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Abstract
We introduce an extension of the classic Discrete Event Sys-
tem Specification (DEVS) formalism that includes stochastic
features. Based on the use of Probability Spaces, the STochas-
tic DEVS specification (STDEVS) provides a formal frame-
work for modeling and simulation of general non determin-
istic discrete event systems. The main theoretical properties
of STDEVS are shown. We illustrate its use in a stochastic-
oriented simulation example with the main purpose of perfor-
mance analysis in computer systems and data networks.

1. INTRODUCTION
The DEVS formalism was developed by Bernard Zeigler

in the mid–seventies [15, 16]. Being a general system theo-
retic based formalism, DEVS can represent all the systems
whose input/output behavior can be described by sequences
of events. Thus, discrete event systems modeled by Finite
State Automatas, Petri Nets, Grafcets, Statecharts, etc.,can
be also represented by DEVS models [17]. Moreover, dis-
crete time systems can be also represented by DEVS [16].
The generality of DEVS converted it into a widely used lan-
guage to describe and to simulate most classes of discrete sys-
tems. Moreover, numerical integration methods that approx-
imate continuous systems (differential equations) by DEVS
models have been developped [4] and several aplications and
extensions of the DEVS formalism for modeling and simu-
lation of continuous and hybrid systems have been proposed
[6, 13]. Consequently, many DEVS–based modeling and sim-
ulation software tools have been developed in recent years
[18, 14, 5, 11].

Nevertheless, a drawback of DEVS is that it is only for-
mally defined for deterministic systems which limits the
stochastic treatment of the systems under study. Although
the relationship between DEVS and stochastic systems was
studied in some early works [1, 12], and an extension for
stochastic DEVS with finite states was already proposed [8],
there is not a general theory nor a formal theoretic support for
modeling general stochastic DEVS models. Stochastic mod-
els play a fundamental role in discrete event system theory.
In fact, any system involving uncertainties, unpredictable hu-
man actions or system failures requires a non–deterministic
treatment; and computer systems and data networks match

all these properties. Examples of stochastic discrete event
formalisms are Markov Chains, Queuing Networks [3] and
Stochastic Petri Nets [2]. These tools permit analyizing and
simulating stochastic models in several applications.

The first attempt to define a general DEVS–based formal-
ism for stochastic systems was reported by two of the authors
in [10]. In that work, a formalism called STDEVS that made
use of probability spaces was proposed, and it was shown that
the classic DEVS formalism is a particular case of STDEVS.
A weakness of the original definition of STDEVS was that
the different transitions did not defineindependentprobabil-
ity spaces as they shared their sigma–algebra. Thus, that def-
inition of STDEVS could not capture the behavior of classic
DEVS models equipped with random generators at the tran-
sition functions, which is the usual –but informal– practical
way to incorporate stochastic behavior in DEVS. Also, in the
aforementioned work, the crucial property of closure under
coupling was conjectured but not proven (this property allows
the usage of hierarchical model coupling).

In this new work, we continue with the preliminary work
of [10] redefining the first idea of STDEVS proposed there
in order to solve the mentioned difficulties. Using a differ-
ent probability space for each transition, we prove that clas-
sic DEVS models that use random functions define STDEVS
equivalent models (a corollary of this proof is that DEVS is a
particular case of STDEVS). Also, we show that the property
of closure under coupling holds in STDEVS. This property,
combined with the previous one, ensures the correctness of
hierarchically coupling classic DEVS and STDEVS models
in an arbitrary way. In other words, in this paper we develop
a complete theory of general stochastic DEVS.

The work is organized as follows. After recalling the prin-
ciples of DEVS and Probability Spaces, Section 2 redefines
the STDEVS formalism. Then, Section 3 shows that any
DEVS model where the transition functions depend on ran-
dom variables defines an equivalent STDEVS model. This
property permits modeling STDEVS models without mak-
ing use of probability space theory and also provides a for-
mal framework for conventional DEVS simulation tools that
make use of pseudo random sequence generators. Section 4
shows that STDEVS is closed under coupling, and, finally,
Section 5 illustrates the use of the new formalism with a sim-
ulation example.



1.1. DEVS Formalism
A DEVS model [16] processes an input event trajec-

tory and –according to that trajectory and to its own initial
conditions– provokes an output event trajectory. Formally, a
DEVSatomicmodel is defined by the following structure:

M = (X,Y,S,δint ,δext,λ, ta),

where

• X is the set of input event values, i.e., the set of all the
values that an input event can take;

• Y is the set of output event values;

• S is the set of state values;

• δint , δext, λ andta are functions which define the system
dynamics.

Each possible states (s∈ S) has an associatedtime advance
calculated by thetime advance function ta(s) (ta(s) : S→
ℜ+

0 ). The time advanceis a nonnegative real number saying
how long the system remains in a given state in absence of
input events.

Thus, if the state adopts the values1 at timet1, afterta(s1)
units of time (i.e., at timeta(s1)+ t1) the system performs an
internal transition, going to a new states2. The new state is
calculated ass2 = δint(s1), whereδint (δint : S→ S) is called
internal transition function.

When the state goes froms1 to s2 an output event is
produced with valuey1 = λ(s1), where λ (λ : S→ Y) is
calledoutput function. Functionsta, δint , andλ define the au-
tonomous behavior of a DEVS model.

When an input event arrives, the state changes instanta-
neously. The new state value depends not only on the in-
put event value but also on the previous state value and the
elapsed time since the last transition. If the system goes
to the states3 at time t3 and then an input event arrives
at time t3 + e with value x1, the new state is calculated as
s4 = δext(s3,e,x1) (note thatta(s3) > e). In this case, we say
that the system performs anexternal transition. Functionδext

(δext : S×ℜ+
0 ×X → S) is called theexternal transition func-

tion. No output event is produced during an external transi-
tion.

DEVS models can be coupled in a modular way [16]. A
DEVS coupled modelN is defined by the structure:

N = (XN,YN,D,{Md},{Id},{Zi,d},Select)

where:

• XN andYN are the sets of input and output values of the
coupled model.

• D is the set of component references, so that for each
d ∈ D, Md is a DEVS model.

• For eachd ∈ D∪{N}, Id ⊂ (D∪{N})−{d} is the set
of influencer models on subsystemd.

• For eachi ∈ Id, Zi,d is the translation function, where

Zi,d :











XN → Xd if i = N

Yi →YN if d = N

Yi → Xd otherwise

• Select: 2D → D is a tie–breaking function for simul-
taneous events that must verifySelect(E) ∈ E, being
E ⊂ 2D the set of components producing the simultane-
ity of events.

DEVS models are closed under coupling, i.e., the coupling of
DEVS models defines an equivalent atomic DEVS model.

1.2. Probability Spaces
We recall here some concepts of probability spaces [7].
A sample spaceSof a random experiment is a set that in-

cludes all the possible outcomes of the experiment.
An event space (also referred assigma–fieldor sigma–

algebra) F of the sample spaceS is a nonempty collection
made of subsets ofS.

A sigma–field cannot be any arbitrary collection of subsets
of S. A collectionF must satisfy the following properties in
order to constitute a sigma–field:

• if F ∈ F thenFc ∈ F (whereFc is the complement of
F in S).

• if Fi ∈ F for i = 1, . . . ,∞, then also
⋃∞

i=1Fi ∈ F

Notice that sinceFc∪F = S, the last two conditions imply
thatS∈ F and also⊘ ∈ F .

A particular sigma–field overS is the collection of all the
subsets ofS(2S, called the power set ofS).

LetG be a particular collection of subsets ofS. The sigma–
field generated byG , denotedM (G ), is the smallest sigma–
field that contains all the elements ofG .

A pair (S,F ) consisting on a sample spaceS and a sigma
field F of subsets ofS is called a measurable space.

A probability measureP on a measurable space (S,F ) is
an assignment of a real numberP(F) to every memberF of
the sigma-field, such thatP obeys the following rules,

• Axiom 1. P(F) ≥ 0 for all F ∈ F .

• Axiom 2. P(S) = 1.

• Axiom 3. If Fi ∈ F , i = 1, . . . ,∞ are disjoint sets, then
P(

⋃∞
i=1Fi) = ∑∞

i=1P(Fi)



WhenF =M (G ) (the sigma field is generated from a collec-
tion G ), the knowledge ofP(G) with G∈ G defines function
P for everyF ∈ F .

Finally, aprobability spaceis defined as a triple (S,F ,P)
consisting of a sample spaceS, a sigma–fieldF of subsets of
S, and a probability measureP defined for all members ofF .
Synthesizing, for everyF ∈ F , P(F) expresses the probabil-
ity that the experiment produces a samples∈ F ⊆ S.

2. STDEVS DEFINITION REVISITED
A STDEVS model has the structure:

MST = (X,Y,S,G int ,Gext,Pint ,Pext,λ, ta)

whereX,Y,S,λ,ta have the same definition as in DEVS.
G int : S→ 2S is a function that assigns a collection of sets
G int(s) ⊆ 2S to every states. Given a states, the collection
G int(s) contains all the subsets ofS that the next state might
belong to with a known probability, determined by a function
Pint : S×2S→ [0,1]. When the system is in states the proba-
bility that the internal transition carries it to a setG∈ G (s) is
calculated byPint(s,G).

Calling F int(s) , M (G int(s)) to the minimum sigma-
algebra generated byG int(s), the triplet (S,F int(s),Pint(s, ·))
is a probability space for each states∈ S.

In a similar way,Gext : S×ℜ+
0 ×X → 2S, is a function that

assigns a collection of setsGext(s,e,x) ⊆ 2S to each triplet
(s,e,x). Given a states and an elapsed timee, if an event
with valuex arrives,Gext(s,e,x) contains all the subsets ofS
that the next state can belong to, with a known probability
calculated byPext : S×ℜ+

0 ×X×2S→ [0,1].
Calling Fext(s,e,x) , M (Gext(s,e,x)) to the mini-

mum sigma-algebra generated byGext(s,e,x), the triplet
(S,Fext(s,e,x),Pext(s,e,x, ·)) is a probability space for every
triplet (s,e,x).

3. DEVS MODELS WITH FUNCTIONS
RND

We will show that a DEVS model whose transition func-
tions depend on random variables (typically generated using
RND functions), always define a STDEVS model. Thus, in
the first place it will be clear that STDEVS can represent
any practical stochastic DEVS model defined by the usual
method of using RND functions. In second place, this prop-
erty allows us to define and simulate STDEVS models in a
very simple and straight way, getting rid of the need for using
probability spaces which add complexity to the model defini-
tion structure and terminology.

Theorem 1. A DEVS model MD = (X,Y,S,δint ,δext,λ,ta) in
which its state change functionsδint andδext depend dynam-
ically on a random experiment through a random variable r
(i.e.,δint = δint(s, r) andδext = δext(s,e,x, r)) with r ∈ R⊆ ℜn

characterized by a probability measure P(r ∈B |B∈B ⊆ 2R),
defines an equivalent STDEVS model.1

Proof: We shall obtain an STDEVS modelMST =
(X,Y,S,G int ,Gext,Pint ,Pext,λ,ta) equivalent toMD, assuming
thatX,Y,S,λ,ta are identical forMD andMST. Thus, we only
need to findG int ,Gext,Pint andPext.

We start defining the collecting setG int(s) in relation to the
sigma-algebraB of the random experiment. For each setB∈
B and for each states∈ S, we define theimage set Gs,B ⊆ S
according to:

ŝ∈ Gs,B ⇐⇒ ∃r ∈ B/δint(s, r) = ŝ

Then, we defineG int(s) as:

G int(s) , {Gs,B|B∈ B }

Therefore, for the system being in states, the probability of
transition to a new state belonging toGs,B ∈ G int(s) is:

Pint(s,Gs,B) = P(r ∈ B)

Then, for each states∈ S, the functionPint(s, ·) is a prob-
ability measure in the measurable space(S,F int(s)), being
F int(s) = σ(G (s)) the minimum sigma-algebra generated by
G int(s). This is demonstrated by verification of the following
axioms:

1. Pint(s,Gs,B) ≥ 0 becausePint(s,Gs,B) = P(r ∈ B) ≥ 0.

2. Pint(s,S) = 1 , givenδint(s, r) ∈ S,∀s, r.

3. LetB1,B2 ∈ B . Then, ifGs,B1 ∩Gs,B2 = ⊘⇒ B1∩B2 =
⊘. Therefore, the following holds true:Pint(s,Gs,B1 ∪
Gs,B2) = P(r ∈ B1 ∪ B2) = P(r ∈ B1) + P(r ∈ B2) =
Pint(s,Gs,B1)+Pint(s,Gs,B1)

So far, we obtainedG int andPint for the STDEVS model
MST departing from the DEVS modelMD definition and the
randomness condition incorporated inδint(s, r).

In the case ofGext andPext we proceed analogously, this
time replacing the statesby the triplet(s,e,x) for the analysis.
This concludes the proof.

In the case that one (or both) of the transition functions is
deterministic, it can still be defined asδ(·, r), but in such a
way that it results independent onr. Hence, the whole pre-
vious analysis remains valid. Following this reasoning, the
theorem here presented is an alternative way for demonstrat-
ing that deterministic DEVS is a particular case of stochastic
STDEVS, where randomness is removed from state transition
dynamics.

1We callB to the sigma-algebra where functionP is defined.



3.1. Particular Case: Random Variable r with
Uniform Distribution

Consider now the particular caser ∈ R= [0,1]n ⊂ ℜn with
uniform distribution. We say thatr is uniformly distributed
when every component ofr have uniform distribution over
the interval[0,1]:

r i ∼U(0,1), i = 1,2, . . . ,n

This is the typical case emulated bypseudo-random se-
quence generatorsused in most of the programming lan-
guages (we will call themRND). It is interesting to take a
look separately for this particular case given STDEVS mod-
els will be usually simulated usingRND functions.

The following is then, a corollary of Theorem 1, particular-
izing STDEVS model properties when usingRND functions
within the transition definitions.

Corolary 1. A DEVS model in whichδint(s, r) depends on n
functions RND (i.e., r∼U(0,1)n) defines a STDEVS equiva-
lent model.

This corollary does not need a demonstration, given it is a
particular case of Theorem 1, takingR= [0,1]n. Anyway, we
can make explicit reference of the components of the result-
ing STDEVS model.

Proceeding like the general case, for eachimage set Gs,B ∈
G (s), the probability of transitioning from states to a new
state belonging to the setGs,B will be:

Pint(s,Gs,B) = P(r ∈ B)

which turns out to be the Lebesgue Measure for the setB.

4. CLOSURE UNDER COUPLING IN
STDEVS

We will show that a coupled DEVS modelN =
〈XN,YN,D,{Md},{Id},{Zi,d},Select〉 with Md ∈ {Md} be-
ing STDEVS atomic models for alld, defines an equivalent
atomic STDEVS model, thus verifying STDEVS closure un-
der coupling.

To achieve this, we will find an atomic STDEVS model
MST = (X,Y,SN,G intN ,GextN ,PintN ,PextN ,λ, ta) defined by the
coupling expressionN.

We begin defining the relationships that are shared with the
classic proof for deterministic DEVS:

• X = XN,Y = YN

• SN = ×
d∈D

{(sd,ed)} with sd ∈ Sd,ed ∈ ℜ. Each compo-

nent ofSN has the formsN = (. . . ,(sd,ed), . . .).

• ta(sN) = min{σd | d ∈ D}, with σd = tad(sd)−ed.

• d∗ = Select(IMM(sN))

• λsN =

{

Zd∗,N(λd∗(sd∗)) if d∗ ∈ IN,

⊘ otherwise.

Then, we need to obtain the probability spaces that will
represent the stochastic dynamics of the coupled model, as a
result of the stochastic behavior of its atomic components.

First, for internal transitions, we define the set–collecting
function:

G intN(sN) , ×
d∈D

(Gd ×{ẽd})

where

Gd =











G int(sd∗) if d = d∗,

Gext(sd, êd,xd) if xd 6= ⊘,

{sd} otherwise.

with

xd =

{

Zd∗,d(λd∗(sd∗)) if d∗ ∈ Id,

⊘ otherwise.

ẽd =

{

0 if d = d∗ or xd 6= ⊘,

êd otherwise.

and
êd = ed + tad∗(sd∗)−ed∗

The sets GN ∈ G intN(sN) will have the form GN =
(. . . (Gd,{ed}), . . .) and will verify GN ⊆ SN.

We also call F intN(sN) , M (G intN(sN)) the minimum
sigma-algebra generated byG intN(sN). Then, the probabil-
ity measure for the internal transition process inN, PintN :
SN ×2SN → [0,1] is defined as:

PintN(sN,GN) , Pintd∗ (sd∗ ,Gd∗) ∏
d|xd 6=⊘

Pextd(sd, êd,xd,Gd)

and the triplet (SN,F intN (sN),PintN(sN, ·)) is a probability
space. Similarly, for external transitions we define the set–
collecting function:

GextN(sN,e,xN) , ×
d∈D

(Gd ×{ẽd})

where

Gd =

{

Gext(sd, êd,xd) if xd 6= ⊘,

{sd} otherwise.

ẽd =

{

0 if xd 6= ⊘,

êd otherwise.

with

xd =

{

ZN,d(xN) if N ∈ Id,

⊘ otherwise.

and
êd = ed +e



The setsGN ∈ G intN(sN) will also have the formGN =
(. . . (Gd,{ed}), . . .) and will verify GN ⊆ SN.

Again, we defineFextN (sN,e,xN),M (GextN (sN,e,xN)) the
minimum sigma-algebra generated byGextN(sN,e,xN). Then,
the probability measure for the external transition process in
N, PextN : SN ×ℜ×X×2SN → [0,1] is defined as:

PextN(sN,e,xN,GN) = ∏
d|xd 6=⊘

Pextd(sd, êd,xd,Gd)

and the triple (SN,FextN (sN,e,xN),PextN(sN,e,xN, ·)) is a prob-
ability space.

5. EXAMPLE MODEL
We will give a simple example for a system which dynam-

ics fully depend on random experiments. Using the theory
presented we will see that the practical DEVS representations
of the random processes are consistent with their STDEVS
specification in terms of probability spaces.

The exampleLoad Balancing Model(LBM) is a sim-
plification of a computing system that processes successive
Tasks, consisting on the atomic models:Load Generator
(LG), Weighted Balancer(WB) and twoServers(S1,S2) with
no queuing policy (i.e., the Tasks arriving at a busy server are
discarded). The set{WB,S1,S2} form the subsystemCluster
(CL), a coupled model.

As we did before, transition functions will be expressed in
terms ofr ∼U(0,1), namelyδint(·) = δint(s, r) andδext(·) =
δext(s,e,x, r).

5.1. Load Generator
Consider a system that generates a number of Tasks in the

unit time following a discrete Poisson random distributionbe-
ing dr themean expected departure rate. It can be proven that
the inter-departure timeσk between tasksk andk+ 1 is ex-
ponentially distributed accordingP(σk ≤ t) = 1−e−at where
a = dr and 1/a is the mean expected value. We will assume
that LG generates only one type of task (Task:task1) which
goes out through the only output port (Port:out1). LG does
not have any inputs, thus only internal transitions are possi-
ble. The STDEVS definition for LG is:

MLG
ST = (X,Y,S,G int ,Gext,Pint ,Pext,λ, ta)

where the deterministic components are:

• X = ⊘,Y = {(task1,out1)}

• S= ℜ+
0

• λs = {(task1,out1)}

• ta(s) = s

and the probabilistic-related elements are:

• G int = {At | t ≥ 0} , At = [0,t)

• Pint(s,G) = Pint(s,At) = 1−e−at , G∈ G int

As we can see the stochastic description for the inter de-
parture time of tasks is mapped directly to the functionPint

through the corresponding cumulative distribution function.
Because only internal transitions are possible, we do not need
to defineGext,Pext.

Nevertheless, for implementing this STDEVS modelMLG
ST

in a simulator, the probabilistic description must be translated
into an algorithm to be evaluated into the internal transition
code, representing the associated DEVSδint(·) function. Ac-
cording our previous definitions we define:

δint(s, r) = −(1/a)log(r)

where by means of the inverse transformation method we ob-
tained an exponential distributed function making use of a
uniform distributed variabler ∼U(0,1) available as a RND()
function in most languages.

Finally, the equivalent DEVS specification for LG will be:

MLG
D = (X,Y,S,δint ,δext,λ,ta)

where:














































X = ⊘

Y = {(task1,out1)}

S= ℜ+
0

δint(s, r) = −(1/a)log(r)

δext(s,e,x, r) = s

λ(s) = {(task1,out1)}

ta(s) = s

In this component, the next randomly calculated inter-
departure time is stored in the real valued states, which is
then used by the time advance functionta(s) = s to “sleep”
LG during the corresponding amount of time. Similar rea-
soning can be applied for the rest of the components, where
the state values are used for storage purposes and models are
specified in a shorter way.

5.2. Weighted Balancer
The WB component delivers the incoming tasks arriving at

input port (Port:inp1) to the output portsout1 andout2 based
on a balancing factorbf ∈ [0,1] that determines the weight
relation between both ports. Forbf = 0.5 both outputs have
the same weight and therefore the outgoing load will be bal-
anced equiprobably. Forbf > 0.5 out1 is privileged and for
bf < 0.5 out2 is privileged, in a linear fashion. The tasks ac-
cepted belong to a setT = {task1, ...,taskm} with mdifferent
possible tasks.



We will give the DEVS definitionMW B
D for WB:

MWB
D = (X,Y,S,δint ,δext,λ, ta)

The corresponding equivalent STDEVS modelMWB
ST can

be obtained following the same reasoning previously used for
component LG. From now on, we will make use of Theorem 1
and will refer only to the DEVS form of components with
some form of stochastic behavior, containing RND() func-
tions in the algorithms that evaluate transitions.

Then we have:

• X = T ×{inp1} , Y = T ×{out1,out2}

• S= T ×{out1,out2}×ℜ+
0

• λ(w, p,σ) = (w, p)

• ta(w, p,σ) = σ

The state is a triplets= (w, p,σ), wherew represents the
last task received,p is the port where that task is delivered and
σ is the time advance. For our exampleT = {task1}. After
receiving an event(xv,xp) the new state must be evaluated
by:

δext((w, p,σ),e,(xv,xp), r) = (xv, p̃,0)

with

p̃ =

{

out1 if r < bf ,

out2 otherwise.

andr ∼U(0,1). Finally, the internal transition will be:

δint((w, p,σ), r) = (w, p,∞)

in this case, independent ofr.

5.3. Server1 and Server2
The servers S1 and S2 are components that receive the

tasks delivered by the balancer WB. For each task received,
a server processes it demanding a service timest and sends
it out to a sink, where it is recognized as a processed task.
The variablest is distributed exponentially withP(st ≤ t) =
1−e−bt, and its mean expected value is 1/b.

There is no queuing policy nor preemption defined for the
servers. So, if a new task arrives to a server when it is busy
processing a previous task, the arriving task is ignored.

We will give the DEVS definitionMSn
D with n = 1,2 for S1

and S2 respectively:

MSn
D = (X,Y,S,δint ,δext,λ, ta)

where:

• X = T ×{inp1} , Y = T ×{out1}

• S= T ×{0,1}×ℜ+
0

• λ(w,busy,σ) = (w)

• ta(w,busy,σ) = σ

The state is a triplets = (w,busy,σ), wherew represents
the last task received,busyrepresent the status of the server
(if busy= 1 the server is processing a task and ifbusy= 0
the server is free) andσ is the time advance. For our example,
we haveT = {task1} and only one input port and one output
port. After receiving an event(xv,xp) the new state will be
evaluated according:

δext((w,busy,σ),e,(xv,xp), r) = (w̃,1, σ̃)

with
{

w̃ = xv, σ̃ = −(1/b)log(r) if busy= 0,

w̃ = w, σ̃ = σ−e if busy= 1.

andr ∼U(0,1). The internal transition will be:

δint((w,busy,σ), r) = (w,0,∞)

independent ofr.

5.4. The Complete Model

LG WB

S1

S2

LBM

CL

λ
dr bf

st1

st2

λ1

λ2 λ′

2

λ′

1

λ′
= λ′

1 + λ′

2

µ1

µ2

Figure 1. Topology of the Load Balancer Model (LBM) ex-
ample.

The system is intended to show a scenario where random
variables affect all of its building components. Here, we have
a Poisson process dominating task generation, a Uniform pro-
cess (with a latter deterministic bias) affecting the balanc-
ing between two servers and a Negative Exponential pro-
cess representing task servicing times at servers. Neverthe-
less, the implementation always rely on the use of a uniform
distributed variabler ∼U(0,1).

In Figure 1 the model topology is represented along with
the main model parameters and derived traffic magnitudes
that will be used in the next section for executing simulations.
With the DEVS specification of these components and their
defined interconnections, we built the same system in two dif-
ferent DEVS Simulation Tools (PowerDEVS [11] and CD++



[14]) parameterizing them with identical values, and run sev-
eral simulations at different operating points for comparison
and validation purposes.

5.5. Simulation Results
In order to validate results, we describe the given example

model by means of basic queuing theory, derive the equations
describing the system, and then compare simulation results
against the expected theoretical values.

A single server with no queuing capacity can be described
by aM/M/m/m system withm= 1 [9]. This description as-
sumes exponential inter-arrival times and exponential service
times which match our case. For the i-th server we have the
parametersλi (arrival rate) andµi (service rate). The traffic
intensityis defined

ρi = λi/µi (1)

Because of the limited buffering capacity (in our simplest
case, only the servicing task can be ”buffered”) there is a
probability of losing tasks, which will never be serviced. This
probability is denotedPlossi (probability of loss) and is related
with the traffic intensity byErlang´s loss formula[9] in its
simplest form for a single server:

Plossi = ρi/(1+ ρi) (2)

The i-th server will see at its input port aneffective arrival
rate:

λ
′

i = λi(1−Plossi) (3)

which under stability conditions2 is equal to theserver
throughputat its output port. In our LBM example, we have
i = 1,2 for the two servers in the cluster (CL) sub-model.
Clearly, thetotal system throughputλ′

must beλ′
= λ′

1 + λ′

2
hence being a function of thetotal system arrival rateλ and
the traffic intensitiesρ1,ρ2 at the servers.

These magnitudes are all calculated from model parame-
ters set up for simulation:dr (mean departure rate at LG, in
Tasks/second), bf (balancing factor at WB),st1,st2 (mean ser-
vice time at S1 and S2 respectively, inseconds) in the follow-
ing way:

λ = dr

µ1 = 1/st1 λ1 = bf λ
µ2 = 1/st2 λ2 = (1−bf )λ

(4)

Now, with (1) and (4) in (2) we derive the internal loss
probabilities:

Ploss1 =
bf drst1

1+bf drst1
,Ploss2 =

(1−bf )drst2

1+(1−bf)drst2
(5)

2In lossy systems, theeffective traffic intensityρ′

i = λ′

i/µi is alwaysρ′

i <
1 so the typical stability conditionλi/µi < 1 is not required. Finite buffer
systems are always stable since arriving tasks are discarded when the number
of tasks in the system exceeds system capacity.

Finally, we want to express thetotal system throughputin
terms of atotal system loss probability Ploss like we did for
the individual servers. So with (3) and (5) we obtain:

Ploss= bf Ploss1 +(1−bf )Ploss2

λ
′
= λ(1−Ploss)

(6)
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Figure 2. Simulation Results. Test Scenario 1dr = 10,bf =
[0,1],st1 = 0.2,st2 = 0.2

With equations (6) we completely characterize the sys-
tem in terms of offered load, loss probabilities and effec-
tive throughput. Then, in Figure 5.5. we plot the theoretical
curves forPloss,Ploss1,Ploss2 and λ′

as functions ofbf in a
test scenario 1chosen asTS1 = {dr = 10,bf = [0,1],st1 =
0.2,st2 = 0.2}. In the same figure we plotted simulation re-
sults for the STDEVS model LBM parameterized according
the scenarioTS1 at a set of illustrative operational points
sweepingbf between 0 and 1. Simulation results matched
closely the expected theoretical curves, for successive repe-
titions at each point. Simulation point values were derived
from the output event log files produced by simulation runs,
using calculated3 task ratevariables, thus obtainingλ′sim and

3A generalλsim
k task rate at an arbitrary observation placek is: λsim

k =
NumberO f TasksLoggedk/TotalSimulationTime.



Psim
lossi

= 1− (λ′sim
i /λsim

i ). The statistical properties of the ran-
dom variables produced by the atomic models were verified to
match with those expected: uniform distribution forbf , dis-
crete Poisson distribution forλ and exponential distribution
for st1 andst2. This also produced Poisson distributed series
of values for all the observed task rates, as expected.

6. CONCLUSIONS
We presented a novel formalism for describing stochas-

tic discrete event systems. Based on the system theoretical
approach of DEVS and making use of Probability Spaces,
STDEVS provides a formal framework for modeling and sim-
ulation of generalized non deterministic discrete event sys-
tems.

The development of STDEVS was motivated by a wider
project aimed to provide a unified framework for analysis,
design, modeling and simulation of automated control tech-
niques targeting the performance optimization of computer
systems and data networks; in interaction with continuous
and hybrid systems. We have chosen STDEVS as the tool to
provide that unified framework, exploiting the advantages of
DEVS efficient approximation of continuous systems [4] (for
classic control theory techniques representation) and DEVS
high-performance execution features (for real-time modelex-
ecution aims).

Thus, next steps will be oriented to develop STDEVS–
based libraries in PowerDEVS and CD++ for modeling and
simulation of general computer systems and data networks.
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