Lightweight Time Warp — A Novel Protocol for Parallel Optimistic
Simulation of Large-Scale DEVS and Cell-DEVS Models

Qi Liu, Gabriel Wainer
Department of Systems and Computer Engineering
Carleton University Centre on Visualization and Slation (V-Sim)
Carleton University, Ottawa, Canada
{liuqi, gwainer}@sce.carleton.ca

Abstract stamped event messages. The protocol consistsoof tw
distinct pieces that are sometime called the local
This paper proposes a novel L|ghtwe|ght Time control and gIObaI control mechanisms [2] Rollbask
Warp (LTW) protocol for high-performance parallel Used to recover LPs from causality errors upon the
optimistic simulation of large-scale DEVS and Cell- arrival of straggler or anti-messages with timerga
DEVS models. By exploiting the characteristicshef t  1€ss than the LP’s Local Virtual Time (LVT). EaclP L
simulation process, the protocol is able to se¢ frest ~ Maintains three data structures for this purpose: a
logical processes (LPs)from the Time Warp input queueof recently arrived messages, aentput
mechanismwhile the overall simulation still executes dueueof negative copies of recently sent messages, and
optimistically, driven by only a few full-fledgedne a state queuef the LP’s recent states. The historical
Warp LPs. The LTW protocol includes a rule-based €vents and states in these queues cannot be didcard
event-scheduling mechanism using two types of eventntil their time stamps have been surpassed by the
queues, an aggregated state-saving technique forGlobal Virtual Time (GVT). GVT computation and
optimal risk-free state management, and a new fossil collection are crucial components of thebglo
rollback algorithm that recovers lightweight LP®1in control mechanism to reclaim memory resources and t
causality errors without sending anti-messages. Thecommit 1/O operations. Over the years, many
impact on global control mechanisms such as GVT algorithmic and data structure based optimizatiuanse
computation, fossil collection, and load migrati;m  @ppeared in the literature to improve the efficient
also discussed. The basic concepts of the protocoithe original Time Warp protocol (e.g., [3]). The
could also apply to a broad range of Time Warp WARPED simulation kernel [7] is a configurable
systems under certain conditions and with apprdpria Middleware that implements the Time Warp protocol
control over the LPs. and a variety of optimization algorithms.
The Discrete Event System Specification (DEVS)
[8] is a general modeling framework for discretey
1. Introduction systems. The P-DEVS formalism [9] eliminates the
serialization constraint existed in the original \CH
definition, allowing increased parallelism to be

With the computing power and advanced software
! puting pow v W obtained in PADS systems. The Cell-DEVS formalism

available today, Modeling and Simulation (M&S) has . -
become a cost-effective tool for detailed analgdis [10] combines Cellular Automata [11] with DEVS

broad array of natural and artificial systems. Pelra theory to describe n-dimensional cell spaces aselis

and distributed simulation (PADS) is widely accepte event models, where each cell is represented as a

as the technology of choice to speed up Iarge-scaleDEVS basic model that can be delayed using explicit

discrete-event simulation and to promote reusgbilit timing constructions. Both P'.DEVS and Cell-DEVS
and interoperability of simulation components. formalisms are |mplemented in CD++ [12], an open-
Originally introduced in [1], Jefferson’s Time Warp source M_&S_ enwron_ment _that supports standalone and
protocol remains the most well-known optimistic parallel/distributed s!mulatlons on different ptaths.
synchronization algorithm that provides a solid . AIthough the Time Warp pro.toco'l has”been
foundation for many high-performance PADS systems. discussed in a great number of studies, its agplita

A Time Warp simulation is executed via several LPs :ﬁ si?:lljaéir}% DEVS rEo?els is only rféelysxpl?‘;’ed i
interacting with each other by exchanging time- € iterature (but see, e.g., [13]). Receniiy



developed a parallel optimistic simulator, callesl a normal execution of the simulation systenfhis
PCD++ [15], for high-performance simulation of problem is especially severe in optimistic simaas
complex DEVS and Cell-DEVS models based on the since a potentially unbounded number of events and
WARPED simulation kernel. However, several technical states associated with an LP must be transferred
challenges remain to be addressed to tackle thiesss between processors. Only a few studies address
related to performance, scalability, and complexity  specifically the issue of facilitating load migmati in
Time Warp based large-scale parallel simulation Time Warp systems. For example, Reiher and Jefierso
systems. Some of these issues are outlined asvéollo proposed a mechanism to split an LP into phases to
1.With a large number of LPs loaded on each reduce the amount of data that must be migratefl [24
available processor (or node), the memory resourcesMore recently, Li and Tropper devised a method that
can exhaust quickly due to the excessive amount ofallows for reconstructing events from the differesic
space used for saving past events and states. Haece between adjacent states so that only the stateequeu
simulator is forced to reclaim historical data with needs to be transferred [25]. However, this apgroac
frequent GVT computation and fossil collection, an only works for systems with fine event granulasiyd
operation that itself is an important contributorthe small state size such as VLSI circuits. An agiladio
overall operational overhead. Other existing athons migration scheme is needed to reduce the overhkad o
such agprunebaclk{16], cancelbacl17], andartificial dynamic load balancing in Time Warp systems.
rollback [18] attempt to recover from a memory stall In this paper, we address these issues by propasing
only at the expense of additional computation and novel protocol, referred to as Lightweight Time \War
communication overhead. It is desired to have a(LTW), for high-performance optimistic simulatiori o
protocol that can support large-scale optimistic DEVS and Cell-DEVS models. The LTW protocol can
simulation even when memory resources are tight, effectively improve system performance in a variety
while at the same time reducing the overhead of GVT ways, including reduced memory consumption,
computation and fossil collection to the minimumda  lowered operational overhead for both local andaglo
do so only when absolutely necessary. control mechanisms, more efficient queue operations
2.0ne potential performance hazard in large-scale and facilitated load migration. We should stress the
optimistic simulation is that the cost of rollbacks LTW protocol can well be integrated with other wide
increases dramatically simply because a massiveaccepted Time Warp optimizations to further improve
number of LPs are involved in the rollback opematio the performance. Although our discussion is cedtere
on each node. Prolonged rollbacks not only résult on parallel simulation in PCD++, the basic concegts
poor system performance, but also increase thethe LTW protocol could also apply to a broad ran§e
probability of rollback echoes [2]. Therefore, 8 i Time Warp based PADS systems under certain
imperative to fashion a new approach that can conditions and with appropriate control over thesLP
dramatically reduce the rollback cost without The remainder of the paper is organized as follows.
introducing much additional runtime overhead. Section 2 introduces the background on parallel
3. Different implementations of the event sets have simulation in PCD++. It also highlights the
been the focus of research for several years [A9]. assumptions that underlie the LTW protocol. Sec8on
primary motivation behind these efforts is to imgo  proposes a rule-based event-scheduling scheme that
the efficiency of queue operations as the number ofutilizes two types of input queues to reduce memory
stored events increases in large-scale and fineeggta  consumption and to speed up the simulation. Sedtion
simulations. In addition to using advanced data describes an aggregated state-saving techniquarand
structures, the simulation performance would also b optimal risk-free state-saving strategy for effitistate
improved if we could keep the event queues relgtive management. Section 5 covers the rollback mechanism
short throughout the simulation, an alternative in the LTW protocol. The impact on the global contr
approach that warrants close examination. mechanisms is discussed in SectiorC6nclusion and
4. Dynamic load balancing has been recognized as afuture workare reported in Section 7.
critical factor in achieving optimal performance in 2. Optimistic simulation in PCD++
large-scale PADS systems where the workload and
communication patterns are in constant fluctuafizs). A system is described in P-DEVS as a composition
Algorithms for dynamic load balancing usually rely  of behavioral &tomig and structuraldoupled model
metrics whose values are valid only for a shortquer ~ components. The LPs are specialized into two
Further, the impact of load migration should be categoriessimulatorsandcoordinators A simulator is
minimized so that it does not SeVerely interferthuhe created for each atomic model to trigger the Oumlﬂt



state transition functions, while a coordinator is
associated with a coupled model to keep track ef th
simulation time and to relay messages betweerild ¢

Wall Clock Time Slice (WCTS). A WCTS at virtual
time t, denoted a8VCTS-t stands for the execution of
simultaneous events with time statnat all the LPs on

simulators and the parent coordinator. To reducea given node. As shown iRigure 2, the simulation
communication overhead, PCD++ adopts a flattenedprocess on each node is viewed as a sequence of

structure consisting of four types of LPSimulator
Flat Coordinator (FC), Node Coordinator(NC), and
Root Coordinator Parallelism is achieved by
partitioning the LPs onto multiple nodes. Figure 1
shows the PCD++ structure of the LPs on two nodes.

Partition Line
Node 0 I Node 1

Root d—ﬁ
I I
NCO <+——» NCI

I
FCl1

f—|—|

Simulator / | ...

I |
FCO I
r_I_ |
o

| Simulator m

Simulator / | ... | Simulator

<—» MPI communication
Figure 1. LP structure on two nodes

—— Direct communication

WCTS's, each has a mandatdransition phase(T)
and an optionatollect phasgC). Only WCTS-0 has
an additionalinitialization phase(l). Furthermore, a
transition phase may contain multiple rounds of
computation, denoted asJRR,]. During each round,
state transitions are performed incrementally a& th
Simulators, incorporating additionak,(t)’s from the
other model components. At the end of each WCTS,
the NC calculates the next simulation time and send
out messages that will be executed by the local dtPs
this new virtual time, initiating the next WCTS time
node. That is, the linking messages between two
adjacent WCTS’s have send time equal to the virtual
time of the previous WCTS and receive time equal to
that of the next. All other messages executed withi

A single Root coordinator is created on node0 to \wCTS have the same send and receive time that is

start the simulation and to interact with the sunding
environment. Since the Root coordinator does ray pl
a crucial role in the parallel simulation, we wilbt
discuss it further for the sake of clarity. The siation
is governed by a set of NCs running asynchronooisly
different nodes in a decentralized manner. The BI€ a
as the local central controller on its hosting naahel

the endpoint of inter-node communication. It is the

only LP responsible for determining the next

equal to the virtual time of the WCTS.

I 1 C TRe..R) = C TRoy...R)) o= C T(Ry...Ry)

WCTS-0 WCTS-t, WCTS-t,

wallclock
time

Figure 2. Simulation process represented in WCTS

[ | initialization phase | C collect phase =T transition phase

Based on the LP structure and division of
functionalities in PCD++, we summarize as follols t

simulation time on a node based on events fromrothe key characteristics of the simulation process, tvhic

remote NCs and the current states of the local TRs.
FC is in charge of routing messages between itsl chi
Simulators and the parent NC using the model cogpli
information. A Simulator executes DEVS functions
defined in its associated atomic model upon theeet
of the FC. Note that on each node only one NC &d F

also highlights the assumptions that underlie tR&VL
protocol.

1.The Simulators only communicate with their
parent FC (i.e. no direct communication between the
Simulators). Hence, the FC has the full knowlede o
the timing of state changes at its child Simulators

are created, whereas many Simulators coexist in a 2. Rollbacks happened on a node begin either at the
typical large-scale simulation. Hence, a substbntia NC as a result of straggler or anti-messages atrive

reduction in the operational overhead at the Sitotda
would lead to a significant improvement in the @aber

from other remote NCs, or at the FC in the case of
messaging anomalies [15]. In both cases, rollbacks

system performance. Even though the LPs are groupediways propagate from the FC to its child Simulsitor

together, their LVT values may differ.

Hence, the FC has the information of when rollbacks

Messages exchanged between the LPs fall into twowill occur at the Simulators. Besides, a WCTS is an

categories:content messageand control messages.
The former includes external messagetl and output

messagey( ) that encode the actual data transmitted

between the model components, and the latter ieslud
initialization messagel,(t), collect message@, 9,
internal messagé,(t), and done messagb,(t) that are
used to implement a high-level control flow in liwéh
the P-DEVS formalism.

The message-passing organization has
analyzed in [15] using a high-level abstractionlezhl

atomic computation unit for the FC and the Simukato
during rollback operations [15].

3. The advance of simulation time on each node is
controlled entirely by the NC. The FC and the
Simulators do not send messages across WCTS
boundaries.

These assumptions might seem a bit restrictive, but
in practice many Time Warp based PADS systems can

beerpe converted, at least partially, into this modebtigh



carefully choosing the level of event granularityda  each other. Therefore, it is safe to exclude tleesats
imposingan appropriate control over the LPs. from the persistent queue.
Figure 3 shows the message flow between four LPs:

3. Rule-based dual-queue event scheduling a NC, a FC, and two Simulators (S1 and S2). As we
can see, events scheduled for the NC are stilitee

3.1. Introducing a volatile input queue into the persistent queue. However, events receiyed
the FC are put into the persistent queue onlyef thre

Under the Time Warp protocol, the input queue is coming from the parent NC. In addition', all events
persistent in the sense that the events remain in the ©xchanged between the FC and the Simulators are

queue until being fossil collected when the GVT inserted into the volatile queue. Thus, these avara

advances beyond their time stamps. However, keeping!® longer controlled by the Time Warp mechanism.
past events in the queue not only consumes lots off '0M the Time Warp perspective, the simulation
memory, but also increases the cost of queueProcessona node only involves a small fractiothef
operations. The LTW protocol solves this problem by {otal events executed by the LPs, as shown in &igur

introducing an additionalolatile input queue that does Comparing Figure 3 to Figure 4, we can see that the
not preserve processed events at all. Specificilig, events executed by the FC and the Simulators within

used to hold temporarily the simultaneous events®ach phase of a WCTS can be considered as being
exchanged between the FC and its child SimulatorsC!lapsed into a single aggregated event. Notetteat
within each phase of a WCTS. On the contrary, the iNking messages between adjacent WCTS's (e.g,, @

persistent input queue is used only by the NC d@bdoF ~ X23 "2 @nd @o) are still kept in the persistent input
contain the events sent between therfhis queue, which ensures that the simulation can resume

arrangement is possible due to the simulation forward execution successfully after rollbacks
characteristics as we presented in the previouiosec ~ F19ure 3, for msiance, if a rollback with timedccurs,
A key observation is that, during a rollback, the €N eVents x, *», Dy, Dyg and @, are cancelled

incorrect events previously exchanged between @e F and the simulatio*n restarts with the unprocessgdniy
and its child Simulators are essentially annihdanéth messages¥and %, after the roliback.

S

S2 o

RO | RI RO
Collect Phase Transition Phase Transition Phase
WCTS-ty WCTS-t, WCTS-t, WCTS-t;
<—— Synchronous messages ~<—— Asynchronous messages simulation time

@®  Events in persistent input queue O Events in volatile input queue

Figure 3. An example of message flow between the £Bn a node

WCTS-ty WCTS-t; WCTS-t,

WCTS-t3

R
Collect Phase | Transition Phase ‘ Transition Phase

simulation time

<— Synchronous ~<— Asy onous @ Aggregated events ‘
Figure 4. Message flow between the LPs from a Tim&arp perspective
The volatile input queue has two appealing 2. Events in the volatile queue always have the same
properties that allow us to reduce memory conswnpti time stamp. They are inserted into the queue as the
and cost of queue operations significantly: simulation moves into each phase of a WCTS, and
1. Events in the volatile queue are discarded andremoved as the execution proceeds. At the endalf ea
their memory reclaimed immediately after execution, phase (i.e., when the FC send®a tj to the NC), the
greatly reducing the memory footprint of the system queue becomes empty. This means that a simple FIFO



gueue suffices, and queue operations can be peatbrm
efficiently in O(1) time. Events are simply removed
from the head of the queue and added to the Eod.
enhance repeatability, the simultaneous events brist
ordered in a repeatable fashion, such as by sooting
the ID of the receiving LP [2]Thus, events may still
need to be inserted in the middle of the volatilewg.
However, the insertion operation is also acceldrate
this case since the queue length remains relatsredyt
throughout the simulation.

Persistent
input queue

Next
event

th to

t

t

4
Scheduler —————p-ptr’
v-ptr

Processed event with time stamp t Unprocessed event with time stamp t
Figure 5. Dual-queue event scheduling

L 4

t [{3

Volatile
input queue

The persistent queue contains events sorted in LTSF
order, including those unprocessed events and those
have already been processed but not yet been fossil

Consequently, the persistent input queue alsOcgliected. On the other hand, the volatile queuly on
becomes much shorter than under the original Timen,ds simultaneous events that have not yet been

Warp protocol, allowing for more efficient queue
operations as well. Moreover, for those eventshi t
volatile queue, their counterpart anti-messagesnare
longer saved in the output queues of the sendirgy LP
further reducing the memory consumption and
speeding up the forward execution of the simulation
Similarly, message annihilations are not required t
cancel these events during rollbacks any more,
minimizing the rollback overhead and enhancing the
stability and performance of the system. The new
rollback algorithm for the LTW protocol will be
presented in Section 5. In addition, this approaiso
facilitates fossil collection due to the signifitan
reduction in the number of past events and anti-

messages stored in the persistent input and outpu

queues, which, in turn, allows us to perform GVT
computation and fossil collection more frequently
without incurring an overwhelming computational
expense, leading to even shorter queues. Impatteof
LTW protocol on the global control mechanism wid b
analyzed in Section 6.

3.2. Rule-based event scheduling scheme

Although logically each LP has its own input queue,
it is more convenient and efficient to create ayl&in
persistent input queue and a single volatile irqueue
that are shared by all the LPs mapped on a givee.no
With both queues at hand, we need to provide agorop
scheduling policy that not only enforced @ast-Time-
Stamp-First(LTSF) event execution on each node, but
also helps improve execution efficiency and lower t
possibility of performance degradation. The follogi
discussion assumes that a scheduler is locatecan e
node to determine the next event to be executedglur
each simulation cycle. Figure 5 illustrates the ldua
gueue event-scheduling scheme.

processed in the current phase of a WCTS. The
scheduler maintains two pointers ptr andv-ptr)
to reference the next available events in the cgieue
respectively. Whilep- ptr may need to be updated
when the persistent queue is modified (event iisert
and/or annihilation) to ensure that it always p®itd
the first unprocessed event with the minimum time
stamp,v- ptr is always pointing to the event at the
front of the volatile queue. At each event selettio
point, the scheduler compares the two events
referenced by the pointers based on a set of pnedief
rules and chooses one of them as the next evem to
executed in the current simulation cycle. Different
Eolicies can be encoded in the scheduling ruleg;twh
ssentially allow the scheduler to adjust the s of
the input queues dynamically on an event-by-event
basis.

During the execution of a WCTS,(f) from remote
nodes may arrive and need to be processed by the NC
(e.g., x-arrives in B of WCTS-{ in Figure 3). These
messages will be flushed to the FC in the next doafn
the transition phase to be included in the state
transitions at the Simulators (e.g:; #s flushed to the
FC in R of WCTS-t). To avoid unnecessary rounds in
the transition phase, the NC needs to execute the
remote X, t) immediately upon arrival. Likewise, the
Simulators may send messages to receivers on remote
nodes during the execution of a WCTS (e.g.yy, and
X7). As these are potentially straggler messagebeat t
receiving end, a delay in their delivery could jpaste
rollbacks at the destination, resulting in perfoncg
degradation. Bearing these factors in mind, wetfset
following scheduling rules, which grant a higher
priority to the events in the persistent queue timse
in the volatile queue if they have the same tinaengt



when the scheduler is consulted to determine the next event
if v-ptr =NULL (volatile queue is empty), then
if p-ptr's timestamp > simulation stop time, then
return NULL
else
next event =p-ptr
p-ptT = next unprocessed event in the persistent queue
return next event
end if -
else
if p-ptr's timestamp <= v-ptr's timestamp, then
next_event =p-ptr
p-ptT = next unprocessed event in the persistent queue
return next _event
else
next event =v-ptr
remove the first event from the head of the volatile queue
v-ptr =new head of the volatile queue
return next _event
. end if -
21. end if
22. end when

Figure 6. Rule-based event scheduling algorithm

v taN Sl e it b el ad ol

wh—o

As shown in Figure 6, the next event is setd L
if the volatile queue is empty and the next avadab
event in the persistent queue has a time stampegrea
than the simulation stop time (line 4). In this eathe
simulation on this node is idle and the NC will
reactivate the process later upon the arrivalxft)(
from the other nodes. When the volatile queue besom

empty at the end of each WCTS phase, the even&1

pointed byp- pt r is selected (line 6), ensuring the NC
can execute thed t) sent from the FC to initiate the
next phase. If the volatile queue is not empty., (ke
simulation is in the middle of a WCTS phase) anal th
next available event in the persistent queue hé@me
stamp that is equal to (during forward execution) o
less than (after rollbacks) the time stamp of thents

in the volatile queue, then the event pointegbypt r

will be chosen (line 12). This guarantees thatrinte

node messages can be executed without being delaye®™ ®is

and the simulation can resume forward execution

immediately from the unprocessed linking messages

after rollbacks. Otherwise, the scheduler selebts t
event pointed by- pt r to execute in the current cycle
(line 16), effectively enforcing an LSFT event
execution. Note that an event selected from thatiel

gueue is removed (it will be deleted by the recgjvi

LP after execution), whereas an event chosen fram t
persistent queue is simply marked as processedhand
p- pt r is moved to the next available event afterward.

4. Aggregated state saving scheme

4.1. Introducing an aggregated state manager

Firstly, the historical states are scattered among the
individual LPs, prohibiting efficient batch operats
from being applied to the state queues. For exgrafile
the state queues must be queried individually durin
fossil collection, a costly operation that coultiervise

be performed more efficiently in a more concenttate
fashion. Secondly, state restorations at the LRs ar
triggered entirely by straggler and/or anti-message
putting a tremendous burden on the underlying
communication infrastructure. By exploiting the
particularity of the simulation process, we introdwa
new state-saving scheme that allows the Simuldtors
delegate the responsibility of state managemertiheo
FC. As a result, the Simulators are turned intdytru
lightweight LPs, totally isolated from the compldata
structures required by the Time Warp mechanism.

At the heart of this state-saving scheme is an
aggregated state manager created specificallyhier t
FC. It not only takes care of the state queuetferRC
itself, but also those used by the child Simulators
Conceptually, each Simulator still has its own estat
ueue under the control of the aggregated state
manager at the FC. It is perfectly possible, howetee
employ other advanced data structures to achieve mo
efficient state queue operations. In addition, @IBan
“dirty bit” is associated with the state queue &ach
Simulator, as shown in Figure 7.

itk

[T []t]t]u]t]
/T‘Tt,‘tzﬁtz Lt

. i
‘ T ‘0 ]t t | State saved at virtual time t

Figure 7. Aggregated state maﬁager for the FC

State queue for the FC

State queues for child Simulators

As we mentioned in Section 2, a Simulator can
change its state only if it executes an event cgmin
from the FC. Hence, the FC knows the exact timifig o
when to save the state for a child Simulator.
Nonetheless, the state should be saved after the
processing of the event since the state variablekd
destination Simulator will be modified during theeet
execution. Moreover, not all Simulators will be
involved in the computation of a WCTS. Some of them
may stay idle for an indefinite period. This is whé¢he
dirty bits have a role to play. After sending amr vto
a child Simulator, the FC simply instructs the

In a Time Warp system, each LP has its own stateaggregated state manager to set the corresponiiyg d
manager that maintains a history of the LP’s recentbit. The actual state-saving operation is carried o

states in order to undo modifications to statealdes

during rollbacks. This approach allows for wide
generality and straightforward implementation.
However, it also suffers from several disadvantages

when the FC somehow detects that the events
previously sent to the Simulators have already been
processed, and is performed only for those Simtdato
with dirty bits set to true. Note that no dirty b#
associated with the state queue for the FC itsetfes



the FC is always involved in the computation ofheac
WCTS.

4.2. Optimal risk-free state saving in PCD++

In [15], we proposed a Message Type-based State-
Saving (MTSS) strategy that enables the LPs to save

states only after executing certain types of events
Specifically, the NC and FC save state only after
processing al, t), while the Simulators save state only
after executing a*( t). For instance, Simulator S1 will
save two states in WCT $-after processing eventq*
and %, in Figure 3. Although the number of states
saved in the simulation can be reduced signifigantl
with the MTSS strategy, it is nevertheless subogitim
Since a transition phase may have multiple rourfds o
computation, an LP could still save many statesaich
WCTS. For the purpose of state restoration, anmgiti
state-saving strategy should save only a singte &a

1. when the FC sends a (* /) to a child Simulator S
2. if S.dirty bit =FALSE, then

3 S.dirty bit =TRUE

4 end if -

5. end when

6. when the NC requests a state-saving operation (at the end of each WCTS)
7 save a copy of the FC's current state in the FC's state queue

8 for each child Simulator S do

9. if S.dirty bit = TRUE, then

10. save a copy of the Simulator's current state in its state queue
11. S.dirty bit =FALSE

12. end if -

13. end for each

14. end when

Figure 9. State-saving algorithm

Figure 9 gives the state-saving algorithm for the
aggregated state manager. The algorithm consists of
two parts. When the simulation executes within a
WCTS, the state manager simply sets the dirtydvitaf
child Simulator if the FC sends out*a () (line 1 to 5).
This is consistent with the MTSS strategy as a
Simulator only needs to save states after executing
internal messages. However, no state is actuallgdsa
until the simulation proceeds to the end of a WG@H8

an active LP at the end of each distinct WCTS. The the NC is about to advance the local simulatioretim

state-saving strategy we present here satisfies thi
condition of optimality. It is also risk-free inghsense
that, unlike other infrequent state-saving techegjuo
penalty is incurred as the result of saving fewetes.

I C T[Ry..R] = C T[Ry...R)] ..,=— C ‘T[R‘,.,.R,\]‘

WCTS-t;
State-saving phase at the end of a WCTS

Figure 8. State-saving phase for each WCTS

WCTS-0 WCTS-t,

At this point, the state manager first saves thésFC
state in its state queue (line 7), and then saegsssfor
all Simulators whose dirty bits have been set (liG¢.
After saving the states, the state manager rekets t
dirty bits back to false (line 11), ready to bedigethe
next WCTS.

Compared to the MTSS strategy, this new state-
saving algorithm has two advantages. Firstly, tiates
manager only sets a Boolean flag for all but tis fa

As shown in Figure 8, the proposed strategy adds arf) Sent to @ Simulator within a WCTS, which can be
extra state-saving phase to the end of each WCTSPerformed much quicker than actually saving theesta

where the NC determinethe next simulation time
during the execution of &( t) returned from the FC. If

In the state queues, resulting in better system
performance. Secondly, only one state is saveddoh

the simulation time advances to a new value, the Ncactive Simulator in a WCTS regardless of how many

will send linking messages to the FC to initiate text

WCTS on the node. However, instead of sending the

messages immediately, the NC first instructs thetd-C

save states for the current WCTS. Note that at this

moment all events belonging to the current WCTShav

rounds the transition phase may have, reducing
memory consumption and the length of the state egieu
with accelerated queue operations.

5. Lightweight rollback mechanism

been processed by the FC and Simulators. Thus, the

saved states will reflect the updated values ofstage
variables defined in the LPs. Only when the state-

Up to now, our discussion has been centered on the
forward execution of the simulation. However, omy k

saving phase completes, can the NC send the linkingSsue remains to be addressed before the LTW mbtoc

messages to the FC to start the next WCTS for ¢iae n
simulation time. The state of the NC itself is shedter
processing thel, t) from the FC, just like in a normal
Time Warp execution.

can be regarded as a viable mechanism. In thenatigi
Time Warp protocol, rollbacks are triggered by the
arrival of straggler or anti-messages. With theneve
reclaimed immediately after execution in the vddati
queue and the states delegated entirely to thetheC,
Simulators cannot rely on this rollback triggering
mechanism any more. Hence, we have to devise a new
rollback algorithm for the LTW protocol.



Before delving into the details of the proposed that have been saved at the end of the last WCTS wi
rollback algorithm, let us summarize the LTW pratbc  virtual time strictly less than the current rollkaane.
presented so far. One difficulty is that the Simulators execute

1.The NC is the only full-fledged Time Warp LP asynchronously and thus may not have the same LVT.
on each node. All input events scheduled for the NC During rollbacks, only the states of the Simulatibat
are stored in the persistent queue, and copies ofhave been involved in the incorrect computationdnee
messages sent to other LPs saved in the outputqueu to be restored. For example, if the current rolktme
It has its own state manager in charge of stateygav is 100, the state of a Simulator that has stayésl id
operations with the NC'’s state queue. In other word since virtual time 80 should not be restored. As th
the NC executes as usual based on the standard Timstate of the Simulator is not modified at or aftee
Warp mechanism. Hence, the NC can be left out in ou rollback time, it remains valid after the current
discussion of the new rollback algorithm. rollback. To solve this problem, we introduce afdien

2.The FC, however, becomes a mixed-mode LP bookkeeping procedure to the FC in order to keagktr
serving as an interface between full-fledged and of the latest state change timgCT) for each child
lightweight LPs. The input events of the FC ardtspl Simulator.An arrayis created at the FC to record the
between the persistent and volatile queues, andrttie latest virtual times when the states of the child
messages are saved in the output queue only feetho Simulators are modified.
events sent to the NC. While the FC needs to kegp o
a small fraction of the historical events in theW.T
protocol, it assumes greater responsibility fortesta
management on behalf of the child Simulators utieg
aggregated state manager. Since no anti-messatjes w IfLCI() =1, then
be sent to the Simulators during rollbacks (thesg a }?i ong SAIf
messages are no Ionger Saved in the FC’S OUtpU 12. when the FC receives a straggler/anti-message with time T (rollback time = T)
queue), the Cha”enge we are facing now is howollo r 13. rollback the FC usin;t ¢ standard Time Warp mechanism

14. call scheduler.rollback_volatile_queue(T)

back the Simulators properly without using anti- [  foreach child Simulaor ido

when the simulation is started
create a LCT vector of size N at the FC (N is the number of child Simulators)
for i =1 to N do
LCT(i) = ZERO
end for
end when

when the FC sends a (*, #) to a child Simulator i

LN SR LN—

17. find the last state (Sj,) saved before T in the Simulator's state queue
messages 18. resitore ;lhe Simulato’r’s s}ate to S%,\, N
H H H H . delets . d Slast the Simulator'
3.The Simulators are turned into truly lightweight LET() = S Alter Sia rom the Simulafor's state quene
1

LPs, free from the burdens of maintaining histdrica |35  end forench

data in their input, output, and state queues. Tarey ~ |Z-ndvhe .
neither expected nor allowed to carry out rollbacks Figure 10. Rollback algorithm for the FC
their own in LTW protocol, and thus can be excluded The rollback algorithm in Figure 10 focuses on the
from the proposed rollback mechanism as well. activities of the FC. The LCT array is created hs t
As we outlined in Section 2, rollbacks happened on beginning of the simulation during the initializati
a node always propagate from the FC to the child phase. Initially, each LCT value is set to virttiahe
Simulators. Thus, the FC has the knowledge of whenzero (line 4). Whenever the FC sends*atf to a
the rollbacks should occur at the child Simulators. Simulator, the entry is updated to reflect the entr
Moreover, the incorrect input events previously LCT value for that Simulator (line 9). When a raitik
executed by the Simulators do not need to be undonebccurs at virtual time T, the FC first takes alkth
during rollbacks because they have already beennecessary actions required by the Time Warp prétoco
deleted from the volatile queue during forward to roll back its own speculative interactions witie
execution. This is one of the most elegant featafes NC (line 13). Then, the FC instructs the schedtder
the LTW protocol since it can save a great amodint o roll back the events in the volatile input queteg(l14),
CPU time that would otherwise be wasted on matchingwhich will be presented shortly. Finally, the FC
the message and anti-message pairs in the inpuegue restores the states for the child Simulators issary.
and annihilating a potentially large number of imeat State restoration for a Simulator is performed ahly
events. The result is an accelerated rollback gce the corresponding LCT value is greater than or kigua
that could lead to a significant improvement in the the rollback time (line 16), which means that the
overall system performance. The rollback of the FC Simulator has participated in the incorrect comfoita
itself is still triggered by straggler and/or amtessages  and thus its state must be restored. The stateratisin
from the NC based on the standard Time Warp actions are carried out by the aggregated statagean
mechanism. The crux of the rollback algorithm thus in a similar fashion as the standard Time Warp
lies in restoring the states of the Simulatorshosée mechanism (line 17 to 19). After the restoration,




however, an additional step is performed to upttaée  between the GVT managers. Given that the

LCT value to the LVT of the restored state (ling.2a communication overhead constitutes the major cbst o

this way, the FC can restore the states of the IStong GVT computation, the LTW protocol only has a minor

accurately during future rollbacks. effect on the operational efficiency.

1. when rollback_volatile_queue(T) is invoked . On the other hand, th_e LTW prOt_OC@reatly

2 if v-ptr’1= NULL (volatile input queue is not empty), then improves the fossil collection procesBirstly, the

3. if v-ptr's timestamp >= T, then . . . .

4. delete all events in the volatile input queue persistent input queue has been shortened Slg"ﬂflca

> pathaif after the introduction of the volatile input queasd

7. end when most of the anti-messages are eliminated from the
Figure 11. Rollback algorithm for the scheduler output queues under the protocol, resulting in

decreased overhead for reclamation of past evewts a
anti-messages during fossil collection. Secondhg t
aggregated state manager now controls most of the
historical states in a more centralized manner,imgak
it possible to perform batch operations with impdv
efficiency.

Dynamic load balancing is another type of global
control that is crucial to achieving optimal sintida
performance. In PCD++, model partitioning occurs at
the atomic model level. Hence, it is the lightweigh
Simulators that will be moved around to achieve
dynamic load balancing at runtime. Algorithms for
dynamic load balancing usually rely on sensitiverioe

As shown in Figure 11, the rollback algorithm for
the scheduler is rather simple. The scheduler chitek
status of the volatile input queue. If the queustaims
events with a time stamp greater than or equaheo t
rollback time (i.e., these events have been sckddul
but have not yet been executed in an incorrect WCTS
then the scheduler performs a batch operation fmyem
the volatile queue and reclaims the memory ressurce

As we can see, rollbacks can be performed more
efficiently in the LTW protocol than in the standar
Time Warp mechanism due to, for the most part, the
significant reduction of message annihilations fe t

persistent input queue. Moreover, all the Simukator values that are valid only for a short period. Oace

can be rolled back without sending even a singte an g
: decision has been made, one or more LPs need to be
message no matter how many of them coexist on a

node in large-scale simulations, dramatically réuayic migrated to a different node swiftly befo_re the rivet

o values become stale. Furthermore, the impact af loa
the communication overhead. The accelerated rdilbac miaration _on  the  underivin communication
process, in turn, decreases the likelihood of aalkb 9 ying

echoes, enhancing the system performance anditstabil infrastructure should be minimized so that it does
’ severely interfere with the normal execution of the

simulation system. Under the LTW protocol, the
appropriate decision points for load migration vebul
o be at the end of each WCTS when all the eventken t
Although the LTW protocol can significantly reduce ;5 5tile queue have been executed and the statie of
memory consumption and thus the frequency of GVT | ps have been saved. Therefore, the only data that
computation and fossil collection, these globaltaiin = haeq o be transferred during load migration aee th
mechanisms still play a vital role in the parallel gi56 queues of the chosen Simulators, lowering the
simulation. In this section, we briefly analyze the .45t of load migration considerably and allowing fo
impact of the LTW protocol on the global control g6 efficient dynamic load balancing to be realiire

mechanisms. , , large-scale DEVS-based simulations.
Various GVT computation algorithms have been

proposed in the PADS literature (e[@6]). In general,
these algorithms require the GVT manager on each
node to calculate its own local GVT estimation, dzhs
on which a new GVT value is computed and then
broadcast to all the nodes in the system. Henee;dkt

of GVT computation consists of two parts: the
computational overhead for calculating local GVT
estimations, and the communication overhead for
collecting and broadcasting new GVT updates. The
LTW protocol can mitigate the former overhead
because it reduces the number of LPs that must b
gueried during the local GVT estimation on eachenod
However, it does not help reduce the communication

6. Impact on global control mechanisms

7. Conclusion and future work

By taking advantage of the specific characteristics
of the simulation process in PCD++, we proposed a
novel protocol called as Lightweight Time Warp thsat
able to releasemost LPs from the Time Warp
mechanismwhile the overall simulation still executes
optimistically, driven by only a few full-fledgediffie
Warp LPs.The LTW protocol can improvthe system
éJerformance in various ways, including reduced
memory footprint, lowered operational overhead for
both local and global control mechanisms, more



efficient queue operations, and facilitated load
migration. In addition, the LTW protocol can alse b

integrated with other widely accepted Time Warp
optimizations to further improve system performance
Although our discussion is centered on parallel
optimistic simulation of DEVS and Cell-DEVS models,
the basic concepts could also apply to a wide raxige

Time Warp based PADS systems under
conditions and with appropriate control over thesLP

We are currently implementing the LTW protocol and
testing the performance quantitatively in PCD++.

10. References

[1] D. R. Jefferson, “Virtual time”ACM Trans. Program.
Lang. Syst.7(3), 1985, pp. 404-425.

[2] R. M. Fujimoto, Parallel and Distributed Simulation
Systems\iley-Interscience, 2000.

[3] J. Fleischmann, P. A. Wilsey, “Comparative analysfis
periodic state saving techniques in time warp sittaut”. In
Proceedings of PADS'98Vashington DC, 1995, pp. 50-58.

[4] 3. S. Steinman, “Breathing time war@BIGSIM Simul.
Dig. 23(1), 1993, pp. 109-118.

[5] Y. B. Lin, E.D. Lazowska, “A study of time warp
rollback mechanisms”.ACM Trans. Model. Comput.
Simul. 1(1), 1991, pp. 51-72.

[6] C. D. Carothers, K.S. Perumalla, R.M. Fujimoto,
“Efficient optimistic parallel simulations using verse
computation”. ACM Trans. Model. Comput. SimuB(3),
1999, pp. 224-253.

[7] R. Radhakrishnan, et al. “An object-oriented Timarg/
simulation kernel”. IrProceedings of ISCOPE’'9&ol. 1505,
LNCS Santa Fe, NM, 1998, pp. 13-23.

[8] B. P. Zeigler, H.Praehofer, T.G. KinTheory of
Modeling and SimulatiamrAcademic Press, London, 2000.

[9] A. C. Chow, B. P. Zeigler, “Parallel DEVS: A pas-ill
hierarchical, modular, modeling formalism”. Rroceedings
of WSC'94San Diego, CA, 1994, pp. 716-722.

[10] G. Wainer, N. Giambiasi, “N-dimensional Cell-DEVS
models ". Discrete Event Dynamic Systef#%?2), 2002, pp.
135-157.

[11] S. Wolfram,A New Kind of SciencéaVolfram Media
Inc., Champaign, 2002.

[12] G. Wainer, “CD++: A toolkit to develop DEVS models”
Software: Practice and Experience(33), 2002, pp. 1261-
1306.

[13] J. Nutaro, “Risk-free optimistic simulation of DEVS
models”. In Proceedings of theAdvanced Simulation
Technologies Conferencarlington, VA, 2004.

[14] E. Glinsky, G.Wainer, “New parallel simulation
techniques of DEVS and Cell-DEVS in CD++". In
Proceedings of IEEE ANSS,08Vashington, DC, 2006,
pp. 244-251.

[15] Q. Liu, G. Wainer, “Parallel environment for DEV8d

certain

Cell-DEVS models”. SIMULATION 886), 2007, pp.449-
471.

[16] B. R. Preiss, W.M. Loucks, “Memory management
techniques for Time Warp on a distributed memorgmze”.
SIGSIM Simul. Dig25(1), 1995, pp. 30-39.

[17] D. Jefferson, “Virtual Time Il: Storage managemant
conservative and optimistic systems”. RBroceedings of
PODC'9Q New York, NY, 1990, pp. 75-89.

[18] Y. B. Lin, B. R. Preiss, “Optimal memory management
for Time Warp parallel simulation’”ACM Trans. Model.
Comput. Simul1(4), 1991, pp. 283-307.

[19] R. Brown, “Calendar queues: A fast O(1) priorityege
implementation for the simulation event set probilem
Commun. ACM 310), 1988, pp. 1220-1227.

[20] R. Rénngren, R. Ayani, R.M. Fujimoto, S.R. Das
“Efficient implementation of event sets in Time War
SIGSIM Simul. Dig23(1), 1993, pp. 101-108.

[21] S. Schof, “Efficient data structures for Time Warp
simulation queues”Journal of Systems Architectu4d(6),
1998, pp. 497-517.

[22] P. Peschlow, T.Honecker, P.Martini, “A flexible
dynamic partitioning algorithm for optimistic digtated
simulation”. In Proceedings of PADS'QMWashington, DC,
2007, pp. 219-228.

[23] M. Zhang, B. P. Zeigler, A. Boukerche, “Exploititige
concept of activity for dynamic reconfiguration distributed
simulation”. In Proceedings of IEEE DS-RT'Q7TChania,
Crete Island, Greece, 2007, pp. 87-94.

[24] P. L. Reiher, D. Jefferson, “Dynamic load managemen
in the Time Warp operating systenirans. Soc. Comput.
Simul. Int. 72), 1990, pp. 91-120.

[25] L. Li, C. Tropper, “Event reconstruction in Time Yjga
In Proceedings of PADS'02004, pp. 37-44.

[26] F. Mattern, “Efficient algorithms for distributed
snapshots and global virtual time approximatialdurnal of

Parallel and Distributed Computing 18), 1993, pp. 423-
434,

[27] B. Kannikeswaran, et al. “Formal specification and
verification of the pGVT algorithm”. IF-ME'96, Vol. 1051,
LNCS, 1996, pp. 405-424.



