
http://sim.sagepub.com

SIMULATION 

DOI: 10.1177/0037549708101182 
 2009; 85; 131 SIMULATION

Gabriel Wainer and Qi Liu 
 Tools for Graphical Specification and Visualization of DEVS Models

http://sim.sagepub.com/cgi/content/abstract/85/3/131
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATION Additional services and information for 

 http://sim.sagepub.com/cgi/alerts Email Alerts:

 http://sim.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://sim.sagepub.com/cgi/content/refs/85/3/131 Citations

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://sim.sagepub.com/cgi/content/refs/85/3/131
http://sim.sagepub.com


Tools for Graphical Specification and
Visualization of DEVS Models
Gabriel Wainer
Qi Liu
Department of Systems and Computer Engineering
Carleton University Centre on advance Visualization and Simulation (V-Sim)
Carleton University
1125 Colonel By Drive
Ottawa, ON K1S 5B6, Canada
gwainer@sce.carleton.ca

We introduce advanced graphical modeling and visualization facilities for Discrete Event System
Specification (DEVS) modeling and simulation (M&S) in the CD++ environment. The objective is
to provide general users with a variety of easy-to-use environments to facilitate the model analy-
sis process and thereby promoting the adoption of M&S by a wider community of practitioners and
researchers. CD++Modeler allows users without much experience in software development to con-
struct rather complex DEVS models and to analyze simulation data using 2D graphics. We also intro-
duce a graphical platform called MAPS designed specifically for urban traffic systems, and other ad-
vanced 3D animation tools (CD++/VRML, CD++/Maya, CD++DEVSView, and CD++/Blender) based
on both commercial and open-source software packages. We elaborate on the design of these
toolkits and demonstrate their capabilities as well as relative merits and limitations with realistic ap-
plications. Following a highly modular approach, the resulting architecture can be easily extended to
incorporate other modeling and visualization techniques in future development. We show that these
facilities can reduce the model development cost significantly, lower the learning curve for general
users, and improve the comprehension of continuously evolving models, making them suitable for
efficient decision making.

Keywords: virtual reality, graphics and animation, Web-based environments, DEVS methodology

1. Introduction

With the computing power and advanced software tools
available today, modeling and simulation (M&S) allows
for cost-effective and detailed analysis of natural and ar-
tificial systems where a mathematical approach is in-
tractable. A methodology that has gained increasing pop-
ularity in recent years is the Discrete Event System
Specification (DEVS) formalism [1]. By decoupling the
model and simulation concepts, the DEVS framework of-
fers two major benefits. First, the same model can be exe-
cuted on different simulators, allowing for portability and
interoperability at a high level of abstraction. Moreover,

SIMULATION, Vol. 85, Issue 3, March 2009 131–158
c© 2009 The Society for Modeling and Simulation International
DOI: 10.1177/0037549708101182
Figures 5, 7, 9–16, 18, 19, 21, 22, 24–30, 33, 35–38 appear in
color online: http://sim.sagepub.com

the well-defined separation of concerns permits models
and simulators to be independently verified and reused
in later combinations with minimal re-verification. Fur-
thermore, DEVS supports hierarchical and modular con-
struction of models, reducing the development and testing
effort. The Cell-DEVS formalism [2] extends the DEVS
theory to describe n-dimensional cell-spaces as discrete-
event models. Both DEVS and Cell-DEVS formalisms
are implemented in CD++ [3], which is an open-source
M&S environment that supports standalone and paral-
lel/distributed simulation on different platforms and has
been used to solve a variety of sophisticated problems suc-
cessfully [4–8].

In spite of its great power and capabilities, however,
M&S technology is still viewed by many practitioners as
an intimidating tool to use. The major reasons for this
are twofold. First, M&S is a knowledge-intensive process
that requires in-depth expertise not only in the underly-
ing application domain but also in software development
and system integration. Current simulation practice relies

Volume 85, Number 3 SIMULATION 131

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

on close cooperation between application domain special-
ists and software engineers who are usually not experts
in that specific domain. This cross-domain communica-
tion often leads to a fair amount of difficulties in model
specification, validation, and verification. Second, M&S
relies on human-computer interaction (HCI) and every-
thing associated with HCI, including model presentation,
representation, interface metaphors, interaction modali-
ties, and evaluation techniques [9]. The lack of an ade-
quate visualization mechanism that is generic and flexible
enough to show different simulation results in an intuitive
and user-friendly manner makes the analysis of complex
system behavior time consuming, costly and error prone.

Although various DEVS-based toolkits have been de-
veloped for tackling complex problems in a broad array
of domains, their adoption in the industry is still relatively
limited. One reason is that the users are required to have
rather extensive expertise in advanced programming tech-
niques (e.g. object-oriented programming, parallel and
distributed computing over heterogeneous platforms, and
standardization and interoperability issues, etc.). Conse-
quently, most successful applications involve multidisci-
plinary teams with a special group in charge of software
development. This increases the M&S cost and makes it
difficult for domain experts to explore their models at first
hand. To promote the awareness of DEVS-based M&S
techniques and assist general users in a wider community,
this paper introduces a state-based graphical modeling
paradigm, based on which a new toolkit (CD++Modeler)
has been developed in our research that allows users lack-
ing programming experience to construct rather complex
DEVS models without the intervention of software engi-
neers and to analyze simulation results in a natural visual
way. This toolkit is integrated as a core module in the
CD++Builder package, an integrated M&S platform de-
livered as an Eclipse plugin that has been used to support
a model-centered methodology for developing real-time
and embedded systems at reduced cost [10].

In order to present a general picture of the graphi-
cal modeling and visualization facilities currently avail-
able in the CD++ environment, we summarize and review
the different mechanisms that have been employed to in-
terface CD++ with sophisticated commercial and open-
source 3D visualization and rendering techniques to fulfill
the needs of different user communities. These techniques
include Virtual Reality Modeling Language (VRML), Au-
todesk Maya [11], Open Graphics Library (OpenGL)
[12], and Blender [13]. The result is a suite of toolkits,
known as CD++/VRML, CD++/Maya, DEVSView, and
CD++/Blender respectively, with varied capabilities to im-
prove the comprehension of continuously evolving mod-
els and to facilitate the decision-making process. A special
graphical toolkit called MAPS [14], designed exclusively
for simulation of urban traffic, is also discussed in this pa-
per to exemplify the potential of applying DEVS-based
graphical modeling and visualization techniques in real-
world settings. Although many of these tools have already

been presented individually in our prior work, this paper
highlights the design considerations behind these toolk-
its and compares their relative merits and limitations with
new applications.

The rest of the paper is organized as follows. Section 2
recaps the background information about the formalisms
and the CD++ environment. It also gives a brief survey of
some of the existing graphical modeling and visualization
tools, showing the popularity of this approach. A multidi-
mensional taxonomy of the CD++ family of visualization
toolkits is also presented in this section. Section 3 cov-
ers the graphical modeling paradigm and its realization
in CD++Modeler. Section 4 discusses the integration be-
tween CD++ and VRML and shows how this technique
can be used to improve urban traffic simulation. Section 5
is concerned with the integration of CD++ with other ad-
vanced 3D visualization techniques. Throughout the dis-
cussion, realistic applications are presented to demon-
strate the features and capabilities of the integrated en-
vironment. Section 6 closes the paper with conclusion re-
marks and future work.

2. Background

Based on general dynamic systems theory, the DEVS for-
malism [1] provides a sound M&S framework for defining
hierarchical discrete-event models in a modular way,
where a system is described as a composition of behav-
ioral (atomic) and structural (coupled) components. Un-
like the discrete-time simulation approach, DEVS uses a
continuous time base and allows for asynchronous model
execution, improving the efficiency of the simulation
without losing accuracy. Cellular Automata (CA) [15] are
capable of producing a great variety of complex behavior
of systems represented as cell spaces. Traditionally, CA
models are implemented on a computer using a discrete-
time approach. The behavior of a cell space depends on
synchronous evaluation of local functions defined in the
cells at discrete-time intervals. The Cell-DEVS formalism
[2] combines the advantages of CA and DEVS to describe
n-dimensional cell spaces as discrete-event models, where
each cell is represented as a DEVS atomic model com-
municating with its neighboring cells and outside model
components using a modular interface. It defines different
timing semantics for each cell, allowing explicit timing
specification, asynchronous model execution, and seam-
less integration with other types of models.

CD++ [3] is an open-source environment that supports
standalone and parallel/distributed simulation of DEVS
and Cell-DEVS models. Over the years, it has been de-
veloped as a set of software toolkits running on many
mainstream operating systems. The environment provides
two major frameworks: a modeling framework that allows
users to define the behavior of atomic and coupled mod-
els using a built-in graph-based specification language or
C++; and a simulation framework that creates an executive

132 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 1. An excerpt of a log file created in CD++

Figure 2. Textual representation of the Life game

entity for each component in the model hierarchy to carry
out the simulation in line with the formalisms. Cell-DEVS
models can be coded in simple rules with a few parameters
using predefined operators, functions and constants.

The simulation is executed in a message-driven fash-
ion. CD++ messages fall into two categories: content mes-
sages include the external message (X) and output mes-
sage (Y) that encode the actual data transmitted between
the models, while control messages include the initializa-
tion message (I), collect message (@), internal message
(*), and done message (D) that are used to synchronize
the simulation. During the simulation, all messages ex-
changed between the models are recorded in log files,
which can then be used for debugging and visualization
purposes. Figure 1 shows an excerpt of a log file created
for the Game of Life [16], where the output messages are
highlighted. Each Y message contains information regard-
ing the time of the event, source model, output port, value
of the data, and destination model.

As we can see, it would be very difficult and error
prone to obtain a high-level depiction of the model be-
havior from the log files and extensive interpretation and
reconstruction are required to have a clear understanding
of what occurred in the simulation. To ease the analysis
of simulation data, a utility tool is provided to translate
the log files into a textual representation of the simulated
model, as seen in Figure 2.

However, this textual representation is only available
for presenting Cell-DEVS models, as there is no conve-
nient way to draw the input and output trajectories of a

general DEVS model. In addition, three or higher dimen-
sional cell spaces can be represented only as a series of
individual slices (each for a 2D plane), further reducing
the expressive power of the textual representation.

Many graphical M&S techniques have been proposed
in the literature. The following is a non-comprehensive list
of recent efforts, showing the popularity of this approach.

• Modelica [17] is an object-oriented language for
modeling complex and heterogeneous physical sys-
tems and controllers. Models are described using
differential, algebraic and discrete equations. Dy-
mola [18] is a commercial tool that uses Modelica
for real-time visual simulation of electromechani-
cal, automotive, aerospace, and robotic systems. 3D
animation and plotting facilities are included in the
tool to help analyze the simulated models.

• VisualSense [19] is an M&S framework for wireless
sensor networks that supports component-oriented
construction of models based on the Ptolemy II
modeling and visualization environment [20]. A
Java-based graphical user interface is provided in
Ptolemy II that allows users to develop continuous-
time models as block diagrams, and hybrid system
models are constructed by combining finite state
machines with continuous-time models. It also in-
cludes a 2D Java plotter and a 3D animation mod-
ule that uses Java 3D library to render simulation
results.

Volume 85, Number 3 SIMULATION 133

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Table 1. A taxonomy of graphical modeling and visualization toolkits in CD++

Toolkits CD++ CD++/ MAPS CD++/ DEVSView CD++/
Criteria Modeler VRML Maya Blender

Cost Open-source Open-source Open-source Commercial Open-source Open-source

Capability Graphical
modeling and
visualization

Visualization
only

Visualization
only

Visualization
only

Visualization
only

Visualization
only

Applicability General DEVS
and Cell-DEVS
models

General DEVS
and Cell-DEVS
models

Urban traffic
M&S only

General DEVS
and Cell-DEVS
models

General DEVS
and Cell-DEVS
models

General DEVS
and Cell-DEVS
models

Visual effect 2D 3D 3D 3D 3D 3D

Dependency Java-based
component
integrated with
CD++Builder

Web-based
Standalone
toolkit using
VRML

VRML-based
Standalone
toolkit

Standalone
toolkit using
Maya

OpenGL-based
Standalone
toolkit

OpenGL-based
Standalone
toolkit

Installation
footprint

Small Small Medium Large Medium Large

• RUBE [21] is an XML-based framework that de-
couples model specification from model presen-
tation so that dynamic models can be formally
specified and then presented in customized 2D
or 3D visualization. Users must manually asso-
ciate an icon with its semantic meaning during the
model authoring procedure, and need to program
the semantic functions for each model component.
The framework provides a graphical user interface
(GUI) to generate the model representation that
consists of a scene file and a model behavior file
using open-source computer graphics software such
as Sodipodi [22] and Blender [13].

• Trend/jTrend [23] is a general purpose 2D CA en-
vironment with an integrated simulator and a com-
piler. It provides a GUI for defining CA rules and
dynamically changing the attributes of the cellu-
lar spaces, and supports 2D text-based animation of
CA models.

• BioSim [24] is an interactive and visual problem-
solving environment for the biomedical domain that
uses CA to model biological behaviors. It provides a
3D virtual world model in which users can explore
biological interactions either as an observer or by
immersive role playing. Photorealistic 3D models
of components of the system are created with Au-
todesk 3ds Max and exported to 3D Game Studio,
which is then used to construct the game scenes,
bio-morphed characters and the integration of the
world/character dynamics and interactions.

• JDEVS [25] is a DEVS-based M&S environ-
ment that enables object-oriented, general purpose,
component-based, and Geographical Information
System (GIS) connected visual simulation model
development and execution. It includes easy-to-use

2D and 3D visualization tools to render the simu-
lated phenomena.

Although graphical modeling and visualization tech-
nique has been the topic of a great number of studies,
its application to DEVS and Cell-DEVS models is only
rarely explored in the literature [25]. In the following sec-
tions, we will present a suite of toolkits developed around
the CD++ environment based on various advanced visual-
ization and rendering techniques to assist in the analysis of
massive simulation data for complex models. To improve
comprehension and emphasize distinctions between these
toolkits, Table 1 gives a multi-dimensional taxonomy of
the CD++ family of visualization toolkits using different
criteria.

3. DEVS-based Graphical Modeling and
Animation Framework

To assist users who are not necessarily computer software
specialists in the modeling process, the DEVS Graphs no-
tation originally described in [26] has been included in
CD++ for defining the behavior of DEVS atomic mod-
els in a natural visual way [10, 27]. With DEVS Graphs,
users can think about the problem at hand in a more ab-
stract way and develop models as state machines based on
formal DEVS specifications. Using DEVS Graphs, atomic
models are defined as a set of symbolic objects, each with
several attributes, to represent the states and state transi-
tions. In order to be simulated in CD++, DEVS Graphs
are translated into a machine-processable representation
called GADscript (GrAphical DEVS script). Figure 3
shows the graphical and GADscript representations.

Figure 3(a) shows a state, defined as a bubble with
an identifier and a lifetime (translated to GADscript state
keyword; the lifetime of a state is then assigned to the cor-
responding stateId in a separate statement). Figure 3(b)
shows the definition of internal transitions, represented as

134 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 3. Graphical and GADscript notation of states and transitions

a dotted arrow between a source and a destination state. In
GADscript the keyword int is used, and the output func-
tion is defined as a set of events denoted as q!v (i.e., send-
ing value v through port q). Finally, Figure 3(c) depicts an
external transition as a solid arrow between a source and
a destination state. GADscript uses ext to define an exter-
nal transition, and an input event is denoted as p?v (i.e.,
arrival of an input value v at port p). The external tran-
sition happens only if the required triggering condition is
hold, which is specified using a logical expression that in-
volves the input events. The time values [t1..tf] provide a
mechanism to verify the timing properties of the simulated
system.

However, this approach also has some limitations in
building sophisticated systems. In most cases, it can be
difficult to represent complex model behavior by looking
only to state changes. Although we can attack such com-
plexity by reducing model granularity (i.e., using DEVS
hierarchical decomposition), this could result in a model
with artificially complex structure (for instance, we could
write a state machine to approximate the computation
of a continuous function; the resulting model is much
more complex than the definition of such a model using
a high-level language). To deal with these cases, CD++
includes constructions (actions) that allow modelers to in-
voke external functions during state transitions, providing
a flexible mechanism for defining complex model behav-
ior while still maintaining the simplicity and intuitiveness
of the graphical approach. The list of actions manipu-
lates temporary variables defined in the model. Actions
can be simple mathematical expressions, or they can be
implemented in user-defined C++ functions. Thanks to
this mechanism, users can now combine models written
in DEVS Graphs with others defined only using C++, or a
mix of them (DEVS Graphs with actions).

DEVS atomic models interact with other models
through its input/output ports. DEVS Graphs represent
them as arrowheads attached to a model definition, as
shown in Figure 4. A port is specified in GADscript by its
name and data type (e.g., port p2 only accepts input data of
type float). The default data type of a port is integer (e.g.,
both input port p1 and output port q1 are integer). Using
these notations, a DEVS atomic model can be specified
graphically. Figure 5 gives a DEVS Graph definition of
an atomic model called sender. The corresponding GAD-

Figure 4. Graphical and GADscript notation of input and output
ports

script specification is shown in Figure 6. As we can see,
the atomic model declares 11 states (start is designated as
the initial state). Passive and transient states are allowed.
For example, the start is a passive state with an infinite
lifetime (line 26); sendingm0 is a transient state with life-
time 0 (line 34). The state transitions use four temporary
variables, which are declared (line 4) and initialized (line
37 to 40) in the specification. The internal transition on
line 11, for example, occurs when the lifetime of send-
ingm1 is consumed. In this case, it is a transient state, so
the transition is fired immediately after sending the value
of msg1 through port m1. The external transition on line
21 is triggered if the current state is waitmsg1 and a valid
input event is received at port i. The model changes to
state m0ok, and updates the variables msg1 and flag1 in
the corresponding action.

Once the atomic models are defined, they can be com-
bined into a coupled model using graphical notations as
well. A coupled model may include input/output ports,
atomic or coupled models that have already been defined,
and the coupling links between them. Figure 7 and 8
show the DEVS Graph and GADscript specification of
a coupled model called network. The input and output
ports of the coupled model are represented as arrow-
heads. Atomic models are shown as bubbles, while cou-
pled models are depicted as squares. The solid arrows
represent the coupling links between the model compo-
nents and input/output ports. The links are defined us-
ing keyword link in GADscript. The coupled model in
Figure 7 has two atomic components and one coupled
component, as specified at line 2 in Figure 8 with key-
word components. Each atomic or coupled model is an

Volume 85, Number 3 SIMULATION 135

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 5. DEVS Graph specification of an atomic model

Figure 6. GADscript representation of an atomic model

136 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 7. DEVS Graph specification of a coupled model

Figure 8. GADscript representation of a coupled model

instance of a predefined model specification. For exam-
ple, the sender0@sender creates an instance of the atomic
model sender that we have defined earlier. The GADscript

specifications of atomic and coupled models are saved in
files (referred to as CDD and MA files respectively) so
that they can be reused in later model development. For

Volume 85, Number 3 SIMULATION 137

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 9. A screenshot of the CD++Modeler graphical user interface

instance, line 13 in Figure 8 refers the definition of the
sender model to file sender.CDD. The DEVS Graph al-
lows users to define hierarchical models in a modular way,
as required by the DEVS formalism.

These facilities are implemented in CD++Modeler, a
DEVS-based toolkit for graphical model construction and
2D visualization. As one of the core modules of the
CD++Builder Eclipse plugin [10], CD++Modeler pro-
vides a GUI that allows users to construct DEVS atomic
and coupled models graphically in a simple drag-and-
drop fashion using the notations just introduced. Figure 9
shows a screenshot of the GUI. The navigation panel
on the left shows a tree of units for the current model
(i.e., states, ports, variables, and transitions of an atomic
model or the components of a coupled model) for quick
access. The model editing panel on the right provides
a workspace where users can construct atomic or cou-
pled models graphically. The graphical specifications of
atomic and coupled models can be imported as templates
(or classes) in construction of other coupled models. Like-
wise, many instances with different properties can be cre-
ated from an existing model template, promoting model
reuse and reducing model development time.

Users can also use customizable graphical metaphors,
including a repository of image icons for representing dif-
ferent model components in DEVS Graphs. Figure 10
shows the DEVS Graph specification of a supply chain
model using customized image icons. This presents an
intuitive mapping between the model and the real sys-

tem, enriching the expressive power of the tool. By pars-
ing the output streams generated during the simulation,
CD++Modeler can visualize DEVS models in two differ-
ent ways: by plotting the input and output (I/O) trajecto-
ries of a model component (atomic or coupled) based on
the external (X) and output (Y) messages, or by showing
the interactions between the ingredient components of a
DEVS coupled model.

Figure 11 shows the animation of I/O trajectories on
the various ports of an atomic model. Users can adjust the
scaling of the signals, change the time format, and focus
on specific ports by selecting the checkboxes on the con-
trol panel. This oscillogram-like animation allows users
to investigate model behavior at the I/O functional level
and establishes a straightforward causal relationship be-
tween the inputs and outputs, greatly facilitating the model
analysis task. Figure 12 shows the animation of interac-
tions among the components of a coupled model. The ani-
mation is overlaid on top of the DEVS Graph specification
of a coupled model, displaying message passing along the
coupling links with 2D-text effects. For example, the an-
imation in Figure 12 shows that a message carrying the
value of variable Material is sent from the Transportation
component to the Manufacturer component at simulated
time 43:30:00:000. Users can play the whole animation or
step through it one frame at a time by using the control
buttons. This animation gives a high-level view of the in-
terior behavior of a coupled model, helping users interpret
and reconstruct what is happening in the simulation.

138 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 10. A supply chain model defined in CD++Modeler using customized image icons

Figure 11. Animation of the input and output trajectories of a DEVS model in CD++Modeler

Volume 85, Number 3 SIMULATION 139

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 12. Animation of the interactions between components of a DEVS coupled model in CD++Modeler

Figure 13. Animation of 2D Cell-DEVS models using user-specified palette

In Cell-DEVS models, users are usually interested in
the evolution of the cell space as a whole. To this end,
CD++Modeler provides a GUI to animate cell spaces. Fig-

ure 13(a) shows a GUI that allows users to choose differ-
ent color palettes. Figure 13(b) illustrates the animation of
a 2D Cell-DEVS model that simulates the propagation of

140 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 14. Animation of 2D Cell-DEVS models using different geometries

Figure 15. Animation of a 3D heat diffusion Cell-DEVS model as separate planes

forest wildfires. Users can load multiple Cell-DEVS mod-
els, change the frame duration, run or pause the animation,
and single-step (forward or backward) through the ani-
mation sequence. These functionalities are also available
through a Cell-DEVS applet visualization engine that can
be found at www.sce.carleton.ca/faculty/wainer/wbgraf.

Although Cell-DEVS models usually employ a
square geometry (which is relatively simple for model
specification and visualization), this might fail to ac-
curately model certain phenomena that possess highly
uniform or isotropic properties (i.e., homogeneous be-

havior in every direction). Using different geometries
such as triangular or hexagonal-shaped cells may en-
able more appropriate and natural model definitions [3].
CD++Modeler provides a lattice translator that is able to
perform automated mapping between different geometries
in visualizing Cell-DEVS models. Figure 14 shows the
animation of the fire propagation model using triangular
and hexagonal-shaped cells. As illustrated in Figure 15,
CD++Modeler visualizes high-dimensional cell spaces as
a series of individual planes due to the inherent limita-
tion of 2D visualization, sacrificing the intuitiveness and

Volume 85, Number 3 SIMULATION 141

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 16. Graphical user interface of the NavigatePanel

expressive power to a certain degree. This problem can
be addressed with more advanced 3D visualization tech-
niques, as we will discuss in the following sections.

4. Web-based 3D Animation Using VRML

The Virtual Reality Modeling Language (VRML) is a
web-based graphics language for describing interactive
3D objects and virtual worlds created using a scene-graph
structure. It defines a universal interchange VRML file
format, and allows users to interact with a scene through
viewpoints, movement, and rotations. A scene graph con-
sists of an ordered collection of hierarchically grouped
nodes that represent objects and their properties, gener-
ate events in response to environmental changes and user
interaction, and participate in event routing mechanisms
through which the effect changes are propagated to other
nodes. Although VRML has now been superseded by Ex-
tensible 3D (or X3D, an open ISO standard for real-time
3D computer graphics), the technique still enjoys wide-
spread use in education and research communities.

Conceptually, every VRML world contains at least a
viewpoint from which the world is currently being viewed.
Navigation is the action to change the position and/or ori-
entation of the current viewpoint, allowing the user to
move through the virtual world or examine an object from
different perspectives. A navigation node describes the
characteristics of the desired navigation behavior, and a
viewpoint node specifies a predefined location and orien-
tation in the virtual world to which the user may be moved
via scripts or browser-specific user interfaces.

We have developed a web-based 3D visualization
toolkit called as CD++/VRML using VRML constructions

[28]. The visualization starts with an empty VRML root
file that is embedded in an HTML web page, represent-
ing an empty scene to which the simulation data can be
added as child nodes. These nodes can then be manipu-
lated by an external Java Applet according to the simu-
lated model behavior in CD++. The applet acts as the in-
terface between the CD++ environment and the VRML
virtual world and provides a set of functions for the user
to control the scene. As shown in Figure 16, the Navi-
gatePanel is the main component of the applet. It keeps
track of the data currently displayed in the scene, a his-
tory of recently navigated nodes, and the name of every
displayed node. This information changes whenever the
VRML scene is updated during the navigation.

This graphical interface was extended for graphical
modeling and visualization of urban traffic. Advanced
Traffic Language Specifications (ATLAS) is a language
that enables users to specify the topology and detailed
constructions of a city section in high-level descriptions
and to carry out microscopic traffic simulation using au-
tomatically generated executable models [6]. A city sec-
tion is composed of a set of different constructions repre-
senting all kinds of standard elements that can be found
in a city landscape. The built-in constructions defined in
ATLAS include street segments, parking lanes, crossings
(or intersections), traffic lights, traffic signs, railways, and
road worksites [29]. There are several inherent advantages
associated with this technique. First, users can concen-
trate on the traffic problem to be solved, rather than be-
ing bogged down in the messy details of low-level pro-
gramming. By decoupling the ATLAS language from the
underlying simulation environment, users do not need to
have a deep understanding of the M&S theories to con-

142 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 17. Procedure and techniques for urban traffic modeling and simulation

duct the experiments, significantly lowering the learning
curve. Secondly, it provides an open environment where
different M&S methodologies can be easily integrated
into the toolkit without modifying the models that have
already been defined in ATLAS. Thirdly, the city section
under study is specified using a formal language and the
correctness of the resultant models is validated based on
proven formalisms, reducing potential errors in the mod-
eling process. Fourthly, the simulation is performed using
a discrete-event approach that can achieve a higher level
of precision and simultaneously reduce execution time.
Finally, Cell-DEVS provides native support for defining
different types of timing constructions, reducing the effort
required to build complex behavioral models.

In order to facilitate model construction and support
rapid changes in system configuration and rendering, we
adapted the CD++/VRML toolkit to include a modeling
facility for traffic networks and moving vehicles. The en-
vironment, called MAPS [14, 29], allows users to draw
city sections directly through a GUI, and automatically
translates the imagery into valid ATLAS files, which are
then compiled by the Traffic Simulation Compiler (TSC)
into Cell-DEVS models for simulation in CD++. It elim-
inates the need for learning the ATLAS language and
reduces the model development time. A VRML-based
output module is included in MAPS to reconstruct the
specified city section in VRML virtual worlds and to an-
imate traffic flows in realistic 3D graphics according to
the simulation results. Figure 17 illustrates the procedure
of the M&S process and the main techniques involved at
each stage. Key features of MAPS include [14]:

• an intuitive GUI that allows users to quickly draw
the traffic network of a city section

• automatically generate the road intersections with-
out user intervention

• automatically create segments for each road without
user intervention

• traffic decorations (e.g., traffic lights, signs, etc) can
be easily added, changed, or deleted

• parameters of ATLAS constructions can be dynam-
ically modified to adjust simulation configurations

• parse and validate the drawing of a city section into
ATLAS files.

As the core class of the software package, ATLAS-
Parser is responsible for translating the imagery of a city
section into valid ATLAS code. It first removes and stores
the crossings of the traffic network and the city-level deco-
rations (e.g. railways), and then loops through the roads to
identify the intersections. If an intersection already exists
in the saved crossing list, then the user-specified crossing
is used. Otherwise, new intersections are automatically
created as needed and the roads are cut into appropriate
segments, each having its parameters set based on the road
configuration (e.g. whether parking is allowed or not, the
position at which the road segment crosses a railway line,
etc.). The process continues until all the roads and lanes
in the imagery are parsed.

Figure 18 shows a screenshot of the MAPS GUI for
defining a city section that includes railways (black rec-
tangle with white line), crossings (yellow circles), road
worksites (yellow squares), stop signs (red squares), and
parking spaces (blue rectangles), in a bidirectional road
network. The ATLAS parameters of each construction
(e.g. speed limits, curvature of the road) can be modified
on the right-hand side property panel, and the correspond-
ing ATLAS code is automatically generated by MAPS.
When compared with plain text ATLAS specifications,
this graphical representation of the traffic model is more
appealing, intuitive, and simpler for users to understand
and configure the experiments.

The output module uses the automatically generated
ATLAS file to reconstruct a static scene of the city sec-
tion in VRML virtual world. It determines the location
and direction of each vehicle at a particular point in time
based on the CD++ simulator. A 3D car shape is dis-
played on the screen at the appropriate cell of a road seg-
ment for the time duration as indicated by the simulation.
In this way, the animation shows a microscopic view of
the traffic flow on the road network. Users can navigate
through the virtual city section using the VRML naviga-
tion panel introduced in Figure 16. The 3D visualization is
achieved by showing the ATLAS constructions and vehi-
cles with VRML nodes. Different shapes are used to rep-
resent the vehicles and various constructions such as the
cells of a road segment, crossings, and traffic signs. A one-
to-one correspondence is established between the Cell-
DEVS model components, the ATLAS constructions, and
the VRML visual objects. In order to visualize the AT-
LAS file properly, the output module needs to calculate
the length and rotation angle for each road segment and
then place it at the appropriate position in the VRML
scene. Once the length and angle are determined, the out-

Volume 85, Number 3 SIMULATION 143

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 18. A screenshot of the MAPS GUI [14]

put module maps the segment to a visual object that is
stretched from the given start point, and scaled and rotated
according to the calculated values. Figure 19 exemplifies
a static view of the road network on Carleton University
campus. The output module animates traffic flows in a 3D
VRML virtual world by parsing the log file generated in
CD++. The entering of a car in a particular cell is detected
by an output message (Y) with value 1 sent from the cell,
while the departure of a car is indicated by a Y message
with value 0. In the former case, the output module creates
a VRML car shape and aligns its orientation with respect
to the hosting cell. In the latter case, the car shape is re-
moved from the cell and the log file is searched to find the
corresponding entering event scheduled at the destination
cell. The car shape will be put at the new location after the
delay time as given in the Y message.

5. Advanced Techniques for Visualization of
DEVS and Cell-DEVS models

Although the CD++/VRML toolkit provides a visual
M&S environment that empowers users to create sophisti-
cated 3D graphics for data exploration in scientific and en-
gineering applications, it also has some limitations. First,
it relies on the obsolete VRML standard that is no longer
widely supported due to, among other things, its lack of
advanced features, large file size, and relatively low frame

rates. Secondly, it supports 3D animation of Cell-DEVS
models only, considerably restricting its applicability in
general DEVS-based systems. To overcome these draw-
backs and to meet the diverse needs of different users, we
have developed mechanisms to integrate the CD++ envi-
ronment with a variety of commercial and open-source vi-
sualization and rendering techniques, including Autodesk
Maya [11], OpenGL [12], and Blender [13]. In this sec-
tion, we will elaborate on these advanced techniques and
demonstrate their capabilities with a wide range of appli-
cations.

5.1 CD++/Maya – A High-Performance 3D
Visualization Engine for CD++

Autodesk Maya [11] is one of the leading commercial
software packages for 3D modeling, animation and visual
effects. Maya software interface is fully customizable and
allows users to extend their functionality by providing ac-
cess to the Maya Embedded Language (MEL). With MEL,
users can tailor the GUI to fulfill their specific needs and
to develop in-house tools. The MEL scripting language
has been used in our research to create a high-performance
3D visualization engine, referred to as CD++/Maya, for
DEVS and Cell-DEVS models [30], allowing for inter-
operability between a DEVS-based M&S tool and an
advanced generic visualization environment like Maya.

144 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 19. A static view of the road network on Carleton University campus [14]

Figure 20. Major modules defined in the CD++/Maya visualization engine [30]

Users create a static scene in Maya, providing the nec-
essary background for 3D animation of the simulation
results. As usual, the specifications of DEVS and Cell-
DEVS models under study are submitted to the CD++
environment, which generates a stream of events during
the simulation. CD++/Maya loads and initializes the pre-
defined scene file based on the model definition, and over-
lays 3D animation on top of the static scene according to
the event data. The development of CD++/Maya follows
a modular approach. Figure 20 shows the major modules
defined in the visualization engine [30].

The logFileAnimator module serves as an interface be-
tween CD++ and Maya. Figure 21 shows the GUI where
users can specify the log file and choose among avail-
able scene files. Two modes are available for analyzing
the simulation data: direct analysis and animation. The
former allows advanced users to take a close look at the

content of log files for debugging and model verification
purposes, while the latter presents an intuitive 3D anima-
tion for the selected model.

The animator module reads the simulation results, cre-
ates Maya objects based on the event data, and runs the an-
imation in the 3D scene. Similar to CD++/VRML, a one-
to-one correspondence is established between the model
components and the Maya visual objects. Users can cre-
ate customized animations using the MEL scripting lan-
guage. In the following sections, we show the capability
of CD++/Maya using different modeling examples, focus-
ing on the visualization aspects of the M&S process. In-
terested readers can find the detailed model definitions in
[30–32].

Volume 85, Number 3 SIMULATION 145

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 21. The dialog window for the logFileAnimator module [30]

5.1.1 Maze Solving

Our first example focuses on a Cell-DEVS model that im-
plements a maze-solving algorithm [33]. The algorithm
is coded as a set of rules that effectively block off every
dead-end path (i.e., a path that is accessible from only one
direction) in the maze so that in the end only those cells
that form the final solution remain unblocked when the
system becomes stable. A 2D visualization can be defined
in CD++Modeler. However, users can gain more insight
and understanding of the model behavior by exploring the
multiple viewpoints provided in CD++/Maya, as seen in
Figure 22.

5.1.2 A Car Manufacturing Model

We have developed a DEVS model that simulates a car
factory trying to maintain a suitable production level by
coordinating the operation of its various assembly lines.
The automobile parts are produced by four assembly lines
respectively (i.e. chassis, body, transmission case and en-
gine). A car is then assembled using one component from
each of these assembly lines. The structure of the model
is depicted in Figure 23(a). A log file like the one shown

in Figure 23(b) is generated when the model is executed
by the CD++ simulator. The input and output trajecto-
ries of the DEVS model can be animated in 2D using
CD++Modeler as discussed in Section 3. Although this
allows a detailed analysis of the simulation data, it is still
rather abstract and elusive for general users to have an in-
tuitive and global comprehension of the simulated phe-
nomenon. To increase the degree of realism of the vi-
sualization, we animate the car manufacturing model in
CD++/Maya. Figure 24 illustrates two snapshots of the
animation at different virtual times.

In the log file, the availability of an automobile part
is represented as a Y message sent from the correspond-
ing assembly line to the final assembling warehouse. Such
an activity is shown in the animation as a 3D icon that
stands for the specific automobile part moving between
the entities in the virtual world. For example, the anima-
tion in Figure 24(a) shows that three auto parts are made
available at virtual time 02:000 and Figure 24(b) shows a
finished car moving out of the assembling warehouse at
virtual time 04:000.

146 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 22. Maze-solving results and CD++/Maya animation from different perspectives [30]

Figure 23. A car manufacturing model and the generated log file [30]

Figure 24. Animation of the car manufacturing model in CD++/Maya [30]

Volume 85, Number 3 SIMULATION 147

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 25. Animation of the glycolysis process in CD++/Maya [30]

5.1.3 Glycolysis and Krebs Cycle Pathways

Molecular visualization plays a central role in many
chemistry and biology researches due to its effectiveness
in revealing information on complex molecular structure
and dynamics. In [34], we developed a DEVS model of
different pathways in the cell (namely, glycolysis and
Krebs cycle), representing the sequence of reactions oc-
curring in the process of breaking down one glucose mole-
cule into two pyruvate molecules. Ten steps are involved
in the process, which can be divided into two phases. In
the first phase a glucose molecule is converted into two
glyceraldehyde-3-phosphate molecules (GDP), which are
then converted into two pyruvate molecules in the second
phase. Each step was defined as a DEVS atomic model,
and a DEVS coupled model was constructed by connect-
ing all the atomic components to model the process. The
simulation results were then visualized with CD++/Maya.
Figure 25 illustrates the animation of the two steps occur-
ring in the simulation. Figure 25(a) shows the end of step 1
when two alpha-gluco-phospates (G-6-P) and two adeno-
sine diphosphates (ADP) are formed. Figure 25(b) shows
step 6 that begins at the presence of three molecules of
nicotinamide adenine dinucleotide (NAD+).

5.1.4 Evacuation under Emergencies

In recent years, numerous models for emergency response
solutions have been proposed, with the goal of modeling
human behavior in the event of an emergency evacuation.
We created a 3D Cell-DEVS model to simulate the be-
havior and movement of every person in a crowd during
an evacuation. The model employs orientation informa-
tion defined by a parameter, called as distance potential,

which is used to guide individuals towards the emergency
exits. Normally, a person will move in the direction de-
creasing the distance potential (i.e. moving towards the
exits). However, some people may move in the wrong di-
rection under stress and panic, which is controlled by a
given panic level. People move at different speeds, and
collision detection mechanisms are included.

We executed experiments for different configuration
settings (number of people involved in the evacuation,
number of exits, and various combinations of the parame-
ters). Figure 26(a) shows a segment of the 2D animation
generated with CD++Modeler, in which a person is de-
noted as a red dot and the two layers of the model have to
be displayed separately. In Figure 26(b), we illustrate the
Maya scene file created specific for the evacuation model.
The static scene constitutes a realistic visual model of
the building under study and provides the background on
which 3D Maya animation can occur. Figure 26(c) shows
the 3D animation at different virtual times, and observed
from different viewpoints. Each human figure is repre-
sented by a 3D avatar. Similar to CD++/VRML, the visu-
alization engine retrieves CD++ simulation data, and relo-
cates the avatars based on the coordinates and values of the
cells. The resulting frame-based motion of human figures
allows users not only to easily trace each individual per-
son throughout the building, but also to gain deeper insight
into the evacuation process as a whole. Likewise, the 3D
rendering gives more details about the building evacuation
than the symbolic 2D animation in CD++Modeler. This
enables users to quickly identify potential bottlenecks and
choke points in the building, to plan and test different
evacuation strategies, to evaluate a variety of alternative
structures and configurations of the building, and most
importantly, to achieve all these goals quickly and at low
cost. Finally, these models can be used for training pur-

148 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 26. Animation of the emergency evacuation model using CD++Modeler and CD++/Maya

Volume 85, Number 3 SIMULATION 149

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 27. Animation in Maya/CD++ from different viewpoints and layers

poses as they can be easily incorporated in immersive en-
vironments with specialized 3D visualization capabilities.

CD++/Maya toolkit provides an integrated environ-
ment that allows for seamless interoperability between
DEVS-based simulation toolkits and high-performance
visualization facilities. It enables users to analyze mas-
sive simulation data in an intuitive and efficient fashion
with increased realism, responsiveness (or interactivity),
and immersion, representing a step forward in advanc-
ing model-based design and development of state-of-the-
art virtual reality systems. Figure 27 shows an extension
to the model introduced in Figure 26 that illustrates the
evacuation of an area in downtown Montréal (where the
previously simulated building is located). These simulated
results were automatically generated from 3D geographi-
cal data of the area, combined with the previously defined
evacuation model, showing that a user can easily create
3D versions of the model to gain deeper insight. The final
figure shows the integration of these results with the Eu-
calyptus platform (a distributed environment for participa-
tory design using 3D visualization for architecture), show-
ing the potential of this application [32, 35].

5.2 DEVSView – An OpenGL-Based Tool for
Visualization of DEVS and Cell-DEVS Models

CD++/Maya is a powerful visualization engine for cre-
ating advanced 3D animation of DEVS and Cell-DEVS
models. However, it is only an ideal environment for large
projects where high performance is the major concern.
The cost associated with this toolkit can be prohibitive for
small-scale applications (in terms of large software instal-
lation size, hardware requirements for adequate rendering,
licensing costs, etc.). In order to provide an alternative vi-
sualization method for cost-sensitive users, we have devel-
oped an open-source toolkit, referred to as DEVSView, for
visualizing CD++ simulations based on standard OpenGL
techniques [36]. OpenGL [12] is a standard specification
for developing cross-platform and language-neutral ap-
plications that utilize vendor-supplied hardware acceler-
ation in 2D and 3D computer graphics. It has been widely
used in a broad range of industries, including Computer-
Aided Design (CAD), virtual reality, flight simulation,
and video games. GLUT (OpenGL Utility Toolkit) is a
cross-platform library for writing portable OpenGL pro-
grams [37].

DEVSView provides a generic method for mapping
simulation results into a visual representation. Visualiza-
tion in DEVSView consists of visual models that are di-
rectly translated from the atomic and coupled components

150 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 28. Partition of 3D space in oct-tree [36]

of a DEVS or Cell-DEVS model, establishing a one-to-
one relationship between visual models and their corre-
sponding simulated components. The animation is exe-
cuted in an event-driven fashion, and each visual model
uses a state transition and an event animation system that
can be manipulated by a set of events, corresponding to
the external and output messages generated in CD++. The
key features of DEVSView are summarized as follows:

• it is a GLUT-based GUI that provides all necessary
controls to define and playback 3D animations

• it includes customizable visualization of DEVS
and Cell-DEVS models by associating each visual
model with a state transition system that comprises
user-defined visual states and transition rules

• it defines an event animation system for each visual
model to create customized visual effects upon the
arrival of certain events

• it provides efficient view culling through an im-
proved oct-tree algorithm [38]. An oct-tree is a data
structure that represents a 3D space by recursively
subdividing it into eight subspaces. The visual ob-
jects in a 3D scene are assigned to the smallest
(fittest) regions that can contain them completely.
Each region is implemented as a node in the tree.
The initial space and the division of its immediate
subspaces are illustrated in Figure 28. The proposed
culling algorithm can accurately match a graphical
object to its fittest region, significantly improving
the rendering performance.

At the beginning of the visualization, DEVSView
parses the CD++ results to create a visual model for
each DEVS and Cell-DEVS model component. The vi-
sual models are then customized to follow a visual state
transition system and/or to produce animations for certain
events. The animation is carried out by sending the events

to the source/destination visual models that are involved
in the message exchanges. An event contains information
about the source and destination visual models, the input
and output ports through which the event is sent, the sim-
ulated virtual time of the event, and the value of the event.
Based on this information, the state transition rules de-
termine how an arriving event will affect the appearance
of the visual model, and the event animation rules decide
what kind of animation will be produced for the event it-
self. Formally, a visual model is defined by the following
basic elements:

• a unique name (or label)

• a list of input and output ports to exchange events
with other visual models

• a location in the 3D coordinate system, an orienta-
tion, and a non-zero size

• a list of visual states, one of them is marked as cur-
rent and determines the visual appearance of the
model

• a visual state transition system defined as a state
machine that consists of visual states, and the transi-
tions between them, as determined by a list of state
transition rules

• an event animation system that generates visual ef-
fects for certain events based on a list of user-
specified event animation rules.

Figure 29 shows an example visual model called pin-
ver (Pin Verifier) for the animation of an Automatic Teller
Machine (ATM). The visual model is currently in its
idle state and hence displayed as a red 3D box, which
is specified in the state transition rules. Users can edit
the properties of a visual model (e.g., visual state, shape,
color, label).

For Cell-DEVS models, all the cells in a cell space
share the same list of visual states, state transition rules,
and event animation rules, even though they may have
different current states, positions, orientations, and sizes.
Sharing common information among the cells reduces file
size and memory consumption, facilitates visual model
definition, and improves animation performance.

The visual state transition system and event anima-
tion system play a central role in the visualization. They
process the events received by a visual model to gener-
ate the desired animation based on user-defined rules. The
granularity or detail of the animation is controlled by a
mechanism (called the value rule) that acts as a filter for
the incoming events. A value rule allows an event to be
passed to the downstream state transition and event anima-
tion rules only if the event value satisfies certain criteria.
By controlling the value rules, users can focus only on the
animation of those events of particular interest, while re-
moving the other events of less importance from the scene.

Volume 85, Number 3 SIMULATION 151

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 29. An example visual model and the state editing panel [36]

Three types of value rules are currently supported in DE-
VSView [36]:

1. all values: a value rule of this type does not impose
any filtering

2. equal value: a value rule of this type allows an event
to pass only if its value is equal to a user-specified
constant

3. range of values: a value rule of this type passes an
event if its value is within a predetermined range.

Upon arrival of an event, the visual state transition sys-
tem evaluates the rules associated with the current state
to determine if any should be invoked. Each transition
rule has four properties, including a unique ID (per vi-
sual model), a port name and type (i.e. input or output), a
value rule, and the next state. The state transition system
triggers a rule if the incoming event can pass the value rule
and it matches the port and direction of the transition rule.
As a result, the visual model is changed to the next state
as specified in the transition rule, and the visual appear-
ance of the model is altered accordingly. In addition, the
state transition is recorded in the visual model, providing
a history data buffer for fast animation playback if needed.

The event animation system allows visual models to
animate the processing of certain events. The animation is
triggered when an arriving event satisfies certain criteria
as defined by the event animation rules. This provides a
convenient mechanism for users to express the semantic
of the event that gives the reasons why visual state tran-
sitions occur. For example, using only a visual cue for
the secure login component of our ATM (which is con-
tinuously oscillating between the data-acceptance and the
data-validation states) does not give users enough infor-
mation to figure out the model’s behavior. There may be

Figure 30. Illustration of the view culling algorithm in DEVSView
[36]

many possible reasons for such oscillations (i.e., invalid
card, invalid password, insufficient privilege). A simple
event animation displaying ‘invalid password’ at the se-
cure login model would clearly indicate the reason for the
behavior. Each event animation rule has five properties,
including a unique ID (per visual model), a port name and
direction (i.e. input or output), a value rule, the source
state, and the animation length. An event animation rule
is fired if the current state of the visual model is the same
as the source state, and the arriving event passes the value
rule and matches the port and direction of the event an-
imation rule. Animations are created based on the infor-
mation of the event and/or other internal variables in the
visual model.

Complex 3D scenes containing many different visual
objects may require a significant time to render. Determin-
ing which objects are needed to be refreshed in a frame
is important for efficiency and performance. View culling
is the process of calculating which objects are currently
in view and therefore require rendering. To do so, we
use an oct-tree data structure, which is traversed to check
whether a node is in the current view or not. If a node

152 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 31. Pseudo code of the view culling algorithm [36]

is out of view, the entire sub-tree rooted at that node can
be pruned. On the other hand, if a node is completely in
view, then the whole sub-tree extending from that node is
visible (and no further visibility check will be performed
for its descendents). We defined an efficient culling algo-
rithm that is able to assign visual objects to several oct-
tree regions to better define the outline of the objects.
Consider a small object located at the centre of the root
region, as shown in Figure 30(a). Since the object is as-
sociated with the root region, it can be culled only when
the root node is pruned, despite the fact that it may rarely
be in view. If the small object can be added to the eight
fittest regions that contain it completely, as illustrated in
Figure 30(b), then the scene will be culled much more
efficiently. Figure 31 gives the pseudo code of the culling
algorithm.

DEVSView was developed in three main parts: a parser
that extracts the atomic and coupled model components
(as well as the events in CD++ simulations), a GUI that
provides animation control mechanisms (and allows users
to specify the graphical representation of the visual mod-
els), and a scene database that can efficiently organize vi-
sual models in the 3D space. Figure 32 shows the package
diagram for the DEVSView toolkit.

DEVSViewerDisplay is responsible for converting user
inputs into commands that can be processed by View-
erControl. DEVSViewerDisplay also controls the render-
ing of the GUI and all 3D objects. It utilizes the services

Figure 32. Package diagram for the DEVSView toolkit [36]

provided by ViewerDisplay for event-driven functionali-
ties. SimulationLink serves as the linkage between DE-
VSView and the simulation environment. It parses the
simulation results and notifies ViewerControl about new
events and visual models. ViewerControl processes the
requests from DEVSViewerDisplay and SimulationLink.
It translates the requests into a proper sequence of in-
teractions with the SimulationDatabase, which stores the
events, visual models, and other related information for
the visualization. These packages communicate with each
other by passing data of various types, including the stan-
dard C++ types, several basic structures for expressing po-
sition and time information, and property sets containing
the attributes of different entities. Further details of the de-
sign and implementation of these packages can be found

Volume 85, Number 3 SIMULATION 153

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 33. Major GUI components: (a) Model Edit; (b) Transition Rules; (c) Visual State [36]

Figure 34. Structure of a DEVS model for an ATM banking machine [7]

in [36]. Figure 33 shows the major GUI components of
the DEVSView toolkit. The capability of DEVSView is
demonstrated with two example models. Figure 34 gives
the structure of a DEVS model that simulates an ATM,
and a snapshot of the animation in DEVSView is shown
in Figure 35.

Figure 35(a) shows the animation when a customer
inserts a debit card into the ATM machine. The event

animation is shown as a 3D-text effect ‘Card Inserted’
just beside the CardReader visual model. Accordingly, the
CardReader model transitions to the ‘card in’ state and
the top model changes to the ‘customer in system’ state,
while all other models are idle. The oct-tree regions al-
located to the visual models are outlined in Figure 35(b).
Figure 35(c) shows the animation of a Cell-DEVS model
that represents the movement of three bouncing balls in

154 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 35. DEVSView animation of the ATM and Bouncing Ball models [36]

a closed area. We can see the objects bouncing back
and forth in a closed container, which shows the use
of non-toroidal cellular models where the cells on the
border have different behaviors from the rest of the
cells.

5.3 CD++/Blender

Blender [13] is an OpenGL-based freely available 3D
modeling and animation software package being actively
developed and widely used in a broad array of industrial
applications. It has a mature and robust feature set that is
similar in scope and depth to other high-end 3D applica-
tions such as 3ds, Max and Maya. A fairly comprehen-
sive feature comparison of existing 3D applications can
be found in [39]. Using the Blender software suite, we de-
veloped another open-source visualization toolkit, known
as CD++/Blender, in an attempt to combine the advan-
tages of CD++/Maya and DEVSView in an integrated en-
vironment. CD++/Blender has a relatively small installa-

tion footprint and can be used to create advanced anima-
tion of complex DEVS and Cell-DEVS models on var-
ious computing platforms. It uses Python scripting lan-
guage to parse CD++ simulation results, and generates
customizable visualization based on the same design as
DEVSView. The design and implementation of the toolkit
will not be reiterated in this section, as it is based on the
previous ones. Instead, we demonstrate the capability of
CD++/Blender with several examples.

Figure 36 shows a screenshot of the same model pre-
sented in Figure 27 using CD++/Blender. Users can spec-
ify model definition and CD++ log files using the buttons
on the left panel. The animation is shown in the main
animation window based on a predefined 3D scene file
as well as the events executed (the current status of the
animation can also be displayed in a floating text con-
sole). Users can customize the animation and navigate
the 3D scene through the control panel underneath. One
of Blender’s great strengths is that the GUI is entirely
drawn in OpenGL and the content of every window can be

Volume 85, Number 3 SIMULATION 155

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

Figure 36. The CD++/Blender graphical user interface

panned, zoomed, and moved around just like other visual
objects so that the screen can be organized to the user’s
taste for each specialized task.

Figure 36 shows how to create a 3D scene file in
CD++/Blender. For each scene, users can create the props,
dress and paint them with different materials and textures
using the predefined window layouts in Blender. It is also
possible to define multiple scenes within a single Blender
file, allowing them to share and reuse common visual ob-
jects to reduce file size. With just a few button clicks,
users can add various visual objects into the scene, ranging
from simple shapes to sophisticated 3D avatars, as illus-
trated in Figure 38. Users can run the animation forward
or backward and examine the simulation results from dif-
ferent viewpoints by navigating in the 3D virtual world.
For large models, 3D scenes may become exceptionally
confusing due to the increased complexity. This problem
is solved in CD++/Blender by virtue of Blender’s native
support of layers. Each layer in the scene groups together
the related visual objects of interest so that only the se-
lected layers (or groups of visual objects) are rendered at
any one time. This technique provides a better overview
of the animation and allows user to examine the simu-
lation data with varying granularities. As a high-end vi-
sualization engine for the CD++ environment, the open-
source CD++/Blender toolkit achieves a level of 3D ani-

mation performance comparable to CD++/Maya, yet at a
low cost, and opens the possibility for analyzing increas-
ingly complex simulation data in an efficient and intuitive
manner.

6. Conclusion

We have presented a detailed discussion of multiple
graphical visualization facilities currently available in the
CD++ environment. The objective of our research is
to provide general users with a variety of easy-to-use
toolkits to facilitate the M&S process and thereby pro-
mote the adoption of cutting-edge M&S technologies by
a wider community of practitioners and researchers. A
state-based modeling paradigm was introduced to allow
for the definition of rather complex model behavior us-
ing DEVS Graphs. Based on the proposed graphical no-
tations, a 2D modeling and visualization engine called
CD++Modeler has been developed in our research to en-
able application specialists who do not have much ex-
perience in computer programming to easily construct
models and to analyze simulation data using an intuitive
graphical user interface. In this paper, we also summa-
rized and reviewed a variety of mechanisms that have
been employed to interface CD++ with sophisticated com-
mercial and open-source 3D visualization and rendering

156 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


TOOLS FOR GRAPHICAL SPECIFICATION AND VISUALIZATION OF DEVS MODELS

Figure 37. Creating 3D visual objects in CD++/Blender

techniques to fulfill the needs of different user communi-
ties, including CD++/VRML, MAPS, CD++/Maya, DE-
VSView, and CD++/Blender. The major characteristics
and design considerations of the CD++ family of visual-
ization toolkits were outlined and their relative merits and
limitations were compared with various realistic applica-
tions. As demonstrated in the examples, these toolkits al-
low users to navigate and interact with the animated 3D
model from different viewpoints for efficient investiga-
tion of simulation data. The fully automated M&S process
significantly reduces the time and cost for model develop-
ment and system testing as well as the learning curve for
general users. We are currently working on the interface
between these tools and existing GIS systems to automat-
ically import graphical geographic data into the CD++ en-
vironment, further reducing the modeling effort. Research
has also been carried out to integrate CD++ with advanced
immersive virtual reality techniques in order to improve
user experience in situations such as emergency response
planning, interactive training, and serious gaming. As seen
in our multiple experiences, the use of a modular architec-
ture provides a framework that can be easily extended to
incorporate other modeling and visualization techniques
in future development. We have shown that these tech-
niques can significantly facilitate the comprehension of
continuously evolving models, making them suitable for
efficient online decision making.

7. Acknowledgments

This work has been partially funded by the Natural Sci-
ences and Engineering Research Council of Canada, the
Canadian Foundation for Innovation, the Ontario Inno-
vation Fund and CANARIE Inc. The architectural mod-
els were provided by Professor Michael Jemtrud and Jim

Hayes. Numerous students participated in this project in
particular Shannon Borho, Juan Ignacio Cidre, Ayesha
Khan, Emil Poliakov and Wilson Venhola.

8. References

[1] Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of Model-
ing and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press, San Diego, CA.

[2] Wainer, G., and N. Giambiasi. 2002. N-dimensional Cell-DEVS
Models. Discrete Event Dynamic Systems 12(2), 135–157.

[3] Wainer, G. 2002. CD++: A Toolkit to Develop DEVS Models. Soft-
ware: Practice and Experience 32(13), 1261–1306.

[4] Wainer, G. 2004. Modeling and Simulation of Complex Systems with
Cell-DEVS. In Proceedings of the 36th Winter Simulation Con-
ference, Washington, DC, 49–60.

[5] Wainer, G. 2006. Applying Cell-DEVS Methodology for Modeling
the Environment. SIMULATION: Transactions of the Society for
Modeling and Simulation International 82(10), 635–660.

[6] Wainer, G. 2006. ATLAS: A Language to Specify Traffic Models
using Cell-DEVS. Simulation Modelling Practice and Theory
14(3), 313–337.

[7] Wainer, G. 2009. Discrete-Event Modeling and Simulation: a Prac-
titioner’s approach. Taylor and Francis. [In Press].

[8] Farooq, U., G. Wainer, and B. Balya. 2006. DEVS Modeling of Mo-
bile Wireless Ad Hoc Networks. Simulation Modelling Practice
and Theory 15(3), 285–314.

[9] Fishwick, P.A. 2004. Toward an Integrative Multimodeling Interface:
A Human-Computer Interface Approach to interrelating Model
Structures. SIMULATION: Transactions of the Society for Mod-
eling and Simulation International 80(9), 421–432.

[10] Chidisiuc, C., and G. Wainer. 2007. CD++Builder: An Eclipse-
based IDE for DEVS Modeling. In Proceedings of the 2007
DEVS Integrative M&S Symposium (DEVS’07), Norfolk, VA.

[11] Autodesk Maya Press. 2007. Learning Autodesk Maya 2008: The
Modeling & Animation Handbook. John Wiley & Sons Inc.,
Hoboken, NJ.

[12] Segal, M., and K. Akeley. 2006. The OpenGL R© Graphics
System: A Specification, Version 2.1, http://www.opengl.org/
registry/doc/glspec21.20061201.pdf

Volume 85, Number 3 SIMULATION 157

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


Wainer and Liu

[13] Roosendaal, T., and S. Selleri. 2004. The Official Blender 2.3 Guide:
Free 3D Creation Suite for Modeling, Animation, and Rendering.
No Starch Press, San Francisco, CA.

[14] Borho, S., J. Pittner, and G. Wainer. 2004. Defining and Visualizing
Models of Urban Traffic. In Proceedings of the SCS 1st Mediter-
ranean Multiconference on Modeling and Simulation, Genoa,
Italy.

[15] Wolfram, S. 2002. A New Kind of Science. Wolfram Media Inc.,
Champaign.

[16] Gardner, M. 1970. Mathematical Games: The Fantastic Combina-
tions of John Conway’s New Solitaire Game ‘Life’. Scientific
American 223(4), 120–123.

[17] Modelica Association. Modelica R© A Unified Object-Oriented Lan-
guage for Physical Systems Modeling, Language Specification,
Version 3.0, http://www.modelica.org/documents (accessed Sep-
tember 2007).

[18] Dymola AB, Lund, Sweden. Dymola Release Notes, Ver-
sion 6.1, http://www.dynasim.se/Dymola61releasenotes.htm (ac-
cessed October 26, 2007).

[19] Baldwin, P., S. Kohli, E. A. Lee, X. J. Liu, and Y. Zhao. 2005.
VisualSense: Visual Modeling for Wireless and Sensor Network
Systems. Technical Memorandum UCB/ERL M05/25, University
of California, Berkeley, CA.

[20] Bhattacharyya, S.S., E. Cheong, J. Davis II, M. Goel, C. Hylands,
B. Kienhuis et al. 2007. Volume 1: Introduction to Ptolemy II. In
Brooks, C., E.A. Lee, X. Liu, S., Neuendorffer, Y. Zhao, and H
Zheng (eds), Ptolemy II – Heterogeneous Concurrent Modeling
and Design in Java, Version 6.0. Technical Report UCB/EECS-
2007-7, University of California, Berkeley, CA, USA, 2007.

[21] Fishwick, P.A., J. Lee, M. Park, and H. Shim. 2003. RUBE: A
Customized 2D and 3D Modeling Framework for Simulation. In
Proceedings of the 35th Winter Simulation Conference, New Or-
leans, LA, USA, 755–762.

[22] SourceForge. The Sodipodi Project, Version 0.34, http://
sourceforge.net/projects/sodipodi/(accessed October 2007).

[23] Chou, H.H., W. Huang, and J.A. Reggia. 2002. The Trend Cellular
Automata Programming Environment. SIMULATION: Transac-
tions of the Society for Modeling and Simulation International
78(2), 59–75.

[24] Cai, Y., I. Snel, B. Cheng, B. Suman Bharathi, C. Klein, J. Klein-
Seetharaman. 2005. BioSim – A Biomedical Character-Based
Problem Solving Environment. Future Generation Computer
Systems 21(7), 1145–1156.

[25] Filippi, J.B., M. Delhom, and F. Bernardi. 2002. The JDEVS Model-
ing and Simulation Environment. In Rizzoli, A.E. and, A.J. Jake-
man (eds), Integrated Assessment and Decision Support, Pro-
ceedings of the 1st Biennial Meeting of the International Environ-
mental Modelling and Software Society, Vol. 3, Manno, Switzer-
land, 283–288

[26] Praehofer, H., and Pree, D. 1993. Visual Modeling of DEVS-based
Multiformalism Systems Based on Higraphs. In WSC’93: Pro-
ceedings of the 25th conference on Winter simulation, Los Ange-
les, CA, USA, 595–603.

[27] Christen, G., A. Dobniewski, and G. Wainer. 2004. Modeling State-
Based DEVS Models in CD++. In Proceedings of MGA, Ad-
vanced Simulation Technologies Conference 2004 (ASTC’04),
Arlington, VA, USA.

[28] Wainer, G., and W.H. Chen. 2003. A Framework for Remote Exe-
cution and Visualization of Cell-DEVS Models. SIMULATION:
Transactions of the Society for Modeling and Simulation Inter-
national 79(11), 626–647.

[29] Wainer, G. 2007. Developing a Software Toolkit for Urban Traffic
Modeling. Software: Practice and Experience 37(13), 1377–
1404.

[30] Khan, A., and G. Wainer. 2005. A Visualization Engine Based on
Maya for DEVS Models. In Proceedings of SISO Fall Interoper-
ability Workshop, San Diego, CA, USA.

[31] Khan, A., G. Wainer, W. Venhola, and M. Jemtrud. 2005. On the Use
of CD++/Maya for Visualization of Discrete-event Models. In

Proceedings of the 17th IMACS World Congress, Scientific Com-
putation, Applied Mathematics and Simulation, Paris, France.

[32] Poliakov, E., G. Wainer, J. Hayes, and M. Jemtrud. 2007. A Busy
Day at the SAT Building. In Proceedings of AIS 2007, Artificial
Intelligence, Simulation and Planning, Buenos Aires, Argentina.

[33] Lam, K., and G. Wainer. 2003. Modeling of maze-solving prob-
lems using Cell-DEVS. In Proceedings of the 2003 SCS Summer
Computer Simulation Conference. Montreal. QC. Canada.

[34] Djafarzadeh, R., G. Wainer, and T. Mussivand. 2005. DEVS Model-
ing and Simulation of the Cellular Metabolism by Mitochondria.
In Proceedings of the 2005 DEVS Integrative M&S Symposium,
Spring Simulation Conference, San Diego, CA, USA, 55–62.

[35] Liu, S., Y. Liang, B. Xu, L. Zhang, B. Spencer, and M.
Brooks. 2007. On Demand Network and Application Provision-
ing Through Web Services. In Proceedings of 2007 IEEE Inter-
national Conference on Web Services (ICWS).

[36] Venhola, W., and G. Wainer. 2006. DEVSView: A Tool for Visu-
alizing CD++ Simulation Models. In Proceedings of the 2006
DEVS Integrative M&S Symposium, Spring Simulation Confer-
ence, Huntsville, AL, USA.

[37] Kilgard, M.J. 2000. The OpenGL Utility Toolkit (GLUT) Pro-
gramming Interface, API Version 3, http://www.opengl.org/
documentation/specs/glut/

[38] Jackins, C.L., and S.L. Tanimoto. 1980. Oct-trees and Their Use in
Representing Three-Dimensional Objects. Computer Graphics &
Image Processing (CGIP) 14(3), 249–270.

[39] TDT 3D. 2007. 3D Software Comparison Tables. http://www.tdt3d.
be/articles_viewer.php?art_id=99 (accessed November 2007).

Gabriel Wainer (Senior Member, SCS) received MSc (1993) and
PhD degrees (1998, with highest honors) from the Universi-
dad de Buenos Aires, Argentina, and Université d’Aix-Marseille
III, France. In July 2000, he joined the Department of Systems
and Computer Engineering, Carleton University (Ottawa, ON,
Canada), where he is now an Associate Professor. At Carleton,
he is a member of the Real-Time and Distributed systems lab,
a chair of the Research Centre in Technology Innovation and
the head of the Advanced Real-Time Simulation lab within Car-
leton University Centre for advanced Simulation and Visualiza-
tion (V-Sim). He has held positions at the Computer Science
Department of the University of Buenos Aires, and visiting po-
sitions in numerous places (University of Arizona, Ecole Poly-
technique de Marseille, CNRS, University of Nice and INRIA
Sophia-Antipolis). He is author of three books and over 170 re-
search articles. He has collaborated in the organizing of over 70
conferences in the area. He was Principal Investigator of vari-
ous research projects (funded by National Science and Engineer-
ing Research Council of Canada, Precarn, Usenix, the Canadian
Foundation of Innovation, CANARIE, and private companies in-
cluding HP, IBM, Intel and the MDA Corporation). His current
research interests are related with modelling methodologies and
tools, parallel/distributed simulation and real-time systems.

Qi Liu received his BEng from the Huazhong University of Sci-
ence and Technology, China in 1993, and the MASc degree from
Carleton University in 2006. He was a recipient of a Senate
Medal for Outstanding Academic Achievement for his research
work. He is currently a PhD candidate in the Department of
Systems and Computer Engineering at Carleton University, Ot-
tawa, ON, Canada. He is the Chair and founding member of
the Ottawa Student Chapter of SCS. His research interest is
centered on high-performance computing in simulation and ad-
vanced parallel/distributed simulation algorithms.

158 SIMULATION Volume 85, Number 3

 at CARLETON UNIV on January 20, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com

