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Abstract 
 This paper presents a new technique for efficient 
parallel simulation of large-scale DEVS-based models on 
the IBM Cell processor, which has one Power Processing 
Element (PPE) and eight Synergistic Processing Elements 
(SPEs). By taking a performance-centered approach, the 
technique allows for exploitation of multi-dimensional 
parallelism to overcome the bottlenecks in the simulation 
process. We illustrate the underlying design methodology 
with detailed simulation profiles. Our preliminary 
experiments have already produced promising results, 
accelerating the baseline PPE-only simulation of a fire 
model and a flood model by a factor of up to 70.6 and 83.32 
respectively. The technique not only enables DEVS users to 
harness the potential of the Cell processor without being 
distracted by the technical complexity of multicore 
programming, but also provides insights on migration of 
legacy software to current and future multicore platforms. 
 
1. INTRODUCTION 

The physical limitations of heat dissipation, memory 
latency, and gate density are pushing the microprocessor 
industry towards multicore Chip Multiprocessor (CMP) 
designs. One latest example is the IBM Cell processor [1], 
which exhibits enormous potential for scientific computing 
[2] and has been used in the Roadrunner project to build a 
petascale supercomputer for the Los Alamos National 
Laboratory [3]. The Cell processor adopts a heterogeneous 
CMP architecture with nine independent cores: one dual-
threaded Power Processing Element (PPE) and eight 
specialized co-processors called Synergistic Processing 
Elements (SPEs). The PPE uses a conventional cache 
hierarchy to access system main memory and provides top-
level thread control for a parallel application, whereas each 
SPE can only directly access a small, non-coherent, on-chip 
Local Storage (LS) to execute the bulk of the workload in 
small chunks. Data sharing is achieved mainly through 
software-managed explicitly-addressed autonomous Direct 
Memory Access (DMA) transfers. In addition, the cores can 
also communicate 32-bit messages with each other via the 
on-chip interconnect bus channels such as mailboxes and 
signals. Furthermore, the SPEs support both scalar and 128-

bit SIMD (Single Instruction, Multiple Data) computations, 
which can be applied at 2, 4, 8, and 16-way granularities. 
All these features make the Cell processor an attractive 
platform to study new computing paradigms for high-
performance scientific applications on the emerging CMP 
architectures. On the flip side, the asymmetric design of 
heterogeneous cores with explicit memory control requires 
careful reconsideration of existing algorithms from a data-
flow perspective to attain optimal execution performance. 

The Discrete Event System Specification (DEVS) 
formalism [4] provides a sound theoretical foundation for 
describing discrete-event systems. Numerous extensions to 
DEVS have been proposed in the literature. P-DEVS [5] 
improves the mechanism for handling simultaneous events. 
Cell-DEVS [6] allows for defining n-dimensional cell 
spaces as discrete-event models where each cell is a basic 
DEVS model component. Both P-DEVS and Cell-DEVS are 
implemented in CD++ [7], an object-oriented modeling and 
simulation (M&S) environment that has been used to solve 
a variety of sophisticated problems (e.g., [8][9][10]). 

With the growing size and complexity of the system, 
the simulation is increasingly time-consuming. Parallel 
Discrete-Event Simulation (PDES) is widely used to speed 
up discrete-event systems [11]. Traditionally, PDES exploits 
concurrent activities at different model components by 
partitioning the simulation onto multiple nodes of a cluster. 
Although this coarse-grained parallelization strategy has 
achieved success in improving performance, other types of 
fine-grained parallelism available on multicore processors 
(e.g., thread-level, event-level, and data-level parallelism) 
remain untapped in most existing algorithms.  

As multicore computing becomes pervasive, there is an 
acute need for bridging the gap between PDES algorithms 
for conventional clusters and those for CMP platforms. In 
this work, we seek to narrow this gap by exploring new 
forms of fine-grained parallelism and proposing a novel 
technique that combines multi-dimensional parallelism 
coherently in large-scale DEVS simulations, while hiding 
the technical details of multicore programming from users. 
By taking a performance-centered approach, the technique 
addresses all major bottlenecks in the simulation process. 
The underlying design methodology is illustrated with 
detailed simulation profiles of two example Cell-DEVS 
models (each has a cell space of over one million cells), 
which simulate wildfire propagation and flooding scenarios 



respectively. Although the proposed technique has not yet 
been fully implemented thus far, the algorithms currently 
available have produced very promising results, attaining 
overall speedups up to 70.6 and 83.32 in the fire and flood 
simulations respectively over the baseline implementation 
on PPE. We believe that the technique not only exposes the 
potential of Cell processor to DEVS users, but also offers 
valuable insights for other application developers who 
intend to port existing legacy software to CMP platforms. 

The rest of the paper is organized as follows. Section 2 
reviews related work. Section 3 recaps DEVS simulation in 
CD++. Section 4 analyzes the performance bottlenecks. 
Section 5 covers the parallelization strategies, and Section 6 
proposes the computing technique. The experimental results 
are discussed in Section 7. Section 8 concludes the paper. 

 
2. RELATED WORK 

As mentioned earlier, existing PDES algorithms usually 
take a coarse-grained parallelization strategy at the cluster 
level without paying much attention to other forms of fine-
grained parallelism available on modern multicore platforms. 
Multigrain parallelism has been studied in the context of 
scientific and multimedia applications [12][13]. New 
techniques are required to exploit multi-dimensional 
parallelism in large-scale PDES on the Cell processor.  

Although different programming models and strategies 
were investigated to improve programmability on the Cell 
processor [1][14], significant efforts are still needed to 
specialize and integrate them to address PDES peculiarities.  

Compiler-assisted vectorization is one way to facilitate 
software development on Cell [15][16]. Without a deep 
understanding of high-level application logic, this technique 
is still inadequate on its own for complex PDES systems 
involving irregular computation that must respect the causal 
dependency among individual events.  

Several middleware frameworks have been developed 
on top of the Cell programming primitives [17][18]. 
Nonetheless, some of them adopt a strict data parallel model 
or adhere to pure C programming, while others tailor the 
functionality of a standard library for specific applications. 
These limitations greatly hinder their applicability to 
complex object-oriented PDES systems.  

Most applications developed on the Cell processor 
perform numerically-intensive computation on a large array 
of data, a SIMD-oriented model that has proven well-suited 
for exploiting data-level parallelism [19]. Recently, M&S 
applications have also been implemented on Cell to offload 
compute-intensive functions to the SPEs [20]. It is, however, 
not straightforward to apply the methods used in these 
applications in general-purpose PDES systems. 

 
3. P-DEVS AND CELL-DEVS SIMULATION IN CD++ 

The P-DEVS formalism supports the construction of 
hierarchical and modular models. It describes a model as a 

hierarchy of atomic (behavioral) and coupled (structural) 
components. A P-DEVS atomic model uses a bag of inputs 
to support the execution of multiple simultaneous events, 
combining the functionality of multiple external transitions 
into a single one [5]. The simulation is driven by a set of 
logical processes (LPs), which are specialized into 
Simulators and Coordinators. A Simulator is in charge of 
triggering an atomic model’s behavior, while a Coordinator 
is responsible for scheduling events in the model hierarchy. 
The Cell-DEVS formalism describes dynamic systems as n-
dimensional cell spaces where each cell is a P-DEVS atomic 
model, allowing for efficient asynchronous execution and 
providing a natural mechanism for defining temporal and 
spatial relations between model components. 

Both P-DEVS and Cell-DEVS are implemented in 
CD++ [7]. To enable users to focus on their modeling issues 
without being distracted by the details of simulation 
implementation, CD++ provides a built-in specification 
language to code the behavior of Cell-DEVS models with a 
set of transition rules. Internally, these transition rules are 
represented as syntax trees, which are loaded into main 
memory during simulation bootstrap for evaluation by the 
cells. This extra level of abstraction is especially valuable 
on multicore platforms since it hides the complexity of 
multicore programming, allowing users to gain performance 
with minimum knowledge of the execution environment.  

 
Figure 1. Flat LP structure 

Recently, CD++ has been extended to support parallel 
simulation on cluster systems based on a flat LP structure 
[21]. By eliminating the intermediate Coordinators in the 
hierarchy, this flat LP structure not only reduces 
communication overhead, but more importantly exposes the 
maximum degree of event-level parallelism and facilitates 
the exploitation of data-level parallelism during simulation 
synchronization, as will be discussed in Section 5. Depicted 
in Figure 1, the sequential simulation on a node involves a 
Node Coordinator (NC), a Flat Coordinator (FC), and a set 
of Simulators. The NC is the central controller on the host 
node, whereas the FC synchronizes all child Simulators.  

The LPs exchange messages that fall in two categories: 
content messages include the external (X) and output (Y) 
events that encode the model input and output data, while 
control messages include the initialization (I), collect (@), 
internal (*), and done (D) events that control the simulation 
flow. The (I) events initialize the LPs at the beginning of the 
simulation. The (@) and (*) events trigger the output and 



DEVS state transition functions respectively in the atomic 
models, and the (D) events carry the model timing 
information for simulation synchronization. 

 
Figure 2. Multi-phased simulation process 

Figure 2 shows a structured view of the simulation 
process [21]. At any virtual time, there is a mandatory 
transition phase and an optional collect phase. The 
simulation starts with an initialization phase at virtual time 
0. At the end of a transition phase, the NC determines the 
next simulation time and sends link messages to the FC, 
advancing the simulation on the node. Based on these 
concepts, this paper focuses on parallelizing the sequential 
simulation on the Cell processor. 
 
4. PERFORMANCE BOTTLENECKS 

In large-scale, high-resolution simulation of complex 
systems, the simulation performance is primarily dominated 
by the size and complexity of the model. The former 
determines the synchronization overhead required for the 
FC to process the timing information of the Simulators, 
while the latter decides the computation intensity needed for 
generating model behavior (rule evaluation in the case of 
Cell-DEVS models). To show the impact of these two 
factors, the original CD++ was ported to the PPE core using 
the flat LP structure, resulting in a baseline implementation.  

M&S has been used in environmental sciences to 
simulate wildfire propagation and flooding phenomena for 
several years. In this work, the fire model introduced in [9] 
and the flood model available at [22] are used as examples 
for performance testing. Both models define a 1024 by 1024 
cell space (over one million cells) to simulate wildfire 
propagation and flooding scenarios over 50 virtual hours 
based on a set of environmental parameters. The 
experiments were carried out on an IBM BladeCenter® 
QS22 with 3.2 GHz IBM PowerXCell 8i processors.  

Table 1. Baseline simulation profiles on the PPE core 
Fire Model 

 (I) (*) (@) (X) (Y) (D) Sum (s) 
Simulator 3.07 497.4 7.66 11.79 ─ ─ 519.92 

FC 0.91 14.38 55044.5 0 93.52 55526.5 110679.81 
NC ─ ─ ─ ─ ─ 2.32 2.32 

Bootstrap ─ 180.65 
Other ─ 121.89 

Total Execution Time (s) 111504.59 

Flood Model 
 (I) (*) (@) (X) (Y) (D) Sum (s) 

Simulator 3.09 144.1 4.64 4.89 ─ ─ 156.73 
FC 0.93 3.40 30413.2 0 34.48 30690.7 61142.7 
NC ─ ─ ─ ─ ─ 1.22 1.22 

Bootstrap ─ 77.62 
Other ─ 54.25 

Total Execution Time (s) 61432.53 

Table 1 gives the resulting simulation profiles obtained 
on the PPE. As we can see, the FC constitutes the main 

bottleneck, consuming 99.3% and 99.5% of the total 
execution time in the fire and flood simulations respectively. 
A closer look at the message-wise decomposition shows that 
the FC spends most of its time on processing (@) and (D) 
messages during which the child Simulators are 
synchronized at each virtual time. This bottleneck is 
prominent in large-scale simulations since the FC needs to 
process a large amount of timing data in two 
synchronization functions. Function findMinTime is 
called during the processing of (D) messages to compute the 
next minimum state change time among the Simulators, 
while findImminents is called during the execution of 
(@) messages to find the imminent Simulator IDs. 

Another bottleneck resides at the Simulators, especially 
the execution of (*) messages where the transition rules are 
evaluated. This bottleneck appears to be minor in the tested 
models because they use simplified rules to approximate the 
dynamic behavior of the real systems. More complex rules 
would be required to obtain more precise approximation, 
leading to higher computational cost at the Simulators. 

In the following, we present new parallelization 
strategies for the FC synchronization task and the execution 
of all types of events targeting the Simulators, referred to as 
the FC Synchronization Kernel (FSK) and the Simulator 
Event-processing Kernel (SEK), on the Cell processor. 

 
5. PARALLELIZARTION STRATEGIES 

 
5.1. Strategy for the FSK 

The FSK consists of the two synchronization functions. 
Originally, the FC uses a standard C++ map (<SimulatorID, 
VirtualTime>) to keep track of the next state change time 
scheduled by the Simulators. Before parallelizing the FSK 
on Cell, this timing data needs to be prepared in a way that 
allows us to reconsider the FC synchronization task from a 
data-flow perspective, as described below.  
• A new ID allocation scheme is used to allocate positive 

IDs for the atomic models and their associated Simulators 
continuously from 0 to (N-1), where N is the total number 
of Simulators created in the simulation. On the contrary, 
the coupled models and the Coordinators use negative IDs. 

• The FC uses an integer Time Array (TA) to hold the 
timing data of all child Simulators, where the array 
indexes serve as the Simulator IDs. This approach offers 
three main benefits. First, it reduces the amount of data by 
half when compared to the original map structure. 
Secondly, it allows us to align the data on cache-line (128 
bytes) boundaries and to pass the effective address of TA 
to the SPEs for efficient DMA transfer. Thirdly, it 
enhances data locality with reduced memory contention 
and cache miss even when the computation is carried out 
on the PPE alone. Owning to the flat LP structure, the 
timing data can be concentrated in a single array, greatly 
facilitating the parallelization of the FSK. 



• The FC also uses a 128-byte aligned integer Imminent ID 
Array (IA) to hold the IDs of imminent Simulators found 
in findImminents. Since only a fraction of the 
Simulators are imminent at any virtual time, this array is 
terminated by a -1 so that the FC can retrieve the 
imminent IDs without performing a full traversal. 

With this data organization, Figure 3 summarizes the 
parallelization strategy for porting the FSK to the SPE cores. 

 
Figure 3. Parallelization strategy for the FSK 

Both TA and IA contain independent data, an ideal case 
for exploring data-level parallelism. To process the time 
values in parallel, TA is divided into multiple chunks, each 
of which is handled by an SPE independently to realize 
thread-level parallelism across multiple SPEs. On each SPE, 
data-streaming parallelism is utilized to process the chunk 
of data as a stream of blocks (or working sets) with regular 
sizes. The synchronization functions are decoupled from the 
FC and implemented in C using explicit SPE SIMD 
intrinsics to exploit vector parallelism.  

 
Figure 4. A skeleton of function findMinTime 

On each SPE core, as illustrated in Figure 4, function 
findMinTime uses a 128-bit, 4-way integer Min Vector 
to scan the virtual time values that are DMA transferred into 
the current working set (line 7-9). When the full chunk of 
data is processed, the Min Vector contains the 4 minimum 
values obtained in the 4 ways. These values are then 
compared horizontally to calculate the chunk-wise 
minimum (line 11), which is sent to the PPE code through 
the outbound mailbox channel (line 12).  

As we can see in Figure 5, findImminents 
replicates the PPE-determined global minimum time in the 
Min Vector (line 2). It uses another 128-bit Index Vector to 
keep track of 4 Simulator IDs corresponding to the entries in 
the current working set when the time values are sifted with 
the Min Vector (line 9-14). At the end of the function, a 
status value is sent to the PPE (line 22), indicating that the 
imminent IDs are available in the IA chunk. 

 
Figure 5. A skeleton of function findImminents 

Both functions use doubled-buffered inbound and 
outbound DMA transfers to hide memory latency. By using 
multiple Min and Index Vectors as simultaneous logical 
threads, loop-level parallelism can be exploited to further 
accelerate the computation. 

 
5.2. Strategy for the SEK 

Although event-processing is fundamental in discrete-
event simulations, direct and explicit exploitation of fine-
grained event-level parallelism is still uncommon in the 
literature. A key challenge is that the parallel computation 
must respect the causal dependency among individual 
events. Figure 6 gives a phase-wise step-by-step view of P-
DEVS simulation with the flat LP structure, showing that 
two types of event parallelism can be exploited following a 
conservative approach without violating causal consistency. 
1. Embarrassing parallelism exists between the 

independent events executed within each step at the FC 
and the Simulators. Since there is no causal dependency 
between these events, they can be processed 
concurrently in an arbitrary order. 

2. Event-Streaming parallelism exists between causal-
dependent events executed in consecutive steps. As the 
output events from the preceding step serve as the inputs 
to the step that follows, these events can be executed 
concurrently in a pipelined manner. 



 
Figure 6. Event-level parallelism in P-DEVS simulation

The first and last steps in each phase serve as fork and 
join points for simulation synchronization. The flat LP 
structure minimizes the number of synchronization points, 
exposing the maximum degree of event-level parallelism. 

In order to port the SEK to SPE cores, the simulation 
data is reorganized as follows. 
• The original C++ hierarchy of event classes is replaced 

with a uniform 32-byte C struct, which encodes the data 
of all types of events in a compact way.  

• The state data encapsulated in an atomic model and its 
associated Simulator is repacked in a C struct of 512 bytes, 
and all the state data is stored in a flat 128-byte aligned 
array (state buffer), one entry for each 512-byte struct. 

• Each transition rule defined in a Cell-DEVS model is 
converted to a sequence of float numbers organized in a 
postfix format, where a syntax node is represented by 2 
float values. The resulting rules are concatenated in a flat 
128-byte aligned array (rule buffer). 

• A flat 128-byte aligned array (event buffer) is allocated to 
pass events between the FC and the Simulators. Each 
entry has an adjustable size of 1KB with a capacity of up 
to 32 slots that is dedicated to a Simulator with ID equal 
to the array index, as illustrated in Figure 7.  

 
Figure 7. Decentralized event management 

At any time, a Simulator and the FC may exchange 
exactly one control message and optionally a list of content 
messages. Thus, the first slot in each event buffer entry is 
reserved for passing the control event, while the following 
slots are used to hold content events, if any. The original 
Future Event List (FEL) is only used to send events between 

the FC and NC at the beginning and end of each simulation 
phase. Together, the FEL and the event buffer entries can be 
viewed as one-to-one bidirectional communication channels, 
forming a star topology with the hub at the FC. 

This decentralized event management has several major 
advantages over the original FEL-centered scheme. First, 
multiple events targeting a Simulator can be transferred 
efficiently to an SPE for execution with one DMA operation. 
Secondly, most of the events executed in the simulation are 
removed from the FEL, reducing the overhead of event 
queue operations considerably. Thirdly, events passed 
between the FC and the Simulators are directly written/read 
in the event buffer without memory allocation/deallocation, 
further reducing the operational cost. Fourthly, the 
Simulators no longer need to define extra message bags to 
hold simultaneous (X) events. Instead, the slots in each 
event buffer entry are naturally suited for this purpose. As 
these (X) events are written directly into the slots by the FC, 
the Simulators also do not need to receive (X) messages any 
more, simplifying Simulators’ event-processing algorithm 
and enhancing simulation performance. Finally, this scheme 
improves data locality and cache utilization even in the case 
of sequential simulation on traditional processors. 

The SEK includes the algorithms for processing (I), (*) 
and (@) messages at the Simulators as well as the DEVS 
functions defined in the atomic models (detailed definition 
of these algorithms can be found in [21]). To parallelize the 
SEK, these algorithms are converted to efficient C code and 
recompiled on the SPE. Due to the irregular nature of the 
computation, only partial vectorization is applied using SPE 
SIMD intrinsics. The performance is further enhanced by 
loop unrolling, branch hints, and proper data aligning 
techniques. Thread-level parallelism is exploited across 
multiple SPEs, each of which hosts an instance of the SEK. 
An SEK executes a stream of events chosen by a PPE-side 
event-dispatching algorithm, which schedules one/more 
independent events targeting the same Simulator to an SEK 
at a time to realize the event-level embarrassing parallelism. 
On the other hand, the event-streaming parallelism is 
achieved by executing causal-dependent events between the 
SPEs and the PPE as a two-stage pipeline. Double buffering 
is used extensively in DMA transfers of event, state and rule 
data to/from the buffers to tap data-streaming parallelism. 



 
Figure 8. Overview of DEVS-based parallel simulation on Cell 

6. PARALLEL SIMULATION ON CELL 
As shown in Figure 8, the parallel simulation involves 

10 threads on a Cell processor. During bootstrap, the PPE 
main thread spawns a helper thread, which in turn creates 
eight SPE threads (one for each SPE). The SPEs are divided 
into two groups, one for FSK and the other for SEK. For 
large-scale models with moderate complexity, more SPEs 
should be used to handle the synchronization task of FSK. 
On the contrary, for complex models with moderate sizes, 
the SEK requires more SPEs to speed up intensive 
computation at the Simulators. Based on our parallelization 
strategies, the Simulators and their associated atomic 
models are virtualized in the sense that all of them share a 
limited set of SPE threads to fulfill their functionalities, and 
the mapping of imminent Simulators onto the SPEs at each 
virtual time is determined dynamically in the simulation. 

 
Figure 9. A skeleton of FSK orchestration algorithm 
The FSKs are invoked in a RPC (Remote Procedure 

Call) style. Each function included in the FSK has an ID: 0 

for findMinTime, 1 for findImminents, and 2 for 
FSK termination. As given in Figure 9, the orchestration 
algorithm for FSK is quite straightforward. Note that, before 
calling findImminents, the current global minimum 
time, as determined by the NC, is compared to the recorded 
local minimums previously found by the FSKs (line 8) to 
ensure that only those FSKs that actually found the global 
minimum are involved in the computation. 

 
Figure 10. A skeleton of SEK orchestration algorithm 

Figure 10 shows the SEK orchestration algorithm. At 
the beginning of each simulation phase, the FC executes 
FEL events scheduled by the NC, generating a sequence of 
events for the Simulators. These events are directly written 
into the event buffer entries based on Simulator IDs. The 
index of a modified event buffer entry serves as the Job ID, 
which is then inserted into one of the pending job queues by 
an event-dispatching algorithm (line 5), thus mapping a 
Simulator to a chosen SPE. Since the events executed by the 



SEKs at any given time have similar computational intensity, 
simple yet effective scheduling policies such as shortest-
queue-first can be used to achieve fine-grained load-
balancing among the SEKs. Multiple pending Job IDs can 
be sent to an SEK once empty entries become available in 
the SPE inbound mailbox channel (line 9), allowing the 
SEK to pre-fetch data for the next job while executing the 
current one. On the SPE side, an SEK fetches data from the 
state, event, and rule buffers with double-buffered DMA 
transfers. At the end of event processing, the SEK puts the 
updated data back to the buffers and sends the finished Job 
ID to the PPE helper thread, allowing the FC to execute the 
output events from the event buffer concurrently (line 13). 
Finally, the FC sends events to the NC via the FEL when all 
output events from the SEKs are processed (line 17), 
finishing the current phase. During the simulation, the PPE 
main thread performs file I/O and remote communication 
with other nodes, if necessary, overlapping computation 
with file I/O and communication to enhance performance. 
 
7. EXPERIMENTAL RESULTS 

The baseline CD++ implementation has been enhanced 
with the data optimization strategies as presented in Section 
5. The resulting PPE-optimized sequential version was then 
parallelized to execute the FSK across multiple SPEs, while 
the parallelization of the SEK is still underway. This section 
analyzes the performance impact of the FSK in the fire and 
flood simulations on IBM BladeCenter® QS22. 

 
Figure 11. FSK data optimization and parallelization impact 

Figure 11 summarizes the total simulation time attained 
by the baseline and optimized CD++ on PPE as well as the 
parallelized FSK on 1 to 8 SPEs. With the data optimization 
alone, the optimized CD++ runs 9.1 and 7.09 times faster 
than the baseline version in the fire and flood simulations 
respectively. Executing the FSK on 8 SPEs further reduces 
the fire and flood simulation time from over 3.4 and 2.4 
hours with the optimized CD++ to just 26.3 and  12.3 
minutes respectively. The overall simulation speedup over 

the optimized CD++ is given in Figure 12. In most cases, 
the parallelized FSK achieves super-linear speedups thanks 
to the multi-dimensional parallelization strategy. The flood 
model achieves higher speedups than the fire model since 
the synchronization bottleneck is more prominent in the 
flood model relative to its rule evaluation. Comparing to the 
baseline CD++, the parallelized FSK accelerates the fire and 
flood simulations by a factor of up to 70.6 and 83.32. 

 
Figure 12. Simulation speedup over optimized CD++ 
Figure 13 shows the scaling of the FSK itself as 

exhibited in the simulations. Both synchronization functions 
attain super-liner speedups due to SIMD code vectorization 
and hiding memory latency with double buffering. Overall, 
the parallelized FSK accomplishes the synchronization task 
up to 14.36 and 18.75 times faster than the optimized 
sequential version on PPE. 

 
Figure 13. FSK speedup over the PPE-optimized version 

 
8. CONCLUSION AND FUTURE WORK 

Multicore technologies offer great opportunities for 
delivering an unprecedented performance that previously 
could only be attained on high-end super clusters. They also 
bring software development challenges that require the 
integration of complex, multigrain parallelism in a coherent 
way. This paper presents a new technique for efficient 
parallel simulation of large-scale DEVS-based models on 



the IBM Cell processor. Following a performance-centered 
approach, we addressed all major performance bottlenecks 
by exploiting multi-dimensional parallelism. New forms of 
fine-grained event-level parallelism were analyzed, which is 
fundamental in the parallelization of DEVS-based 
simulation systems. Our preliminary experiments have 
already produced very promising results, proving that 
optimizing and porting DEVS simulations to multicore 
platforms like the Cell processor is worth the effort. The 
proposed technique not only allows a broad community of 
DEVS users to tap the potential of the Cell processor 
without being distracted by the complexity of multicore 
programming, but also provides insights on migration of 
legacy software to current and future multicore platforms. 

We are implementing the SEK in CD++, which will be 
the first object-oriented full-fledged DEVS simulation 
engine on the Cell processor. We are also investigating new 
methods to combine cluster-based parallel simulation with 
Cell-accelerated simulation on large-scale hybrid systems. 

 
References 
[1] Khale, J.A.; M.N. Day; H.P. Hofstee; C.R. Johns; T.R. 
Maeurer; D. Shippy. 2005. “Introducing to the Cell 
Multiprocessor”. IBM Journal of Research and 
Development 49(4/5), pp. 589-604. 
[2] Williams, S.; J. Shalf; L. Oliker; S. Kamil; P. Husbands; 
K. Yelick. 2006, “The Potential of the Cell Processor for 
Scientific Computing”. In Proceedings of the 3rd Conference 
on Computing Frontiers, pp. 9-20. Ischia, Italy. 
[3] Crawford, C.H.; P. Henning; M. Kistler; C. Wright. 
2008. “Accelerating Computing with the Cell Broadband 
Engine Processor”. In Proceedings of the 5th Conference on 
Computing Frontiers, pp. 3-12. Ischia, Italy. 
[4] Zeigler, B.P.; H. Praehofer; T.G. Kim. 2000. Theory of 
Modeling and Simulation: Integrating Discrete Event and 
Continuous Complex Dynamic Systems. Academic Press, 
San Diego, CA. 
[5] Chow, A.C.; B.P. Zeigler. 1994. “Parallel DEVS: A 
Parallel, Hierarchical, Modular Modeling Formalism”. In 
Proceedings of the 26th Winter Simulation Conference, pp. 
716-722. Orlando, FL. 
[6] Wainer, G.; N. Giambiasi. 2002. “N-dimensional Cell-
DEVS Models”. Discrete Event Dynamic Systems 12 (2), 
pp. 135-157. 
[7] Wainer, G. 2002. “CD++: A Toolkit to Develop DEVS 
Models”. Software: Practice and Experience 32(13), pp. 
1261-1306. 
[8] Wainer, G. 2004. “Modeling and Simulation of 
Complex Systems with Cell-DEVS”. In Proceedings of the 
36th Winter Simulation Conference (WSC), pp. 49-60. 
Washington, DC. 
[9] Wainer, G. 2006. “Applying Cell-DEVS Methodology 
for Modeling the Environment”. SIMULATION 82(10), pp. 
635-660. 

[10] Wainer, G. 2009. Discrete-Event Modeling and 
Simulation: A Practitioner’s Approach. CRC Press, Boca 
Raton, FL. 
[11] Fujimoto, R.M. 2000. Parallel and distributed 
simulation systems. John Wiley & Sons, New York, NY. 
[12] Stamatakis, A.; M. Ott. 2008. “Exploiting Fine-Grained 
Parallelism in the Phylogenetic Likelihood Function with 
MPI, Pthreads, and OpenMP: A Performance Study”. In 
Proceedings of the 3rd IAPR International Conference on 
Pattern Recognition in Bioinformatics, pp. 424-435. 
Melbourne, Australia. 
[13]  Kudlur, M.; S. Mahlke. 2008. “Orchestrating the 
Execution of Stream Programs on Multicore Platforms”. In 
Proceedings of the 2008 ACM SIGPLAN Conference on 
Programming Language Design and Implementation, pp. 
114-124. Tucson, AZ. 
[14] Varbanescu, A.L.; H. Sips; K.A. Ross; Q. Liu; L.K. Liu; 
A. Natsev; J.R. Smith. 2007. “An Effective Strategy for 
Porting C++ Applications on Cell”. In Proceedings of the 
2007 International Conference on Parallel Processing, pp. 
59-68. Xian, China.  
[15] Eichenberger, A.E.; K. O’Brien; P. Wu; T. Chen; P.H. 
Oden; D.A. Prener; J.C. Shepherd; B. So; Z. Sura; A. Wang; 
T. Zhang; P. Zhao; M. Gschwind. 2005. “Optimizing 
Compiler for the Cell Processor”. In Proceedings of the 14th 
International Conference on Parallel Architectures and 
Compilation Techniques, pp. 161-172. St. Louis, MO. 
[16] Knight, T.J.; J.Y. Park; M. Ren; M. Houston; M. Erez; 
K. Fatahalian; A. Aiken; W.J. Dally; P. Hanrahan. 2007. 
“Compilation for Explicitly Managed Memory Hierarchies”. 
In Proceedings of the 12th ACM SIGPLAN Symposium on 
Principles and Practice of Parallel Programming, pp. 226-
236. San Jose, CA. 
[17] McCool, M.D. 2006. “Data-Parallel Programming on 
the Cell BE and the GPU using the RapidMind 
Development Platform”. In Proceedings of GSPx Multicore 
Applications Conference. Santa Clara, CA. 
[18] Perez, J.M.; P. Bellens; R.M. Badia; J. Labarta. 2007. 
“CellSs: Making it Easier to Program the Cell Broadband 
Engine Processor”. IBM Journal of Research and 
Development 51(5), pp. 593-604. 
[19] Williams, S.; J. Shalf; L. Oliker; S. Kamil; P. Husbands; 
K. Yelick. 2007. “Scientific Computing Kernels on the Cell 
Processor”. International Journal of Parallel Programming 
35(3), pp. 263-298. 
[20] Agarwal, V.; L.K. Liu; D.A. Bader. 2008. “Financial 
modeling on the Cell Broadband Engine”. In Proceedings of 
the 22nd IEEE International Symposium on Parallel and 
Distributed Processing, pp. 1-12. Miami, FL. 
[21] Liu, Q.; G. Wainer. 2007. “Parallel Environment for 
DEVS and Cell-DEVS Models”. SIMULATION 83(6), 
pp.449-471. 
[22] ARS Laboratory. 2004. Flood Model. http://cell-
devs.sce.carleton.ca/ars/?q=node/11 


	1. INTRODUCTION
	2. RELATED WORK
	3. P-DEVS AND CELL-DEVS SIMULATION IN CD++
	4. PERFORMANCE BOTTLENECKS
	5. PARALLELIZARTION STRATEGIES
	5.1. Strategy for the FSK
	5.2. Strategy for the SEK

	6. PARALLEL SIMULATION ON CELL
	7. EXPERIMENTAL RESULTS
	8. CONCLUSION AND FUTURE WORK
	formattingkit - LiuWainer.pdf
	MAJOR HEADINGS
	Subheadings
	Secondary Subheadings

	Footnotes
	The Second and All Subsequent Pages
	Tables and Figures
	Table Headings and Figure Captions
	References
	Reference Citations in Text





