
DEVS-Based Dynamic Simulation of
Deformable Biological Structures

By

Rhys Goldstein, B.A.Sc.

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Applied Science in Biomedical Engineering

Ottawa-Carleton Institute for Biomedical Engineering (OCIBME)

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

September 2009

c© Copyright 2009, Rhys Goldstein

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis

DEVS-Based Dynamic Simulation of
Deformable Biological Structures

submitted by

Rhys Goldstein, B.A.Sc.

in partial fulfillment of the requirements for

the degree of Master of Applied Science in Biomedical Engineering

Chair, Professor Howard M. Schwartz, Department of Systems and Computer Engineering

Thesis Supervisor, Professor Gabriel Wainer

Carleton University

September 2009

Abstract

Computer simulations are gaining popularity among biologists and medical researchers
seeking better understanding of biological systems and an ability to predict their behaviour.
There are many problems facing designers of such simulations. We focus on one particular
challenge: the design of simulation code that can be easily understood and modified despite
the complexity of biological systems and the algorithms used to model them.

The Discrete Event System Specification (DEVS) is a general modeling formalism, a set
of conventions for the formal description of a wide range of systems that vary in time.
Using DEVS, one can address the complexity of a biological model by subdividing it into a
hierarchy of simpler submodels. We demonstrate this technique by presenting DEVS-based
simulations that capture the dynamics of deformable biological structures.

This thesis makes two main contributions. The first pertains to the DEVS formalism and
its application to simulations of biological systems. We have designed the first biological
DEVS models with continuous space, meaning that positions of objects are quantified but
not restricted to discrete points on a lattice. The second contribution is the invention of a
method, called the tethered particle system (TPS), which we use to simulate deformable
structures. The TPS is unusual in that it may capture a gradual process of deformation
using only instantaneous impulses that occur in response to particle collisions.

A new DEVS simulator, and a DEVS model describing the TPS, were used to simulate both
vesicle clusters in nerve cells and deformable membranes. Our results suggest that the TPS
is a promising method for small-scale self-assembling deformable biological structures, but
is not yet practical for macroscopic deformable objects subject to sustained external forces.
With regard to DEVS, we argue that the formalism is a compelling option for the design of
simulations of complex biological systems. Upper levels of a DEVS model hierarchy can
be exploited for the integration of different biological simulation algorithms, whereas lower
levels can be used to partition space. A minimalistic formulation of DEVS is presented for
the benefit of readers who wish to adopt the formalism.

iii

Acknowledgments

I thank my supervisor, Dr. Gabriel Wainer, whose advice and ongoing support have made
graduate studies and research a very rewarding experience for me over the past two years.
I also thank Dr. James J. Cheetham, who provided expertise in the biology of presynaptic
nerve terminals, and numerous suggestions on how to model them.

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 2

1.3 Organization . 4

2 Review of the State of the Art 6

2.1 Simulation of Biological Systems . 6

2.2 DEVS . 10

2.3 DEVS-Based Simulation of Biological Systems 13

2.4 Biological Simulation Algorithm Integration 16

2.5 Dynamic Simulation of Rigid Bodies . 17

2.6 Dynamic Simulation of Deformable Structures 19

2.7 Simulation of Presynaptic Nerve Terminals 21

3 Problem Statement 24

4 Model and Simulator Design 27

4.1 Tethered Particle System . 27

4.2 Proposed DEVS Formulation . 35

4.3 DEVS Tethered Particle System Model . 41

4.4 Simulation Code . 49

v

5 Simulation of Deformable Biological Structures 55

5.1 Simulation of Vesicle Clusters . 55

5.2 Simulation of Deformable Membranes . 60

5.3 Simulation of Action Potentials and Exocytosis 64

6 Discussion 71

6.1 In Hindsight . 71

6.2 On Impulse-Based Dynamic Simulations of Deformable Structures 74

6.3 On DEVS-Based Simulations of Biological Systems 76

7 Conclusion 80

References 82

A Notation 88

A.1 Expressions . 88

A.2 Definitions . 91

A.3 Selectors . 94

A.4 Probability . 100

B Tethered Particle System Formulas 102

B.1 TPS Functions . 102

B.2 Collision Detection . 105

B.3 Collision Impulses . 109

B.4 Loading and Restitution . 114

B.5 Random Impulses . 120

C DEVS Formulas 126

C.1 DEVS Functions . 126

vi

C.2 DEVS Simulator . 128

C.3 DEVS Coupled Models . 133

C.4 Priority Functions . 141

C.5 DEVS Hypercubic Lattice Models . 143

D DEVS TPS Model Formulas 149

D.1 DEVS TPS Functions . 149

D.2 DEVS TPS Coupled Models . 157

D.3 DEVS Random Impulse Model . 163

D.4 DEVS Responder Model . 166

D.5 DEVS Tracker Model . 177

D.6 DEVS Lattice Model . 181

E Presynaptic Nerve Terminal Model Parameters 192

vii

1 INTRODUCTION

1 Introduction

1.1 Overview

Simulation is becoming an increasingly common tool among biologists and medical re-
searchers, complementing traditional experimental techniques. As Kitano explains in [1],
experimental data is first used to form a hypothesis, and that hypothesis may be investigated
with a simulation. Predictions made by the simulation can then be tested using in vitro and
in vivo studies, and the new experimental data may lead to new hypotheses. This iterative
process can be applied to basic research on biological systems, as well the development of
drugs and other treatments.

Many different types of simulations are used in the field of biomedicine. Some model the
reaction and diffusion of chemicals, for example, as done in the simulated E. coli bacterium
of [2]. Our interest lies in simulations that capture the dynamics of deformable structures,
which are frequently targeted at surgical planning and training [3], as well as the analy-
sis of prosthetics [4]. Models of smaller-scale deformable biological structures are rarer,
but examples include the simulated deformation of 8-µm red blood cells [5], and that of
membrane-sculpting proteins on the 10-nm scale [6].

The simulation of biological systems poses many technical challenges. Among these chal-
lenges are the selection of accurate model parameters, the validation of simulation results,
and the optimization of simulation code for computational efficiency. The problem that
interests us is the development of well-designed simulation software; “well-designed” in
the sense that modelers can understand their code, modify it, and have confidence that the
desired computations are described. This is difficult for two reasons. First, the systems
that biologists and medical researchers wish to simulate are often extremely complex, and
models of those systems tend to become complex as a consequence. Second, realistic sim-
ulations may require the integration of multiple complex algorithms. Several algorithms
would be necessary if one wished to simulate, for example, the deformation of a cell mem-
brane, surrounded by reacting and diffusing chemicals, in a changing electric field.

1

1 INTRODUCTION
1.2 Contributions

In [7], it is noted that in many engineering applications, one can address the complexity of
a large system by partitioning it into simpler subsystems. The paper suggests that complex
biological systems be conceptually modularized in an analogous manner, and recommends
that modeling formalisms be adopted to support this approach. The Discrete Event Sys-
tem Specification (DEVS) is one such formalism. Using DEVS, a simulation program is
partitioned into a simulator and a model. One can address the complexity of the model
by subdividing it into simpler submodels, and those submodels can in turn be subdivided
as many times as needed. A DEVS model may thus take on a hierarchical structure. Al-
though extra code must be written to define this structure, the fact that each submodel can
be designed independently often compensates for the additional overhead.

In this thesis, we assert that DEVS can be used to develop well-designed software for
the simulation of biological systems, and demonstrate the technique by presenting DEVS-
based simulations that capture the dynamics of deformable biological structures. The de-
velopment of these simulations involved the following tasks:

1. The invention of a method, called the tethered particle system (TPS), for simulating
deformable structures.

2. The development of a DEVS simulator, as well as several accompanying functions
that facilitate the design of hierarchical DEVS models.

3. The design of a hierarchical DEVS model for the TPS method.

4. The application of the DEVS simulator, and DEVS TPS model, to the simulation of
deformable structures found in the presynaptic terminals of nerve cells.

1.2 Contributions

This thesis makes two main contributions. The first is the application of the DEVS formal-
ism to simulations of biological systems involving continuous-space models. The second

2

1 INTRODUCTION
1.2 Contributions

contribution is the invention of an impulse-based method for simulating the dynamics of
deformable structures.

The first contribution advances the state of the art in modeling methodology in the field of
biomedicine. Pre-existing biological DEVS models have been either non-spatial, meaning
that the positions of biological entities are not quantified, or cellular, meaning that spatial
coordinates are restricted to discrete points on a lattice. We have designed the first bio-
logical DEVS models with continuous space, meaning that coordinates are not restricted
to discrete points. Continuous-space biological models are used, among other things, to
simulate molecules in a cell that move in any direction. Our work demonstrates that DEVS
can be applied to these types of simulations. Continuous-space DEVS models have been
designed outside of the biological domain, but our approach differs in that we avoid the
more complicated variants of the formalism.

Looking at the first contribution from a practical perspective, we provide an example for
other programmers to follow when designing their own simulation software. The mathe-
matics of our DEVS simulator can be applied to models of any domain. For the design of
hierarchical biological models, others can adopt our recommended approach: to partition
different algorithms at upper levels of a DEVS model hierarchy, and to partition space at
lower levels.

Looking at the second contribution, the most common methods for simulating the dynamics
of deformable structures are mass-spring-damper systems and the finite element method.
Our method, the TPS, differs in that it uses only impulses to alter motion. Impulse-based
methods have previously been used to simulate rigid bodies, but are generally neglected or
considered unsuitable for objects that deform. We demonstrate that impulse-based meth-
ods provide a relatively simple way to allow deformable biological structures to assemble
themselves from rigid particles representing proteins and other biological entities. Also,
with an impulse-based simulation, it is easy to incorporate the random motion exhibited by
these small biological objects.

Aside from the novel application of DEVS and impulse-based simulation techniques, other

3

1 INTRODUCTION
1.3 Organization

contributions are made. As part of the TPS, we present a new approximation for resolving
simultaneous and nearly-simultaneous collisions of rigid bodies. Also, our simulation code
and presynaptic nerve terminal model is being used by Dr. James J. Cheetham, a biologist
at Carleton University, to study neurotransmission.

Three papers that describe our work have been either published or accepted for publica-
tion. Listed below, these papers present the key formulas of the TPS, its application to
presynaptic nerve terminals, and its design and implementation using DEVS.

• Rhys Goldstein and Gabriel Wainer. Simulation of Deformable Biological Structures
with a Tethered Particle System Model. In Proceedings of the 32nd Conference of

the Canadian Medical and Biological Engineering Society (CMBEC), Calgary, AB,
Canada, 2009.

• Rhys Goldstein and Gabriel Wainer. Simulation of a Presynaptic Nerve Terminal
with a Tethered Particle System Model, To appear in Proceedings of the 31st Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), Minneapolis, MN, USA, 2009.

• Rhys Goldstein and Gabriel Wainer. DEVS-Based Design of Spatial Simulations of
Biological Systems, To appear in Proceedings of the Winter Simulation Conference

(WSC), Austin, TX, USA, 2009.

1.3 Organization

The first three sections of this document are introductory in nature. Section 3 describes the
scope and purpose of the project, referring to the previous research outlined in Section 2.

Section 1 Introduction

Section 2 Review of the State of the Art

Section 3 Problem Statement

4

1 INTRODUCTION
1.3 Organization

The next two sections describe how the problem stated in Section 3 was tackled.

Section 4 Model and Simulator Design

Section 5 Simulation of Deformable Biological Structures

Section 4.1 describes the TPS method, ignoring DEVS, whereas Section 4.2 focuses on
DEVS and ignores the TPS. The DEVS formalism is applied to the TPS in Section 4.3. The
Python code described in Section 4.4 was used to simulate various deformable biological
structures and related processes. These simulations are presented in Section 5.

The remaining two sections discuss the project in hindsight, the dynamic simulation of
deformable structures using impulses, the application of DEVS to biological models in
general, and future work.

Section 6 Discussion

Section 7 Conclusion

Following a list of references, several formulas-intensive appendices are included for the
benefit of those readers who would like to reproduce parts of our work in their own simu-
lation code. A programmer who wishes to create their own TPS simulation, or implement
their own DEVS simulator, will find many of the cases they need to consider explicitly
handled. The appendices can also be referenced to clarify ambiguities in the informal de-
scriptions of Sections 4 and 5.

Appendix A Notation

Appendix B Tethered Particle System Formulas

Appendix C DEVS Formulas

Appendix D DEVS TPS Model Formulas

Appendix E Presynaptic Nerve Terminal Model Parameters

5

2 REVIEW OF THE STATE OF THE ART

2 Review of the State of the Art

2.1 Simulation of Biological Systems

We use the term “model” to refer to a description of certain aspects of a real-world system.
“Simulation”, by contrast, is a process by which a model is used to imitate a system. A
model can be an informal description involving diagrams and prose, but in this document
the term will generally refer to a formal description involving mathematical formulas. For
our purposes, the task of simulating a system can be assumed to include the design of a
formal model, and the use of computer technology to perform calculations based on the
model’s formulas. The term “simulator” refers to a program designed to execute these
calculations given a model as its input.

Models of biological systems can be designed as hierarchies [8]. Nodes in a “hierarchical
model” typically reflect real-world entities in the represented system. Depicted in Figure 1
is a hierarchical model of a neuron, or nerve cell. The upper level of the hierarchy rep-
resents the neuron itself, and nodes in the lower level represent its components. Arrows
indicate the direction in which a signal, or action potential, propagates through the neuron
from one component to another. Note that the illustrated model is hypothetical, and that a
typical nerve cell does not have exactly two terminals.

Figure 1: An illustration of a hypothetical, hierarchical, non-spatial model of a neuron.

We classify models as either “spatial” or “non-spatial”. Although the soma, axon, and
terminals of a real-world neuron have positions, we would describe the Figure 1 model as
non-spatial because positions are represented qualitatively. In the spatial model of Figure 2,

6

2 REVIEW OF THE STATE OF THE ART
2.1 Simulation of Biological Systems

the shape and position of a neuron can be represented quantitatively by sets of coordinates
that identify cells in a lattice.

Figure 2: A hypothetical cellular model in which the shape of a neuron is captured by a set
of shaded lattice cells.

There are a number of ways of representing space in biological models [9]. We will classify
spatial models as either “cellular” models, like the one in Figure 2 above, or “continuous-
space” models, like the one in Figure 3 below. In a continuous-space model, coordinates
are not restricted to discrete points on a lattice.

Figure 3: An example of a continuous-space model, in which the shape of a neuron is
captured by a set of connected points.

Each type of model has its own advantages. With a non-spatial model such as that in
Figure 1, it is easy to define a hierarchy based on anatomical features or other real-world
entities. With spatial models, real-world objects can be harder to differentiate. Where is the
exact boundary, for instance, between the soma and the axon in Figure 2? One advantage
of the cellular model is that, by associating different values with different lattice cells, one
can represent a property that changes along the length of a neuron’s axon. Note, however,
that a rotation or deformation of a neuron would be easiest to simulate by moving the points
in the continuous-space model of Figure 3.

Examples of non-spatial biological models include those based on the Gillespie Algorithm

7

2 REVIEW OF THE STATE OF THE ART
2.1 Simulation of Biological Systems

[10]. Popular in systems biology, this algorithm is used to simulate changes in the concen-
trations of various reacting chemicals over time. The key assumption is that a simulated
chemical system is well mixed, in which case the probability distribution governing the
next reaction is independent of the coordinates of any individual molecule. Coordinates are
therefore excluded. After each simulated reaction, concentrations are updated, and the type
and timing of the next reaction are randomized.

The Gillespie Algorithm has been adapted many times since its introduction in 1977. One
recent non-spatial model, presented in [11], uses Gillespie’s equations but treats a biolog-
ical system like a factory in which machines (enzymes) take unprocessed items (chemical
reactants) from a queue (of chemical reactions in progress) and deliver processed items
(chemical products).

In 2004, the Gillespie Algorithm was extended to spatial cellular models [12]. In the Next
Subvolume Method, the assumption is made that the chemical system in each lattice cell,
or subvolume, is well mixed. Different subvolumes have different concentrations, however,
and these concentrations affect not only reactions but also the diffusion of chemicals from
one subvolume to another. The Next Subvolume Method is so-named because it requires
a simulation to repeatedly identify the subvolume in which the next chemical reaction or
diffusion will occur.

The Gillespie Algorithm and the Next Subvolume Method are examples of “population-
based” methods for simulating chemical systems. Alternative methods are “particle-based”,
tracking the positions of individual particles. Population-based methods have an obvious
advantage in that they accommodate the simulation of arbitrarily-large quantities of a chem-
ical. They are inappropriate for biological systems with complex heterogeneity, however,
due to the assumption that systems are well mixed. Population-based methods also suffer
from “combinatorial explosion”: if a molecule can exist in hundreds of different states, and
if each state must be represented with a different chemical species, then the high number
of possible reactions renders simulation intractable [13].

Particle-based methods require spatial models, as the positions of individual particles are

8

2 REVIEW OF THE STATE OF THE ART
2.1 Simulation of Biological Systems

quantified by sets of coordinates. GridCell is an example of a particle-based simulator that
operates on cellular models [14, 15]. Each cell in a 3D cubic lattice contains at most one
particle. At fixed time intervals, each particle may move randomly to one of its 26 neigh-
boring cells, or undergo a reaction that causes itself and possibly a neighboring particle to
be replaced with one or two new particles. One of GridCell’s strengths is its inherent ability
to simulate molecular crowding in a computationally efficient manner. Molecular crowd-
ing occurs when the density of particles in a particular region impedes particle motion and
reactivity.

GridCell’s most obvious weakness is its discretization of space. Other particle-based simu-
lators have been developed for continuous-space models, with particle positions described
by continuous coordinates. In the MCell program [16], particles move randomly in any
direction through 3D space. When a particle encounters a surface, a cell membrane for
instance, a reaction may occur. ChemCell and Smoldyn are similar to MCell, but allow
reactions to occur between particles in solution [17, 18, 19].

Like GridCell, but unlike the Gillespie Algorithm, reactions in MCell, ChemCell, and
Smoldyn all occur at fixed time steps. Green’s Function Reaction Dynamics (GFRD) is
an alternative particle-based method [20]. It also uses continuous-space models, but ad-
vances time in a sequence of irregular intervals. At any given simulated time, the length of
the next time interval is calculated from reaction probability distributions that depend on
the positions of each particle.

All of the simulation methods described above are examples of discrete event simulations,
for in each case the state of a real-world system is represented in part by a set of values that
change only at discrete points in time. A specific state change, occurring at a specific point
in simulated time, is referred to as an “event”. In the Gillespie Algorithm, for example,
the recorded state would be the set of concentrations of each chemical. That state remains
constant until a reaction event occurs, at which point the recorded concentrations change
instantaneously. The phrase “discrete event simulation” usually refers to a method like
Gillespie’s or GFRD in which time is advanced by irregular intervals.

9

2 REVIEW OF THE STATE OF THE ART
2.2 DEVS

2.2 DEVS

With the conviction that a novel theory was needed for discrete event simulation, Bernard
Zeigler invented the Discrete Event System Specification (DEVS). Described in detail in
[21], DEVS is a general modeling formalism, a set of conventions for the formal description
of a wide range of systems that vary in time. The formalism emphasizes the distinction
between system states and constant states, the separation between simulators and models,
and the design of hierarchical models. Many variants of DEVS have been proposed and
implemented since the formalism was first introduced in 1976.

Note that the state of a real-world system may change continuously with time, whereas
the recorded state in a discrete event simulation changes only at discrete times. DEVS
addresses this discrepancy by representing the state of a real-world system with a “system
state”, which is distinct from the “constant state” stored by a computer. The system state has
two components: the constant state and the time elapsed since the previous event. Because
the “elapsed time” changes continuously with simulated time, so does the system state. In
many other modeling formalisms, transition functions invoked at each event calculate new
constant states from current constant states. The transition functions in DEVS calculate
new constant states from current system states [22].

Consider, for example, a simulation of a ball bouncing on a floor. We would like to simulate
the height of the ball above the floor, which of course changes continuously. We could do
this by choosing as the constant state the upward speed of the ball immediately after each
event. Events would coincide with impacts between the ball and the floor. Given the system
state at any time, which consists of the constant state v and the elapsed time ∆tel, one can
obtain the height of the ball (eg. v·∆tel − (1/2) ·9.81·∆tel2).

Having explained the distinction between system states and constant states, will we from
here on adopt the usual convention, drop the phrase “constant state”, and use in its place the
word “state”. To summarize, the state remains constant between events in a DEVS-based
simulation, but the system state varies continuously because it includes the elapsed time.

10

2 REVIEW OF THE STATE OF THE ART
2.2 DEVS

Recall from Section 2.1 that a model is a description of a system. A “DEVS model” is
specific type of model: a formal description from which one can derive the mathematical
sets and functions in the tuple of (1). If the variables in this tuple are defined explicitly,
then the DEVS model is an “atomic model”.

〈X, Y, S, δext, δint, λ, ta〉 (1)

A key principle of DEVS is that the model and the simulator remain separate. When de-
signing an atomic model, for example, one defines functions such as δext, δint, λ, and ta,
but does not worry about invoking them. The evaluation of these functions is carried out
by the simulator. At any given time during a simulation, a DEVS model has an associated
state s (s ∈ S). After an event, the simulator evaluates the time advance function ta to
determine the time when the next internal transition may occur. Should this time elapse,
the output function λ is invoked to obtain an output value y (y ∈ Y), and the internal tran-
sition function δint yields the new state of the model. If, however, an input value x (x ∈ X)
is received before the time ta(s) elapses, then the simulator applies the external transition
function δext instead to obtain the new state. A DEVS simulator is model-independent in
the sense that it should carry out a simulation for any well-defined DEVS model, regardless
of what the model represents.

Note that the external transition function δext accepts three arguments: the current state s,
the elapsed time ∆tel, and the input value x. As stated earlier, it is a function of the system
state because its arguments include both s and ∆tel. The internal transition function δint
accepts only one argument: the state s. Effectively, if not technically, δint is also a function
of the system state, for the elapsed time is guaranteed to be ta(s).

Traditionally, a DEVS model is classified as being either an atomic model or a coupled
model. “Coupled models” are composed of submodels, and these submodels are them-
selves either atomic or coupled. The nesting of coupled models within coupled models is
the mechanism by which DEVS supports hierarchical model design. To design a coupled
model, one defines the variables in the tuple of (2). These variables describe how messages
are passed from one submodel to another during a simulation. Here “message” refers to

11

2 REVIEW OF THE STATE OF THE ART
2.2 DEVS

a value that originates from one DEVS model as an output (y ∈ Y), and/or arrives at an-
other DEVS model as an input (x ∈ X). It has been proven that for every coupled model
expressed in the form of (2), one can define an equivalent atomic model in the form of (1).
This property is referred to as “closure under coupling”.

〈X, Y,D, {Md | d ∈ D} , EIC,EOC, IC, Select〉 (2)

Suppose we were to define the neuron model of Figure 1 in Section 2.1 as a DEVS cou-
pled model. We could start by defining four atomic models to serve as submodels, one
representing the soma, another the axon, and two more for the terminals. In the coupled
model, representing the entire neuron, the variable D would be the set of model identi-
fiers; {“soma”, “axon”, “terminal 1”, “terminal 2”}, for example. The set of models
{Md | d ∈ D} would include the tuples of the four atomic models. The external input
coupling set EIC would represent the arrow leading into the soma, the external output
coupling set EOC would represent the arrows leading out of the terminals, and the inter-
nal coupling set IC would represent the arrows between submodels. Messages would be
passed according to these links. A Select function would be defined to determine which
submodel undergoes an internal transition first in the event of a tie.

DEVS has been applied extensively, not only to non-spatial hierarchical models like the
one in Figure 1, but also to cellular models. In [23], a watershed is described with a DEVS
coupled model composed of submodels representing cells in a 3D lattice. Each submodel
records the water retained in a certain region of the watershed, which accumulates as water
influx messages are received from neighboring submodels. If the region’s water capacity is
reached, water outflow messages are sent to neighboring submodels.

Another way to apply DEVS to cellular models is offered by the Cell-DEVS formalism
[24]. Cell-DEVS is an extension of DEVS, so the variables in (1) and (2) are not defined
explicitly. For every Cell-DEVS coupled model describing a cellspace, however, one can
define an equivalent DEVS coupled model. The advantage of Cell-DEVS over DEVS is
that, in Cell-DEVS, the communication of a cell’s state to neighboring cells is implicit
in the formalism. A modeler must only define a neighborhood of cells, which is simpler

12

2 REVIEW OF THE STATE OF THE ART
2.3 DEVS-Based Simulation of Biological Systems

than describing messages. Traditionally, simulations with cellular models are implemented
with nested loops updating cell states at regular time intervals. Cell-DEVS allows cell
transitions to occur asynchronously. Also, Cell-DEVS models can be integrated with other
DEVS models, cellular or otherwise.

The application of DEVS to continuous-space models, like one in Figure 3, is rare. One
such effort is described in [25], in which the front of a forest fire is represented by a set of
connected points. For each point there is a separate DEVS atomic model. Because points
are added as a fire grows, the simulation requires the use of a DEVS variant designed for
models with dynamic structures [26]. The claimed advantage of the continuous-space fire
spreading model is that, while a cellular model might distinguish between cells that are all
on fire, the use of vectors eliminates this overhead. One disadvantage is that, in order to
represent temperature variations within a fire as done in the cellular model of [27], multiple
nested boundaries would be needed.

Another continuous-space model designed with DEVS is presented in [28]. Although it
also represents a forest fire, it differs from the model of [25] in that vectors are used for the
positions of fire fighters. The fire itself is represented by a set of cells in a lattice. Similar
to [25], the model in [28] has a dynamic structure, but in this case the dynamic structure is
used to create and delete links between DEVS fire fighter models and DEVS cell models.

2.3 DEVS-Based Simulation of Biological Systems

Despite the popularity of the DEVS formalism and the widespread use of simulation in the
study of biological systems, the application of DEVS to biological models is relatively rare.
One notable group, led by Adelinde M. Uhrmacher at the University of Rostock, applies
DEVS to various non-spatial models of biological systems. The coupled model in [29]
represents an enzyme called “RNA polymerase” as a message that is passed to a submodel
called “promoter”. Upon receipt of the message, the state of the promoter depends on
whether the RNA polymerase can bind to it. The model is non-spatial because, although

13

2 REVIEW OF THE STATE OF THE ART
2.3 DEVS-Based Simulation of Biological Systems

the relationships between RNA polymerase and other biological structures are tracked, their
positions in space are not.

Gabriel Wainer leads a group at Carleton University that has demonstrated the application
of Cell-DEVS to cellular biological models [30]. One example features tumor growth
impeded by immune cells [31].

Figure 4: A snapshot of a Cell-DEVS simulation. Immune cells attack a growing tumor,
which consists of necrotic cells, surrounded by dormant cells, surrounded in turn by prolif-
erative cells.

It is easy to envision how continuous-space biological models, like those of MCell, could
be designed with DEVS. One could alter the forest fire example in [28], for instance. In-
stead of fire fighters approaching a fire front, vectors could be used to track chemicals or
proteins approaching a cell membrane. Nevertheless, a literature search did not yield any
continuous-space DEVS models of the kind of biological system that might be found in a
living organism.

When considering the use of DEVS for the design of a discrete event simulation, the ques-
tion one must ask is not whether it is possible to use the formalism at all, but whether
submodels can be chosen to effectively exploit its hierarchical nature. It is theoretically
possible to represent a complex biological system with a single atomic model. This might
well be preferable to not using any formalism at all, as the use of DEVS at least guaran-

14

2 REVIEW OF THE STATE OF THE ART
2.3 DEVS-Based Simulation of Biological Systems

tees the separation of model and simulator. With only one atomic model, however, the δext
and δint functions might be thousands of lines long and contain many loops and data struc-
tures. To fully benefit from DEVS, coupled models must be used to subdivide a model into
simpler submodels. The result is many smaller δext and δint functions.

The design of suitable hierarchies is a challenge, particularly for models of biological sys-
tems that contain many interacting components. In [32], researchers at the University of
Rostock compare the DEVS formalism to three of its alternatives: stochastic Petri Nets,
stochastic π-Calculus, and StateCharts. They design hierarchies by coupling DEVS sub-
models that represent entities of biological systems, such as cell membranes and nuclei.
Interactions between such entities are simulated by the passing of messages between the
DEVS models. Because messages are passed independently of one another, the claim is
made that DEVS is unsuitable for the modeling of interactions that involve three or more
entities.

“[When using DEVS or StateCharts,] the involved reactants and products be-
come the focus of interest. In combination with an asynchronous interaction
via events, this does not facilitate the representation of chemical reactions that
involve several components at once. Although reactants and products can be
considered as independent entities, they have to react in synchrony.” (quoting
Ewald et al. from [32])

The problem described above arises not only from the use of DEVS, but also from the
decision to base model hierarchies on biological entities. However, as this happens to be
a very intuitive design strategy, the point is worth noting. Several variants of DEVS have
been been proposed to improve its efficacy for the modeling of biological systems, specific
examples being ρ-DEVS [33] and ml-DEVS [34]. Inevitably, as DEVS is modified to
simplify models of biological systems, the formalism itself becomes more complicated
and more difficult to learn. Along with the usual sets of submodels and links, coupled
models in ml-DEVS (MACRO-DEVS models) include a downward output function λdown,
a downward value coupling function vdown, an upward activation function actup, and a
structural change function sc.

15

2 REVIEW OF THE STATE OF THE ART
2.4 Biological Simulation Algorithm Integration

2.4 Biological Simulation Algorithm Integration

Though accomplished without DEVS, a good example of biological algorithm integration
is described in [35]. This works integrates the Next Subvolume Method with an algo-
rithm that tracks the positions of individual molecules, resulting in a method that is both
population-based and particle-based. The model, like that of the fire fighter simulation
in [28], can also be seen as both cellular and continuous-space. Future models of complex
biological systems will likely go beyond the integration of methods for the reaction and dif-
fusion of chemicals, and attempt to incorporate algorithms for the propagation of electric
fields, the motion of fluids, and the dynamics of deformable structures.

The desire to integrate biological algorithms, coupled with the belief that different algo-
rithms are best described in different ways, has led to “multi-formalism modeling”. This
approach involves the composition of a single model from submodels defined using differ-
ent formalisms. The framework James II was developed to combine stochastic and spatial
variants of the π-Calculus with variants of DEVS and a formalism called Beta Binders. It is
described in a paper titled, in part, One Modelling Formalism & Simulator Is Not Enough!

[36].

As explained in [37], there are different approaches to multi-formalism modeling. One
strategy exploits the fact that models of certain formalisms can be transformed into models
of certain other formalisms. It has been shown, for example, that a StateCharts model can
be transformed into an equivalent DEVS model [38]. The strategy is therefore to transform
all models, regardless of the formalism used to define them, into equivalent models of some
common formalism. DEVS is often suggested as an appropriate common formalism [39].
An alternative strategy is to have a separate simulator for each modeling formalism, and
ensure that all simulators can inter-operate during a simulation.

The advantage of multi-formalism modeling is that a modeler can select the formalism that
best describes each integrated algorithm. One drawback is that, in order to understand the
entire model, one must be familiar with all of the formalisms used. The E-Cell System
demonstrates the integration of biological algorithms with a single general modeling for-

16

2 REVIEW OF THE STATE OF THE ART
2.5 Dynamic Simulation of Rigid Bodies

malism. Although E-Cell is described in [40] as a multi-formalism framework, the word
“formalism” is interpreted as a mathematical model that must be adapted for simulation.
What is referred to as a “meta-algorithm”, with tuples representing “models” and “step-
pers” and “processes”, is a novel modeling formalism analogous to DEVS.

2.5 Dynamic Simulation of Rigid Bodies

We use the phrase “dynamic simulation” to indicate the simulation of motion using laws
of classical dynamics. We consider only those dynamic simulation methods that involve
continuous-space models, as cellular models tend to restrict motion. This section reviews
methods for the dynamic simulation of rigid bodies. In these methods, object deformation
may be represented by a loss of kinetic energy, for example, or an overlapping of objects.
If an object’s changing shape is modeled, however, then we classify it as a deformable
structure instead of a rigid body.

“Impulse-based” methods are perhaps the most obvious approach to the dynamic simu-
lation of rigid bodies. An impulse-based method involves two tasks: collision detection,
the task of calculating the time at which any two objects come into contact, and collision
response, the task of computing the new trajectories of two colliding objects. In response
to a collision, the trajectory of an object changes instantaneously in simulated time. The
instantaneous change in the momentum of the object is referred to as an “impulse”.

Because impulse-based methods assume instantaneous contacts, the approach seems inap-
propriate for the modeling of stable contacts. If a ball is rolling across a table, for example,
it remains in contact with the table for a length of time. In his 1996 Ph.D. thesis, Brian
Mirtich demonstrated that stable contacts could be modeled as sequences of independent
collisions [41]. Consider an impulse-based simulation of an object bouncing along a hor-
izontal surface. Provided each bounce was sufficiently short in height and duration, the
model could accurately represent a ball rolling across a table.

17

2 REVIEW OF THE STATE OF THE ART
2.5 Dynamic Simulation of Rigid Bodies

Another well-known drawback to impulse-based methods is the possibility of simultaneous
or nearly-simultaneous collisions. Consider a situation in which a small object is directly
between two much larger approaching objects. After the first large object hits it, the small
object may end up travelling back and forth between the larger objects in a long sequence
of nearly-simultaneous collisions. This might require considerable computational effort. If
kinetic energy is lost in each collision, then it is possible for the sequence of collisions to
become infinite, slowing the simulation to a halt.

One advantage to impulse-based simulation is the simplicity of the method. If one is to
implement an algorithm to detect collisions between pairs of objects, which is necessary in
perhaps all of the competing methods, it is a simple matter to apply the law of conservation
of momentum to give the two objects new trajectories. The constraint-based method of
[42], by contrast, may compute new trajectories for more than two objects simultaneously.
This is done by minimizing a linear function constrained by a system of linear inequalities.
Depending on the model, this problem may be NP-hard, may have no solutions, or may
have multiple different solutions.

Both impulse-based methods and the constraint-based method of [42] prevent the penetra-
tion of objects. “Penalty methods” differ in that they allow approaching objects to overlap
slightly upon colliding. Typically, a spring is temporarily inserted between colliding ob-
jects; the more the objects overlap, the stronger the restoring force of the compressed spring
[43].

Generally speaking, dynamic simulations of rigid bodies tend to be deterministic. An object
with some velocity will continue moving in the same direction with the same speed until
it is acted upon by a force or until it undergoes a collision. The particle-based simulations
mentioned in Section 2.1 are nondeterministic, as particles move randomly through space
unaffected by their own momentum.

18

2 REVIEW OF THE STATE OF THE ART
2.6 Dynamic Simulation of Deformable Structures

2.6 Dynamic Simulation of Deformable Structures

We now review methods for the dynamic simulation of deformable structures, as opposed to
rigid bodies. Note that phrase “dynamic simulation” excludes a wide range of methods for
modeling deformable structures. An algorithm that fits a spline to a cross-sectional image
of a human lung, for example, certainly models a deformable structure. But unless the
motion of the lung is predicted from laws of physics, we would not consider it a dynamic
simulation.

One way to model a deformable structure is with a set of point masses. Each mass is
connected to its neighbors with a spring and possibly a damper. A spring applies a force
that, depending on its present length, attracts or repels the masses on either end. A damper
applies a force that decreases the relative speed of the masses on either end. These “mass-
spring-damper” systems can be used to simulate the dynamics of deformable structures
by predicting the acceleration of each mass, at regular time intervals, according to spring,
damper, and external forces [44]. The mass-spring-damper method is essentially a penalty
method like those described in Section 2.5 for rigid bodies. The difference is that the
springs in Section 2.5 are inserted temporarily between detached colliding objects, whereas
in this case the springs tend to be permanent and the point masses do not necessarily rep-
resent distinct objects.

Some mass-spring-damper models use spherical particles instead of point masses. This
technique is used in [45] to simplify the detection of collisions between deformable objects.
Each object is composed of several overlapping spherical particles. Instead of detecting
collisions between the possibly-concave surfaces of these objects, only collisions between
particles are considered. A similar approach is taken in [46], which incorporates friction,
viscous forces, and the fracture of deformable objects.

Mass-spring-damper methods are used extensively in computer graphics. They are consid-
ered computationally efficient, but not particularly accurate. Incompressible deformable
objects and nearly-rigid thin membranes are difficult to model, and appropriate spring pa-
rameters may be difficult to determine. Stiff objects, modeled using springs with large

19

2 REVIEW OF THE STATE OF THE ART
2.6 Dynamic Simulation of Deformable Structures

restoring forces, threaten the stability of mass-spring-damper simulations. Techniques have
been developed to address the stiffness problem. The simplest solution is to decrease the
time step, though this increases computational costs.

A popular alternative to mass-spring-damper systems is the “finite element method” (FEM)
[47]. FEM actually refers to a more general mathematical technique, but we will refer to it
as a dynamic simulation method for deformable structures. In an FEM model, a deformable
object is represented as a set of adjacent polyhedra. Each polyhedron, or “element”, has
a set of vertices, or “nodes”. Although recorded attributes are associated with each node,
material properties can be obtained at every point in each element by interpolating the
attributes of each node. Positions of each node may change at each time step. FEM simu-
lations are considered to be more accurate, but also more computationally intensive, than
those based on mass-spring-damper models. The FEM is most efficient with metals and
materials that exhibit relatively little deformation. Highly deformable materials, like soft
biological tissues, require frequent re-calculation of large mass and stiffness matrices that
depend on the positions of the nodes.

Impulse-based methods, like those used for rigid bodies, tend to be either neglected or
avoided for the dynamic simulation of deformable structures. A literature search revealed
an “impulse response deformation model” [48], which does simulate the dynamics of de-
formable structures, but is not an impulse-based method despite its name. In this case the
term “impulse” refers to an initial perturbation in an object’s shape. Convolution integrals
are used to track the object’s shape after the perturbation.

The possibility of applying impulse-based methods to deformable objects is acknowledged
in [49], but quickly dismissed with the assertion that “impulse-based methods assume short
contacts only, and therefore they are not suitable for soft objects”. The argument is intuitive:
impulses are instantaneous changes in momentum, whereas the deformation of an object
is a gradual process that takes place over time. In [41], Mirtich states that the strongest
restriction of impulse-based methods is that models are comprised of only rigid bodies.

The pre-existing method that most closely fits the phrase “impulse-based dynamic simula-

20

2 REVIEW OF THE STATE OF THE ART
2.7 Simulation of Presynaptic Nerve Terminals

tion of deformable structures” was developed recently to simulate inextensible cloth [50],
as well as volume-conserving deformable objects [51]. In both cases, impulses are applied
simultaneously to all particles in a structure at regular time intervals. Because the purpose
of these impulses is to constrain either the distances or volumes between the particles, the
method can be classified as constraint-based as well as impulse-based. The simulations of
[50, 51] differ from impulse-based rigid body simulations in that, in the latter, impulses
occur in response to collisions and not at regular intervals.

2.7 Simulation of Presynaptic Nerve Terminals

An action potential, a signal that propagates along the axon of a nerve cell, will ultimately
arrive at a presynaptic nerve terminal. Inside this compartment are tens or hundreds of
neurotransmitter-containing sacs called synaptic vesicles [52]. Some of those vesicles are
docked to a region of the membrane called the active zone. When an action potential
arrives, certain docked vesicles may release their neurotransmitters outside of the compart-
ment. This may provoke another action potential in an adjacent nerve cell. When a docked
vesicle releases its neurotransmitters in this fashion, it may undergo a process called ex-
ocytosis in which it fuses with the nerve cell membrane. Alternatively, the vesicle may
separate from the membrane and drift back into the compartment.

Also present in a presynaptic nerve terminal are protein called synapsin [53]. Synapsins,
which may number in the hundreds within the compartment, bind with vesicles to form
clusters. An action potential triggers chemical reactions that cause synapsins to lose their
affinity for vesicles. This disrupts the clusters, freeing vesicles. Clusters may reform before
the next action potential arrives.

Figure 5 illustrates the clustering of vesicles and other features of a presynaptic nerve ter-
minal.

21

2 REVIEW OF THE STATE OF THE ART
2.7 Simulation of Presynaptic Nerve Terminals

Figure 5: An illustration of a presynaptic nerve terminal.

The simulation of a presynaptic nerve terminal is motivated by a desire to better understand
the physiology of the human brain. One may be able to use simulation results, for example,
to predict how a decreased synapsin concentration affects the size of vesicle clusters. Such
results could be used to investigate the theory that vesicle clusters form in order to ensure
that, should action potentials arrive at a high frequency, vesicles remain available in the
vicinity of the active zone [54].

In [55], the MCell program was used to simulate the reaction and diffusion of chemicals
around vesicles docked on a presynaptic membrane. This simulation involved a continuous-
space model in which vesicle positions were based on measurements of an actual presy-
naptic nerve terminal. Neither the vesicles nor the membrane could move, however.

In the 2D cellular model of [56], vesicles and synapsins were free to move and form clus-
ters, and the clusters themselves could move as well. But because vesicle and synapsin
positions were restricted to lattice cells, the clusters could neither rotate nor deform. The
simulation was designed using the Cell-DEVS formalism mentioned in Section 2.2. A

22

2 REVIEW OF THE STATE OF THE ART
2.7 Simulation of Presynaptic Nerve Terminals

simulation snapshot is shown in Figure 6.

Figure 6: A cellular model of a presynaptic nerve terminal. Vesicles (black cells) form
clusters with synapsin (light grey cells) inside a circular compartment.

Aside from the work described in this thesis, a literature search revealed no continuous-
space models of presynaptic nerve terminals designed to capture the dynamics of vesicle
clusters as deformable structures.

23

3 PROBLEM STATEMENT

3 Problem Statement

The problem tackled by this thesis is the application of the DEVS formalism to the dynamic
simulation of deformable biological structures. Three decisions were made at the outset of
the project that narrowed its scope. First we had to choose whether to design our own DEVS
simulator or use existing software. Because existing DEVS tools had not been developed
with continuous-space biological models in mind, we decided to design our own. We also
had to choose a method for the dynamic simulation of deformable structures. For reasons
explained below, we chose to invent our own impulse-based method. Finally, although our
objective was to develop simulation techniques that could be applied to a range of biological
systems, we had to decide which deformable biological structures to focus on. Our priority
was the vesicle clusters of presynaptic nerve terminals, a main interest of the biologist
James J. Cheetham with whom we were collaborating. At a later stage we experimented
with deformable membranes as well, like those that surround nerve cells. So a more specific
description of the problem would be the following: the design of a DEVS simulator and a
set of DEVS models that employ a novel impulse-based method to simulate the dynamics
of deformable structures including vesicle clusters and biological membranes.

The biological models we are interested in are spatial models, as defined in Section 2.1.
In this regard they differ from the non-spatial models of the Gillespie Algorithm described
in [10], as well as the factory-influenced model of [11] in which enzymes were treated as
chemical-processing machines. The type of spatial models that interest us are continuous-
space models, as opposed to cellular models like those of the Next Subvolume Method [12].
We avoid the Next Subvolume Method also because it is population-based, and therefore
unable to track the positions of each vesicle in a cluster. GridCell [14, 15], MCell [16],
ChemCell [17, 18], Smoldyn [19], and GFRD [20] all use particle-based methods, and
the latter four of the five employ continuous-space models as well. These simulators and
methods might well be able to treat vesicles and synapsins as particles, and the binding of
vesicles and synapsins as a type of reaction, but we also wish to simulate the deformation
of vesicle clusters as they self-assemble from such reactions. We seek continuous-space
biological models that combine interacting particles with deformable structure dynamics.

24

3 PROBLEM STATEMENT

Although DEVS has been used for cellular models, as pointed out in Section 2.2, the appli-
cation of the formalism to continuous-space models is rare. Our approach differs from that
of the continuous-space forest fire models of [25] and [28] in that these projects used DEVS
variants with dynamic structure. In pursuit of simplicity, we seek a relatively minimalistic
formulation of DEVS that adheres closely to the original formalism.

Prior to this thesis, it is unlikely that DEVS had been applied to any continuous-space
models of biological systems. The biological DEVS models mentioned in Section 2.3
were either non-spatial, as in [29, 32], or cellular, as in [30, 31]. By avoiding variants
of DEVS like Cell-DEVS, ρ-DEVS, and ml-DEVS, we must address the concern raised
in [32] that the original DEVS formalism is unsuitable for interactions of three or more
biological entities. Our decision not to associate a DEVS model with each entity alleviates
this problem.

One rationale for using DEVS is to support the integration of biological simulation algo-
rithms, the topic of Section 2.4. Unlike [35], we do not actually integrate the population-
based Next Subvolume Method with a particle-based method like our own. Nevertheless,
our intent was to design a DEVS simulator that would accommodate this combination of
algorithms and others. We avoid the multi-formalism modeling approach of James II [36],
adopting a single formalism as done in E-Cell [40]. Unlike E-Cell, the single formalism
we adopt is DEVS.

Perhaps the simplest way to simulate the dynamics of isolated vesicles is to treat them as
rigid bodies. Collisions between vesicles could then be resolved using any of the rigid body
simulation methods of Section 2.5. But because vesicles also form clusters that change in
shape, the deformable structure simulations of Section 2.6 have to be considered as well.
We avoided some methods, such as the constraint-based methods of [42] and the FEM [47],
because we feared that the complexity of the mathematics would be a distraction from our
focus on the application of DEVS. One very promising option would have been to combine
penalty methods for rigid bodies, described in [43], with mass-spring-damper systems for
deformable structures. We avoided this approach because of the need to choose appropriate
time steps, address the stiffness problem, and incorporate random motion into these tradi-

25

3 PROBLEM STATEMENT

tionally deterministic methods. In the end we decided on impulse-based methods, avoiding
fixed time steps and allowing random motion to be modeled with impulses of randomized
timing, magnitude, and direction. The drawback to impulse-based methods was that, while
they had been used for rigid bodies [41], we would have to invent our own way to apply
them to deformable structures. The constraint-based/impulse-based method of [50] and
[51] would not have been ideal, as impulses affecting deformation were applied at regular
time intervals. Also, the simulation of self-assembling deformable structures had yet to be
demonstrated with this method.

Looking at the simulations of presynaptic nerve terminals described in Section 2.7, there
had yet to be any continuous-space models capturing the dynamics of vesicle clusters as
deformable structures. Recall that the continuous-space MCell model of [55] did not allow
vesicles to move and form clusters. The cellular model of [56] did allow vesicle motion and
cluster formation, but was not a continuous-space model and did not allow vesicle clusters
to deform.

The “DEVS-based dynamic simulation of deformable biological structures”, as we have de-
scribed it, is a compelling problem in part because its solution would bring about a number
of potentially useful inventions: a new DEVS simulator, an associated set of conventions
for integrating biological simulation algorithms, a new method for simulating deformable
structures, and a new continuous-space model of a presynaptic nerve terminal. More impor-
tantly, a successful solution would challenge two perceptions: that impulse-based methods
are unsuitable for the dynamic simulation of deformable structures, and that the original
DEVS formalism is unsuitable for biological models that involve many interacting entities.
Both impulse-based methods, and the use of a single and relatively simple modeling for-
malism, are worth investigating because they have the potential to reduce the complexity
of biological simulations in general. Even if the project were to reveal deficiencies with
impulse-based methods or the chosen formalism, the knowledge gained may aid in the pur-
suit of more practical simulation methods and more effective variants of DEVS. Future
researchers will be able to refer to this thesis for concrete examples of impulse-based de-
formable structure simulations and the application of DEVS to continuous-space biological
models.

26

4 MODEL AND SIMULATOR DESIGN

4 Model and Simulator Design

4.1 Tethered Particle System

Here we provide an informal overview of the tethered particle system (TPS). Formulas
related to the TPS are defined in Appendix B. Note that on its own, the TPS has nothing to
do with DEVS; we therefore ignore the formalism in this section.

A “TPS model” tracks the positions and velocities of numerous particles, each with a fixed
mass, that interact with one another via collisions. “The TPS” is a method in which the
dynamics of deformable structures are simulated using a TPS model. The TPS is unusual
in that it is an impulse-based method, meaning that any change in a particle’s velocity is
instantaneous, yet the method is designed for representing structures that deform over a
length of time. The key idea is that a deformable structure may be represented by a group
of particles; even though each individual particle changes velocity in a sequence of instan-
taneous impulses, the configuration of the particles in the group changes in a seemingly
gradual process over time.

In order for a group of particles to exhibit any structure at all, the distances between certain
pairs of particles in the group must be regulated or restricted. In a TPS model, the distance
between a pair of particles is constrained by two types of collisions: “blocking collisions”
and “tethering collisions”.

What we refer to as a “blocking collision” is what one normally associates with the word
“collision”. As illustrated in Figure 7a, a blocking collision occurs when two approach-
ing particles reach an inner limiting distance. This “blocking distance” is represented by
∆ublocking.

27

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

(a) (b)

Figure 7: Illustrations of blocking collisions, in which pairs of approaching particles reach
the blocking distance ∆ublocking and rebound. In (a) the collision is elastic, whereas (b)
depicts an inelastic collision.

Note that although we will frequently depict a particle as a circle or sphere of some radius,
neither the shape nor the size of a particle is explicitly defined in a TPS model. The particles
in Figure 7 could have been drawn as larger circles, for instance, perhaps overlapping with
one another at the time of collision.

The particles in Figure 7a are shown rebounding at a similar angle to that at which they
had been approaching. This indicates that the collision is elastic, meaning that no kinetic
energy is lost. When real-world objects collide, they deform and absorb kinetic energy.
Although individual particles in a TPS have no shape and do not explicitly deform, we
may wish account for energy loss in particle collisions. The loss of kinetic energy in the
inelastic collision of Figure 7b causes the particles to rebound at a smaller angle.

Energy loss due to collisions is generally modeled with a parameter called the “coefficient
of restitution”, which expresses the ratio of the post-collision relative speed of two particles
to the pre-collision relative speed [42]. In a TPS model, different coefficients are used
for different types of collisions. In a blocking collision, the coefficient of restitution is
referred to as the “rebounding coefficient”, and is represented by crebound. We will assume
0 ≤ crebound ≤ 1, with crebound = 0 indicating maximum energy loss, and crebound = 1

indicating a perfectly elastic collision.

28

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

Any two specific particles may be tethered together at the start of a simulation. Also, when a
blocking collision occurs between two particles, they may become tethered. If two particles
are tethered and moving away from one another, and if they reach the “tethering distance”
∆utethering, then one of two things may happen. The particles may become untethered, in
which case they continue moving away from one another. Otherwise the particles remain
tethered, undergo a tethering collision, and retract inwards. The phrase “tethering collision”
is unintuitive because one normally expects a collision to occur only between approaching
objects. We use the word “collision” for separating particles as well so that we can apply
the phrases “collision detection” and “collision response” to either type of particle-particle
interaction. Tethering collisions are illustrated in Figure 8.

(a) (b)

Figure 8: Illustrations of tethering collisions, in which pairs of separating tethered particles
reach the tethering distance ∆utethering and retract. In (a) the tethering collision is elastic,
whereas (b) depicts an inelastic collision.

A tethering collision may be envisioned as a situation in which a cord has completely
unravelled, and therefore delivers an inward impulse to the particles attached to it on either
end. Such a cord is illustrated in Figure 8a. Unlike a spring in a mass-spring-damper model,
a cord in a TPS model has no effect on either particle before reaching its maximum length.

Figure 8a is meant to portray an elastic tethering collision, whereas Figure 8b illustrates a
tethering collision in which energy is lost. To address energy loss in tethering collisions,

29

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

we introduce another type of coefficient of restitution. We refer to it as the “retraction
coefficient”, and represent it with cretract satisfying 0 ≤ cretract ≤ 1.

Suppose we have two particles, A and B. Their masses are mA and mB respectively,
their current positions are ~uA′ and ~uB ′ (as explained in Appendix B, ~uA and ~uB are past
positions), and their velocities are ~vA and ~vB. The distance ∆u between the particles can
be expressed as a function of the time ∆t.

∆u =

√∑(
((~uB ′ + ~vB·∆t)− (~uA′ + ~vA·∆t))2

)
(3)

The basic procedure in a TPS simulation is to repeatedly solve (3) for ∆t for all pairs of
relatively close particles. Solving (3) with ∆u = ∆ublocking yields the time remaining be-
fore a blocking collision, whereas ∆u = ∆utethering gives the time of a tethering collision.
Time is advanced by the smallest calculated value of ∆t, the time remaining before the
next collision. When that collision occurs, the new velocities of the two particles involved
are calculated from (4), and the process repeats.

~vA
′ ≡ ~vA + ∆~p

mA

~vB
′ ≡ ~vB − ∆~p

mB

(4)

The vector ∆~p above is the impulse, the change in momentum of particle A as a result of
the collision. If the particles rebound or retract, then ∆~p can be calculated from (5) below
with crestitute being either crebound or cretract. The vector ~vû is the relative velocity of the
particles projected onto the axis between them.

∆~p ≡
(

1
mA

+ 1
mB

)−1
·(1 + crestitute) ·~vû (5)

The actual computations performed are complicated by the possibility of revolution, si-
multaneous and nearly-simultaneous collisions, and random impulses. These concepts are
described informally below. The TPS remains simpler than most deformable structure
simulation methods in that all unknown variables can be calculated analytically from the
explicit formulas given in Appendix B. There are no systems of equations or inequalities
that need to be solved simultaneously or iteratively.

30

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

Note that it is the tethering collisions that distinguish the TPS from more traditional particle
collision algorithms. They place potentially-useful outer limits on the distances between
certain pairs of particles, but introduce a performance problem that must be addressed.
The problem is illustrated in Figure 9. Particle A remains stationary because it has an
infinite mass, whereas particle B is in motion with a finite mass. The two particles remain
tethered, and undergo a sequence of elastic tethering collisions. Immediately after each
collision, particle B approaches A at a relatively small angle θ.

Figure 9: A scenario in which particle B revolves around A in a sequence of tethering
collisions.

Note that any stage in a TPS simulation, time is advanced by an irregular interval to that
of the next collision. The greater the frequency with which collisions occur, the slower the
simulation progresses. The problem with the above scenario is that, if θ is small, the teth-
ering collisions become extremely frequent and the simulation may become impractically
slow. Worse, if θ = 0, then time cannot be advanced at all without violating the constraint
of ∆utethering on the distance between A and B. The problem still exists if the mass of A
is finite, and is exacerbated by small values of cretract.

To address the problem, we place a lower limit θrevolve on the angle at which particles can
approach after a tethering collision. In a collision where this restriction takes effect, we say
that the particles “revolve” instead of “retract”. We also introduce a “revolution coefficient”

31

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

crevolve that expresses the ratio of the new relative velocity to the old one after one complete
revolution of the particles, allowing energy to be lost. We require 0 ≤ crevolve ≤ 1.

To summarize, between every pair of particles we have a blocking distance ∆ublocking and
a tethering distance ∆utethering that may constrain the distance between them. We also
have three coefficients that affect the energy lost in a collision: the rebounding coefficient
crebound, which pertains to blocking collisions; the retraction coefficient cretract, which per-
tains to most tethering collisions; and the revolution coefficient crevolve, which pertains to
tethering collisions in which the resulting approach angle must be increased to θrevolve.
In a TPS model, it is useful to define several distinct species of particles. The parameters
∆ublocking, ∆utethering, crebound, cretract, and crevolve are then chosen for each pair of species.

It is widely known that simultaneous and nearly-simultaneous collisions threaten the ef-
ficiency of impulse-based methods, potentially slowing simulations to a halt. We now
describe this problem followed by our solution.

Consider the scenario in Figure 10. Assume particles A, B, and C are all of the same mass,
and that collisions are elastic. At time tAB, moving particle A collides with stationary
particle B, transferring all of its momentum. Then at time tBC , particle B collides with
stationary C and transfers all of its momentum.

Figure 10: A scenario in which 2 collisions occur between three particles of equal mass.

32

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

An efficiency problem arises if the mass of particle B is reduced to a fraction of that of
A and C, as illustrated in Figure 11. At time tAB0 , particle A transfers only some of its
momentum to B. Particle B reaches C and rebounds at tBC0 , then meets A again at time
tAB1 . Because only a small amount of momentum is transferred in each collision, particle
B must rebound back and forth in a sequence of nearly-simultaneous collisions. If the mass
of B is one thousandth that of A and C, roughly 70 elastic collisions occur before enough
momentum has been transferred to separate all three particles.

Figure 11: The same scenario as in Figure 10, but the center particle is now less massive.
Numerous nearly-simultaneous collisions result.

The processing of 70 collisions is in itself a significant computational cost for such a simple
scenario, but there are many situations in which the simulation will halt completely. When
a simulation was performed with the Figure 11 scenario and a rebounding coefficient of 0.9,
the momentum transferred on each collision eventually rounded to zero and the simulation
stalled.

We propose a novel approximation that addresses the threat of simultaneous and nearly-
simultaneous collisions. The idea is to separate each collision into a loading phase and
a restitution phase, and to allow restitution to take place at a later time. When particles
collide (the loading phase), they form loaded groups. A loaded group acts as a single body
with the combined mass of all the particles in the group. A restitution delay time ∆trestitute

33

4 MODEL AND SIMULATOR DESIGN
4.1 Tethered Particle System

is introduced, after which the loaded particles separate (the restitution phase). Loaded
particles may remain together longer than ∆trestitute if necessary to ensure that the order
in which particles separate is opposite that in which they loaded. Figure 12 illustrates the
approximation.

Figure 12: A scenario demonstrating an approximation that addresses the problem of si-
multaneous and nearly-simultaneous collisions. Particles form loaded groups for durations
of ∆trestitute, during which time they act as single bodies.

At time tAB in Figure 12, particles A and B collide, form a loaded group, and proceed with
matching velocities. Suppose that this loaded group did not encounter any other particle.
In that case, at time tAB + ∆trestitute, particles A and B would separate or “restitute”. But
that does not happen, as at time tBC while A and B are still loaded, they encounter particle
C. The impulse delivered to C depends not on the mass of B, but rather on the mass of A
and B added together. It is the temporary accumulation of mass that tends to increase the
momentum transferred per collision, and thus reduces the number of collisions.

It is necessary that particles in a loaded group restitute in the opposite order from that in
which they loaded. After all three particles form a loaded group at tBC , particles A and
B may no longer separate at time tAB + ∆trestitute. The loaded group remains intact until
tBC + ∆trestitute instead, at which point particle B separates from C. The result of the

34

4 MODEL AND SIMULATOR DESIGN
4.2 Proposed DEVS Formulation

B-C restitution is calculated with the masses of A and B still combined. After the B-C
restitution is complete, but also at the simulated time tBC + ∆trestitute, particles A and B
finally separate.

The proposed approximation can dramatically reduce the number of collisions in a sim-
ulation, even if ∆trestitute is very small. If ∆trestitute = 0, loading and restitution occur
back-to-back and the approximation is effectively canceled.

Summarizing the TPS again, pairs of particles rebound as a result of blocking collisions,
and either retract or revolve as a result of tethering collisions. Each collision is divided into
a loading phase, in which particles form loaded groups, and a restitution phase occurring
at least ∆trestitute later, in which loaded groups separate.

We also include “random impulses”, momentum changes of randomized magnitude and
randomized direction applied to particles at randomized times. From a practical perspec-
tive, they are included to prevent the kinetic energy in a TPS model from converging to
zero due to the energy losses of particle collisions. From a physical perspective, random
impulses may represent Brownian motion, variability in electric potential fields or fluid
pressure, or interactions with otherwise unrepresented objects.

4.2 Proposed DEVS Formulation

In this section we turn our attention away from the TPS, and focus on the DEVS formalism.
While the formulation of DEVS presented here was designed with biological systems in
mind, our conventions could be applied to simulations of artificial or environmental systems
as well. Note that a complete, formal definition of our DEVS simulator can be found in
Appendix C, along with several functions that aid in the design of DEVS models.

At the outset of the project, we desired a minimalistic formulation of DEVS that would
adhere fairly closely to the original version of the formalism. Although we propose a new

35

4 MODEL AND SIMULATOR DESIGN
4.2 Proposed DEVS Formulation

set of conventions, we do not consider these conventions to constitute a new DEVS variant.
If a hierarchical DEVS model is designed using our formulation, the same hierarchy and
messages could be defined using the original formalism. Variants, by contrast, generally
aim to allow different types of hierarchies and message-passing patterns.

In the original DEVS formalism, models are classified as either atomic or coupled. As
stated in Section 2.2, the closure under coupling property assures us that for every DEVS
coupled model, there is an equivalent DEVS atomic model. Our perspective is a bit dif-
ferent. Exploiting closure under coupling, we require that the parameters used to define a
coupled model be converted into the set of parameters that defines an atomic model. All of
our DEVS models can therefore be considered atomic. When designing a simulator based
on our conventions, the issue of coupling can safely be ignored.

Recall that in the original formalism, atomic models are generally defined as tuples of the
form 〈X, Y, S, δext, δint, λ, ta〉. In our formulation, all DEVS models are vectors of the
form [δext, δint, ta]. We omit the sets X , Y , and S for the sake of brevity, but note that
modelers who adopt our conventions may decide to include these sets in the vector. The
external transition function δext and the time advance function ta are unchanged, but we
absorb the output function λ into the internal transition function δint. Whereas the original
δint results in the new state s′, ours results in the vector [s′, Y], where Y is a vector of output
values.

Combining λ and δint changes the formalism little, as the two functions are always invoked
back-to-back. For any δint function defined with our conventions, an equivalent pair of
original-DEVS [λ, δint] functions can be defined by invoking our δint twice. The advan-
tage in combining λ and δint is that, in some situations, the repetition of computationally-
intensive calculations can be avoided.

A DEVS simulator has three main inputs: a DEVS model of the form [δext, δint, ta], the
initial state of that model, and a set of input times and values. The main output is the set
of output times and values. The remainder of this section will focus on our approach for
organizing definitions of models and initial states, two of the main simulator inputs.

36

4 MODEL AND SIMULATOR DESIGN
4.2 Proposed DEVS Formulation

We define DEVS models and initial states in layers. Each layer has an associated set of
parameters, and the parameters of one layer are used to define those of the underlying
layer. Associated with the bottom layer of any model are the parameters [δext, δint, ta].
Each additional layer requires a function that, by convention, has the subscript DEV S in
its name. Each of these “DEVS model functions” takes a new set of parameters as its
arguments, which are called “model parameters”. The output of a DEVS model function
is a vector of the form [initmodel,model], where initmodel is an “initialization function”
and model is a DEVS model of the form [δext, δint, ta]. The initialization function takes
“initialization parameters” as its arguments, and results in an initial state. If the initial state
is a vector, then its components are called “state variables”.

As an example, suppose we wished to define some hypothetical DEVS model named foo
with model parameters a and b. We would then define a DEVS model function named
fooDEV S that performs the following tasks:

fooDEV S :

1. Takes as its arguments the model parameters [a, b]

2. Defines the initialization function initfoo using [a, b]

3. Defines the external transition function δext using [a, b]

4. Defines the internal transition function δint using [a, b]

5. Defines the time advance function ta using [a, b]

6. Defines the DEVS model foo as [δext, δint, ta]

7. Results in [initfoo, foo]

Note that we are treating functions as values, and we assume that functions can be de-
fined within other functions. Aside from defining an initialization function, the main task
of fooDEV S is to transform its model parameters [a, b] into the simulation-ready model
[δext, δint, ta]. We visualize foo as a two-layer DEVS model, with [a, b] associated with the
upper layer and [δext, δint, ta] with the lower.

Consider now the hypothetical three-layer DEVS model bar, defined below by the DEVS
model function barDEV S . Associated with the third and uppermost layer of bar are the

37

4 MODEL AND SIMULATOR DESIGN
4.2 Proposed DEVS Formulation

parameters c and d.

barDEV S :

1. Takes as its arguments the model parameters [c, d]

2. Defines the variable a using [c, d]

3. Defines the variable b using [c, d]

4. Invokes fooDEV S using [a, b] to obtain [initfoo, bar]

5. Defines the function initbar, which invokes initfoo, but also uses [c, d]

6. Results in [initbar, bar]

The main task of barDEV S is the transformation of [c, d] into [a, b]. Although the result of
barDEV S includes a model of the form [δext, δint, ta], the invocation of fooDEV S alleviates
the need to explicitly reference the transition functions or the time advance function.

One particular DEVS model function will be used many times over. Similar to fooDEV S ,
the function coupledDEV S results in an initialization function and a DEVS model of the
form [δext, δint, ta]. Instead of [a, b], coupledDEV S takes [M,C, pr] as its vector argument.
This is the parameterization we will use for all coupled models. It takes the place of the
tuple 〈X, Y,D, {Md | d ∈ D} , EIC,EOC, IC, Select〉 of the original DEVS formalism.

As an example, suppose we wish to define a DEVS model with the structure of Section 2’s
Figure 1. The image is shown for a second time below.

The parameter M is a function that maps submodel IDs, like “soma” or “axon”, to DEVS
models of the form [δext, δint, ta]. A simplified description of the function C is that it
maps source submodel IDs to destination submodel IDs. Invoking C with “soma” yields
“axon”, in part, reflecting the second arrow in the diagram. InvokingC with ∅ would yield

38

4 MODEL AND SIMULATOR DESIGN
4.2 Proposed DEVS Formulation

“soma”, reflecting the leftmost arrow. InvokingC with one of the terminal IDs would yield
∅, reflecting the two arrows on the far right.

Suppose that, according to their time advance functions, the soma and axon submodels are
scheduled to undergo internal transitions at the same time. In that case, the priority function
pr is evaluated. The result of pr ([“soma”, “axon”]) could be “soma” or “axon”, the ID
of the submodel that is to go first, or ∅, indicating that the order of the internal transitions
is to be randomized.

Now we turn our attention to the layered design of cellular models like the one in Figure 2,
which is shown below for the second time.

One way to simplify the design of such a model is to define the spatial relationships between
lattice cells in a separate layer that has nothing to do with biology. In the two-dimensional
model illustrated above, suppose we imposed the constraint that each cell can interact with
only the four adjacent cells: the one to the left, the one to the right, the one above, and the
one below. We would then describe this spatial configuration as a “rectangular lattice”. In
3D we would call this type of configuration a “cubic lattice”, and add two more adjacent
subvolumes: one in front and one behind. Generalizing this type of configuration to an
arbitrary number of dimensions ndim, each cell on the inside of a “hypercubic lattice” can
interact with its 2·ndim adjacent neighbors. Cells on an edge of a hypercubic lattice have,
of course, fewer than 2·ndim neighbors.

39

4 MODEL AND SIMULATOR DESIGN
4.2 Proposed DEVS Formulation

Figure 13: Two hypercubic lattices: one 3-by-3 and one 2-by-3-by-3.

Recall that in a DEVS coupled model, the submodels are defined by M and the links by
C. If the submodels of a coupled model have a hypercubic lattice configuration, then
we can define C given only the lattice dimensions N . Note that for Figure 13 we have
N = [3, 3] on the left and N = [2, 3, 3] on the right. Given N , we also know the identities
of each submodel; if N = [2, 3] for example, then the IDs of the submodels are the sets of
coordinates [0, 0], [0, 1], [0, 2], [1, 0], [1, 1], and [1, 2]. What we are missing is the DEVS
model associated with each ID. We therefore require the function HLmDEV S , which maps
coordinates to submodels.

Hypercubic lattice models are defined by the DEVS model function HLDEV S , which is
similar in form to the hypothetical three-layer function barDEV S outlined above. Instead
of mapping [c, d] to [a, b], the main task of HLDEV S is to map [N,HLmDEV S, pr] to
[M,C, pr]. After this conversion, coupledDEV S is invoked to obtain [δext, δint, ta].

In summary, the main idea behind our approach is that DEVS models can be parameterized
in any way we wish. The coupled model parameterization [M,C, pr] is only one of an
infinite number of arbitrary ways to define a DEVS model. Whatever parameters are used,
however, a function with the subscript DEV S must be defined to convert those parameters
into the form [δext, δint, ta]. These DEVS model functions can invoke other DEVS model
functions, resulting in a layered model definition. Layers, as we describe them here, sepa-
rate sets of model parameters. They are not to be mistaken with levels in a model hierarchy,
which separate coupled models from the submodels they contain.

40

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

4.3 DEVS Tethered Particle System Model

This section presents our DEVS TPS model, an application of the functions and conven-
tions of Section 4.2 to yield a complete formal description of Section 4.1’s tethered particle
system method. The DEVS TPS model serves as a means of simulating deformable bio-
logical structures, and as an example of how one can design DEVS models of biological
systems. While the formal description itself can be found in Appendix D, here we describe
informally the model’s hierarchical structure, as well as the role and layered definition of
each submodel.

Our approach to biological model design can be summarized as follows: different algo-
rithms or aspects of algorithms are separated at upper levels in a DEVS model hierarchy,
and space is partitioned at lower levels. In general, we do not define separate DEVS mod-
els for separate biological entities. The partitioning of entity-specific data can instead be
handled by a DEVS model’s parameters and state variables.

For example, in a TPS model of a presynaptic nerve terminal, separate biological entities
include vesicles and synapsins. A vesicle can be represented as a single particle, and a
synapsin can be represented as a pair of tethered particles. We refrain from defining a
“DEVS vesicle model” or a “DEVS synapsin model” or even a “DEVS particle model”.
We do wish to keep information about one particle separate from that of another, but we
accomplish this with the state variable Ψ. As described in Appendix B, Ψ (idA) gives
the past position and current velocity of the particle identified by idA. We also wish to
organize information about each particle species in some appropriate structure, but this we
achieve with the model parameters Ωψ and Ωψψ. Also explained in Appendix B, the mass
of a species identified by spcA is Ωψ (spcA) (“m”), and the tethering distance between this
species and one identified by spcB is Ωψψ ([spcA, spcB]) (“∆utethering”). It is firstly the
separation of collision detection, collision response, and random impulse generation, and
secondly the division of space into subvolumes, for which we exploit the hierarchical nature
of DEVS.

Figure 14 illustrates the structure of a DEVS coupled model called TPS, which can be

41

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

considered the uppermost level of our hierarchy. The TPS model has three submodels: RI ,
which generates random impulses; detector, which detects collisions between particles;
and responder, which calculates new trajectories of particles upon receiving notification
of impulses or collisions.

Figure 14: The structure of the TPS coupled DEVS model.

The key interaction of the TPS model is represented by the loop at the bottom-right of
Figure 14. At the exact simulated time when a collision occurs between two particles, the
detector sends a collision message to inform the responder. The responder immediately
outputs a loading message to indicate that the two particles have become “loaded” (see
Section 4.1), and then prepares a separate response message for each particle affected by
the collision. Each response message describes the new trajectory of a particle, informa-
tion that is sent back to the detector so that future collisions times can be re-calculated. At
some time after a collision in which two particles became loaded, those particles restitute.
The responder then outputs a restitutionmessage along with a separate responsemessage
for each affected particle. The new trajectories are again sent to the detector.

Other interactions include impulses that alter the trajectory of a particle. They originate
from either the RI submodel or an input of the TPS. These messages enter the responder

42

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

and result in an impulse output message and one or more responsemessages. Particle col-
lisions can cause two separate particles to become “tethered”, in which case the responder
outputs an attachment message, or they can cause two tethered particles to separate, in
which case the responder outputs a detachment message. Input transition messages can
affect the nature in which particles attach or detach. Finally, the detector may output an
escape message if a particle strays too far from the center of the region represented by the
model.

The RI and responder submodels can be considered DEVS atomic models, as the func-
tions [δext, δint, ta] are defined directly. The detector, on the other hand, is defined as a
DEVS coupled model with two submodels. The lattice submodel partitions space into dif-
ferent regions called “subvolumes”. Collisions are detected within each subvolume, as this
is more efficient than detecting collisions in the entire space. If there are 100 particles, for
example, then there are 5000 distinct pairs of particles that must be considered. But if those
particles are partitioned into 5 subvolumes, then each subvolume has roughly 20 particles
and 200 pairs. So with 5 subvolumes instead of 1, there are roughly 1000 pairs to check
instead of 5000. The advantage is actually less than that, as several pairs of particles will
be checked in multiple subvolumes.

Figure 15: The structure of the detector coupled DEVS model of the TPS.

When we say that a certain subvolume “is aware” of a particle, we mean that the detection
of the next collision in that subvolume may depend on the position and velocity of that
particle. In an informal sense, this generally means that the particle is situated either inside
or near that subvolume. When a response message is received by the detector, it must be
redirected to each subvolume that is aware of the particle. This duplication of response
messages is performed by the tracker submodel. The tracker tracks, for each particle, the

43

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

subvolumes that are aware of it. An arrival message informs the tracker that a particular
subvolume has become aware of certain approaching particle, whereas a departure mes-
sage indicates that a certain subvolume is no longer aware of a certain departing particle.

The lattice is a DEVS coupled model; or more specifically, a DEVS hypercubic lattice
model. As shown in Figure 16, each subvolume of the lattice has its own associated
DEVS subV model, and adjacent subV models may pass adj messages to one another.
Each individual subV model may also receive response messages, which initiate a re-
calculation of future collisions. When a collision occurs, a collision message is output.
When a particle gets sufficiently close to the subvolume associated with the DEVS subV
model, an arrival message is output. When a particle gets too far from the subvolume, a
departure message is output.

Figure 16: The structure of the lattice coupled DEVS model of the detector. Although
only a 2-by-2 configuration is shown on the left, one can have any number of subvolume
models in 1, 2, or 3 dimensions.

Now that the hierarchical structure of the DEVS TPS model has been described, we present
a scenario that illustrates how the various submodels interact. For this scenario, we will
consider a system with only two particles. The two particles are to undergo only blocking
collisions, not tethering collisions. The tethering distance can be assumed to be infinity
(∆utethering = >). Also, we will ignore for now the distinction between the loading and
restitution phases of collisions.

The scenario begins with the situation depicted in Figure 17. Here we have a large particle
A, a small particle B, and a 2-by-3 rectangular lattice (N ≡ [2, 3]). Each subvolume
model, or subV , is identified by its coordinates. The subvolumes themselves are square

44

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

regions. Each subvolume model is aware of certain nearby particles, but not other more
distant particles. Model [0, 1], for example, is aware of particle A but not particle B. Each
subvolume is surrounded by two concentric circles that help determine when the associated
model gains or loses awareness of an approaching or leaving particle. If a DEVS model is
aware of a particle, the current state of that model includes the position and velocity of that
particle.

Figure 17: A scenario in which two particles approach one another.

Looking at Figure 17, we are going to assume that the subvolume model [0, 2] in the top-
right corner is currently aware of particle A. Because the particle is moving away from that
subvolume, and because its backside is just touching the outer circle, the associated subV
undergoes an internal transition in order to lose awareness of the particle. The particle’s
position and velocity are removed from the subvolume model’s state, and a departure
message is output. The departure message leaves the lattice and is sent to the tracker.
The tracker, which maintains a record of which subvolume models are aware of each
particle, updates itself accordingly.

Looking again at Figure 17, let us say that particleB is just touching the inner circle around
the subvolume in the top-left corner. Subvolume model [0, 0] must therefore become aware
of particle B. This process begins when subV [1, 0] detects the circle-particle intersection,
and sends subV [0, 0] an adj message. The adj message triggers a transition in which subV

45

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

[0, 0] adds particle B’s position and velocity to its state, then sends an arrival message to
update the tracker.

Taking one last look at Figure 17, and assuming the departure and arrival events described
above have already taken place, we note that the two subvolumes on the left are both aware
of both particles. Thus the imminent collision between the two particles is detected twice.
It is only scheduled once, by subV [1, 0], for the location at which the particles will meet
is in the subvolume of that model.

The DEVS simulator now advances time to the point at which particles A and B meet.
This new situation is shown in Figure 18. It is at this time that, having scheduled the
collision, subV [1, 0] undergoes an internal transition. It outputs a collision message,
which is directed out of the lattice model, then out of the detector model, then to the input
of the responder model.

Figure 18: The same scenario as in Figure 17, but at the later time when the two particles
collide.

If left alone, then despite having detected a collision, subV [1, 0] will allow the colliding
particles to continue their current motion and pass through one another. This will not
happen, however, as after a simulated delay time of zero, the responder will calculate
new velocities for the particles and send two response messages to the detector. In the

46

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

detector, the messages go first to the tracker submodel. When the tracker receives the
response message for particle A, it sends copies of the message to the four subvolume
models that are aware of it: [0, 0], [0, 1], [1, 0], and [1, 1]. These four subV models then
update their own recorded velocities of particleA. When the tracker receives the response
message for particle B, only subvolume models [0, 0], [1, 0] need to be notified.

That concludes the scenario. Note that one could dispense with the concentric circles and
use instead the square subvolume boundaries to determine which subvolume models are
aware of each particle. It is somewhat cumbersome, however, to determine when a moving
circle enters or exits a square region, and worse to determine when a moving sphere enters
or exits a cubic region. It turns out that with concentric circles or spheres around each sub-
volume, the formulas we define in Appendix B to detect blocking and tethering collisions
can be reused to determine when subvolume models gain or lose awareness of particles.

We now reflect on what has been gained and lost by adopting this DEVS-based hierarchical
model. Starting with a loss, we note that a more traditional programming approach would
require us to store only a single position vector and velocity vector for each particle. With
our hierarchy of models, identical copies of the position and velocity vectors of a single
particle are stored several times over: once in the responder model, and again in each
subvolume model aware of that particle. In order to change a particle’s velocity, we must
first replace it in the responder, then pass messages to change it in the subvolume models.

So what have we gained? Our complex TPS model has been divided into simpler submod-
els, each of which addresses a small part of the overall problem. As the coupled models can
be specified easily by defining the links illustrated in Figures 14, 15, and 16, the bulk of our
efforts must go into the design of the external and internal transitions of theRI , responder,
tracker, and subV atomic models. These transition functions are all independent of one
another, and each performs a relatively specific task. And so by adopting the DEVS-based
hierarchy, we introduce seemingly-redundant values and messages, but benefit in that a
complex routine has been reduced to a set of simpler functions.

Having designed a hierarchical structure for our DEVS TPS model, we find ourselves with

47

4 MODEL AND SIMULATOR DESIGN
4.3 DEVS Tethered Particle System Model

six distinct types of DEVS models: the TPS, the detector, the lattice, the responder, the
tracker, and the random impulse model RI . Here we regard subV models as part of the
lattice. Following the conventions we proposed in Section 4.2, every DEVS model takes
the form [δext, δint, ta], and several layers may to used to arrive at these three functions.
The layers of each our six DEVS TPS models are shown below.

TPS detector lattice

 N, a, ~ucenter, . . .

Ωψ,Ωψψ,∆tmax

︸ ︷︷ ︸

latticeDEV S

↓
N, a, ~ucenter, ωψ, ωψψ, . . .

attach, detach, . . .

θrevolve,∆tmax,∆trestitute

︸ ︷︷ ︸

 N, a, ~ucenter, . . .

Ωψ,Ωψψ,∆tmax

︸ ︷︷ ︸

[N, subVDEV S, pr]︸ ︷︷ ︸
TPSDEV S detectorDEV S HLDEV S

↓ ↓ ↓
[M,C, pr]︸ ︷︷ ︸ [M,C, pr]︸ ︷︷ ︸ [M,C, pr]︸ ︷︷ ︸

coupledDEV S coupledDEV S coupledDEV S

↓ ↓ ↓
[δext, δint, ta] [δext, δint, ta] [δext, δint, ta]

responder tracker RI

 Ωψ,Ωψψ, attach, . . .

detach, θrevolve,∆trestitute

︸ ︷︷ ︸

[N, a, ~ucenter,Ωψ]︸ ︷︷ ︸ [ndim,Ωψ]︸ ︷︷ ︸
responderDEV S trackerDEV S RIDEV S

↓ ↓ ↓
[δext, δint, ta] [δext, δint, ta] [δext, δint, ta]

48

4 MODEL AND SIMULATOR DESIGN
4.4 Simulation Code

The detector model, for example, is a three-layer DEVS model with the six parameters
[N, a, ~ucenter,Ωψ,Ωψψ,∆tmax]. The first three parameters give the dimensions of the lat-
tice, the length of each of its subvolumes, and the position of its center. Properties of each
particle species are provided by Ωψ and Ωψψ, and ∆tmax is a large duration value used
to prevent divide-by-zero errors. The function detectorDEV S converts these parameters
into [M,C, pr]. It then invokes coupledDEV S , mentioned in Section 4.2, to convert those
parameters into [δext, δint, ta]. The TPS, detector, and lattice are all coupled models.
Because it invokes the HLDEV S function (see Section 4.2), the four-layer lattice model is
also a DEVS hypercubic lattice model. Note that we name HLDEV S’s second parameter
subVDEV S , in this case, instead of HLmDEV S . The responder, tracker, and RI models
can be considered two-layer atomic models.

4.4 Simulation Code

Here we describe simulation code developed to demonstrate the TPS method of Section 4.1,
the DEVS formulation of Section 4.2, and the DEVS TPS model of Section 4.3. Listings
of selected functions are presented. We implemented all code in the Python programming
language. Typically interpreted, Python is known more for its aesthetic syntax and conve-
nient data structures than for its performance. The language satisfied our need, however,
to develop a proof of concept. Other programmers may refer to the detailed formulas of
Appendices B, C, and D to reproduce parts of our program in a faster compiled language.

Throughout our simulation code, we make use of various values and functions from the
numpy package, a popular extension to Python designed to make the language suitable for
numerical applications. Line 1000 below accesses infty, a value representing infinity,
and array, a function that generates multi-dimensional arrays.

1000 from numpy import i n f t y , a r r a y

Our function position calculates the current position of the particle identified by the in-
teger id_A. Particle information is supplied to this function by the argument Psi, a Python

49

4 MODEL AND SIMULATOR DESIGN
4.4 Simulation Code

dictionary similar to the Ψ parameter of Appendix B. The Python expression Psi[id_A]
results in the item associated with the particle ID id_A, and this item also happens to be a
dictionary. The dictionary Psi[id_A] maps the keys "t", "u", and "v", respectively,
to the time of the particle’s last trajectory change, the position of the particle at that time,
and the particle’s velocity. The past position assigned to u_A on line 2002, and the velocity
assigned to v_A on line 2003, are Python lists. On line 2004, we convert those lists to
numpy arrays, perform element-wise operations on those arrays, then convert the resulting
array back to a list. The resulting list, named u_A_, is returned on line 2005.

2000 def p o s i t i o n (Ps i , t , id A) :
2001 t A = P s i [id A] [” t ”]
2002 u A = P s i [id A] [” u ”]
2003 v A = P s i [id A] [” v ”]
2004 u A = (a r r a y (u A) + a r r a y (v A) ∗ (t − t A)) . t o l i s t ()
2005 re turn u A

We consider the close relationship between our Python code and mathematical formulas
to be advantageous, as it allowed us to gain confidence in the formulas as we tested the
software. Note the similarity between the coded version of position above, and the
corresponding mathematical formula of Appendix B shown below.

position ([Ψ, t, idA]) := ~uA
′

tA := Ψ (idA) (“t”)

~uA := Ψ (idA) (“~uA”)

~vA := Ψ (idA) (“~vA”)

~uA
′ := ~uA + ~vA·(t− tA)

Recall from Section 4.2 that a DEVS simulator takes a DEVS model as one of its inputs.
We implemented the simulator as the Python function simulate, listed on page 51. A
detailed description of the corresponding mathematical function simulate can be found
in Appendix C. Note the while loop starting on line 3006, which repeats once for each
processed event. An event is either an external transition, in which case the condition of
the if statement on line 3025 is True, or an internal transition, in which case the else
clause starting on line 3029 is executed.

50

4 MODEL AND SIMULATOR DESIGN
4.4 Simulation Code

3000 def s i m u l a t e (model , IO , D e l t a n = i n f t y , s t a r t =0 , s t o p = i n f t y , \
3001 t s u s p e n d = i n f t y , s t a r v e = F a l s e) :
3002 [d e l t a e x t , d e l t a i n t , t a] = model
3003 n = s t a r t
3004 [n x , n y , t , s] = IO . i n p u t s (s t a r t)
3005 s t a t u s = None
3006 whi le s t a t u s == None :
3007 [t e x t , x] = IO . i n p u t x (n x)
3008 t i n t = t + t a (s)
3009 t e v e n t = min ([t e x t , t i n t])
3010 i f t e v e n t == i n f t y :
3011 s t a t u s = ” comple t ed ”
3012 e l i f t e v e n t >= t s u s p e n d :
3013 s t a t u s = ” suspended ”
3014 e l i f s t a r v e and (t e x t == i n f t y) :
3015 s t a t u s = ” s t a r v e d ”
3016 e l i f n >= s t o p :
3017 s t a t u s = ” s t o p p e d ”
3018 i f D e l t a n == i n f t y :
3019 c h e c k p o i n t = F a l s e
3020 e l s e :
3021 c h e c k p o i n t = (n%D e l t a n == 0)
3022 i f (n > s t a r t) and (c h e c k p o i n t or (s t a t u s != None)) :
3023 IO . o u t p u t s (n , n x , n y , t , s)
3024 i f s t a t u s == None :
3025 i f t e x t <= t i n t :
3026 s = d e l t a e x t (s , t e x t − t , x)
3027 n x = n x + 1
3028 t = t e x t
3029 e l s e :
3030 [s , Y] = d e l t a i n t (s)
3031 f o r y in Y:
3032 IO . o u t p u t y (n y , t i n t , y)
3033 n y = n y + 1
3034 t = t i n t
3035 n = n + 1
3036 re turn [IO , n , s t a t u s]

51

4 MODEL AND SIMULATOR DESIGN
4.4 Simulation Code

In the original DEVS formalism, and likely the majority of DEVS variants, the time ad-
vance function ta yields infinity to indicate that no internal transition is scheduled. Ac-
cordingly, the expression ta(s) on line 3008 can yield the value infty. If it does, then
the internal transition time t_int is also infty. To be consistent, the external transition
time t_ext obtained on line 3007 is infty if there are no more input values to process.
We used the infinite value in a number of other places to avoid extra boolean variables and
if statements. The parameter stop is the maximum number of events, for example. If
stop is infty, its default value, then the number of events is not explicitly limited.

Python is not considered a purely-functional programming language, but it does treat func-
tions as values that can be passed in and out of functions in the same manner as numbers
and data structures. Note that the first argument of simulate is the DEVS model. Our
DEVS models take the form [δext, δint, ta], as explained in Section 4.2, and so the functions
delta_ext, delta_int, and ta are extracted from model on line 3002.

Treating Python functions as values, it was straightforward to implement DEVS models
in layers as described in Section 4.2. In many popular object-oriented languages, func-
tions cannot easily be defined within other functions. It may also be difficult to pass func-
tions as arguments or return values. In a object-oriented language, one can implement a
DEVS model using a subclass that is required to include implementations of delta_ext,
delta_int, and ta. Depending on the language, it may still be possible to adopt our
layering technique in the constructors of those subclasses. Incidentally, Python does have
object-oriented features, but the only class we defined was the one used to instantiate the
simulate input/output argument IO. Note that IO methods are invoked on lines 3004,
3007, 3023, and 3032.

Of the DEVS models used to construct the hierarchical DEVS TPS model of Section 4.3,
the random impulse model RI is the simplest. While the DEVS model function RIDEV S
is defined in Appendix D, we give the corresponding Python code on page 53. The random
impulse model parameters include the number of dimensions n_dim and a dictionary of
particle properties Omega_psi.

52

4 MODEL AND SIMULATOR DESIGN
4.4 Simulation Code

4000 def RI DEVS (n dim , Omega psi) :
4001
4002 def i n i t R I (P s i) :
4003 t = 0
4004 SPC = {}
4005 FEL = empty FEL ()
4006 f o r id A in P s i . keys () :
4007 SPC [id A] = P s i [id A] [” spc ”]
4008 spc A = SPC [id A]
4009 t A = t + d e t e c t R I (spc A , Omega psi)
4010 FEL = d e l t a F E L (FEL , id A , t A , pr None)
4011 s = [t , SPC , FEL]
4012 re turn s
4013
4014 def d e l t a e x t (s , D e l t a t e l , x) :
4015 r a i s e V a l u e E r r o r (” RI must n o t r e c e i v e i n p u t s ”)
4016
4017 def d e l t a i n t (s) :
4018 [t , SPC , FEL] = s
4019 [id A , t] = event FEL (FEL)
4020 spc A = SPC [id A]
4021 t A = t + d e t e c t R I (spc A , Omega psi)
4022 FEL = d e l t a F E L (FEL , id A , t A , pr None)
4023 s = [t , SPC , FEL]
4024 D e l t a p = i m p u l s e R I (n dim , spc A , Omega psi)
4025 Y = [[” i m p u l s e ” , [id A , D e l t a p]]]
4026 re turn [s , Y]
4027
4028 def t a (s) :
4029 [t , SPC , FEL] = s
4030 [id A , t A] = event FEL (FEL)
4031 D e l t a t i n t = max ([0 . 0 , t A − t])
4032 re turn D e l t a t i n t
4033
4034 RI = [d e l t a e x t , d e l t a i n t , t a]
4035
4036 re turn [i n i t R I , RI]

53

4 MODEL AND SIMULATOR DESIGN
4.4 Simulation Code

The random impulse initialization function defined on line 4002 prepares the initial values
of the state variables. The state variables include the time t, the dictionary SPC that records
the species of each particle, and the future events list FEL that records the randomized times
when randomized impulses are to be applied to each particle.

The DEVS model RI is constructed on line 4034 from the transition functions and the time
advance function. It is then returned on line 4036 along with the initialization function.
Because the model accepts no inputs, it effectively has no external transition function.
While we do include a function delta_ext on line 4014, it does nothing more than raise
an exception should it be mistakenly invoked.

The internal transition function delta_int is invoked when the time elapsed since the
previous event reaches ta(s). The time advance function ta, defined on line 4028, sim-
ply results in the time remaining until the next event in the FEL. Defined on line 4017,
delta_int changes the first state variable from the old time t to the time t_ of the next
event, which is the time of the present impulse. The FEL is also updated with a new future
impulse time t_A. The present impulse itself is added to the list of outputs Y.

Looking at delta_int from a technological perspective, it turns out that the old state
s shares references with the new state s_. The old and new state variables t and t_ are
completely independent, but the second element of s and s_ refer to the same location in
memory. Also, because we decided not to accept the performance penalty of reconstructing
a new future events list with each update, FEL and FEL_ share data. The fact that old and
new states share memory is addressed by the function simulate, which replaces the old
state every event on either line 3026 or line 3030.

The other place in the code where shared references is a potential problem is in the DEVS
model function coupled_DEVS. The DEVS coupled model code partitions each sub-
model output into a port component and a message component. We ensured that all data
in the message component of any output is copied before it is received by another sub-
model. This prevents shared references from occurring between state variables of different
submodels.

54

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES

5 Simulation of Deformable Biological Structures

5.1 Simulation of Vesicle Clusters

Recall from Section 2.7 that vesicles in a presynaptic nerve terminal bind with synapsin
protein to form clusters. Vesicles can also become docked to the active zone on the mem-
brane of the compartment. When an action potential arrives, these docked vesicles may
release neurotransmitters and trigger an action potential in an adjacent neuron. Our focus
in this section is on simulations that capture the dynamics of vesicle clusters as deformable
structures, the formation of these clusters, and the manner in which they congregate at the
active zone. The TPS model parameters associated with the simulation presented here are
defined formally in Appendix E.

Consider a TPS model consisting of particles of three different species: V , S, and D.
Each V particle represents a vesicle. Synapsins, being dimers, are represented by pairs of
tethered S particles. A D particle is a docking site, a mobile location in the active zone
of the membrane on which a vesicle may become docked. Such a model was used in the
simulation of Figure 19, which shows two vesicles surrounded by synapsins and docking
sites. The vesicles are both tethered to opposite ends of a synapsin.

Figure 19: A snapshot of a simulation showing two vesicles (V particles), three synapsins
(pairs of S particles) and seven docking sites (D particles).

55

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.1 Simulation of Vesicle Clusters

The tethering of particles is governed by the following rules.

• A V particle and another V particle may never be tethered (vesicles do not bind to
one another directly).

• An S particle and another S particle may be tethered at the start of a simulation; if
they are not tethered at the beginning, they will never become tethered, and if they
are initially tethered, they will never detach (an S particle and its tethered counterpart
represent one synapsin).

• An S particle and a V particle will become tethered if they collide, if the S particle
is not already tethered to a vesicle (at most two vesicles may bind to a two-particle
synapsin), and if the V particle is not already tethered to the S particle’s counterpart
(we do not allow both ends of a synapsin to bind to the same vesicle).

• A D particle and another D particle may never be tethered.

• A D particle and a V particle will become tethered if they collide, if the D particle is
not already tethered to another V particle, and if the V particle is not already tethered
to another D particle (vesicles and docking sites pair up).

• A D particle and an S particle may never be tethered.

Table 1 lists the blocking and tethering distances for V , S, and D particles in our presy-
naptic nerve terminal model.

Particle Species Blocking Distance Tethering Distance
Pair ∆ublocking (nm) ∆utethering (nm)

V-V 40 >
S-S 2.5 7.5
S-V 22.5 25
D-D 10 >
D-V 25 30
D-S 0 >

Table 1: Blocking and tethering distances for particles representing vesicles, synapsins,
and docking sites.

56

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.1 Simulation of Vesicle Clusters

As indicated in the table, approaching docking site and vesicle particles collide and re-
bound at 24 nm. If tethered and separating, they retract at 28 nm. The distances are chosen
to reflect the sizes of actual structures. The diameter of a vesicle is roughly 40 nm, for
example, the value used for the vesicle-vesicle blocking distance. Note that a blocking dis-
tance of zero indicates that blocking collisions never occur between those species, whereas
a tethering distance of infinity (>) indicates that tethering collisions never occur.

The masses of V and S particles are chosen to be roughly proportional to their volumes,
whereas each D particle is assigned a relatively high mass for its size to account for resis-
tance in the membrane. The rebounding, retraction, and revolution coefficients are selected
such that a considerable amount of kinetic energy is lost when vesicles, synapsins, and
docking sites collide. Random impulses are applied to all three of these types of particles
to maintain a certain level of kinetic energy in the entire system.

In order to model the formation, disruption, and motion of vesicle clusters, it is necessary to
constrain the V , S, and D particles to a region representing the presynaptic nerve terminal
compartment. The simplest way to achieve this is to model the nerve cell membrane as a
rigid sphere. This is done by adding two particles to the model, one with species M and
one with species Z. Both of these particles are given infinite mass, which ensures that they
remain stationary. The particle of species M , representing the membrane, is tethered to all
V (vesicle), S (synapsin), and D (docking site) particles.

For the sake of convenience, we introduce the parameter rM to approximate the radius of
the compartment, rV to approximate that of a vesicle, and rS to approximate the radius
of half of a synapsin. As illustrated in Figure 20, an M -V (membrane-vesicle) tethering
distance of rM − rV keeps vesicles in the compartment, and an M -S (membrane-synapsin)
tethering distance of rM − rS does the same for synapsins. Because vesicles and synapsins
move freely within the compartment, the M -V and M -S blocking distances are both zero.

The D particles, representing docking sites, must be constrained to the spherical surface
representing the cell membrane. The M -D blocking and tethering distances are therefore
both chosen to be near rM , with ∆utethering slightly greater than ∆ublocking. Another con-

57

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.1 Simulation of Vesicle Clusters

straint on the docking sites is that they must all be located in that region of the membrane
known as the active zone. Hence, all D particles are tethered to the Z particle shown in
Figure 20. With the exception of this tethering, the Z particle has no influence on any other
particle.

Figure 20: A diagram illustrating the relationships between the five particle species in the
presynaptic nerve terminal model.

Figure 21 shows four snapshots of a simulation of a presynaptic terminal of a nerve cell.
Vesicles and smaller synapsins move inside the semi-transparentM particle, while docking
sites move slowly along the bottom of the membrane. The Z particle that constrains the
docking sites is invisible.

Initially, the location of each vesicle and synapsin is randomized within the spherical com-
partment. None of the vesicles are initially tethered to synapsin. If we were to start the
simulation with vesicle clusters or more complex structures, we might have to ensure that
no two structures occupy the same space. As it is, we allow vesicles and synapsins to inter-
sect in the initial configuration shown in Figure 21a. Any initial violation of the blocking
distance constraints will be resolved by a sequence of blocking collisions occurring in the

58

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.1 Simulation of Vesicle Clusters

first few time units. For each synapsin, each of the two particles is initially given the same
position. Although the distance between these synapsin particles is obviously less than the
blocking distance initially, it is sure to increase after the simulation starts.

(a) t = 0 (b) t = 100

(c) t = 200 (d) t = 600

Figure 21: Four snapshots of a simulation of a presynaptic nerve terminal with a rigid
spherical membrane. With a randomized initial distribution, vesicles form clusters that
eventually congregate at the active zone at the bottom of the membrane.

59

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.2 Simulation of Deformable Membranes

The tethering of V and S particles leads to the formation of vesicle clusters. These clusters,
which begin to take shape in Figures 21b, and 21c, grow fewer in number but larger in size
as the simulation progresses. The tethering of V and D particles constrains some of these
clusters to the membrane. In Figure 21d, all of the vesicles have gathered in a single cluster
at the active zone.

5.2 Simulation of Deformable Membranes

Although the rigid spherical membrane of Section 5.1 is likely adequate for a number of
investigations involving vesicle clusters, the representation of deformable membranes may
help capture the dynamics of a presynaptic nerve terminal on a larger scale. Deformable
membranes may also prove useful for models of entire nerve cells, networks of nerve cells,
tissues, blood vessels, and possibly even large organs.

A simple way to represent a membrane with a TPS is illustrated in Figure 22. Particles
are positioned on a surface, and each particle is tethered the nearest neighboring particles.
To avoid excessively-sharp folds and other anomalous features, a membrane should have
at least two layers; that is, there should be two or more parallel surfaces of particles, and
corresponding particles on adjacent surfaces should be tethered together.

Figure 22: An illustration of how deformable membranes may be represented. Dots are
particles, and lines indicate pairs of tethered particles.

Particles on a membrane surface need not be coplanar, and need not be arranged in the

60

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.2 Simulation of Deformable Membranes

triangular grid pattern shown in Figure 22. One alternative is demonstrated in Figure 23,
which shows an initially spherical membrane deforming in response to an impact with an
initially downward-moving particle. The particles in the membrane were arranged in two
concentric icosahedral grids, each constructed by iteratively interpolating the edges of a
20-sided regular polyhedron.

Figure 23: A simulation in which an initially-spherical deformable membrane suffers an
impact. The membrane was closed, but the front half is not shown.

Because we composed each of the two concentric icosahedral grids out of a single species
of particle, the blocking and tethering distances along the surface of the membrane were all
the same. The actual distances between adjacent particles vary, however. As a consequence,
we observed undesirable protrusions of the edges of the underlying 20-sided polyhedron as
the Figure 23 simulation progressed. Some of these edges are also apparent in Figure 24, a
snapshot of a simulation in which we used a deformable surface to model the membrane of
a presynaptic nerve terminal. Although the membrane was initially spherical, we assigned
initial velocities in an effort to coerce it into the pear-like shape of Section 2.7’s Figure 5.

61

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.2 Simulation of Deformable Membranes

Figure 24: A simulated presynaptic nerve terminal with a deformable membrane. The
outer layer and front of the membrane are not shown.

Figure 25 shows an effort to simulate a square biological membrane or soft tissue clamped
along two opposing edges. The membrane has two layers of particles, and each particle on
the inside is tethered to the four adjacent particles in the same layer and one particle in the
opposite layer. All particles along the two clamped edges are assigned a mass of infinity
and an initially-zero velocity, rendering them immobile.

Recall from Section 4.3 that the DEVS TPS model receives impulse messages as inputs.
Gravity is incorporated in the Figure 25 model via downward impulses applied to each
mobile particle at regular time intervals. As a result of these impulses, the initially flat
membrane in Figure 25a is starting to sag in Figure 25b. In Figure 25c the membrane
exhibits a wave-like pattern as it responds to internal tethering collisions triggered by the
initial fall. Small non-deterministic ripples appear in the membrane as a consequence of
two sources of randomness; the order in which particles receive gravitational impulses is
randomized, as is the order in which simultaneous collisions are resolved. The gravity-
induced waves have mostly subsided after 48 time units, as shown in Figure 25e. Shortly
after, a falling particle impacts the membrane and produces the small ridge in Figure 25f.

62

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.2 Simulation of Deformable Membranes

(a) t = 0 (b) t = 12

(c) t = 24 (d) t = 36

(e) t = 48 (f) t = 60

Figure 25: A square membrane clamped along two edges responds first to gravity, then to
an impact with a falling object.

63

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

The simulation of Figure 25 reveals two weaknesses in the TPS method. First, while the
strain of a macroscopic soft tissue will increase with the applied force, a TPS deformable
membrane will reach its maximum length and stop stretching. If, for whatever reason, the
force of gravity were to increase by an order of magnitude, the membrane in Figure 25
would sag faster but no further. The other weakness is common to impulse-based methods
in general: the computational inefficiency of resolving stable contacts. After the membrane
in Figure 25 has sagged, many pairs of particles remain near or at their tethering distances.
The effect of this is that collisions occur at an extremely high rate, slowing the simulation
to a crawl.

The weaknesses described above may render the TPS, as it is currently defined, unsuitable
for macroscopic soft tissues subject to sustained external forces. It is possible, however,
that future enhancements to the method could alleviate these problems. Even without any
modifications, the TPS may still be useful for modeling cell walls and other small-scale
deformable biological membranes that need not be subjected to gravity or continuously
stretched.

5.3 Simulation of Action Potentials and Exocytosis

Recall from Section 2.7 that an action potential arriving at a presynaptic nerve terminal
has a few notable effects on vesicles. First, through a series of chemical reactions, an
action potential may cause synapsins to lose their affinity for vesicles. This may free some
vesicles from their clusters. Second, an action potential may trigger exocytosis, causing
certain vesicles that are docked at the active zone to fuse with the membrane. Third, in
some cases, a docked vesicle may be released from the active zone without fusing with the
membrane.

There are several reasons to simulate action potentials and exocytosis. One reason is to
identify conditions under which docked vesicles are likely to become depleted, a situation
that would prevent an action potential from being transmitted from one neuron to the next.

64

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

Although an action potential is a complex process involving numerous types of chemical
reactions and dramatic electric field changes, we model it as a period of time delimited
by precise, pre-determined start and end times. We model exocytosis by selecting certain
docked vesicles and removing them from the spherical membrane of Section 5.1. We at-
tempt to capture neither the deformation of a vesicle as it fuses, nor the neurotransmitters
that it releases.

In Section 4.3, a DEVS coupled model named TPS was described as the uppermost level
in a DEVS model hierarchy. In order to extend the presynaptic nerve terminal model of
Section 5.1 with action potentials and exocytosis, another level was added above the TPS.
The PNT model, shown in Figure 26, is a DEVS coupled model with three submodels:
compartment, action, and fusion.

Figure 26: The structure of the PNT coupled DEVS model.

The compartment submodel is a TPS model with an extra layer of model parameters.
It includes the V (vesicle), S (synapsin), D (docking site), M (membrane), and Z (active
zone) particle species of Section 5.1. The action submodel receives response messages
from the compartment in order to keep track of the locations of all of the particles. It sends
a transition message to the compartment each time an action potential either begins or

65

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

ends, and the information in these messages affects which particles in the compartment
become tethered or untethered. Like action, the fusion submodel also receives response
messages to track particle locations. It also receives detachment messages, and takes
notice if a V particle and the M particle become detached. A V -M detachment is an
indication that a vesicle is fusing, and fusion responds by sending a sequence of impulse
messages to the compartment to push the vesicle outwards well beyond the membrane.

At the beginning of an action potential, the action submodel randomizes several time val-
ues that determine when vesicles are to detach from synapsins, docking sites, and the mem-
brane. In reality, these effects are the result of a complex sequence of chemical reactions;
a set of randomized times provides a simple means to model this process. The time values
are recorded in a variable named Φ that accompanies the transition messages sent from
action to compartment. Each individual time value is given by an expression of the form
Φ (reaction) (idA). Here reaction is one of the following: “SV ”, representing a synapsin
losing its affinity for vesicles during an action potential; “DV ”, representing a docking
site no longer accepting vesicles; and “VM ”, representing the fusing of a vesicle with the
membrane. The integer idA identifies the synapsin particle, the docking site, or the vesi-
cle in question. In the equation below, t is the time at which the action potential starts,
and exponential (τ) () is a positive real number selected randomly from an exponential
distribution with mean value of τ .

Φ (reaction) (idA) = t+ exponential (τ) ()

The average time τ is calculated using one of the three model parameters TAP (“SV ”),
TAP (“DV ”), and TAP (“VM ”), depending on the type of reaction. There is also a geometry-
dependent factor, explained further below.

τ = TAP (reaction) ·
(

∆uac + ∆ubc
∆uab

)gAP
The value Φ (“SV ”) (139), for example, is the simulated time at which the synapsin particle
with ID 139 loses its affinity for vesicles. If that time arrives before the action potential
ends, then the synapsin identified by 139 will detach from any vesicle tethered to it. It
will also remain detached from any other vesicles until the end of the action potential.

66

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

Similarly, Φ (“DV ”) (84) is the time when docking site particle 84 detaches and remains
detached from any vesicle, and Φ (“VM ”) (427) is the time when vesicle 427 is scheduled
to detach from the membrane to simulate exocytosis.

Recall from Section 5.1 that all vesicles are tethered to the M particle representing the
membrane. When a V -M tethering collision occurs, it appears to an observer as if a vesicle
simply rebounded off the inside of the spherical membrane. A V -M detachment allows
a vesicle to escape the compartment by passing through the membrane (this is how we
simulate exocytosis, though in the real system the vesicle fuses and becomes part of the
membrane). For vesicle 427 to detach from the membrane, we not only require the time
Φ (“VM ”) (427) to arrive before the end of the action potential, but we also require vesicle
427 to be tethered to a D particle at the time when the V -M tethering distance is reached.
This guarantees that the vesicle is docked at the active zone before fusing.

We now explain the geometry-dependent factor used in the calculation of τ . When an action
potential reaches a presynaptic nerve terminal, calcium ions enter the compartment in the
vicinity of the active zone. The calcium ions do not directly cause synapsin to lose their
affinity for vesicles, but they do trigger a sequence of chemical reactions that ultimately
has this effect. A synapsin located near the active zone is more likely to take part in these
reactions, and separate from vesicles, than a synasin located further away. For this reason,
the average time τ increases with distance from the active zone.

Because the active zone is a region and not a point, we calculate the distance from any
position to the active zone using the triangle in Figure 27 instead of a straight line. The
top of this triangle, point c, is the position of a synapsin particle at the beginning of an
action potential. The points a and b at the bottom are located at the top of the active zone
as determined by the radius rZ associated with the Z particle. Points a and b are also
chosen to be in the plane that includes point c, and the center the M particle representing
the membrane, and the center of the Z particle delimiting the active zone. The distance
between points a and c is ∆uac, the distance between b and c is ∆ubc, and the distance
between a and b is ∆uab which equals 2·rZ . As indicated by the equation above, the
average time τ before the synapsin at c loses its affinity for vesicles is determined in part

67

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

by the ratio of ∆uac plus ∆ubc to ∆uab. This ratio is raised by gAP , an exponent that
parameterizes the gradient of the chemical reactions triggered by the calcium influx at the
active zone. If gAP is large (eg. gAP = 3 or gAP = 4), synapsins at a distance are much
less affected by an action potential than those that are close to the active zone.

Figure 27: The triangle used to quantify distances from the active zone.

In Section 5.1, vesicle clusters were shown forming in a simulated presynaptic nerve termi-
nal. At time 600 in Figure 21, the vesicles had congregated in a single cluster at the active
zone. Figure 28 shows the continuation of that simulation, with an action potential start-
ing at time 600 and lasting 30 time units. The vesicle cluster in Figure 28a is exactly the
same as the one in Figure 21d, but viewed from a different angle. Figure 28b is a snapshot
taken 20 time units into the action potential. At this time, a vesicle can be seen escaping
the compartment in a simulated process of exocytosis. In Figure 28c, taken 20 time units
after the end of the action potential, recently-freed synapsins can be seen immediately to
the right of the cluster. As there are fewer synapsins binding with vesicles, the cluster
loosens and flanges emerge. A single isolated vesicle can be seen at the top of Figure 28d,
having completely detached from the cluster. As shown in Figures 28e and 28f, the cluster
consolidates as time progresses and new vesicle-synapsin bonds are formed.

68

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

(a) t = 600 (b) t = 620

(c) t = 650 (d) t = 680

(e) t = 750 (f) t = 900

Figure 28: Six snapshots of a vesicle cluster reacting to an action potential in a simulated
presynaptic nerve terminal. Here gAP = 3, which indicates that during an action potential,
the synapsins that are close to the active zone at the bottom are the most likely to lose their
affinity for vesicles.

69

5 SIMULATION OF DEFORMABLE BIOLOGICAL STRUCTURES
5.3 Simulation of Action Potentials and Exocytosis

Figure 29 shows a real vesicle cluster situated on the membrane of a presynaptic nerve
terminal. This particular cluster is considerably larger than the one simulated in Figure 28a,
though the overall shape is not entirely dissimilar.

Figure 29: An electron microscopy image of a real vesicle cluster in a lamprey spinal
neuron (reprinted with permission from Dr. Oleg Shupliakov).

Simulations like the one in Figure 28 may help biologists investigate the role of synapsin
in the human brain. Experimental results presented in [54] suggest that synapsin helps to
maintain a number of vesicles in the vicinity of the active zone, which in turn increases the
chance that a sequence of action potentials will be transmitted from one neuron to the next.
Simulations can be used to quantify the relationship between synapsin concentration and
the availability of docked vesicles. An iterative research process, involving both simulation
and experimentation, could potentially lead to a better understanding of neurotransmission
coupled with an ability to predict the behaviour of presynaptic terminals under various
conditions.

70

6 DISCUSSION

6 Discussion

6.1 In Hindsight

Two design decisions were made during the project that, in hindsight, could have been
improved. One improvement pertains to the TPS method described in Section 4.1, and the
other pertains to the DEVS TPS model of Section 4.3. While we recommend these changes
to others, we were unable to adopt them because they were first considered at a late stage
in the project.

In the TPS method, a collision between two particles results in an immediate loading phase
and a subsequent restitution phase. In Section 4.1, the parameter ∆trestitute was introduced
as the minimum time between loading and restitution. In hindsight, the same parameter
should have been used as the maximum time between loading and restitution. Figure 30
contrasts the “current scheme” we adopted with the “alternative scheme” we now recom-
mend. In both schemes, we have a loading of particles A and B, followed by a loading of
B and C, followed by a restitution of B and C, followed by a restitution of A and B. The
difference is that, in the alternative scheme, the restitution of B and C is scheduled at an
earlier time to allow the A-B restitution to occur at a duration of ∆trestitute after the A-B
loading. In the current scheme, the A-B restitution is delayed.

Figure 30: Current and alternative schemes for calculating restitution times.

71

6 DISCUSSION
6.1 In Hindsight

In the alternative scheme, if two particles A and B collide to form a two-particle loaded
group, the restitution occurs after a duration of ∆trestitute as in the current scheme. If,
however, the A-B collision results in a loaded group of three or more particles, then the
A-B restitution time is the average of the current time and the minimum restitution time in
the remainder of the group.

The alternative scheme has two advantages. First, it discourages the formation of exces-
sively large loaded groups that occur with the current scheme if ∆trestitute is too high.
Although small loaded groups of two of three particles can dramatically speed up a sim-
ulation, loaded groups of 100 or more particles are detrimental to both performance and
validity. The second advantage of the alternative scheme is that it is easier to implement.
The current scheme requires future restitution times to be repeatedly re-scheduled. Also,
the priority function pr passed into a future events list of restitution events must be contin-
ually updated to resolve simultaneous restitutions. The alternative scheme would alleviate
the need for rescheduled restitutions and changing priority functions. It would also ren-
der unnecessary the state variables Nloading and nloading of the DEVS responder submodel
defined in Appendix D.

We now turn our attention to the other improvement. In Section 4.3, we presented the
DEVS detector model as a coupled model consisting of a tracker submodel and a lattice
submodel. In hindsight, we would likely have divided the lattice in three, introducing a
submodel named network and another named scheduler.

Recall that the lattice is itself a coupled model with submodels named subV . Each subV
is associated with a subvolume of space, detecting and scheduling collisions that occur in
or near that subvolume. If one collision is scheduled by one subV , and another collision is
scheduled for the same simulated time by another subV , then each collision ends up with a
50% chance of occurring first. A problem arises, however, if one collision is scheduled by
one subV , and two other collisions are scheduled for the same simulated time by another
subV . Of course we would like each of the three collisions to have a 1 in 3 chance of
occurring first. Unfortunately, each subV would gain priority with a 50% probability, and
consequently the two collisions in the latter subV would each end up with a 1 in 4 chance

72

6 DISCUSSION
6.1 In Hindsight

of occurring first. From a practical perspective, simultaneous collisions are sufficiently rare
that a slight bias in their randomized order should not undermine the validity of an entire
simulation. But the problem remains troubling aesthetically.

To ensure an unbiased random ordering of simultaneous collisions, all particle-particle
collisions should be scheduled by a single DEVS model. This is the rationale for adding a
scheduler submodel to the detector. The scheduler would receive blocking or tethering
messages containing collision information for pairs of particles anywhere in the simulated
space. Each of these messages would be sent at the time when a collision is detected, not
the time when the collision actually occurs. The scheduler would schedule the collisions
itself, and output the collision messages.

In addition to the separation of collision detection and scheduling, the detector could be
modified such that the lattice would detect only blocking collisions and not tethering col-
lisions. Tethering collisions would instead be detected by a submodel named network,
which would search for these collisions by considering each pair of tethered particles. This
modification is logical because proximity is a better predictor of blocking collisions than
tethering collisions.

The structure of the alternative detector model, with the scheduler and network submod-
els, is illustrated in Figure 31.

Figure 31: The structure of the recommended alternative DEVS detector model.

73

6 DISCUSSION
6.2 On Impulse-Based Dynamic Simulations of Deformable Structures

6.2 On Impulse-Based Dynamic Simulations of Deformable Structures

The TPS method described and demonstrated in this thesis provides, arguably, the most
convincing evidence to date that impulse-based methods can be used to simulate the dy-
namics of deformable structures. The TPS is very similar to the impulse-based method
of [41], yet contradicts the assertion that such methods require models to be comprised of
only rigid bodies. The key concept behind the TPS is that, in place of forces and differential
equations, it is the net effect of many instantaneous collisions that produces a gradual pro-
cess of deformation. In this thesis we have applied the TPS to deformable vesicle clusters
and membranes, and students Sanaa Lissari and Nada Farran have recently modeled de-
formable cylindrical and helical proteins using our code. Another student, Hamel Yigang,
has simulated a fluid by adding small isolated particles to a TPS model.

The mathematics of the TPS presented in Appendix B allow chemical reactions to be rep-
resented by the tethering or untethering of certain pairs of particles. We have not allowed
particles to be added or removed during a simulation, though such an enhancement remains
possible. Had we allowed particles to be removed during a simulation, we could have made
the fusing vesicles in Section 5.3 disappear instead of detaching from the membrane and
exiting the compartment. If one were to allow particles to be either introduced or removed,
one could simulate a chemical reaction by replacing two colliding particles A and B with
some particle C, or replacing some particle C with particles A and B. With this enhance-
ment, the TPS would be a compelling option for simulations capturing the reaction and
diffusion of chemicals in combination with the deformation of larger structures.

Simultaneous and nearly-simultaneous collisions have posed a problem for impulse-based
dynamic simulations in general. The approximation we introduce, involving the formation
of loaded groups of particles, can be used in rigid body simulation methods as well as the
TPS. The approximation is compelling in that it is relatively simple, obeys the law of con-
servation of momentum, and does not allow energy to increase. Further investigation would
be required to determine whether the approximation is sufficiently accurate for models in-
volving small numbers of large rigid bodies moving in a deterministic fashion. In the case
of a biological system, we expect large numbers of small particles exhibiting a considerable

74

6 DISCUSSION
6.2 On Impulse-Based Dynamic Simulations of Deformable Structures

degree of random motion. In such models, the error introduced by temporarily combining
particle masses seems like a small price to pay to prevent a simulation from stalling.

As mentioned in Section 5.2, simulations of deformable membranes have revealed two
weaknesses of the TPS method. The strain on a deformable TPS structure will reach its
limit given a sustained external force, regardless of the magnitude of that force. A mass-
spring-damper model, by contrast, has the desirable potential to stretch further as the ex-
ternal force is increased. Also, in situations involving stable contacts, the TPS will suffer
from poor performance due to a high rate of particle collisions. These weakness are most
apparent in models of macroscopic structures subject to external forces. The simulation
of a clamped membrane subject to gravity, shown in Section 5.2’s Figure 25, is a good
example of an application requiring either an alternative method, or perhaps some future
enhanced version of the TPS. In the case of small-scale self-assembling biological struc-
tures subject to random motion, however, stable contacts are far less likely to occur. Dr.
James J. Cheetham, a biologist a Carleton University, is currently using the TPS to run and
analyze simulations of vesicle clusters similar to those of Sections 5.1 and 5.3. The TPS
may well prove useful for other small-scale biological systems.

A detailed comparison of the TPS with alternative dynamic simulation methods remains
important future work. Here we speculate that the FEM would be difficult to apply to
small-scale self-assembling biological structures, as rapid deformation and re-structuring
would require frequent re-calculation of mass and stiffness matrices. Mass-spring-damper
systems suffer from the threat of instability, though it is possible to address this problem
with constraints as done in the method of [50] and [51]. Recall from Section 2.6 that,
although it is described as “impulse-based”, the [50, 51] method requires new trajectories
to be computed for each node in a deformable structure at regular time intervals. The TPS
simulates deformation with impulses applied not at regular intervals, but rather in response
to collisions. The [50, 51] method seems to be the more computationally efficient, as the
number of collisions in a TPS simulation can be extremely high. The TPS is appealing
in that all calculations are analytic; there is no need for the iterative algorithm of [50, 51]
that repeatedly re-calculates trajectories until all constraints are satisfied within an arbitrary
tolerance level.

75

6 DISCUSSION
6.3 On DEVS-Based Simulations of Biological Systems

Impulse-based methods like the TPS are compelling in large part because they alleviate
the need to choose regular time intervals. In the case of a biological system, the selection
of an appropriate time interval would be complicated by the fact that interacting biological
entities may differ in size and momentum by many orders of magnitude. A suitable interval
for one entity may be too large or too small for another. The absence of regular time
intervals proved beneficial in our work as it allowed us to select times for random impulses
from exponential distributions. Otherwise, those times would have had to be discretized.
With their ability to respond to information delivered at any simulated time, impulse-based
methods are likely among the easiest to integrate with other simulation algorithms.

6.3 On DEVS-Based Simulations of Biological Systems

Arguably the most compelling reason to use DEVS is that the formalism facilitates hierar-
chical model design. The separation of model and simulator is also a significant advantage,
but the separation of different aspects of the model is the key to addressing the complexity
of a biological system and the methods used to simulate it.

The most intuitive way to structure a biological DEVS model is to define separate submod-
els for separate biological entities. This is the approach taken in [32], in which separate
DEVS submodels are used represent a cell membrane, a cytoplasm, and a nucleus. The
same paper argues that DEVS is in some regards less suitable for biological systems than
other modeling formalisms such as stochastic Petri Nets and stochastic π-Calculus, as it is
difficult to simulate interactions between three or more entities using links between pairs
of DEVS submodels.

Adopting an alternative formalism is one way to address the shortcomings of DEVS iden-
tified in [32], but one can also design a DEVS model hierarchy in a different fashion. In
previous work, numerous cellular biological models have been designed by partitioning
space into discrete regions, each with an associated DEVS atomic model [30]. Described
in this thesis is the first continuous-space biological DEVS model. The DEVS TPS model

76

6 DISCUSSION
6.3 On DEVS-Based Simulations of Biological Systems

also partitions space using submodels, but only at a lower level in the hierarchy. At the
uppermost lever, we define different submodels to address different aspects of a TPS algo-
rithm: the detection of collisions, the response of particles to collisions, and the generation
of random impulses. This is the approach we recommend for the design of biological mod-
els in general: to separate different algorithms or aspects of algorithms at upper levels in a
DEVS model hierarchy, and to partition space at lower levels.

We argue that suitable hierarchies can help biologists and medical researchers simulate
complex biological systems with code that can be easily understood and modified. One can
interpret the code of our random impulse model on page 53, for example, without being
distracted by the complications of particle collisions. If one were to implement the first
modification of Section 6.1, the responder submodel would need to be modified, but the
detector could be ignored. For the second modification, a modeler would have to re-design
the detector, but would not have to worry about the responder.

We now discuss how our use of DEVS fits in with the pursuit of biological simulation
algorithm integration described in Section 2.4. Ours is a single-formalism approach in
which different algorithms are each given their own DEVS model, and the algorithms are
integrated via the coupling of those models.

Recall from Section 2.4 that [35] is a good example of algorithm integration. This re-
cent work combines the Next Subvolume Method of [12], which tracks the concentrations
of chemicals in various subvolumes, with an algorithm that tracks the positions of rela-
tively large individual particles. Looking at the diagram in Figure 32, the concentration of
a chemical in subvolume [0, 0] may change due to a reaction within the subvolume, or a
diffusion of the chemical to or from subvolume [1, 0] or subvolume [0, 1]. The Next Sub-
volume Method handles this type of scenario. In the case of subvolume [1, 2], however,
reaction and diffusion are complicated by the presence of a particle. The algorithm of
[35] approximates the effect of large individual particles on the reaction and diffusion of
surrounding chemicals.

77

6 DISCUSSION
6.3 On DEVS-Based Simulations of Biological Systems

Figure 32: A model in which chemicals react within each subvolume, diffuse between
subvolumes as shown by the arrows, and avoid the large particle.

Now suppose we designed a DEVS model, named NSM , that uses the enhanced version
of the Next Subvolume Method described in [35] to output the concentration of each chem-
ical in each subvolume. We could then combine it with the TPS, which would calculate
the motion of the large particles in the system. Assuming that NSM requires as an input
the positions of all particles at regular time intervals, we would need a third DEVS model.
The TPS sequencing DEVS model named TPSS, which was in fact implemented for visu-
alization purposes, inputs response messages at the irregular times when collisions occur.
Particle information is updated accordingly, and at regular time intervals the positions of
all particles are output in frame messages. To integrate the TPS with the Next Subvolume
Method, we would link all three DEVS models as shown in Figure 33. A change in a par-
ticle’s motion is sent from the TPS to the TPSS, and a change in the particle’s position
is then sent to the NSM . Finally, a change in chemical concentrations may be sent back
to the TPS as a transition message to affect the formation and disruption of deformable
structures.

Figure 33: A hypothetical DEVS coupled model that combines two algorithms.

78

6 DISCUSSION
6.3 On DEVS-Based Simulations of Biological Systems

DEVS models could be defined to predict the potential fields that propagate along nerve
cell membranes, or simulate hydrodynamic resistance using computational fluid dynamics.
These models could then be linked with dynamic simulation DEVS models like the TPS,
or chemical reaction and diffusion DEVS models like the hypothetical NSM , in pursuit of
realistic yet well-designed simulations of biological systems.

79

7 CONCLUSION

7 Conclusion

Recall that, as Kitano explains in [1], a simulation may be used by a biologist or medical
researcher to investigate a hypotheses formed from the observation of experimental data.
Our simulated presynaptic nerve terminal, for example, may be used to test the idea that the
role of synapsin is to hinder the depletion of vesicles docked at the active zone. Inevitably,
a simulation will make new predictions, and those predictions can be tested using new
in vitro and in vivo studies. Our simulations predict how spatial distributions of vesicles
change over time, and new experiments would be needed to determine whether similar
distributions occur in reality under similar conditions. New experimental data will lead
to new hypotheses, which will in turn motivate improvements to a simulation. It may be
found, hypothetically, that long filaments known as actin must be added to our presynaptic
nerve terminal model in order to yield results that match observations. The hope is that an
iterative research process, involving both experimentation and simulation, will lead to an
improved understanding of a biological system and the ability to predict its behaviour.

The two main contributions of this thesis are not specific to the presynaptic nerve terminal
model or any other particular biological system. They are, rather, a simulation method and
a modeling technique that can be applied to the study of a wide range of biological systems.

The TPS method simulates the dynamics of deformable structures using impulses that oc-
cur in response to particle collisions. The detection and resolution of these collisions re-
quire only analytic computations, whereas many alternative methods involve systems of
equations or inequalities that need to be solved simultaneously or iteratively. In the design
of the TPS, we addressed the threat of simultaneous and nearly-simultaneous collisions
by introducing a minimum duration ∆trestitute between a collision’s loading and restitution
phases. In hindsight, we recommend that others use this parameter as a maximum duration,
not a minimum. One advantage of the TPS over most of its alternatives is that it alleviates
the need for regular time intervals. These intervals must otherwise be selected to accomo-
date interactions between biological entities that may differ in size by orders of magnitude.
Results obtained to date suggest that the TPS requires further enhancement if it is to be

80

7 CONCLUSION

effective for macroscopic deformable structures subject to sustained external forces. The
method is already promising, and in use, for simulations of small-scale self-assembling
deformable biological structures exhibiting random motion.

The DEVS formalism has previously been used to design both non-spatial and cellular bi-
ological DEVS models. We have applied the formalism to biological models with contin-
uous space. The real question was not whether continuous-space biological DEVS models
were possible to design, but whether suitable hierarchies could be chosen to fully bene-
fit from the formalism’s adoption. The presented DEVS TPS model featured a hierarchy
that separated various aspects of the TPS method: the generation of random impulses, the
tracking of particles from one subvolume to another, the detection of collisions within each
subvolume, and the response of particles to collisions.

When opting for a hierarchical structure, a modeler accepts a certain amount of additional
complexity in the form of messages that must be passed from one submodel to another. The
benefit is that a complex simulation routine may be effectively replaced by a reusable sim-
ulator and a set of relatively simple transition functions. We have presented a minimalistic
formulation of DEVS in which the parameters of any DEVS model are repeatedly trans-
formed from one layer to the next, ultimately yielding a vector of the form [δext, δint, ta].
The simplicity of this layering technique should appeal to programmers who wish to im-
plement their own DEVS simulator and hierarchical models.

It seems likely that the pursuit of ever more realistic biological models will increasingly
motivate the integration of different biological simulation algorithms. Our advice to others
is that such algorithms be coupled as submodels at upper levels in a DEVS model hierar-
chy. We also recommend that space be partitioned at lower levels. It is intuitive to associate
DEVS models with specific biological entities, but we warn against this approach. Proper-
ties of different biological entities can instead be organized by an appropriate selection of
model parameters and state variables.

81

REFERENCES

References

[1] Hiroaki Kitano. Computational systems biology. Nature, 420:206–210, 2002.

[2] David Fange and Johan Elf. Noise-Induced Min Phenotypes in E. coli. PLoS Com-

putational Biology, 2(6):e80, 2006.

[3] Joel Brown, Stephen Sorkin, Cynthia Bruyns, Jean-Claude Latombe, Michael
Stephanides, and Kevin Montgomery. Real-time simulation of deformable objects:
Tools and application. In Computer Animation, pages 228–236, 2001.

[4] Trent M. Guess and Lorin P. Maletsky. Computational modelling of a total knee
prosthetic loaded in a dynamic knee simulator. Medical Engineering & Physics,
27(5):357–367, 2005.

[5] Tong Wang, Tsorng-Whay Pan, Z. W. Xing, and Roland Glowinski. Numerical sim-
ulation of rheology of red blood cell rouleaux in microchannels. Physical Review E

(Statistical, Nonlinear, and Soft Matter Physics), 79(4):041916+, 2009.

[6] Michael L. Klein and Wataru Shinoda. Large-Scale Molecular Dynamics Simulations
of Self-Assembling Systems. Science, 321(5890):798–800, 2008.

[7] Herbert M. Sauro, David Harel, Marta Kwiatkowska, Clifford A. Shaffer,
Adelinde M. Uhrmacher, Michael Hucka, Pedro Mendes, Lena Strömback, and
John J. Tyson. Challenges for Modeling and Simulation Methods in Systems Bi-
ology. In Proceedings of the Winter Simulation Conference (WSC), Monterey, CA,
USA, 2006.

[8] Carsten Maus, Mathias John, Mathias Röhl, and Adelinde M. Uhrmacher. Hierarchi-
cal Modeling for Computational Biology. Formal Methods for Computational Sys-

tems Biology, 5016:81–124, 2008.

[9] Kouichi Takahashi, Satya Nanda Vel Arjunan, and Masaru Tomita. Space in systems
biology of signaling pathways towards intracellular molecular crowding in silico.
FEBS Letters, 579(8):1783–1788, 2005.

82

REFERENCES

[10] Daniel T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions.
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[11] Dieter Armbruster, John D. Nagy, E. A. F. van de Rijt, and J. E. Rooda. Dynamic
Simulations of Single-Molecule Enzyme Networks. Journal of Physical Chemistry

B, 113(16):5537–5544, 2009.

[12] Johan Elf and Måns Ehrenberg. Spontaneous separation of bi-stable biochemical
systems into spatial domains of opposite phases. Systems Biology, IEE Proceedings,
1(2):230–236, 2004.

[13] Dominic P. Tolle and Nicolas Le Novère. Particle-Based Stochastic Simulation in
Systems Biology. Current Bioinformatics, 1(3):315–320, 2006.

[14] Laurier Boulianne, Michel Dumontier, and Warren J. Gross. A Stochastic Particle-
Based Biological System Simulator. In Proceedings of the Summer Simulation Con-

ference (SCSC), San Diego, CA, USA, 2007.

[15] Laurier Boulianne, Sevin Al Assaad, Michel Dumontier, and Warren Gross. Grid-
Cell: a stochastic particle-based biological system simulator. BMC Systems Biology,
2(1):66–74, 2008.

[16] Joel R. Stiles and Thomas M. Bartol. Monte Carlo Methods for Simulating Realistic
Synaptic Microphysiology Using MCell. In Computational Neuroscience: Realistic

Modeling for Experimentalists (Edited by Erik De Schutter; published by CRC Press),
pages 87–127, 2001.

[17] Steven J. Plimpton and Alex Slepoy. Microbial Cell Modeling via Reacting Diffusive
Particles. Journal of Physics: Conference Series 16, pages 305–309, 2005.

[18] Steven J. Plimpton and Alex Slepoy. ChemCell: A Particle-Based Model of Protein
Chemistry and Diffusion in Microbial Cells. Sandia National Laboratories, 2003.

[19] Steven S. Andrews and Dennis Bray. Stochastic simulation of chemical reactions with
spatial resolution and single molecule detail. Physical Biology, 1:137–151, 2004.

83

REFERENCES

[20] Jeroen S. van Zon and Pieter Rein ten Wolde. Greens Function Reaction Dynamics:
a new approach to simulate biochemical networks at the particle level and in time and
space. Journal of Chemical Physics, 123(23):234910.1–234910.16, 2005.

[21] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling and

Simulation. Academic Press, 2000.

[22] Bernard P. Zeigler. Systems Movement: Autobiographical Retrospectives. Interna-

tional Journal of General Systems, 32(3):221–236, 2003.

[23] Bernard P. Zeigler and Sankait Vahie. DEVS formalism and methodology: unity of
conception/diversity of application. In Proceedings of the Winter Simulation Confer-

ence (WSC), New York, NY, USA, 1993.

[24] Gabriel A. Wainer. Discrete-Event Modeling and Simulation: A Practitioner’s Ap-

proach. CRC Press, 2009.

[25] Jean-Baptiste Filippi and Paul Bisgambiglia. General methodology 2: enabling
large scale and high definition simulation of natural systems with vector models and
JDEVS. In Proceedings of the Winter Simulation Conference (WSC), San Diego, CA,
USA, 2002.

[26] Fernando J. Barros. Abstract Simulators for the DSDE Formalism. In Proceedings of

the Winter Simulation Conference (WSC), Washington, DC, USA, 1998.

[27] Gabriel A. Wainer. Creating Advanced Fire-Spreading models using the CD++
toolkit. In Proceedings of the 3rd Biennial meeting of the International Environmental

Modelling and Software Society (iEMSs), Burlington, VT, USA, 2006.

[28] Xiaolin Hu, Alexandre Muzy, and Lewis Ntaimo. A Hybrid Cellular-Agent Space
Modeling Approach for Fire Spread and Suppression Simulation. In Proceedings of

the Winter Simulation Conference (WSC), Orlando, FL, USA, 2005.

[29] Adelinde M. Uhrmacher and Corrado Priami. Discrete Event Systems Specification in
Systems Biology - a Discussion of Stochastic Pi Calculus and DEVS. In Proceedings

of the Winter Simulation Conference (WSC), Orlando, FL, USA, 2005.

84

REFERENCES

[30] Gabriel Wainer, Shafagh Jafer, Banan Al-Aubidy, Alex Dias, Roderick Bain, Michel
Dumontier, and James Cheetham. Advanced DEVS models with application to
biomedicine. In Proceedings of the Artificial Intelligence, Simulation and Planning

Conference (AIS), Buenos Aires, Argentina, 2007.

[31] Rhys Goldstein and Gabriel Wainer. Modelling Tumor-Immune Systems with Cell-
DEVS. In Proceedings of the European Conference on Modelling and Simulation

(ECMS), Nicosia, Cyprus, 2008.

[32] Roland Ewald, Carsten Maus, Arndt Rolfs, and Adelinde M. Uhrmacher. Discrete
Event Modelling and Simulation in Systems Biology. Journal of Simulation, 1(2):81–
96, 2007.

[33] Adelinde M. Uhrmacher, Jan Himmelspach, Mathias Röhl, and Roland Ewald. Intro-
ducing Variable Ports and Multi-Couplings for Cell Biological Modeling in DEVS. In
Proceedings of the Winter Simulation Conference (WSC), Monterey, CA, USA, 2006.

[34] Adelinde M. Uhrmacher, Roland Ewald, Mathias John, Carsten Maus, Matthias
Jeschke, and Susanne Biermann. Combining Micro and Macro-Modeling in DEVS
for Computational Biology. In Proceedings of the Winter Simulation Conference

(WSC), Washington D.C., USA, 2007.

[35] Matthias Jeschke and Adelinde M. Uhrmacher. Multi-Resolution Spatial Simulation
for Molecular Crowding. In Proceedings of the Winter Simulation Conference (WSC),
Miami, FL, USA, 2008.

[36] Adelinde M. Uhrmacher, Jan Himmelspach, Matthias Jeschke, Mathias John, Stefan
Leye, Carsten Maus, Mathias Röhl, and Roland Ewald. One Modelling Formalism &
Simulator Is Not Enough! A Perspective for Computational Biology Based on James
II. In Proceedings of the 1st International Workshop on Formal Methods in Systems

Biology (FMSB), Cambridge, UK, 2008.

[37] Antoine Defontaine, Alfredo Hernández, and Guy Carrault. Multi-formalism Mod-
elling of Cardiac Tissue. Acta Biotheoretica, 52:273–290, 2004.

85

REFERENCES

[38] Spencer Borland and Hans Vangheluwe. Transforming Statecharts to DEVS. In Pro-

ceedings of the Summer Computer Simulation Conference. Student Workshop, Mon-
treal, QC, Canada, 2003.

[39] Juan de Lara and Hans Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-
modelling. Fundamental Approaches to Software Engineering, pages 174–188, 2002.

[40] Kouichi Takahashi. Multi-algorithm and multi-timescale cell biology simulation.
PhD, Keio University, Fujisawa, Japan, 2004.

[41] Brian Vincent Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems.
PhD, University of California at Berkeley, Berkeley, CA, USA, 1996.

[42] David Baraff. Analytical Methods for Dynamic Simulation of Non-penetrating Rigid
Bodies. Computer Graphics, 23(3):223–232, 1989.

[43] Matthew Moore and Jane Wilhelms. Collision Detection and Response for Computer
Animation. Computer Graphics, 22(4):289–298, 1988.

[44] Patricia Moore and Derek Molloy. A Survey of Computer-Based Deformable Models.
In Proceedings of the International Machine Vision and Image Processing Conference

(IMVIP), Maynooth, Ireland, 2007.

[45] François Conti, Oussama Khatib, and Charles Baur. Interactive rendering of de-
formable objects based on a filling sphere modeling approach. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan,
2003.

[46] Johan Jansson and Joris S. M. Vergeest. A discrete mechanics model for deformable
bodies. Computer-Aided Design, 34(12):913–928, 2002.

[47] Sarah F. F. Gibson and Brian Mirtich. A Survey of Deformable Modeling in Computer
Graphics. Mitsubishi Electric Reasearch Laboratories (www.merl.com), 1997.

[48] Kazuyoshi Tagawa, Koichi Hirota, and Michitaka Hirose. Impulse Response Defor-
mation Model: an Approach to Haptic Interaction with Dynamically Deformable Ob-
ject. In Proceedings of the Symposium on Haptic Interfaces for Virtual Environment

and Teleoperator Systems (HAPTICS), Alexandria, VA, USA, 2006.

86

REFERENCES

[49] Richard Keiser, Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus
Gross. Contact Handling for Deformable Point-Based Objects. In Proceedings of the

Vision, Modeling, and Visualization Conference (VMV), Stanford, CA, USA, 2004.

[50] Jan Bender and Daniel Bayer. Impulse-based simulation of inextensible cloth. In
Proceedings of The International Conference on Computer Graphics and Visualiza-

tion (IADIS), Amsterdam, Netherlands, 2008.

[51] Raphael Diziol, Jan Bender, and Daniel Bayer. Volume Conserving Simulation of
Deformable Bodies. In Proceedings of Eurographics, Munich, Germany, 2009.

[52] Thomas C. Südhof and Klaus Starke. Pharmacology of Neurotransmitter Release.
Springer, 2008.

[53] William S. Trimble, Michal Linial, and Richard H. Scheller. Cellular and Molecular
Biology of the Presynaptic Nerve Terminal. Annual Review of Neuroscience, 14:93–
122, 1991.

[54] Pietro De Camilli. Keeping synapses up to speed. Nature, 375:450–451, 1995.

[55] Jay S. Coggan, Thomas M. Bartol, Eduardo Esquenazi, Joel R. Stiles, Stephan La-
mont, Maryann E. Martone, Darwin K. Berg, Mark H. Ellisman, and Terrence J.
Sejnowski. Evidence for Ectopic Neurotransmission at a Neuronal Synapse. Science,
309(5733):446–451, 2005.

[56] Rhys Goldstein, Gabriel Wainer, James J. Cheetham, and Roderick S. Bain. Vesicle-
Synapsin Interactions Modeled with Cell-DEVS. In Proceedings of the Winter Simu-

lation Conference (WSC), Miami, FL, USA, 2008.

[57] Eric C. R. Hehner. from Boolean Algebra to Unified Algebra. the Mathematical

Intelligencer, 26(2):3–19, 2004.

87

A NOTATION

A Notation

A.1 Expressions

In general, we are likely to adopt a standard mathematical notation unless we have an
alternative that eliminates ambiguity or reduces the number of necessary operators. A
simple example of ambiguity is shown below.

f (x+ y)

a (b+ c)

All would agree that the first expression above represents the result of a function f applied
to the sum of x and y. The second expression might appear to be the product of a and the
sum of b and c, but this interpretation would be inconsistent with that of the first expression.
To avoid ambiguity, we refrain from using juxtaposition to indicate multiplication, adopting
instead a small dot as shown below.

a·(b+ c)

We also use parentheses in all cases when applying a function. We write sin (x), for exam-
ple, and avoid expressions like (sinx). Note that function application is left-associative.

g (x) (y) = (g (x)) (y)

Eric C. R. Hehner demonstrates in [57] how the use of > for both infinity and the “true”
boolean value, and the use of ⊥ for both negative infinity and the “false” boolean value,
can dramatically reduce the number of operators one needs to adopt. Below are examples
of Hehner’s “unified algebra”.

(3 < 5) = >
(3 ≥ 5) = ⊥
>+ 1 = >
2⊥ = 0

88

A NOTATION
A.1 Expressions

An immediate benefit of unified algebra is the elimination of an extra operator like ¬ to
negate a boolean. The numerical negation operator − can be used instead.

− (3 < 5) = −> = ⊥

Hehner uses the symbols ∨ and ∧ as infix operators that yield, respectively, the maximum
and minimum of the two operands.

(3 ∨ 5) = 5

(3 ∧ 5) = 3

By design, the new interpretation of ∨/∧ as maximum/minimum operators is consistent
with their traditional interpretation as boolean OR/AND operators.

(> ∨⊥) = >
(> ∧⊥) = ⊥
(> ∧>) = >
(⊥ ∧⊥) = ⊥

The traditional mathematical notation that selects between candidate expressions has an
unmatched brace on the left, followed by the candidate expressions themselves, followed
on the right by the corresponding conditions. Adopting the arrangement more familiar to
programmers, we place the conditions on the left. We also discard the brace, and enclose
an entire selection expression in parentheses as demonstrated below.

sgn (5) =

5 < 0 → −1

5 = 0 → 0

5 > 0 → 1

 = 1

If none of the conditions are true, the value of the selection expression is undefined.

We use the function composition operator ◦ in the usual way.

(sin ◦ cos) (x) = sin (cos (x))

89

A NOTATION
A.1 Expressions

We also permit functions to be composed using various other operations, given that at least
one of the operands is a function itself. Several examples are below, some of which reflect
common practice and some of which are unusual.

(sin+ cos) (x) = sin (x) + cos (x)

(sin+ 5) (x) = sin (x) + 5

(1− cos) (x) = 1− cos (x)

(2·cos) (x) = 2·cos (x)

(sin·cos) (x) = sin (x) ·cos (x)

sin2 (x) = (sin (x))2 = sin (x)2

√
sin (x) =

√
sin (x)

(sin < cos) (x) = (sin (x) < cos (x))

(sin = cos) (x) = (sin (x) = cos (x))

(sin ∧ cos) (x) = (sin (x) ∧ cos (x))

(sin ∨ 0) (x) = (sin (x) ∨ 0)

We use braces {. . .} to enclose comments, and avoid the use of sets. In cases where one
would normally use a set, we would use a predicate, a function that results in either > or
⊥. The predicate N results in > if and only if its argument is a natural number. Similarly,
F (x) is true if and only if x is a function.

N (3) {this is true (>)}
N
(

3
2

)
{this is false (⊥)}

F (3) {this is false (⊥)}
F (sin) {this is true (>)}

For any set A, one can define a predicate pA such that x ∈ A is the same as pA (x).
We exploit function composition to allow operations on predicates that are analogous to
conventional set operations.

(pA ∨ pB) {analogous to A ∪B}
(pA ∧ pB) {analogous to A ∩B}

We use symbols enclosed in double quotes “ . . . ” as values. We also use the symbol ∅ as

90

A NOTATION
A.2 Definitions

some value generally meaning “nil” or “not a number”.

 N (x) → “x is a positive integer”

x = ∅ → “x is ∅”

A.2 Definitions

Definitions associate values with variables explicitly using the assignment symbol :=. Con-
sistent with mathematical convention, once a variable is assigned a value in a particular
context, it may not be assigned a new value. Unless indicated by the surrounding text,
by indentation, or by a scope identifier (explained further below), the scope of a defined
variable like ∆Q0

′ is generally this entire document.

∆Q0
′ := 77

Functions are typically defined with arguments indicated in parentheses to the left of the
assignment symbol.

sgn (x) :=

x < 0 → −1

x = 0 → 0

x > 0 → 1

It is important to remember that we treat functions as values, passing them as arguments
or assigning them to variables directly. The following two definitions of cot are equivalent,
for example. In the second case, cot is defined in the same manner as a scalar variable, but
the right-hand side happens to represent a function.

cot (x) := 1
tan (x)

cot := 1
tan

Formally, we allow functions to take only a single argument. To pass multiple values into
a function, we generally make the sole argument a vector. Informally, when a function
takes as its argument a vector of fixed length, we refer to the elements of the vector as

91

A NOTATION
A.2 Definitions

“arguments”. An example is the mod function, which takes as its sole formal argument
a vector of the form [x, y]. We refer to the numbers x and y as arguments. The result of
mod ([x, y]) is the remainder of x when divided by y.

We use recursion to describe iterative processes. Although variables cannot be re-assigned
values, the arguments of a recursive function may take on different values each time the
function is invoked. Below is the recursive function GCD, which yields the greatest com-
mon divisor of the natural numbers m and n.

GCD ([m,n]) :=

m = n → m

m < n → GCD ([m,mod ([n,m])])

m > n → GCD ([mod ([m,n]) , n])

In order to control the scope of each variable, we arrange all definitions in a hierarchy. In
the example below, the variables AAA, BBB, are CCC are all defined at the outermost
level of the hierarchy. Each defined variable may have one or more “sub-variables” defined
in an indented position underneath it. Sub-variables of AAA include α and β, for example,
and AAA is can be described as the “parent variable” of α and β.

AAA := α + β {in scope :AAA,α, β,BBB,CCC}
α := 4 {in scope :AAA,α, β,BBB,CCC}
β := CCC − 7 {in scope :AAA,α, β,BBB,CCC}

BBB ([x, y]) := z {in scope :AAA,BBB, x, y, f, w, z, CCC}
f (t) := AAA+ CCC + t {in scope :AAA,BBB, x, y, f, t, w, z, CCC}
w := 2·γ + y {in scope :AAA,BBB, x, y, f, w, γ, z, CCC}

γ := f (x) {in scope :AAA,BBB, x, y, f, w, γ, z, CCC}
z := w·f (ε) {in scope :AAA,BBB, x, y, f, w, ε, κ, z, CCC}

ε := 0.1·κ {in scope :AAA,BBB, x, y, f, w, ε, κ, z, CCC}
κ :=

√
CCC {in scope :AAA,BBB, x, y, f, w, ε, κ, z, CCC}

CCC := 10 {in scope :AAA,BBB,CCC}

92

A NOTATION
A.2 Definitions

The variables indicated as “in scope”, in any of the comments above, can be used on the
right-hand side of the corresponding assignment symbol. Note that all sub-variables with
a common parent variable can be used to define that parent variable, one another, and sub-
variables of one another. Similarly, function arguments are in scope on the right-hand side
of the definition in which they are introduced, and on the right-hand side of all further
indented definitions underneath.

Because definitions can be nested deeply within one another, indentation is not always
practical. We therefore adopt “scope identifiers”, variable names enclosed in angle brackets
� . . . � , to define these hierarchies. As an example, we give an alternative presentation of
AAA, BBB, and CCC equivalent to the one above.

Because AAA has a global scope, we need not include a scope identifier.

AAA := α + β

The scope identifier below precedes the definitions of α and β to indicate that they are sub-
variables of AAA.
� AAA�

α := 4

β := CCC − 7

The absence of a scope identifier indicates that BBB has a global scope.

BBB ([x, y]) := z

We now define f , indicating that it is a sub-variable of BBB.
� BBB �

f (t) := AAA+ CCC + t

An ellipsis (. . .) in a scope identifier represents the text inside the preceding scope identifier.
In this case, that text happens to be BBB.
� . . .�

w := 2·γ + y

93

A NOTATION
A.3 Selectors

Semicolons delimit variables and sub-variables in a scope identifier. Below, γ is defined as
a sub-variable of w, which itself is a sub-variable of BBB.
� BBB;w �

γ := f (x)

Below we define z, a subvariable of BBB.
� BBB �

z := w·f (ε)

To interpret the scope identifier below, we substitute the text of preceding scope identifier,
which happens to be BBB, for the ellipsis.
� . . . ; z �

ε := 0.1·κ
κ :=

√
CCC

Note that we can combine scope identifiers with indentation. We could, for example, have
replaced the definitions of z, γ, and κ above with the following.
� BBB �

z := w·f (ε)

ε := 0.1·κ
κ :=

√
CCC

We define CCC with global scope to complete the example.

CCC := 10

A.3 Selectors

We use the term “selector” to refer to a function with a domain that consists of a finite
number of discrete points. It can be viewed as an abstract version of an “associate array”
or “dictionary” data structure, a common programming language feature.

The variable A is assigned a selector below. Domain values appear on the left of the

94

A NOTATION
A.3 Selectors

arrows, whereas the corresponding elements appear on the right. Note that all definitions
in this section pertain only to this section.

A :=

“abc” → 0.5

−99 → ∅
“def” → 0

The selector A is a function (F (A) = >) that maps the values “abs”, −99, and “def” to
the values 0.5, ∅, and 0.

A (“abc”) = 0.5

A (−99) = ∅
A (“def”) = 0

The same composition rules that apply to functions apply also to selectors. The expression
A = 0 is itself a selector, as the equals sign operates on each element. To compare entire
selectors, we use the equivalence symbol ≡. (We also permit the comparison of scalar
values with ≡.)

(A = 0) ≡

“abc” → 0.5 = 0

−99 → ∅ = 0

“def” → 0 = 0

 ≡

“abc” → ⊥
−99 → ⊥
“def” → >

A “vector” is a selector with a domain that consists of all of natural numbers less than some
natural number n, where n is the “length” of the vector. When expressing a vector, we
may omit the domain and the arrows, including just the elements surrounded by brackets.
We arrange elements either horizontally, in which case they are delimited by commas, or
vertically, in which case no delimiter is necessary.

[6.2, 0.3,−1.9] ≡

6.2

0.3

−1.9

 ≡

0 → 6.2

1 → 0.3

2 → −1.9

The prefix operator ♦, when applied to a selector, results in a vector that lists each value in
the selector’s domain.

♦A ≡ [“abs”,−99, “def”]

95

A NOTATION
A.3 Selectors

Using the composition operator ◦ between a selector and a vector of values in its domain,
we can acquire a vector containing the corresponding selector elements. This is not exten-
sion of ◦, but a logical consequence of its usual interpretation.

A ◦ [“def”,−99] ≡ [0,∅]

We use the operator C to combine two selectors. If both selectors have different elements
for the same domain value, then the element of the selector to the right of C is chosen. The
expression A C B means “take the selector A, and add or replace its mappings with those
of B”. Of course A is not modified, since we do not allow changes to variables, but the
combined selector is the result of the expression.

AC

“abc” → “Q”

−99 → ⊥
1000 → “R”

 ≡

“abc” → “Q”

−99 → ⊥
“def” → 0

1000 → “R”

The following demonstrates the removal of selector elements. The domain values indicat-
ing the mappings to exclude are listed in a vector.

AC| [−99, “def”] ≡
[

“abc” → 0.5
]

The expression ..n represents a length n vector with values increasing from 0 to n− 1. As
indicated below, this happens to be an identify function with a restricted domain.

..5 ≡ [0, 1, 2, 3, 4] ≡

0

1

2

3

4

≡

0 → 0

1 → 1

2 → 2

3 → 3

4 → 4

Being functions, vectors can be composed using operators. We exploit this below to express
an arithmetic sequence.

3 + 2·..5 ≡ [3, 5, 7, 9, 12]

96

A NOTATION
A.3 Selectors

The ‖ operator concatenates vectors.

[3, 5, 7] ‖ [9, 12] ≡ [3, 5, 7, 9, 12]

[3, 5, 7] ‖ [9, 12] ‖ [4, 2] ≡ [3, 5, 7, 9, 12, 4, 2]

The symbol #, when applied to a vector as a prefix operation, results in the vector’s length.

[3, 5, 7, 9, 12] = 5

[] = 0

The function del removes an element from a vector. The expression del ([X, i]) removes
the element at index i.

del ([[3, 5, 7, 9, 12, 4, 2] , 3]) ≡ [3, 5, 7, 12, 4, 2]

Suppose X and Y are vectors that, individually, have no duplicate values. Then the expres-
sion union ([X, Y]) results in a vector similar to X ‖ Y , except with all values common to
both X and Y included only once.

union ([[3, 5, 7, 9] , [4, 5, 8, 9]]) ≡ [3, 5, 7, 9, 4, 8]

The prefix operators
∑

,
∧

, and
∨

can be applied to selectors or vectors to yield the sum,
minimum, or maximum of the elements.

∑
[3, 7, 5] = 15∧
[3, 7, 5] = 3∨
[3, 7, 5] = 7∨
([3, 7, 5] = 5) =

∨
[⊥,⊥,>] = >

The ‖ symbol can be applied as a prefix operator to concatenate all vectors in a vector of
vectors.

‖ [[3, 7, 5] , [0] , [2, 4]] ≡ [3, 7, 5, 0, 2, 4]

An expression of the form x : X yields > if any element of X is x, and ⊥ otherwise. The

97

A NOTATION
A.3 Selectors

expression below, for example, is true.

7 : [3, 7, 5]

If a function, like B below, is defined using a selection expression with a single condition
of the form x : X , then the function is a selector and X is the domain.

B (x) :=
(
x : [3, 7, 5] → x2

)

B ≡

3 → 9

7 → 49

5 → 25

A selector can also be formed using multiple conditions of the form x : X .

C (x) :=

 x : [3, 7] → x2

x : [5, 2] → x3

C ≡

3 → 9

7 → 49

5 → 125

2 → 8

The function sort results in a non-decreasing permutation of its vector argument.

sort ([6, 3, 7, 5]) ≡ [3, 5, 6, 7]

The function cmp is defined as follows, yielding −1, 0, or 1 depending on whether the first
argument is smaller, equal to, or larger than the second.

cmp ([x, y]) := sgn (x− y)

The function sortcmp is similar to sort, but uses its second argument to compare pairs of

98

A NOTATION
A.3 Selectors

elements of the first argument.

sortcmp ([[6, 3, 7, 5] , cmp]) ≡ [3, 5, 6, 7]

sortcmp ([[6, 3, 7, 5] ,−cmp]) ≡ [7, 6, 5, 3]

In addition to vectors, we observe a special type of selector called a “multi-dimensional
array”. Recall that if n is a natural number, then ..n is an identity function with a domain
consisting of natural numbers. If N is a vector of natural numbers, then ..N is an identity
function with a domain consisting of vectors of natural numbers. The elements of the
domain vectors of ..N are all less than the corresponding elements of N .

Below, as an example, we define the multi-dimensional array D.

D := [10,−5] + 5·.. [2, 3]

The domain of D includes 6 vectors (2·3).

♦D ≡

[0, 0]

[0, 1]

[0, 2]

[1, 0]

[1, 1]

[1, 2]

An element corresponding to a domain vector X has a value of [10,−5] + 5·X , consistent
with the definition of D.

D ([0, 0]) ≡ [10,−5]

D ([0, 1]) ≡ [10, 0]

D ([0, 2]) ≡ [10, 5]

D ([1, 0]) ≡ [15,−5]

D ([1, 1]) ≡ [15, 0]

D ([1, 2]) ≡ [15, 5]

99

A NOTATION
A.4 Probability

A.4 Probability

Instead of using random variables, we use “random functions”. A random function is in-
voked with no argument to yield a value randomly selected from the distribution associated
with the function.

The functions uniform, uniformN, and exponential are not random functions. Rather,
they are invoked with arguments in order to obtain random functions. Each of the three
entire expressions below represents a random function.

uniform ([a, b])

uniformN (n)

exponential (τ)

The following three expressions, which include the suffix (), represent values selected ran-
domly from a uniform distribution bounded by a and b, a uniformly-distributed set of nat-
ural numbers bounded by 0 and n − 1, and an exponential distribution with a mean value
of τ .

uniform ([a, b]) () {random real number between a and b}
uniformN (n) () {random natural number less than n}
exponential (τ) () {random real number with mean value τ}

Random functions can be composed from operations on other random functions, as demon-
strated by the third and fourth expressions below. Note that a “random predicate” is a
random function that yields either > or ⊥.

uniformN (2) {random function}
uniformN (2) () {random natural number (0 or 1)}
uniformN (2) = 1 {random predicate}
(uniformN (2) = 1) () {random boolean (> or ⊥)}

The function P , when applied to a random predicate, yields the probability that the random
predicate will yield > as opposed to ⊥. With this definition, our use of P with random

100

A NOTATION
A.4 Probability

functions is similar to the traditional use of P with random variables.

P (uniformN (2) = 1) = 0.5

Below, as an example, we calculate the probability that one of the chemical reactions de-
scribed in Section 5.3 will occur during an action potential of duration ∆tAP . Recall that
these reactions include the separation of vesicles from synapsin or docking sites. The time
when one of these reactions occurs for a given particle is sampled from an exponential
distribution with mean value τ .

P (exponential (τ) ≤ ∆tAP)

=
∫ ∆tAP

0

(
1

τ
·e−

t
τ

)
dt

=
(
−e− t

τ

)∣∣∣t=∆tAP

t=0

= −e−
∆tAP
τ −

(
−e− 0

τ

)
= 1− e−

∆tAP
τ

101

B TETHERED PARTICLE SYSTEM FORMULAS

B Tethered Particle System Formulas

B.1 TPS Functions

The selector tethered particle system provides access to several key functions describing
particle interactions in a TPS model. The comments in its definition below indicate the
primary result of each function, as well as the section in which each function is defined.

tethered particle system := . . .

“position” → position

{particle position (Section B.1)}
“detect” → detect

{collision time (Section B.2)}
“impulse” → impulse

{collision impulse (Section B.3)}
“load” → load

{state after loading (Section B.4)}
“restitute” → restitute

{state after restitution (Section B.4)}
“detectRI” → detectRI

{random impulse time (Section B.5)}
“impulseRI” → impulseRI

{random impulse (Section B.5)}
“impact” → impact

{state after an impulse (Section B.5)}

Although we are not concerned with DEVS in this appendix, we will allow ourselves to
be somewhat influenced by the formalism’s convention for representing system states. The
system state of a TPS includes, among other things, the current position of each particle.
We represent the system state with two variables: Ψ, the constant component of the state,
and t, the current time. As previously explained, the system state of a DEVS includes the

102

B TETHERED PARTICLE SYSTEM FORMULAS
B.1 TPS Functions

time elapsed since the last event instead of the current time, but we will store enough infor-
mation in Ψ to calculate one from the other. The following expressions list the attributes
recorded in Ψ for a particle A identified by idA.

Ψ (idA) (“spc”) {species of particle A}
Ψ (idA) (“t”) {time when particle A obtained its velocity}
Ψ (idA) (“~u”) {position where particle A obtained its velocity}
Ψ (idA) (“~v”) {velocity of particle A}
Ψ (idA) (“tethered”) {IDs of particles tethered to particle A}
Ψ (idA) (“loaded”) {restitution impulses associated with particle A}

The attribute associated with “spc” is a symbol used to reference other particle properties.
The “t” attribute is a real number, and those associated with “~u” and “~v” are vectors of
real numbers. The “tethered” attribute is a vector of particle IDs. The equation below
indicates that the particle with ID 7 is tethered to those with IDs 2, 9, 8, and 5.

Ψ (7) (“tethered”) ≡ [2, 9, 8, 5]

The “loaded” attribute is a selector that maps particle IDs to momentum vectors. From the
following equation we would infer that the particles identified by 7 and 2 are loaded with
an associated restitution impulse of ~p[7,2], and that the particles with IDs 7 and 6 are loaded
with ~p[7,6]. Restitution impulses are explained in Section B.4.

Ψ (7) (“loaded”) ≡
[
2→ ~p[7,2], 6→ ~p[7,6]

]
We now define the first of the tethered particle system functions. Given Ψ, which
records the position ~uA of particle identified by idA at some time tA, position yields the
position ~uA′ of A at the current time t. This is accomplished by simply adding to ~uA the
product of the particle’s velocity ~vA and the elapsed time t− tA.

103

B TETHERED PARTICLE SYSTEM FORMULAS
B.1 TPS Functions

� tethered particle system�

position ([Ψ, t, idA]) := ~uA
′

tA := Ψ (idA) (“t”)

~uA := Ψ (idA) (“~uA”)

~vA := Ψ (idA) (“~vA”)

~uA
′ := ~uA + ~vA·(t− tA)

Many of the other tethered particle system functions require the properties associated
with the species of each particle. These properties, listed below for a species identified by
spcA, are included in the selector Ωψ.

Ωψ (spcA) (“m”) {mass of a particle of the species identified by srcA}
Ωψ (spcA) (“τRI”) {mean time between random impulses}
Ωψ (spcA) (“kRI”) {shape of random impulse probability distribution}
Ωψ (spcA) (“µRI”) {mean magnitude of random impulse }

Other properies, stored in the selector Ωψψ, are associated with pairs of species. One ex-
ample, included in the list below, is the blocking distance ∆ublocking between one particle
of species A and another of species B.

Ωψψ ([spcA, spcB]) (“crebound”) {rebounding coefficient}
Ωψψ ([spcA, spcB]) (“cretract”) {retraction coefficient}
Ωψψ ([spcA, spcB]) (“crevolve”) {revolution coefficient}
Ωψψ ([spcA, spcB]) (“∆ublocking”) {blocking distance}
Ωψψ ([spcA, spcB]) (“∆utethering”) {tethering distance}

When accessing the properties of Ωψψ, the order of the species IDs spcA and spcB is irrel-
evant. We require the following to hold for all [spcA, spcB] in the domain of Ωψψ.

Ωψψ ([spcA, spcB]) ≡ Ωψψ ([spcB, spcA])

104

B TETHERED PARTICLE SYSTEM FORMULAS
B.2 Collision Detection

B.2 Collision Detection

Collision detection is the task of identifying the next collision, the time when that collision
will occur, and the two particles involves. A simple way to accomplish this is to calculate
the collision time for each pair of particles in the model. One could then select the earliest
time from the list.

Here we derive the tethered particle system function detect, which yields the remaining
time ∆t before particles A and B collide with one another. If the particles are not going to
collide, given their current positions and velocities, then ∆t = >. For blocking collisions,
calculations similar to those below have undoubtedly been formulated many times over.
For tethering collisions, the presented formulas are likely novel.

Given the current position ~uA′ and the velocity ~vA of particle A, its extrapolated position
after a time of ∆t is ~uA′+~vA·∆t. Subtracting this from the extrapolated position of particle
B, then taking the magnitude of the result, we obtain the distance ∆u between the particles
after the time ∆t elapses. The following shows expressions for ∆u2 manipulated.

∆u2 . . .

=
∑(

((~uB
′ + ~vB·∆t)− (~uA

′ + ~vA·∆t))2
)
. . .

=
∑(

((~vB − ~vA) ·∆t+ (~uB
′ − ~uA′))2

)
. . .

=
∑(

(~vB − ~vA)2 ·∆t2 + 2·(~uB ′ − ~uA′) ·(~vB − ~vA) ·∆t+ (~uB
′ − ~uA′)2

)
. . .

=
∑(

(~vB − ~vA)2
)
·∆t2 + 2·∑ ((~uB

′ − ~uA′) ·(~vB − ~vA))·∆t+
∑(

(~uB
′ − ~uA′)2

)
We are interested in the time before a collision. Because collisions occur when the dis-
tance ∆u between two particles reaches a known ∆ublocking or ∆utethering value, the only
unknown is ∆t. Rearranging the above yields (6), a quadratic polynomial.

0 = . . .∑(
(~vB − ~vA)2

)
·∆t2 + . . .

2·∑ ((~uB
′ − ~uA′) ·(~vB − ~vA))·∆t+ . . .∑(

(~uB
′ − ~uA′)2

)
−∆u2

(6)

105

B TETHERED PARTICLE SYSTEM FORMULAS
B.2 Collision Detection

Introducing the coefficients a, b, and c, (6) can be written as follows.

a·∆t2 + b·∆t+ c = 0

We isolate ∆t with the quadratic equation.

∆t = −b±
√
b2 − 4·a·c
2·a = −b±

√
d

2·a

The function coeffsdetect gives the detection coefficients a, b, and c, as well as the discrimi-
nant d.
� tethered particle system�

coeffsdetect ([Ψ, t, idA, idB,∆u]) := [a, b, c, d]

~uA
′ := position ([Ψ, t, idA])

~uB
′ := position ([Ψ, t, idB])

~vA := Ψ (idA) (“~v”)

~vB := Ψ (idB) (“~v”)

a :=
∑(

(~vB − ~vA)2
)

b := 2·∑ ((~uB
′ − ~uA′) ·(~vB − ~vA))

c :=
∑(

(~uB
′ − ~uA′)2

)
−∆u2

d := b2 − 4·a·c

Although we now have an expression for ∆t, there are many cases that need to consid-
ered in pursuit of its value. We begin by defining detectblocking, which results in the time
remaining before a blocking collision occurs between two particles. Arguments include
the system state variables Ψ and t, the particle IDs idA and idB, Ωψψ, and ∆tmax. This
last parameter is some time value that should dramatically exceed the simulated duration
of any reasonable simulation run. We introduce ∆tmax only to avoid computation errors
associated with small denominators.

106

B TETHERED PARTICLE SYSTEM FORMULAS
B.2 Collision Detection

� tethered particle system�

detectblocking ([Ψ, t, idA, idB,Ωψψ,∆tmax]) := ∆t

∆u := Ωψψ ([spcA, spcB]) (“∆ublocking”)

spcA := Ψ (idA) (“spc”)

spcB := Ψ (idB) (“spc”)

Observe that ∆u is obtained from the blocking distance associated with the species of the
two particles. If this distance is 0, blocking collisions never occur and hence ∆t = >.
� . . . ; detectblocking �

∆t :=

 ∆u = 0 → >
∆u > 0 → ∆tcoeffs

Proceeding with a non-zero blocking distance, we now need a, b, c, and d. Inspecting
the definition of b, we can see that b ≥ 0 indicates the particles are not approaching one
another; consequently, a blocking collision will never occur. If d < 0, the absence of real
solutions to the quadratic equation indicates that the particles never cross paths.
� . . . ; ∆t�

∆tcoeffs :=

 (b ≥ 0) ∨ (d < 0) → >
(b < 0) ∧ (d ≥ 0) → ∆tquad

[a, b, c, d] := coeffsdetect ([Ψ, t, idA, idB,∆u])

Proceeding with approaching particles and a non-negative d, the quadratic equation may be
applied. We must select the negative sign for the

√
d term in the numerator, as we desire

the first of the two future collision times. Negative numerators, which may occur due to
round-off errors, are raised to 0. Also, ∆tmax is used to avoid divide-by-zero errors.
� . . . ; ∆tcoeffs �

∆tquad :=

 numer ≥ denom·∆tmax → >
numer < denom·∆tmax → numer

denom

numer :=

(
−b−

√
d
)
∨ 0

denom := 2·a

We now turn out attention to tethering collisions, and define detecttethering. The variable
∆u is now assigned the tethering distance associated with the species of the two particles.

107

B TETHERED PARTICLE SYSTEM FORMULAS
B.2 Collision Detection

� tethered particle system�

detecttethering ([Ψ, t, idA, idB,Ωψψ,∆tmax]) := ∆t

∆u := Ωψψ ([spcA, spcB]) (“∆utethering”)

spcA := Ψ (idA) (“spc”)

spcB := Ψ (idB) (“spc”)

An infinite tethering distance indicates that tethering collisions never occur.
� . . . ; detecttethering �

∆t :=

 ∆u = > → >
∆u < > → ∆tcoeffs

Proceeding with a finite tethering distance, we obtain a, b, c, and d and consider two cases.
If the particles are not approaching (b ≥ 0) and the distance between particles is at least the
tethering distance already (c ≥ 0), then we evaluate ∆ttaut. Otherwise we evaluate ∆tquad.

� . . . ; ∆t�

∆tcoeffs :=

 (b ≥ 0) ∧ (c ≥ 0) → ∆ttaut

(b < 0) ∨ (c < 0) → ∆tquad

[a, b, c, d] := coeffsdetect ([Ψ, t, idA, idB,∆u])

In the case associated with ∆ttaut, a tethering collision ought to occur immediately. How-
ever, the relative speed of the particles, indicated by a, might be so small that the collision
ought to be avoided completely.
� . . . ; ∆tcoeffs �

∆ttaut :=

 b ≥ a·∆tmax → >
b < a·∆tmax → 0

In the case associated with ∆tquad, the quadratic equation may be applied. As was the case
for blocking collisions, a selection expression addresses the possibility of a divide-by-zero
error. We now take the positive sign for the

√
d term in the numerator, as the negative sign

would yield a past collision time. Negative numerators are raised to zero as before, but now
we also raise a negative d to zero for reasons explained below.

108

B TETHERED PARTICLE SYSTEM FORMULAS
B.3 Collision Impulses

� . . .�

∆tquad :=

 numer ≥ denom·∆tmax → >
numer < denom·∆tmax → numer

denom

numer :=

(
−b+

√
d ∨ 0

)
∨ 0

denom := 2·a

A negative value of d may occur if the distance between the particles exceeds the tethering
distance (c > 0), the particles are approaching (b < 0), but the particles will end up
separating before the distance between them reaches ∆utethering. By raising a negative d to
zero, we opt for a collision at the time when the distance between the particles is minimized.
For the sake of brevity we omit a formal treatment of this case. Consider, however, that
with the help of a positive θrevolve, a sequence of tethering collisions with d < 0 will cause
two particles to spiral inwards. Eventually, the distance between them will decrease to
∆utethering.

Finally we can define detect. It has all the parameters of detectblocking and detecttethering,
as well as an additional argument typecollision that indicates the type of collision to detect.
The value of typecollision is either “blocking” or “tethering”.
� tethered particle system�

detect ([Ψ, t, idA, idB,Ωψψ,∆tmax, typecollision]) := ∆t

∆t :=

 typecollision ≡ “blocking” → detectblocking (args)

typecollision ≡ “tethering” → detecttethering (args)

args := [Ψ, t, idA, idB,Ωψψ,∆tmax]

B.3 Collision Impulses

This section and the next address collision response, the counterpart to collision detection.
Given particle A with velocity ~vA and particle B with velocity ~vB, we assume that a colli-
sion between A and B will occur before the time t advances. In other words, if we were to
evaluate detect ([Ψ, t, idA, idB,Ωψψ,∆tmax, typecollision]), the result would be zero.

109

B TETHERED PARTICLE SYSTEM FORMULAS
B.3 Collision Impulses

What we need to calculate are the particle velocities ~vA′ and ~vB ′ immediately after the
collision. Whereas calculations that resolve rebounding particles have been formulated
many times over, the presented treatment of retracting and revolving particles is probably
new. Regardless of the type of collision that occurs, the quantity that determines ~vA′ and ~vB ′

is the impulse ∆~p. This is the result of the tethered particle system function impulse,
which we define in this section.

The following applies the law of conservation of momentum to particlesA andB, equating
the combined momentum before and after the collision. Particle A has mass mA, and B
has mass mB.

mA·~vA +mB·~vB ≡ mA·~vA′ +mB·~vB ′

We rearrange terms to obtain two expressions for the impulse ∆~p, the momentum that A
gains as a result of the collision.

∆~p ≡ mA·(~vA′ − ~vA) ≡ −mB·(~vB ′ − ~vB)

Found by manipulating the above, (7) yields the new velocities given ∆~p.

~vA
′ ≡ ~vA + ∆~p

mA
(a)

~vB
′ ≡ ~vB − ∆~p

mB
(b)

(7)

In pursuit of ∆~p, we subtract (7a) from (7b) to obtain the following.

~vB
′ − ~vA′ ≡ ~vB − ~vA −

(
1
mA

+ 1
mB

)
·∆~p

Isolating ∆~p, we obtain an expression for the impulse that depends on relative particle
velocities.

∆~p ≡
(

1
mA

+ 1
mB

)−1
·((~vB − ~vA)− (~vB

′ − ~vA′)) (8)

For the sake of convenience we introduce ~vAB and ~vAB ′ to represent the initial and final
relative velocities. Suppose û is a unit vector aligned with the axis that runs through the
centers of both particles. It points from particle A to B. The relative velocity ~vAB can then
be expressed as the sum of two components: ~vû, which is parallel to û, and ~vŵ, which is

110

B TETHERED PARTICLE SYSTEM FORMULAS
B.3 Collision Impulses

perpendicular to û. Similarly, ~vAB ′ can be divided into the components ~vû′ and ~vŵ ′.

~vB − ~vA ≡ ~vAB ≡ ~vû + ~vŵ

~vB
′ − ~vA′ ≡ ~vAB

′ ≡ ~vû
′ + ~vŵ

′ (9)

Here we begin introducing approximations, and adopt the well-known frictionless collision
model expressed in (10). In this model, the relative velocity along the û axis is reversed
in direction and reduced to a fraction of its former magnitude. The factor crestititute is the
coefficient of restitution, and we require 0 ≤ crestitute ≤ 1. Perpendicular to û, the velocity
does not change.

~vû
′ ≡ −crestitute·~vû (a)

~vŵ
′ ≡ ~vŵ (b)

(10)

Applying the approximation of (10), we derive an expression for the impulse.

∆~p . . .

≡
(

1
mA

+ 1
mB

)−1
·((~vB − ~vA)− (~vB

′ − ~vA′)) . . . {from (8)}
≡

(
1
mA

+ 1
mB

)−1
·((~vû + ~vŵ)− (~vû

′ + ~vŵ
′)) . . . {substitution using (9)}

≡
(

1
mA

+ 1
mB

)−1
·((~vû − ~vû′) + (~vŵ − ~vŵ ′)) . . . {rearranging of terms}

≡
(

1
mA

+ 1
mB

)−1
·((~vû − ~vû′) + (~vŵ − ~vŵ)) . . . {substitution using (10b)}

≡
(

1
mA

+ 1
mB

)−1
·(~vû − ~vû′) . . .

≡
(

1
mA

+ 1
mB

)−1
·(~vû − (−crestitute·~vû)) . . . {substitution using (10a)}

≡
(

1
mA

+ 1
mB

)−1
·(1 + crestitute) ·~vû

We will use impulse derived above not only for rebounding particles, its usual application,
but for retracting particles as well. The expression is repeated in (11a) below. In the case of
revolving particles, (11a) could result in an excessive number of extremely small impulses.
In such cases we abandon the approximation of (10), and use (11b) derived from (8) and
(9).

∆~p ≡
(

1
mA

+ 1
mB

)−1
·(1 + crestitute) ·~vû (a)

∆~p ≡
(

1
mA

+ 1
mB

)−1
·(~vAB − ~vAB ′) (b)

(11)

Arguments of the function impulse include the system state variables Ψ and t, and the
IDs of the colliding particles A and B. The masses of both particles mA and mB could be

111

B TETHERED PARTICLE SYSTEM FORMULAS
B.3 Collision Impulses

obtained from Ωψ, but we omit this variable. Included instead are the parameters MA and
MB, which allow loaded group masses to be used in place of individual particle masses.
The other arguments are Ωψψ, which stores the coefficients of restitution; θrevolve, which
distinguishes retraction from revolution; and typecollision, which is either “blocking” or
“tethering”. The result of impulse is ∆~p. The species, current position, and pre-collision
velocity of each particle is obtained, as shown below, as well as the combined mass MAB.
� tethered particle system�

impulse ([Ψ, t, idA, idB,MA,MB,Ωψψ, θrevolve, typecollision]) := ∆~p

spcA := Ψ (idA) (“spc”)

spcB := Ψ (idB) (“spc”)

~uA
′ := position ([Ψ, t, idA])

~uB
′ := position ([Ψ, t, idB])

~vA := Ψ (idA) (“~v”)

~vB := Ψ (idB) (“~v”)

MAB :=
(

1
MA

+ 1
MB

)−1

The unit vector û points towards particle B from A.
� . . . ; impulse�

û :=
(~uB

′ − ~uA′)√∑(
(~uB ′ − ~uA′)2

)
Below we define the relative velocity ~vAB, the relative velocity projected onto û, and the
relative velocity projected onto the plane perpendicular to û.
� . . .�

~vAB := ~vB − ~vA
~vû :=

∑
(~vAB·û)·û

~vŵ := ~vAB − ~vû

If we are dealing with a blocking collision, the impulse is simply that of (11a) but with
crestitute = crebound.

112

B TETHERED PARTICLE SYSTEM FORMULAS
B.3 Collision Impulses

� . . .�

∆~p :=

 typecollision ≡ “blocking” →MAB·(1 + crebound) ·~vû
typecollision ≡ “tethering” → ∆~ptethering

crebound := Ωψψ ([spcA, spcB]) (“crebound”)

Proceeding given a tethering collision, we must determine whether a retraction impulse is
sufficient to draw the two particles together at an angle of at least θrevolve. If it is sufficient,
we use (11a) again but with crestitute = cretract.
� . . . ; ∆~p�

∆~ptethering :=

 sufficient →MAB·(1 + cretract) ·~vû
−sufficient → ∆~prevolve

cretract := Ωψψ ([spcA, spcB]) (“cretract”)

To determine whether the retraction impulse is sufficient, we estimate the magnitude of the
minimum post-collision relative velocity projected onto û. This quantity is vûmin . The ratio
of vûmin to the magnitude of ~vŵ is the tangent of θrevolve, theoretically, but we must choose
an angle slightly greater than θrevolve to account for round-off errors. If the magnitude of
cretract·~vû exceeds vûmin , the retraction impulse is sufficient.
� . . . ; ∆~ptethering �

sufficient :=

√∑(
(cretract·~vû)2

)
> vûmin

vûmin := tan (θrevolve·(1 + εrevolve)) ·
√∑

(~vŵ2)

εrevolve := 2−24

If the retraction impulse is insufficient, we adopt (11b) to model revolution. This requires
the calculation of the final relative velocity ~vAB ′, and the magnitude of this velocity is
that of ~vAB multiplied by a fraction. The fraction is determined such that, on average,
the magnitude of the relative velocity scales down by a factor of crevolve each complete
revolution.

113

B TETHERED PARTICLE SYSTEM FORMULAS
B.4 Loading and Restitution

� . . .�

∆~prevolve := MAB·(~vAB − ~vAB ′)

~vAB
′ := crevolve

θrevolve
π ·

√∑
(~vAB2) · ûrevolve

crevolve := Ωψψ ([spcA, spcB]) (“crevolve”)

The direction indicated by ûrevolve is found by taking ~vŵ, and adding a component in the
direction of û such that the particles are drawn together at an angle of θrevolve.
� . . . ; ∆~prevolve;~vAB

′ �

ûrevolve := ~vrevolve√∑
(~vrevolve2)

~vrevolve := ~vŵ − tan (θrevolve) ·
√∑

(~vŵ2)·û

B.4 Loading and Restitution

Recall from Section 4.1 that the threat of large numbers of nearly-simultaneous collisions
motivated the introduction of loaded groups of particles. The mass of a loaded group is
the sum of the masses of each particle in the group, and the velocity of each particle in the
group is the same. The formation of a loaded group after a collision is called loading, and
the eventual separation of a loaded group is called restitution. Accordingly, we pursue the
definitions of the tethered particle system functions load and restitute.

Figure 34 depicts a loaded group with particles identified by the natural numbers 0 through
10. Assume that particles shown in contact with one another, like particles 2 and 4, are di-
rectly loaded. Because 2 and 4 are directly loaded, 4 is in the domain of Ψ (2) (“loaded”)

and 2 is in the domain of Ψ (4) (“loaded”). If we choose any pair of directly-loaded parti-
cles, then the group can be partitioned into two branches on either side. If we choose the
pair [2, 4], for example, then one branch includes the IDs in [0, 1, 2, 3, 9, 10], and the other
includes [4, 5, 6, 7, 8].

114

B TETHERED PARTICLE SYSTEM FORMULAS
B.4 Loading and Restitution

Figure 34: A loaded group of particles.

It is important to note that loaded groups never form loops. A loop would be present in
Figure 34 if the particles 3 and 7 were directly loaded, for instance. We can be sure that a
loop in a loaded group will never emerge, as this would require two particles in the same
loaded group to collide with one another. Because all particles in a loaded group have the
same velocity, no pair will collide before the group breaks up.

Before addressing load and restitute, we define the functions scanbranch and adjustbranch.
The scanbranch function traverses the branch that includes particle A, identified by the
argument idA, but not particle src, identified by idsrc. The result includes the total mass
MA of the branch, a vector IDψA of IDs of particles in the branch, and a vector IDψψA of
pairs of directly-loaded particles. If idA were 4 and idsrc were 2, looking at Figure 34, then
IDψψA would include the pairs [4, 5], [5, 6], [6, 7], and [5, 8], though not necessarily in that
order.
� tethered particle system�

scanbranch ([Ψ, t, idA, idsrc,Ωψ]) :=
[
MA, IDψA , IDψψA

]
spcA := Ψ (idA) (“spc”)

mA := Ωψ (spcA) (“m”)

IDloaded := ♦ (Ψ (idA) (“loaded”)C| [idsrc])

Note that IDloaded, defined above, is a vector that includes the IDs of all particles directly
loaded with particle A, except for that of particle src. The recursive function loop traverses
the branch by invoking scanbranch on each particle listed in IDloaded. The results are accu-
mulated.

115

B TETHERED PARTICLE SYSTEM FORMULAS
B.4 Loading and Restitution

� . . . ; scanbranch �[
MA, IDψA , IDψψA

]
:= loop ([0,mA, [idA] , []])

loop
([
i,MAi , IDψAi

, IDψψAi

])
:= . . . i = #IDloaded →
[
MAi , IDψAi

, IDψψAi

]
i < #IDloaded → loop

([
i+ 1,MAi

′, IDψAi

′, IDψψAi

′
])

idB := IDloaded (i)[
MB, IDψB , IDψψB

]
:= scanbranch ([Ψ, t, idB, idA,Ωψ])

MAi
′ := MAi +MB

IDψAi

′ := IDψAi
‖ IDψB

IDψψAi

′ := IDψψAi
‖ IDψψB ‖ [[idA, idB]]

The function adjustbranch is similar to scanbranch in that it also traverses a branch. In the
case of adjustbranch, the purpose is to change the velocity of each particle in the branch to
the value of the argument ~vA′. The result is the updated state Ψ′.
� tethered particle system�

adjustbranch ([Ψ, t, idA, idsrc, ~vA
′]) := Ψ′

ψA := Ψ (idA)

~uA
′ := position ([Ψ, t, idA])

IDloaded := ♦ (Ψ (idA) (“loaded”)C| [idsrc])

The recursive function loop yields Ψ∆, the state with all particles in the branch adjusted
except the idA particle.
� . . . ; adjustbranch �

Ψ∆ := loop ([0,Ψ])

loop ([i,Ψi]) :=

 i = #IDloaded → Ψi

i < #IDloaded → loop ([i+ 1,Ψi
′])

idB := IDloaded (i)

Ψi
′ := adjustbranch (Ψi, t, idB, idA, ~vA

′)

The current time and a particle’s current position must be recorded along with its new
velocity.

116

B TETHERED PARTICLE SYSTEM FORMULAS
B.4 Loading and Restitution

� . . .�

ψA
′ := ψA C

“t” → t

“~u” → ~uA
′

“~v” → ~vA
′

Ψ′ := Ψ∆ C

[
idA → ψA

′
]

Both scanbranch and adjustbranch can be applied to an entire loaded group instead of a
single branch. This is done by invoking either function with an idsrc value of ∅, assuming
that ∅ is never used as a particle ID.

We now define load, which addresses situations in which a particle A collides with a par-
ticle B. Note that A and B can always be considered to be in loaded groups of at least
one particle prior to the collision, so load essentially joins two loaded groups together to
form a larger group. The function has the same arguments as impulse, with one exception:
the masses of each loaded group, MA and MB, are not supplied as arguments but instead
obtained from scanbranch using the argument Ωψ. The result of load is the updated state Ψ′,
a vector IDψ listing all particles in the new loaded group, and a vector IDψψ listing pairs
of directly-loaded particles in the group.
� tethered particle system�

load ([Ψ, t, idA, idB,Ωψ,Ωψψ, θrevolve, typecollision]) := [Ψ′, IDψ, IDψψ]

ψA := Ψ (idA)

ψB := Ψ (idB)

~vA := ψA (“~v”)

~vB := ψB (“~v”)[
MA, IDψA , IDψψA

]
:= scanbranch ([Ψ, t, idA,∅,Ωψ])[

MB, IDψB , IDψψB

]
:= scanbranch ([Ψ, t, idB,∅,Ωψ])

MAB :=
(

1
MA

+ 1
MB

)−1

IDψ := IDψA ‖ IDψB

IDψψ := IDψψA ‖ IDψψB ‖ [[idA, idB]]

We seek Ψ′ to complete load. Before the collision, particle A belongs to a group of mass
MA and velocity ~vA. Similarly, B belongs to a group of mass MB and velocity ~vB. Once

117

B TETHERED PARTICLE SYSTEM FORMULAS
B.4 Loading and Restitution

the two groups are combined, they share the velocity ~vload. We will derive ~vload from
conservation of momentum.

MA·~vA +MB·~vB ≡ (MA +MB) ·~vload

Isolating ~vload yields the following.

~vload ≡ MA
MA +MB

·~vA + MB
MA +MB

·~vB

We will define ~vload with the following expression, however. This allows either MA or MB

to be infinite, but not both.
� . . . ; load�

~vload :=
(

1 + MB
MA

)−1

·~vA +
(

1 + MA
MB

)−1

·~vB

After loading and restitution, the total change in momentum must still satisfy the calcula-
tions of Section B.3. We therefore obtain the collision impulse ∆~p.
� . . .�

∆~p := impulse ([Ψ, t, idA, idB,MA,MB,Ωψψ, θrevolve, typecollision])

We also define the loading impulse ∆~pload, the change in momentum that would have been
necessary to give both groups the same velocity. The expression below is obtained from
(11b), noting that the final relative velocity is zero.
� . . .�

∆~pload := MAB·(~vB − ~vA)

Again, we desire an overall momentum change of ∆~p. Effectively, a momentum change of
∆~pload will be applied in the loading phase by changing particles velocities to ~vload. Thus,
the difference between these momentum changes must be applied during the restitution
phase. This difference, the restitution impulse, is assigned to ∆~pAB.
� . . .�

∆~pAB := ∆~p−∆~pload

The following definitions apply the change in velocity to ~vload, and record the restitution
impulse associated with the loading of particles A and B.

118

B TETHERED PARTICLE SYSTEM FORMULAS
B.4 Loading and Restitution

� . . .�

Ψ∆ := adjustbranch ([Ψ, t, idA,∅, ~vload])
Ψ∆∆ := adjustbranch ([Ψ∆, t, idB,∅, ~vload])
ψA
′ := ψA C

[
“loaded” →

[
idB → ∆~pAB

]]
ψB
′ := ψB C

[
“loaded” →

[
idA → −∆~pAB

]]
Combining these adjustments yields Ψ′, and completes the definition of load.
� . . .�

Ψ′ := Ψ∆∆ C

 idA → ψA
′

idB → ψB
′

At a simulated time of at least ∆trestitute after particlesA andB load, the function restitute
is invoked to apply the restitution impulse and separate the particles. The result of restitute
is the new state Ψ′ and the vector IDψ of IDs of particles with new velocities.
� tethered particle system�

restitute ([Ψ, t, idA, idB,Ωψ]) := [Ψ′, IDψ]

ψA := Ψ (idA)

ψB := Ψ (idB)

~vload := ψA (“~v”)[
MA, IDψA , IDψψA

]
:= scanbranch ([Ψ, t, idA, idB,Ωψ])[

MB, IDψB , IDψψB

]
:= scanbranch ([Ψ, t, idB, idA,Ωψ])

IDψ := IDψA ‖ IDψB

∆~pAB := ψA (“loaded”) (idB)

After restitution, particle A ends up in one group and particle B ends up in another. The
velocities ~vA′ and ~vB ′ of these groups are calculated from (7) using the restitution impulse
∆~pAB.
� . . . ; restitute�

~vA
′ := ~vload +

∆~pAB
MA

~vB
′ := ~vload −

∆~pAB
MB

Individual state changes include the adjustment of the particle velocities and the removal
of the recorded restitution impulses.

119

B TETHERED PARTICLE SYSTEM FORMULAS
B.5 Random Impulses

� . . .�

Ψ∆ := adjustbranch ([Ψ, t, idA, idB, ~vA
′])

Ψ∆∆ := adjustbranch ([Ψ∆, t, idB, idA, ~vB
′])

ψA
′ := ψA C

[
“loaded” → ψA (“loaded”)C| [idB]

]
ψB
′ := ψB C

[
“loaded” → ψB (“loaded”)C| [idA]

]
The changes are combined to complete the definition of restitute.
� . . .�

Ψ′ := Ψ∆∆ C

 idA → ψA
′

idB → ψB
′

B.5 Random Impulses

Recall from Section 4.1 that random impulses are introduced to prevent the overall ki-
netic energy in a TPS model from converging to zero. Here we define the remaining three
tethered particle system functions: detectRI , which yields the time before a random im-
pulse; impulseRI , which gives the momentum change associated with a random impulse;
and impact, which applies an impulse to a loaded group.

Each random impulse is associated with a single particle. A particle of species spcA ex-
periences a random impulse after a time ∆t, chosen from an exponential distribution. The
mean time value, τRI , is a property associated with spcA and accessed via Ωψ. The calcu-
lation of ∆t is performed in the following definition of detectRI .
� tethered particle system�

detectRI ([spcA,Ωψ]) := ∆t

τRI := Ωψ (spcA) (“τRI”)

∆t := exponential (τRI) ()

The function impulseRI requires spcA and Ωψ, as well as the number of spatial dimensions
ndim. It results in ∆~p, the change in a particle’s momentum. The impulse ∆~p is a product
of a momentum magnitude pRI , a factor uRI , and a direction û.

120

B TETHERED PARTICLE SYSTEM FORMULAS
B.5 Random Impulses

� tethered particle system�

impulseRI ([ndim, spcA,Ωψ]) := ∆~p

∆~p := pRI ·uRI ·û

The random impulse is independent from the velocity of the particle. From a practical per-
spective, this is necessary to ensure that the TPS does not treat one frame of reference dif-
ferently from another; adding some velocity ∆~v to every TPS particle should ideally have
no effect on how the particles interact. From a physical perspective, a velocity-independent
random impulse could represent an impact between a particle and some other small yet fast
object. The speed of this object would have to modeled as infinity, and hence in order for
its momentum to be finite, its mass would have to modeled as zero.

Because ∆~p above does not depend on a particle’s velocity, it is inappropriate to use random
impulses to model drag force. Drag, which acts against a particle’s motion relative to that
of a surrounding fluid, can be represented by adding numerous small particles to a TPS
model. Another possible option it to combine the TPS with algorithms for fluid dynamics.

The variable pRI represents the maximum magnitude of the random impulse delivered by
something we will call an “imaginary object”. The maximum magnitude is delivered only
if the imaginary object is heading towards the center of the particle immediately before
the impact. The magnitude is selected randomly from a gamma distribution with shape
parameter kRI and mean value µRI . Like τRI , these parameters are recorded in Ωψ.
� . . . ; impulseRI ; ∆~p�

pRI := gamma
([
kRI ,

µRI
kRI

])
()

kRI := Ωψ (spcA) (“kRI”)

µRI := Ωψ (spcA) (“µRI”)

In pursuit of the factor uRI , we will regard a particle as a sphere and neglect the size of the
imaginary object. If the object were to strike the spherical particle heading directly towards
the sphere’s center, we would use uRI = 1 and the magnitude of the random impulse ∆~p

would be pRI . But Figure 35 shows the more general case, in which the object strikes the
spherical surface at an angle.

121

B TETHERED PARTICLE SYSTEM FORMULAS
B.5 Random Impulses

Figure 35: The geometry of a situation in which a small imaginary object, travelling along
the arrow, strikes a spherical particle to deliver a random impulse.

Because we do not bother choosing a specific position and direction for the imaginary
object, we will choose uRI from a random distribution. We need not bother assigning a
radius to the particle, as the distribution of uRI does not depend on the particle’s size, but we
choose a radius of 1 regardless to simplify the mathematics. Consistent with Section B.3,
the impulse delivered to the particle will depend on the component of the relative velocity
aligned with the axis between the particle and the object at the time of impact. The ratio of
this component’s magnitude to pRI is uRI , as indicated in Figure 35.

Note that the triangle in Figure 35 with uRI is congruent to the triangle with u and w, and
hence u = uRI . We will let U be a random function associated with u in the figure, and
W will be a random function associated with w. The cumulative distribution function of U
can be expressed in terms of W as follows.

cdf (U) (u) . . .

= P (U ≤ u) . . . {definition of cdf }
= P

(√
1−W 2 ≤ u

)
. . . {geometry (see Figure 35)}

= P (1−W 2 ≤ u2) . . .

= P (1− u2 ≤ W 2) . . .

= P
(
W ≥

√
1− u2

)
. . .

= 1− P
(
W <

√
1− u2

)
{probability theory}

122

B TETHERED PARTICLE SYSTEM FORMULAS
B.5 Random Impulses

Note that (12), which summarizes the calculations above, holds for any number of dimen-
sions.

cdf (U) (u) = 1− P
(
W <

√
1− u2

)
(12)

Now, for the first time in all of Appendix B, we must introduce separate cases for one-, two-
, and three-dimensional TPS models. We must do this because the probability distribution
of W , and hence that of uRI , depends on the number of dimensions ndim. The direction û
also depends on ndim.
� . . .�

[uRI , û] :=

ndim = 3 → [uRI3 , û3]

ndim = 2 → [uRI2 , û2]

ndim = 1 → [uRI1 , û1]

In three dimension, the probability of W < w for some w is the probably of the imaginary
object passing through the shaded area in Figure 35. Note that the probability of the object
passing through any 2D region in the outer circle, which has radius 1, is proportional to the
area of that region.

P (W < w) = π·w2

π·12 = w2 (13)

Thus for 3D models, we have the following CDF for U .

cdf (U) (u) . . .

= 1− P
(
W <

√
1− u2

)
. . . {from (12)}

= 1−
√

1− u2
2
. . . {using (13)}

= 1− (1− u2) . . .

= u2

A CDF applied to its own random function has a uniform distribution, so we replace
cdf (U) (u) with uniform ([0, 1]) () and solve for u above. This gives us an expression
to assign to uRI in the 3D case.
� . . . ; [uRI , û]�

uRI3 :=
√
uniform ([0, 1]) ()

123

B TETHERED PARTICLE SYSTEM FORMULAS
B.5 Random Impulses

In two dimensions, the circle in Figure 35 becomes a line, and W is distributed as follows.

P (W < w) = w
1 = w (14)

Thus for the CDF of U we have the following.

cdf (U) (u) . . .

= 1− P
(
W <

√
1− u2

)
. . . {from (12)}

= 1−
√

1− u2 {using (14)}

Replacing the CDF with the uniform distribution and solving for u gives us a definition of
uRI for the 2D case. When solving for u, we exploit the fact that 1− uniform ([0, 1]) has
the same distribution as uniform ([0, 1]).
� . . .�

uRI2 :=
√

1− uniform ([0, 1]) ()2

In one dimension, the imaginary object always heads towards the particle’s center.
� . . .�

uRI1 := 1

Depending on the number of dimensions, the direction û of the random impulse is selected
at random from the surface of a sphere, the surface of a circle, or the ends points of a line.
Such calculations are well known, so we state them below without derivation.
� . . .�

û3 := [ux, uy, uz]

uz := uniform ([−1, 1]) ()

[ux, uy] :=
√

1− uz2·[cos (φ) , sin (φ)]

φ := uniform ([0, 2·π]) ()

û2 := [cos (φ) , sin (φ)]

φ := uniform ([0, 2·π]) ()

û1 := [2·uniformN (2) ()− 1]

Suppose we have obtained the random impulse ∆~p and wish to apply it to some particle A.

124

B TETHERED PARTICLE SYSTEM FORMULAS
B.5 Random Impulses

If A is in a loaded group, then its velocity must remain the same as all other particles in
the group. We therefore apply ∆~p to the entire group. This adjustment is performed by the
function impact defined below, which results in the new state Ψ′ and the IDs of all particles
in the group. Note the use of the function scanbranch to obtain the accumulated mass MA

of the group, which in turn is used to calculate the new velocity ~vA′, which in turn is passed
as an argument to the function adjustbranch.
� tethered particle system�

impact ([Ψ, t, idA,Ωψ,∆~p]) := [Ψ′, IDψA]

~vA := Ψ (idA) (“~v”)[
MA, IDψA , IDψψA

]
:= scanbranch ([Ψ, t, idA,∅,Ωψ])

~vA
′ := ~vA + ∆~p

MA

Ψ′ := adjustbranch ([Ψ, t, idA,∅, ~vA′])

125

C DEVS FORMULAS

C DEVS Formulas

C.1 DEVS Functions

The selector DEV S, defined below, provides access to the DEVS simulator and various
other functions that aid in the design of DEVS models. For each function, its primary result
and the section describing it are indicated in the comments.

DEV S := . . .

“simulate” → simulate

{simulation results (Section C.2)}
“coupledDEV S” → coupledDEV S

{DEVS coupled model (Section C.3)}
“pr∅” → pr∅

{∅ (Section C.4)}
“prZ” → prZ

{ID of submodel with priority (Section C.4)}
“prorder” → prorder

{ID of submodel with priority (Section C.4)}
“HLDEV S” → HLDEV S

{DEVS hypercubic lattice model (Section C.5)}

The following variables are used in various places to represent the indicated quantities.

t {simulated time}
s {state of a DEVS model}
x {input value}
y {output value}
n {number of past events}
nx {number of past inputs}
ny {number of past outputs}

126

C DEVS FORMULAS
C.1 DEVS Functions

Because the simulated time is represented by a real number, and because multiple events
can occur at the same simulated time, t is not an appropriate way to identify events. The
natural number n is used instead to express the number of events that have already occurred.
When we refer to the [nx, ny, t, s] of event n, the following is true: exactly nx inputs have
been processed; the external transition function δext has been evaluated nx times; exactly ny
outputs have been processed; the internal transition function δint has been evaluated n−nx
times; t is the simulated time at which the nth event occurred; s is the state immediately
after the nth event. Although each input is processed by a separate external transition event,
a single internal transition event can yield any number of outputs.

Each input and output has an associated simulated time and value. When we refer to the
[t, x] of input nx, the following is true: exactly nx inputs have previously been processed;
t and x are the time and value associated with the (nx + 1) th input. After ny outputs
have been processed, the [t, y] of output ny refers to the time and value associated with the
(ny + 1) th output. Note that n, nx, and ny all start at zero.

There are four main functions associated with the recording and retrieval of simulation
information. We group all of these functions in a selector called IO, which is supplied to
the simulator. As indicated below, the argument of IO identifies one of the four functions,
and the identified function is applied to the argument that follows.

IO (“inputs”) (n) {retrieves [nx , ny , t , s] of event n}
IO (“outputs”) ([n, nx, ny, t, s]) {records [nx , ny , t , s] of event n, results in IO ′}
IO (“inputx”) (nx) {retrieves [t , x] of input nx}
IO (“outputy”) ([ny, t, y]) {records [t , y] of output ny , results in IO ′}

By choosing the appropriate IO selector, each with its own set of recording/retrieval func-
tions, a user can direct simulation information to either variables in RAM, files on a hard
drive, or a peripheral device.

Discrete event simulations typically require a data structure called a priority queue or, as we
will call it, a “future events list” (FEL). An FEL might be used as part of a DEVS model’s
state, as is the case for all of our DEVS coupled models. The selector future events list

127

C DEVS FORMULAS
C.2 DEVS Simulator

provides access to an empty FEL and two FEL-related functions.

future events list := . . .
“FELempty” → FELempty {an empty FEL}
“δFEL” → δFEL {modifies an FEL}
“eventFEL” → eventFEL {identifies the next event}

Once an empty FEL is obtained by the expression future events list (“FELempty”), the
only way to modify it is with δFEL. Given a future events list FEL, the identity idevent of
some event, the time tevent of that event, and a priority function pr, δFEL results in the new
future events list FEL′ with the event added. If an event identified by idevent is already in
the FEL, then the timing and/or priority of the event is replaced. To remove an existing
event, tevent is given the infinite value >.
� future events list�

δFEL ([FEL, idevent, tevent, pr]) := FEL′

The function eventFEL reports the identity and time of the event in FEL that is scheduled
to occur first.
� . . .�

eventFEL (FEL) := [idevent, tevent]

Complete definitions of an IO selector and a future events list are not presented.

C.2 DEVS Simulator

Here we present our DEVS simulator as a function, named simulate, defined as follows.
� DEV S �

simulate ([model, IOstart,∆n, start, stop, tsuspend, starve]) := [IOlast, last, statuslast]

[δext, δint, ta] := model

128

C DEVS FORMULAS
C.2 DEVS Simulator

The first argument is the DEVS model from which the functions [δext, δint, ta] are obtained.
The argument IOstart is the IO selector described in Section C.1, as it initially exists. The
function simulate may be invoked not only to start a new simulation, but also to continue
a simulation that was previously started and stopped. We therefore include the argument
∆n, the number events between checkpoints when the state of the model is recorded. The
argument start is the number of events that have already been processed. If starting a new
simulation, start is set to zero. If restarting a simulation from a checkpoint, start should
be the appropriate multiple of ∆n.

A simulation is complete when the simulated time becomes infinite. There are several
ways to stop a simulation early, however. One way uses the argument stop, the maximum
allowed number of events. Note that stop = > renders this parameter irrelevant. Another
way to end a simulation is to specify a simulated time tsuspend at which the simulation is
suspended. The boolean starve, if truthful, indicates that the simulation is to end when the
inputs are exhausted. A programmer should implement the functions of the IO selector
such that, if the computer process running the simulation is terminated, the results can be
salvaged and the simulation can be restarted from the most recent checkpoint.

The results of simulate include IOlast which, as the final version of the IO selector, pro-
vides access to the simulation results. The final number of events is given by last, and
statuslast reports the condition that ended the simulation.

To start the simulation procedure, the IO selector is first used to get the initial values of
[nx, ny, t, s]. Along with IOstart and start, these become arguments of the function loop.
� . . . ; simulate�

[nxstart , nystart , tstart, sstart] := IOstart (“inputs”) (start)

[IOlast, nlast, statuslast] := loop ([IOstart, start, nxstart , nystart , tstart, sstart])

The main simulation loop repeats as long as status ≡ ∅, updating [IO, n, nx, ny, t, s] with
each processed event.

129

C DEVS FORMULAS
C.2 DEVS Simulator

� . . . ; [IOlast, nlast, statuslast]�

loop ([IO, n, nx, ny, t, s]) :=

 status ≡| ∅ → [IO, n, status]

status ≡ ∅ → loop ([IO′, n′, nx
′, ny

′, t′, s′])

Inside the loop, it is necessary to obtain the time text of the next external transition, as
well as the time tint of the next internal transition. The time tevent of the next event is the
minimum of these. Note that the input value associated with text is also acquired.
� . . . ; loop�

[text, x] := IO (“inputx”) (nx)

tint := t+ ta (s)

tevent = text ∧ tint

Various conditions are evaluated to determine whether the simulation should stop.
� . . .�

αcomplete := (tevent = >)

αsuspend := (tevent ≥ tsuspend)

αstarve := (starve ∧ (text = >))

αstop := (n ≥ stop)

If any of the conditions are satisfied, status is assigned a corresponding label and the loop
terminates. Otherwise, status is assigned ∅ and the loop continues.
� . . .�

status :=

αcomplete → “completed”

−αcomplete ∧ αsuspend → “suspended”

−αcomplete ∧ −αsuspend ∧ αstarve → “starved”

−αcomplete ∧ −αsuspend ∧ −αstarve ∧ αstop → “stopped”

−αcomplete ∧ −αsuspend ∧ −αstarve ∧ −αstop → ∅

The variable checkpoint indicates whether the number of processed events is a multiple of
∆n.
� . . .�

checkpoint :=

 ∆n = > → ⊥
∆n < > → (mod ([n,∆n]) = 0)

130

C DEVS FORMULAS
C.2 DEVS Simulator

If the number of processed events is a multiple of ∆n, or if the simulation is at an end, then
the state of the simulation is recorded. There is one exception: the state is not recorded if
no events whatsoever have been processed since simulate was invoked.
� . . .�

IO∆ :=

 records → IO (“outputs”) ([n, nx, ny, t, s])

−records → IO

records := (n > start) ∧ (checkpoint ∨ (status ≡| ∅))

A prominent feature of the simulation loop is the selection of whether the next event is
an external transition or an internal transition. This depends on which of the two times is
lower, text or tint. We adopt the convention that, should the external transition time text and
internal transition time tint happen to be the same value, the external transition is selected
and the internal transition is deferred. This convention seems logical because it ensures
that the input value x is available at the earliest possible stage.
� . . .�

[IO′, n′, nx
′, ny

′, t′, s′] :=

 text ≤ tint → [IO∆, n+ 1, nx + 1, ny, text, sext]

tint < text → [IOint, n+ 1, nx, ny + #Y, tint, sint]

If the external transition is selected as the next event, the number of events n and the
number of inputs nx are incremented. Also, the simulated time is advanced to text, and the
new state of the model sext is obtained from the external transition function δext. Observe
below the calculation of the elapsed time.
� . . . ; [IO′, n′, nx′, ny ′, t′, s′]�

sext := δext ([s, text − t, x])

If the next event is an internal transition, the number of events n is incremented and the
number of outputs ny is increased by #Y . Recall that a single internal transition can yield
any number of outputs. The variable Y is a vector of output values; hence #Y is the
number of outputs associated with the current event. The new simulated time becomes tint.

As indicated below, the new state sint is obtained along with Y from the internal transition
function δint. Each output value in Y is individually recorded using the IO selector, a
procedure defined formally by the function loopY .

131

C DEVS FORMULAS
C.2 DEVS Simulator

� . . .�

[sint, Y] := δint (s)

IOint := loopY ([0, IO∆])

loopY ([i, IOi]) :=

 i = #Y → IOi

i < #Y → loopY ([i+ 1, IOi
′])

y := Y (i)

IOi
′ := IOi (“outputy”) ([ny + i, tint, y])

The definition of simulate is now complete. In the remainder of this section, we outline an
example of how the function is used. Suppose that the hypothetical DEVS model function
fooDEV S , described in Section 4.2, has been fully defined. We invoke the function using
75.2 and 4.4 as the two model parameters, which yields the initialization function initfoo,
and the model foo.

[initfoo, foo] ≡ fooDEV S ([75.2, 4.4])

Suppose also that the initialization function requires two initialization parameters. For
these we choose 6 and 19.9, obtaining the initial state sstart.

sstart ≡ initfoo ([6, 19.9])

Finally, suppose that we have three inputs: one occurring at time 2.7 with value “A”, one
occurring at time 10.1 with value “B”, and one occurring at time 408.0 with value “C”.

Somehow, an IO selector must be prepared with the properties specified below. The first
indicates that after zero events have occurred, there have been zero inputs, zero outputs, the
simulated time is zero, and the state of the model at this time is sstart. The next three prop-
erties indicate that the function IOstart (“inputx”) will deliver the input times and values
listed above for the corresponding nx values of 0, 1, and 2. The last property indicates that,

132

C DEVS FORMULAS
C.3 DEVS Coupled Models

for an nx value of 3, the time of the corresponding input time is infinite.

IOstart (“inputs”) (last) ≡ [0, 0, 0, sstart]

IOstart (“inputx”) (0) ≡ [2.7, “A”]

IOstart (“inputx”) (1) ≡ [10.1, “B”]

IOstart (“inputx”) (2) ≡ [408.0, “C”]

IOstart (“inputx”) (3) ≡ [>,∅]

The following invocation of simulate runs the simulation from the beginning, with check-
points occurring every 100000 events. There is no limit on the number of events, but the
simulation will be suspended if the simulated time reaches 1500. The last argument indi-
cates that the simulation will continue after the three inputs are processed.

[IOlast, last, status] ≡ simulator ([foo, IOstart, 100000, 0,>, 1500,⊥])

Once the simulation has ended, the final number of inputs processed, the final number
outputs delivered, the final simulated time, and the final state can be obtained from the final
IO selector.

[nxlast , nylast , tlast, slast] ≡ IOlast (“inputs”) (last)

There must be some way to access the output values. The output times and values may
be added to a text file every time IOi

′ is evaluated in the simulator, for example. Ideally,
it would be convenient to use the output values of one simulation as input values in a
subsequent simulation.

C.3 DEVS Coupled Models

Recall that in our formulation of DEVS, a coupled model has the same form as any other
DEVS model, [δext, δint, ta], and can therefore be passed to simulate as an argument. The
function coupledDEV S accepts the model parameters [M,C, pr]. It results in an initializa-
tion function, initcoupled, and the DEVS model itself, coupled.

133

C DEVS FORMULAS
C.3 DEVS Coupled Models

� DEV S �

coupledDEV S ([M,C, pr]) := [initcoupled, coupled]

The diagram in Figure 36 serves as an example of how a coupled model’s structure is
represented by the parameters M and C. In the diagram, “A”, “B”, and “C” are the
names of submodels and “r”, “p”, “q”, “u”, “v”, and “w” are names of ports. Arrows
representing links connect a port of one model, either a submodel or the coupled model
itself, to the port of another model.

Figure 36: An example of a coupled DEVS model.

The selector M takes the name of a submodel as its argument, and results in the associated
DEVS model. For the example of Figure 36, M would take the form below.

M ≡

“A” → [δextA , δintA , taA]

“B” → [δextB , δintB , taB]

“C” → [δextC , δintC , taC]

The parameter C can be either a regular function or a selector that represents the links
in a coupled model. It does this by mapping a source model ID and port to a vector of
destination models and ports. The first mapping below represents the arrow on the far left
in Figure 36. The source [∅, “r”] represents the “r” port of the coupled model itself, and
the destination [“A”, “r”] is the “r” port of submodel “A”. Note that C ([“A”, “q”]) is a
vector of three destinations: the “v” port of submodel “B”, the “w” port of the coupled

134

C DEVS FORMULAS
C.3 DEVS Coupled Models

model, and the “q” port of submodel “C”.

C ≡

[∅, “r”] → [[“A”, “r”]]

[“A”, “p”] → [[“B”, “u”]]

[“A”, “q”] →

[“B”, “v”]

[∅, “w”]

[“C”, “q”]

The priority function pr will be explained in Section C.4. The remainder of this section is
devoted to the definition of initcoupled and coupled.

A coupled model requires a future events list to track the timing of the future internal
transitions of its submodels. We therefore ensure the future events list functions are in
scope.
� . . . ; coupledDEV S �

FELempty

δFEL

eventFEL

 := future events list ◦

“FELempty”

“δFEL”

“eventFEL”

The initial state s of a coupled model includes the initial states of each of its submodels.
These initial states are provided to the initialization function initcoupled by the initialization
parameter S. A selector with the same domain as M , S maps a submodel ID to the initial
state of the submodel.
� . . .�

initcoupled (S) := s

Coupled models have four state variables, as indicated below.
� . . . ; initcoupled �

s := [t, T, S, FEL]

The state variable t is the simulated time of the previous event. It is initially zero. It is
also necessary to record the simulated time of the previous event of each submodel. These
times are recorded by the selector T . Initially, T yields zero for all submodel IDs.

135

C DEVS FORMULAS
C.3 DEVS Coupled Models

� . . . ; s�

t := 0

T (idi) :=
(
idi : ♦M → 0

)
The state variable S records the current state of each submodel. Its initial value is, of course,
provided by the initialization parameter. The remaining state variable is the future events
list FEL, which is populated with the future internal transition times. The loop below
iterates through each submodel, obtaining the transition time tinti using the initial state
and the time advance function. Because each submodel has only one associated internal
transition, the submodel ID idi is an appropriate event ID for the FEL.
� . . .�

FEL := loop ([0, FELempty])

IDM := ♦M

loop ([i, FELi]) :=

 i = #IDM → FELi

i < #IDM → loop ([i+ 1, FELi
′])

idi := IDM (i)

si := S (idi)

[δexti , δinti , tai] := M (idi)

tinti := tai (si)

FELi
′ := δFEL ([FELi, idi, tinti , pr])

The initialization function initcoupled now defined, we turn our attention to the DEVS model
coupled.
� DEV S; coupledDEV S �

coupled := [δext, δint, ta]

Because messages are passed among the submodels in both δext and δint, we start by defin-
ing reusable functions that address message-passing. The function mapsrc dst maps source
messages to the corresponding destination messages.
� . . . ; coupled�

mapsrc dst ([idsrc, Ysrc]) := ID Xdst

Looking at the example in Figure 36, suppose that submodel “A” has just undergone an
internal transition which yielded three outputs. The first output is from the “p” port with a

136

C DEVS FORMULAS
C.3 DEVS Coupled Models

value of 72.9, the second is from the “q” port with a value of −4, and the third is also from
the “q” port but carries a value of 15. As shown below, mapsrc dst gives the destinations of
each output.

mapsrc dst

 “A”,

[“p”, 72.9]

[“q”,−4]

[“q”, 15]

 :=

[“B”, [“u”, 72.9]]

[“B”, [“v”,−4]]

[∅, [“w”,−4]]

[“C”, [“q”,−4]]

[“B”, [“v”, 15]]

[∅, [“w”, 15]]

[“C”, [“q”, 15]]

The first output of “A”, represented by [“p”, 72.9], becomes an input for the “u” port of
submodel “B”. Because the output of “A”’s “q” port forks three ways in Figure 36, the
second and third outputs each have three destinations. Two of these destinations are input
ports of other submodels, but one is the output port “w” of the overall coupled model. Note
that ∅ identifies the coupled model itself as a message destination.

The result of mapsrc dst, the vector of destination messages, is named ID Xdst and defined
with two nested loops. The outer loop, loopsrc, iterates through each output of the message
source. For each output, the model parameter C is used to obtain the destinations.
� . . . ;mapsrc dst �

ID Xdst := loopsrc ([0, []])

loopsrc ([i, ID Xdsti]) :=

 i = #Ysrc → ID Xdsti

i < #Ysrc → loopsrc ([i+ 1, ID Xdsti
′])

ysrc := Ysrc (i)

[portsrc,msg] := ysrc

ID PORTdst := C ([idsrc, portsrc])

ID Xdsti
′ := loopdst ([0, ID Xdsti])

The inner loop, loopdst, iterates through each destination of a given source message. For
each destination, a message is appended onto an intermediate version of ID Xdst.

137

C DEVS FORMULAS
C.3 DEVS Coupled Models

� . . . ; ID Xdst; loopsrc; ID Xdsti
′ �

loopdst
([
j, ID Xdstij

])
:=

 j = #ID PORTdst → ID Xdstij

j < #ID PORTdst → loopdst
([
j + 1, ID Xdstij

′
])

[iddst, portdst] := ID PORTdst (j)

ID Xdstij
′ := ID Xdstij ‖ [[iddst, [portdst,msg]]]

Now that we have completed mapsrc dst, which maps source messages to destination mes-
sages, we define the function updatedst, which triggers the external transitions for each
submodel receiving a message. Its arguments include the initial state s of the coupled
model, the ID idsrc of the source of a set of messages, and the vector Ysrc containing those
messages. The result is the coupled model’s new state s′, and the vector Y of messages
leaving the coupled model.
� DEV S; coupledDEV S ; coupled�

updatedst ([s, idsrc, Ysrc]) := [s′, Y]

After the state variables are extracted from s, the destination messages are extracted from
idsrc and Ysrc using mapsrc dst. A loop is then used to obtain [s′, Y].
� . . . ;updatedst �

[t, T, S, FEL] := s

ID Xdst := mapsrc dst ([idsrc, Ysrc])

[s′, Y] := loop ([0, T, S, FEL, []])

The loop iterates over each destination message in ID Xdst. For each message, the variable
iddst identifies either the receiving submodel or, if ∅, the coupled model itself. The port
and value of the message are contained in xdst.
� . . . ; [s′, Y]�

loop ([i, Ti, Si, FELi, Yi]) :=

 i = #ID Xdst → [[t, Ti, Si, FELi] , Yi]

i < #ID Xdst → loop ([i+ 1, Ti
′, Si

′, FELi
′, Yi

′])

[iddst, xdst] := #ID Xdst (i)

If the message is destined to be an output of the coupled model, xdst is appended to an

138

C DEVS FORMULAS
C.3 DEVS Coupled Models

intermediate version of Y . If the message is destined for a submodel, then three of the state
variables are updated.
� . . . ; loop�

[Ti
′, Si

′, FELi
′, Yi

′] :=

 iddst ≡ ∅ → [Ti, Si, FELi, Yi ‖ [xdst]]

iddst ≡| ∅ → [T∆, S∆, FEL∆, Yi]

In the latter of the two cases above, we obtain the transition functions and time advance
function associated with the destination submodel, the time tdst of that submodel’s previous
transition, and the submodel’s current state sdst.
� . . . ; [Ti

′, Si′, FELi′, Yi′]�

[δextdst , δintdst , tadst] := M (iddst)

tdst := Ti (iddst)

sdst := Si (iddst)

The new state of the submodel, sdst′, is obtained from its external transition function. Note
the use of tdst to compute the elapsed time.
� . . .�

sdst
′ := δextdst ([sdst, t− tdst, xdst])

The state variable T is updated to reflect the new submodel transition time, and S is modi-
fied with the new submodel state.
� . . .�

T∆ := Ti C
[
iddst → t

]
S∆ := Si C

[
iddst → sdst

′
]

The time advance function of the submodel is invoked with its new state, and the resulting
time is used to schedule the submodel’s next internal transition in the FEL.
� . . .�

FEL∆ := δFEL ([FELi, iddst, tintdst , pr])

tintdst := t+ tadst (sdst
′)

With updatedst at our disposal, the transition functions of coupled are relatively easy to
define. We start with the external transition function.

139

C DEVS FORMULAS
C.3 DEVS Coupled Models

� DEV S; coupledDEV S ; coupled�

δext ([s,∆tel, x]) := s′

First, the state variables are extracted from s. Second, the current time is advanced by the
elapsed time to yield an intermediate state s∆.
� . . . ; δext �

[t, T, S, FEL] := s

s∆ := [t∆, T, S, FEL]

t∆ := t+ ∆tel

The updatedst function takes care of the rest, invoking external transitions on each sub-
model receiving a message from the input of the coupled model.
� . . .�

[s′, Y] := updatedst ([s∆,∅, [x]])

Next we define the internal transition function.
� DEV S; coupledDEV S ; coupled�

δint (s) := [s′, Y]

The state variables are obtained, along with the ID idsrc of the next submodel to undergo
an internal transition, and the time t∆ of that transition. This submodel is the source model.
Its transition functions, time advance function, and current state are obtained.
� . . . ; δint �

[t, T, S, FEL] := s

[idsrc, t∆] := eventFEL (FEL)

[δextsrc , δintsrc , tasrc] := M (idsrc)

ssrc := S (idsrc)

The internal transition function of the source submodel is invoked to yield its new state
ssrc

′ and its outputs Ysrc.
� . . .�

[ssrc
′, Ysrc] := δintsrc (ssrc)

An intermediate state s∆ is prepared that accounts for the internal transition of the source
submodel.

140

C DEVS FORMULAS
C.4 Priority Functions

� . . .�

s∆ := [t∆, T∆, S∆, FEL]

T∆ := T C
[
idsrc → t∆

]
S∆ := S C

[
idsrc → ssrc

′
]

FEL∆ := δFEL ([FEL, idsrc, tintsrc , pr])

tintsrc := t∆ + tasrc (ssrc
′)

The updatedst function updates the state again, this time accounting for the external transi-
tions of the submodels receiving messages from the source.
� . . .�

[s′, Y] := updatedst ([s∆, idsrc, Ysrc])

The time advance function of a coupled model queries the FEL, reporting the time re-
maining until the next submodel undergoes an internal transition.
� DEV S; coupledDEV S ; coupled�

ta (s) := tevent − t
[t, T, S, FEL] := s

[idevent, tevent] := eventFEL (FEL)

C.4 Priority Functions

A priority function of either an FEL or a coupled model takes two IDs as arguments, and
results in one of these IDs or ∅. Suppose we are given, for some priority function pr, that
pr ([“A”, “B”]) ≡ “B”. If “A” and “B” are the IDs of two events occurring at the same
time, and pr was used to populate an FEL with both events, then the event labelled “B”
occurs first. If “A” and “B” are the IDs of two submodels with internal transitions occurring
at the same time, then the internal transition of the submodel labelled “B” occurs first. If
pr ([“A”, “B”]) ≡ ∅, then the first event/transition is chosen randomly.

In some cases, we want all simultaneous events to occur in a random order. We therefore
define a priority function named pr∅ that always results in ∅.

141

C DEVS FORMULAS
C.4 Priority Functions

� DEV S �

pr∅ ([idA, idB]) := ∅

In the case of a non-spatial coupled DEVS model in which the submodels have distinct
roles, one might hesitate to order simultaneous transitions randomly. But in a cellular
DEVS model, one in which each lattice cell has its own DEVS model, the use of pr∅ might
prevent a spatial bias from emerging in simulation results. Because the order of lattice
cells would be chosen randomly, no spatial region would be favoured over any other in the
resolution of simultaneous events.

Note that the future events list functions must address the possibility that the order of
three or more simultaneous events must be randomized. When comparing two such events,
it would likely be an error to simply select one of the two to occur first. Instead, a uniform
random number should be associated with each simultaneous event, and the order of those
events should be based on those numbers. For the sake of efficiently, a random number
should only be generated for an event once it is confirmed that there is at least one other
event occurring at the same time.

Sorting events using numbers is convenient in many situations, regardless of whether those
numbers are random. We therefore define a function prZ to assist this approach. Although
prZ has a third argument, and cannot be used as an argument for δFEL or coupledDEV S ,
the function can be used to construct a two-argument priority function. The third argument
of prZ is a function named Z that maps IDs to numbers.
� DEV S �

prZ ([idA, idB, Z]) := idpr

zA := Z (idA)

zB := Z (idB)

The ID with the smaller associated number is the result of prZ , the ID of the event/submodel
with priority. If the numbers are equal, then the result is ∅.
� . . . ; prZ �

idpr :=

zA < zB → idA

zA > zB → idB

zA = zB → ∅

142

C DEVS FORMULAS
C.5 DEVS Hypercubic Lattice Models

Another way to construct a priority function is to exploit the function prorder. In this case
the third argument is a vector, named order, that contains IDs. Priority is given to the
event/submodel that appears first in the vector.
� DEV S �

prorder ([idA, idB, order]) := idpr

The result is obtained by iterating through each ID in order until either idA or idB is found.
If neither ID is found, the result is ∅.
� . . . ; prorder �

idpr := loop (0)

loop (i) :=

 i = #order → ∅
i < #order → check

check :=

order (i) ≡ idA → idA

order (i) ≡ idB → idB

(order (i) ≡| idA) ∧ (order (i) ≡| idB) → loop (i+ 1)

C.5 DEVS Hypercubic Lattice Models

A DEVS hypercubic lattice model is a coupled model in which submodels are arranged
conceptually in a hypercubic lattice of ndim dimensions. Each submodel interacts with its,
at most, 2·ndim adjacent neighbors.

The DEVS model function HLDEV S is similar to the hypothetical barDEV S function of
Section 4.2; it results in a DEVS model of the form [δext, δint, ta], but defines none of these
functions directly. Instead, it transforms one set of model parameters into another set of
model parameters, then uses another DEVS model function to transform the second set
into the DEVS model. In this case the parameters [N,HLmDEV S, pr] are transformed into
[M,C, pr], and coupledDEV S is used to obtain [δext, δint, ta].
� DEV S �

HLDEV S ([N,HLmDEV S, pr]) := [initHL, HL]

143

C DEVS FORMULAS
C.5 DEVS Hypercubic Lattice Models

The parameter N is a vector listing the dimensions of the hypercubic lattice. From N

one can obtain the number of submodels, as well as the coordinates of each submodel.
A submodel’s coordinates serve both as its ID and as the parameters of the DEVS model
function HLmDEV S . By applying HLmDEV S to a set of coordinates, one obtains the
DEVS model of the submodel at those coordinates. This is done below to define M .
� . . .�

M (coords) :=
(
coords : ..N → HLm

)
[initHLm, HLm] := HLmDEV S (coords)

The main reason why we bother introducing HLDEV S is that it introduces a layer which
handles links between submodels in a hypercubic lattice. One can use HLDEV S to define
a range of different cellular models, effectively reusing the coupled model parameter C.
� . . .�

C ([idsrc, portsrc]) := ID PORTdst

For DEVS hypercubic lattice models, we divide port values into two components: a general
component and a specific component.
� . . . ;C �

[generalsrc, specificsrc] := portsrc

A message can be classified into one of five categories according to its source and the
general component of its port. Messages sent to the hypercubic lattice model (idsrc ≡
∅) can be directed to a single submodel (generalsrc ≡ “one”), a submodel on the edge
(generalsrc ≡ “adj”), or all submodels (generalsrc ≡ “all”). Messages originating from
a submodel can be directed out of the hypercubic lattice model (generalsrc ≡ “out”), or to
an adjacent submodel (generalsrc ≡ “adj”).
� . . .�

ID PORTdst :=

idsrc ≡ ∅ →

generalsrc ≡ “one” → Cone

generalsrc ≡ “adj” → Cedge

generalsrc ≡ “all” → Call

idsrc ≡| ∅ →

 generalsrc ≡ “out” → Cout

generalsrc ≡ “adj” → Cadj

If a message entering a hypercubic lattice model is sent to a single submodel (generalsrc ≡

144

C DEVS FORMULAS
C.5 DEVS Hypercubic Lattice Models

“one”), the specific component of the port must contain the coordinates of that submodel.
The submodel receives the message with a two-component port, the first component being
“in” and the second component depending on the source port.
� . . . ; ID PORTdst �

Cone := [[coordsdst, portdst]]

[coordsdst, specificdst] := specificsrc

portdst := [“in”, specificdst]

The “adj” inputs allow multiple DEVS hypercubic lattice models to be linked together.
Messages sent off the edge of one hypercubic lattice model may end up arriving at the
edge of the adjacent hypercubic lattice model. In this case the port includes a dimension
index idim, a direction dr, and a projection proj. Suppose we have a DEVS hypercubic
lattice model with N ≡ [4, 4, 4]. An “adj” message is received with idim = 1, indicating
the second dimension, and proj ≡ [2,∅, 1]. If dr = 1, the “adj” message is received by
the submodel with coordinates [2, 0, 1]. If dr = −1, the message is received by submodel
[2, 3, 1]. From the perspective of the receiving submodel, an “adj” message redirected from
the input of a hypercubic lattice model has the same form as a message arriving from an
adjacent submodel.
� . . .�

Cedge := [[coordsdst, portdst]]

[idim, dr, proj] := specificsrc

specificdst := [idim, dr]

coordsdst := proj C
[
idim → 1− dr

2 ·(N (idim)− 1)
]

portdst := [“adj”, specificdst]

A loop is used to distribute “all” inputs to each hypercubic lattice submodel. From a
submodel’s point of view, receiving a message in this manner is identical to receiving a
“one” message. Note that we need not worry about the order in which the submodels
receive an “all” message, as only external transitions occur. It is only the order of internal
transitions that must be controlled.

145

C DEVS FORMULAS
C.5 DEVS Hypercubic Lattice Models

� . . .�

Call := loop ([0, []])

IDM := ♦..N

loop ([i, ID PORTdsti]) :=

 i = #IDM → ID PORTdsti
i < #IDM → loop ([i+ 1, ID PORTdsti

′])

coordsdst := IDM (i)

portdst := [“in”, specificsrc]

ID PORTdsti
′ := ID PORTdsti ‖ [[coordsdst, portdst]]

If an “out” message is sent from a submodel to an output of the hypercubic lattice model
that contains it, the port of the message leaving the lattice is the same as the port leaving
the submodel.
� . . .�

Cout := [[∅, portsrc]]

If an “adj” message is sent from a submodel to an adjacent submodel, we first check if that
adjacent submodel exists. If it does, we evaluate Cinside. If message is being sent off the
edge of the hypercubic lattice, then the receiving submodel does not exist and we evaluate
Cedge.
� . . .�

Cadj :=

 0 ≤ depth < N (idim) → Cinside

− (0 ≤ depth < N (idim)) → Cedge

[idim, dr] := specificsrc

depth := idsrc (idim) + dr

For the Cinside case, the “adj” message received by the adjacent submodel has the dimen-
sion index idim and direction dr in its port.
� . . . ;Cadj �

Cinside := [coordsdst, portdst]

coordsdst := idsrc C
[
idim → depth

]
portdst := [“adj”, specificsrc]

In the case of Cedge, the “adj” message is output from the hypercubic lattice model. The
port contains the projection proj as well as the dimension and direction.

146

C DEVS FORMULAS
C.5 DEVS Hypercubic Lattice Models

� . . .�

Cedge := [∅, portdst]
portdst := [“adj”, specificdst]

specificdst := [idim, dr, proj]

proj := idsrc C
[
idim → ∅

]
At this point M and C have been defined, and pr was passed in at the start as an argument.
The coupledDEV S function can therefore be invoked to yield the DEVS model and an
initialization function.
� DEV S;HLDEV S �

[initcoupled, HL] := coupledDEV S ([M,C, pr])

The DEVS model HL is now defined, but we are still in need of the initialization function
initHL. It takes as its initialization parameter a function named ARGHLm. The function
ARGHLm takes a set of coordinates coordsHLm as its argument, and results in a new set of
initialization parameters. This new set of parameters, ARGHLm (coordsHLm), is used to
initialize the state of the submodel at coordsHLm.

To define initHL, we map ARGHLm into S, then use initcoupled.
� . . .�

initHL (ARGHLm) := s

s := initcoupled (S)

The selector S is constructed by iterating over each submodel. The initial state sHLm
of each submodel is obtained by evaluating initHLm (args), where initHLm comes from
HLmDEV S and args is from ARGSHLm.

147

C DEVS FORMULAS
C.5 DEVS Hypercubic Lattice Models

� . . . ; initHL; s�

S := loop ([0, []])

IDM := ♦..N

loop ([i, Si]) :=

 i = #IDM → Si

i < #IDM → loop ([i+ 1, Si
′])

coordsHLm := IDM (i)

args := ARGSHLm (coordsHLm)

[initHLm, HLm] := HLmDEV S (coordsHLm)

sHLm := initHLm (args)

Si
′ := Si C

[
coordsHLm → sHLm

]

148

D DEVS TPS MODEL FORMULAS

D DEVS TPS Model Formulas

D.1 DEVS TPS Functions

Defined below, the selectorDEV S tethered particle system provides access to the DEVS
model functions yielding the TPS model and its various submodels.

DEV S tethered particle system := . . .

“TPSDEV S” → TPSDEV S

{DEVS TPS model (Section D.2)}
“detectorDEV S” → detectorDEV S

{DEVS detector model (Section D.2)}
“RIDEV S” → RIDEV S

{DEVS random impulse model (Section D.3)}
“responderDEV S” → responderDEV S

{DEVS responder model (Section D.4)}
“trackerDEV S” → trackerDEV S

{DEVS tracker model (Section D.5)}
“latticeDEV S” → latticeDEV S

{DEVS lattice model (Section D.6)}

The variables and parameters of the TPS are similar to those in Appendix B. Used fre-
quently, the variables idA and idB are integers that identify particles, and Ψ contains infor-
mation on each particle including its velocity and former position. The model parameters
θresolve, ∆tmax, and ∆trestitute are the same here as in Appendix B, but two notable func-
tions are now introduced.

attach ([idA, idB,Ψ,Φ,Ωψ,Ωψψ]) {if true, particles become tethered}
detach ([idA, idB,Ψ,Φ,Ωψ,Ωψψ]) {if true, particles separate}

The function attach is a predicate, resulting in > if two particles are to become tethered,
and ⊥ otherwise. It is invoked at the simulated time when two approaching particles un-

149

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

dergo a blocking collision. Its arguments include the IDs of both particles, Ψ, a value
named Φ that will be discussed later, and the particle property selectors Ωψ and Ωψψ. The
detach function takes the same arguments, but is invoked when two separating tethered
particles reach their tethering distance. If >, the particles cease to be tethered and continue
separating with no applied impulses. If detach results in ⊥, the particles remain tethered
and therefore retract or revolve.

In Appendix B we defined a function to detect collisions between two specific particles,
but did not worry about applying the function to various particle pairs in a system of many
particles. As explained in Section 4.3, collision detection is to be performed using a lattice
of subvolumes. The dimensions of the lattice are given by N , the first parameter of the
HLDEV S function of Appendix C. The length of each side of each subvolume is a, so
N ·a gives the lengths of the sides of the overall region. The center of the overall region is
~ucenter. The function corner, defined below, takes these three parameters as arguments and
yields the position ~ucorner of the lower corner of the overall region.
� DEV S tethered particle system�

corner ([N, a, ~ucenter]) := ~ucorner

~ucorner := ~ucenter − N
2 ·a

Recall from Figures 17 and 18 of Section 4.3 that, conceptually, there are two circles (or
spheres) around each square (or cubic) subvolume. We will refer to the inner circle or
sphere as the “arrival orb”. The outer circle/sphere is the “departure orb”. The size of the
arrival and departure orbs is determined by two values: εarrival and εdeparture. The values
are arbitrary; as long as they are relatively small, and εarrival < εdeparture, they should have
little influence on simulation results.
� . . .�

εarrival := 1
64

εdeparture := 1
8

The radius of the arrival orb is Rarrival, and Rdeparture is the radius of the departure orb.
The function radius calculates these values using εarrival and εdeparture. Note that R is the
radius of a circle/sphere circumscribed around a subvolume.

150

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

� . . .�

radii ([ndim, a]) := [Rarrival, Rdeparture]

R :=

√
ndim
2 ·a

Rarrival := (1 + εarrival) ·R
Rdeparture := (1 + εdeparture) ·R

Recall from Appendix B that Ωψ contains sets of properties associated with each particle
species, and Ωψψ contains sets of properties associates with pairs of particle species. The
TPS model parameters include the two very similar selectors ωψ and ωψψ.

ωψ {properties of individual particle species}
ωψψ {properties of pairs of particle species}

For each particle species, we require ωψ to contain the mass of each particle, but do not
require it to contain the random impulse parameters τRI , kRI , µRI . If it contains any of
these random impulse parameters, however, then it should contain all three.

ωψ (spcA) (“m”) {required}
ωψ (spcA) (“τRI”) {optional}
ωψ (spcA) (“kRI”) {optional}
ωψ (spcA) (“µRI”) {optional}

Given ωψ and ωψψ, Ωψ and Ωψψ are calculated automatically. The selector Ωψ differs from
ωψ in that it must contain all for of the parameters listed above. Also, for each particle
species, Ωψ contains the “detection radius”. Detection radii are illustrated in Section 4.3’s
Figure 17 and Figure 18. They help determine the distance at which subvolumes lose
or gain awareness of particles. For a species identified by spcA, the detection radius is
Ωψ (spcA) (“r”).

Ωψ (spcA) (“m”)

Ωψ (spcA) (“τRI”)

Ωψ (spcA) (“kRI”)

Ωψ (spcA) (“µRI”)

Ωψ (spcA) (“r”)

Both ωψψ and Ωψψ contain, for each pair of particle species, all three restitution coefficients

151

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

and a blocking distance and a tethering distance.

ωψψ ([spcA, spcB]) (“crebound”) Ωψψ ([spcA, spcB]) (“crebound”)

ωψψ ([spcA, spcB]) (“cretract”) Ωψψ ([spcA, spcB]) (“cretract”)

ωψψ ([spcA, spcB]) (“crevolve”) Ωψψ ([spcA, spcB]) (“crevolve”)

ωψψ ([spcA, spcB]) (“∆ublocking”) Ωψψ ([spcA, spcB]) (“∆ublocking”)

ωψψ ([spcA, spcB]) (“∆utethering”) Ωψψ ([spcA, spcB]) (“∆utethering”)

Recall that if [spcA, spcB] is in the domain of Ωψψ, then so is [spcB, spcA], and both pairs
give the same parameters.

Ωψψ ([spcA, spcB]) ≡ Ωψψ ([spcB, spcA])

The parameter ωψψ of the DEVS model TPS differs in this regard. For the sake of conve-
nience, if [spcA, spcB] is in the domain of ωψψ, we assume that [spcB, spcA] is not.

Another difference between ωψψ and Ωψψ is that the latter contains blocking and tethering
distances between each species and each subvolume. We use the value ∅ to identify a sub-
volume, as opposed to a particle species. The blocking distance associated with [spcA,∅]

or [∅, spcA] determines when a subvolume gains awareness of a particle of the species
with ID spcA. The tethering distance determines when the subvolume loses awareness of
the particle.

Ωψψ ([spcA,∅]) (“∆ublocking”)

Ωψψ ([∅, spcA]) (“∆ublocking”)

Ωψψ ([spcA,∅]) (“∆utethering”)

Ωψψ ([∅, spcA]) (“∆utethering”)

Suppose that spcA and spcB identify, respectively, the species of particles A and B. Note
that the two particles may have the same species (spcA ≡ spcB is possible). If the tether-
ing distance between A and B is infinite, then effectively the two particles never become
tethered. In that case, the sum of the detection radius of A and that of B must be at least
the blocking distance. If the tethering distance is finite, then the sum of the detection radii

152

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

must be at least the tethering distace.

Ωψ (spcA) (“r”) + Ωψ (spcB) (“r”) ≥

 ∆utethering = > → ∆ublocking

∆utethering < > → ∆utethering

∆ublocking = Ωψψ ([spcA, spcB]) (“∆ublocking”)

∆utethering = Ωψψ ([spcA, spcB]) (“∆utethering”)

Looking now at a single particle, its blocking distance with a subvolume is equal to its
detection radius plus the radius of the arrival orb. The tethering distance is the sum of the
detection radius and the radius of the departure orb.

Ωψψ ([spcA,∅]) (“∆ublocking”) = Ωψ (spcA) (“r”) +Rarrival

Ωψψ ([spcA,∅]) (“∆utethering”) = Ωψ (spcA) (“r”) +Rdeparture

Note that we would like to minimize all of the blocking distances between subvolumes and
particles. Smaller distances correspond to smaller numbers of particles tracked by each
subvolume, and hence faster simulations. The danger is that, if we make the blocking
distances too small, a collision may go undetected.

In Figure 37, a collision between particles A and B takes place just barely within the
boundary of a subvolume. We have yet to formally define the position where a collision
“takes place”, but the distance between this “collision point” and the center of either particle
is at most the detection radius of that particle. In Figure 37, the distance between the
collision point and either particle is exactly the detection radius.

153

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

Figure 37: A “worst-case scenario” for collision detection; the collision point is within the
square subvolume, but particle A is at a distance.

We are confident, looking at Figure 37, that the subvolume model is aware of particle B.
Particle A, however, is almost entirely on the outside. The distance between the center of
particle A and the center of the subvolume is at most Ωψ (spcA) (“r”) + R, where R is
the radius of a circle circumscribed around the subvolume. The blocking distance between
the subvolume and the particle is Ωψ (spcA) (“r”) + Rarrival, as specified by the equations
above. Because Rarrival > R, we can be sure that the subvolume is aware of particle A.

At this point we have specified constraints on the detection radii that determine the particle-
subvolume blocking/tethering distances of Ωψ and Ωψψ. Given ωψ and ωψψ, the set of detec-
tion radii that satisfy these constraints is by no means unique. In the function propertiesTPS ,
we select distances that are not necessarily optimal, but reasonable. The function takes ωψ
and ωψψ as arguments, along with Rarrival and Rdeparture, and results in Ωψ and Ωψψ.
� . . .�

propertiesTPS ([ωψ, ωψψ, Rarrival, Rdeparture]) := [Ωψ,Ωψψ]

Given particle species IDs spcA and spcB, the TPS model parameter ωψψ has either
[spcA, spcB] or [spcB, spcA] in its domain, but not both. We define ωψψ ′ so that we can
obtain particle-pair information without worrying about the order in which species identi-

154

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

fiers are listed.
� . . . ; propertiesTPS �

ωψψ
′ ([spcA, spcB]) :=

 [spcA, spcB] : ♦ωψψ → ωψψ ([spcA, spcB])

[spcB, spcA] : ♦ωψψ → ωψψ ([spcB, spcA])

In pursuit of a reasonable set of detection radii, we make the very debatable assumption that
the majority of TPS models will have a relatively large number of small particles, and a rela-
tively small number of large particles. We also assume that the size of a particle is roughly
proportional to its blocking distance with another particle of the same species. Thus we
seek to minimize the detection radii of particles with small “self-blocking” distances. The
first step in the process is to sort all species IDs by associated self-blocking distance. Note
that, if i > j, then the self-blocking distance of the species with ID SPCsorted (i) at least
that of the species with ID SPCsorted (j).
� . . .�

SPCsorted := sortcmp ([♦ωψ, cmpspc])

cmpspc ([spcA, spcB]) := cmp ([∆uAA,∆uBB])

∆uAA := ωψψ
′ ([spcA, spcA]) (“∆ublocking”)

∆uBB := ωψψ
′ ([spcB, spcB]) (“∆ublocking”)

We define Rψ such that the detection radii ri of the species with ID spci is Rψ (spci). This
radius is at least ∆uii/2, which is determined from the self-blocking and self-tethering
distance associated with spci.
� . . .�

Rψ := loopi ([0, []])

loopi ([i, Rψi]) :=

 i = #SPCsorted → Rψi

i < #SPCsorted → loopi ([i+ 1, Rψi
′])

spci := SPCsorted (i)

∆uii :=

 ∆utethering = > → ∆ublocking

∆utethering < > → ∆utethering

∆ublocking = ωψψ

′ ([spci, spci]) (“∆ublocking”)

∆utethering = ωψψ
′ ([spci, spci]) (“∆utethering”)

Rψi
′ := Rψi C

[
spci → ri

]

155

D DEVS TPS MODEL FORMULAS
D.1 DEVS TPS Functions

When it comes time to calculate the detection radius associated with index i, the detection
radius associated with j, where j < i, has already been calculated. By iterating through
each of the known detection radii, the estimate of the detection radius ri may be increased
from its initial value of ∆uii/2.
� . . . ;Rψ ; loopi;Rψi

′ �

ri := loopj

([
0, ∆uii

2

])
loopj ([j, rj]) :=

 j = i → rj

j < i → loopj ([j + 1, rj
′])

spcj := SPCsorted (j)

∆uij :=

 ∆utethering = > → ∆ublocking

∆utethering < > → ∆utethering

∆ublocking = ωψψ

′ ([spci, spcj]) (“∆ublocking”)

∆utethering = ωψψ
′ ([spci, spcj]) (“∆utethering”)

rj
′ := rj ∨ (∆uij −Rψi (spcj))

With the detection radii determined, the selector Ωψ can be defined. By default, for any
given particle, random impulses occur at an average time interval of infinity. In other words,
there are no random impulses. The three default random impulse parameters associated
with spcA are replaced by those in ωψ (spcA), if they exist. The associated detection radius,
which is not to be found in ωψ (spcA), is obtained from Rψ.
� DEV S tethered particle system; propertiesTPS �

Ωψ (spcA) :=

 spcA : ♦ωψ →

“τRI” → >
“kRI” → ∅
“µRI” → ∅
“r” → Rψ (spcA)

C ωψ (spcA)

The selector Ωψψ includes ωψψ ′, which contains the five collision parameters for each parti-
cle pair, and Ω∅∅, which contains the particle-subvolume blocking and tethering distances.

� . . .�

Ωψψ := ωψψ
′ C Ω∅∅

156

D DEVS TPS MODEL FORMULAS
D.2 DEVS TPS Coupled Models

The particle-subvolume blocking and tethering distances depend on the detection radii and
Rarrival and Rdeparture, as previously explained. Note that we define Ω∅∅, and hence Ωψψ,
such that we need not worry about whether the particle species ID is listed before or after
the value ∅ that indicates the subvolume.
� . . . ; Ωψψ �

Ω∅∅ ([spcA, spcB]) :=

 [spcA, spcB] : ♦SPCψ∅ → ΩA∅

[spcA, spcB] : ♦SPC∅ψ → Ω∅B

SPCψ∅ (i) :=

(
i : ..#SPCsorted → [SPCsorted (i) ,∅]

)
SPC∅ψ (i) :=

(
i : ..#SPCsorted → [∅, SPCsorted (i)]

)
ΩA∅ :=

 “∆ublocking” → Ωψ (spcA) (“r”) +Rarrival

“∆utethering” → Ωψ (spcA) (“r”) +Rdeparture

Ω∅B :=

 “∆ublocking” → Ωψ (spcB) (“r”) +Rarrival

“∆utethering” → Ωψ (spcB) (“r”) +Rdeparture

D.2 DEVS TPS Coupled Models

Here we formalize the upper levels of the DEVS TPS model hierarchy, defining the coupled
models TPS and detector. The lattice, which is both a hypercubic lattice model and a
coupled model, is defined in Section D.6.

Like all DEVS model functions, TPSDEV S results in an initialization function and a DEVS
model.
� DEV S tethered particle system�

TPSDEV S ([N, a, ~ucenter, ωψ, ωψψ, attach, detach, θrevolve,∆tmax,∆trestitute]) := . . .

[initTPS, TPS]

The definition of TPS exploits two of the functions from Appendix C.

157

D DEVS TPS MODEL FORMULAS
D.2 DEVS TPS Coupled Models

� . . . ;TPSDEV S � coupledDEV S

prorder

 := DEV S ◦

 “coupledDEV S”

“prorder”

The number of spatial dimensions is assigned to ndim.
� . . .�

ndim := #N

The model parameters ωψ and ωψψ are converted into Ωψ and Ωψψ as explained in Sec-
tion D.1.
� . . .�

[Ωψ,Ωψψ] := propertiesTPS ([ωψ, ωψψ, Rarrival, Rdeparture])

[Rarrival, Rdeparture] := radii ([ndim, a])

Initialization functions and DEVS models are obtained for each of the three submodels of
the TPS.
� . . .�

[initRI , RI] := RIDEV S ([ndim,Ωψ])

[initresponder, responder] := . . .

responderDEV S ([Ωψ,Ωψψ, attach, detach, θrevolve,∆trestitute])

[initdetector, detector] := detectorDEV S ([N, a, ~ucenter,Ωψ,Ωψψ,∆tmax])

From the DEVS models obtained above, we can define the coupled model parameter M .
� . . .�

M :=

“RI” → RI

“responder” → responder

“detector” → detector

The coupled model parameter C formally describes the links between the submodels of the
TPS, which are shown in Figure 14 of Section 4.3.
� . . .�

C ([idsrc, portsrc]) := ID PORTdst

Each message in a TPS model has four possible sources: the input of the overall model,

158

D DEVS TPS MODEL FORMULAS
D.2 DEVS TPS Coupled Models

the output of the random impulse model RI , the output of the responder, and the output
of the detector. We partition the definition of C accordingly.
� . . . ;C �

ID PORTdst :=

idsrc ≡ ∅ → C∅

idsrc ≡ “RI” → CRI

idsrc ≡ “responder” → Cresponder

idsrc ≡ “detector” → Cdetector

There are two types of messages accepted by a TPS model: transition messages and
impulse messages. Both of these types are directed to the responder submodel.
� . . . ; ID PORTdst �

C∅ :=

 portsrc ≡ “transition” → [[“responder”, “transition”]]

portsrc ≡ “impulse” → [[“responder”, “impulse”]]

The RI submodel outputs impulse messages, also bound for the responder.
� . . .�

CRI :=
(
portsrc ≡ “impulse” → [[“responder”, “impulse”]]

)
The responder outputs messages that indicate the attachment and detachment of particles,
the occurance of impulses and loading events and restitution events, and responses to im-
pulses or loading or restitution. All of these are directed to the output of the overall TPS
model. The response messages are also directed to the input of the detector.
� . . .�

Cresponder :=

portsrc ≡ “attachment” → [[∅, “attachment”]]

portsrc ≡ “detachment” → [[∅, “detachment”]]

portsrc ≡ “impulse” → [[∅, “impulse”]]

portsrc ≡ “loading” → [[∅, “loading”]]

portsrc ≡ “restitution” → [[∅, “restitution”]]

portsrc ≡ “response” →

 [“detector”, “response”]

[∅, “response”]

159

D DEVS TPS MODEL FORMULAS
D.2 DEVS TPS Coupled Models

The detector has two types of output messages. An escape message is directed to the
output of the TPS to indicate that a particle has escaped the region in which collisions are
detected. A collision message goes to the responder.
� . . .�

Cdetector :=

 portsrc ≡ “escape” → [[∅, “escape”]]

portsrc ≡ “collision” → [[“responder”, “collision”]]

The priority function indicates that the responder has priority over the detector, which is
important to ensure that one collision is resolved before another is detected. The detector
has priority over the RI submodel.
� DEV S tethered particle system;TPSDEV S �

pr ([idA, idB]) := prorder ([idA, idB, order])

order := [“responder”, “detector”, “RI”]

WithM , C, and pr defined, coupledDEV S is invoked to yield a useful initialization function
and the final DEVS model.
� . . .�

[initcoupled, TPS] := coupledDEV S ([M,C, pr])

The final initialization function initTPS makes use of the initcoupled function obtained
above. Initialization parameters include Ψ, which contains the initial information about
each particle, and Φ, which affects the attachment and detachment of colliding particles.
� . . .�

initTPS ([Ψ,Φ]) := s

s := initcoupled (S)

S :=

“RI” → initRI (Ψ)

“responder” → initresponder ([Ψ,Φ])

“detector” → initdetector (Ψ)

Reflecting Section 4.3’s Figure 15, the definition of the detector submodel is similar to
that of the TPS. It makes use of two DEVS functions from Appendix C, as well as the
initialization functions and DEVS models of the submodels tracker and lattice.

160

D DEVS TPS MODEL FORMULAS
D.2 DEVS TPS Coupled Models

� DEV S tethered particle system�

detectorDEV S ([N, a, ~ucenter,Ωψ,Ωψψ,∆tmax]) := [initTPS, TPS] coupledDEV S

prorder

 := DEV S ◦

 “coupledDEV S”

“prorder”

[inittracker, tracker] := trackerDEV S ([N, a, ~ucenter,Ωψ])

[initlattice, lattice] := latticeDEV S ([N, a, ~ucenter,Ωψ,Ωψψ,∆tmax])

The tracker and lattice DEVS models are used to define M .
� . . . ; detectorDEV S �

M :=

 “tracker” → tracker

“lattice” → lattice

Messages described by C originate at the input of the detector, the output of the tracker,
and the output of the lattice.
� . . .�

C ([idsrc, portsrc]) := ID PORTdst

ID PORTdst :=

idsrc ≡ ∅ → C∅

idsrc ≡ “tracker” → Ctracker

idsrc ≡ “lattice” → Clattice

Only response messages are received at the detector’s input. They are directed to the
tracker.
� . . . ;C; ID PORTdst �

C∅ :=
(
portsrc ≡ “response” → [[“tracker”, “response”]]

)
The tracker outputs response messages like the ones it receives, except that the sym-
bol “response” occurs only as part of the port. The port also includes the coordinates
coordssubV of a single subvolume, the identity of the “one” subvolume model in the lattice
that is to receive the message.

161

D DEVS TPS MODEL FORMULAS
D.2 DEVS TPS Coupled Models

� . . .�

Ctracker :=
(
generalsrc ≡ “response” → [[“lattice”, portdst]]

)
[generalsrc, specificsrc] := portsrc

coordssubV := specificsrc

portdst := [“one”, specificdst]

specificdst := [coordssubV , “response”]

When a particle in one subvolume approaches an adjacent subvolume, an adj message is
sent from the first subvolume model to the second. If an adj message is sent beyond a
boundary of the overall lattice, the lattice model itself outputs the message. The detector
then outputs this message as an escape message. There are three other types of lattice out-
put messages: collision messages, which the detector outputs; arrival messages, which
are directed to the tracker; and departure messages, which are also sent to the tracker.
� . . .�

Clattice :=

 generalsrc ≡ “adj” → [[∅, “escape”]]

generalsrc ≡ “out” → Cout

Cout :=

specificsrc ≡ “collision” → [[∅, “collision”]]

specificsrc ≡ “arrival” → [[“tracker”, “arrival”]]

specificsrc ≡ “departure” → [[“tracker”, “departure”]]

Every response message from the tracker must be delivered to the lattice before the
lattice outputs a collision message. This is important because a new particle trajectory in
a response message may influence future collisions.
� DEV S tethered particle system; detectorDEV S �

pr ([idA, idB]) := prorder ([idA, idB, order])

order := [“tracker”, “lattice”]

The coupledDEV S produces the DEVS model detector and a function named initcoupled,
and initcoupled is used in the initialization function initdetector.

162

D DEVS TPS MODEL FORMULAS
D.3 DEVS Random Impulse Model

� . . .�

[initcoupled, detector] := coupledDEV S ([M,C, pr])

initdetector (Ψ) := s

s := initcoupled (S)

S :=

 “tracker” → inittracker (Ψ)

“lattice” → initlattice (∅)

D.3 DEVS Random Impulse Model

The random impulse model generates impulses of randomized timing, magnitude, and di-
rection to be applied to individual particles in a tethered particle system. Its parameters
include the number of spatial dimensions ndim, and Ωψ.
� DEV S tethered particle system�

RIDEV S ([ndim,Ωψ]) := [initRI , RI]

We make use of the random impulse functions of Appendix B, as well as several future
events list and DEVS-related functions of Appendix C.
� . . . ;RIDEV S � detectRI

impulseRI

 := tethered particle system ◦

 “detectRI”

“impulseRI”

FELempty

δFEL

eventFEL

 := future events list ◦

“FELempty”

“δFEL”

“eventFEL”

pr∅ := DEV S (“pr∅”)

The initialization function requires Ψ, a selector containing information about the initial
state of the particles.
� . . .�

initRI (Ψ) := s

163

D DEVS TPS MODEL FORMULAS
D.3 DEVS Random Impulse Model

There are three state variables.
� . . . ; initRI �

s := [t, SPC, FEL]

The state variable t, the current time, is initially zero. The selector SPC maps a particle
ID to its associated species ID.
� . . . ; s�

t := 0

SPC (idA) :=
(
idA : ♦Ψ → Ψ (idA) (“spc”)

)
The state variable FEL is a future events list that records, for each particle, the time when
its next random impulse is scheduled to occur. To obtain the initial FEL we invoke, for
each particle, the detectRI function. Note that the use of pr∅ indicates that, if two random
impulses are to occur at the same simulated time, the order in which they occur is random-
ized.
� . . .�

FEL := loop (0, FELempty)

IDψ := ♦Ψ

loop (i, FELi) :=

 i = #IDψ → FELi

i < #IDψ → loop (i+ 1, FELi
′)

idA := IDψ (i)

spcA := SPC (idA)

tA := detectRI (spcA,Ωψ)

FELi
′ := δFEL ([FELi, idA, tA, pr∅])

With the initialization function complete, we turn our attention to the DEVS model itself.
� DEV S tethered particle system;RIDEV S �

RI := [δext, δint, ta]

The random impulse model should receive no inputs; hence the external transition function
should never be invoked.

164

D DEVS TPS MODEL FORMULAS
D.3 DEVS Random Impulse Model

� . . . ;RI �

δext ([s,∆tel, x]) := ()

If the internal transition function is invoked, we know that the simulation has reached the
simulated time when the next impulse in the FEL must be applied. We obtain the identity
idA of the particle that is to receive the impulse, the time t′ of the impulse, and the particle’s
species ID spcA.
� . . .�

δint (s) := [s′, Y]

[t, SPC, FEL] := s

[idA, t
′] := eventFEL (FEL)

spcA := SPC (idA)

The state variable t is replaced with t′, and the FEL is updated with the time of the next
impulse to be applied to the particle.
� . . . ; δint �

s′ := [t′, SPC, FEL′]

tA := t′ + detectRI ([spcA,Ωψ])

FEL′ := δFEL ([FEL, idA, tA, pr∅])

One message is output, an impulse message identifying the particle and indicating the
randomized momentum change ∆p it is to receive.
� . . .�

Y := [[“impulse”, y]]

∆p := impulseRI ([ndim, spcA,Ωψ])

y := [idA,∆p]

The time advance function results in the time before the next impulse, as indicated by the
FEL. Because computer round-off errors can lead to a discrepancy between times recorded
in state variables, we make a habit of ensuring that the result of ta is never negative.
� DEV S tethered particle system;RIDEV S ;RI �

ta (s) := ∆tint

[t, SPC, FEL] := s

[idA, tA] := eventFEL (FEL)

∆tint := (tA − t) ∨ 0

165

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

D.4 DEVS Responder Model

Here we define the responder model.
� DEV S tethered particle system�

responderDEV S ([Ωψ,Ωψψ, attach, detach, θrevolve,∆trestitute]) := . . .

[initresponder, responder]

First we obtain several functions from Appendix B and Appendix C.
� . . . ; responderDEV S �

impact

load

restitute

 := tethered particle system ◦

“impact”

“load”

“restitute”

FELempty

δFEL

eventFEL

 := future events list ◦

“FELempty”

“δFEL”

“eventFEL”

prZ := DEV S (“prZ”)

For reasons explained later, responder requires a priority function dependent on its state
variable Nloading.
� . . .�

getprrestitute (Nloading) := prrestitute

prrestitute ([ideventA , ideventB]) := prZ ([ideventA , ideventB , Z])

Z (idevent) := −Nloading (idevent)

The initialization function has two arguments: Ψ, containing particle information, and Φ,
which affects the attachment and detachment of particles.
� . . .�

initresponder ([Ψ,Φ]) := s

166

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

The state variables are described below by the comments in the vector assigned to s.
� . . . ; initresponder �

s :=

t {current time}
Ψ {particle system state}
Φ {previous transition state}
FEL {future events list}
Nloading {order of past loading events}
nloading {number of past loading events}
IDattachment {IDs of current particle attachments}
IDdetachment {IDs of current particle detachments}
IDimpulse {IDs of current particle impulses}
IDloading {IDs of current loading events}
IDresponse {IDs of current particle responses}

State variables include the time, which is initially zero, and an FEL of future restitution
events, which is initially empty. The initially-empty selector Nloading and initially-zero
integer nloading reflect the fact that there have been no past loading events. Most of the ID
vectors are initially empty, meaning that there are no messages to output. The exception
is the IDresponse vector, which initially lists the IDs of all particles. As a consequence,
the responder will output the position and trajectory of each particle at the beginning of a
simulation.
� . . . ; s�

t = 0

FEL := FELempty

Nloading := []

nloading := 0

IDattachment := []

IDdetachment := []

IDimpulse := []

IDloading := []

IDresponse := ♦Ψ

167

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

In our implementation, we listed all pairs of tethered particles in the initial IDattachment, as
we wanted our output file to provide this information.

The initialization function complete, we now define the model itself.
� DEV S tethered particle system; responderDEV S �

responder := [δext, δint, ta]

We start with the external transition function.
� . . . ; responder �

δext ([s,∆tel, x]) := s′

After obtaining, the state variables, the new time t′ is calculated from the old time t and the
elapsed time ∆tel. The input is separated into port and msg components.
� . . . ; δext � t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse, IDloading, IDresponse

 := s

t′ := t+ ∆tel

[port,msg] := x

There are three types of inputs: transition messages, impulse messages, and collision
messages.
� . . .�

s′ :=

port ≡ “transition” → stransition

port ≡ “impulse” → simpulse

port ≡ “collision” → scollision

A transitionmessage simply replaces the Φ value, which alters the conditions under which
particles become tethered to one another or separate from one another.
� . . . ; s′ �

stransition :=

 t′,Ψ,Φ′, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse, IDloading, IDresponse

Φ′ := msg

168

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

An impulse message alters the trajectory of a particle, and all other particles loaded to
that particle. This change requires a modification of Ψ, which results from the impact
function of Appendix B. Before time advances, the responder is to output both an impulse
message, and a separate response message for each affected particle. This requires IDs to
be added to IDimpulse and IDresponse.
� . . .�

simpulse :=

 t′,Ψ′,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse
′, IDloading, IDresponse

′

[idA,∆p] := msg

[Ψ′, IDresponseA] := impact ([Ψ, t′,Ωψ,∆p])

IDimpulse
′ := IDimpulse ‖ [idA]

IDresponse
′ := IDresponse ‖ IDresponseA

The remainder of the external transition function deals with the handling of collision mes-
sages. The message itself indicates the type of collision, either “blocking” or “tethering”,
and the IDs of the two particles involved. We must first determine whether the particles are
to end up travelling away from one another (parting = >), or loading (particle = ⊥).
� . . .�

scollision :=

 parting → sparting

−parting → sloading

[IDAB, typecollision] := msg

[idA, idB] := sort (IDAB)

The evaluation of parting involves a lengthy set of nested cases, as we must consider the
type of collision, whether the particles are already tethered, and whether they attach or
detach. Along with parting, we calculate an intermediate version of Ψ, and final versions
of IDattachment and IDdetachment.

169

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

� . . . ; scollision �

parting

Ψ∆

IDattachment
′

IDdetachment
′

 :=

typecollision ≡ “blocking” →

⊥
Ψblocking

IDattachmentblocking

IDdetachment

typecollision ≡ “tethering” →

partingtethering

Ψtethering

IDattachment

IDdetachmenttethering

In the case of a blocking collision, the particles may not part and may not detach, though
Ψ and IDattachment may change.
� . . . ; [parting,Ψ∆, IDattachment

′, IDdetachment
′]�

 Ψblocking

IDattachmentblocking

 :=

tethered →

 Ψ

IDattachment

−tethered →

 Ψseparate

IDattachmentseparate

tethered := (idB : Ψ (idA) (“tethered”))

In the case of a blocking collision in which the particles are not already tethered, the attach
function is evaluated to determine whether the particles become tethered. If they do, then
Ψ is updated and the need for an attachment message is recorded.
� . . . ;

[
Ψblocking , IDattachmentblocking

]
�

 Ψseparate

IDattachmentseparate

 :=

−α →

 Ψ

IDattachment

α →

 Ψattach

IDattachment ‖ [[idA, idB]]

α := attach ([idA, idB,Ψ,Φ,Ωψ,Ωψψ])

If the two particles become tethered, the list of tethered particles in Ψ (idA) must include
idB, and the list in Ψ (idB) must include idA.

170

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

� . . . ;
[
Ψseparate, IDattachmentseparate

]
�

Ψattach := ΨC

 idA → Ψ (idA)C
[

“tethered” → TLA
]

idB → Ψ (idB)C
[

“tethered” → TLB
]

TLA := Ψ (idA) (“tethered”) ‖ [idB]

TLB := Ψ (idB) (“tethered”) ‖ [idA]

In the case of a tethering collision, the attachment of the particles is not a possibility, though
we must still consider changing parting, Ψ, and IDdetachment.
� DEV S tethered particle system; responderDEV S ; responder;

δext; s′; scollision; [parting,Ψ∆, IDattachment
′, IDdetachment

′]�

partingtethering

Ψtethering

IDdetachmenttethering

 :=

−tethered →

>
Ψ

IDdetachment

tethered →

partingtethered

Ψtethered

IDdetachmenttethered

tethered := (idB : Ψ (idA) (“tethered”))

If two particles undergo a tethering collision, and if those particles are already tethered,
then detach is used to determine whether the particles cease to be tethered. If they do, then
Ψ is updated and the IDdetachment includes the particle IDs.
� . . . ;

[
partingtethering ,Ψtethering , IDdetachmenttethering

]
�

partingtethered

Ψtethered

IDdetachmenttethered

 :=

−α →

⊥
Ψ

IDdetachment

α →

>
Ψdetach

IDdetachment ‖ [[idA, idB]]

α := detach ([idA, idB,Ψ,Φ,Ωψ,Ωψψ])

If the two particles detach, the list of tethered particles in Ψ (idA) must exclude idB, and

171

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

the list in Ψ (idB) must exclude idA.
� . . . ;

[
partingtethered,Ψtethered, IDdetachmenttethered

]
�

Ψdetach := ΨC

 idA → Ψ (idA)C
[

“tethered” → TLA
]

idB → Ψ (idB)C
[

“tethered” → TLB
]

TLA := del ([Ψ (idA) (“tethered”) , idB])

TLB := del ([Ψ (idB) (“tethered”) , idA])

The boolean parting is now fully specified. If the particles do part, no further changes to
the state variables are needed.
� DEV S tethered particle system; responderDEV S ; responder; δext; s′; scollision �

sparting :=

 t′,Ψ∆,Φ, FEL,Nloading, nloading, IDattachment
′, . . .

IDdetachment
′, IDimpulse, IDloading, IDresponse

The remainder of the definition of δext focuses on collision messages that do result in
particle loading.
� . . .�

sloading :=

 t′,Ψ′,Φ, FEL′, Nloading
′, nloading

′, IDattachment
′, . . .

IDdetachment
′, IDimpulse, IDloading

′, IDresponse
′

The final value of Ψ is determined from the load function of Appendix B, along with IDs
of all loaded particles in the group and all pairs of directly loaded particles in the group.
� . . . ; sloading �

[Ψ′,∆IDresponse, IDψψ] := load ([Ψ∆, t
′, idA, idB,Ωψ,Ωψψ, θrevolve, typecollision])

The pair of colliding particles is added to the domain of the state variable Nloading, the
associated value being the number nloading of past loading events. This number is itself in-
cremented, so that each loading event is assigned a greater number than those that preceded
it.

172

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

� . . . ; sloading �

Nloading
′ := Nloading C

[
[idA, idB] → nloading

]
nloading

′ := nloading + 1

The state variable IDloading is updated to produce a single loading message, and IDresponse

is expanded to produce a separate response message for each particle in the loaded group.

� . . .�

IDloading
′ := IDloading ‖ [[idA, idB]]

IDresponse
′ := IDresponse ‖ ∆IDresponse

For each pair of directly loaded particles in the group, the FEL is updated such that the
time at which restitution occurs exceeds the current time t′ by ∆trestitute. The result is that
many pairs of particles are scheduled for restitution at the same future simulated time. This
is where Nloading comes into play. It is passed to getprrestitute , defined earlier, which yields
a priority function prrestitute. This priority function ensures that the most recently-loaded
particle pairs are the first to undergo restitution.
� . . .�

FEL′ := loop ([0, FEL])

loop ([i, FELi]) :=

 i = #IDψψ → FELi

i < #IDψψ → loop ([i+ 1, FELi
′])

[idC , idD] := sort (IDψψ (i))

prrestitute := getprrestitute (Nloading
′)

FELi
′ := δFEL ([FELi, [idC , idD] , t′ + ∆trestitute, prrestitute])

Having completed the definition of δext, we turn our attention to the internal transition
function.
� DEV S tethered particle system; responderDEV S ; responder �

δint (s) := [s′, Y]

First we separate the state variables.

173

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

� δint � t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse, IDloading, IDresponse

 := s

To obtain the new state and vector of outputs, we consider five different cases.
� . . .�

[s′, Y] :=

αattachment → [sattachment, Yattachment]

αdetachment → [sdetachment, Ydetachment]

αimpulse → [simpulse, Yimpulse]

αloading → [sloading, Yloading]

αother → [sother, Yother]

The conditions depend on which ID vectors contain elements, indicating output messages,
and which ID vectors are empty.
� . . . ; [s, Y ′]�

αattachment := (#IDattachment > 0)

αdetachment := (#IDattachment = 0) ∧ (#IDdetachment > 0)

αimpulse := (#IDattachment = #IDdetachment = 0) ∧ (#IDimpulse > 0)

αloading := (#IDattachment = #IDdetachment = #IDimpulse = 0) ∧ (#IDloading > 0)

αother := (#IDattachment = #IDdetachment = #IDimpulse = #IDloading = 0)

If one or more attachments have occurred, a separate attachment message is output for
each element in the vector IDattachment. The vector is then emptied.
� . . .�

sattachment :=

 t,Ψ,Φ, FEL,Nloading, nloading, [] , . . .

IDdetachment, IDimpulse, IDloading, IDresponse

Yattachment (i) :=

(
i : ♦IDattachment → [“attachment”, IDattachment (i)]

)
The same is done for detachments, impulses, and loading events.

174

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

� . . .�

sdetachment :=

 t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

[] , IDimpulse, IDloading, IDresponse

Ydetachment (i) :=

(
i : ♦IDdetachment → [“detachment”, IDdetachment (i)]

)
simpulse :=

 t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, [] , IDloading, IDresponse

Yimpulse (i) :=

(
i : ♦IDimpulse → [“impulse”, IDimpulse (i)]

)
sloading :=

 t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse, [] , IDresponse

Yloading (i) :=

(
i : ♦IDloading → [“loading”, IDloading (i)]

)
The remaining types of internal transitions involve either the output of response messages,
or the processing of restitution events. The timing of a restitution event is determined by the
next event in the FEL. If the next restitution occurs in the future, then any queued response
messages are output. If there are no queued response messages, or if the next restitution
event occurs at the present time, then the restitution is processed.
� . . .�

[sother, Yother] :=

 αresponse → [sresponse, Yresponse]

−αresponse → [srestitute, Yrestitute]

[IDAB, trestitute] := eventFEL (FEL)

αresponse := (#IDresponse > 0) ∧ (trestitute > t)

In the case that a response message from the IDresponse vector is to be output, the vector
itself is replaced with an empty vector.
� . . . ; [sother, Yother]�

sresponse :=

 t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse, IDloading, []

Each response message contains a particle ID, the species of that particle, the position ~uA
of the particle at time tA, and the velocity of the particle.

175

D DEVS TPS MODEL FORMULAS
D.4 DEVS Responder Model

� . . .�

Yresponse (i) :=
(
i : ♦IDresponse → [“response”, response]

)
idA := IDresponse (i)

spcA := Ψ (idA) (“spc”)

tA := Ψ (idA) (“t”)

~uA := Ψ (idA) (“~u”)

~vA := Ψ (idA) (“~v”)

response := [idA, spcA, tA, ~uA, ~vA]

When processing a restitution, the state time variable is updated with the time of the event.
Appendix B’s restitute function provides the new Ψ, as well as a list of affected particles.
The restitution event is removed from the FEL, and the past loading event is removed from
Nloading. The union function is used to append the new vector of responses unto the old
vector, removing duplicates.
� . . .�

srestitute :=

 t′,Ψ′,Φ, FEL′, Nloading
′, nloading, IDattachment, . . .

IDdetachment, IDimpulse, IDloading, IDresponse
′

t′ := trestitute

[Ψ′, IDrestitute] := restitute ([Ψ, t′, idA, idB,Ωψ])

[idA, idB] := IDAB

FEL′ := δFEL ([FEL, IDAB,>, prrestitute])
prrestitute := getprrestitute (Nloading)

Nloading
′ := Nloading C| [IDAB]

IDresponse
′ := union ([IDresponse, IDrestitute])

Finally, completing δint, the restitution message is output.
� . . .�

Yrestitute := [[“restitution”, IDAB]]

All that remains in the definition of the responder model is the time advance function.

176

D DEVS TPS MODEL FORMULAS
D.5 DEVS Tracker Model

� DEV S tethered particle system; responderDEV S ; responder �

ta (s) := ∆tint t,Ψ,Φ, FEL,Nloading, nloading, IDattachment, . . .

IDdetachment, IDimpulse, IDloading, IDresponse

 := s

The time before the next internal transition is zero if any of the ID vectors contain ele-
ments. Otherwise, it is the time of the next restitution event in the FEL.
� . . . ; ta�

∆tint :=

 αID → 0

−αID → (trestitute − t) ∨ 0

αID := . . .

(#IDattachment > 0) ∨ . . .
(#IDdetachment > 0) ∨ . . .
(#IDimpulse > 0) ∨ . . .
(#IDloading > 0) ∨ . . .
(#IDresponse > 0)

[IDAB, trestitute] := eventFEL (FEL)

D.5 DEVS Tracker Model

As a submodel of the detector, the role of the tracker is to redirect each incoming response
message to each subvolume that is aware of the particle identified by that message. Model
parameters include the dimensions N of the lattice of subvolumes, the length a of each
subvolume, the position ~ucenter of the lattice center, and Ωψ.
� DEV S tethered particle system�

trackerDEV S ([N, a, ~ucenter,Ωψ]) := [inittracker, tracker]

Also of use are the position function of Appendix B, the position ~ucorner of the corner of
the lattice, the number of dimensions ndim, and the arrival and departure radii.

177

D DEVS TPS MODEL FORMULAS
D.5 DEVS Tracker Model

� . . . ; trackerDEV S �

position := tethered particle system (“position”)

ndim := #N

~ucorner := corner ([N, a, ~ucenter])

[Rarrival, Rdeparture] := radii ([ndim, a])

State variables include a coordinates list CL and a response list RL. The response list is
initially empty.
� . . .�

inittracker (Ψ) := s

s := [CL,RL]

RL := []

The coordinates list CL lists for each particle, the coordinates of all subvolumes that are
aware of that particle. If the vector CL (idA) is missing the coordinates of a subvolume
that should be aware of the particle with ID idA, then that subvolume will not receive rel-
evant response messages; a situation that must be avoided. It is not a problem, however,
if CL (idA) contains the coordinates of a subvolume that need not be aware of the particle.
Based on this reasoning, we overestimate the number of subvolumes initially listed in CL.
For each particle, we initially select a set of subvolumes that together represent a rectangu-
lar region. The boundaries of this set of subvolumes is identified by the coordinates of two
subvolumes at opposite corners: coordslower and coordsupper.
� . . . ; inittracker; s�

CL (idA) :=
(
idA : ♦Ψ → coordslower + .. (coordsupper − coordslower + 1)

)
To obtain the pair of bounding coordinates, we first calculate two sets of distances ∆~ulower

and ∆~uupper. When measured from the lower corner of the lattice, these distances yield po-
sitions on opposite corners of a rectangular volume that encompasses a particle’s “region
of influence”. The region of influence, in this case, is a circle or sphere around a particle’s
center. The radius of the circle/sphere is the detection radius of the particle plus the maxi-
mum distance that a detection orb can extend beyond the boundary of a subvolume.

178

D DEVS TPS MODEL FORMULAS
D.5 DEVS Tracker Model

� . . . ;CL� ∆~ulower

∆~uupper

 :=

 ~uA − ~ucorner − rA − (Rdeparture − a
2

)
~uA − ~ucorner + rA +

(
Rdeparture − a

2

) ·
spcA := Ψ (idA) (“spc”)

rA := Ωψ (spcA) (“r”)

~uA := position ([Ψ, 0, idA])

The coordinates used to initialize CL are derived as follows from the distances calculated
above. The expression bXc represents a vector with each element of X rounded down to
an integer.
� . . .�

coordslower :=
⌊

∆~ulower
a

⌋
coordsupper :=

⌊
∆~uupper

a

⌋
We now shift our attention from the initialization function to the tracker model itself.
� DEV S tethered particle system; trackerDEV S �

tracker := [δext, δint, ta]

We begin defining the external transition function by obtaining the state variables of s, as
well as the port and message components of the input x.
� . . . ; tracker �

δext ([s,∆tel, x]) := s′

[CL,RL] := s

[port,msg] := x

There are three types of input messages.
� . . . ; δext �

s′ :=

port ≡ “response” → sresponse

port ≡ “arrival” → sarrival

port ≡ “departure” → sdeparture

179

D DEVS TPS MODEL FORMULAS
D.5 DEVS Tracker Model

A response message is simply added to the response list state variable.
� . . . ; s′ �

sresponse := [CL,RL′]

RL′ := RL ‖ [msg]

An arrival message indicates that a particular subvolume with ID coords has gained
awareness of a certain particle with ID idA. The coordinates list is updated accordingly.
� . . .�

sarrival := [CL′, RL]

[idA, coords] := msg

CL′ :=

 coords : CL (idA) → CL

− (coords : CL (idA)) → CL∆

CL∆ := CLC

[
idA → CL (idA) ‖ [coords]

]
A departure message indicates that a particular subvolume with ID coords has lost aware-
ness of a certain particle with ID idA.
� . . .�

sdeparture := [CL′, RL]

[idA, coords] := msg

CL′ :=

 − (coords : CL (idA)) → CL

coords : CL (idA) → CL∆

CL∆ := CLC

[
idA → del ([CL (idA) , coords])

]
With δext complete, we look at the internal transition function. Internal transitions occur
only when there are response messages to output. The response list is then emptied.
� DEV S tethered particle system; trackerDEV S ; tracker �

δint (s) := [s′, Y]

[CL,RL] := s

s′ := [CL, []]

For each received response in RL, a separate response message is output for each set of
coordinates listed in CL for the associated particle. Note that YRL is a vector of vectors
of response messages, whereas Y , defined as ‖ YRL, is simply a vector of response
messages.

180

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

� . . . ; δint �

Y := ‖ YRL
YRL (i) :=

(
i : ♦RL → YRLCL

)
response := RL (i)

[idA, spcA, tA, ~uA, ~vA] := response

YRLCL (j) :=
(
j : ♦ (CL (idA)) → [port, response]

)
coords := CL (idA) (j)

port := [“response”, coords]

The time advance function yields zero if there are responsemessages to output, and infinity
otherwise.
� DEV S tethered particle system; trackerDEV S ; tracker �

ta (s) := ∆tint

[CL,RL] := s

∆tint :=

 #RL > 0 → 0

#RL = 0 → >

D.6 DEVS Lattice Model

Here we define the lattice, the other submodel of the detector. First we obtain several
functions from Appendix B and Appendix C.
� DEV S tethered particle system�

latticeDEV S ([N, a, ~ucenter,Ωψ,Ωψψ,∆tmax]) := [initlattice, lattice] position

detect

 := tethered particle system ◦

 “position”

“detect”

FELempty

δFEL

eventFEL

 := future events list ◦

“FELempty”

“δFEL”

“eventFEL”

pr∅ := DEV S (“pr∅”)

181

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

Useful variables include the number of dimensions and the position of the corner of the
lattice.
� . . . ; latticeDEV S �

ndim := #N

~ucorner := corner ([N, a, ~ucenter])

The bulk of our efforts will go into definition of the subvolume model subV . Its sole model
parameter is its coordinates.
� . . .�

subVDEV S (coords) := [initsubV , subV]

The function detectevent results in the time remaining until the event identified by idevent
occurs. The parameters Ψ and t are state variables that together capture the present posi-
tions and velocities of each particle.
� . . . ; subVDEV S �

detectevent ([Ψ, t, idevent]) := ∆t

Events all consist of an event type and two IDs.
� . . . ; detectevent �

[typeevent, IDAB] := idevent

[idA, idB] := IDAB

There are four types of events, including “blocking” and “tethering” events associated with
particle collisions, “approach” events that occur when a particle reaches the arrival orb of
a neighboring subvolume, and “departure” events that occur when a particle leaves the de-
parture orb of the subvolume identified by coords. The mathematics of detecting blocking
and approach events is the same, as is the mathematics of tethering and departure events.
The calculation is performed by Appendix B’s detect function.
� . . . ; detectevent �

∆tevent := detect ([Ψ, t, idA, idB,Ωψψ,∆tmax, typecollision])

typecollision :=

 typeevent : [“blocking”, “approach”] → “blocking”

typeevent : [“tethering”, “departure”] → “tethering”

The time ∆tevent produced by detect is the final result, unless it is less than infinity and
we are dealing with a collision between two particles. We know that we are dealing with a

182

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

particle-particle collision when both idA and idB are natural numbers.
� . . .�

∆t :=

 (∆tevent = >) ∨ (−N (idA) ∨ −N (idB)) → ∆tevent

(∆tevent < >) ∧ (N (idA) ∧ N (idB)) → ∆tcollision

For a particle-particle collision, we wish to schedule the event only if the collision point
~ucollision is located within the subvolume identified by coords. If it is not in this subvolume,
then we give a result of infinity.
� . . . ; ∆t�

∆tcollision :=

 coordscollision ≡ coords → ∆tevent

coordscollision ≡| coords → >

The collision point ~ucollision is calculated below, along with the coordinates coordscollision
of the subvolume that contains it.
� . . . ; ∆tcollision �

~uA
′ := position ([Ψ, t+ ∆tevent, idA])

~uB
′ := position ([Ψ, t+ ∆tevent, idB])

spcA := Ψ (idA) (“spc”)

spcB := Ψ (idB) (“spc”)

rA := Ωψ (spcA) (“r”)

rB := Ωψ (spcB) (“r”)

~ucollision := rB·~uA′ + rA·~uB ′
rA + rB

coordscollision :=
⌊
~ucollision − ~ucorner

a

⌋
The initial state of a subV model does not depend on any parameters, so we use a dummy
variable as the argument of the initialization function.
� DEV S tethered particle system; latticeDEV S ; subVDEV S �

initsubV (dummy) := s

Along with t and Ψ, a subvolume’s state variables include a list of future events and a list
of arrival messages to be output.

183

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

� . . . ; initsubV �

s := [t,Ψ, FEL, IDarrival]

The initial time is zero.
� . . . ; s�

t := 0

Note that Ψ was not passed in as an argument. Particle information is to be recorded
only when response messages are received. Because we designed the responder to out-
put response messages immediately, subvolumes will become aware of particles after the
simulation starts but before time advances.

Despite the absence of particles, the initial Ψ is not empty. We add (2·ndim + 1) “orbs” to
the state variable, one for each of the neighboring subvolumes and one for the subvolume
associated with coords. It is the presence of these orbs in Ψ that allow us to use the detect
function to identify approach and departure events as well as particle-particle collisions.
The identity of the orb associated with a neighboring subvolume takes the form [idim, dr],
where idim identifies a dimension and dr a direction. The identity of the orb associated
with coords is ∅.
� . . .�

Ψ (heading) :=
(
heading : H → ψA

)
H := [∅] ‖ IDadj

IDadj (i) :=
(
i : .. (2·ndim) → [idim, dr]

)
idim :=

⌊
i
2

⌋
dr := 2·mod ([i, 2])− 1

Each orb has a species of ∅.
� . . . ; Ψ�

ψA :=

“spc” → ∅
“t” → 0

“~u” → ~uA

“~v” → ~vA

The position of each orb is the center of its subvolume, and the orb’s velocity is represented
by a vector of zeros.

184

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

� . . . ;ψA �

[idim, dr] := heading

coordsA :=

 heading ≡ ∅ → coords

heading ≡| ∅ → coordsadj

coordsadj := coordsC

[
idim → coords (idim) + dr

]
~uA := ~ucorner + a·

(
coordsA + 1

2

)
~vA := 0·..ndim

With no particles, initially, the FEL and list of arrival messages are both empty.
� DEV S tethered particle system; latticeDEV S ; subVDEV S ; initsubV ; s�

FEL := FELempty

IDarrival := []

The DEVS model itself is now defined.
� DEV S tethered particle system; latticeDEV S ; subVDEV S �

subV := [δext, δint, ta]

We start, as usual, with the external transition function.
� . . . ; subV �

δext ([s,∆tel, x]) := s′

First we obtain state variables, the new time t′, and the port and message components of x.
The port has general and specific components. The message, regardless of its type, has the
five listed particle attributes.
� . . . ; δext �

[t,Ψ, FEL, IDarrival] := s

t′ := t+ ∆tel

[port,msg] := x

[general, specific] := port

[idA, spcA, tA, ~uA, ~vA] := msg

Consider first the case of an adj message, where a particle has approached from an adjacent

185

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

subvolume. If the present subvolume is already aware of the particle, there is nothing to do
except update the time. Consider now the case of a response message, or an adj message
describing a new particle. In this situation the message contains new particle information
that must be incorporated into the state.
� . . .�

s′ :=

 (general ≡ “adj”) ∧ (idA : ♦Ψ) → [t′,Ψ, FEL, IDarrival]

(general ≡ “response”) ∨ − (idA : ♦Ψ) → [t′,Ψ′, FEL′, IDarrival
′]

New particle information is used to update Ψ.
� . . . ; s′ �

Ψ′ := ΨC

 idA →

“spc” → spcA

“t” → tA

“~u” → ~uA

“~v” → ~vA

The particle A of the response message must be compared with each orb or particle B
listed in Ψ, except for itself. If idB is a natural number, then B is a particle, and blocking
and tethering events must be considered. If idB is a function, then it is a vector of the
form [idim, dr], meaning thatB is the orb of an adjacent subvolume, meaning that approach
events must be considered. If idB is ∅, thenB is the orb of the present subvolume, meaning
that departure events must be considered.
� . . .�

FEL′ := loopψ ([0, FEL])

IDψ := ♦ (Ψ′ C| [idA])

loopψ ([i, FELi]) :=

 i = #IDψ → FELi

i < #IDψ → loopψ ([i+ 1, FELi
′])

idB := IDψ (i)

IDAB :=

 N (idB) → sort ([idA, idB])

−N (idB) → [idA, idB]

events :=

N (idB) → [“blocking”, “tethering”]

F (idB) → [“approach”]

idB ≡ ∅ → [“departure”]

186

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

For each particle B indexed by i, and for each type of event indexed by j, the future event
is added to the FEL.
� . . . ;FEL′; loopψ �

FELi
′ := loopevent ([0, FELi])

loop ([j, FELj]) :=

 j = #events → FELj

j < #events → loop ([j + 1, FELj
′])

typeevent := events (j)

idevent := [typeevent, IDAB]

tevent := t′ + detectevent ([Ψ′, t′, idevent])

FELj
′ := δFEL ([FELj, idevent, tevent, pr∅])

If the message was an adj message, and if the particle it described is new to the present
subvolume, then the particle ID is added to IDarrival. This completes the external transition
function.
� DEV S tethered particle system; latticeDEV S ; subVDEV S ; subV ; δext; s′ �

IDarrival
′ :=

 general ≡ “adj” → IDarrival ‖ [idA]

general ≡ “response” → IDarrival

In the internal transition function, there are two cases to consider. If IDarrival contains IDs,
they must be sent as arrival messages to the tracker. Otherwise, we must process an event
from the FEL.
� DEV S tethered particle system; latticeDEV S ; subVDEV S ; subV �

δint (s) := [s′, Y]

[t,Ψ, FEL, IDarrival] := s

[s′, Y] :=

 #IDarrival > 0 → [sarrival, Yarrival]

#IDarrival = 0 → [sother, Yother]

In first case, IDarrival is emptied and its contents are used to form individual output mes-
sages.

187

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

� . . . ; δint; [s′, Y]�

sarrival := [t,Ψ, FEL, []]

Yarrival (i) :=
(
i : ♦IDarrival → [port,msg]

)
idA := IDarrival (i)

port := [“out”, “arrival”]

msg := [idA, coords]

In the second case, we obtain the next event from the FEL and remove it. We also check
to see whether we are dealing with an approach event, a particle-particle collision, or a
departure event.
� . . .�

[sother, Yother] :=

typeevent ≡ “approach” → [sapproach, Yapproach]

typeevent : [“blocking”, “tethering”] → [scollision, Ycollision]

typeevent ≡ “departure” → [sdeparture, Ydeparture]

[idevent, t

′] := eventFEL (FEL)

FEL∆ := δFEL ([FEL, idevent,>, pr∅])

[typeevent, IDAB] := idevent

[idA, idB] := IDAB

If the event is an approach, an adj message is prepared to inform the adjacent subvolume.
� . . . ; [sother, Yother]�

sapproach := [t′,Ψ, FEL∆, []]

Yapproach := [[port,msg]]

port := [“adj”, [idim, dr]]

[idim, dr] := idB

msg := [idA, spcA, tA, ~uA, ~vB]

spcA := Ψ (idA) (“spc”)

tA := Ψ (idA) (“t”)

~uA := Ψ (idA) (“~u”)

~vA := Ψ (idA) (“~v”)

If the event is a particle-particle collision, a collision message is prepared that ultimately

188

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

goes to the responder.
� . . .�

scollision := [t′,Ψ, FEL∆, []]

Ycollision := [[port,msg]]

port := [“out”, “collision”]

msg := [IDAB, typeevent]

If the event is a departure, then first the departing particle is removed from Ψ.
� . . .�

sdeparture := [t′,Ψ′, FEL′, []]

Ψ′ := ΨC| [idA]

Next, in the case of a departure, the departing particle is compared in a loop to every particle
and orb remaining in Ψ.
� . . . ; sdeparture �

FEL′ := loopψ ([0, FEL∆])

IDψ := ♦Ψ′

loopψ ([i, FELi]) :=

 i = #IDψ → FELi

i < #IDψ → loopψ ([i+ 1, FELi
′])

idC := IDψ (i)

IDAC :=

 N (idC) → sort ([idA, idC])

−N (idC) → [idA, idC]

events :=

N (idC) → [“blocking”, “tethering”]

F (idC) → [“approach”]

idC ≡ ∅ → [“departure”]

Instead of adding events to the FEL, as done by the analogous set of nested loops in δext,
here we remove events. Note that the future event times below are all >.

189

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

� . . . ;FEL′; loopψ �

FELi
′ := loopevent ([0, FELi])

loop ([j, FELj]) :=

 j = #events → FELj

j < #events → loop ([j + 1, FELj
′])

typeevent := events (j)

idevent := [typeevent, IDAC]

FELj
′ := δFEL ([FELj, idevent,>, pr∅])

The identity of the departing particle is output to inform the tracker.
� DEV S tethered particle system; latticeDEV S ; subVDEV S ; subV ; δint; [s′, Y] ; [sother, Yother]�

Ydeparture := [[port,msg]]

port := [“out”, “departure”]

msg := [idA, coords]

The subV time advance function yields zero if there are arrival messages to output. Oth-
erwise, the time of the next event is obtained from the FEL.
� DEV S tethered particle system; latticeDEV S ; subVDEV S ; subV �

ta (s) := ∆tint

[t,Ψ, FEL, IDarrival] := s

∆tint :=

 #IDarrival > 0 → 0

#IDarrival = 0 → (tevent − t) ∨ 0

[idevent, tevent] := eventFEL (FEL)

With individual subvolume models now fully defined, we must complete the definition of
the lattice model that contains them. The lattice is a DEVS hypercubic lattice model, and
so we use HLDEV S . The second parameter of HLDEV S is the DEVS model function of
each submodel of the lattice; that is, subVDEV S . Note that the priority function pr∅ is used,
which randomizes the order of simultaneous internal transitions. This is a logical conven-
tion for hypercubic lattice models. In the TPS and detector coupled models, the order of
submodels was deliberately fixed for good reason; but in those cases, the submodels had
very distinct roles. In the case of lattice models representing space, each submodel gener-

190

D DEVS TPS MODEL FORMULAS
D.6 DEVS Lattice Model

ally performs a similar role to that of other submodels.
� DEV S tethered particle system; latticeDEV S �

[initHL, lattice] := HLDEV S ([N, subVDEV S, pr∅])

All that remains is the initialization function of the lattice. Recall that the initialization
function of subV required only a dummy argument. Using initHL as we are, this initsubV
argument is the result of ARGlattice when applied to the coordinates of the subvolume.
Because our ARGlattice always results in ∅, initHL will evaluate initsubV (∅) to obtain the
initial state of each subV .
� . . .�

initlattice (dummy) := s

s := initHL (ARGlattice)

ARGlattice (coords) := ∅

191

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

E Presynaptic Nerve Terminal Model Parameters

Here we present the TPS model parameters used for the simulations described in Sec-
tion 5.1, which capture the formation of vesicle clusters in presynaptic nerve terminals. All
definitions below pertain only to this appendix.

Recall that TPSDEV S takes the following arguments.

[N, a, ~ucenter, ωψ, ωψψ, attach, detach, θrevolve,∆tmax,∆trestitute]

The lattice dimensions of N determine the number of subvolumes used to detect particle
collisions. We use 14 subvolumes along both horizontal axes, and 20 along the vertical axis
which must accomodate the Z particle. Each subvolume has a length of 50 nm along each
axis, and the entire region is centered at [0, 0, 0].

N ≡ [14, 20, 14]

a = 50

~ucenter ≡ [0, 0, 0]

Presynaptic compartments vary in size and shape, but we use a sphere of radius 250 nm.
We represent the active zone as a region of the surface of that sphere. The active zone has a
circular boundary of radius 150 nm. Although they are not necessarily spherical in reality,
we approximate the sizes of docking sizes, vesicles, and halves of synapsins with radius
values of 5 nm, 20 nm, and 2.5 nm respectively.

rM = 250

rZ = 150

rD = 5

rV = 20

rS = 2.5

We assign the relative masses of vesicles and synapsins to be proportional to the volume
of space they occupy as estimated from their radii. Although docking site particles are

192

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

considerably smaller than vesicle particles, we give both types equal mass in order to reduce
the motion of docking sites.

mV = 4
3 ·π·rV

2

mS = 4
3 ·π·rS

2

mD = mV

The parameters of a TPS model include average momentum values associated with random
impulses. We find it convenient to select speed values instead, each of which is later mul-
tiplied by a particle mass. For example, the vesicle speed vV may be multiplied with the
vesicle mass mV to yield the average momentum of a random vesicle impulse.

vD = 0.125

vV = 2

vS = 0.5

The masses and speeds above are used to define the model parameter ωψ, which contains
information pertaining to individual particle species.

ωψ ≡

“M” →
[

“m” → >
]

“Z” →
[

“m” → >
]

“D” →

“m” → mD

“τRI” → 1

“kRI” → 64

“µRI” → mD·vRID

“V ” →

“m” → mV

“τRI” → 2

“kRI” → 16

“µRI” → mD·vRIV

“S” →

“m” → mS

“τRI” → 4

“kRI” → 4

“µRI” → mD·vRIS

193

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

We select a “default” coefficient of restitution to apply to collisions of various types of
particles.

crestitute = 0.1

Recall that the parameter ωψψ records blocking and tethering distances and restitution co-
efficients for each pair of particle species. As our presynaptic nerve terminal model is
designed to have exactly one M particle, M -M collisions cannot occur. It is still important
to assign a blocking distance that reflects the approximate size of the particle, for this dis-
tance is used to compute the M species detection radii (see Appendix D). We make a habit
of assigning a rebounding coefficient whenever the blocking distance is positive, which is
why the crestitute value appears below. Because M -M tethering collisions will never occur,
we may safely use ∅ for the retraction and revolution coefficients, and infinity (>) for the
tethering distance.

ωψψ ([“M”, “M”]) ≡

“crebound” → crestitute

“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 2·rM
“∆utethering” → >

Because we also have only one immobileZ particle to worry about, we define ωψψ ([“Z”, “Z”])

in a similar manner to ωψψ ([“M”, “M”]).

ωψψ ([“Z”, “Z”]) ≡

“crebound” → crestitute

“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 2·rZ
“∆utethering” → >

Because theM andZ particles are immobile, they never collide. Below we assign a positive

194

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

blocking distance and a rebounding coefficient, though it is not necessary.

ωψψ ([“Z”, “M”]) ≡

“crebound” → crestitute

“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → rZ + rM

“∆utethering” → >

Generally speaking, we add the radii of two particles to obtain the blocking distance, as
done below for the case of two docking sites. Note that docking sites never become tethered
together.

ωψψ ([“D”, “D”]) ≡

“crebound” → crestitute

“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 2·rD
“∆utethering” → >

Docking sites undergo both blocking collisions and tethering collisions with the M parti-
cle, which keeps them near the membrane of the presynaptic compartment. They are free
to move along the membrane, but perpendicular to the membrane they are given only a
distance of rD to maneuver. Because we have assigned a finite tethering distance, we use
crestitute for the retraction and revolution coefficients.

ωψψ ([“D”, “M”]) ≡

“crebound” → crestitute

“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → rM − rD
“∆utethering” → rM

Because docking sites are tethered to the Z particle, they are constrained to the active zone
of the membrane. Note that if a docking site is displayed in a visualization program as a
sphere of radius rD, the tethering distance of rZ − rD keeps the sphere completely within
the boundary of the Z sphere of radius rZ . Because we do not want to prevent docking
sites from moving towards the center of the Z particle, we choose a blocking distance of

195

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

zero. Guaranteed, as we are, that D-Z blocking collisions do not occur, we may use ∅ for
the rebounding coefficient.

ωψψ ([“D”, “Z”]) ≡

“crebound” → ∅
“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → 0

“∆utethering” → rZ − rD

Two vesicles may undergo a blocking collision at a distance of twice the vesicle radius.

ωψψ ([“V ”, “V ”]) ≡

“crebound” → crestitute

“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 2·rV
“∆utethering” → >

The tethering distance of rM − rV keeps vesicles inside the compartment.

ωψψ ([“V ”, “M”]) ≡

“crebound” → ∅
“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → 0

“∆utethering” → rM − rV

Vesicles do not interact with the Z particle.

ωψψ ([“V ”, “Z”]) ≡

“crebound” → ∅
“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 0

“∆utethering” → >

196

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

Vesicles may undergo both blocking and tethering collisions with docking sites.

ωψψ ([“V ”, “D”]) ≡

“crebound” → crestitute

“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → rV + rD

“∆utethering” → rV + 2·rD

Synapsin particles are tethered together in pairs. In the images of Section 5, the synapsin
particles are shown with radii of 2·rS instead of rS . This is done in order to make tethered
pairs of S particles appear to remain connected.

ωψψ ([“S”, “S”]) ≡

“crebound” → crestitute

“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → rS

“∆utethering” → 3·rS

The tethering distance of rM − rS keeps synapsin particles inside the compartment.

ωψψ ([“S”, “M”]) ≡

“crebound” → ∅
“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → 0

“∆utethering” → rM − rS

Synapsins do not interact with the Z particle.

ωψψ ([“S”, “Z”]) ≡

“crebound” → ∅
“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 0

“∆utethering” → >

197

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

Synapsins do not interact with docking sites.

ωψψ ([“S”, “D”]) ≡

s“crebound” → ∅
“cretract” → ∅
“crevolve” → ∅
“∆ublocking” → 0

“∆utethering” → >

Synapsins may undergo both blocking and tethering collisions with vesicles. This com-
pletes the specification of ωψψ.

ωψψ ([“S”, “V ”]) ≡

“crebound” → crestitute

“cretract” → crestitute

“crevolve” → crestitute

“∆ublocking” → rS + rV

“∆utethering” → 2·rS + rV

We now pursue a definition of the model parameter attach, the function invoked at each
blocking collision between untethered particles. We start by defining a few other functions,
starting with freeψ. This function takes the particle information selector Ψ, a particle ID
idA, and a species spcB. It results in > if the particle identified by idA is not tethered to
any particle of species spcB. Otherwise the result is ⊥.

freeψ ([Ψ, idA, spcB]) := α

IDtethered := Ψ (idA) (“tethered”)

α := loop (0)

loop (i) :=

 i = #IDtethered → >
i < #IDtethered → check

idtethered := IDtethered (i)

spctethered := Ψ (idtethered) (“spc”)

check :=

 spctethered ≡ spcB → ⊥
spctethered ≡| spcB → loop (i+ 1)

Given Ψ and the ID idS of a synapsin particle, identifycounterpart results in the ID of the

198

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

unique synapsin particle tethered to it.

identifycounterpart ([Ψ, idS]) := idcounterpart

IDtethered := Ψ (idA) (“tethered”)

idcounterpart := loop (0)

loop (i) :=
(
i < #IDtethered → check

)
idtethered := IDtethered (i)

spctethered := Ψ (idtethered) (“spc”)

check :=

 spctethered ≡ “S” → idtethered

spctethered ≡| “S” → loop (i+ 1)

Given Ψ, the ID idS of a synapsin particle, and the ID idV of a vesicle, freecounterpart
results in > if the synapsin particle’s counterpart is not tethered to that vesicle. Otherwise
the result is ⊥.

freecounterpart ([Ψ, idS, idV]) := idcounterpart

idcounterpart := identifycounterpart ([Ψ, idS])

IDtethered := Ψ (idcounterpart) (“tethered”)

α := loop (0)

loop (i) :=

 i = #IDtethered → >
i < #IDtethered → check

idtethered := IDtethered (i)

check :=

 idtethered ≡ idV → ⊥
idtethered ≡| idV → loop (i+ 1)

We now define attach, which results in the boolean α. If α = >, the two untethered col-
liding particles become tethered. Otherwise, α = ⊥, and the particles remain untethered.
Note there are only two pairs of particles species that can lead to a particle attachment, V
and S particles, and V and D particles. In the former case, αVS is evaluated. A truthful
result requires that the synapsin particle is free of vesicles (freeψ (Ψ, idS, “V ”)), and that
the synapsin particle’s counterpart is free of the particular vesicle involved in the collision
(freecounterpart (Ψ, idS, idV)). In the case of V and D particles, αVD is evaluated. The parti-
cles become tethered only if the docking site is free of vesicles, (freeψ (Ψ, idD, “V ”)) and

199

E PRESYNAPTIC NERVE TERMINAL MODEL PARAMETERS

the vesicle is free of docking sites (freeψ (Ψ, idV , “D”)).

attach ([idA, idB,Ψ,Φ,Ωψ,Ωψψ]) := α

spcA := Ψ (idA) (“spc”)

spcB := Ψ (idB) (“spc”)

VS := ((spcA ≡ “V ”) ∧ (spcB ≡ “S”)) ∨ . . .
((spcA ≡ “S”) ∧ (spcB ≡ “V ”))

VD := ((spcA ≡ “V ”) ∧ (spcB ≡ “D”)) ∨ . . .
((spcA ≡ “D”) ∧ (spcB ≡ “V ”))

α :=

VS → αVS

VD → αVD

−VS ∧ −VD → ⊥

αVS := freeψ (Ψ, idS, “V ”) ∧ freecounterpart (Ψ, idS, idV)

[idV , idS] :=

 spcA ≡ “V ” → [spcA, spcB]

spcB ≡ “V ” → [spcB, spcA]

αVD := freeψ (Ψ, idD, “V ”) ∧ freeψ (Ψ, idV , “D”)

[idV , idD] :=

 spcA ≡ “V ” → [spcA, spcB]

spcB ≡ “V ” → [spcB, spcA]

For the results of Section 5.1, tethered particles need never detach. The detach function
therefore yields ⊥.

detach ([idA, idB,Ψ,Φ,Ωψ,Ωψψ]) := ⊥

Both the attach and detach functions become more complicated if we are to model action
potentials and exocytosis, as is done in the simulations of Section 5.3.

We choose θrevolve such that a complete revolution of two tethered particles is resolved in
32 distinct collisions. We choose some very long duration for ∆tmax, and some relatively
short duration for ∆trestitute.

θrevolve = π
16

∆tmax = 230

∆trestitute = 1
256

200

	Abstract
	Acknowledgements
	Contents
	Introduction
	Overview
	Contributions
	Organization

	Review of the State of the Art
	Simulation of Biological Systems
	DEVS
	DEVS-Based Simulation of Biological Systems
	Biological Simulation Algorithm Integration
	Dynamic Simulation of Rigid Bodies
	Dynamic Simulation of Deformable Structures
	Simulation of Presynaptic Nerve Terminals

	Problem Statement
	Model and Simulator Design
	Tethered Particle System
	Proposed DEVS Formulation
	DEVS Tethered Particle System Model
	Simulation Code

	Simulation of Deformable Biological Structures
	Simulation of Vesicle Clusters
	Simulation of Deformable Membranes
	Simulation of Action Potentials and Exocytosis

	Discussion
	In Hindsight
	On Impulse-Based Dynamic Simulations of Deformable Structures
	On DEVS-Based Simulations of Biological Systems

	Conclusion
	References
	Notation
	Expressions
	Definitions
	Selectors
	Probability

	Tethered Particle System Formulas
	TPS Functions
	Collision Detection
	Collision Impulses
	Loading and Restitution
	Random Impulses

	DEVS Formulas
	DEVS Functions
	DEVS Simulator
	DEVS Coupled Models
	Priority Functions
	DEVS Hypercubic Lattice Models

	DEVS TPS Model Formulas
	DEVS TPS Functions
	DEVS TPS Coupled Models
	DEVS Random Impulse Model
	DEVS Responder Model
	DEVS Tracker Model
	DEVS Lattice Model

	Presynaptic Nerve Terminal Model Parameters

