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Keywords: Discrete event simulation, DEVS, Stochastic all these properties. Examples of stochastic discreteteven

systems. formalisms are Markov Chains, Queuing Networks [3] and
Stochastic Petri Nets [2]. These tools permit analyizind an
Abstract simulating stochastic models in several applications.

We introduce an extension of the classic Discrete Event Sys-

tem Specification (DEVS) formalism that includes stoclasti ~ The first attempt to define a general DEVS-based formal-
features. Based on the use of Probability Spaces, the SFochdsm for stochastic systems was reported by two of the authors
tic DEVS specification (STDEVS) provides a formal frame- in [10]. In that work, a formalism called STDEVS that made
work for modeling and simulation of general non determin-use of probability spaces was proposed, and it was shown that
istic discrete event systems. The main theoretical prigsert the classic DEVS formalism is a particular case of STDEVS.
of STDEVS are shown. We illustrate its use in a stochasticA weakness of the original definition of STDEVS was that
oriented simulation example with the main purpose of perfor the different transitions did not definedependenprobabil-

mance analysis in computer systems and data networks. ity spaces as they shared their sigma-algebra. Thus, that de
inition of STDEVS could not capture the behavior of classic

1 INTRODUCTION DEVS models equipped with random generators at the tran-

) . sition functions, which is the usual —but informal— praatic
The DEVS formalism was developed by Bernard Zeigler,y5y tq incorporate stochastic behavior in DEVS. Also, in the

in the mid—seventies [15, 16]. Being a general system theOstqrementioned work, the crucial property of closure under

retic ba_sed formalism, DE_VS can represe_nt all the systemgoup"ng was conjectured but not proven (this propertyesio
whose input/output behavior can be described by sequencgse usage of hierarchical model coupling).

of events. Thus, discrete event systems modeled by Finite
State Automatas, Petri Nets, Grafcets, Statecharts,c@e.,  |n this new work, we continue with the preliminary work

be also represented by DEVS models [17]. Moreover, disof [10] redefining the first idea of STDEVS proposed there
crete time systems can be also represented by DEVS [16}x order to solve the mentioned difficulties. Using a differ-
The generality of DEVS converted it into a widely used lan-ent probability space for each transition, we prove that-cla
guage to describe and to simulate most classes of disci®te s\sjc DEVS models that use random functions define STDEVS
tems. Moreover, numerical integration methods that approXequivalent models (a corollary of this proof is that DEVS is a
imate continuous systems (differential equations) by DEVSarticular case of STDEVS). Also, we show that the property
models have been developped [4] and several aplications arf} closure under coupling holds in STDEVS. This property,
extensions of the DEVS formalism for modeling and simu-combined with the previous one, ensures the correctness of
lation of continuous and hybrid systems have been proposegierarchically coupling classic DEVS and STDEVS models
[6, 13]. Consequently, many DEVS—based modeling and simin an arbitrary way. In other words, in this paper we develop
ulation software tools have been developed in recent yearg complete theory of general stochastic DEVS.

[18, 14, 5, 11].

Nevertheless, a drawback of DEVS is that it is only for- The work is organized as follows. After recalling the prin-
mally defined for deterministic systems which limits the ciples of DEVS and Probability Spaces, Section 2 redefines
stochastic treatment of the systems under study. Althougthe STDEVS formalism. Then, Section 3 shows that any
the relationship between DEVS and stochastic systems wd3EVS model where the transition functions depend on ran-
studied in some early works [1, 12], and an extension fodom variables defines an equivalent STDEVS model. This
stochastic DEVS with finite states was already proposed [8]property permits modeling STDEVS models without mak-
there is not a general theory nor a formal theoretic supportf ing use of probability space theory and also provides a for-
modeling general stochastic DEVS models. Stochastic modnal framework for conventional DEVS simulation tools that
els play a fundamental role in discrete event system theorynake use of pseudo random sequence generators. Section 4
In fact, any system involving uncertainties, unprediatadibl-  shows that STDEVS is closed under coupling, and, finally,
man actions or system failures requires a non—deterministiSection 5 illustrates the use of the new formalism with a sim-
treatment; and computer systems and data networks matehation example.



1.1. DEVSFormalism e For eachd e DU{N}, Ig C (DU{N})—{d} is the set
A DEVS model [16] processes an input event trajec-  of influencer models on subsystem

tory and —according to that trajectory and to its own initial

conditions— provokes an output event trajectory. Formally ~ ® Foreach € lq, Z 4 is the translation function, where

DEVS atomicmodel is defined by the following structure:

Xy —Xg ifi=N
M:(X,Y,S,éim,éext,)\,ta), Zi,d: Y — Ya ifd=N
where Yi — Xqg otherwise
e X is the set of input event values, i.e., the set of all the
values that an input event can take; e Select: 2° — D is a tie—breaking function for simul-
i taneous events that must veriBelec{E) € E, being
e Yis the set of output event values; E c 2P the set of components producing the simultane-

e Sis the set of state values; ity of events.

e dint, Oext, A andta are functions which define the system DEVS models are closed under coupling, i.e., the coupling of
dynamics. DEVS models defines an equivalent atomic DEVS model.

Each possible state(s € S) has an associatdiune advance

calculated by thdime advance function ta) (ta(s): S—  1.2. Probability Spaces

0¢). Thetime advancés a nonnegative real number saying  We recall here some concepts of probability spaces [7].
how long the system remains in a given state in absence of A sample spac& of a random experiment is a set that in-
input events. cludes all the possible outcomes of the experiment.

Thus, if the state adopts the valsieat timety, afterta(s;) An event space (also referred sigma—fieldor sigma—
units of time (i.e., at timea(s;) +t1) the system performs an algebrg # of the sample spacis a nonempty collection
internal transition going to a new stats,. The new state is made of subsets &
calculated asp = dint(s1), wheredint (int : S— ) is called A sigma—field cannot be any arbitrary collection of subsets
internal transition function of S. A collection ¥ must satisfy the following properties in

When the state goes from to s, an output event is order to constitute a sigma—field:
produced with valuey; = A(s1), whereA (A : S—Y) is
calledoutput functionFunctionga, di, andA define the au- e if F € ¥ thenF® e ¥ (whereF°€ is the complement of
tonomous behavior of a DEVS model. FinS).

When an input event arrives, the state changes instanta-
neously. The new state value depends not only on the in- e if € # fori=1,...,0,thenalsdJiZ, F € 7
put event value but also on the previous state value and the ] . ]
elapsed time since the last transition. If the system goedotice that sincé=¢UF =S, the last two conditions imply
to the statess at timetz and then an input event arrives thatSe # and alsoo € 7.
at timets + e with value x;, the new state is calculated as A particular sigma—field oveBis the collection of all the
4 = Sext(S3, € X1) (note thata(sg) > €). In this case, we say Subsets 06 (25, called the power set ).
that the system performs axternal transitionFunctiondey L€t be a particular collection of subsets®fThe sigma-
(Bext: Sx 0§ x X — 9) is called theexternal transition func- ~ field generated by;, denotedi (), is the smallest sigma—
tion. No output event is produced during an external transifield that contains all the elements @f

tion. A pair (S, ) consisting on a sample spaSand a sigma
DEVS models can be coupled in a modular way [16]. Afield 7 of subsets oSis called a measurable space.
DEVS coupled modeN is defined by the structure: A probability measuré® on a measurable spac8g ) is
an assignment of a real numbe(F) to every membeF of
N = (XN, YN, D, {Ma},{la},{Ziq}, Selec) the sigma-field, such th& obeys the following rules,
where: e Axiom1.P(F)>O0forallF € #.

e Xy andYy are the sets of input and output values of the

coupled model. e Axiom2.P(S) = 1.

e D is the set of component references, so that for each e Axiom 3. If € 7,i=1,... 0 are disjoint sets, then
d e D, My is a DEVS model. PUZ1F) =321 P(F)



Wheng = o () (the sigma field is generated from a collec- characterized by a probability measurér B| B< 3 C 2R),
tion G), the knowledge oP(G) with G € ¢ defines function  defines an equivalent STDEVS model.
P for everyF € 7.

Finally, aprobability spacds defined as a tripleS 7 ,P)
consisting of a sample spaBea sigma—fieldr of subsets of
S, and a probability measufedefined for all members of .
Synthesizing, for everff € ¥, P(F) expresses the probabil-
ity that the experiment produces a sampteF C S,

Proof: We shall obtain an STDEVS modeMst =
(X,Y,S Gint, Gext; Pint, Pext, A, ta) equivalent tdVlp, assuming
thatX,Y, S A taare identical foMp andMgst. Thus, we only
need to findGint, Gext, Pnt @ndPext.

We start defining the collecting sétn:(s) in relation to the

sigma-algebra of the random experiment. For each Bet
2. STDEVSDEFINITION REVISITED 3 and for each statec S, we define thémage set Gg C S

A STDEVS model has the structure: according to:

Mst = (XvYa 87 Gint; Gext, I:)Int, Pext,)\,ta)

whereX,Y, S A,ta have the same definition as in DEVS.

Gint : S— 2%is a function that assigns a collection of sets
Gint(S) C 25 to every states. Given a states, the collection _ A
gimgsg contains all the subsets 8fthat the next state might Gint(s) = {GsplBE€ B}
belong to with a known probability, determined by a function Therefore, for the system being in statethe probability of
Pint : Sx 25— [0,1]. When the system is in stasghe proba- transition to a new state belonging®ag € Gint(S) is:
bility that the internal transition carries it to a € G (s) is
calculated byPnt (s, G). Pnt(s,Gsg) = P(r € B)

Calling Fint(s) £ M (Gint(S)) to the minimum sigma- '
algebra generated hyin (s), the triplet G, Fint (), Pnt (S, -)) Then, for each state € S, the functionP(s,-) is a prob-
is a probability space for each state S. ability measure in the measurable spd&efini(s)), being

In a similar way,Gex : Sx 0§ x X — 25, is a functionthat ~ #int(S) = 0(g (s)) the minimum sigma-algebra generated by
assigns a collection of setgex(s,e,x) C 25 to each triplet Gint(S). This is demonstrated by verification of the following
(s,ex). Given a states and an elapsed time, if an event ~axioms:
with valuex arrives,Gex(S, € X) contains all the subsets 8f
that the next state can belong to, with a known probability 1- Pnt(S,Gsg) > 0 becaus®ni(s,Gsg) = P(r € B) > 0.
calculated byPex:: Sx O x X x 25— [0,1].

Calling Fex(s,€X) 2 M (Gext(s,€,X)) to the mini-
mum sigma-algebra generated hjeq(s e x), the triplet 3. LetBy,B; € 3. Then, ifGsp, NGsp, = @ = B1 N By =
(3 Fext(S,€,X), Pext(S, €, -)) is @ probability space for every ©. Therefore, the following holds truéBne (s, Gsp, U
triplet (s, & x). Gsp,) = P(r € BiUBp) = P(r € By) + P(r € B) =

Pt (s, G&Bl) + Pint (s, G&Bl)

§€ Gsp <= Ir € B/dint(S,r) =$

Then, we defingin: (s) as:

2. Pnt(s,S) =1, givendint(s,r) € SVs,r.

3. DEVS MODELS WITH FUNCTIONS
RND So far, we obtained;iny andPy; for the STDEVS model

We will show that a DEVS model whose transition func- Mst departing from the DEVS mod#lp definition and the
tions depend on random variables (typically generatedgusinfandomness condition incorporatedi (s, r).
RND functions), always define a STDEVS model. Thus, in In the case ofGex and Pex; Wwe proceed analogously, this
the first place it will be clear that STDEVS can representtime replacing the stateby the triplet(s, e, x) for the analysis.
any practical stochastic DEVS model defined by the usual This concludes the proof.
method of using RND functions. In second place, this prop- In the case that one (or both) of the transition functions is
erty allows us to define and simulate STDEVS models in adeterministic, it can still be defined &-,r), but in such a
very simple and straight way, getting rid of the need for gsin way that it results independent enHence, the whole pre-
probability spaces which add complexity to the model defini-vious analysis remains valid. Following this reasoning, th
tion structure and terminology. theorem here presented is an alternative way for demonstrat
ing that deterministic DEVS is a particular case of stodbast
STDEVS, where randomness is removed from state transition
dynamics.

Theorem 1. A DEVS model M = (X,Y, S, dint, Oext, A, ta) in
which its state change functiodg; and dex; depend dynam-
ically on a random experiment through a random variable r
(i-€.,8int = Bint (S,1) aNddext = Oext(S,€,%, 1)) withre RC O" 1We call 3 to the sigma-algebra where functiéris defined.




Uniform Distribution %) otherwise

3.1. Particular Case: Random Variabler with \ {zd*‘,\,()\d*(sd*)) if d* €Iy,
[} SN = ’
Consider now the particular case R= [0, 1]" ¢ 0" with

uniform distribution. We say that is uniformly distributed Then, we need to obtain the probability spaces that will
when every component af have uniform distribution over represent the stochastic dynamics of the coupled model, as a
the intervall0, 1]: result of the stochastic behavior of its atomic components.
First, for internal transitions, we define the set—collegti
r~U(0,1), i=12,...,n function:
. . ity (SN) = X (Ga x {&
This is the typical case emulated Ipgeudo-random se- Ginty (SN) deD(gd {&})
guence generatorssed in most of the programming lan- where
guages (we will call thenRND). It is interesting to take a Gint (S¢+) if d=d*,
look §eparately for _th|s parucul_ar case given STDEVS mod- Ga =4 Gext(St,80,%a) if Xg £ O,
els will be usually simulated usirigN D functions. (su} otherwise
The following is then, a corollary of Theorem 1, particular- =
izing STDEVS model properties when usiRiND functions  with
within the transition definitions. g — {Zd*,d()\d* (sg+)) ifd*elg,
Corolary 1. A DEVS model in whicBix(s,r) depends on n @ otherwise
. : n . -
functions RND (i.e., ~ U (0,1)") defines a STDEVS equiva i 0 ifd=d"orxg£0,
lent model. 8 =< ]
é4 otherwise

This corollary does not need a demonstration, given it is a
particular case of Theorem 1, takifRg= [0,1]". Anyway, we

can make explicit reference of the components of the result- € = &y +tag(So) — e
ing STDEVS model. The sets Gy € Giny(Sy) Wwill have the form Gy =
Proceeding like the general case, for emsage set @g € (... (Ggq,{€q}),...) and will verify Gy C Sy.
G (s), the probability of transitioning from stateto a new We also call Finty(SN) = M (Gingy (Sv)) the minimum
state belonging to the s&; g will be: sigma-algebra generated I, (Sn). Then, the probabil-
ity measure for the internal transition processNn Py, :
Pnt(s,Gsp) = P(r € B) Su x 2% — [0,1] is defined as:

which turns out to be the Lebesgue Measure for th@set
PlntN(SN,GN)éPlntd* (Sd*de*) |_| PeXH(Sd,éd,Xd,Gd)

4, CLOSURE UNDER COUPLING IN dXg7#0
STDEVS . . .
We will show that a coupled DEVS modeN = and the triplet &, Finty (SN), Py (Sy, ) is a probability

(Xn,Yn; D, {Mq},{lg},{Zq},Selec} with Mg € {Mgq} be- spﬁlcet._ Sn;mlartl_y, fpr external transitions we define the-set
ing STDEVS atomic models for afl, defines an equivalent coflecting function.
atomic STDEVS model, thus verifying STDEVS closure un-

der coupling. Gexty (SN, €Xn) = dzD(Gd * {&})
To achieve this, we will find an atomic STDEVS model Where
Mst = (X,Y, S\, Ginty » Gexiy » Pnty » Pexiy - A, t@) defined by the Gon(a.Gax) i xa %O
coupling expressiol. Gd = T .’
We begin defining the relationships that are shared with the {su} otherwise
classic proof for deterministic DEVS: .
« 0 ifxq#0,
e X=Xn,Y =W "~ 1& otherwise
e Sy= x {(s4,€4)} With 84 € §y,€4 € 0. Each compo-  with
deD Znalxw) ifEN€EI
nent ofSy has the fornsy = (..., (s4,€q), .. .). xg = { VAVN ds
@ otherwise

o ta(sn) =min{aq | d € D}, with 0g = ta,(S4) — €d- and

e d* = SelectiIMM (sy)) €i=e+e



The setsGn € Ginty(Sn) Will also have the formGy = and the probabilistic-related elements are:

(...(Gq,{e4}),...) and will verify Gy C S\.
Again, we defineFexy, (S, XN) 2 M (Gexyy (SN, € Xn)) the * Gin ={A[t>0}, A =[0t)

minimum s?gma—algebra generated Gy, (sN,e,.>§N). The_n, o Pni(s.G) =Pu(sA)=1—e Ge Gin
the probability measure for the external transition predes
N, Pexy, : Su x O x X x 2% — [0,1] is defined as: As we can see the stochastic description for the inter de-

parture time of tasks is mapped directly to the functitp
through the corresponding cumulative distribution fuoti
Pexiy (SN, €, XN, Gn) = |'| Pext, (Sd,€d,%d, Gd) Because only internal transitions are possible, we do ned ne
dxg#@ to definegext, Pext-

. , Nevertheless, for implementing this STDEVS mo[s}’%?
and the triple &, Fexy, (SN; € XN); Pexty (SN, € XN, ) Is@prob- i 5 simulator, the probabilistic description must be ttatesi
ability space. into an algorithm to be evaluated into the internal traositi

code, representing the associated DEJ#S-) function. Ac-
5 EXAMPLE MODEL cording our previous definitions we define:
We will give a simple example for a system which dynam-
ics fully depend on random experiments. Using the theory Bint (s,r) = —(1/a)log(r)

presented we will see that the practical DEVS represemisitio \yhere by means of the inverse transformation method we ob-
of the random processes are consistent with their STDEV§,ineq an exponential distributed function making use of a

specification in terms of probability spaces. _ uniform distributed variable ~ U (0, 1) available as a RND()
The exampleLoad Balancing ModeLBM) is a sim-  ¢,nction in most languages.

plification of a computing system that processes successive Finally, the equivalent DEVS specification for LG will be:
Tasks, consisting on the atomic modeload Generator

(LG), Weighted Balance{wB) and twoServergS1,S2) with ME5C = (X,Y, S, 8int, Sext, A, ta)

no queuing policy (i.e., the Tasks arriving at a busy server a

discarded). The s¢WB,S1,S2 form the subsyster@luster ~ Where:

(CL), a coupled model. X=0
As we did before, transition functions will be expressed in Y = {(task,out;)}
terms ofr ~ U (0,1), namelydint(-) = int (S, 1) anddexi(:) = S— Dg
Oext(S, € %,T). dint(s,1) = —(1/a)log(r)
0 exr)=s
5.1. Load Generator )\?2)(5’ {(ta)slﬁ o)}
Consider a system that generates a number of Tasks in the N R
unit time following a discrete Poisson random distributie ta(s) =s

ing dr themean expected departure ratecan be proventhat |n this component, the next randomly calculated inter-
the inter-departure timey between taskk andk+ 1 is ex-  departure time is stored in the real valued s&terhich is
ponentially distributed accordirg(ox <t) =1—e ® where  then used by the time advance functigfs) = sto “sleep”

a=dr and Yais the mean expected value. We will assumeLG during the corresponding amount of time. Similar rea-
that LG generates only one type of task (Taslsk) which  soning can be applied for the rest of the components, where
goes out through the only output port (Pasti). LG does  the state values are used for storage purposes and models are
not have any inputs, thus only internal transitions are iposs specified in a shorter way.

ble. The STDEVS definition for LG is:

5.2. Weighted Balancer

LG _ _
MsT = (X,Y.S, Gint, Gext; Pt Pet, A, 1) The WB component delivers the incoming tasks arriving at
where the deterministic components are: input port (Portinp) to the output porteut, andout, based
on a balancing factobs € [0,1] that determines the weight
e X=0,Y = {(task,outr)} relation between both ports. Fbf = 0.5 both outputs have

n the same weight and therefore the outgoing load will be bal-

e S=1[; anced equiprobably. Fdrs > 0.5 out is privileged and for

o A= {(task,out)} bs < 0.5 out, is privileged, in a linear fashion. The tasks ac-
cepted belong to a s&t= {task,...,task,} with mdifferent

o t3(s)=s possible tasks.



We will give the DEV'S definitiorM}Y/ B for WB: e A(w,busyo) = (w)

ME® = (X.Y.S 8. Bew A ta) * ta(wbusyo) =0
The state is a triples = (w,busyo), wherew represents

be obtained following the same reasoning previously used fothe last task receivedbusyrepresent the status of the server

component LG. From now on, we will make use of Theorem 1(hc busy= 1 the Server is prqcessing a task andhusy= 0
and will refer only to the DEVS form of components with the server is free) andlis the time a_dvance. For our example,
some form of stochastic behavior, containing RND() func-"¢ haveT = {task } and only one input port and one output

tions in the algorithms that evaluate transitions. port. After receiving an evenfxy,xp) the new state will be
Then we have: evaluated according:

The corresponding equivalent STDEVS modiéf'® can

e X=Tx{inp1},Y =T x {outy,oub} dext((W,busyo), e, (xv,Xp),r) = (W,1,6)

e S=T x {outy,out} x 0§ with

o A(W.p,0) = (w,p) W=x,5=—(1/b)log(r) if busy=0,
W=w,J0=0—¢ if busy= 1.

o t3(w,p,0)=0

The state is a triplet = (w, p,0), wherew represents the andr ~U(0,1). The internal transition will be:

last task receivedis the port where that task is delivered and Sint (W, busyo),r) = (W, 0, )
o is the time advance. For our examfle= {task }. After ’ ’ o
receiving an evenfxy,xp) the new state must be evaluated independent of.

by:
Bext((W, P, 0). & (Xy; Xp),T) = (X, B,0) 5.4. The Complete Model

with
. Jouty ifr<by, e !
" lout otherwise i = = A, i
andr ~ U (0,1). Finally, the internal transition will be: i y = i
! =] NEE P i
Sint (W, P, 0),1) = (W, p, ) podr by N=N+A,
in this case, independent of ! b‘ﬂ Ay !
i S2 i
5.3. Serverland Server2 ! I |

The servers S1 and S2 are components that receive the- ]
tasks delivered by the balancer WB. For each task receivedfigure 1. Topology of the Load Balancer Model (LBM) ex-
a server processes it demanding a service gnand sends ample.
it out to a sink, where it is recognized as a processed task.
The variables is distributed exponentially witPP(s <t) = The system is intended to show a scenario where random
1—e " and its mean expected value il variables affect all of its building components. Here, weeha
There is no queuing policy nor preemption defined for thea Poisson process dominating task generation, a Uniform pro
servers. So, if a new task arrives to a server when it is busgess (with a latter deterministic bias) affecting the bedan

processing a previous task, the arriving task is ignored.  ing between two servers and a Negative Exponential pro-
We will give the DEVS definitiong“ withn=1,2forS1  cess representing task servicing times at servers. Neverth
and S2 respectively: less, the implementation always rely on the use of a uniform
distributed variable ~ U (0,1).
Mg = (X, Y, S, 8int, Bext, A, ta) In Figure 1 the model topology is represented along with
the main model parameters and derived traffic magnitudes
where: that will be used in the next section for executing simulagio
o X=Tx{inp},Y=T x {out} With the DEVS specification of these components and their

defined interconnections, we built the same system in two dif
e S=Tx{0,1} xO§ ferent DEVS Simulation Tools (PowerDEVS [11] and CD++



[14]) parameterizing them with identical values, and runse
eral simulations at different operating points for comgani
and validation purposes.

5.5. Simulation Results

In order to validate results, we describe the given example

Finally, we want to express th®tal system throughpun
terms of atotal system loss probability;&2s like we did for
the individual servers. So with (3) and (5) we obtain:

I:)Ioss: bf Plossl + (1— bf)PIossz

)\/ = )\(1— Hoss) (6)

model by means of basic queuing theory, derive the equations
describing the system, and then compare simulation results

against the expected theoretical values.

A single server with no queuing capacity can be describes
by aM/M/m/m system withm = 1 [9]. This description as-
sumes exponential inter-arrival times and exponentiaicer
times which match our case. For ththiserver we have the
parameterd; (arrival rate) and; (service rate) Thetraffic
intensityis defined

Pi = Ni/Li 1)
Because of the limited buffering capacity (in our simplest
case, only the servicing task can be "buffered”) there is ¢
probability of losing tasks, which will never be servicedi§
probability is denotelqsg (probability of los3 and is related
with the traffic intensity byErlang’s loss formuld9] in its
simplest form for a single server:

Ploss = Pi/(1+pi) 2)
The ith server will see at its input port agffective arrival
rate: /

Ai = Xi(1—Poss) 3)
which under stability conditiofsis equal to theserver
throughputat its output port. In our LBM example, we have
i = 1,2 for the two servers in the cluster (CL) sub-model.
Clearly, thetotal system throughpX must be’ = )\’14—)\/2
hence being a function of thetal system arrival rate\ and
the traffic intensitiep;, p2 at the servers.

These magnitudes are all calculated from model param
ters set up for simulatiord; (mean departure rate at LG, in
Tasks/secongbs (balancing factor at WBk1, 2 (mean ser-
vice time at S1 and S2 respectivelysecondyin the follow-
ing way:

)\ = dr
M =1/51 A1 =DbsA (4)
b =1/s0 Ao = (1—bf)A

Now, with (1) and (4) in (2) we derive the internal loss
probabilities:

(1— bf)drstz

2|n lossy systems, theffective traffic intensit}oi/ = )\; /M is alwaysp; <
1 so the typical stability condition;/p < 1 is not required. Finite buffer
systems are always stable since arriving tasks are digtarden the number
of tasks in the system exceeds system capacity.

brdrs1

—_— 5
1+btdrsa ®)

Hosq = ,Hossz =

Effective Output Rate
55 T T T

45

x (Tasks per second)
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0.4 0.5 0.6
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loss ——
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éfigure 2. Simulation Results. Test Scenariall= 10,bs =

[O, 1],8[1 = 0.2,8{2 =02

With equations (6) we completely characterize the sys-
tem in terms of offered load, loss probabilities and effec-
tive throughput. Then, in Figure 5.5. we plot the theordtica
curves forPgss, Posg ; Ploss, @and N as functions ofos in a
test scenario hosen a§ S = {d; = 10,bs = [0,1],51 =
0.2,52 = 0.2}. In the same figure we plotted simulation re-
sults for the STDEVS model LBM parameterized according
the scenariol § at a set of illustrative operational points
sweepingb; between 0 and 1. Simulation results matched
closely the expected theoretical curves, for successpe-re
titions at each point. Simulation point values were derived
from the output event log files produced by simulation runs,
using calculatetitask ratevariables, thus obtainings™ and

SA general)\ﬁim task rate at an arbitrary observation pldces: )\ﬁim =
NumberO f TasksLoggegdT otalSimulationTime



sim
F)Ioss.

= 1— (\S™/ASM). The statistical properties of the ran-

dom variables produced by the atomic models were verified to
match with those expected: uniform distribution for, dis-
crete Poisson distribution for and exponential distribution
for 1 ands». This also produced Poisson distributed series
of values for all the observed task rates, as expected.

6.

CONCLUSIONS

[7]

(8]

We presented a novel formalism for describing stochas-
tic discrete event systems. Based on the system theoretical

approach of DEVS and making use of Probability Spaces,

STDEVS provides a formal framework for modeling and sim-
ulation of generalized non deterministic discrete evest sy
tems.

The development of STDEVS was motivated by a wider
project aimed to provide a unified framework for analysis,
design, modeling and simulation of automated control tech-
nigques targeting the performance optimization of computer
systems and data networks; in interaction with continuous$11]
and hybrid systems. We have chosen STDEVS as the tool to
provide that unified framework, exploiting the advantagles o
DEVS efficient approximation of continuous systems [4] (for
classic control theory techniques representation) and ®EV
high-performance execution features (for real-time medel
ecution aims).

Thus, next steps will be oriented to develop STDEVS-
based libraries in PowerDEVS and CD++ for modeling and
simulation of general computer systems and data networks.
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