
Accelerating Large-scale DEVS-based Simulation on the Cell Processor

Qi Liu and Gabriel Wainer
Department of Systems and Computer Engineering

Carleton University Centre on Visualization and Simulation (V-Sim)
Carleton University, Ottawa, ON, Canada K1S 5B6

{liuqi, gwainer}@sce.carleton.ca

Keywords: Discrete event simulation, parallel simulation,
multicore computing, DEVS, Cell-DEVS, Cell processor

Abstract
 This paper presents a new technique for efficient
parallel simulation of large-scale DEVS-based models on
the IBM Cell processor, which has one Power Processing
Element (PPE) and eight Synergistic Processing Elements
(SPEs). By taking a performance-centered approach, the
technique allows for exploitation of multi-dimensional
parallelism to overcome the bottlenecks in the simulation
process. We illustrate the underlying design methodology
with detailed simulation profiles. Our preliminary
experiments have already produced promising results,
accelerating the baseline PPE-only simulation of a fire
model and a flood model by a factor of up to 70.6 and 83.32
respectively. The technique not only enables DEVS users to
harness the potential of the Cell processor without being
distracted by the technical complexity of multicore
programming, but also provides insights on migration of
legacy software to current and future multicore platforms.

1. INTRODUCTION

The physical limitations of heat dissipation, memory
latency, and gate density are pushing the microprocessor
industry towards multicore Chip Multiprocessor (CMP)
designs. One latest example is the IBM Cell processor [1],
which exhibits enormous potential for scientific computing
[2] and has been used in the Roadrunner project to build a
petascale supercomputer for the Los Alamos National
Laboratory [3]. The Cell processor adopts a heterogeneous
CMP architecture with nine independent cores: one dual-
threaded Power Processing Element (PPE) and eight
specialized co-processors called Synergistic Processing
Elements (SPEs). The PPE uses a conventional cache
hierarchy to access system main memory and provides top-
level thread control for a parallel application, whereas each
SPE can only directly access a small, non-coherent, on-chip
Local Storage (LS) to execute the bulk of the workload in
small chunks. Data sharing is achieved mainly through
software-managed explicitly-addressed autonomous Direct
Memory Access (DMA) transfers. In addition, the cores can
also communicate 32-bit messages with each other via the
on-chip interconnect bus channels such as mailboxes and
signals. Furthermore, the SPEs support both scalar and 128-

bit SIMD (Single Instruction, Multiple Data) computations,
which can be applied at 2, 4, 8, and 16-way granularities.
All these features make the Cell processor an attractive
platform to study new computing paradigms for high-
performance scientific applications on the emerging CMP
architectures. On the flip side, the asymmetric design of
heterogeneous cores with explicit memory control requires
careful reconsideration of existing algorithms from a data-
flow perspective to attain optimal execution performance.

The Discrete Event System Specification (DEVS)
formalism [4] provides a sound theoretical foundation for
describing discrete-event systems. Numerous extensions to
DEVS have been proposed in the literature. P-DEVS [5]
improves the mechanism for handling simultaneous events.
Cell-DEVS [6] allows for defining n-dimensional cell
spaces as discrete-event models where each cell is a basic
DEVS model component. Both P-DEVS and Cell-DEVS are
implemented in CD++ [7], an object-oriented modeling and
simulation (M&S) environment that has been used to solve
a variety of sophisticated problems (e.g., [8][9][10]).

With the growing size and complexity of the system,
the simulation is increasingly time-consuming. Parallel
Discrete-Event Simulation (PDES) is widely used to speed
up discrete-event systems [11]. Traditionally, PDES exploits
concurrent activities at different model components by
partitioning the simulation onto multiple nodes of a cluster.
Although this coarse-grained parallelization strategy has
achieved success in improving performance, other types of
fine-grained parallelism available on multicore processors
(e.g., thread-level, event-level, and data-level parallelism)
remain untapped in most existing algorithms.

As multicore computing becomes pervasive, there is an
acute need for bridging the gap between PDES algorithms
for conventional clusters and those for CMP platforms. In
this work, we seek to narrow this gap by exploring new
forms of fine-grained parallelism and proposing a novel
technique that combines multi-dimensional parallelism
coherently in large-scale DEVS simulations, while hiding
the technical details of multicore programming from users.
By taking a performance-centered approach, the technique
addresses all major bottlenecks in the simulation process.
The underlying design methodology is illustrated with
detailed simulation profiles of two example Cell-DEVS
models (each has a cell space of over one million cells),
which simulate wildfire propagation and flooding scenarios

respectively. Although the proposed technique has not yet
been fully implemented thus far, the algorithms currently
available have produced very promising results, attaining
overall speedups up to 70.6 and 83.32 in the fire and flood
simulations respectively over the baseline implementation
on PPE. We believe that the technique not only exposes the
potential of Cell processor to DEVS users, but also offers
valuable insights for other application developers who
intend to port existing legacy software to CMP platforms.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 recaps DEVS simulation in
CD++. Section 4 analyzes the performance bottlenecks.
Section 5 covers the parallelization strategies, and Section 6
proposes the computing technique. The experimental results
are discussed in Section 7. Section 8 concludes the paper.

2. RELATED WORK

As mentioned earlier, existing PDES algorithms usually
take a coarse-grained parallelization strategy at the cluster
level without paying much attention to other forms of fine-
grained parallelism available on modern multicore platforms.
Multigrain parallelism has been studied in the context of
scientific and multimedia applications [12][13]. New
techniques are required to exploit multi-dimensional
parallelism in large-scale PDES on the Cell processor.

Although different programming models and strategies
were investigated to improve programmability on the Cell
processor [1][14], significant efforts are still needed to
specialize and integrate them to address PDES peculiarities.

Compiler-assisted vectorization is one way to facilitate
software development on Cell [15][16]. Without a deep
understanding of high-level application logic, this technique
is still inadequate on its own for complex PDES systems
involving irregular computation that must respect the causal
dependency among individual events.

Several middleware frameworks have been developed
on top of the Cell programming primitives [17][18].
Nonetheless, some of them adopt a strict data parallel model
or adhere to pure C programming, while others tailor the
functionality of a standard library for specific applications.
These limitations greatly hinder their applicability to
complex object-oriented PDES systems.

Most applications developed on the Cell processor
perform numerically-intensive computation on a large array
of data, a SIMD-oriented model that has proven well-suited
for exploiting data-level parallelism [19]. Recently, M&S
applications have also been implemented on Cell to offload
compute-intensive functions to the SPEs [20]. It is, however,
not straightforward to apply the methods used in these
applications in general-purpose PDES systems.

3. P-DEVS AND CELL-DEVS SIMULATION IN CD++

The P-DEVS formalism supports the construction of
hierarchical and modular models. It describes a model as a

hierarchy of atomic (behavioral) and coupled (structural)
components. A P-DEVS atomic model uses a bag of inputs
to support the execution of multiple simultaneous events,
combining the functionality of multiple external transitions
into a single one [5]. The simulation is driven by a set of
logical processes (LPs), which are specialized into
Simulators and Coordinators. A Simulator is in charge of
triggering an atomic model’s behavior, while a Coordinator
is responsible for scheduling events in the model hierarchy.
The Cell-DEVS formalism describes dynamic systems as n-
dimensional cell spaces where each cell is a P-DEVS atomic
model, allowing for efficient asynchronous execution and
providing a natural mechanism for defining temporal and
spatial relations between model components.

Both P-DEVS and Cell-DEVS are implemented in
CD++ [7]. To enable users to focus on their modeling issues
without being distracted by the details of simulation
implementation, CD++ provides a built-in specification
language to code the behavior of Cell-DEVS models with a
set of transition rules. Internally, these transition rules are
represented as syntax trees, which are loaded into main
memory during simulation bootstrap for evaluation by the
cells. This extra level of abstraction is especially valuable
on multicore platforms since it hides the complexity of
multicore programming, allowing users to gain performance
with minimum knowledge of the execution environment.

Figure 1. Flat LP structure

Recently, CD++ has been extended to support parallel
simulation on cluster systems based on a flat LP structure
[21]. By eliminating the intermediate Coordinators in the
hierarchy, this flat LP structure not only reduces
communication overhead, but more importantly exposes the
maximum degree of event-level parallelism and facilitates
the exploitation of data-level parallelism during simulation
synchronization, as will be discussed in Section 5. Depicted
in Figure 1, the sequential simulation on a node involves a
Node Coordinator (NC), a Flat Coordinator (FC), and a set
of Simulators. The NC is the central controller on the host
node, whereas the FC synchronizes all child Simulators.

The LPs exchange messages that fall in two categories:
content messages include the external (X) and output (Y)
events that encode the model input and output data, while
control messages include the initialization (I), collect (@),
internal (*), and done (D) events that control the simulation
flow. The (I) events initialize the LPs at the beginning of the
simulation. The (@) and (*) events trigger the output and

DEVS state transition functions respectively in the atomic
models, and the (D) events carry the model timing
information for simulation synchronization.

Figure 2. Multi-phased simulation process

Figure 2 shows a structured view of the simulation
process [21]. At any virtual time, there is a mandatory
transition phase and an optional collect phase. The
simulation starts with an initialization phase at virtual time
0. At the end of a transition phase, the NC determines the
next simulation time and sends link messages to the FC,
advancing the simulation on the node. Based on these
concepts, this paper focuses on parallelizing the sequential
simulation on the Cell processor.

4. PERFORMANCE BOTTLENECKS

In large-scale, high-resolution simulation of complex
systems, the simulation performance is primarily dominated
by the size and complexity of the model. The former
determines the synchronization overhead required for the
FC to process the timing information of the Simulators,
while the latter decides the computation intensity needed for
generating model behavior (rule evaluation in the case of
Cell-DEVS models). To show the impact of these two
factors, the original CD++ was ported to the PPE core using
the flat LP structure, resulting in a baseline implementation.

M&S has been used in environmental sciences to
simulate wildfire propagation and flooding phenomena for
several years. In this work, the fire model introduced in [9]
and the flood model available at [22] are used as examples
for performance testing. Both models define a 1024 by 1024
cell space (over one million cells) to simulate wildfire
propagation and flooding scenarios over 50 virtual hours
based on a set of environmental parameters. The
experiments were carried out on an IBM BladeCenter®
QS22 with 3.2 GHz IBM PowerXCell 8i processors.

Table 1. Baseline simulation profiles on the PPE core
Fire Model

 (I) (*) (@) (X) (Y) (D) Sum (s)
Simulator 3.07 497.4 7.66 11.79 ─ ─ 519.92

FC 0.91 14.38 55044.5 0 93.52 55526.5 110679.81
NC ─ ─ ─ ─ ─ 2.32 2.32

Bootstrap ─ 180.65
Other ─ 121.89

Total Execution Time (s) 111504.59

Flood Model
 (I) (*) (@) (X) (Y) (D) Sum (s)

Simulator 3.09 144.1 4.64 4.89 ─ ─ 156.73
FC 0.93 3.40 30413.2 0 34.48 30690.7 61142.7
NC ─ ─ ─ ─ ─ 1.22 1.22

Bootstrap ─ 77.62
Other ─ 54.25

Total Execution Time (s) 61432.53

Table 1 gives the resulting simulation profiles obtained
on the PPE. As we can see, the FC constitutes the main

bottleneck, consuming 99.3% and 99.5% of the total
execution time in the fire and flood simulations respectively.
A closer look at the message-wise decomposition shows that
the FC spends most of its time on processing (@) and (D)
messages during which the child Simulators are
synchronized at each virtual time. This bottleneck is
prominent in large-scale simulations since the FC needs to
process a large amount of timing data in two
synchronization functions. Function findMinTime is
called during the processing of (D) messages to compute the
next minimum state change time among the Simulators,
while findImminents is called during the execution of
(@) messages to find the imminent Simulator IDs.

Another bottleneck resides at the Simulators, especially
the execution of (*) messages where the transition rules are
evaluated. This bottleneck appears to be minor in the tested
models because they use simplified rules to approximate the
dynamic behavior of the real systems. More complex rules
would be required to obtain more precise approximation,
leading to higher computational cost at the Simulators.

In the following, we present new parallelization
strategies for the FC synchronization task and the execution
of all types of events targeting the Simulators, referred to as
the FC Synchronization Kernel (FSK) and the Simulator
Event-processing Kernel (SEK), on the Cell processor.

5. PARALLELIZARTION STRATEGIES

5.1. Strategy for the FSK

The FSK consists of the two synchronization functions.
Originally, the FC uses a standard C++ map (<SimulatorID,
VirtualTime>) to keep track of the next state change time
scheduled by the Simulators. Before parallelizing the FSK
on Cell, this timing data needs to be prepared in a way that
allows us to reconsider the FC synchronization task from a
data-flow perspective, as described below.
• A new ID allocation scheme is used to allocate positive

IDs for the atomic models and their associated Simulators
continuously from 0 to (N-1), where N is the total number
of Simulators created in the simulation. On the contrary,
the coupled models and the Coordinators use negative IDs.

• The FC uses an integer Time Array (TA) to hold the
timing data of all child Simulators, where the array
indexes serve as the Simulator IDs. This approach offers
three main benefits. First, it reduces the amount of data by
half when compared to the original map structure.
Secondly, it allows us to align the data on cache-line (128
bytes) boundaries and to pass the effective address of TA
to the SPEs for efficient DMA transfer. Thirdly, it
enhances data locality with reduced memory contention
and cache miss even when the computation is carried out
on the PPE alone. Owning to the flat LP structure, the
timing data can be concentrated in a single array, greatly
facilitating the parallelization of the FSK.

• The FC also uses a 128-byte aligned integer Imminent ID
Array (IA) to hold the IDs of imminent Simulators found
in findImminents. Since only a fraction of the
Simulators are imminent at any virtual time, this array is
terminated by a -1 so that the FC can retrieve the
imminent IDs without performing a full traversal.

With this data organization, Figure 3 summarizes the
parallelization strategy for porting the FSK to the SPE cores.

Figure 3. Parallelization strategy for the FSK

Both TA and IA contain independent data, an ideal case
for exploring data-level parallelism. To process the time
values in parallel, TA is divided into multiple chunks, each
of which is handled by an SPE independently to realize
thread-level parallelism across multiple SPEs. On each SPE,
data-streaming parallelism is utilized to process the chunk
of data as a stream of blocks (or working sets) with regular
sizes. The synchronization functions are decoupled from the
FC and implemented in C using explicit SPE SIMD
intrinsics to exploit vector parallelism.

Figure 4. A skeleton of function findMinTime

On each SPE core, as illustrated in Figure 4, function
findMinTime uses a 128-bit, 4-way integer Min Vector
to scan the virtual time values that are DMA transferred into
the current working set (line 7-9). When the full chunk of
data is processed, the Min Vector contains the 4 minimum
values obtained in the 4 ways. These values are then
compared horizontally to calculate the chunk-wise
minimum (line 11), which is sent to the PPE code through
the outbound mailbox channel (line 12).

As we can see in Figure 5, findImminents
replicates the PPE-determined global minimum time in the
Min Vector (line 2). It uses another 128-bit Index Vector to
keep track of 4 Simulator IDs corresponding to the entries in
the current working set when the time values are sifted with
the Min Vector (line 9-14). At the end of the function, a
status value is sent to the PPE (line 22), indicating that the
imminent IDs are available in the IA chunk.

Figure 5. A skeleton of function findImminents

Both functions use doubled-buffered inbound and
outbound DMA transfers to hide memory latency. By using
multiple Min and Index Vectors as simultaneous logical
threads, loop-level parallelism can be exploited to further
accelerate the computation.

5.2. Strategy for the SEK

Although event-processing is fundamental in discrete-
event simulations, direct and explicit exploitation of fine-
grained event-level parallelism is still uncommon in the
literature. A key challenge is that the parallel computation
must respect the causal dependency among individual
events. Figure 6 gives a phase-wise step-by-step view of P-
DEVS simulation with the flat LP structure, showing that
two types of event parallelism can be exploited following a
conservative approach without violating causal consistency.
1. Embarrassing parallelism exists between the

independent events executed within each step at the FC
and the Simulators. Since there is no causal dependency
between these events, they can be processed
concurrently in an arbitrary order.

2. Event-Streaming parallelism exists between causal-
dependent events executed in consecutive steps. As the
output events from the preceding step serve as the inputs
to the step that follows, these events can be executed
concurrently in a pipelined manner.

Figure 6. Event-level parallelism in P-DEVS simulation

The first and last steps in each phase serve as fork and
join points for simulation synchronization. The flat LP
structure minimizes the number of synchronization points,
exposing the maximum degree of event-level parallelism.

In order to port the SEK to SPE cores, the simulation
data is reorganized as follows.
• The original C++ hierarchy of event classes is replaced

with a uniform 32-byte C struct, which encodes the data
of all types of events in a compact way.

• The state data encapsulated in an atomic model and its
associated Simulator is repacked in a C struct of 512 bytes,
and all the state data is stored in a flat 128-byte aligned
array (state buffer), one entry for each 512-byte struct.

• Each transition rule defined in a Cell-DEVS model is
converted to a sequence of float numbers organized in a
postfix format, where a syntax node is represented by 2
float values. The resulting rules are concatenated in a flat
128-byte aligned array (rule buffer).

• A flat 128-byte aligned array (event buffer) is allocated to
pass events between the FC and the Simulators. Each
entry has an adjustable size of 1KB with a capacity of up
to 32 slots that is dedicated to a Simulator with ID equal
to the array index, as illustrated in Figure 7.

Figure 7. Decentralized event management

At any time, a Simulator and the FC may exchange
exactly one control message and optionally a list of content
messages. Thus, the first slot in each event buffer entry is
reserved for passing the control event, while the following
slots are used to hold content events, if any. The original
Future Event List (FEL) is only used to send events between

the FC and NC at the beginning and end of each simulation
phase. Together, the FEL and the event buffer entries can be
viewed as one-to-one bidirectional communication channels,
forming a star topology with the hub at the FC.

This decentralized event management has several major
advantages over the original FEL-centered scheme. First,
multiple events targeting a Simulator can be transferred
efficiently to an SPE for execution with one DMA operation.
Secondly, most of the events executed in the simulation are
removed from the FEL, reducing the overhead of event
queue operations considerably. Thirdly, events passed
between the FC and the Simulators are directly written/read
in the event buffer without memory allocation/deallocation,
further reducing the operational cost. Fourthly, the
Simulators no longer need to define extra message bags to
hold simultaneous (X) events. Instead, the slots in each
event buffer entry are naturally suited for this purpose. As
these (X) events are written directly into the slots by the FC,
the Simulators also do not need to receive (X) messages any
more, simplifying Simulators’ event-processing algorithm
and enhancing simulation performance. Finally, this scheme
improves data locality and cache utilization even in the case
of sequential simulation on traditional processors.

The SEK includes the algorithms for processing (I), (*)
and (@) messages at the Simulators as well as the DEVS
functions defined in the atomic models (detailed definition
of these algorithms can be found in [21]). To parallelize the
SEK, these algorithms are converted to efficient C code and
recompiled on the SPE. Due to the irregular nature of the
computation, only partial vectorization is applied using SPE
SIMD intrinsics. The performance is further enhanced by
loop unrolling, branch hints, and proper data aligning
techniques. Thread-level parallelism is exploited across
multiple SPEs, each of which hosts an instance of the SEK.
An SEK executes a stream of events chosen by a PPE-side
event-dispatching algorithm, which schedules one/more
independent events targeting the same Simulator to an SEK
at a time to realize the event-level embarrassing parallelism.
On the other hand, the event-streaming parallelism is
achieved by executing causal-dependent events between the
SPEs and the PPE as a two-stage pipeline. Double buffering
is used extensively in DMA transfers of event, state and rule
data to/from the buffers to tap data-streaming parallelism.

Figure 8. Overview of DEVS-based parallel simulation on Cell

6. PARALLEL SIMULATION ON CELL
As shown in Figure 8, the parallel simulation involves

10 threads on a Cell processor. During bootstrap, the PPE
main thread spawns a helper thread, which in turn creates
eight SPE threads (one for each SPE). The SPEs are divided
into two groups, one for FSK and the other for SEK. For
large-scale models with moderate complexity, more SPEs
should be used to handle the synchronization task of FSK.
On the contrary, for complex models with moderate sizes,
the SEK requires more SPEs to speed up intensive
computation at the Simulators. Based on our parallelization
strategies, the Simulators and their associated atomic
models are virtualized in the sense that all of them share a
limited set of SPE threads to fulfill their functionalities, and
the mapping of imminent Simulators onto the SPEs at each
virtual time is determined dynamically in the simulation.

Figure 9. A skeleton of FSK orchestration algorithm
The FSKs are invoked in a RPC (Remote Procedure

Call) style. Each function included in the FSK has an ID: 0

for findMinTime, 1 for findImminents, and 2 for
FSK termination. As given in Figure 9, the orchestration
algorithm for FSK is quite straightforward. Note that, before
calling findImminents, the current global minimum
time, as determined by the NC, is compared to the recorded
local minimums previously found by the FSKs (line 8) to
ensure that only those FSKs that actually found the global
minimum are involved in the computation.

Figure 10. A skeleton of SEK orchestration algorithm

Figure 10 shows the SEK orchestration algorithm. At
the beginning of each simulation phase, the FC executes
FEL events scheduled by the NC, generating a sequence of
events for the Simulators. These events are directly written
into the event buffer entries based on Simulator IDs. The
index of a modified event buffer entry serves as the Job ID,
which is then inserted into one of the pending job queues by
an event-dispatching algorithm (line 5), thus mapping a
Simulator to a chosen SPE. Since the events executed by the

SEKs at any given time have similar computational intensity,
simple yet effective scheduling policies such as shortest-
queue-first can be used to achieve fine-grained load-
balancing among the SEKs. Multiple pending Job IDs can
be sent to an SEK once empty entries become available in
the SPE inbound mailbox channel (line 9), allowing the
SEK to pre-fetch data for the next job while executing the
current one. On the SPE side, an SEK fetches data from the
state, event, and rule buffers with double-buffered DMA
transfers. At the end of event processing, the SEK puts the
updated data back to the buffers and sends the finished Job
ID to the PPE helper thread, allowing the FC to execute the
output events from the event buffer concurrently (line 13).
Finally, the FC sends events to the NC via the FEL when all
output events from the SEKs are processed (line 17),
finishing the current phase. During the simulation, the PPE
main thread performs file I/O and remote communication
with other nodes, if necessary, overlapping computation
with file I/O and communication to enhance performance.

7. EXPERIMENTAL RESULTS

The baseline CD++ implementation has been enhanced
with the data optimization strategies as presented in Section
5. The resulting PPE-optimized sequential version was then
parallelized to execute the FSK across multiple SPEs, while
the parallelization of the SEK is still underway. This section
analyzes the performance impact of the FSK in the fire and
flood simulations on IBM BladeCenter® QS22.

Figure 11. FSK data optimization and parallelization impact

Figure 11 summarizes the total simulation time attained
by the baseline and optimized CD++ on PPE as well as the
parallelized FSK on 1 to 8 SPEs. With the data optimization
alone, the optimized CD++ runs 9.1 and 7.09 times faster
than the baseline version in the fire and flood simulations
respectively. Executing the FSK on 8 SPEs further reduces
the fire and flood simulation time from over 3.4 and 2.4
hours with the optimized CD++ to just 26.3 and 12.3
minutes respectively. The overall simulation speedup over

the optimized CD++ is given in Figure 12. In most cases,
the parallelized FSK achieves super-linear speedups thanks
to the multi-dimensional parallelization strategy. The flood
model achieves higher speedups than the fire model since
the synchronization bottleneck is more prominent in the
flood model relative to its rule evaluation. Comparing to the
baseline CD++, the parallelized FSK accelerates the fire and
flood simulations by a factor of up to 70.6 and 83.32.

Figure 12. Simulation speedup over optimized CD++
Figure 13 shows the scaling of the FSK itself as

exhibited in the simulations. Both synchronization functions
attain super-liner speedups due to SIMD code vectorization
and hiding memory latency with double buffering. Overall,
the parallelized FSK accomplishes the synchronization task
up to 14.36 and 18.75 times faster than the optimized
sequential version on PPE.

Figure 13. FSK speedup over the PPE-optimized version

8. CONCLUSION AND FUTURE WORK

Multicore technologies offer great opportunities for
delivering an unprecedented performance that previously
could only be attained on high-end super clusters. They also
bring software development challenges that require the
integration of complex, multigrain parallelism in a coherent
way. This paper presents a new technique for efficient
parallel simulation of large-scale DEVS-based models on

the IBM Cell processor. Following a performance-centered
approach, we addressed all major performance bottlenecks
by exploiting multi-dimensional parallelism. New forms of
fine-grained event-level parallelism were analyzed, which is
fundamental in the parallelization of DEVS-based
simulation systems. Our preliminary experiments have
already produced very promising results, proving that
optimizing and porting DEVS simulations to multicore
platforms like the Cell processor is worth the effort. The
proposed technique not only allows a broad community of
DEVS users to tap the potential of the Cell processor
without being distracted by the complexity of multicore
programming, but also provides insights on migration of
legacy software to current and future multicore platforms.

We are implementing the SEK in CD++, which will be
the first object-oriented full-fledged DEVS simulation
engine on the Cell processor. We are also investigating new
methods to combine cluster-based parallel simulation with
Cell-accelerated simulation on large-scale hybrid systems.

References
[1] Khale, J.A.; M.N. Day; H.P. Hofstee; C.R. Johns; T.R.
Maeurer; D. Shippy. 2005. “Introducing to the Cell
Multiprocessor”. IBM Journal of Research and
Development 49(4/5), pp. 589-604.
[2] Williams, S.; J. Shalf; L. Oliker; S. Kamil; P. Husbands;
K. Yelick. 2006, “The Potential of the Cell Processor for
Scientific Computing”. In Proceedings of the 3rd Conference
on Computing Frontiers, pp. 9-20. Ischia, Italy.
[3] Crawford, C.H.; P. Henning; M. Kistler; C. Wright.
2008. “Accelerating Computing with the Cell Broadband
Engine Processor”. In Proceedings of the 5th Conference on
Computing Frontiers, pp. 3-12. Ischia, Italy.
[4] Zeigler, B.P.; H. Praehofer; T.G. Kim. 2000. Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press,
San Diego, CA.
[5] Chow, A.C.; B.P. Zeigler. 1994. “Parallel DEVS: A
Parallel, Hierarchical, Modular Modeling Formalism”. In
Proceedings of the 26th Winter Simulation Conference, pp.
716-722. Orlando, FL.
[6] Wainer, G.; N. Giambiasi. 2002. “N-dimensional Cell-
DEVS Models”. Discrete Event Dynamic Systems 12 (2),
pp. 135-157.
[7] Wainer, G. 2002. “CD++: A Toolkit to Develop DEVS
Models”. Software: Practice and Experience 32(13), pp.
1261-1306.
[8] Wainer, G. 2004. “Modeling and Simulation of
Complex Systems with Cell-DEVS”. In Proceedings of the
36th Winter Simulation Conference (WSC), pp. 49-60.
Washington, DC.
[9] Wainer, G. 2006. “Applying Cell-DEVS Methodology
for Modeling the Environment”. SIMULATION 82(10), pp.
635-660.

[10] Wainer, G. 2009. Discrete-Event Modeling and
Simulation: A Practitioner’s Approach. CRC Press, Boca
Raton, FL.
[11] Fujimoto, R.M. 2000. Parallel and distributed
simulation systems. John Wiley & Sons, New York, NY.
[12] Stamatakis, A.; M. Ott. 2008. “Exploiting Fine-Grained
Parallelism in the Phylogenetic Likelihood Function with
MPI, Pthreads, and OpenMP: A Performance Study”. In
Proceedings of the 3rd IAPR International Conference on
Pattern Recognition in Bioinformatics, pp. 424-435.
Melbourne, Australia.
[13] Kudlur, M.; S. Mahlke. 2008. “Orchestrating the
Execution of Stream Programs on Multicore Platforms”. In
Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp.
114-124. Tucson, AZ.
[14] Varbanescu, A.L.; H. Sips; K.A. Ross; Q. Liu; L.K. Liu;
A. Natsev; J.R. Smith. 2007. “An Effective Strategy for
Porting C++ Applications on Cell”. In Proceedings of the
2007 International Conference on Parallel Processing, pp.
59-68. Xian, China.
[15] Eichenberger, A.E.; K. O’Brien; P. Wu; T. Chen; P.H.
Oden; D.A. Prener; J.C. Shepherd; B. So; Z. Sura; A. Wang;
T. Zhang; P. Zhao; M. Gschwind. 2005. “Optimizing
Compiler for the Cell Processor”. In Proceedings of the 14th
International Conference on Parallel Architectures and
Compilation Techniques, pp. 161-172. St. Louis, MO.
[16] Knight, T.J.; J.Y. Park; M. Ren; M. Houston; M. Erez;
K. Fatahalian; A. Aiken; W.J. Dally; P. Hanrahan. 2007.
“Compilation for Explicitly Managed Memory Hierarchies”.
In Proceedings of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 226-
236. San Jose, CA.
[17] McCool, M.D. 2006. “Data-Parallel Programming on
the Cell BE and the GPU using the RapidMind
Development Platform”. In Proceedings of GSPx Multicore
Applications Conference. Santa Clara, CA.
[18] Perez, J.M.; P. Bellens; R.M. Badia; J. Labarta. 2007.
“CellSs: Making it Easier to Program the Cell Broadband
Engine Processor”. IBM Journal of Research and
Development 51(5), pp. 593-604.
[19] Williams, S.; J. Shalf; L. Oliker; S. Kamil; P. Husbands;
K. Yelick. 2007. “Scientific Computing Kernels on the Cell
Processor”. International Journal of Parallel Programming
35(3), pp. 263-298.
[20] Agarwal, V.; L.K. Liu; D.A. Bader. 2008. “Financial
modeling on the Cell Broadband Engine”. In Proceedings of
the 22nd IEEE International Symposium on Parallel and
Distributed Processing, pp. 1-12. Miami, FL.
[21] Liu, Q.; G. Wainer. 2007. “Parallel Environment for
DEVS and Cell-DEVS Models”. SIMULATION 83(6),
pp.449-471.
[22] ARS Laboratory. 2004. Flood Model. http://cell-
devs.sce.carleton.ca/ars/?q=node/11

	1. INTRODUCTION
	2. RELATED WORK
	3. P-DEVS AND CELL-DEVS SIMULATION IN CD++
	4. PERFORMANCE BOTTLENECKS
	5. PARALLELIZARTION STRATEGIES
	5.1. Strategy for the FSK
	5.2. Strategy for the SEK

	6. PARALLEL SIMULATION ON CELL
	7. EXPERIMENTAL RESULTS
	8. CONCLUSION AND FUTURE WORK
	formattingkit - LiuWainer.pdf
	MAJOR HEADINGS
	Subheadings
	Secondary Subheadings

	Footnotes
	The Second and All Subsequent Pages
	Tables and Figures
	Table Headings and Figure Captions
	References
	Reference Citations in Text

