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Abstract 

 
This paper proposes a novel Lightweight Time 

Warp (LTW) protocol for high-performance parallel 
optimistic simulation of large-scale DEVS and Cell-
DEVS models. By exploiting the characteristics of the 
simulation process, the protocol is able to set free most 
logical processes (LPs) from the Time Warp 
mechanism, while the overall simulation still executes 
optimistically, driven by only a few full-fledged Time 
Warp LPs. The LTW protocol includes a rule-based 
event-scheduling mechanism using two types of event 
queues, an aggregated state-saving technique for 
optimal risk-free state management, and a new 
rollback algorithm that recovers lightweight LPs from 
causality errors without sending anti-messages. The 
impact on global control mechanisms such as GVT 
computation, fossil collection, and load migration is 
also discussed. The basic concepts of the protocol 
could also apply to a broad range of Time Warp 
systems under certain conditions and with appropriate 
control over the LPs. 
 
 
1. Introduction 
 

With the computing power and advanced software 
available today, Modeling and Simulation (M&S) has 
become a cost-effective tool for detailed analysis of a 
broad array of natural and artificial systems. Parallel 
and distributed simulation (PADS) is widely accepted 
as the technology of choice to speed up large-scale 
discrete-event simulation and to promote reusability 
and interoperability of simulation components. 
Originally introduced in [1], Jefferson’s Time Warp 
protocol remains the most well-known optimistic 
synchronization algorithm that provides a solid 
foundation for many high-performance PADS systems. 
A Time Warp simulation is executed via several LPs 
interacting with each other by exchanging time-

stamped event messages. The protocol consists of two 
distinct pieces that are sometime called the local 
control and global control mechanisms [2]. Rollback is 
used to recover LPs from causality errors upon the 
arrival of straggler or anti-messages with time stamps 
less than the LP’s Local Virtual Time (LVT). Each LP 
maintains three data structures for this purpose: an 
input queue of recently arrived messages, an output 
queue of negative copies of recently sent messages, and 
a state queue of the LP’s recent states. The historical 
events and states in these queues cannot be discarded 
until their time stamps have been surpassed by the 
Global Virtual Time (GVT). GVT computation and 
fossil collection are crucial components of the global 
control mechanism to reclaim memory resources and to 
commit I/O operations. Over the years, many 
algorithmic and data structure based optimizations have 
appeared in the literature to improve the efficiency of 
the original Time Warp protocol (e.g., [3]). The 
WARPED simulation kernel [7] is a configurable 
middleware that implements the Time Warp protocol 
and a variety of optimization algorithms. 

The Discrete Event System Specification (DEVS) 
[8] is a general modeling framework for discrete-event 
systems. The P-DEVS formalism [9] eliminates the 
serialization constraint existed in the original DEVS 
definition, allowing increased parallelism to be 
obtained in PADS systems. The Cell-DEVS formalism 
[10] combines Cellular Automata [11] with DEVS 
theory to describe n-dimensional cell spaces as discrete 
event models, where each cell is represented as a 
DEVS basic model that can be delayed using explicit 
timing constructions. Both P-DEVS and Cell-DEVS 
formalisms are implemented in CD++ [12], an open-
source M&S environment that supports standalone and 
parallel/distributed simulations on different platforms. 

Although the Time Warp protocol has been 
discussed in a great number of studies, its applicability 
to simulating DEVS models is only rarely explored in 
the PADS literature (but see, e.g., [13]). Recently, we 



developed a parallel optimistic simulator, called as 
PCD++ [15], for high-performance simulation of 
complex DEVS and Cell-DEVS models based on the 
WARPED simulation kernel. However, several technical 
challenges remain to be addressed to tackle the issues 
related to performance, scalability, and complexity of 
Time Warp based large-scale parallel simulation 
systems. Some of these issues are outlined as follows: 

1. With a large number of LPs loaded on each 
available processor (or node), the memory resources 
can exhaust quickly due to the excessive amount of 
space used for saving past events and states. Hence, the 
simulator is forced to reclaim historical data with 
frequent GVT computation and fossil collection, an 
operation that itself is an important contributor to the 
overall operational overhead. Other existing algorithms 
such as pruneback [16], cancelback [17], and artificial 
rollback [18] attempt to recover from a memory stall 
only at the expense of additional computation and 
communication overhead. It is desired to have a 
protocol that can support large-scale optimistic 
simulation even when memory resources are tight, 
while at the same time reducing the overhead of GVT 
computation and fossil collection to the minimum, and 
do so only when absolutely necessary. 

2. One potential performance hazard in large-scale 
optimistic simulation is that the cost of rollbacks 
increases dramatically simply because a massive 
number of LPs are involved in the rollback operation 
on each node.  Prolonged rollbacks not only result in 
poor system performance, but also increase the 
probability of rollback echoes [2]. Therefore, it is 
imperative to fashion a new approach that can 
dramatically reduce the rollback cost without 
introducing much additional runtime overhead.  

3. Different implementations of the event sets have 
been the focus of research for several years [19]. A 
primary motivation behind these efforts is to improve 
the efficiency of queue operations as the number of 
stored events increases in large-scale and fine-grained 
simulations. In addition to using advanced data 
structures, the simulation performance would also be 
improved if we could keep the event queues relatively 
short throughout the simulation, an alternative 
approach that warrants close examination. 

4. Dynamic load balancing has been recognized as a 
critical factor in achieving optimal performance in 
large-scale PADS systems where the workload and 
communication patterns are in constant fluctuation [22]. 
Algorithms for dynamic load balancing usually rely on 
metrics whose values are valid only for a short period. 
Further, the impact of load migration should be 
minimized so that it does not severely interfere with the 

normal execution of the simulation system. This 
problem is especially severe in optimistic simulations 
since a potentially unbounded number of events and 
states associated with an LP must be transferred 
between processors. Only a few studies address 
specifically the issue of facilitating load migration in 
Time Warp systems. For example, Reiher and Jefferson 
proposed a mechanism to split an LP into phases to 
reduce the amount of data that must be migrated [24]. 
More recently, Li and Tropper devised a method that 
allows for reconstructing events from the differences 
between adjacent states so that only the state queue 
needs to be transferred [25]. However, this approach 
only works for systems with fine event granularity and 
small state size such as VLSI circuits. An agile load 
migration scheme is needed to reduce the overhead of 
dynamic load balancing in Time Warp systems. 

In this paper, we address these issues by proposing a 
novel protocol, referred to as Lightweight Time Warp 
(LTW), for high-performance optimistic simulation of 
DEVS and Cell-DEVS models. The LTW protocol can 
effectively improve system performance in a variety of 
ways, including reduced memory consumption, 
lowered operational overhead for both local and global 
control mechanisms, more efficient queue operations, 
and facilitated load migration. We should stress that the 
LTW protocol can well be integrated with other widely 
accepted Time Warp optimizations to further improve 
the performance. Although our discussion is centered 
on parallel simulation in PCD++, the basic concepts of 
the LTW protocol could also apply to a broad range of 
Time Warp based PADS systems under certain 
conditions and with appropriate control over the LPs.  

The remainder of the paper is organized as follows. 
Section 2 introduces the background on parallel 
simulation in PCD++. It also highlights the 
assumptions that underlie the LTW protocol. Section 3 
proposes a rule-based event-scheduling scheme that 
utilizes two types of input queues to reduce memory 
consumption and to speed up the simulation. Section 4 
describes an aggregated state-saving technique and an 
optimal risk-free state-saving strategy for efficient state 
management. Section 5 covers the rollback mechanism 
in the LTW protocol. The impact on the global control 
mechanisms is discussed in Section 6. Conclusion and 
future work are reported in Section 7. 

2. Optimistic simulation in PCD++ 
 
A system is described in P-DEVS as a composition 

of behavioral (atomic) and structural (coupled) model 
components. The LPs are specialized into two 
categories: simulators and coordinators. A simulator is 
created for each atomic model to trigger the output and 



state transition functions, while a coordinator is 
associated with a coupled model to keep track of the 
simulation time and to relay messages between its child 
simulators and the parent coordinator. To reduce 
communication overhead, PCD++ adopts a flattened 
structure consisting of four types of LPs: Simulator, 
Flat Coordinator (FC), Node Coordinator (NC), and 
Root Coordinator. Parallelism is achieved by 
partitioning the LPs onto multiple nodes. Figure 1 
shows the PCD++ structure of the LPs on two nodes. 

 
Figure 1. LP structure on two nodes 

A single Root coordinator is created on node0 to 
start the simulation and to interact with the surrounding 
environment. Since the Root coordinator does not play 
a crucial role in the parallel simulation, we will not 
discuss it further for the sake of clarity. The simulation 
is governed by a set of NCs running asynchronously on 
different nodes in a decentralized manner. The NC acts 
as the local central controller on its hosting node and 
the endpoint of inter-node communication. It is the 
only LP responsible for determining the next 
simulation time on a node based on events from other 
remote NCs and the current states of the local LPs. The 
FC is in charge of routing messages between its child 
Simulators and the parent NC using the model coupling 
information. A Simulator executes DEVS functions 
defined in its associated atomic model upon the request 
of the FC. Note that on each node only one NC and FC 
are created, whereas many Simulators coexist in a 
typical large-scale simulation. Hence, a substantial 
reduction in the operational overhead at the Simulators 
would lead to a significant improvement in the overall 
system performance. Even though the LPs are grouped 
together, their LVT values may differ. 

Messages exchanged between the LPs fall into two 
categories: content messages and control messages. 
The former includes external message (x, t) and output 
message (y, t) that encode the actual data transmitted 
between the model components, and the latter includes 
initialization message (I, t), collect message (@, t), 
internal message (*, t), and done message (D, t) that are 
used to implement a high-level control flow in line with 
the P-DEVS formalism.  

The message-passing organization has been 
analyzed in [15] using a high-level abstraction called 

Wall Clock Time Slice (WCTS). A WCTS at virtual 
time t, denoted as WCTS-t, stands for the execution of 
simultaneous events with time stamp t at all the LPs on 
a given node. As shown in Figure 2, the simulation 
process on each node is viewed as a sequence of 
WCTS’s, each has a mandatory transition phase (T) 
and an optional collect phase (C). Only WCTS-0 has 
an additional initialization phase (I). Furthermore, a 
transition phase may contain multiple rounds of 
computation, denoted as [R0…Rn]. During each round, 
state transitions are performed incrementally at the 
Simulators, incorporating additional (x, t)’s from the 
other model components. At the end of each WCTS, 
the NC calculates the next simulation time and sends 
out messages that will be executed by the local LPs at 
this new virtual time, initiating the next WCTS on the 
node. That is, the linking messages between two 
adjacent WCTS’s have send time equal to the virtual 
time of the previous WCTS and receive time equal to 
that of the next. All other messages executed within a 
WCTS have the same send and receive time that is 
equal to the virtual time of the WCTS. 

 
Figure 2. Simulation process represented in WCTS 

Based on the LP structure and division of 
functionalities in PCD++, we summarize as follows the 
key characteristics of the simulation process, which 
also highlights the assumptions that underlie the LTW 
protocol. 

1. The Simulators only communicate with their 
parent FC (i.e. no direct communication between the 
Simulators). Hence, the FC has the full knowledge of 
the timing of state changes at its child Simulators.  

2. Rollbacks happened on a node begin either at the 
NC as a result of straggler or anti-messages arrived 
from other remote NCs, or at the FC in the case of 
messaging anomalies [15]. In both cases, rollbacks 
always propagate from the FC to its child Simulators. 
Hence, the FC has the information of when rollbacks 
will occur at the Simulators. Besides, a WCTS is an 
atomic computation unit for the FC and the Simulators 
during rollback operations [15]. 

3. The advance of simulation time on each node is 
controlled entirely by the NC. The FC and the 
Simulators do not send messages across WCTS 
boundaries.  

These assumptions might seem a bit restrictive, but 
in practice many Time Warp based PADS systems can 
be converted, at least partially, into this model through 



carefully choosing the level of event granularity and 
imposing an appropriate control over the LPs. 

 

3. Rule-based dual-queue event scheduling 
 
3.1. Introducing a volatile input queue 
 

Under the Time Warp protocol, the input queue is 
persistent, in the sense that the events remain in the 
queue until being fossil collected when the GVT 
advances beyond their time stamps. However, keeping 
past events in the queue not only consumes lots of 
memory, but also increases the cost of queue 
operations. The LTW protocol solves this problem by 
introducing an additional volatile input queue that does 
not preserve processed events at all. Specifically, it is 
used to hold temporarily the simultaneous events 
exchanged between the FC and its child Simulators 
within each phase of a WCTS. On the contrary, the 
persistent input queue is used only by the NC and FC to 
contain the events sent between them. This 
arrangement is possible due to the simulation 
characteristics as we presented in the previous section. 
A key observation is that, during a rollback, the 
incorrect events previously exchanged between the FC 
and its child Simulators are essentially annihilated with 

each other. Therefore, it is safe to exclude these events 
from the persistent queue. 

Figure 3 shows the message flow between four LPs: 
a NC, a FC, and two Simulators (S1 and S2). As we 
can see, events scheduled for the NC are still inserted 
into the persistent queue. However, events received by 
the FC are put into the persistent queue only if they are 
coming from the parent NC. In addition, all events 
exchanged between the FC and the Simulators are 
inserted into the volatile queue. Thus, these events are 
no longer controlled by the Time Warp mechanism. 
From the Time Warp perspective, the simulation 
process on a node only involves a small fraction of the 
total events executed by the LPs, as shown in Figure 4.  

Comparing Figure 3 to Figure 4, we can see that the 
events executed by the FC and the Simulators within 
each phase of a WCTS can be considered as being 
collapsed into a single aggregated event. Note that the 
linking messages between adjacent WCTS’s (e.g., @1, 
x23, *24, and @29) are still kept in the persistent input 
queue, which ensures that the simulation can resume 
forward execution successfully after rollbacks. In 
Figure 3, for instance, if a rollback with time t2 occurs, 
then events x25, *26, D27, D28, and @29 are cancelled 
and the simulation restarts with the unprocessed linking 
messages x23 and *24 after the rollback. 

 
Figure 3. An example of message flow between the LPs on a node

 
Figure 4. Message flow between the LPs from a Time Warp perspective 

The volatile input queue has two appealing 
properties that allow us to reduce memory consumption 
and cost of queue operations significantly: 

1. Events in the volatile queue are discarded and 
their memory reclaimed immediately after execution, 
greatly reducing the memory footprint of the system.   

2. Events in the volatile queue always have the same 
time stamp. They are inserted into the queue as the 
simulation moves into each phase of a WCTS, and 
removed as the execution proceeds. At the end of each 
phase (i.e., when the FC sends a (D, t) to the NC), the 
queue becomes empty. This means that a simple FIFO 



queue suffices, and queue operations can be performed 
efficiently in O(1) time. Events are simply removed 
from the head of the queue and added to the end. To 
enhance repeatability, the simultaneous events must be 
ordered in a repeatable fashion, such as by sorting on 
the ID of the receiving LP [2]. Thus, events may still 
need to be inserted in the middle of the volatile queue. 
However, the insertion operation is also accelerated in 
this case since the queue length remains relatively short 
throughout the simulation. 

Consequently, the persistent input queue also 
becomes much shorter than under the original Time 
Warp protocol, allowing for more efficient queue 
operations as well. Moreover, for those events in the 
volatile queue, their counterpart anti-messages are no 
longer saved in the output queues of the sending LPs, 
further reducing the memory consumption and 
speeding up the forward execution of the simulation. 
Similarly, message annihilations are not required to 
cancel these events during rollbacks any more, 
minimizing the rollback overhead and enhancing the 
stability and performance of the system. The new 
rollback algorithm for the LTW protocol will be 
presented in Section 5. In addition, this approach also 
facilitates fossil collection due to the significant 
reduction in the number of past events and anti-
messages stored in the persistent input and output 
queues, which, in turn, allows us to perform GVT 
computation and fossil collection more frequently 
without incurring an overwhelming computational 
expense, leading to even shorter queues. Impact of the 
LTW protocol on the global control mechanism will be 
analyzed in Section 6. 
 
3.2. Rule-based event scheduling scheme 
 

Although logically each LP has its own input queue, 
it is more convenient and efficient to create a single 
persistent input queue and a single volatile input queue 
that are shared by all the LPs mapped on a given node. 
With both queues at hand, we need to provide a proper 
scheduling policy that not only enforces a Least-Time-
Stamp-First (LTSF) event execution on each node, but 
also helps improve execution efficiency and lower the 
possibility of performance degradation. The following 
discussion assumes that a scheduler is located on each 
node to determine the next event to be executed during 
each simulation cycle. Figure 5 illustrates the dual-
queue event-scheduling scheme. 

 
Figure 5. Dual-queue event scheduling 

The persistent queue contains events sorted in LTSF 
order, including those unprocessed events and those 
have already been processed but not yet been fossil 
collected. On the other hand, the volatile queue only 
holds simultaneous events that have not yet been 
processed in the current phase of a WCTS. The 
scheduler maintains two pointers (p-ptr and v-ptr) 
to reference the next available events in the queues 
respectively. While p-ptr may need to be updated 
when the persistent queue is modified (event insertion 
and/or annihilation) to ensure that it always points to 
the first unprocessed event with the minimum time 
stamp, v-ptr is always pointing to the event at the 
front of the volatile queue. At each event selection 
point, the scheduler compares the two events 
referenced by the pointers based on a set of predefined 
rules and chooses one of them as the next event to be 
executed in the current simulation cycle. Different 
policies can be encoded in the scheduling rules, which 
essentially allow the scheduler to adjust the priorities of 
the input queues dynamically on an event-by-event 
basis. 

During the execution of a WCTS, (x, t) from remote 
nodes may arrive and need to be processed by the NC 
(e.g., x12 arrives in R0 of WCTS-t1 in Figure 3). These 
messages will be flushed to the FC in the next round of 
the transition phase to be included in the state 
transitions at the Simulators (e.g., x17 is flushed to the 
FC in R1 of WCTS-t1). To avoid unnecessary rounds in 
the transition phase, the NC needs to execute the 
remote (x, t) immediately upon arrival. Likewise, the 
Simulators may send messages to receivers on remote 
nodes during the execution of a WCTS (e.g., y3, y6, and 
x7). As these are potentially straggler messages at the 
receiving end, a delay in their delivery could postpone 
rollbacks at the destination, resulting in performance 
degradation. Bearing these factors in mind, we set the 
following scheduling rules, which grant a higher 
priority to the events in the persistent queue than those 
in the volatile queue if they have the same time stamp. 



 
Figure 6. Rule-based event scheduling algorithm 

As shown in Figure 6, the next event is set to NULL 
if the volatile queue is empty and the next available 
event in the persistent queue has a time stamp greater 
than the simulation stop time (line 4). In this case, the 
simulation on this node is idle and the NC will 
reactivate the process later upon the arrival of (x, t) 
from the other nodes. When the volatile queue becomes 
empty at the end of each WCTS phase, the event 
pointed by p-ptr is selected (line 6), ensuring the NC 
can execute the (D, t) sent from the FC to initiate the 
next phase. If the volatile queue is not empty (i.e., the 
simulation is in the middle of a WCTS phase) and the 
next available event in the persistent queue has a time 
stamp that is equal to (during forward execution) or 
less than (after rollbacks) the time stamp of the events 
in the volatile queue, then the event pointed by p-ptr 
will be chosen (line 12). This guarantees that inter-
node messages can be executed without being delayed 
and the simulation can resume forward execution 
immediately from the unprocessed linking messages 
after rollbacks. Otherwise, the scheduler selects the 
event pointed by v-ptr to execute in the current cycle 
(line 16), effectively enforcing an LSFT event 
execution. Note that an event selected from the volatile 
queue is removed (it will be deleted by the receiving 
LP after execution), whereas an event chosen from the 
persistent queue is simply marked as processed and the 
p-ptr is moved to the next available event afterward. 
 

4. Aggregated state saving scheme 
  
4.1. Introducing an aggregated state manager 
 

In a Time Warp system, each LP has its own state 
manager that maintains a history of the LP’s recent 
states in order to undo modifications to state variables 
during rollbacks. This approach allows for wide 
generality and straightforward implementation. 
However, it also suffers from several disadvantages. 

Firstly, the historical states are scattered among the 
individual LPs, prohibiting efficient batch operations 
from being applied to the state queues. For example, all 
the state queues must be queried individually during 
fossil collection, a costly operation that could otherwise 
be performed more efficiently in a more concentrated 
fashion. Secondly, state restorations at the LPs are 
triggered entirely by straggler and/or anti-messages, 
putting a tremendous burden on the underlying 
communication infrastructure. By exploiting the 
particularity of the simulation process, we introduce a 
new state-saving scheme that allows the Simulators to 
delegate the responsibility of state management to the 
FC. As a result, the Simulators are turned into truly 
lightweight LPs, totally isolated from the complex data 
structures required by the Time Warp mechanism. 

At the heart of this state-saving scheme is an 
aggregated state manager created specifically for the 
FC. It not only takes care of the state queue for the FC 
itself, but also those used by the child Simulators. 
Conceptually, each Simulator still has its own state 
queue under the control of the aggregated state 
manager at the FC. It is perfectly possible, however, to 
employ other advanced data structures to achieve more 
efficient state queue operations. In addition, a Boolean 
“dirty bit” is associated with the state queue for each 
Simulator, as shown in Figure 7. 

 
Figure 7. Aggregated state manager for the FC 

As we mentioned in Section 2, a Simulator can 
change its state only if it executes an event coming 
from the FC. Hence, the FC knows the exact timing of 
when to save the state for a child Simulator. 
Nonetheless, the state should be saved after the 
processing of the event since the state variables in the 
destination Simulator will be modified during the event 
execution. Moreover, not all Simulators will be 
involved in the computation of a WCTS. Some of them 
may stay idle for an indefinite period. This is where the 
dirty bits have a role to play. After sending an event to 
a child Simulator, the FC simply instructs the 
aggregated state manager to set the corresponding dirty 
bit. The actual state-saving operation is carried out 
when the FC somehow detects that the events 
previously sent to the Simulators have already been 
processed, and is performed only for those Simulators 
with dirty bits set to true. Note that no dirty bit is 
associated with the state queue for the FC itself since 



the FC is always involved in the computation of each 
WCTS.  
 
4.2. Optimal risk-free state saving in PCD++ 
 

In [15], we proposed a Message Type-based State-
Saving (MTSS) strategy that enables the LPs to save 
states only after executing certain types of events. 
Specifically, the NC and FC save state only after 
processing a (D, t), while the Simulators save state only 
after executing a (*, t). For instance, Simulator S1 will 
save two states in WCTS-t1 after processing event *11 
and *20 in Figure 3. Although the number of states 
saved in the simulation can be reduced significantly 
with the MTSS strategy, it is nevertheless suboptimal. 
Since a transition phase may have multiple rounds of 
computation, an LP could still save many states in each 
WCTS. For the purpose of state restoration, an optimal 
state-saving strategy should save only a single state for 
an active LP at the end of each distinct WCTS. The 
state-saving strategy we present here satisfies this 
condition of optimality. It is also risk-free in the sense 
that, unlike other infrequent state-saving techniques, no 
penalty is incurred as the result of saving fewer states. 

 
Figure 8. State-saving phase for each WCTS 

As shown in Figure 8, the proposed strategy adds an 
extra state-saving phase to the end of each WCTS, 
where the NC determines the next simulation time 
during the execution of a (D, t) returned from the FC. If 
the simulation time advances to a new value, the NC 
will send linking messages to the FC to initiate the next 
WCTS on the node. However, instead of sending the 
messages immediately, the NC first instructs the FC to 
save states for the current WCTS. Note that at this 
moment all events belonging to the current WCTS have 
been processed by the FC and Simulators. Thus, the 
saved states will reflect the updated values of the state 
variables defined in the LPs. Only when the state-
saving phase completes, can the NC send the linking 
messages to the FC to start the next WCTS for the new 
simulation time. The state of the NC itself is saved after 
processing the (D, t) from the FC, just like in a normal 
Time Warp execution. 

 
Figure 9. State-saving algorithm 

Figure 9 gives the state-saving algorithm for the 
aggregated state manager. The algorithm consists of 
two parts. When the simulation executes within a 
WCTS, the state manager simply sets the dirty bit for a 
child Simulator if the FC sends out a (*, t) (line 1 to 5). 
This is consistent with the MTSS strategy as a 
Simulator only needs to save states after executing 
internal messages. However, no state is actually saved 
until the simulation proceeds to the end of a WCTS and 
the NC is about to advance the local simulation time. 
At this point, the state manager first saves the FC’s 
state in its state queue (line 7), and then saves states for 
all Simulators whose dirty bits have been set (line 10). 
After saving the states, the state manager resets the 
dirty bits back to false (line 11), ready to be used in the 
next WCTS. 

Compared to the MTSS strategy, this new state-
saving algorithm has two advantages. Firstly, the state 
manager only sets a Boolean flag for all but the last (*, 
t) sent to a Simulator within a WCTS, which can be 
performed much quicker than actually saving the states 
in the state queues, resulting in better system 
performance. Secondly, only one state is saved for each 
active Simulator in a WCTS regardless of how many 
rounds the transition phase may have, reducing 
memory consumption and the length of the state queues 
with accelerated queue operations. 

 

5. Lightweight rollback mechanism 
 

Up to now, our discussion has been centered on the 
forward execution of the simulation. However, one key 
issue remains to be addressed before the LTW protocol 
can be regarded as a viable mechanism. In the original 
Time Warp protocol, rollbacks are triggered by the 
arrival of straggler or anti-messages. With the events 
reclaimed immediately after execution in the volatile 
queue and the states delegated entirely to the FC, the 
Simulators cannot rely on this rollback triggering 
mechanism any more. Hence, we have to devise a new 
rollback algorithm for the LTW protocol. 



Before delving into the details of the proposed 
rollback algorithm, let us summarize the LTW protocol 
presented so far. 

1. The NC is the only full-fledged Time Warp LP 
on each node. All input events scheduled for the NC 
are stored in the persistent queue, and copies of 
messages sent to other LPs saved in the output queue. 
It has its own state manager in charge of state-saving 
operations with the NC’s state queue. In other words, 
the NC executes as usual based on the standard Time 
Warp mechanism. Hence, the NC can be left out in our 
discussion of the new rollback algorithm. 

2. The FC, however, becomes a mixed-mode LP 
serving as an interface between full-fledged and 
lightweight LPs. The input events of the FC are split 
between the persistent and volatile queues, and the anti-
messages are saved in the output queue only for those 
events sent to the NC. While the FC needs to keep only 
a small fraction of the historical events in the LTW 
protocol, it assumes greater responsibility for state 
management on behalf of the child Simulators using the 
aggregated state manager. Since no anti-messages will 
be sent to the Simulators during rollbacks (these anti-
messages are no longer saved in the FC’s output 
queue), the challenge we are facing now is how to roll 
back the Simulators properly without using anti-
messages. 

3. The Simulators are turned into truly lightweight 
LPs, free from the burdens of maintaining historical 
data in their input, output, and state queues. They are 
neither expected nor allowed to carry out rollbacks on 
their own in LTW protocol, and thus can be excluded 
from the proposed rollback mechanism as well. 

As we outlined in Section 2, rollbacks happened on 
a node always propagate from the FC to the child 
Simulators. Thus, the FC has the knowledge of when 
the rollbacks should occur at the child Simulators. 
Moreover, the incorrect input events previously 
executed by the Simulators do not need to be undone 
during rollbacks because they have already been 
deleted from the volatile queue during forward 
execution. This is one of the most elegant features of 
the LTW protocol since it can save a great amount of 
CPU time that would otherwise be wasted on matching 
the message and anti-message pairs in the input queues 
and annihilating a potentially large number of incorrect 
events. The result is an accelerated rollback process 
that could lead to a significant improvement in the 
overall system performance. The rollback of the FC 
itself is still triggered by straggler and/or anti-messages 
from the NC based on the standard Time Warp 
mechanism. The crux of the rollback algorithm thus 
lies in restoring the states of the Simulators to those 

that have been saved at the end of the last WCTS with 
virtual time strictly less than the current rollback time. 

One difficulty is that the Simulators execute 
asynchronously and thus may not have the same LVT. 
During rollbacks, only the states of the Simulators that 
have been involved in the incorrect computation need 
to be restored. For example, if the current rollback time 
is 100, the state of a Simulator that has stayed idle 
since virtual time 80 should not be restored. As the 
state of the Simulator is not modified at or after the 
rollback time, it remains valid after the current 
rollback. To solve this problem, we introduce a simple 
bookkeeping procedure to the FC in order to keep track 
of the latest state change time (LCT) for each child 
Simulator. An array is created at the FC to record the 
latest virtual times when the states of the child 
Simulators are modified. 

 
Figure 10. Rollback algorithm for the FC 

The rollback algorithm in Figure 10 focuses on the 
activities of the FC. The LCT array is created at the 
beginning of the simulation during the initialization 
phase. Initially, each LCT value is set to virtual time 
zero (line 4). Whenever the FC sends a (*, t) to a 
Simulator, the entry is updated to reflect the current 
LCT value for that Simulator (line 9). When a rollback 
occurs at virtual time T, the FC first takes all the 
necessary actions required by the Time Warp protocol 
to roll back its own speculative interactions with the 
NC (line 13). Then, the FC instructs the scheduler to 
roll back the events in the volatile input queue (line 14), 
which will be presented shortly. Finally, the FC 
restores the states for the child Simulators if necessary. 

State restoration for a Simulator is performed only if 
the corresponding LCT value is greater than or equal to 
the rollback time (line 16), which means that the 
Simulator has participated in the incorrect computation 
and thus its state must be restored. The state restoration 
actions are carried out by the aggregated state manager 
in a similar fashion as the standard Time Warp 
mechanism (line 17 to 19). After the restoration, 



however, an additional step is performed to update the 
LCT value to the LVT of the restored state (line 20). In 
this way, the FC can restore the states of the Simulators 
accurately during future rollbacks. 

 
Figure 11. Rollback algorithm for the scheduler 

As shown in Figure 11, the rollback algorithm for 
the scheduler is rather simple. The scheduler checks the 
status of the volatile input queue. If the queue contains 
events with a time stamp greater than or equal to the 
rollback time (i.e., these events have been scheduled 
but have not yet been executed in an incorrect WCTS), 
then the scheduler performs a batch operation to empty 
the volatile queue and reclaims the memory resources. 

As we can see, rollbacks can be performed more 
efficiently in the LTW protocol than in the standard 
Time Warp mechanism due to, for the most part, the 
significant reduction of message annihilations in the 
persistent input queue. Moreover, all the Simulators 
can be rolled back without sending even a single anti-
message no matter how many of them coexist on a 
node in large-scale simulations, dramatically reducing 
the communication overhead. The accelerated rollback 
process, in turn, decreases the likelihood of rollback 
echoes, enhancing the system performance and stability. 

 

6. Impact on global control mechanisms 
 

Although the LTW protocol can significantly reduce 
memory consumption and thus the frequency of GVT 
computation and fossil collection, these global control 
mechanisms still play a vital role in the parallel 
simulation. In this section, we briefly analyze the 
impact of the LTW protocol on the global control 
mechanisms.  

Various GVT computation algorithms have been 
proposed in the PADS literature (e.g., [26]). In general, 
these algorithms require the GVT manager on each 
node to calculate its own local GVT estimation, based 
on which a new GVT value is computed and then 
broadcast to all the nodes in the system. Hence, the cost 
of GVT computation consists of two parts: the 
computational overhead for calculating local GVT 
estimations, and the communication overhead for 
collecting and broadcasting new GVT updates. The 
LTW protocol can mitigate the former overhead 
because it reduces the number of LPs that must be 
queried during the local GVT estimation on each node. 
However, it does not help reduce the communication 

between the GVT managers. Given that the 
communication overhead constitutes the major cost of 
GVT computation, the LTW protocol only has a minor 
effect on the operational efficiency. 

On the other hand, the LTW protocol greatly 
improves the fossil collection process. Firstly, the 
persistent input queue has been shortened significantly 
after the introduction of the volatile input queue, and 
most of the anti-messages are eliminated from the 
output queues under the protocol, resulting in 
decreased overhead for reclamation of past events and 
anti-messages during fossil collection. Secondly, the 
aggregated state manager now controls most of the 
historical states in a more centralized manner, making 
it possible to perform batch operations with improved 
efficiency. 

Dynamic load balancing is another type of global 
control that is crucial to achieving optimal simulation 
performance. In PCD++, model partitioning occurs at 
the atomic model level. Hence, it is the lightweight 
Simulators that will be moved around to achieve 
dynamic load balancing at runtime. Algorithms for 
dynamic load balancing usually rely on sensitive metric 
values that are valid only for a short period. Once a 
decision has been made, one or more LPs need to be 
migrated to a different node swiftly before the metric 
values become stale. Furthermore, the impact of load 
migration on the underlying communication 
infrastructure should be minimized so that it does not 
severely interfere with the normal execution of the 
simulation system. Under the LTW protocol, the 
appropriate decision points for load migration would 
be at the end of each WCTS when all the events in the 
volatile queue have been executed and the states of the 
LPs have been saved. Therefore, the only data that 
need to be transferred during load migration are the 
state queues of the chosen Simulators, lowering the 
cost of load migration considerably and allowing for 
more efficient dynamic load balancing to be realized in 
large-scale DEVS-based simulations. 

 

7. Conclusion and future work 
 

By taking advantage of the specific characteristics 
of the simulation process in PCD++, we proposed a 
novel protocol called as Lightweight Time Warp that is 
able to release most LPs from the Time Warp 
mechanism, while the overall simulation still executes 
optimistically, driven by only a few full-fledged Time 
Warp LPs. The LTW protocol can improve the system 
performance in various ways, including reduced 
memory footprint, lowered operational overhead for 
both local and global control mechanisms, more 



efficient queue operations, and facilitated load 
migration. In addition, the LTW protocol can also be 
integrated with other widely accepted Time Warp 
optimizations to further improve system performance. 
Although our discussion is centered on parallel 
optimistic simulation of DEVS and Cell-DEVS models, 
the basic concepts could also apply to a wide range of 
Time Warp based PADS systems under certain 
conditions and with appropriate control over the LPs. 
We are currently implementing the LTW protocol and 
testing the performance quantitatively in PCD++. 
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