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Abstract 

 This paper presents a DEVS-based model for a human 

motion data synthesis system. The model includes some 

major components of the human motion control system such 

as brain, spinal cord, and body. The system is designed to 

produce the output data in the form of motion capture data. 

The proposed model and the output data produced can be 

widely applied in areas such as robotics and multimedia 

(animation). The simulations carried out illustrate the 

performance of such a model which is capable of accurate 

mimicking of the human motion control system. The model 

is capable of taking into account minute features either 

related to actor characteristics, or even noise. In the end, we 

have shown that discrete event modeling is a very suitable 

means of describing human motion control and synthesis 

systems.  

 

 

1. INTRODUCTION 

 Human motion is an important field of study for 

multimedia, robotics, and biomedical experts. Various 

applications such as security, surveillance, computer games, 

animation, robotics, physiology and etc have resulted in a 

great deal of attention being drawn to this topic. While some 

of the applications require classification of such data (which 

has extensively been addressed in different literature), a 

comprehensive model for synthesis and control of human 

motion data are an important issue yet to be fully resolved 

[1]. 

 The human body by nature is a complex system (from a 

physiological point of view) and possesses large number of 

joints and different DOFs in different parts of the body 

(from a mechanical point of view), thus the human body 

motion is often difficult to describe as a single system. As a 

result of this complexity and the demand for more precise 

and capable models, the field is open for further research. 

 Two different themes are present when dealing with 

human motion [2]. The first theme is called the primary 

theme. This theme is composed of the features which create 

and describe different classes of every day actions. Actions 

such as walking, running, jumping, waving, sitting down, 

and even more complex actions such as dancing or fighting 

are all primary themes (or temporal combination of several 

primary themes). The other theme is called the secondary 

theme. These themes are accumulated on the primary theme 

and add to the action, personality and style, or sometimes 

provide additional information regarding some 

characteristics of the actor. Characteristics such as age, 

gender, energy, mood, health, and many more, are 

represented and pointed out by the secondary themes.  

 Different means of recording motion data are available. 

Mechanical, inertial, magnetic, and camera based systems 

are all capable of documenting the motion in some form. 

One of the most common forms of data recording is by 

means of camera-based systems. Motion capture systems 

are very accurate camera-based systems which we have 

employed to capture the human motion data and build the 

model based on this type of data. Motion capture data are 

extensively employed for animation and even robotics. 

 DEVS [3], in general, are systems with discrete events 

as outputs. While for some systems, discrete time 

approaches are common, discrete event techniques are not 

as widely practiced. The proposed model in this research is 

based on a discrete-event framework. 

 In this research, we have proposed and tested a DEVS-

based technique for modeling and simulating a human 

motion data synthesis and control system. We have shown 

that DEVS are appropriate for modeling human motion 

based on motion capture data. The constructed model is 

trained to synthesize three classes of human action and 

produce the desired action (motion capture) data for a given 

initial pose. The synthesized output is animated and 

evaluated. Furthermore, secondary themes of the motion 

sequences are also tweaked and controlled using this model.  

 

 

2. RELATED WORK 

 Various modeling techniques have been employed to 

describe human motion with most possible precision. Park 

et al [4] propose and construct memory based models. These 



models perform more resembling databases which also 

enables learning of new simple motor skills based on the 

database.  

 In [5] Zheng and Suezaki develop a simple graphical 

model which specific keyframes can be provided to the 

model and the motion between the frames is interpolated. 

 Ahmad et al [6] utilize motion captured images of 

motion. The aim of their research has been to illustrate how 

the type of a specific model influences its performance. 

They demonstrate that multi-variable non-linear models are 

most suitable to represent human motion (using the specific 

type of data). 

 Suleiman et al [7] utilize motion capture data and 

propose that the motion of different sections of the body is 

related. Their non-linear model employs the motion curves 

of the pelvis and produces entire body motion for different 

actions. 

 Regular cameras and specific markers is employed in 

[8] by Ahmad et al, for capturing human motion data. The 

exact motion data is extracted from the images, and the data 

modeled by on-linear models of kinematics.  

 Various modeling approaches have also been proposed 

with the aim of recognition and classification of human 

motion data. A.I.-based techniques are quite popular for this 

purpose [9 – 15]. Fannti et al [9] employ probabilistic 

models for recognition of human motion. They utilize 

different variables through their model as it is learned by an 

unsupervised manner. 

 Hidden Markov models (HMM) -a form of Bayesian 

networks, are very popular tools for modeling human 

motion data [10 – 12]. In [10] Etemad and Arya utilize these 

models for classification of motion capture data for both 

primary and secondary themes. Different forms of Bayesian 

networks have also been used to model human motion data. 

Stoll and Ohya [11] have employed ordinary hidden Markov 

models and visual data to compose a system for recognition 

of six classes of action. In [12], Pavlovic and Rehg have 

compared the common HMM to switching linear dynamic 

systems (SLDSs), -another form of Bayesian networks, for 

recognition of human motion. 

 ANN has also been employed for modeling of motion 

data. Simple back-propagation networks [13] as well as 

more complex learning models such as recurrent [14] and 

resilient [15] have also been utilized. In [13] Etemad et al 

train neural networks in the form of anticipators using 

optical features. Ogihara and Yamazaki [14] model the 

nervous system capable of producing motion signals using 

recurrent neural networks. Finally Etemad et al [15] employ 

motion capture data for training resilient neural networks as 

anticipators capable of classifying and synthesizing human 

motion data.  

 In the end, some rather creative and interesting 

approaches have also been taken towards tackling the 

problem. For instance, the inverted pendulum model (IPM) 

has been utilized by Tang et al [16] to model and simulate 

human motion. 

 The general trend when applying A.I.-based techniques 

for modeling (especially for human motion) has been the 

fact that these systems have been treated as black boxes 

which tend to learn and describe human motion. For all 

types of modeling, A.I.-based or not, the common element 

in the mentioned literature has been the factor of event 

continuity and often temporal continuity. These two 

characteristics, however, are not imperative for describing 

human motion data. Also, despite its importance and 

usefulness, modeling based on motion capture data has not 

been popular.  

 

 

3. BACKGROUND 

 As mention in section 1, two of the most important 

aspects of this research are event discontinuity and 

utilization of motion capture data. In this section, the 

concepts of DEVS (discrete event variable systems) and 

motion capture data are presented as an inclusive 

understanding of the two topics is essential for the aim of 

this research. 

 

 

3.1. DEVS 

 DEVS are one of the major categories of modeling 

techniques based on system dynamics [3]. They are widely 

employed for modeling and simulation of systems with 

discrete events. A key fact regarding DEVS is the 

independence of the simulator and the constructed models, 

thus making the frame work practical and interoperable. 

 Different systems are modeled using a hierarchy of 

singular models called atomic models. A set of two or more 

interconnected atomic models form a coupled model. 

Coupled models are used to model some aspect of the 

system which is composed of sub-models itself, usually 

performing more complex tasks.  

 As atomic models are the building blocks of DEVS, it 

is quite essential to provide a description of atomic models 

and describe their functionality. Figure 1 illustrates a 

descriptive sketch of an atomic model. An atomic model is 

specified by equation 1. 

 

 M = <X, Y, S, δint, δext, λ, ta >   (1) 

 

 X and Y are the set of input and output events 

respectively. S is the set if sequential states which their 

durations are determined by ta which is the time advance 

function. The atomic model is connected to other models via 

the input ports (x) and output ports (y) which carry the 

events. λ is the output function of the atomic model which 

sends the outputs which have been produced as a result of 

the execution of the model. δext and δint are the external and 



internal state transition functions respectively. The former 

determines the reaction of the model towards external 

events while the latter produces a local state change 

successive to production of the outputs. 

 

 

 

 
 

Figure 1. DEVS atomic model semantic 

 

 

  

3.2. Motion capture data 

 Motion capture data obtained by means of a six-camera 

Vicon system in the School of Information Technology, 

Carleton University, have been used for this research. We 

have asked some actors (students) to perform the required 

basic action sequences. Figure 2 illustrates a caption of a 

motion capture session. 

 

 

 
 

Figure 2. Motion capture session 

 

 

 The motion capture data come in the form of equation 

2, where Di are the Cartesian values for the hip marker in 

3D space with respect to the calibration origin and Θi are the 

rotation angles in degrees for each marker. There are m 

rows, denoting m frames.  
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 The positioning marker is presented in Figure 3 by the 

marker connecting the two legs (orange marker), which 

corresponds to the marker placed on the hip. This marker 

provides the Cartesian measures for locating the actor in 

each frame of action. Figure 3 also shows the axis of one of 

the joints. Each marker on the body possesses its own frame 

of reference similar to those shown for the left leg. Figure 4 

illustrates a real scene of the markers placed on the specific 

motion capture suit. 

 

 

 
 

Figure 3. Marker orientation and the axis of one of the markers 

 

 

 

 
 

Figure 4. Marker orientation in real motion capture session 
 



 Figure 5 illustrates a walking sequence for 45 frames 

where snapshots of each 5th frame have been presented. 

Also the movement of 5 of the markers is illustrated using 

different colors. 

 The rotation values matrix for i
th

 marker for frames 1 to 

m is as follows, where ix

j  denotes the rotation value of the 

x coordinate in space, related to i
th

 marker of the j
th

 frame: 
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Figure 5. A walk cycle and the movement of 5 of the markers 

 

 

 In equation 4, the complete angular rotation matrix of m 

frames and n markers is presented. 
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 The related data for the hip positioning marker for 

frames 1 to m is shown by D. In equation 5, di
x
 represents 

the value of the x coordinate of the distance of the hip 

marker with respect to origin for frame j.  
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 The final form of the data is presented by equation 6 

where jx

i  represents the rotation values of the x coordinate 

of the j
th

 marker for the i
th

 frame and di
x
 represents the 

position of the x coordinate of the hip marker for the i
th

 

frame. 
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 The presented matrices in the form of (6) are 

documented and recorded by the motion capture system. 

The file which records the matrices are called BVH files. 

These files are composed of two sections. The first section 

is what we refer to as the header section. The headers 

section describes the orientation of the markers and their 

initial offset from the hip marker in hierarchical format. The 

second section is the body. The body is a matrix similar to 

that shown in equation (6). Some extra information such as 

frame rate is presented between the header and the body of 

BVH files. After a precise and complicated calibration 

process, the required BVH files are recorded from which 

valuable information is extracted. The information can then 

be utilized to create different systems for describing human 

motion. 

 To make the data more suitable for DEVS, the data are 

quantized to create discrete signals. This is illustrated in 

Figure 6 where the blue signal represents the quantized 

discrete data and the red signal is the original continuous 

data. 

 

 



 
 

Figure 6. Continuous vs. Discrete data 

 

 

4. MODELING AND SIMULATION 

 The key to design and construction of a precise human 

motion data synthesis system is taking into account all the 

major components of the human body. The proposed model 

for this research is composed of three main sections. The 

first is the brain. The brain is the section responsible for 

learning and synthesizing all the motion data. Spinal cord is 

another section of the system which acts as the data 

transmission and distribution route from the brain to the 

other sections of the body. The spinal cord carries the 

messages produced by the brain to muscles responsible for 

human motion. Finally the third section of this model is the 

body. The body, in this case, represents only the markers 

placed on the motion capture suit. Figure 7 illustrates the 

overall model. 

 We will first describe the setup and the functionality of 

the brain. The brain contains three ports. Input ports (X) are 

input and current. The output port (Y) is called brainout. A 

minimum of two states (S) are required for this model. The 

first is called rcv_in and the second is called rcv_stat. The 

brain basically contains some sort of an algorithm for 

synthesis of motion data, either using database or even an 

A.I.-based system in the form of a black box. The research 

here aims at demonstrating a proof of concept that DEVS 

bring about a suitable platform for describing human motion 

and is not concerned with the type of motion synthesis 

algorithm. 

 Four different actions are projected to be tested using 

the proposed method. The actions are: walking (masculine 

and feminine), jumping, running, and kicking. Each action 

is embedded in the brain as assumed to have been learned 

through some algorithm. They are named walk1, walk_fem, 

jump, run, and kick. To facilitate the functionality of the 

brain, external input files containing the motion data are 

provided. The initial motion data is embedded in a file 

called matrix.in. Other action classes and types are provided 

in another file called other.in. Upon user request, the data 

from the matrix file can be substituted by data from the 

other file. 

 The input to the brain is in the form of a 1 x 81 vector. 

This vector is the initial pose for the action which is 

currently triggered inside the brain. For instance if the 

action walk1 (masculine walk) is triggered, the input can be 

any of the existing poses of the masculine walk sequence. 

The brain is initially in passive mode and in the rcv_in state. 

Upon receiving the intended pose, the state will change to 

rcv_stat which is in passive mode.  

 

 
 

 
Figure 7. Proposed HMC model 

 

 

 The rcv_stat state is the state when the brain is waiting 

for acknowledgment through the feedback link from the 

body parts that the action is correctly in progress. This is 

modeled based on the characteristics of the human body 

where the brain can override any existing action-in-progress 

upon necessity. Therefore the brain in the model will not 



order further progress of the action prior to proper feedback 

from the body.  

 Once the brain receives the proper information from the 

current port that the sequence has succeeded a bit (1 frame), 

it will compute and send out the data for the consecutive bit 

(frame) of the action. 

 The spinal cord is connected to the brain. The brain 

sends out the data to the spinal cord. The cord model, 

similar to the spinal cord of the human body, has several 

functionalities. The first and the most important is the 

distribution of signals received from the brain to different 

sections of the body. The spinal cord receives the signals 

and provides the proper links between the brain and the 

different parts of the body. 

  The cord model has one input port which is connected 

to the brainout port of the brain. The cord receives the 

actions signals through this port and distributed them via the 

81 output ports called cordout1 to cordout81.   

 2 states are foreseen for the cord model. The first is 

called wait_row. In this state which is a passive phase, the 

spinal cord waits for arrival of new data from the brain. 

Once it receives the data, it goes into the output_row state 

which is responsible for locating and distributing the body 

parts which each signal must go to. After this task is 

accomplished, the model goes back to the wait_row state. 

 Another important property of the spinal cord is its 

ability to affect the signals which it receives from the brain. 

Different motor diseases such as arthritis can be caused by 

damage to the spinal cord. This property must be taken into 

account in the model. The atomic model, cord, possesses the 

ability to include a desired amount of noise using the 

suitable mathematical function. All this is done through the 

output function of the model. The results of a test for noise 

addition are presented in section 5. 

 The next model is the body. The body has 81 input 

ports which represent the different nerves connecting the 

spinal cord to the body for the transfer of motion signals. 

They are named bodyin1 to bodyin81. Two output ports are 

designed for this model. The output ports are called current 

and output. The port current is what was referred to in the 

brain model by the same name. This port sends a signal to 

the brain stating that the current frame of the action is 

carried out successfully. The other output port, output, 

presents the pose of the body in each frame. 

 Similar to the model of the spinal cord, the model of the 

body operates in two states called wait_row and output_row. 

The first state acts as a passive phase waiting for new data. 

Once it receives the data, the body goes to the desired pose 

and the current feedback link is activated to inform the brain 

of completion of this frame.  

 Also similar to the spinal cord, noise can be added 

inside the body. Noise inside the body can be a 

representation of muscular diseases which can cause motor 

disabilities. The noise, once again, can be added in any 

desired fashion through the output function of the model. 

 The time values of the each of the actions in the models 

are selected carefully to resemble the performance of the 

body. The time delay for the brain to send out the data for 

each frame of action is 40 milliseconds. In reality, human 

motion is continuous, however, a motion sequence with a 

resolution of 25 frames per second or higher, is perceived by 

the human eye as one continuous motion. 25 frames of 

motion per second require 40 milliseconds of delay between 

consecutive frames. Other components of the system, which 

are basically responsible for conveying the movement 

signals, are assigned the minimum delay of 1 millisecond.  

 The next step is to provide different action classes and 

styles (primary and secondary themes) to the system and test 

and animate the outcome. The effect of noise must also be 

demonstrated.  

 

5. RESULTS AND DISCUSSIONS 

 Once the models are created and running properly, the 

model is tested through different action classes and 

secondary themes. The output results are fed to a software 

called BVHacker. BVHacker is a software which can 

animate motion capture data. All the results in this research 

are animated and evaluated using this software, and required 

screenshots of the sequences will be provided.  

 To test a motion data system, different primary and 

secondary themes, as well as different possible first action 

frames must be employed. The selection of actions is carried 

out such that it would include a wide range of different 

motion signals. Walking and running have been chosen to 

illustrate the ability of the system to distinguish actions 

which are quite similar except for the speed at which the 

two primary themes take place. Both these actions are 

actions in which the location of the body has changed by the 

end of the sequence. Kicking is chosen to resemble an in-

place action with one moving part of the body. Jumping is 

selected to resemble another in-place action, this time with 

the entire body moving and ending up in the same starting 

pose. For secondary themes, masculine and feminine themes 

for walking are tested. 

  The initial pose for an action is provided to the system. 

Based on the type of action which the model is set to 

synthesize, the brain must produce and output the 

consecutive frames 40 milliseconds after it has been 

confirmed via the current port that the following poses have 

been constructed successfully. Figure 8 illustrates the 5 

actions produced by the system when the pose of frame 1 is 

provided to the system via the input. Also to test the system, 

for masculine walk, the poses for frames 6 and 20 are also 

provided to the system. As expected, the successive frame 

are produced and outputted through the body. The system is 

designed to return null poses (frames consisting of zeros 

only) if a match for the initial pose is not found. 



  

 

Figure 8. From top to bottom: Kicking, Jumping, Running, Masculine Walk, and Feminine Walk 

 

 



 Based on [17], different secondary themes are produced 

in the brain. As clearly shown in Figure 8 the bottom two 

sequences clearly illustrate the difference between a 

masculine and feminine walk. While the masculine walk 

appears to have more energy, the feminine walk appears to 

have slightly more speed. Also the movement of the arms in 

masculine walk is greater than that of feminine walk, while 

in feminine the hip movement is greater.  

 As mentioned earlier in section 4, the spinal cord can 

add noise to the action signals. The negative manipulation 

of the signals by the spinal cord is illustrated by Figure 13. 

The effect of the noise is visible on the left arm (pointed out 

by the red circle). This noise is caused by adding a random 

value to the data related to the elbow joint. As it is shown, 

the arm demonstrates some very rapid unexpected 

movements.  

 

 

 

 
Figure 9.  Addition of noise by the spinal cord 

 

 

6. CONCLUSION 

 

 The aim of this research is to design and model a 

system in DEVS which can mimic the performance of the 

body in regards to producing and controlling human motion 

for both primary and secondary themes.  

 Various literature have modeled human motion. What 

lays in common in the discussed literature in section 2 is the 

fact that time discreteness or continuity as well as event 

discreteness or continuity is not discussed. The modeling 

approaches have thus far focused on describing the actual 

brain (responsible for synthesis and/or control of motion). 

While the effort for modeling the perfect brain for 

simulating human motion data can remain an ongoing 

research topic, rather different approaches towards modeling 

of the phenomena could result in development of new 

techniques for tackling the problem at hand. 

 In this research we have shown that DEVS are 

extremely accurate, straightforward, and efficient means for 

modeling human motion, therefore, discrete event A.I. 

systems and modeling approaches can be very promising for 

constructing of a comprehensive human motion synthesis 

and control system. 

 One other major advantage for this method of modeling 

the human motion synthesis system is the fact that different 

components of the model are stand-alone and can act 

independently. Thus, they can be represented by more 

complex coupled models and be enhanced in the future. For 

instance the brain in the proposed model can be later on 

manipulated to become more A.I.-based, or an entire model 

for the human body alone can be constructed and added to 

the current model for more accurate representation of the 

human body.  

 

 

7. FUTURE WORK 

 To extend and improve the current work, more complex 

actions and sequences can be represented using this model. 

Also different learning techniques and even complex A.I.-

based methods can be implemented in C++ and used in the 

brain component of the model. More emphasis on 

describing, controlling, and simulating secondary themes 

will also improve the system as secondary theme analysis is 

critical for synthesis of realistic motion data. 

 Real time DEVS are another possible field for further 

research. Virtual reality systems require a great deal of real 

time processing, thus are great candidates for employing a 

real time human motion data synthesis model. 
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