25. if the procld is in themiChildren

26. sc = value

27. send (D, tN) (sc) to parent Coordinator
28. end if

29. clear screq

30. end if

31. else

45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65. end when

case waiting mode is waitingforSeelfsturalchange

if there are newly added nisde

for each new model i
send (St, t) to i
end for
end if
if removedmodels is not emjptihe models to be deleted
for each model i in remdredels
erase i from the symetization set
end for
end if
else
get tN’s from the immmechildren
send (D, tN) to pareobinator
end else

end case
case waiting mode is waitingforStart

get tN’s from the imminenildihen

send (D, tN) to parent conedor
end case

Fig 16. Coordinator Algorithm for (D, t)

Root Coordinator

Root Coordinator is a global scheduler standintgetop of the processor hierarchy. Root
Coordinator executes a message loop and advaressithlation according to the timing
pieces collected from the child processor. If themo scheduled timing pieces (i.e. the tN
is equal to infinity), Root Coordinator ends themglation. The Root Coordinator
algorithm is shown in Fig. 19. At first, the strudl change request variable is initialized
as 0. During the message loop, Root Coordinatéeasithe outputs and routes the outputs
to the proper influences by issuing a @ messagkett is no structural change request is
raised, Root Coordinator sends * message to trifgeistate transitions of the models.
The structural change process is invoked by a ¥ ifsa structural change request is
detected. The structural change request varialiedates the expected structure set and is

assigned to the structural change variable in tfsz):

1. t=tN of the topmost coordinator

2. sc =request//if a structural change requestised, request = 1; otherwise requpst
=0

3. while ¥« or more external events to come

4 send (@, t) to the topmost coordinator

5 wait until (D, t) is received from it

6. if sc ==

7 send (*, t) (sc) to the topmost coortima

8 wait until (D, tN) is received from it

9. end if

10. else if sc ==

11. send (*, t) to the topmost coordinator

12. wait until (D, tN) is received from it

13. end else

14. t = tN of the topmost coordinator

15. if an external event arrive

16. send (g, t) to the topmost coordinator

17. end if

18. end while

19. raise simulation complet

Fig 17. Root Coordinator Algorithm

Message-Passing Scenarios

The previous section illustrates the message-psotgsalgorithms of each abstract
simulator in FDSDE. In this section, typical messagassing scenarios are presented to
present how the messages flow between the simmlgiocessors. The first scenario
presents the simulation process with a structunahge process. The second scenario
exhibits a nested structural change process. Febr &nario, the model structure and the
processor hierarchy are presented first, and thenmessage-passing scenarion of the
given model is described using @amnt precedent graph. The vertexes (the black dots) are
used to indicate the events, and the directed qalgsent the actions of sending messages.
The message types are placed beside the directgs$.efhe subscript numbers of the
message types give the sequence of the messageg ther simulation. In the scenarios,
RC denotes the Root Coordinator; Sx (x = 1, 2, 3repyesent the simulators in charge of
message processing of the atomic models. Cx (X7 1) indicate coordinators; RSx (x =

1, 2,...) are the processors of the structure agents.

Scenario 1: A Simulation with a Structural Change Pocess

In this scenario, the structure component Coupladestwo atomic models: Al and A2 at
the initial simulation stage. The structural chamg€oupl adds an atomic model A3 to the
simulation system. C1 is the coordinator associatgkd Coupl. S1, S2 and S3 are the
three simulators generating the model behaviour81lgfA2 and A3 respectively. The

model structure and the processor hierarchy oftleeario 1 are shown in Fig. 18 and Fig.

19.
Coupl
Coupl P
A2
Al A2 g Al
L .| A3

Fig 18. The model Structure Change in Coupl

RC RC
\1/ — \l/
C1l C1l
__—\ —Z N\ —
RS || S1 S2 RS || S1 S2 S3

Fig 19. The Simulation Hierarchy Change in Scenario 1

Initially, 14, I,and kare used to initialize C, S1 and S2. As respori3gsDsand Dyare
replied by them. We skip the regular simulationlegdor they are same with scenario 1.
At the simulation cycle T RC sendsf; to C and C sends;3to S1 for S1 is the only
model that needs to be synchronized at this cpdsume S1 raises the structural change at
this cycle. A k3 (sc) is sent back to C. C passes the structuealgdhrequest to RC with
Di:4 (sc). Instead of issuing @ message to enter coitegihase, RC issues structural
change messagezZ(sc) to C and C delivers the structural change agest the processor
of its structure agent RS with.& (sc). A message;D is replied by RS after the structural
changes finishes. Suppose a new simulator procé&3ocorresponding to the atomic
model A3, is added into the simulation. C initiakzS3 by sending & S3 replies tN to C
with Disg. Till this point, C has finished the structurabdge process and collected the next
event times from its children. C selects the mimmtN and sends to RC with
notifying the completion of the structural changeqgessin the structural change process,

S3joins the simulation. The simulation advaraoes RC sends @) to collect outputs dhe

simulation cycle T1. Suppose S1 is the receiver of the collect mes@&age. S1 returns
Yi«13,the output message of S1, angiPthe done messagé S1, to C. Since S2 and S3
are the influences of S1, C converts the outputsags of S1 into the proper input
messages and routed them to S2igXand S3 (X16) respectively. As a result, S1, S2 and
S3 are all cached into the synchronized set of € @rsends D7 to RC marking the
ending of the collect phase of. At the transition phase of.T, synchronizing messages
are spread to each model and trigger the transftiontions (%18, *ir19, *i+20, *i +21).
Accordingly, tNs are returned to RC with the donessages (&2, Di+23, Di+24, Di+25).

Then RC sends a collect message. 4@to start the new simulation cycle

RC B iy S Uaininineie il ———-
o 5
T 2 3 0 &
I t = x & t
A .k't (@) @j * 0 ®
c1 Ty Ey s e SOV CEEEEEEEEEE o S St
o\ A\ >
«\g ® &
S1 |- St ey e T ————fomm-
) 2 <
) T () ¥ ¥
g [X [
* i
- N
S i Wit R S B il I N
7 A
= g
-k
X LT b N
55 B s e e s R ——--
Init SCReq SC Proc imu. Rest Collect Trans.
Structural Change Process Phase Phase
Tia Tirz

TO aad TI
>

Simulation time

Fig 20. Message flow for a Structural Change Process

Scenario 2: A Nested Structural Change Process

In scenario 1, single structural change procegsoress to a structural change request.
Sometimes, a nested structural change processvingomore than one structure

components in the model hierarchy is required $poad to a structural change request. In
case of a nested structural change process, antageriority of structure components

should be determined. In FDSDE, nested structurahge process is conducted from
bottom to up. That is, the structure componenbael model hierarchical level executes
the structural change first, and then one at thkdrimodel hierarchical level executes the

structural change. Scenario 2 presents a nestextstal change process.

Scenario 2 involves two structure components Carl Coup2. Coupl governs Coup?2
and an atomic model Al. Coup2 contains an atomigaind@2. The structural change adds
an atomic model A3 to Coup2 and adds a new coupktgeen Al and Coup2. S1, S2 and
S3 represent the simulators for A1, A2 and A3 respely. C1 and C2 are the two

coordinators of Coupl and Coup2. Coupl has a steieigent SA1 and Coup?2 contains a
structure agent SA2. RS1 and RS2 are the procesfitis structure agents SA1 and SA2.
The model structure change and the simulation tgkyachange in the scenario 2 are

exhibited in Fig. 21 and Fig. 22.

Coupl
"p Coup2
Coupl
Coup? \ AD
—
Al > A2 Al
| A3

Fig 21. The Model Structure Change in Coupl and Coup?2

RC RC
v v
Ci ~ Ci
RS1 S1 Cc2 RS1 S1 Cc2
RSz S2 RSz S2 S3

Fig 22. The Simulation Hierarchy Change in Scenario2

At the beginning of the simulation, all the proaassparticipating the simulation are
initialized (ly, 12, I3, 14) and the D messages are repliegl (IR, D7, Dg). At simulation cycle

T;, S2 raises a structural change request duringjdhsition phase (1, *i+2, *i+3, Di+4 (SC),
Diss (sc), D6 (sc)). Once RC receives a structural change regR€sistarts a structural
change process. Suppose it is a nested structumalge process involving the structure
component Coupl and Coup2. When C1 receivegst) sent from RC, C1 passes.d*
(sc)) to its child C2. C2 is the structure compdnanthe lowest hierarchical level;
therefore the structural change of C2 is executstl €2 sends;¥ (sc) to RS2 to execute
the structural changes. RS2 returnsdXo C2 when the structural change has been done.
Assume that a new model is added during the stralctthange. C2 sends;.$t to S3, a
new processor of the atomic model A3, to initializeé/Vhen Dsq» is returned to C2, C2
then return Ri3 to C1 notifying the structural change has finistedthe structure
component Coup2. Once receiving the structural ghaone message from C2, C1 sends
*i+14(Sc) to RS1 to start a structural change. RS1egjiiisto C1 and C1 passes:Rto

RC marking the ends of the structural change atACtording to the minimum tN, the

simulation advances to simulation cyclg; TSuppose S3 is not an imminent child of C2.

The collect phase of ;i is processed (@7, @:18, @+19, Dir20, Div21, Dis22). The
following transition phase (%3, *i+24, *i+25, Dis26, Dis27, Diz2g) implements the transition
functions of S2, which are bypassed during simaitatiycle T. At simulation cycle 4,
RC obtains an updated tN and advances the simolati@., (Ti+; + tN). RC sends @y to

collect outputs at simulation cycle.d

S R e

RS2 f=————"—7"———~9~ """ o
Init. Phase Structural Change Process | —‘ Stru. Chan. Collect (Trans.
Proc.ll Phase | Phase
To Ti Tl simuldtion time ™

Y

Fig 23. Message flow for Multiple Level Structural Change Process

Simulation Phases

In the message-passing scenarios, the simulatiaseghare clearly identified. In the
regular simulation process, two phases are disshgd by @ message and * message
respectively. @ messages dispatched to each povcass the corresponding D
messages are compose of collect phase. Transhaseonsists of * messages routed

down and the returned D messages.

Structural change process is included in the regalmulation process. Three

sub-phases are identified in a structural changegss: structural change request,
structural change and simulation resuming. Eackhphise is marked by a message by
which the sub-phase is invoked. If a (done, tN) isreturn to respond to a * message
in a transition phase, the transition phase istifieth as a structural change request
sub-phase. The real transition phase is bypassetbdbe raise of the structural change
request. Root Coordinator initiates a structurange sub-phase by issuing (*, t) (sc)
message upon receiving a structural change reglleshessages are sent back
indicating the ends of the structural change sulisphA coordinator associated with a
structure component starts a simulation resumibgphiase by sending (St, t) message
to the newly added models. The newly added moa#lsir the scheduled tNs, which

are used to schedule the next imminent simulatventand signals the finishing of the

simulation resuming sub-phase.

Chapter 4 Algorithm Implementation and the Functionalities

An improved simulation engine is developed by carrlg FDSDE and P-DEVS real
time simulation engine. Based on the improved sathh engine, the updated
real-time DEVS-based experimental environment isstoicted to support the
dynamic structure real-time simulation and the-teaé embedded system design. The
new software is called DS-eCD++. The software aectiire of DS-eCD++ adopts the
four software components in eCD++. Various aspetisiplementation differ from
that in eCD++. Introduction of structure componantl structure agent requires extra
classes to represent the components. A structaneaaent involves multiple structure
options, but only one structure, which is an acstrecture of a structure component,
participates in the simulation. The structure shitll for cooperation among the
components and the processors in the simulatiosn,Ahe structure shifts brings a
series of changes in the software architectureCaide+. This chapter will discuss the
implementing issues in DS-eCD++. The summary ofrthasions are explained in
section 4.1. The sections from 4.2 to 4.5 depiet ithplementing details of each
software component in DS-eCD++. Finally, the fuoctlities of DS-eCD++ are

discussed at the section 4.6.

Software Architecture Overview

In eCD++, the four software components contain adefined behaviours and
corporate with each other to execute real-time DEM&ulations. The following figure

depicts the major parts of each software comporardghe relationships among them.

---------------------------- i | S oTssssssssssssssssss=g

I (B} 1 1
[) Processors / coordinators [

; Mesza Subsystem i i [P :

! Eing k L ararciy ! ; Models hierarchy '

: —_— ¥ - Lo :

I ___d.,--'”___ T 1 Y i . -'f'T:IhED, '

; / Messages Manager \\ o \ ! - |\‘ y '

; / y n 4 q\/vll Mapgping relation | :

:I | \ 1 1 H ==, Y .

- YLK =Y N |

[Message Queus i N \ B ; L= i

L = i i _— i

N A ' o ~

A Ul 1o O

' - — i - ! [A '

: —E L [T ! ' T !

[Y Sande ' F 1 L iy i

! T 1 'I Lo i ! | 4 hlanagss |

: racelves 15 Bianages ' : Models !

2I5AZES rrecefves PIrOCEssoTs ' ' ez, adds '

\ mesazes (e, add E ! Atomic & .

v Fnd) e Coupled

Extarnal . ' chjects)

evants \ ! ,lll —— -‘uﬂdls proce :

talle "l--;,__h‘\ i | A{H’ESM}N i [E

' / Manager ! i Model: '

f Teads :|'I I|I- \ ! E / AManager \

IIJ'. : \ a | Ill |I : ! Ill '

1 o ' . | i

/ N e |l :

i |\ Dz Loakup ! ; Atomic !

: |f Coortinater | | Gasig || ‘ Model !

(Loads i | sordinater | Tabla / ' ; | Ohbjects :

kEt'E:u's i A / II".,] ' ' | database :

i \ g ' i '

Creates, e \ / : : III'\ foo

| ' ! 1

\ T i "_ : i \ / :

\ \ . ! : - 1

A , ! Simulation Subsyitem 1 ! '

of Main [' I '

1 i i

| Stmulator | e e LT P PP L e i '

"., l.l ' 1

L :

\"‘-—-/&ﬁ_ : Modelling Subsyztem E

T— Load: Modals o '

Fig 24. eCD++ Software Architecture

DS-eCD++ maintains the four software componentsydwer, revisions have been
made to fit the new features. The revisions of ther software components are

characterized as:

1. The Main Simulator assumes the responsibility é@ding coupled models,
atomic models and structure agents. It takes chafrgeparating the model

definition into two groups: the active componentsd athe structure

components. It loads the initial model hierarchytte initial stage of the
simulation. The model hierarchy is updated throtlgh structure agents of
structure components as required during the simoumlaln a simulation using
the Flat Coordinator, Main Simulator takes charfystoring the initial model
composition and the couplings used in the simutatio

The DEVS Modeling Subsystem maintains a model hibsatree composed
of atomic models, coupled models and structure tagdiie structure agent
objects database is created along with the atorattehrobjects database. The
Simulation Subsystem, including tReot, theCoordinator, theSmulator and
the RevSmulator, maintains the processor hierarchy correspondinghée
model hierarchy. In the Simulation Subsystem, teeeive functions for
different types of messages in the processor aassedefined to implement
the message-passing algorithms described in the DED&lgorithm.
RevSmulator is a class of abstract simulator — RevSimulatoiciviprocesses
only the initial messages and the structural changsesages. It is a special
message processor for structure agents. FreDEVSCoordinator is
redefined to implement the Flat Coordinator in #w@ulation using a flat
coordinator. The five processor classes constifugeimproved simulation
engine in the Simulation Subsystem in DS-eCD++ etpypgy the dynamic
structure real-time simulation.

The extra messages related to structural change® ¢he expansion of the

Messaging SubsystemlnternalMessage class andDoneMessage class are

reused to convey the structural change messageshanstructural change
requests by appending a non-zero value in a mesSagew message class

SartMessage is created for St message.

With the revised software architecture, the higlelaedesign walk-through draws an

overall picture of how dynamic structure works i8CD++.

1. Main Simulator separates the model definition imto groups: the initial
model structure in the active component containes the structure
components in the structure components containarin® the initial
model structure are loaded into simulation syst&fain Simulator
constructs the model hierarchy assisted by the Mag&ubsystem and
builds the associated processor hierarchy witth#éip of the Simulation
Subsystem. The simulation control is passed to Rwmmie upon the
simulation starts by Main Simulator. In the simidat using a flat
coordinator, Main Simulator memorizes the initidattened model
structure in the simulation.

2. Once a structural change request is raised by ami@atmodel, the
structural change request with the requested siraictalue is delivered
upward to the Root provided the request is imminaniong the
simulation events. Root issues a structural chamggsage and routes the
message to all the structure components in sinomasystem. The

structure components hand the structural changesagesto the

associated structure agents to process the stalichanges.

3. The structure agents retrieve the expected modettste from the
structure components container according to thecstral values
appended in the messages. The structure agentsamothe two model
structures. Aided by the structural change opematithe structure agents
update the model structure in the simulation sysf@ane messages are
sent to the structure components. When the donsageseturns to Root,
the structural change process ends.

4. In the simulation with a flat coordinator, the stiwral change message is
passed to the flat top and the flat top routesribssage to its associated
structure agent. The structure agent retrievesxpected model structure
and compares it with the flattened model structstered in Main
Simulator. The flattened model structure in the dation system is
updated by the structure agent. The done messaghing the Root
indicates the finishing of the structural changecpss.

5. The Root advances the simulation into the next lsitimn cycle and the

simulation continues.

4.2. Main Simulator

Main Simulator as a subsystem includes three dab&gnSmulator is the very first
object created during simulation and manages teeathaspects of the simulaticmi

is used byMainSmulator to parse the model definitioMainSmulator configures the

simulation environment througdmLoader. The modifications in Main Simulator are

listed in the following class diagram. The tasksfgrmed in Main Simulator are

summarized as:

Ini
~groupL.ist()
~group()
~definition()
~stgroupList ()
~stdefinition ()
~strucgroup ()
~stgroups
~stmap
~parse ()
~getmap ()
~InsertData()
~ScommMap()

\

< - - -

MainSimulator

~ini ~sloader
~nameset ~mlinklist
~register NewAtomics()
~GetComponentSet()
~GetLinkList()
~loadComponent()
~AddComponent()
~RemoveComponent()
~AddLink()
~RemoveLink()
~LoadFlattenLinks()
~addFlattenedLinksToFlatTop()

~updateOutLinks() /

o

Fig 25. Main Simulator Class Diagram

L___)[SimLoader

1. Models registration. At the beginning of simulatidiain Simulator registers the

pointers to the objects of the atomic models aredpibinters to the objects of the

structure agents usimggister NewAtomics() method.

2. Models loading. The components, the couplings antbegcomponents and the

input/output ports are loaded in the simulationteys by parsing the model

definition. Structure agents are absent from imuuput ports; therefore, no ports

and couplings are involved. Except for loading¢bapled models and the atomic

models,JoadComponents() method loads the structure agents. The model tyymes

identified (details in section 4.2.1 and sectidh2). through the different separators

in the model definition which are parsed and categd by the operations in the
classini.

3. Simulation environment configuration. The simulatiparameters indicating the
simulation environment are read in. Main Simulasoresponsible for simulation
environment configuration utilizing a simulationvmonment loadeSmLoader.

4. Simulation start-up and ending. Once the preparatare ready. Main Simulator
passes the control to Root Coordinator and sinorasitarts. Main Simulator
recovers the control of the simulation and annositlce termination at the end of

the simulation.

4.2.1. Structure Component Description

A structure component is furnished with a structagent to carry out the structural
changes in the structure component. In DS-eCD+w, syatax is used to extend the
build-in specification language provided in CD++d&scribe the structure components

and their alternative modeling structures.

The initial structure and the alternative structud a structure component are
explicitly described in the build-in specificatianguage in the model definition. The
initial structure of a structure component is definas the definitions of coupled
models. However, two new properties are introduteddescribe a structure

component. The following syntax is used:

- nodel Nanme#cl assNane. In the component list of a structure component,

the syntax is used to appoint a structure agerd.s€parator ‘# distinguishes a

structure agent from other models.

- Scomm This describes the structural command of a straatomponent. The
structural command is associated with an optiora ghodel structure. The
atomic model raises a structural change by spegfa structural command.
According to the designated structural change comiméhe corresponding

model structure is called.

The alternative structures of a structure compoaenspecified using separated groups

in the model definition. The group name is defiasdollows:

[CoupledmodelName + “update” + Index

The CoupledmodelName presents the name of a steumdmponent. “update” is a key
word in the build-in specification language indiogtan alternative structure of the
structure component. Index defines the sequentteeahodel structure of the structure
component. For example, [Topupdate01] denotesitbiediternative structure of the
structure componeiOP. As in the definition of the initial structureyé properties are
designated in each alternative structure of astracomponenConponent , Li nk,

I n, Qut and Sconm The sample model definition of a structure congranis
presented using the build-in specification langudgd-ig. 3, a block heading with a
model name with a pair of square brackets gg aup indicating the definition of a
coupled model or an alternative model structurend&fn of a structure component.

The properties of gr oup includingconponent s, i n, out , SconmandLi nk, are

the definiti ons. The text followed by thelefi ni ti ons after the clone is

identifications.

[top]

conponents : cu@CU notor topexec#Topexec
in: in

out : out

Sconm : topstrucl

Link : in in@u

Link : eng_i n@u i n@rot or

Link : out @motor sen_out @u

Li nk : out @u out

[t opupdat el]

conponents : cu@CU not or
in: in

out : out

Sconm : topstruc2

Link : in in@u

Link : eng_i n@u i n@rot or
Link : eng_test@u test @motor

Link : out @motor sen_out @u
Li nk : out @u out

Fig 26. A Sample Definition of Structure Components

4.2.2. Structure Components Parsing and Storage

The model definition are divided into two groupslatored in two containers. One is
the active component container storing the actiweleh structure; the other is the
structure components container including the mostelictures of the structure

components. The two containers constitute a moatabdse.

Method parse() takes two steps to build a model database. Firthly, key word

“update” is taken as a sign to separate alternatinectures of a structure component

from the initial structure. The groups whose naegm@m#ain no “update” are put to the
active components container. The groups whose neamgain “update” are sent to the
structure components container. SecondhgertData() method copies the initial
model structures of the structure components tosthecture components container.
The components in the active components contairerdaaded and participate in
simulation. The structure components container ides/ an alternative model
structures database for the structure componehts.alternative model structures as
the structure counterparts of the structure compisnare exchanged with the active
model structure of the structure components. Fghows the storage mechanism of the
model definition in DS-eCD++. The methpdrse() also establishes a scomm map, in
which a structure command is connected to a stralctalue. The scomm map is built
through Scommmap() method and can be retrieved by the metigetinap(). The
scomm map is a structural command — structural evalictionary by which the
expected model structure of the structure composdatated by means of a structural

value indicated by modellers.

Y
N

Active Load Active Model Structure

Components
[top] Container
Components : coupledl
Components : coupled2 \/
Scomm : topstrucl

Mapping
[coupled1] Relationship
Components :
Models Processors

[coupled?]
Components :
[topupdatel] / \
Components : Structure
Components
Scomm : topstruc? Container Exchange Model Structure

7

Fig 27. Model Storage and Loading

Having been stored in the two containers, the malddinition is loaded into the
simulation system step by step. In DS-eCD++, twaugs of parsing operations are
defined in the class Ini. One group of operaticase the model definition in the active
component container includirgyoupList(), group() anddefinition(). The operations
are used in eCD++ to parse the model definitiore difner group of parsing operations
are specified for the structure components contameich are absent in eCD++. The
stgroupL.ist () accesses the structure components contastmacgroup() method gets

a whole group indicated by the group name whicltifips a structural definition of a

structure componenstdefinition () method retrieves thedenti fi cati on line

indicated by thelef i ni ti on name.

4.2.2. The Flat Coordinator Technology

If the simulation runs with a flat coordinatokjainSmulator is responsible for
flattening the simulation hierarchy by callingadFlattenLinks() to rewire the
couplings linking to coupled models directly to tfa-end atomic models, calling
updateOutLinks() to rewire any atomic models’ couplings linkingdoupled models
directly to the far-end atomic models. Since thedetostructure flattening is
performed after the model definition storing, theusture components container
cannot obtained the flattened initial model stroetun order to backup the structure
in case of recallMainSmulator uses two data structures to store the flattened
structure:naneset is a component set memorizing the componentsarstitucture;
m i nkl i st is a link list storing the couplings among the paments. The two data
structures are established along with the loadihghe initial model structure.
AddComponent() method adds a componentrtaneset ; while RemoveComponent()
removes a component fromanmeset . AddLink() method appends a new coupling to
m i nklist. On the contrary,RemoveLink() method deletes a coupling from
m i nkl i st. The four methods are executed with the flattermhthe initial model
structure. Finally, the initial flattened model wstture is stored imanmeset and

m i nkl i st.

The Modeling Subsystem

The Modeling Subsystem organizes the models higicaity. The class diagram of the
Modeling Subsystem is shown in Fig. 5. The modifaas of each class are presented

in the class diagram but the inherited methods fe@D++ are not included.

4 N
Model
~ModelType ModelAdmin
Port ~delinputport() ~StructureAgentDataBase
~flatterninfluences() ~delOutputport() ~registerRevAtomic()
~strucChange() ~newRevAtomic()
~strucChange(int &)
- J
~ Coupled) e . ~
Atomic ~Execld ~newmodels RevAtomic
~initFunction() ~removedmodels ~modelType
~internalFunction() ~childs ~oldchilds ~parentld
~externalFunction() ~strucvalue ~InitFunction()
~outputFunction() ~getvalue() ~setvalue() ~InternalFunction()
~confluentFunction() ~executive() ~addmodel() ~delmodel()
~StartFunction() ~addmodelid() delmodelid() ~addlink() ~dellink()

- ~oldchildren() ~findmodel() ~findports()
~setnewmodels() ~addport() ~delport()
~getnewmodels() ~diffmodel() ~difflink()
~setremmodels() ~getmodelset()
~getremmodels() /Lﬂe“i”k%t()

/ ~getportset())

T

Structure Agent n

Atomic model 1

Atomic model n] [Structure Agent 1]

Fig 28. The Modeling Subsystem Class Diagram

The classMode provides the model operations theoretically. Tisudgclasse#tomic,
Coupled and RevAtomic, are derived from the clagdlodel and encapsulate the
implementations of atomic models, coupled modelsl atructure agents. The
substantial implementations of atomic models (Atombdel 1, ..., Atomic model n)
and structure agents (Structure agent 1, ..., Steietgent n), which are derived from
the virtual classestomic and RevAtomic respectively, are specified by modellers.
ClassCoupled possesses the model compositions and the coulfragaipled models.

In DS-eCD++, the clas€oupled also contains the implementations of structure
components. The clad2ort encapsulates the implementations of input andubutp
ports. In DS-eCD++, the model hierarchy tree hanbzhanged in two ways: on one
hand, the structure agents bring the changes tmtel hierarchy; on the other hand,
the structural changes of the structure componiezdp updating the model hierarchy
during simulation. The clagdodel Admin manages the dynamic model hierarchy tree.

The revised implementation details of the Modeltupsystem are characterized as:

1. ModelAdmin specifying the implementations of Model Managesates a
structure agent object by meang @jister RevAtomic() method and builds the
structure agent objects database (a dictionary s@tecture building the
relationships between a structure agent’'s stringenand a pointer to the
structure agent objectpewRevAtomic() method creates a structure agent
object utilizing the object pointer stored in thbjexts database. It also
employs Processor Manager (see section 4.4) taeceeprocessor for the

structure agent. Once the structure agent objeatabdse has been built,

Model Manager permits a dual traverse betweentthetare components and
the associated structure agents. &kecl d allows a structure component to
find its associated structure agent; on the coptrdahe parentld
encapsulated in a structure agent enables it @sadts parent model.

The classModd encapsulates the logic implementations of modegrd are
three model types includingat om cType, coupl edType and
revat om cType which are included imodel Type. dellnputport() and
delOutputport() methods are defined to remove an input/output fsorh a
coupled modelstrucChange(int &) andstrucChange() methods are inherited
by an instantiated atomic model and call the hommws methods in the
simulator associated with the atomic model to asargl retrieve the structural
value. The structural value is retrieved throsgtucChange(); while a new
structural value is assigned @aucChange(int &).

Atomic encapsulates the implementations of atomic modieleCD++, five
transition functions, including InitFunction(), ExternalFunction(),
InternalFunction(), ConfluentFunction() and OutputFunction(), specify
atomic model behaviours. In DS-eCD+&artFunction() is introduced to
re-initialize atomic models when the models joia #imulation via structural
changes.

RevAtomic specifies the implementations of structure age8imiilar with
atomic models RevAtomic employs transition functions to describe the

behaviours of structure agentsitFunction() is used to initialize a structure

agent. The structural transitions of a structurenagare specified in
IntenralFunction(). In addition,RevAtomic encapsulates a group of structural
change operations (explained in section 4.3.1),clwhare called by the
concrete structure agent in their internal struattransition functions.
Coupled encapsulates the implementations of regular cdupledels and
structure components. The implementations of sirecitomponents are
added toCoupled in DS-eCD++ Execld is an attribute of structure
components specifying the model ID of the strucagents. This attribute can
be used to distinguish structure components frogalee coupled models. If
the value ofExecl d is a valid integer, the model is a structure congm.
Otherwise, the model is a regular coupled modetieive() method is used to
retrieve theExecl d. addmodelld() and delmodelld() methods update the
model composition of a structure component in acsiral change. In the
nested structural change process, the structurahgehis executed from
bottom to up. The structure component at higherahthical level should
store the structural change valuesinr ucval ue via setvalue(). getvalue()
retrieves the structural value when the structahalnge is recalled at this
structure componenthi | ds andol dchi | ds are two lists storing the new
model composition and the model composition to lhenged in a structure
component. The difference between the two listsiscevhen the structure
component is experiencing a structural change.mdel composition stored

in childs is updated along with the structural change. Thedeh

composition to be changed is backupoindchi | ds using oldchildren()
method. The differences between the two lists asmdcutated by
setnewmodels() method and etremmodels() method setnewmodels() method
stores the models to be added in a data memlesmnodel s; while
setremmodels() method sends the models to be removed in anothiex d
member r enovednodel s. getnewmodels() method is invoked by the
corresponding coordinator to retrieve the modelemfrnewnodel s.
getremmodels() method gets the models to be removed from
renmovednodel s. These two methods are invoked by the corresponding
coordinator to adjust its simulating behaviour. Bienessages are sent to the
models innewnodel s to re-initialize the models for the next simulatio
cycle. The models inenovednodel s are deleted from the synchronized set
in the coordinator and are removed from simulasigstem finally.

6. Port defines a series of implementations of input/oufparts. As we have
explained in 4.2.2, the model structure is flatteifea flat coordinator is
applied in simulationflatterninfluences() extends the flattening in the class

Port to update the influences of a port.

Structural Change Forms and the Operation Boundarie

Before introducing the structural change operatidine structural change forms and
the operation boundaries are discussed. The disouskstructural change form gives
a clue to investigate the structural change opmrafi while operation boundaries

regulate structural changes in a safe and clegresdthe structural change forms also

provide useful hints in designing structural chaisgenarios and structural change

cases.

In DEVS-based simulation systems, there are thredskof component elements:
component (an atomic model or a coupled model),plog (links between
components) and port (input port or output portju&ural changes aim to adjust the
layout of the component elements. Therefore thelstigictural change forms can be
identified in the six types. 1) addition of a compat; 2) removal of a component; 3)
addition of a link between components; 4) remova 6nk between components; 5)
addition of an input / output port; 6) removal of eput / output port. The basic
structural change forms constitute the structunanges in most cases. Update of a
component refers to a component is updated by a vergion which might have
totally different behavior or interface from thedabne. This can be considered as a
composition of the basic structural change fornd @am be accomplished by simply
replacing the old component with a new one, whitioives the addition and removal
operations. According to the basic structural cleafgyms, the structural change
operations are defined. The structural change tipegare combined together to

accomplish most possible structural changes indisinibuted systems.

Structural changes cause modifications in the mbdaiarchy. Sometime conflicts
between the structural change processes occle éxpected model structures call for

opposite operations such as addition and removhkecame component etc. Operation

boundaries should be defined to avoid the conflastsl to regulate the structural

changes operations in a conflict-free and deterdhraage.

To specify the operation boundaries, the locatidarmation in relation to the model
hierarchy of the all kinds of components shoulébalyzed. A component of a coupled
model has knowledge of its parent, children ligt #re couplings among the children.
A component of an atomic model is aware of its paaad its input/output ports. The
components belonging to the same parent are bsotiiee brother components are
independent from each other. A component contamnisformation of its brother. As
being defined in FDSDE, a structure agent is inicedl to execute the structural
change for a structure component. The structuretagetaken as a revised atomic
model aware of only its parent and works on bebélits parent. We can take a
structure agent as a structural representativestiature component. That is to say, a
structure agent holds as the same structural véethestructure component. With the

structural views of all the components, the operaioundaries can be defined:

1. The structural changes in a structure component@nducted by the associated
structure agent. A structure component and an atamdel have no capability to
dispose structure change operations.

2. Addition / removal of a component refer to add emove an atomic model. A
structure component is a model structure govermmt @an switch its model
structure from one to the other with the help @& #ssociated structure agent. The

structure component itself would not be added amoeed. A structure agent is

always associated with a structure component; finerecannot be added or
removed as well.

3. An atomic model is a structure unit and involvesstwictural change in it. The
ports in an atomic model would not be changed dusimulation. If different port
sets in an atomic model are needed in differentlsiion stage, the union of the
port sets are defined in the atomic model definitamd the specific port sets are
used at certain simulation stage.

4. Addition / removal of input / output ports are usedadd or remove input / output
ports in a structure component. By which the irdegfof the structure component is
changed.

5. A structure component can only add / removed thgloags in which the sender
and receiver pertain to the structure componergase of a coupling spanning two
different structure components, the situation bezogomplex. Consider A is the
sender of the coupling and B is the receiver ofdabwpling. The DEVS property,
closure under coupling, ensures that there isuatsiire component existed to cover
A and B. That is to say, the structure componettiesparent of either A or B and
the parent of the ancestor of either A or B. Thetee structural change process is

able to handle the situation link this.

4.3.2. Structural Change Operations

A group of structural change operations are defimedclass RevAtomic,

including structural change operations and suppheang operations:

¢ Structural change operations:
GetModels
GetLinks
GetlnputPorts/GetOutputPorts
Add/Remove models
FullAdd/FullRemove models
+ Add/Remove links
Add/Remove input/output ports.
DiffLinks
DiffModels
DiffinputPorts/DiffOutputPort
+ Supplementary operations:

+ FindModel

¢ FindInputPort/FindOutputPort

* & ¢ o o

* o o

*

The structural change operations provide necessaapipulations to the
component elements (models, links and por@gt actions retrieve the specified
component elementDiff actions aim to calculate the differences betwedsn t
component elements subject to be changed and thparent elements expected to
join. Add/Remove & FullAdd/FullRevmode actions realize the actions of addition /
removal of the component elements. The operatiande performed in two ways: full
operations and light operations. In the full operat, the atomic model objects and the
associated simulator objects are added / remowed) alith the addition / removal of
the model references and the processor referendbs structure components. Simple
operations only add or remove the references ofatbmic models in the structure
component while keep the model objects and thecasd simulators in the model
object databases. The former operations are seifabthe new atomic models added
in the simulation system or the atomic models remdopermanently from the
simulation system. If the models are removed temmigrat the previous simulation

stage and will be reused at later simulation stdgesimple operations can be applied.

Two sets of operations offer flexibility to modeewho can keep balance between

minimum memory usage and fast loading time. Supefeary operations are used to

locate the component elements. Those operationsadlezl by the concrete structure

agents to define the real structural change opersin the simulation.

Simulation Subsystem

The Simulation Subsystem presents simulators amatdowtors hierarchically.

FDSDE redefines the message-passing algorithmsther abstract simulators.

Accordingly, the abstract simulator classes inSheulation Subsystems are revised to

fit the changes. The class diagram of Simulatiobs$stem is presented in Fig. 6. The

modifications in each class are listed.

Root

~receiveDoneMsg()

Simulator

~struc ~struc_rec
~receivelnitMsg()
~receivelniternalMsg()
~receiveExternalMsg()
~receiveCollectMsg()

~receiveStartMsg()

Processor

~strucChange()

~strucChange(int &)

P

rocessorAdmin

~generateRevAtomicProc()’

~getProcDB()

J

o~

Coordinator
~waitingMode

~screq
~receivelnitMsg()
~receivelnternalMsg()
~receiveExternalMsg()

~receiveCollectMsg()

~receiveOutputMsg() ~receiveCollectMsg()
~receiveDoneMsg() ~receiveOutputMsg()
~receiveDoneMsg()
J

FlatDEVSCoordi
nator

~waitingMode

~screq
~receivelnitMsg()
~receivelnternalMsg()

~receiveExternalMsg()

\
RevSimulator

~receivelnitMsg()

~receivelniternalMsg()

Fig 29. The Simulation Subsystem Class Diagram

The clasgprocessor defines virtual operations for the abstract sinauka The classes
Root, Coordinator, Smulator and RevSimulator representing the abstract simulators
are derived from the clagsocessor to execute the corresponding message-passing
mechanisms (refer to the section 3.B)atDEVSCoordinator is another subclass
derived from the clasgrocessor to represent the abstract simulator of the flat
coordinator. The concrete simulators and coordmsaice instantiated from the abstract
simulator classes. ClaBsocessorAdmin plays as a processor manager responsible for
generating the processors and maintaining a procesgects database (a dictionary
database building a relationship between a proceédsmnd a pointer to the processor

object). The modifications in the Simulation Sulieys are concluded as:

1. The receive functions for the different types ofsseges received in each abstract
simulator are replaced with the message-passimgigdgs described in the section
3.3.

2. generateRevAtomicProc() in ProcessorAdmin is called byNewRevAtomic() in
Model Admin to generate a concrete processor for a structienet awith the help of
getProcDB(), the processor objects database can be accesaesirgture agent to
add / delete a processor when the associated raddleen added / deleted.

3. strucChange(int &) and strucChange() methods are inherited by the concrete
simulators to assign and retrieve the structurélevadf the processors. A new
structural value is assigned througihucChange(int &) method in the internal
transition function, the external transition fulctior the confluent transition

function of an atomic model if the atomic modeé#rito raise a structural change

request. Two data members in the correspondingaiorthold the structural value
andstrucChange(int &) method updates the data member uc in the simulator.
If a new structural value is assignest,r uc contains a different value with
st ruc_r ec. The simulator detects the difference betweenwioedata members
via strucChange() and determines whether if a structural changea®igs raised.
The receiveSartMsg() in Simulator takes charge of message processirsjaof
messages which are received in an atomic model.

4. RevSmulator encapsulates the message-passing algorithm of Reledor. The
processor instantiated froRevSmulator generates the behaviours of structure
agentsRevSmulator handles initial message, which initializes the glpend the
structural change messages, which invoke the stalcthange processes in

structure agents with the expected structural wlue

Messaging Subsystem

Message Subsystem is responsible for managemenmedsage classes and
maintenance of a message queue. Virtual attribariedsoperations of a message are
defined in Message. Seven message classes are inherited from thealidass
encapsulating the corresponding messaging implatiens. Classes$nitMessage,
InternalMessage, ExternalMessage, DoneMessage, OutputMessage, CollectMessage
and StartMessage represent initial message, internal message, etterassage, done
message, output message, collect message anchesmage respectively. The message

class diagram is shown in Fig. 7.

1. MessageAdmin as a message manager maintains an unprocessedyeessale
and dispatches messages.

2. DoneMessage andInternalMessage classes are extended to represent a structural
change request and a structural change messagectiesfy. In eCD++, done
message and internal message are used for sinmutatirol purpose and no value
involved In DS-eCD++, done message and internal messagereemessage
values to carry structural values.MoneMessage class andnternalMessage class,
setvalue(value) method sets a structural value in the data membéue. The
structural value can be accessedgaaalue() method. The concrete messages are

the instantiations of the message classes.

MessageBag] Message H[MessageAdmin

? A
[|

ExternalMessage] OutputMessage InternalMessage)
L) ’ ~value
~getvalue()
~setvalue(value)
J
DoneMessage [StartMessage]
~value ~getvalue()
~setvalue(value)
CollectMessage] [InitMessage]

Fig 30. Messaging Subsystem

Functionalities of DS_ECD++

The functionalities of DS_ECD++ are investigatedhis section. The most important
functionality is dynamic structural change. In Clesp3, we discussed the basic
structural change forms. The compositions of thbasic structural change forms
constitute a variety of structural change scenaid® ECD++ is able to perform the
various structural change scenarios by combinimghtisic structural change forms.
The structural changes may be raised at any tiD8E specifies that the structural
change has higher priority over other simulatioergs. When a structural change
request becomes imminent, other imminent eventse havwait until the next
simulation cycle. A structural change request carrdised in the internal transition
function, the external transition function of amraic model. The message-passing
paradigms defined FDSDE are in line with the P-DEW®nalism; therefore parallel
simulation is possible in DS-eCD++. That is to sagtructural change request can be
handled in the confluent function of an atomic modéoreover, DS-eCD++ also
supports the nested dynamic structural change,hichna structural change request
may cause a series of structural change processkarent structure components in

the model hierarchy.

The revised flat coordinator supports dynamic stm& simulation with a flat
coordinator. In the simulation with a flat coordimig the solo structure agent executes

the structural change for the structure compondiatttep.

DS-eCD++ supports dynamic structure in real timenplbying the interval time
function, DS-eCD++ enables to run the simulatiothweal time advance. Sometime,
the dynamic structural change in real time simafatiakes longer time than that in

virtual time simulation for the structural changeeds more time to process.

DS-eCD++ is able to cooperate with the GGAD intetgr to implement simulation
using GGAD-defined DEVS models. Whatever one or @anatomic models are
replaced with the GGAD equivalents, the dynamiacttire simulation can run as
exactly the same as the simulation with C++ langudgfined models. Also, the
dynamic structure simulation with the GGAD modés Iboth virtual time advance and

real time advance.

The functionalities of DS-eCD++ can be embodiedhgystructural change scenarios.
In the next chapter, the structural change scesarie devised and the corresponding

case studies are conducted to test the functieslit

Chapter 5 Structural Change Scenarios and Case Stigb

In order to evaluate the FDSDE algorithm and tHeasoe logic, the case studies are
investigated in this chapter. The structural chasgenarios presented in the first
section combines the basic structural change fatessribed in Chapter 3 and the
major functionalities in eCD++. In the following @®ns, two cases: DSAMS
(Dynamic Structure Automatic Manufacturing Systemdl MTRS (Motor Tracing and
Replacement System) are studied. In each casdgea s€experiments are provided to
verify the structural change scenarios. For eacke,cdhe model description is
explained. The structure components in the casesidantified and the formal
specifications of the structure components basedhenDSDEVS formalism are
exhibited. A series of experiments covering a cedlf the structural change scenarios

are carried out and the simulation results areyaedl

Structural Change Scenarios

Ten structural change scenarios are presentedltoate the dynamic structural change

functionality and the compatibility with eCD++.

» Scenario 1:Structural change request is raised in the extéunation of an

atomic model

« Scenario 2:Structural change request is raised in the intdurection of an

atomic model

+ Scenario 3: The structural changes involving transition canfli can be

properly handled by means of confluent transitiamction of an atomic model

* Scenario 4: Addition or/and removal of internal links (The dgen and the

receiver of the links are within a coupled model).

e Scenario 5:Addition or/and removal of an atomic model

« Scenario 6:Replacement of a coupled model

» Scenario 7:A nested structural change process caused by @stlichange

request.

« Scenario 8:Structural changes in a flat coordinator.

» Scenario 9:Structural changes of the interface of a coupledleh (changes

of the input ports or/and output ports of a couptentiel)

» Scenario 10:Running dynamic structure real time simulatiomggshe GGAD

models

Case 1 DSAMS

Description

DSAMS (Dynamic Structure Automated Manufacturingst®yn) is composed by the
dedicated stations that perform assembling andipgitasks on different products in a
manufacturing plant, including a conveyor belt thransports the products to/from
those workstations. THeontroller Unit is an atomic model used to control #ations

of the Conveyor according to external inputs (which schedule thaufecturing of a

given product). Th€onveyor transports the producheing manufacturetb the other
units, as indicated byontroller Unit. The Conveyor itself is a coupled model
consisting of atngine (to move the belt) andZensor (to detect the current position in
order to decide when we need to stop the belt).Erigene Assembly workstation(ES)

is an atomic model, modeling a dedicated workstagtanding beside thH@onveyor to
take assembling tasks. The second dedicated wbodkstdPainting workstation (PS) -

is a coupled model containingPainter (which paints the products) and two models of

painting armsChrome andColor. The timing parameters used in DSAMS are shown in

the table.

btnla sla : i
; Sensor !
btn2a s2a ! o!
stl_a Q : T sla_eng =¥
-~ > stla | 21
st2_a = ' @
o st2a <!
sta_disp_g @ |active a Engine =
= r |
dim disp & & rGirection’ |
~ B R) S EaBREEEEEEEEE

<~ ledl | _eng_a @l 1@ © Ifg
(% =y %: _______ E.f——— E-____________I
ES | Painter PS |
1 gl[fs
1 o —_ ~ !
i 2 5 |2 |'O‘ |
L s 5] |8 :
| Chrome Color :

Fig 31. The Scheme of DSAMS

Table 1 The Timing Parameters in DSAMS

Model . : . .
Time Variables Duration Description
Name
preparationTime2Start Time(0, 0, 0, 5) start a pobd
Engine preparationTime2Stop Time(0, 0, 0, 5) stop a produc
) . . move from one station to the
movingTime Time(0, 0, 0, 5)
other
ES workingTimel Time(0, 0, 1, 0) Working time during daytime
ES' workingTime2 Time(0, 0, 1, 050) Working time duringght
workingTimel Time(0, 0,2, 20) paint color and chrome
Painter workingTime2 Time(0, 0, 1, 0) paint color
workingTime3 Time(0, 0, 2, 0) Paint chrome
Chrome preparationTime Time(0, 0, 0, 10) preparerole painting arm
Color preparationTime Time(0, 0, 0, 20) prepar@cphinting arm

Initially, a product is placed on th€onveyor belt besides th&S waiting for the
indications from theController Unit, which receives the external events frbtnlA
indicating that the product is processedE§ and frombtn2A, which tells that the
product is processed IAS (as we can see in the table, multiple events eceived
throughout the simulation on each of the buttonkgController Unit also receives the
status of the products @onveyor from Sensor (from inputssla and s2a), and outputs
them through the output portsa disp_a or dirn_disp a. sta disp a displays the
number of the station that the product has rea¢g&i= 11 and PS = 21); while
dirn_disp_a indicates the moving direction of the conveyor ¢pped, 1: moving
forward, and 2: moving backward). Two LED outputrtppledl and led2, are
associated with the two statiorsSandPS). The corresponding LED turns on (value =

1) when the destined station is assigned, and wffn@alue = 0) when the product

reaches the station. The completion of the taskkarstations is indicated by the two
output portsstl a andst2_a respectively. Thdengine receives indications from the
Controller Unit via active_a and direction_eng_a. The expected station is input
throughactive_a indicating the destination thHgngine moves to. The moving direction
of the Engine is designated waection_eng a. sla_eng tells theSensor the current
station theengine reached. ThEngine startsESand receives the ending signal fr&®
via es in andes out. ps in and ps out are used to signaBS and reports the task
completion inPS. ThePainter initiates chrome arm and color arm ¢l@ome_in and
color_in. The preparation done messages are returned fre@htome and theColor

throughchrome_out andcolor_out.

Two kinds of changes are considered in the DSAMS:

1) Variation of the duty shift, which will produce hange betweeBS andESL. For
the simulation, it is supposed that the duty timm&d minutes for botBSandESL.

2) Switch of painting modes. Some products need payritoth color and chrome
(painting mode = 1) while other products requirenpiag either color (painting
mode = 2) or chrome (painting mode = 3). The pagitnhode is indicated by the
CU, which will generate an external event reprasgnthe corresponding

painting mode.

Formal Specifications

The structure components in DSAMS are shown inrendb diagram, in which a
rectangle with a name represents a model, whildlgse with Z ; denotes a transition
function (i is the model name, j refers to its stuwal state)y indicates the structure
agent associated with the structure compongnis e internal transition function of

the structure agent.

The formal specifications give formal definition$ the structure components.

represents the structure component TOP; whitkenotes the structure component PS.

=X Yo Xo M) X ={activate} Y.={out} M, ={X,, Sox, Sy, &, Ty}

Xy = {strucl, struc2} $={So,x; S.,x} TS x=TS,x =10 minutes
O, (So,x, € change) =s; y & (S1,y, €, change) = sg 4

Y (So,x) = {Do, {Mio}, {lio}, {Zio}} Y (S1,%) ={D1, {Mis}, {li}, {Zis}}

Dy ={CU, Conveyor, PS, ES} D, ={CU, Conveyor, PS, ES’}

Mcu,0= Mcu1= { Xews So, cur Scur Yeur Ocus Acus Teu}

Mcoo=Meo1 = { Xecor S0, cor Seer Yeer Ocer Aces Teck

Mps.0 = Mps1 = { Xps, So, ps: Spss Ypss Opss Apsy Tps}

Mes 0= { Xes, So, es: Sess Yes: Oes, Aesy Tesh

Mes'0 = { Xes', S0, es's Sess Yes's Oes's Aess Tes}

lu={¢} lew={CU} I, ={Conveyor} I ={Conveyor} I ={Conveyor} Il,s={PS} Ies
={ES} les ={ES} Io=I1={c

Zyo=Zy1=Zy Zy: Xe D Xy Zeuo = Zeup = Zew Zew * X ==> Xey

Zeo0=Zoo1 = Zoo Zoo: Xeu ?Xeo Zeo0= Zeoa = Zeo Zoo: Xeo 2 Xeu

Zps0= Zps1 = Zps Zps: Xps ?Xeo Zepo= Zepa = Zep Zep : Xeo 2 Xps

Zeso: Xes ?Xoo Zoe0Zee: Xee ? XKoo Zesit Kes P Xeo Zeett Koo 2 Xes

a)

A
Sarzgey

o”b

7
Conveyor

N\
@@

b)

l"

0/% |

Conveyor

Fig 32. a) The Model Structure of the TOP including ES b) The Model

Structure of the TOP including ES’ c¢) Formal specification of the

structure component TOP

Painter

i

Color

Chrome

@ Painter —)@—>

Color

b)
(oI "
e Painter —)@—»
Chrome
C)

=X, Ym X, My) Xi = {activate} Y = {out} M, = {X,, So x, Sy, &, Ty}

Xy = {changemodel, changemode2, changemode3}

Sk = {So.xs Sy S2x }

T sg,x = workingTimel Ts; ,=workingTime2 Ts; ,=workingTime3

O, (so,x, € changemode2) = s, y 9, (Sy,x, €, changemode3) = s,

O, (so,x, € changemode3) =s, y & (S1,, €, changemodel) = sg 4

O, (s2,x, € changemodel) =so & (S2 4 €, Changemode2) =s;

Y (So, x) = {Do, {Mio}, {lio} {Zio}} Y (S1,%) = {D1, {Mir}, {lii}, {Zi1}} Y (S2,x) = {D2, {Mi 2}, {li 2}, {Zi2}}
Dy = {Color, Painter} D; = {Color, Chrome, Painter} D, = {Chrome, Painter}

Mee,0= Mee,1 = { Xees So, ¢ Ser Yes Oces Acels Tect

Mpano= Mpan1 = { Xpas So, par Spar Ypar Opar Apar Tpa}

Meh,1 = Mch2 ={ Xch So, chs Schy Yehs Ochy Achy Ten}

lec,0 = lecr = {Painter} Iy = {11, Color} Ipa, = {11, Color, Chrome} Iy, » = {11, Chrome}

lxo = ha = Ix2 = {m}

Zyo=Zy1==Zy1=2Zyand Zy: Xg D Xy Zeeo=Zeca = Zee Zee: Xpa 2 Xee

Zch,l = Zch,z =ZcnZen: Xpa >Xen Zpa,o = xcc, 0X Xg Zpa,l = Xee X Xeh X X Zpa,z =Xeh X Xq
Zno = Ypa,O Zn1 = Ypa,l Zno = Ypa,2

Fig 33. a) PS workstation with color painting arm b) PS workstation with
color and chrome painting arms c) PS workstation with chrome painting

arm d)Formal specification of the structure component PS

Model Definitions

The model definition of DSAMS using CD++ build-ipeification language is listed
in the following figure. In the model definitionhé model structures of the two
structure components are specified. TOP has twmtsial states and PS has three

structural states.

[top]

components : conveyor A t opexec#TOPEXEC
components : dsecu@SECU es@S ps

in: btnlA btn2A stl1A in st2A in

out: ledl led2 stn disp Adirn disp Astl Ast2 A
Scomm: strucl

Link : bt n1A blA@lsecu Link : bt n2A b2A@lsecu

Link : activate A@lsecu activate A@onveyor A

Link : direction_eng A@lsecu di rection_eng A@onveyor A

Link : prmodeA@Isecu pnode i n@onveyor A

Link : es_i n@onveyor A i nA@s Link : ps_i n@onveyor A i nA@s

Link : out A@s es_out @onveyor A Link: out A@s ps_out @onveyorA
Link : slA@onveyor A s1A@secu Link : s2A@onveyor A s2A@lsecu
Link: stl@onveyorAstlA i n@secu Link: st2@onveyor A st2A i n@lsecu
Link : | 1@isecu | edl Link : | 2@Isecu | ed2

Link : station_display A@lsecu stn_disp A

Link : direction_display A@ilsecu dirn_disp_ A

Link : st1l A@isecu stl A Link : st2_A@isecu st2_ A

Link : st1l out @ngA stl Link : st 2_out @ngA st2

[conveyorA]

components : engA@ngi neA dsscA@lssensor boxA

in: activate A direction_eng A pnode_in es_out ps_out
out: sl1A s2A stl st2 es_in ps_in

Link : activate Astartstop@ngA

Link : direction_eng A engdirection@ngA

Link : es_out es_out @ngA Link : ps_out ps_out @ngA

Link : prode_in pnode_i n@ngA Link: fl oor @ngA s1A eng@isscA
Link : senlA@isscA s1A Link : sen2A@IsscA s2A

Link : es_in@ngA es_in Link : ps_i n@ngA ps_in

[ps]

components: pai nt er @ai nt er col or @ol or chrome@Chrome psexec#PSEXEC

in: inA out: outA Scomm : struct

Link : inA inA@painter Link : outcolor@painter in@color

Link : outchrome@painter in@chrome Link : out@chrome inchrome@painter
Link : out@color incolor@painter Link : outA@painter outA

[topUpdate1]

components : conveyor A dsecu@SECU es1@S1 ps

in: btnlA btn2A stl1A in st2A in

out: ledl led2 stn disp Adirn disp Astl Ast2 A
Scomm: struc2

Link : es_i n@onveyor A i nA@s1 Link : ps_i n@onveyor A i nA@s
Link : out A@s1l es_out @onveyor A Link: out A@s ps_out @onveyorA

[psUpdate1]

components : color@Color painter@Painter

in:inA out:outA Scomm : struc2

Link : inA inA@painter Link : outcolor@painter in@color
Link : out@color incolor@painter Link : outA@painter outA

[psUpdate2]

Fig 34. Model Definitions of DSAMS

The DSAMS Experiments Using DS-eCD++

Experiment 1

This experiment aims to verify the dynamic struetof the simulation environment.
The atomic models of the DSAMS were defined in Card the compositions and the
couplings are specified in the coupled modeBEXEC is a structure agent executing
the structural changes on behalf R$ according to the indicated painting modes.
TOPEXEC is another structure agent taking charge of theg shifts betweetSl1 and

ES on behalf ofTOP.

The simulation ran in real time mode and the foltaywtable of the external events was
scheduled and sent to the Controller Unit. The fob in the table arrived at time
00:00:01:500 from the input port btn1A, which meémgut the product at ES (ES’).
The value received in btn1A in the last column catied the working mode in ES (ES’).
ES (ES’) has the only one possible working modealy® = 1). Also, the associated
output port of the job was st1_A. The output tirhewdd be no later than 00:00:03:500.
The remaining jobs scheduler for ES (ES’) are theth job at 00:00:12: 500, the sixth
job at 00:00:19:985 and the seventh job at 00:00(®% The jobs scheduled for PS
were the second job at 00:00:10:500, the thirdgp00:00:10:500 and the fifth job at
00:00:15:000. Among them, the third one was inghieting mode 2 and the fifth one

was in the painting mode 3.

Table 2 The Table of the External Events

Event time Deadline Input port | Output port Value
00:00:01:500 00:00:03:500 btn1A stl_A 1
00:00:04:500 | 00:00:08:500 btn2A st2_A 1
00:00:10:500 | 00:00:13:500 btn2A st2_A 2
00:00:12:500 00:00:14:500 btn1A stl_A 1
00:00:15:000 | 00:00:17:500 btn2A st2_A 3
00:00:19:985 | 00:00:23:000 btn1A stl_A 1
00:00:25:000 | 00:00:27:500 btn1A stl_A 1

Four dynamic structure changes were identifiedrdutine simulation:

1). At 00:00:10:000, the scheduled duty timeES was expired and a duty shift

betweerES andES1 occurred.

2). At 00:00:10:505 (5ms was used to startihgine), PS switched its painting mode
from 1 to 2. TheChrome model was removed, while the modeldPafnter andColor

were maintained.

3). At 00:00:15:015Engine took 15ms to be activated and moved®), PS switched
its painting mode from 2 to 3. Ti@olor model was removed while ti@rome model

was added t&S.

4). At 00:00:20:000ESL shifted the duty td&S. It was noticed that the input event
arrived atESl at the time 00:00:20:000. Simultaneously, the daleal internal state of
ESL was expired. As a result, the confluent functioh ES1 was invoked at

00:00:20:000. In the confluent function BSl, the external transition function was

given a higher priority over the internal trangitiftunction. At 00:00:20:000, theS1

executes assembling task first, and then the dutlyteappens

Fig. 5 exhibits the structural changesR8. Initially, PS was in painting mode 1

(structural state i®Sl1), which included both the color arm and the chrama. At

00:00:10:505, the painting mode switched to 2 ¢stmal state i$S2), which included

the color armPSEXEC executed the structural changes transferringtthetsral state

of PS from PS1 to PS2.

Fig 35. The Structural Changes in PS

\

Structural Operations in PSEXEC (PS1PS2):

1. DelModel (“ps”, “Chrome”)

PS1 PSEXEC pPS2 PSEXEC
> Painter >0 0ut In > Painter
Color Chrome Color
PS3 PSEXEC
In o > Painter >0 Out
Chrome

2. DelLink (“ps”, outlink) (outlink : out@Chrome inchme@Painter)

>0 0ut

3. DelLink (“ps”, inlink) (inlink : outchrome@Painten@Chrome)

The painting mode shifted to 3 (structural stateS8) at 00:00:15:015. The structural

state of PS is changed from PS2 to PS3.

Structural Operations in PSEXEC:

1. DelLink (“ps”, outlink) (outlink : out@Color incold@ Painter)
2. DelLink (“ps”, inlink) (inlink : outcolor@Color, i@Color)
3. DelModel (“ps”, “Color”)
4. AddModel (“ps”, “Chrome”)
5. AddLink (“ps”, outlink) (outlink : out@Chrome inchme@Painter)
6. AddLink (“ps”, inlink) (inlink : outchrome@Painten@Chrome)
TOP1
gut 8<>< >l cu > Conveyor
3 I
o] | 1
m ES |1 PS) !
X | Painter !
m 1 o 1
18|\
3 Color Chrome ||
1 |
TOP2
(I)nUt &)(>l cu > Conveyor
3 \
9 =TT — e 1
1
Q : Ps2 Painter !
m 1| © :
|3 27 N\
I3 Color Chrome i
1

Fig 36. The Structural Changes in TOP

Fig. 6 presents the structural changesT@®P. TOPEXEC executed the structural
changes on behalf 30OP. ESandESL switched every 10 minutes. At 00:00:10:088,
(structural state i$OP1) was replaced bSL (structural state i$OP2). The structural

operations in TOPEXEC are:

DelLink (“top”, outlink) (outlink : out@ES es_in@ @ueyor)
DelLink (“top”, inlink) (inlink : es_out@Conveyoin@ES)
FullDelModel (“top”, “ES”)

FullAddModel (“top”, “ES1”)

AddLink (“top”, outlink) (outlink : out@ES1 es_in@@Dveyor)
AddLink (“top”, inlink) (inlink : es_out@Conveyom@ES1)

ook wdpE

As scheduled, the duty shift froB81 to ESwould occur at 00:00:20:000. The real duty
shift occurred at 00:00:21:500 for the confluemdiion gave higher priority to the
external function oESL. Consequently, the structural change, which haggém the
internal function oESL, has been delayed. The structural operations tinemstructural

state TOP2 to the structural state TOP1 are:

DelLink (“top”, outlink) (outlink : out@ES1 es_in@@veyor)
DelLink (“top”, inlink) (inlink : es_out@Conveyoi@ES1)
FullDelModel (“top”, “ES1”)

FullAddModel (“top”, “ES”)

AddLink (“top”, outlink) (outlink : o Ut@ES es_in@ @ueyor)
AddLink (“top”, inlink) (inlink : es_out@Conveyom@ES)

ok wbhpE

The Experiment 1 involved the five structural charsgenarios described in the first
section of this Chapter. The switch of painting maad PS depended on the external
value received in the input port ps_in of the Raintherefore the structural changes in
PS were caused from the external transition funotibthe Painter (scenario 1). The

duty shifts between ES and ES’ were raised bynternal transition function of ES

(ES’) (scenario 2), in which the duty time was cmahand the structural change is
raised when the duty time was expired. As we hasgebed, the fifth job brought
transition conflict between the internal transitiand the external transition of ES’;
therefore, the confluent transition function of E&is invoked to handle the conflict. In
the confluent transition function, the internahisdion function gives higher priority to
the external transition function. Consequently, thity shift from ES’ to ES was
delayed until the end of the external transitiomction. That is to say, the conflicts can
be properly handled in DS-eCD++ employing the aosft transition function
(scenario 3). The structural changes in PS and in@dved the addition&removal of

the internal links and the atomic models (scenamd scenario 5).

The simulation results are listed in Table 3. Tinst fcolumn shows the wall-clock
value (the time elapsed since the beginning ofsthrailation execution) at which the
outputs have been sent out. The second columm isxpected deadlines. The results
and the output ports are displayed in the thirdthedourth column. The fifth column
presents the values output from the output portsoAding to the external event time
and the timing parameters shown in the table ltfathble 2, we have verified that the

results reflect the external events correctly aeetthe expected deadlines.

Table 3. Simulation Results in Experiment 1

Output time Deadline Result Output Port Value
00:00:02:510 00:00:03:500 Succeed stl A 1
00:00:04:500 No deadline Led2 1
00:00:04:500 No deadline dirn_disp_a 1
00:00:04:510 No deadline sta_disp_a 21

00:00:04:510 No deadline dirn_disp_a 0
00:00:04:510 No deadline led2 0
00:00:06:560 00:00:08:500 Succeed st2 A 1
00:00:11:520 00:00:13:500 Succeed st2_A 1
00:00:12:500 No deadline ledl 1
00:00:12:500 No deadline dirn_disp_a 2
00:00:12:510 No deadline sta_disp_a 11
00:00:12:510 No deadline dirn_disp_a 0
00:00:12:510 No deadline led1 0
00:00:14:030 00:00:14:500 Succeed stl a 1
00:00:15:000 No deadline led2 1
00:00:15:000 No deadline dirn_disp_a 1
00:00:15:010 No deadline sta_disp_a 21
00:00:15:010 No deadline dirn_disp_a 0
00:00:15:010 No deadline led2 0
00:00:17:040 00:00:17:500 Succeed st2_A 1
00:00:19:985 No deadline led1l 1
00:00:19:985 No deadline dirn_disp_a 2
00:00:19:995 No deadline sta_disp_a 11
00:00:19:995 No deadline dirn_disp_a 0
00:00:19:995 No deadline ledl 0
00:00:21:510 00:00:23:000 Succeed stl a 1
00:00:26:020 00:00:27:000 Succeed stl a 1

The messages log the simulation details. It iscedtthat the light operations were used
in the structural changes in PS; while the fullraiens were applied in the structural
changes in TOP. When the simulation starts, theetidd are designated (shown in the
figure). In the third job, the Chrome model is remd using the light operation
DelModel(). When the Chrome model was reused irfiftiejob, the model reference
(id = 10) was simply added into the children li§tR® (figure). The model id of ES
model was 06 at the beginning of the simulatione H5 model was removed with
FullDelModel() during the duty shift at 00:00::10@ The new model id (id = 16) was

assigned to ES model when ES rejoins the simulati@®:00:21:500.

MSG: 1/ 00:00:00:000 / Root(00) TO top(01)

MSG: 1/ 00:00:00:000 / top(01) TO conveyora(02)

MSG: 1/ 00:00:00:000 / top(01) TO dsecu(05)

MSG: 1/ 00:00:00:000 / top(01) TO es(06)

MSG: 1/ 00:00:00:000 / top(01) TO ps(07)

MSG: 1/ 00:00:00:000 / top(01) TO topexec(13)

MSG: 1/ 00:00:00:000 / conveyora(02) TO enga(03)

MSG: 1/ 00:00:00:000 / conveyora(02) TO dssca(04)

MSG: D / 00:00:00:000 / dsecu(05) / ... / @00 TO top(01)
MSG: D / 00:00:00:000 / es(06) / 00:00:10:000 / 0.00000 TO top(01)
MSG: 1/ 00:00:00:000 / ps(07) TO painter(08)

MSG: 1/ 00:00:00:000 / ps(07) TO color(09)

MSG: 1/ 00:00:00:000 / ps(07) TO chrome(10)

MSG: 1/ 00:00:00:000 / ps(07) TO psexec(11)

MSG: D/ 00:00:00:000 / topexec(13) / .../~ 0aDOO0 TO top(01)
MSG: D/ 00:00:00:000 / enga(03) / ... / 0.000 O conveyora(02)

NN NN I NAn.NANn.NN.NANNN | daaa~/NAN | 1 N NNNNN TN\ ammi i smiam Zata)}

MSG: D / 00:00:00:000 / painter(08) / ... / 0.00000 TO ps(07)
MSG: D / 00:00:00:000 / color(09) / ... / 0.00000 TO ps(07)
MSG: D / 00:00:00:000 / chrome(10) / ... / 0.00000 TO ps(07)

RO NI NN.NN.NAN.NANN | inancran (A A4\ | 1 N NNANNAN TN ~~AINT7\

Fig 37. The initialization of the Simulation

MSG: X /00:00:15:015 / ps(07) / ina / 3.0000D painter(08)

MSG: */ 00:00:15:015 / ps(07) / 0.00000 TOnper(08)

MSG: D/ 00:00:15:015 / enga(03) / ... / 0.000 O conveyora(02)
MSG: D/ 00:00:15:015 / painter(08) / 00:00:00:400 3.00000 TO ps(07)
MSG: D/ 00:00:15:015 / conveyora(02) / .../ 0.00000 TO top(01)
MSG: D/ 00:00:15:015 / ps(07) / 00:00:00:000 / 3.00000 TO top(01)
MSG: D/ 00:00:15:015 / top(01) / 00:00:00:000 / 3.00000 TO Root(00)
MSG: */00:00:15:015 / Root(00) / 3.00000 T&p(01)

MSG: */ 00:00:15:015 / top(01) / 3.00000 T(Q7)

MSG: */00:00:15:015 / ps(07) / 3.00000 T@x=c(11)

MSG: D/ 00:00:15:015 / psexec(11) / .../ 0DQO0 TO ps(07)

MSG: St/ 00:00:15:015 / ps(07) TO chrome(10)

MSG: D/ 00:00:15:015 / chrome(10) / ... / @00 TO ps(07)

MSG: D/ 00:00:15:015 / ps(07) / 00:00:00:000 / 0.00000 TO top(01)
MSG: D/ 00:00:15:015 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

Fig 38. The Structural State Transition from PS2 to PS3

MSG: D/ 00:00:21:500 / es1(15) / 00:00:00:000 / 4.00000 TO top(01)

MSG: D/ 00:00:21:500 / enga(03) / 00:00:00:000 / 0.00000 TO conveyora(02)
MSG: D/ 00:00:21:500 / conveyora(02) / 00:00:0@:00 0.00000 TO top(01)
MSG: D/ 00:00:21:500 / top(01) / 00:00:00:000 / 4.00000 TO Root(00)
MSG: */ 00:00:21:500 / Root(00) / 4.00000 Tap(01)

MSG: */ 00:00:21:500 / top(01) / 4.00000 TeQ7)

MSG: */ 00:00:21:500 / ps(07) / 4.00000 T@xec(11)

MSG: D/ 00:00:21:500 / psexec(11) / .../ 0DQOO TO ps(07)

MSG: D/ 00:00:21:500 / ps(07) / ... / 0.00000 top(01)

MSG: */00:00:21:500 / top(01) / 4.00000 Tapéxec(13)

MSG: D/ 00:00:21:500 / topexec(13) / .../~ 0aDOO0 TO top(01)

MSG: St/ 00:00:21:500 / top(01) TO es(16)

MSG: D/ 00:00:21:500 / es(16) / 00:00:10:000 / 0.00000 TO top(01)

MSG: D/ 00:00:21:500 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

Fig 39. The Structural State Transition from TOP2 to TOP1

Experiment 2

This experiment replaced the Sensor model with GGAdDation equivalent and
executed the simulation using the table of thereateevents presented the table
(scenario 10)Fig. 6 and Fig. 7 display GGAD definitio$ Sensor, which is used to
replace thesensor defined with C++ 1t was found that th&ensor defined in the two
waysbehaved exactly the same and had the same simmutasalts. Since the GGAD
notation can build equivalent atomic models witsleffort than the C++ definitions, it
is useful for non-expert modellers. This experimeatified that DS-eCD++ can

connect to the GGAD interpreter to execute GGAD et®dorrectly (scenario 10).

P senlA:

sla_engp

P sen2A:

@ equal (s1A _eng, 1)?1 {cur_value = s1A eng;}

®@ equal (s1A_eng, 2)?1 {cur_value = s1A eng;}

Fig 40. GGAD Graphical Definition of the Sensor

[Sensor]

in: slA eng

out: senlA sen2A

var : cur_value |l ast_val ue
state: idle positionl position2
initial: idle

ext: idle positionl equal (s1A eng, 1)?1 {cur_value s1lA eng;}
ext: idle position2 equal (s1A eng, 2)?1 {cur_value = sl1lA eng;}

int: positionl idle senlAl'l {last_value = cur_val ue;}

int: position2 idle sen2Al'l {last_val ue cur _val ue;}

idle: infinite
positionl: 0:0:0:0
position2: 0:0:0:0

GGAD notation Definition ofSensor

Experiment 3

A different test applied the flat coordinator teijue to the dynamic structure
simulation of DSAMS (scenario 9). Thelat Coordinator helps to improve the
simulation performance by flattening the model &iehy and reducing the number of

messages delivered among the models dramaticdlgf-Iat Coordinator in DSAMS

enables the atomic models to exchange messages thatli=LATTOP directly.
FTOPEXEC is the solo structure agent taking charge of theegiral changes on behalf

of FLATTOP.

Fig. 12 exhibits the processor hierarchy usingfidtecoordinator. The coordinators of
the structure componentS and TOP are replaced with the flat coordinator. The
FLATTOP exchanges the messages directly with the atoméeigavhile FTOPEXEC
executes the structural changes on behaKL&TTOP. The simulation with the flat
coordinator produces the same simulation resulisas® of Experiment 1, but played a
higher simulating performance. The total messagelsanged among the processors in
Experiment 1 are 1,104; while the total messagéseded in Experiment 2 are 703.
The improvement ratio is (1104 - 703) / 1104 = 2663 The comparison of the
numbers of messages between the two experimestsoign in Fig.13. The sample
messages generated in the simulation of DSAMS utiiegflat coordinator are

presented in the figure.

Root
\

Flattened Coordinator

[
\4 \4 \ \ \ \4 \4 \4

FTOPEXEC Cu ES Engine || Sensor || Painter Color Chrome

Fig 41. Simulation Hierarchy with a Flat Coordinator

450

400

350

300

N
g
N

250

185
200

150

Number of Messages

100

50 19

Message Types

O Simulation w ith the Flat Coordinator B Simulation w ith the Hierarchical Simulators/Coordinators

Fig 42. Comparison of the Number of Messages between the two

simulation fashions

MSG: 1 / 00:00:00:000 / Root(00) TO flattop(01)

MSG: D / 00:00:00:000 / flattop(01) / 00:00:10:000 / 0.00000 TO Root(00)

MSG: D / 00:00:10:000 / es(06) / 00:00:00:000 / 5.00000 TO flattop(01)

MSG: D / 00:00:10:000 / ftopexec(11) / ... / 0.00000 TO flattop(01)

MSG: St/ 00:00:10:000 / flattop(01) TO es1(13)

MSG: D/ 00:00:10:000 / es1(13) / 00:00:10:000 / 0.00000 TO flattop(01)
MSG: D/ 00:00:10:000 / flattop(01) / 00:00:10:000 / 0.00000 TO Root(00)
MSG: D/ 00:00:10:505 / enga(03) / ... / 0.00000 TO flattop(01)

MSG: D / 00:00:10:505 / painter(08) / 00:00:00:000 / 2.00000 TO flattop(01)
MSG: D/ 00:00:10:505 / flattop(01) / 00:00:00:000 / 2.00000 TO Root(00)

RO * I NN.AN.AN.CNAC | DaAa~dinNN | N NNNANN TN flatban/NAN

Fig 43. The Message Flows in the Simulation using the flat coordinator

Case 2: Motor Tracing and Replacement System (MTRS)
Description

Motor tracing and replacement system aims to tesxkcontrol the moving motor in
real time. When the motor fails report its statethiwv the given period, the motor
malfunction is considered and a new motor is sfaidaeplace the old on€ontroller
Unit is an atomic model to control and trace the tangetor. A motor is a coupled
model containing two atomic modekngine andSensor. TheEngine drives the motor
moving according to the directions indicated by@oetroller Unit. TheSensor senses

the position of the motor and reports it to @antroller Unit.

ol fou

Controller Unit

A
eng_in sen_out

Fig 44. The Scheme of MTRS

Table 4 The Timing Parameters in MTRS

Model . : . .
Time Variables Duration Description
Name
o _ Time used to start moving a|
preparationTime2Start Time(0, 0, 0, 5)
product
o _ Time used to stop moving a
Engine preparationTime2Stop Time(0, 0, 0, 5)
product
o) Time used to move from one
movingTime Time(O, 0, 0, 10))
station to the other

. . . Time used from direction
turningTime Time(0, 0, 0, 5))
turning

Motor should report its states
Cu period Time(0, 0, 0, 40) | within the period, otherwise a
failure is raised

Initially, the motor stops to the north. When tentroller Unit receives an instruction
(the moving directions with north: 1, east: 2, $08, west: 4) fromn, the Controller
Unit passes the instruction to tBagine througheng_in. TheEngine drives the motor
to move at the indicated direction for up to 10osets. If a new instruction comes
during the moving of the motor, the moving will ibéerrupted and act according to the
new instruction. Otherwise, the motor stops. $&ese senses the position of the motor
via its input portsen_in and report is to th€ontroller Unit throughsen _out. The
directions that have been acted successfully ateubdhrough theout port of the

Controller Unit.

In MTRS, the motor is replaced by another motormibéails to report the status to the
Controller Unit within the given period. Thewotor is a structure component, in which
the Engine and theSensor may be changed by the counterparts. TO® is another
structure component, in which a new coupling froetést in theController Unit to the

test in motor is added.

Formal Specifications

The formal specification of the structure comporneMITRS is presented based on the
DSDEVS formalism. In the figure, S represents ttnecsure componentotor. The

Engine and the Sensor in the fig. a) are replagatidd Enginel and the Sensorl in the

fig. b). The fig. c) is the formal specificationmbtor. The figure xx shows the formal
specification of th&’OP. The structural change of the interface of the cediphodel
lies in the transition function between @entroller Unit and the structure component

rTIOtOF (Zmoyoe Zmolj).

¥
.

Engine0 —) Sensor

Q

)

F

O

)

S=Xs Y, Xo M) Xs ={1, 2, 3,4} Ys ={1, 2, 3, 4} M, ={X,, So,x» Sy, &, Ty}

X, ={Timeout} S = {So.v» S, x} TSox=Tsyx=Inf 3§ (so y € Timeout) =s;
Y (So0,x) = {Do, {Mio}, {lio}, {Zio}} Y (51, x) = {D1, {Mis}, {lia}, {Zi}}

Do = {Engine, Sensor} D; = {Enginel, Sensorl}

Meno = { Xen, So, ens Sens Yen, Oen, Aen, Ten}

Mse 0= { Xse So, ses Sses Yses Oses Ases Tse}

Men1,1 = { Xen1, So, en1, Sents Yents Oents Aents Tent}

Mse1,1= { Xse1 So, se1s Sse1, Ysets Ose1, Asets Tse1}

leno = {S} lens,1 = {S}

lse,0 = {Engine} lse1, 1 = {Enginel}

lyo = ly1={S}

Zyo=Zy1=Zyand Z,: Xs 2 Xy Zeno: Xs02 Xeno Zeni1i Xs1 2 Xent1 Zseo: Xeno =
Xseo Zser1: Xen1 > Xse11

ZS,O Yse,O > YS,O ZS,l Yse,l > YS,l

O

)

Fig 45. a) The Motorl is controlled by the Controller Unit b) The Motor2 is
controlled by the Controller Unit ¢) Formal specification of the structure

component motor

—) Cu —> motorl

_) cu —) motor2

b)

P=0Xp Yo X, My) Xp =11, 2,3,4} Y,={1, 2, 3,4} M, ={X,, So,x» Px, O, Ty}

Xy ={Timeout} S, ={Soy, S.x} TSox=TsS1y=Inf & (S0 € Timeout) =s; y
Y (So,x) = {Do, {Mio}, {lio}, {Zio}} Y (S1.x) = {D1, {Mia}, {lia}, {Zia}}

Dy = {Controller Unit, motor} D; = {Controller Unit, motor}

Mcu,0= Mcu1 = { Xews So, cur Scur Yeur Ocus Acus Teu}

Mino,0= Mino,1 = { Xino So, mo» Smos Ymo» Omos Amos Tmo}

leu,0 = {P} leur,1 = {P}

Imo, 0 = {Controller Unit} I, 1 = {Controller Unit}

lyo = Iy1 = {Controller Unit}

Zyo=Zy1=Zyand Z,: Xp 2 Xy Zeuo: Xpo 2 Xewo Zeua: Xp1 2 Xeur Zmoo: Xeuo =2
Xm0 Zmo1 Xeut 2 Xmo,1

ZP,O YCu,O 9 YP,O ZP,l Ycu,l 9 YP,l

c)

Fig 46. a) The Controller Unit Connected with Motorl. b) The Controller
Unit Connected with Motor2. ¢) The Formal Specification of the

Structure Component TOP.

Model Definitions

The model definition of MTRS is shown in the Fi@. The model structure described
in the group[Topupdatel] is the alternative model structuraf the structure
componenfTOP. The alternative model structure mibtor is presented in the group
[motorupdatel]. For each group, the structural camiiis designated to take as a code

name of the corresponding model structure.

[top]

components : cu@ECU motor topexec#ExecTop

in:in out:out Scomm : topstruc1

Link : inin@cu Link : eng_in@cu in@motor

Link : out@motor sen_out@cu Link : out@cu out

[topupdate1]

components : cu@ECU motor

in:in out: out Scomm : topstruc2

Link : in in@cu Link : eng_in@cu in@motor Link : eng_test@cu test@motor

LI D L 1. T Y i T ¥~ D N T T P

Fig 47. Model Definition of MTRS

The MTRS Experiments Using DS-eCD++

Experiment 1

The MTRS is simulated in real time with the extémaents in the following. Initially,
motorl is controlled by the Controller Unit incladi theEngine and theSensor. The
Engine contains one input pom. A soft fault was set in thEéngine, which makes the
Engine cannot report its status when the direction ist\ixedue = 4). Motor2 including
the Enginel and theSensorl starts to replace motorl. Suppose motor2 contawes
input portsin andtest. The instructions from th€ontroller Unit are received vian,

while test allows receiving more information from ti@antroller Unit.

A nested structural change process was involvethénexperiment. MotorEXEC

replaceed the components and the couplings of metih the counterparts of motor2
on behalf of the structure componemitor. TOPEXEC took charge of building a new
coupling between Controller Unit and motor2 on lieb&the structure component

TOP.

Table 5 The Table of the External Events

Event time Deadline Input port | Output port Value
00:00:01:500 00:00:01:535 in out 2
00:00:04:500 00:00:04:535 in out 3
00:00:10:500 00:00:10:535 in out 1
00:00:15:000 00:00:15:035 in out 4
00:00:20:000 00:00:20:035 in out 3

At 00:00:15:000, an instruction was sent to@oatroller Unit. The instruction comes

to theEngine of at 00:00:15:010. Due to the soft fault in Ergine, the instruction was

not executed properly. Therefore, f@entroller Unit did not receive the report from
the Sensor. The Controller Unit considered the malfunction tbe motorl. At
00:00:15:040, the Controller Unit sent an outpuhwialue 9 indicating the failure of
the motorl. A structural change request is raisethé Controller Unit once upon the
failure report. The structural change request aatise structural changes both in the
motor and theTOP as in the figure 19. The structural change imtloéor was executed
first. MotorEXEC replaces the couplings and the atomic models énnibtor. The

structural change operationshotor EXEC were:

DelLink (“motor”, link1) (link1: in in@engine)

DelLink (“motor”, link2) (link2 : out@engine in@ssar)
DelLink (“motor”, link3) (link3 : out@sensor out)
DelModel (“motor”, “Engine”)

DelModel (“motor”, “Sensor”)

AddModel (“motor”, “Enginel”)

AddModel (“motor”, “Sensorl”)

AddInputPort (“motor”, “test”)

AddLink (“motor”, link1) (link1: in in@enginel)

10 AddLink (“motor”, link2) (link2 : test test@engine)
11. AddLink (“motor”, link3) (link3 : out@enginel in@sasorl)
12. AddLink (“motor”, link4) (link4 : out@sensorl out)

©oNOOA~WNE

After MotorEXEC finished the structural change axemn, the structural change
message was delivered to ff@P. TOPEXEC adds a coupling in thi®P. TOPEXEC

implements the following structural change operatio

1. AddLink (“TOP”, link) (link : eng_test@CU test@Mafo

TOP1
TOPEXEC

In o> > CuU >>0 Out

i = Motorl |
| S |
1 g 1
1 m Engine Sensor !
1 > 1
| m |
L O :

TOPEXEC TOP2

In &> > Ccu >0 Out

= f Motor2 |

1 9 :

: o 1

1 I'T'I gine e O :

X !

Yl om .

1 (@] :

o ______ '

Fig 48. The Structural Changes in MTRS

The Table 6 reflects the simulation results. Irs #periment, the first three external
events have been executed and reported correcdtly. fdurth event is input at
00:00:15:000 with the direction 4. ThHenginel failed to report the action to this

instruction and caused the structural changes iRSIT

Three structural change scenarios were involvetthenexperiment. The motorl was
replaced by the motor2. That is to say, the coupledelmotor has been replaced by
the new one (scenario 6) although the same namse in the simulation. A nested
structural change process (scenario 7) involvedtwe structure components — the
motor and theTOP. The new coupling from the output perig_test of the Controller

Unit to the input portest of the motor changes the interface of timotor to the

Controller Unit (scenario 9). At 00:00:15:040, the value 9 is otitipdicating the
malfunction of the controlled motor. And then aistural change request was raised in
the Controller Unit. MotorEXEC and TOPEXEC compléte structural changes for
their structure component respectively. As a resiat motor2 replaced the motorl to
receive the instructions from the Controller UAitreal time 00:00:20:020, the motor2

reacted the instruction arriving at 00:00:20:000 aent its status correctly.

Table 6 The Simulation Results in the MTRS Simolati

Output time Deadline Result Output Port Value
00:00:01:510 00:00:01:535 Succeed out 2
00:00:04:510 00:00:04:535 Succeed out 3
00:00:10:520 00:00:10:535 Succeed out 1
00:00:15:040 00:00:15:035 Not Succeed out 9
00:00:20:020 00:00:20:035 Succeed out 3

The following message flows presents the detaibggihg information. The Fig. 20
shows the failure report of ti@ontroller Unit. At 00:00:15:040, th€ontroller Unit
sent 9 to the output pastit. The nested structural change processor follotveddtilure
report. The lines with shadow in the Fig. 21 intikddat the structural change messages
were sent to the structure agents of the structongponent and the structure agents
returned done messages to the structure compomeats.the figure, we can see that
the structural change in thaotor was executed first. THenginel and theSensor1 join

the simulation. Afterward the structural changethe TOP was implemented. At

00:00:20:000, the new coupling was used to delivessages.

MSG: @ / 00:00:15:040 / Root(00) TO top(01)

MSG: @ / 00:00:15:040 / top(01) TO cu(02)

NN . 7 I NN.NN.AC.NAN | ~a../NO\ | ~..4 | N NNNANN TN tan/NAN

Fig 49. Failure Report from the Controller Unit

MSG: D / 00:00:15:040 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)
MSG: */ 00:00:15:040 / Root(00) / 0.00000 TO top(01)

MSG: */ 00:00:15:040 / top(01) / 0.00000 TO cu(02)

MSG: D / 00:00:15:040 / cu(02) / 00:00:00:000 / 2.00000 TO top(01)
MSG: D / 00:00:15:040 / top(01) / 00:00:00:000 / 2.00000 TO Root(00)
MSG: */ 00:00:15:040 / Root(00) / 2.00000 TO top(01)

MSG: */ 00:00:15:040 / top(01) / 2.00000 TO motor(03)

MSG: */00:00:15:040 / motor(03) / 2.00000 TO motorexec(06)

MSG: D / 00:00:15:040 / motorexec(06) / ... / 0.00000 TO motor(03)

Fig 50. The Message Flows in the Nested Structural Change Process

MSG: X / 00:00:20:000 / Root(00) / in / 3.00000 TO top(01)

MSG: * / 00:00:20:000 / Root(00) / 0.00000 TO top(01)

MSG: X / 00:00:20:000 / top(01) / in / 3.00000 TO cu(02)

MSG: * / 00:00:20:000 / top(01) / 0.00000 TO cu(02)

MSG: D / 00:00:20:000 / cu(02) / 00:00:00:000 / 0.00000 TO top(01)

MSG: D / 00:00:20:000 / top(01) / 00:00:00:000 / 0.00000 TO Root(00)

MSG: @ / 00:00:20:000 / Root(00) TO top(01)

RO . A I NN.NAN.ON.NNN | ban/INAN TN ~../NN\

MSG: */ 00:00:20:000 / top(01) / 0.00000 TO cu(02)

MSG: */ 00:00:20:000 / top(01) / 0.00000 TO motor(03)

MSG: D / 00:00:20:000 / cu(02) / 00:00:00:040 / 0.00000 TO top(01)

MSG: X/ 00:00:20:000 / motor(03) / in / 3.00000 TO engine1(10)

MSG: X/ 00:00:20:000 / motor(03) / test / 3.00000 TO engine1(10)

Fig 51. The Message Flows Using the New Coupling At 00:00:20:000

Chapter 6 Conclusions and Future Work

Based on the proposed FDSDE algorithm and the P®ie¥! time simulation engine,
DS-eCD++ is developed to be an advanced DEVS-basedtime experimental
environment supporting both the dynamic structwecfion and the real-time
simulation. This work advanced the functionality @D++ to meet the rigorous

requirements in modeling and design of real timéesded systems.

An advanced simulation engine combining FDSDE ai2E¥'S real time simulation
engine is defined. The Root Coordinator, the Cowatir and the Simulator, which
constitute the real time simulation engine in eCDate redefined to fit dynamic
structure and real time simulations. The concestiefcture component is introduced
in DS-eCD++ to represent the coupled models whietsabject to structural changes.
Each structure component is furnished with a stinechgent to specify the structural
changes for the structure component. A new abstantlator RevSimulaor is
introduced to generate the model behaviours ot&tra agents. Moreover, two typical
message passing scenarios, one structural chaogesprand nested structural change
process, are presented to exhibit how the mestagamong the processor at a global

view. In the message passing scenarios, the sionilphases are clearly identified.

DS-eCD++ takes advantage of the major four softweasenponents in eCD++.
However, the revisions have been made to accommddathe dynamic structural
changes in the real time simulation. The modifaadi of the Main Simulator, The

Modeling Subsystem, The Simulation Subsystem aral Nlessaging Subsystem are

explained. Moreover, the structure component ifieation and the structural change
operation in structure agents are highlighted &s@nt how the dynamic structure is
implemented. The functionalities of DS-eCD++ arscdssed showing the expected

performance.

In order to verify the logics and implementationfs tbe algorithm, a series of
experiments are conducted. The devised structunahge scenarios are firstly
enumerated presenting a functional profile of D®e€. The cases corresponding to
the different structural change scenarios are implged and analyzed in the following
section. It has been verified that DS-eCD++ noyqdrforms real time simulation in
the different structural change scenarios but @lsdle to implement GGAD notation
models and the simulation with the flat coordinaitie even expect that DS-eCD++
can further serves as a DEVS-based Real-Time ewpatal environment for real time
embedded systems modeling and design. Besidesirapaié implementation of the
hybrid software and hardware systems and the sesanttansformation from the
simulation stage to the design stage of real-tigs¢éesns, DS-eCD++ allows defining
both the structural changes and the behaviouralgdsof systems therefore achieve

high flexibility and reliability of the real timenebedded systems.

6.1. Future Works

We have proved that FDSDE algorithm performs wethie DS-eCD++ environment.
However, the further studies should be investigabesinprove the functionality and

performance of DS-ECD++.

Performance evaluation. With the devised structuadnge scenarios, the
functionality is the major concern of this work. @rkas, in order to achieve the
critical requirements of the real-time embeddedtesys, the performance
evaluation is another key issue to be conducte@ pgérformance evaluating
metrics are necessary to provide an evaluatingremvient. The performance
experiments should be conducted to ensure thetsengetection of the structural
change conditions and the fast response to thatcmomsl

Real environment examination. The case studiescanelucted in the virtual
environment. The real environment calls for mogomous timing and memory
requirements to maintain the reliability of theteyss. Further experiments in real
environment should be done to test the capabilifiéandling the real situations in
DS-eCD++.

Algorithm optimization. More experiments, espegidtie structural changes in the
complex real-time embedded systems, should be meieed to refine the
implementation of the algorithm. More structuraboges should be tried to test
the accuracy of the implementation.

Distributed and parallel implementations [LiuO7)CD++ and PCD++ realize the
DEVS simulation in distributed and parallel envinoent. The structural changes
in the distributed and parallel environments magnsgifferent simulation nodes.
Under the conditions, the structural changes mauire several structure agents to
cooperate together to implement the structural ghamasks. The coordinating

messages should be handled in the structure agenégsors. The structural

changes in the advanced simulation environmentldhmufurther explored in the

future research.

References

1.

[Bar94] Barros, F.J.; M. T. Mendes and B.P.Zeigl®fariable DEVS — Variable
Structure Modeling Formalism: An Adaptive Computehrchitecture
Application”. Al, Simulation, and Planning in HigiAutomomy Systems,
“Distributed Interactive Simulation EnvironmentsProceedings of the Fifth
Annual Conference. 1994.

[Bar95]Barros, F.J. 1995. “Dynamic Structure Déter Event System
Specifications: A New Formalism for Dynamic StruetuModeling and
Simulation”. In the Proceedings of the 1995 Win&mulation Conference,
pp.781-785. Arlington, USA.

[Bar97]Barros, F.J. 1997. “Modelling Formalisms fd@ynamic Structure
Systems”. ACM Transactions on Modeling and Comp8ierulation, Vol. 7, No.
4, pp. 501-515.

[Bar98a]Barros, F. J.; Zeigler, B. P.; Fishwick, A& .“Multimodels and Dynamic
Structure Models: An Integration of DSDE/DEVS an®@®M”, Proceedings of
the 1998 Winter Simulation Conference.

[Bar98b]Barros, F.J. 1998. “Abstract Simulators flle DSDE Formalism”. In
the Proceedings of the 1998 W.inter Simulation Carfee, pp.407-412.
Washington DC, USA.

[BarO1l]Barros, F.J. “Representation of Dynamic &ince Discrete Event Models:

A Systems Theory Approach”, Discrete event modeliagd simulation

10.

11.

12.

technologies: a tapestry of systems and Al-bassatitss and methodologies pages
167-185, Springer-Verlag, New York, 2001.

[BarO3a]Barros, F.J and Zeigler. B.P. “Model lofggrability in the Discrete
Event Paradigm: Representation of Continuous Mdddls Modeling and
Simulation; Theory and Practice, G.A. Bekey e B.%,.Kanuary, pp.103-126,
2003

[BarO3b] Barros, F.J. “Dynamic Structure Multipaiged Modeling and
Simulation” ACM Transactions on Modeling and Congusimulation, Vol. 13,
No. 3, July 2003, pp. 259-275

[Bar05] Barros, F.J. 2005. “Requirements for Maugland Simulation of
Self-Adaptive Systems: A Hierarchical and Modulgpfoach”. Proceedings of
the 16" International Workshop on Database and ExperteBystApplications
(DEXA'05).

[Cho94] Chow, A. C.; Zeigler, B. “Parallel DEVS: Aparallel, hierarchical,
modular modeling formalism”. Proceedings of the ¥#inComputer Simulation
Conference. Orlando, FL. USA. 1994.

[Cho00] Cho, Y. K., B.P. Zeigler, H. J. Cho, H.S&rjoughian, and S. Sen. 2000.
“Design Considerations for Distributed Real-Time \IE. AIS 2000. Tucson,
USA.

[ChoOla] Cho. Y.K., Zeigler, B.P. and Sarjoughiad,S. “Design and
Implementation of distributed real-time DEVS/CORBAIEEE International

Conference on System, Man, and Cybernetics. TuésonQctober 2001.

13.

14.

15.

16.

17.

18.

[ChoO1b] Cho, S., and T.G. Kim. 2001. “Real TimenS8lation Framework for
RT-DEVS Models”. Transactions of the Society for Computer Smulation
International. Vol. 18, No. 4, pp. 203 — 215.

[Gli04a]Glinsky, E., and G. Wainer. “Modeling andhfbilation of Systems with
Hardware-in-the-loop”. In the Proceedings of the0£0Winter Simulation
ConferenceWashington DC, USA. 2004.

[Gli04b]Glinsky, E., and G. Wainer. “Model-Based \@é&pment of Embedded
Systems with RT-CD++". In the Proceedings of the®?WessionEEE Real-Time
and Embedded Technology and Applications Symposioronto, Canada. 2004.
[HerOO]Herrman, J.W.; E. Lin; B. Ram and S. SafiAdaptable simulation
models for manufacturing”. Proceedings of th&' Ifiternational Conference on
Flexible Automation and Intelligent ManufacturingGollege Park, Maryland,
USA, Volume 2, pp. 989-995. 2000.

[Hon97] Hong, J., H. Song, T.G. Kim, and K.H. PaklkReal-time Discrete Event
System Specification Formalism for Seamless Read-tsoftware Development.
Discrete Event Dynamic systems. Theory and Applications, Vol. 7, No. 4, pp.
355-375. 1997.

[HuX03] Hu, X.; Zeigler, B.P. and Mittal, S. “DynamReconfiguration in DEVS
Component-Based Modeling and Simulaiton”, Simulatidransactions of the

Society of Modeling and Simulation Internationabwember 2003.

19.

20.

21.

22.

23.

24,

[HuXO04]Hu, X.; Zeigler, B. P. “Model Continuity toSupport Software
Development for Distributed Robotic Systems: A Tekormation Example”.
Journal of Intelligent and robotic Systems 39: Tip- 87. 2004.

[HuX05a] Hu, X.; Ganapathy N.; Zeigler, B. P. “Rabm the loop: Supporting an
Incremental Simulation-based Design Process”. |EfE&national Conference on
Systems, Man, and Cybernetics, October, 2005.

[HuX05b] Hu. X.; Zeigler, B. P. “Model Continuitynithe Design of Dynamic
Distributed Real-Time Systems”. IEEE Transactions ®ystems, Man, and
Cybernetics — Part A: Systems and Humans, Vol.N&3, 6, November, pp. 867-
878. 2005.

[HuX05c] Hu, X.; Zeigler, B. P. “A Simulation-basedirtual Environment to
Study Cooperative Robotic Systems”. Integrated QderpAided Engineering 12
(2005) 10S Press. pp. 353 — 367.2005.

[HuX05d] Hu. X.; B.P. Zeigler, and S. Mittal. “Vafle Structure in DEVS
Component-Based Modeling and Simulation”. Simulatidransactions of the
Society for Modeling and Simulation Internationsll. 81, No. 2, pp. 91-102,
2005.

[Kim01] Kim, T.G., S.M. Cho, and W.B. Lee. DEVS Inawork for Systems
Development. Discrete Event Modeling & Smulation: Enabling Future

Technologies. Springer-Verlag. 2001.

25.

26.

27.

28.

29.

30.

31.

[Kop00] Kopetz, H. “Software Engineering for Real¥e: A Roadmap”. In the
Proceedings of the Conference on the Future oiaod& Engineering, pp.201-211,
Limerick, Ireland. 2000.

[LiLO3] Li, L.; Pearce, T.W. and Wainer, G. “Intading Real-time DEVS models
with a DSP platform”. In proceedings of the IndigtSimulation Symposium.
Valencia, Spain. 2003

[LiuO3] Liu, S.; J. Wei; and W. Xu. “Towards DynamProcess with Variable
Structure by Reflection”. Proceedings of thd" Zfnual International Computer
Software and Applications Conference (COMPSAC’'@B)03.

[Liu06] Liu, Q. “Distributed Optimistic Simulatiorof DEVS and Cell-DEVS
Models with PCD++". M. A. Sc. Thesis. Carleton Uaiisity. Canada. 2006.
[LiuO7] Liu, Q.; and Wainer, G. “Improving CD++ Ralel simulation engine”. In
Proceedings of the 3dEEE/SCS Annual Simulation Symposium. Norfo7lk, VA
USA. 2007

[Mac04] MacSween, P. and Wainer, G. “On the comsivn of Complex models
using reusable Components”, In Proceedings of S&pOng Interoperability
Workshop. Arlington, VA. U.S.A. 2004

[Mit0O6] Mittal, S.; E. Mak and J. J. Nutaro. “DEMBased Dynamic Model
Reconfiguration and Simulation Control in the Enteth DoDAF Design
Process”. The Society for Modeling and Simulatiotetnational. JDMS, Vol. 3,

Issue 4, pp. 95-123. 2006.

32.

33.

34.

35.

36.

37.

38.

[Paw96] Pawletta, T.; Lampe, B.; Pawletta, S. Abckwelow, W. “A New
Approach for Simulation of Variable Structure Sys$8. In Proceedings of the
41th Conference, KOREMA, Aagreb, Croatia. 1996.

[Pea03] Pearce, T. W.; “Simulation-Driven Architee in the Engineering of
Real-Time Embedded Systems”. Real-Time System Sgmpp
Work-in-Progress Session. Cancun, Mexico. 2003.

[Mad07] Madhoun, R. and Wainer, G. “Performancelysia of Web-Based
CD++". In proceedings of DEVS Symposium 2007. Nif&WA. 2007.

[Sha06] Shang, H..; Wainer, G. “A Simulation Algbm for Dynamic Structure
DEVS Modeling”. Proceedings of the 2006 Winter Siation Conference.
Monterey, CA. USA.

[Sha07] Shang. H.; Wainer, G. “A Flexible Dynamitusture DEVS Algorithm
towards Real-Time Systems”. Proceedings of the 280mmer Computer
Simulation Conference. Sandiego, CA. USA

[Uhr93] Uhrmacher, A.M. “Variable Structure Modesutonomy and Control —
Answers from Two Different Modeling Approaches” oBr Al, Simulation, and
Planning in High Autonomy Systems. IEEE Computeci&y Press, 1993, pp.
133-139

[UhrO1] Uhrmacher, A. M. 2001. “Dynamic Structure iModeling and
Simulation: A Reflective Approach”. ACM Transact®ron Modeling and

Computer Simulation. Vol. 11, No. 2, pp. 206-232.

39.

40.

4].

42.

43.

44,

45.

[UhrO4] Uhrmacher, A.M., and J. Himmeelspach. 200®rocessing dynamic
PDEVS models”. In the Proceedings of the IEEE Camp8ociety’s 12th Annual
International Symposium on Modeling, Analysis, &uchulation of Computer and
Telecommunications Systems (MASCOTS’04). Volenlalatherlands.

[Uhr06] Uhrmacher, A. M.; Himmelspach, J.; Rohl,.;Mand Ewald, R.
“Introducing Variable Ports and Multi-couplings f@ell Biological Modeling in
DEVS”. Proceedings of the 2006 Winter Simulatiom@oence, Monterey, CA.,
USA.

[Wai02] Wainer, G. 2002. “CD++: a toolkit to defirkscrete-event models”. In
Software, Practice and Experience. Wiley. Vol.188,3, pp. 1261-130.

[Wai05] Wainer, G., E. Glinsky, and P. Macsween.020 Model-Driven
Architecture of Real-Time Systems. Model-driven t®afe Development -
Volume Il of Research and Practice in Software Beering S. Beydeda and V.
Gruhn eds., Springer-Verlag.

[Wai06] Wainer, G. “Applying Cell-DEVS Methodologyor Modeling the
Environment”. InSmulation, Transactions of the SCS Vol. 82, No. 10, 635-660.
October 2006

[YuJdO7] Yu, J. and Wainer, G. “E-CD++: a tool fandeling embedded real-time
applications”. In proceedings of the 2007 SCS Sum@emputer Simulation
Conference. San Diego, CA. 2007
[Zei76] Zeigler B.P. Theory of modeling and simiwat John Wiley Editor, New

York, 1976.

46.

47.

48.

49.

50.

51.

52.

[Zei84] Zeigler B.P. Multifaceted Modeling and Diste Event Simulation.
Academic Press, London UK,1984.

[Zei86] Zeigler, B. P. 1986. Toward a simulation thueology for variable
structure modeling. In Modelling and Simulation KMedology in the Atrtificial
Intelligence Era, M. Elzas, B. Zeigler, and T. Qgreds. Elsevier Sci. Pub. B. V.,
Amsterdam, the Netherlands, 195-210.

[Zei89] Zeigler, B. P. 1989. Concepts for distrigditknowledge maintenance in
variable structure models. In Modelling and Simolat Methodology -
Knowledge Systems Paradigm, B. Zeigler, M. Elzasg, & Oeren, Eds. Elsevier
North-Holland, Inc., Amsterdam, the Netherlands;%%

[Zei91] Zeigler B. P., Kim, T. G.,and Lee, C. 19%ariable structure modeling
methodology: An adaptive computer architecture gamrlrans. Soc. Comput.
Simul. 7, 4 (Dec. 1990), 291-318.

[Zei93] Zeigler, B.; Jimwoo, K. “Extending the DEVScheme Knowledge-Based
Simulation Environment for Real-Time Event-Baseaal”. IEEE Transactions
on Robotics and Automation, Vol., 9, NO., 3, JUI¥R,351-356, 1993.

[Zei00] Zeigler, B.P., Kim, T.G. and Praehofer, Hheory of Modeling and
Simulation”, 2:Edition, Academic Press. New York, NY, 2000.

[Zei02] Zeigler, B.; Sarjoughian, H. S. “DEVS Conmamt-Based M&S
Framework: An Introduction”. Proceedings of Al, Silation and Planning in

High Autonomy. 2002

53. [Zei03] Zeigler, B. “DEVS Today: Recent Advances Onscrete Event-Based
Information Technology”. Proceedings of the ™1EEE/ACM International
Symposium on Modeling, Analysis and Simulation of on@uter

Telecommunications Systems (MASCOTS’03). 2003.

