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Abstract 

The Discrete Event System Specification (DEVS) provides a general methodology for 

hierarchical construction of reusable models in a modular way and has been used to simulate 

sophisticated systems in a variety of domains. This dissertation addresses software design 

and performance issues that arise in parallel simulation of large-scale DEVS-based models 

on both multiprocessor clusters and chip-multiprocessor architectures. 

The Time Warp (TW) mechanism is the most well-known optimistic synchronization 

protocol for Parallel Discrete-Event Simulations (PDES). With the increasing scale and 

complexity, TW simulations face new challenges in terms of excessive memory consumption 

and operational overhead. In an effort to alleviate these problems, a novel Lightweight Time 

Warp (LTW) protocol is proposed for efficient optimistic parallel DEVS simulation on 

multiprocessor clusters. By exploring the intrinsic computational properties of DEVS-based 

simulations, the LTW protocol allows purely optimistic parallel simulation to be driven by 

only a few full-fledged TW Logical Processes (LPs), while most of the LPs are set free from 

the burden of TW execution. The experimental results indicate that simulation performance 

can be improved significantly in various aspects, including shortened execution time, 

reduced memory footprint, lowered operational overhead, accelerated event queue operations, 

facilitated process migration, and enhanced system stability and scalability. 

To address the limitations of microprocessor performance, the industry is moving 

towards multicore chip-multiprocessor designs. As a latest example of this trend, the IBM 

Cell processor has attracted a growing interest from the modeling and simulation community. 

However, general-purpose PDES on such platform requires innovative redesign of existing 

algorithms in return for better simulation performance. To this end, a new computing 

technique called Multicore Acceleration of DEVS Systems (MADS) is developed for high-

performance parallel DEVS simulation on the Cell processor, combining multi-grained 

parallelism and various optimizations to overcome the major performance bottlenecks, while 

hiding, to a great extent, the technical details of multicore programming from general users. 

Through the concept of LP virtualization, the MADS technique explicitly exploits the 

massive data- and event-level parallelism inherent in the simulation, making the achievable 
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performance gain more deterministic and predictable than the traditional LP-oriented 

approaches. Promising results have been produced in the experiments, demonstrating that the 

MADS technique can be used to accelerate both memory-bound and compute-bound 

computational kernels in demanding parallel DEVS simulations. The proposed technique not 

only allows a broad community of DEVS users to tap the potential of the Cell processor with 

a minimal knowledge of the multicore execution environment, but also makes it possible to 

integrate cluster-based parallel simulation with multicore-accelerated parallel simulation on 

hybrid supercomputers. 
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Chapter 1. Introduction 

Computer-based Modeling and Simulation (M&S) has long been used as a powerful tool 

for cost-effective analysis, design, control, and optimization of complex dynamic systems in 

a broad range of domains. One category of dynamic systems is known as Discrete Event 

Dynamic Systems (DEDS), where changes in the system state can be represented by a 

collection of events occurred at discrete points in time [Fis73]. Although there is no shortage 

of formal methods for describing DEDS, the need for a universally applicable modeling 

framework has been well recognized (see, e.g., [Nan81 and Ho89]). Efforts towards this goal 

have led to the development of several methodologies that trace their origins to general 

systems theory, which postulates that different physical systems can obey the same laws and 

exhibit similar patterns of behavior [Roz93]. Among these methodologies, Zeigler’s Discrete 

Event System Specification (DEVS) formalism [Zei76, Zei84, Zei90a, and Zei00] is 

regarded as one of the most developed general-purpose M&S frameworks for DEDS [Pag94]. 

Based on a solid system theoretic foundation, DEVS not only allows for hierarchical 

construction of reusable discrete-event models in a modular way, but also provides an 

abstract simulation engine architecture that can be realized on diverse computing platforms 

[Zei93]. The term simulation engine architecture refers to a hierarchy of simulation entities 

and their associated algorithms that can be used to execute DEVS-representable models 

correctly. It is considered as abstract in the sense that the conceptual simulation entities may 

not necessarily be mapped to physical processors in a one-to-one relation [Zei90b]. 

According to the DEVS theory, a model is defined as a mathematical entity that 

consists of a hierarchy of atomic (behavioral) and coupled (structural) components. Thanks 

to the closure under coupling property, a coupled model can be expressed as an equivalent 

basic DEVS model, which in turn can be used in a larger system as required for hierarchical 

model construction [Zei84]. After over forty years of research, many extensions to DEVS 

have been proposed in the literature. For instance, the Parallel DEVS (or P-DEVS) 

formalism [Cho94] extends DEVS to improve the mechanism for handling simultaneous 

events, eliminating the serialization constraints existed in the original DEVS definition. The 
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Cell-DEVS formalism [Wai02a] defines n-dimensional cell spaces as discrete-event models 

where each cell is a P-DEVS atomic model, allowing for specifying both temporal and 

spatial relations between model components. In parallel with these theoretical developments, 

various DEVS-based simulation tools have been implemented, such as DEVS-C++ [Zei96], 

RTDEVS/CORBA [Cho03], DEVSCluster [Kim04], and DEVS/SOA [Mit09], just to 

mention a few. In particular, the CD++ toolkit [Wai02b] is an open-source, object-oriented 

M&S environment that implements both P-DEVS and Cell-DEVS formalisms using different 

middleware technologies on varied platforms (see, e.g., [Tro03, Chi07, Liu07, Fen08, Har08, 

Wai08a, Wai08b, and Wai09a]). 

In order to improve the performance of discrete-event simulations, Parallel Discrete-

Event Simulation (PDES) techniques have been used to allow for executing a single 

discrete-event simulation program on a parallel computer with multiple processors (or 

nodes1). A PDES system is typically constructed as a set of Logical Processes (LPs), each 

representing a different portion of the physical system and executing on a potentially 

different processor in an event-driven fashion. The execution of an event at a LP may modify 

the state of the LP and generate new events that will be sent to other LPs. During a 

simulation, the LPs interact with each other exclusively by exchanging time-stamped event 

messages. To ensure correct simulation results, the LPs must be synchronized properly to 

comply with the local causality constraint [Fuj90], which requires each LP to process events 

in nondecreasing time stamp order. Errors resulting from out-of-order event execution are 

referred to as causality errors. Synchronization techniques for PDES systems are broadly 

classified into two categories, namely conservative and optimistic. The conservative 

approaches, pioneered by Chandy and Misra [Cha79], strictly avoid the possibility of 

processing events out of time stamp order. In contrast, the optimistic approaches, 

exemplified by Jefferson’s Time Warp (TW) protocol [Jef85], allow causality errors to 

happen temporarily, but provide mechanisms to recover from them during the execution. 

Both approaches have their own merits and are being used in different applications. An 

extensive survey of existing PDES techniques can be found in [Fuj00]. 

                                                 
1  The term node is used interchangeably with processor (or chip) hereafter, whereas the internal processing 

units included in a multicore processor are referred to as processing elements (or cores). 



3 

Traditionally, PDES systems have been implemented on distributed-memory and 

shared-memory multiprocessor clusters [Buy99]. Recent advent of multicore Chip 

Multiprocessor (CMP) architectures has attracted significant interest from the M&S 

community [Olu07]. The research described here is primarily concerned with issues related 

to software development and performance optimization in large-scale parallel simulation of 

P-DEVS and Cell-DEVS models on both distributed-memory multiprocessor clusters and 

heterogeneous multicore processors [Kum05]. Specifically, this dissertation investigates new 

ways of efficient parallel simulation on such platforms, taking advantage of the intrinsic 

computational properties and the inherent parallelism of the DEVS-based simulation process. 

To this end, novel computing techniques, algorithms, and protocols are proposed, and 

advanced parallel simulation engines are developed and integrated into the CD++ 

environment.  

In the rest of this chapter, Section 1.1 presents the research motivations and objectives. 

Section 1.2 highlights the major contributions. Section 1.3 summarizes the publications 

derived from the research. And Section 1.4 outlines the organization of this dissertation. 

1.1. Research Motivations and Objectives 

This research is motivated by two complementary and interrelated objectives. The first one is 

to address the challenges of large-scale optimistic parallel simulation of P-DEVS and Cell-

DEVS models on distributed-memory multiprocessor clusters based on the TW protocol 

[Jef85]. The second one is to achieve efficient parallel DEVS simulation on heterogeneous 

CMP architectures as exemplified by the IBM Cell Broadband Engine processor [Kha05 and 

Che07]. The fulfillment of these two objectives would help bridge the gap between PDES 

algorithms developed for traditional multiprocessor clusters and those for emerging CMP 

architectures, allowing for combining the advantages of parallel simulation at the cluster 

level with the benefits of accelerated parallel simulation on each multicore node. 

1.1.1. DEVS Simulation with Time Warp 

Originally introduced in [Jef85], Jefferson’s TW mechanism remains the best known 

optimistic synchronization protocol that underlies many PDES systems (see, e.g., GTW 

[Das94], ROSS [Car02], WARPED [Mar03], µsik [Per05], and WarpIV [Ste05]). A TW 
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simulation is executed by several Time Warp Logical Processes (TWLPs), each of which 

has its own Local Virtual Time (LVT) and processes events autonomously. They rely on a 

rollback mechanism to recover from potential causality errors based on stored historical 

event and state data. Numerous techniques have been proposed to improve the efficiency of 

TW simulations (see, e.g., state checkpointing [Pre94, Tay00, and Fen06], event cancellation 

[Lin91a, Nor02, and Che09a], GVT computation [Mat93, Kan96, Fuj97, and Che05], fossil 

collection [You99, Vee02, and Che06], memory management [Jef90, Lin91b, and Pre95], 

event set implementations [Bro88, Ron93, and Tan05a], optimism control [Ste93, Sri98, and 

Wan09], and dynamic load management [Rei90, Gla93, and Li04]). However, these 

techniques often do not relate themselves to the broader context of M&S methodology in 

general, and thus overlook the benefits that a formal modeling framework can offer. 

The TW protocol has also been studied in the context of DEVS-based simulations (see, 

e.g., [Chr90, Kim98, Zei00, Nut04, Nut08, and Sun08]). In a recent effort, the CD++ toolkit 

has been extended to support TW simulation of P-DEVS and Cell-DEVS models on 

distributed-memory multiprocessors using the WARPED simulation kernel as a middleware 

layer [Liu07]. The resulting optimistic parallel simulator, referred to as PCD++, addresses 

several important issues raised in DEVS-based TW simulations, including asynchronous 

state transition, messaging anomaly, and rollback at virtual time zero. While performance is 

one of the main concerns, most of the foregoing studies put emphasis on the applicability and 

correctness of the TW approach to optimistic parallel DEVS simulations. 

The increasing scale and complexity of DEVS systems poses new demands on the TW 

protocol. With many TWLPs allocated on each available processor in a typical large-scale 

simulation, saving historical data in the event and state queues not only consumes an 

excessive amount of memory, but also raises the cost of queue operation, fossil collection, 

and dynamic process migration. Moreover, the conventional rollback mechanism relies 

solely on propagation of anti-messages to undo the effect of incorrect computation at the 

TWLPs, imposing a heavy burden on the communication infrastructure and, as the number of 

TWLPs involved in a rollback increases, impairing the performance and scalability of the 

entire system. These problems become especially severe when a large number of 

simultaneous events (i.e., events with exactly the same time stamp) need to be executed at 

each virtual time, as commonly found in large-scale, densely-interconnected, and highly-
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active DEVS-based models. 

Although DEVS simulation performance could be improved by gradually incorporating 

different TW optimizations on a case-by-case basis, this approach suffers from two major 

disadvantages. First, the existing TW optimization strategies, which are developed without 

considering the specific properties of DEVS-based simulation, can usually produce only 

suboptimal performance results. Secondly, combining different optimizations of various 

types, many with their own special operational requirements that may not be compatible with 

those of others, makes the integration process time-consuming and error-prone.  

One of the main objectives of this research is to address the above challenges without 

complicating the synchronization algorithms unnecessarily, sacrificing potential parallelism, 

or introducing a noticeable extra operational overhead. This is achieved by clearly 

identifying the intrinsic computational properties of DEVS-based simulations and directly 

exploiting them from the core of the TW mechanism. The result is a new variant of the TW 

protocol for efficient optimistic parallel simulation of P-DEVS and Cell-DEVS models. 

1.1.2. DEVS Simulation on Cell Processor 

As the monolithic approach to microprocessor design reaches a point of diminishing return 

due to physical and practical constraints such as heat dissipation, memory latency, and gate 

density, a clear trend has been observed in the industry moving towards multicore CMP 

architectures (see, e.g., [Kon05, Kot05, McN05, and Lin08]). Previous studies suggest that 

heterogeneous CMP designs, in which different types of cores of varying size and 

complexity are integrated on a single die, have the potential to meet the needs of a broad 

spectrum of applications [Kum05, Kum06, and Mor06]. One example of such designs is the 

IBM Cell Broadband Engine, also known as the Cell processor [Kha05 and Che07], which 

has demonstrated significant potential for scientific computing [Wil06] and been used in both 

high-end servers [Nan07] and next-generation supercomputers [Cra08 and Bar08].  

The latest Cell processor consists of nine independent cores that employ two distinct 

Instruction Set Architectures (ISAs), including a main two-way SMT (Simultaneous 

Multithreading) Power Processor Element (PPE) that uses the 64-bit PowerPC ISA, and 

eight specialized co-processors called Synergistic Processing Elements (SPEs) that use a 

128-bit SIMD (Single Instruction, Multiple Data) ISA. The PPE adopts a conventional 
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two-level cache hierarchy (32KB L1, 512KB L2) to access system main memory and 

provides top-level thread control for a parallel application, whereas each SPE can directly 

access only a private on-chip Local Storage (LS) of 256KB that contains both code and data 

(including the call stack) of an SPE thread. Data sharing is achieved mainly through 

software-managed, explicitly-addressed, autonomous Direct Memory Access (DMA) 

transfers, which require proper address alignment and transfer size to attain peak 

performance. The cores can also communicate 32-bit short messages via the on-chip 

Element Interconnect Bus (EIB) channels (e.g., mailboxes and signals). Moreover, the 

SPEs support both scalar and 128-bit SIMD operations that can be applied at 2, 4, 8, and 16-

way granularities. All these features make the Cell processor an attractive vehicle for 

studying new computing techniques on the emerging CMP architectures. On the flip side, the 

asymmetric design of heterogeneous cores with explicit memory control increases software 

complexity considerably and requires innovative redesign of existing algorithms to exploit 

parallelism at different system levels in return for better application performance.  

While the Cell processor is rapidly gaining popularity in scientific and multimedia 

applications (see, e.g., [Bad07a, Ged07, Pet07, and Sai07]), its potential has yet to be 

realized in PDES systems due to several challenging issues. First of all, most of the existing 

PDES techniques, developed with traditional parallel computing systems in mind, adopt a 

LP-oriented approach to partitioning a simulation across multiple nodes of a cluster [Fuj00], 

while neglecting to integrate with other forms of parallelism (e.g., data-level parallelism, 

memory-level parallelism, and compute-transfer parallelism) that are made available on 

modern multicore platforms. As a result, developing efficient PDES algorithms on the Cell 

processor, and on CMP architectures in general, requires a holistic approach that takes into 

account all parallelization options provided by the processor microarchitecture. In addition, 

PDES programs typically involve highly irregular, control-intensive computation with 

complex data dependency and unpredictable memory access pattern [Fuj90], a class of 

workload that is generally regarded as not well-suited for parallelization on the Cell 

processor [Sca09a]. Furthermore, recent advances towards facilitating software development 

on the Cell processor, in the form of compiler-assisted vectorization (e.g., [Eic06 and Kni07]) 

and middleware frameworks (e.g., [McC06 and Per07]), offer little help in parallelizing 

PDES systems, mainly because these techniques, applied at a lower software layer, lack the 
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adequate knowledge to explore application-level parallelism effectively. Several proposed 

programming models and strategies attempt to provide a general guidance for porting legacy 

applications to the Cell processor (e.g., [Kha05, McC08, and Var07]). To make the most of 

the Cell potential, however, simulator developers still need to explicitly handle issues such as 

computational kernel analysis, data layout and movement, task synchronization, and 

performance optimization, among others, while at the same time satisfying the various 

requirements of PDES execution and the underlying hardware platform. 

As multicore computing emerges as the primary way of scaling processor performance 

[Olu05 and Asa06], there is a growing need for new PDES techniques targeting CMP 

architectures. Towards this goal, the research presented in this dissertation takes a formalism-

based performance-centric approach to efficient parallel DEVS simulation on the 

heterogeneous Cell processor, addressing the aforementioned challenges in a coherent way. 

In addition, this dissertation also attempts to take into account several other aspects such as 

enhancing modeler productivity, lowering user learning curve, and integrating with cluster-

based PDES techniques for future expansion and development. 

1.2. Contributions 

The central themes of this dissertation are to improve the performance of DEVS-based TW 

simulation on distributed-memory multiprocessor clusters and to achieve high-performance 

parallel DEVS simulation on the Cell processor. This section summarizes the key 

contributions made in pursuit of each of these two research objectives. 

1.2.1. Lightweight Time Warp 

A new variant of the TW protocol, referred to as Lightweight Time Warp (LTW), is 

proposed that takes advantage of the intrinsic computational properties of the DEVS-based 

simulation process to reduce the operational overhead of TW execution in a systematic way. 

The LTW protocol includes the following contributions. 

• The complex message flow between the LPs is characterized by a well-structured 

multi-phased high-level abstraction, which, besides allowing for representing the 

DEVS simulation process in a compact form, assists in the development of new phase-

based optimization and event-scheduling algorithms. 
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• Several key intrinsic (model-independent) computational properties of the DEVS 

simulation process are clearly identified and summarized, providing the basis for 

developing novel optimization strategies for efficient DEVS-based TW simulations. 

• Corresponding to the DEVS computational properties, a set of assumptions regarding 

the control of the LPs in a TW simulation is generalized that not only forms the basis 

for the LTW protocol, but also serves as a guideline for applying the optimization 

strategies to other TW-based optimistic PDES systems. 

• The simulation space on each node is divided into two conceptual domains, namely a 

TW domain and a LTW domain, in order to release most of the LPs from the burden 

associated with TW execution. The LPs from different domains interact through a 

mixed-mode interface LP. As a result, the overall purely optimistic TW simulation is 

driven by only a few TWLPs, while most of the LPs are turned into lightweight 

processes executing at a much lower operational cost.  

• An event management scheme is proposed that classifies the events into persistent and 

volatile types. While the persistent events are still maintained in the input and output 

queues, the volatile events can be safely discarded right after execution, reducing 

memory consumption and accelerating event queue operations. Based on this concept, 

an event-scheduling algorithm is developed to schedule both types of events using a set 

of prioritized rules. 

• An aggregate checkpointing scheme is introduced that allows the lightweight LPs to 

delegate the responsibility of state management to the interface LP. In addition, an 

enhanced risk-free infrequent state-saving mechanism is proposed to reduce state-

saving overhead in DEVS-based TW simulations without increasing rollback cost.  

• A lightweight rollback mechanism is provided to restrict the propagation of rollbacks to 

the TW domains only, whereas all the lightweight LPs are no longer required to 

perform rollback operations, reducing rollback overhead and enhancing system stability 

and scalability. 

• The PCD++ simulator is extended to include the LTW protocol, and the performance is 

evaluated quantitatively using different models of varied characteristics based on a set 

of 14 key metrics that are of importance in TW simulations. 
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1.2.2. Multicore Acceleration of DEVS Systems 

A novel computing technique, referred to as Multicore Acceleration of DEVS Systems 

(MADS), is proposed that combines multi-grained parallelism and various optimization 

strategies to overcome the major performance bottlenecks in demanding DEVS-based 

simulations on the Cell processor. The development of the MADS technique consists of the 

following contributions. 

• Two types of typical computational kernels are extracted from general-purpose DEVS-

based simulations, reflecting the major performance bottlenecks in the simulation 

process, as illustrated by detailed simulation profiles.  

• The concept of LP virtualization is introduced to support flexible and efficient mapping 

of LPs to different processing elements of the Cell processor dynamically at runtime, 

improving the utilization of the heterogeneous cores, minimizing the synchronization 

overhead, and allowing for fine-grained dynamic load balancing. 

• Two forms of event-level parallelism are identified from a data-flow perspective, 

including the event-embarrassing parallelism and the event-streaming parallelism. 

Unlike the LP-oriented parallelization strategy adopted in most existing PDES systems, 

the MADS technique explicitly exploits the fine-grained event-level parallelism that is 

inherent in the DEVS simulation process, making the achievable parallelism more 

deterministic and predictable. 

• To accelerate the computational kernels, new simulation algorithms are developed to 

combine multi-grained parallelism at different levels of the system in a coherent way, 

including thread-level parallelism, data-level parallelism, event-level parallelism, data-

streaming parallelism, and compute-I/O parallelism. 

• Various performance optimizations are considered in the design of the parallel 

simulator to further streamline the kernel computation, ranging from high-level 

minimization of thread orchestration and synchronization overhead to low-level data 

alignment and code implementation. 

• By taking advantage of the built-in CD++ specification language, the proposed MADS 

technique hides the technical complexity of multicore programming from non-expert 

users in the M&S of Cell-DEVS models. In addition, it provides the necessary support 

to assist the development of P-DEVS models on the Cell processor (e.g., in terms of 
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memory control and kernel orchestration services), allowing a modeler to gain 

performance with minimal knowledge of the multicore execution environment. 

• The mechanisms for integrating the MADS technique with other cluster-based PDES 

techniques (both conservative and optimistic approaches) are discussed, demonstrating 

the feasibility and potential of combining cluster-level parallelization with multicore-

accelerated DEVS systems on hybrid supercomputers. 

•  The methods employed in this research, such as LP virtualization and data-flow 

orientated exploitation of event parallelism, can also be applied to other CMP 

architectures and shared-memory multiprocessors. Moreover, this dissertation discusses 

several practical issues that of interest to other application developers who intend to 

port legacy software to the Cell processor. 

• A new parallel simulation engine, referred to as CD++/Cell, is implemented on the Cell 

processor using the proposed MADS technique, and the experiments show that a 

significant level of performance can be achieved in simulating different Cell-DEVS 

environmental models. 

1.3. Research Publications 

Some of the results derived from this research have been published thus far, including those 

directly related to the two central research themes and those relevant to DEVS-based M&S in 

general. Following is a list of manuscripts that pertain to the LTW protocol. 

• Liu, Q., and G. Wainer, “Parallel Environment for DEVS and Cell-DEVS Models”. 

SIMULATION, 83(6), pp. 449-471, 2007. This paper, referred to as [Liu07] in the list 

of references, proposes a multi-phased high-level abstraction for describing DEVS-

based simulations. The intrinsic computational properties of the DEVS-based 

simulation process, briefly analyzed in this paper and later refined, are summarized in 

Chapter 2 of this dissertation, providing the basis for the LTW protocol. Based on 

previous research [Liu06], this paper also includes algorithms to ensure the correctness 

of TW simulation of P-DEVS and Cell-DEVS models with the PCD++ simulator. 

• Liu, Q., and G. Wainer, “Lightweight Time Warp – A Novel Protocol for Parallel 

Optimistic Simulation of Large-Scale DEVS and Cell-DEVS Models”. Proceedings of 

the 12th IEEE International Symposium on Distributed Simulation and Real Time 
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Applications, Vancouver, Canada, pp. 131-138, 2008. This paper, referred to as [Liu08] 

in the list of references, proposes the algorithms included in the LTW protocol, which 

are discussed in Chapter 4 of this dissertation. 

• Liu, Q., and G. Wainer, “A Performance Evaluation of the Lightweight Time Warp 

Protocol in Optimistic Parallel Simulation of DEVS-based Environmental Models”. 

Proceedings of the 23rd IEEE Workshop on Principles of Advanced and Distributed 

Simulation, Lake Placid, NY, pp. 27-34, 2009. Based on a set of 14 key metrics, this 

paper, referred to as [Liu09] in the list of references, evaluates the performance of the 

LTW protocol using several Cell-DEVS environmental models as benchmarks. The 

performance evaluation is presented in Chapter 6 of this dissertation. 

The manuscripts relevant to the MADS technique are summarized as follows. 

• Liu, Q., and G. Wainer, “Accelerating Large-scale DEVS-based Simulation on the Cell 

Processor”. Proceedings of the 2010 Symposium on Theory of Modeling and Simulation 

– DEVS Integrative M&S Symposium, Orlando, FL, pp. 191-198, 2010. This paper, 

referred to as [Liu10a] in the list of references, proposes strategies for accelerating the 

synchronization task in DEVS-based simulation on the Cell processor. It also analyzes 

the event-level parallelism available in the simulation process. These preliminary 

results, later refined, are included in the MADS technique that appears in Chapter 5 of 

this dissertation. 

• Liu, Q., G. Wainer, L. Lu, and M. Perrone, “Novel Performance Optimization of 

Large-Scale Discrete-Event Simulation on the Cell Broadband Engine”. Proceedings of 

the 2010 International Conference on High Performance Computing & Simulation, 

Caen, France, pp. 108-114, 2010. This paper, referred to as [Liu10b] in the list of 

references, proposes various optimization strategies for improving the performance of 

DEVS-based simulation on the Cell processor. It also presents preliminary 

experimental results using a wildfire propagation model as a case study. The 

optimization strategies and the preliminary results, later refined, are discussed in 

Chapter 5 and Chapter 6 of this dissertation respectively. 

• Liu, Q., and G. Wainer, “Exploring Multi-Grained Parallelism in Compute-Intensive 

DEVS Simulations”. Proceedings of the 24th IEEE Workshop on Principles of 

Advanced and Distributed Simulation, Atlanta, GA, pp. 65-72, 2010. This paper, 
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referred to as [Liu10c] in the list of references, proposes the core algorithms included in 

the MADS technique. These algorithms, later extended, are presented in Chapter 5 of 

this dissertation. 

The following manuscripts are related to other aspects of DEVS-based M&S practice. 

• Harzallah, Y., V. Michel, Q. Liu, and G. Wainer. “Distributed Simulation and Web 

Map Mash-Up for Forest Fire Spread”. Proceedings of the 2008 IEEE Congress on 

Services – Part I, Honolulu, HI, pp. 176-183, 2008. This paper, referred to as [Har08] 

in the list of references, presents a Web service based mash-up application for wildfire 

emergency management, including a distributed CD++ simulation service, a global 

weather service, and the Google Maps service. In particular, the CD++ simulator is 

integrated with the fireLib library [Bev96] to compute the fire spread rates based on 

a set of real-time environmental parameters. This wildfire propagation model is used as 

a benchmark for performance evaluation in Chapter 6 of this dissertation. 

• Feng, B., Q. Liu, and G. Wainer. “Parallel Simulation of DEVS and Cell-DEVS 

Models on Windows-based PC Cluster Systems”. Proceedings of the 2008 Spring 

Simulation Multiconference: High Performance Computing Symposium, Ottawa, 

Canada, pp. 439-446, 2008. This paper, referred to as [Fen08] in the list of references, 

presents a technique for constructing ad hoc clusters from Microsoft Windows-based 

commodity PCs to carry out conservative parallel simulation of P-DEVS and Cell-

DEVS models, allowing users to unleash the relatively untapped computing power of 

desktop workstations.  

• Wainer, G., Q. Liu, J. Chazal, L. Quinet, and M. K. Traore, “Performance Analysis of 

Web-based Distributed Simulation in DCD++: A Case Study across the Atlantic 

Ocean”. Proceedings of the 2008 Spring Simulation Multiconference: High 

Performance Computing Symposium, Ottawa, Canada, pp. 413-420, 2008. This paper, 

referred to as [Wai08a] in the list of references, presents a case study of Web-based 

distributed DEVS simulation between Canada and France using the DCD++ simulation 

engine [Wai08b], analyzing the performance bottlenecks found in the system and 

identifying the areas for further investigation. 

• Wainer, G., and Q. Liu, “Tools for Graphical Specification and Visualization of DEVS 

Models”. SIMULATION, 85(3), pp. 131-158, 2009. This paper, referred to as [Wai09b] 
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in the list of references, presents the design and implementation of various graphical 

modeling and visualization facilities that have been incorporated into the CD++ 

environment. With the MADS technique proposed in this dissertation, some of these 

facilities can be tightly coupled with the parallel simulation engine on multicore 

platforms to provide an integrated high-performance modeling, simulation, and 

visualization environment, a future research direction that will be discussed in Chapter 

7 of this dissertation. 

• Wainer, G., Q. Liu, O. Dalle, and B. P. Zeigler, “Applying DEVS and Cellular 

Automata Methodologies to Serious Games”, Simulation & Gaming: An 

Interdisciplinary Journal of Theory, Practice and Research, 2010 (in press). This paper, 

referred to as [Wai10] in the list of references, describes how P-DEVS and Cell-DEVS 

formalisms can be used to support simulation-based serious game applications for a 

variety of non-entertainment purposes. As will be discussed in Chapter 7, these 

applications could also benefit from the parallel simulation techniques presented in this 

dissertation to improve performance. 

1.4. Organization 

The following of this dissertation is organized as follows. Chapter 2 presents the concepts of 

the DEVS M&S framework and the P-DEVS and Cell-DEVS formalisms, which provide the 

theoretical foundation for the research. It also introduces the CD++ simulation algorithms 

and generalizes several key intrinsic computational properties of the DEVS-based simulation 

process. Chapter 3 reviews the literature most relevant to the research objectives of this 

dissertation. Chapter 4 presents the LTW protocol, including its assumptions, algorithms, and 

implications. Chapter 5 proposes the MADS technique for efficient parallel DEVS 

simulation on the Cell processor, illustrating the design methodologies, simulation 

algorithms, and the underlying software architecture. The possible approaches to integrating 

the MADS technique with other cluster-based PDES algorithms are also discussed. Chapter 6 

analyzes the performance of the LTW protocol and the MADS technique quantitatively using 

different benchmark models of varied characteristics. Chapter 7 concludes the dissertation by 

summarizing the research objectives, contributions, and main qualitative results. It also 

suggests a number of future research directions. 
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Chapter 2. DEVS Framework and Its Implementation 

This chapter presents the DEVS M&S framework and its implementation in the CD++ 

environment. Section 2.1 introduces the basic concepts and the software architecture of the 

DEVS M&S framework. Section 2.2 reviews the classical DEVS formalism. Section 2.3 

covers the Parallel DEVS (or P-DEVS) formalism. The Timed Cell-DEVS and Parallel Cell-

DEVS formalisms are presented in Section 2.4 and 2.5 respectively. Section 2.6 describes the 

simulation algorithms and computational properties in the context of the CD++ environment.  

2.1. Conceptual Modeling and Simulation Framework 

A conceptual M&S framework defines the basic entities and their relationships that are 

central to the M&S practice. To allow for a strict modular separation of model and simulator 

concepts, Zeigler et al. proposed a conceptual M&S framework that includes four basic 

entities and two types of relationships [Zei00], as illustrated in Figure 1.  

 
Figure 1. Entities and Relationships of a System M&S Framework [Zei00] 

The entities include source system, experimental frame, model, and simulator. The 

source system is the real or virtual environment under study. It serves as the source of data 

that are collected based on an experimental frame that is of interest to the modeler. The 

experimental frame specifies the conditions under which the source system is observed or 

experimented with. A model is an abstract representation of the construction and behavior of 
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the source system. In general, a model is a set of instructions, rules, mathematical equations, 

or constraints that are used to approximate the I/O trajectories of the source system. A 

simulator is any computation system that defines the operational semantics required to 

execute a class of models in order to faithfully generate their behavior. 

The two fundamental relationships among the entities are the modeling relation (or 

validity) and the simulation relation (or simulator correctness) [Zei00]. The modeling 

relation exists between a source system of interest, an experimental frame in use, and a 

model defined for that source system. This relation is concerned with the accuracy of the 

model-generated behavior when compared to the system behavior observed under the 

experimental frame. On the other hand, the simulation relation lies between a model and a 

simulator, determining whether the model is executed correctly by the simulator. 

The clear separation of model and simulator concepts in the M&S framework offers a 

number of advantages [Zei00]. First, the same class of models expressed in a specific 

formalism can be executed by different simulators that are built to support such formalism, 

allowing for portability and interoperability at a high level of abstraction. Secondly, the 

models and simulators can be validated and verified independently and reused in later 

combinations with minimal re-verification effort. In addition, the models and simulators can 

evolve separately as needed without loss of compatibility as long as they adhere to the 

semantics of a common formalism. 

 
Figure 2. Layered Software Architecture of the M&S Framework 

Figure 2 gives an architectural view of the M&S framework with five distinct layers. 

The bottom layer of the architecture includes diverse hardware platforms on which M&S is 

based. Examples are multiprocessor parallel computing systems, commodity PC 



16 

workstations, and single-board computers commonly used in real-time applications. The 

layer above the hardware platform is the system software layer, which includes various 

operating systems, programming languages, standard libraries, and simulation middleware 

solutions. The system software layer provides the necessary services for developing 

simulators, which implement different formalisms to support the execution of certain classes 

of models. The applications layer addresses issues related to standardization, reusability, and 

interoperability of heterogeneous models to realize transparent sharing of computing power, 

data, models, and experiments in confederated systems. With this layered architecture, 

technology changes in any layer would have a minimal impact on the other layers, allowing 

for the flexibility required to meet the needs of evolving challenges in M&S. This 

dissertation is mainly focused on the system software and the simulators layers to achieve 

efficient parallel simulation on different hardware platforms. 

2.2. Classical DEVS Formalism 

Based on the above M&S framework concepts, the Discrete Event System Specification 

(DEVS) formalism supports hierarchical construction of reusable discrete-event models in a 

modular way [Zei00]. A DEVS model is defined as a mathematical entity that is composed 

of a hierarchy of atomic (behavioral) and coupled (structural) components. An atomic model 

is a basic building block that possesses a set of input and output ports through which all 

interactions with the outside environment are mediated. There are two types of events that 

can occur at an atomic model, namely internal events and external events. Internal events 

arise from within the atomic model, manifest themselves as events to be sent to other model 

components through the output ports, and change the state of the model. When external 

events, arising in the outside environment, are received from the input ports, the atomic 

model determines how to respond to them. This dynamic behavior can be defined rigorously 

using set theory notations as follows [Zei00]. 

M = <X, Y, S, δint, δext, λ, ta>, 

where  

X = {(p,v) | p∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p∈OPorts, v∈Yp} is the set of output ports and values; 

S is the set of states; 
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δint: S S is the internal state transition function; 

δext: Q×X S is the external state transition function, where 

Q = {(s,e) | s∈S,  0 ≤ e ≤ ta(s)} is the set of total states, and 

e is the time elapsed since the last state transition; 

λ: S Y is the output function; 

ta: S 0,R+
∞  is the time advance function. 

Figure 3 illustrates the behavior of a DEVS atomic model. At any time, an atomic 

model is in some state s ∈  S. Without the influence of external events, it will remain in state 

s for a period of ta(s), which is also called the lifetime of state s. When ta(s) expires with e = 

ta(s), the atomic model outputs the value given by λ(s) and changes to a new state δint(s). An 

atomic model that has a due internal state transition at the current simulation time is referred 

to as an imminent model component. Notice that output is only possible in an imminent 

model and occurs right before the scheduled internal state transition.  
  

x   
  

s' = δ ext  (s,  e,  x) 

s s' = δ int (s) 

y   

λ  (s) 

ta(s) 

 
Figure 3. Informal Illustration of a DEVS Atomic Model [Zei00] 

If an external event x ∈  X occurs before the expiration of the current state lifetime, i.e., 

when the atomic model is in total state (s,e) with e < ta(s), an external state transition is 

performed that changes the model state to a new one given by δext(s,e,x). In other words, the 

internal state transition function dictates the model’s new state when no events have occurred 

since the last transition, whereas the external state transition function determines the model’s 

new state under the influence of an external event. Note that the lifetime of a state can take 

on any nonnegative values, including zero and infinity. An atomic model is said to be in a 

transitory state s if ta(s) has a value of 0; and in a passive state if ta(s) is equal to infinity.  
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The DEVS formalism has a well-defined concept of system modularity and component 

coupling that gives rise to hierarchical model construction. A DEVS coupled model specifies 

how its subordinate model components are connected with each other and with the external 

environment, as shown in the following formal definition [Zei00]. 

N = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 

where  

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values; 

D is the set of the component names; 

The following requirements are imposed on each component d that is included in D. 

Md = <Xd, Yd, Sd, δint, δext, λ, ta> is a DEVS model with 

Xd = {(p,v) | p∈IPortsd, v∈Xp} and Yd = {(p,v) | p∈OPortsd, v∈Yp}. 

The component coupling relationships are subject to the following requirements. 

External Input Coupling (EIC) connects external inputs to component inputs, 

EIC⊆ {((N, ipN), (d, ipd)) | ipN∈IPorts, d∈D, ipd∈IPortsd}; 

External Output Coupling (EOC) connects component outputs to external outputs, 

EOC⊆ {((d, opd), (N, opN)) | opN∈OPorts, d∈D, opd∈OPortsd}; 

Internal Coupling (IC) connects component outputs to component inputs, 

IC⊆ {((a, opa), (b, ipb)) | a, b∈D, opa∈OPortsa, ipb∈IPortsb}; 

Select: 2D – {}  D is the tie-breaking function. 

Direct feedback loops are not allowed in the formalism. That is, no output port of a 

component may be connected to an input port of the same component, which can be formally 

specified as ((d, opd), (e, ipd))∈IC implies d ≠ e. In addition, the values sent from a source 

port must be within the range of acceptable values of a destination port, as expressed by:  

∀ ((N, ipN), (d, ipd))∈EIC : XipN⊆Xipd; 

∀ ((a, opa), (N, opN))∈EOC : Yopa⊆YopN; 

∀ ((a, opa), (b, ipb))∈IC : Yopa⊆Xipb. 

Thanks to the closure under coupling property, which states that a valid coupling of 

DEVS-representable model components yields a DEVS-representable model component 

[Pra94], a coupled DEVS model can be treated as an equivalent basic model in the DEVS 
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formalism. The resulting basic model can then be used in a larger coupled model as required 

for hierarchical model construction. 

As multiple imminent components can coexist in a coupled model at the same 

simulation time, ambiguity may arise. If an imminent component executes its internal state 

transition and produces an output that is received by another imminent component as an 

external event, it is not clear which state transition should happen at the receiving 

component. To solve such potential ambiguities, the DEVS formalism introduces a Select 

function that provides a tie-breaking mechanism at the coupled level. A modeler must use the 

Select function to specify an order over all the subordinate components of a coupled model 

so that only one component is chosen from the imminent set to execute internal transition 

with e = 0. The other imminent components are divided into two groups: receivers of the 

external events generated from the chosen imminent component, and the rest. Components in 

the former group will execute their external transitions with e = ta(s), and those in the latter 

group will remain imminent in the next simulation cycle and may need to use the Select 

function again to decide the execution sequence.  

This tie-breaking mechanism, however, suffers from two drawbacks. First, an artificial 

ordering of imminent components might not properly reflect the consequence of the 

occurrence of multiple concurrent events in the real system. Secondly, the serialized 

execution could prohibit the exploitation of potential parallelism in the simulation system, 

especially in parallel and distributed simulation environment. These problems have been 

addressed by Chow and Zeigler in a DEVS extension, known as the Parallel DEVS 

formalism [Cho94], which will be presented  in the next section. 

In addition to the specification for hierarchical model composition, the DEVS 

framework also includes an abstract simulation engine architecture that consists of different 

simulation entities organized in a hierarchy that mimics the hierarchical structure of a model. 

These simulation entities (also known as abstract DEVS processors [Zei00]) are specialized 

into Simulators and Coordinators, which are used to control the execution of the 

corresponding atomic and coupled model components respectively. During a simulation, the 

interaction between different model components is achieved through event messages 

exchanged between the Simulators and Coordinators. In order words, the simulation process 

is managed by the abstract DEVS processors in an event-driven fashion. Note that, although 
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it appears intuitive to simply consider an abstract DEVS processor as a LP, this one-to-one 

correspondence may not always hold. Specifically, a single LP can be used to implement one 

or more abstract DEVS processors in a simulation, though it is uncommon to implement an 

abstract DEVS processor using multiple LPs. 

2.3. Parallel DEVS Formalism 

The Parallel DEVS (or P-DEVS) formalism is intended to eliminate the serialization 

constraint imposed by the tie-breaking Select function as required in the classical DEVS 

definition [Cho94]. Instead of resolving transition collisions at the coupled level, P-DEVS 

addresses the tie-breaking problem within the specification of each atomic model. This is 

achieved by introducing an additional transition function, referred to as confluent transition 

function, which allows a modeler to explicitly define the collision behavior for individual 

atomic models. In addition, each atomic model uses a bag structure to collect all external 

events received from other model components at a given simulation time so that these events 

can be processed as a group in the state transition, combining the execution of multiple 

external transitions into a single one. As a result, many imminent components can be 

activated simultaneously to send output to other components all at the same simulation time 

[Zei03]. The receiver is responsible for examining the input external events and interpreting 

them properly. It has been suggested that the P-DEVS formalism allows for increased 

parallelism to be exploited in a simulation [Cho94]. 

The formal specification of a P-DEVS atomic model is given as follows [Cho94]. 

M = < X, Y, S, δint, δext, δcon, λ, ta >, 

where 

X = {(p,v) | p ∈IPorts, v∈Xp} is the set of input ports and values; 

Y = {(p,v) | p ∈OPorts, v∈Yp} is the set of output ports and values; 

S is the set of sequential states; 

δint: S S is the internal state transition function; 

δext: Q×Xb S is the external state transition function, where 

Xb is a set of bags over elements in X, 

Q = {(s,e) | s∈S,  0 ≤ e ≤ ta(s)} is the set of total states, 

e is the time elapsed since the last state transition; 
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δcon: Q×Xb S is the confluent transition function; 

λ: S Yb is the output function; 

ta: S 0,R+
∞  is the time advance function. 

Consequently, the Select function is removed in the P-DEVS formalism, resulting in 

the following revised definition for P-DEVS coupled models [Cho94]. 

DN = <X, Y, D, {Md | d∈D}, EIC, EOC, IC>. 

The sets of input/output ports and values (X and Y) as well as the couplings (EIC, 

EOC, and IC) are defined similarly as in the classical DEVS coupled model specification. 

The basic components (D and Md) are required to be P-DEVS structures. 

2.4. Timed Cell-DEVS Formalism 

The Cellular automata (CA) theory was pioneered by John von Neumann in his study of 

self-replicating systems [Neu66]. The goal was to design an artificial system that consists of 

a two-dimensional mesh of finite state machines interconnected locally with each other. The 

state machines, referred to as cells, change their states synchronously and in parallel at 

discrete time steps based on the states of a finite set of neighboring cells, referred to as the 

neighborhood, by evaluating a common local update rule. Such CA systems bear several 

intrinsic properties commonly found in the physical world, including homogeneous, 

massively parallel, and local interconnectivity [Kar05]. As a result, CA models have been 

widely used to simulate complex physical, biological, and social systems (see, e.g., [Wol02, 

Yan03, Rot04, Cor06, and Sli09]). Despite its widespread application, the CA approach is 

regarded as computationally inefficient for two main reasons [Wai01]. First, it uses a discrete 

time base that constrains simulation precision and execution efficiency. Secondly, all the 

cells are evaluated synchronously, incurring an unnecessarily high computational cost when 

only a small fraction of the cells needs to be updated at each time step. 

The Timed Cell-DEVS formalism [Wai02a] attempts to solve these problems by 

defining n-dimensional cell spaces as discrete-event models, allowing for more efficient 

asynchronous execution using a continuous time base without losing simulation accuracy. 

Each cell is represented as a DEVS atomic model that changes state in response to the 

occurrence of events in an event-driven fashion. The temporal behavior of a cell is specified 

with explicit timing delay constructions, which find their origins in logic circuit simulations 
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[Chi76]. Two types of delay constructions that are most commonly used in hardware design 

applications are known as transport delay and inertial delay. Transport delay models a 

straightforward propagation of signals over links of infinite bandwidth with anticipatory 

semantics, whereas inertial delay uses preemptive semantics to model the timing behavior of 

a retarded system that changes state only when a certain level of energy is reached. These 

delay constructions can be used to model the behavior of other physical phenomena [Wai01]. 

A Timed Cell-DEVS atomic model is defined formally as follows [Wai02a]. 

CM = <X, Y, I, S, θ, N, delay, d, δint, δext, τ, λ, D>, 

where 

X is the set of external input events; 

Y is the set of external output events; 

I = < , , ,x yP Pη µ > represents the cell’s modular interface, where 

η  is the cell’s neighborhood size, µ  is the number of input/output ports, 

and xP  and yP  are the definition of the cell’s input and output ports; 

S is the set of sequential states for the cell; 

θ is the definition of the cell’s state; 

N is the set of values for input events; 

delay∈{transport, inertial} is the type of the delay construction; 

d is the delay period; 

δint: θ θ is the internal state transition function; 

δext: Q×X θ is the external state transition function, where 

Q = {(s,e) | s∈θ×N×d; e∈[0, D(s)]} is the cell’s state values; 

τ: N S is the local transition function; 

λ: S Y is the output function; 

D: θ×N×d 0,R+
∞  is the state’s duration function. 

Figure 4 illustrates a Timed Cell-DEVS atomic model. The modular interface (I) of a 

cell consists of a fixed number of ports that are connected to other cells in the neighborhood. 

Through the input and output ports, a cell can exchange data with other neighboring cells as 

well as those model components outside of the cell space. A cell’s future state is determined 

by the local transition function (τ) based on the cell’s current state and the values arrived at 



23 

the input ports. If the calculated future state is different from the current one, a state change 

is scheduled and the value of the future state will be revealed to all the neighboring cells after 

a delay period (d). Otherwise, the cell remains in its current state and therefore no output will 

be sent. As in a DEVS atomic model, the output and state transition behavior of each cell is 

defined by the output function (λ), internal state transition function (δint) and external state 

transition function (δext). 

 
Figure 4. Informal Illustration of a Timed Cell-DEVS Atomic Model [Wai02a] 

The cells are coupled with each other, through the neighborhood relation, to form a cell 

space, which can then be integrated with other DEVS or Cell-DEVS models. A cell space is 

defined as a Timed Cell-DEVS coupled model, as follows [Wai02a]. 

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z, Select>, 

where 

Xlist is the list of input coupling; 

Ylist is the list of output coupling; 

I represents the modular model interface; 

X is the set of external input events; 

Y is the set of external output events; 

η  is the dimension of the cell space; 

{t1, …, tn} is the number of cells in each of the dimensions; 

N is the neighborhood set; 

C defines the cell space; 

B is the set of border cells; 



24 

Z is the translation function; 

Select is the tie-breaking function for simultaneous events. 

The cell space (C) is a coupled model composed of an array of Timed Cell-DEVS 

atomic models with a fixed size (t1×…×tn). The neighborhood set (N) is a set of n-tuples that 

specifies the positions of the neighboring cells relative to a given central cell. The cells on 

the border of the cell space are included in set B. If B is empty, every cell in the cell space 

has the same behavior (i.e., homogeneous cell space) and the border is wrapped (i.e., the 

cells on one side of the border are viewed as being connected to those on the opposite side). 

Otherwise, the border cells will have different behavior from those inside the cell space (i.e. 

heterogeneous cell space). The interface (I) of the cell space itself includes the lists of input 

and output coupling (Xlist and Ylist). The Z function is used to specify the coupling between 

cells inside the cell space. It translates the values on the ith output port of a cell Ca into values 

for the ith input port of a neighboring cell Cb. Finally, as in the classical DEVS formalism, 

potential transition collisions are handled at the cell space level using the Select function, 

with the same drawbacks as discussed earlier in Section 2.2. 

2.5. Parallel Cell-DEVS Formalism 

In order to resolve transition collisions without using the Select function, a new version of 

the Timed Cell-DEVS formalism, referred to as Parallel Cell-DEVS [Wai00], has been 

proposed based on the P-DEVS concepts. The formal definition of a Parallel Cell-DEVS 

atomic model is given as follows [Wai00]. 

PCM = < Xb, Yb, I, S, θ, N, d, δint, δext, δcon, τ, τcon, λ, D >. 

Most of the components in the definition remain unchanged as in the Timed Cell-

DEVS specification, with two exceptions. First, the external state transition function and the 

output function are improved to handle bags of inputs and outputs (Xb and Yb) for each cell. 

Secondly, two additional confluent state transition functions (δcon and τcon) are introduced in 

the definition. When collisions between internal and external events happen at a cell, the 

confluent function δcon is triggered as in the P-DEVS formalism. Instead of handling the 

collisions by itself, function δcon activates the confluent local transition function τcon, which 

in turn analyzes the current values in the input bags and presents a unique set of inputs for 

the cell to compute the next state. Hence, a modeler can precisely control the behavior of 
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each cell under collision situations by implementing the confluent local transition function. 

As a result, the Select function is eliminated in the Parallel Cell-DEVS coupled model 

definition, which is given as follows [Wai00]. 

GCC = <Xlist, Ylist, I, X, Y, η , {t1, …, tn}, N, C, B, Z >. 

Each cell in the cell space (C) is a Parallel Cell-DEVS atomic model, while all the other 

components are defined in the same way as presented in the previous section. 

In [Wai00], Wainer proved that a Parallel Cell-DEVS model can be used as an 

equivalent P-DEVS model and the property of closure under coupling still holds, allowing 

for seamless integration of Parallel Cell-DEVS models with other P-DEVS models to 

construct hierarchical systems. 

The Parallel DEVS and Cell-DEVS 2  formalisms not only afford a unified M&S 

framework under the DEVS paradigm, but also facilitate the exploitation of increased 

parallelism in parallel and distributed simulations. Together, they serve as the theoretical 

foundation for the research described in the following chapters. 

2.6. Parallel DEVS and Cell-DEVS Simulation in CD++ 

The CD++ toolkit, originally developed by Wainer [Wai02b], is an open-source, object-

oriented M&S environment that implements both P-DEVS and Cell-DEVS formalisms in 

C++. Over years, CD++ has been augmented with a family of DEVS-based simulation 

engines using different middleware technologies for simulation on varied platforms [Tro03, 

Gli06, Chi07, Liu07, Fen08, Har08, Wai08a, Wai08b, and Wai09a].  

Among these simulation engines, the optimistic parallel CD++ simulator (or PCD++ 

for short) allows for TW simulation of P-DEVS and Cell-DEVS models on Linux-based 

distributed-memory multiprocessor cluster systems [Liu06 and Liu07]. It is built on top of 

the WARPED simulation kernel [Rad98 and Mar03], which in turn relies on the Message 

Passing Interface (MPI) libraries [Gro99] for inter-node communication. In PCD++, a 

model is partitioned at the atomic level, and each abstract DEVS processor is implemented as 

a LP3. The resulting LPs are then mapped to a set of physical processors (or nodes) for 

                                                 
2 For the sake of simplicity, the term Cell-DEVS is used hereafter to stand for Parallel Cell-DEVS. 
3 Since a LP is simply an implementation of a specific abstract DEVS processor in PCD++, LPs and abstract  
DEVS processors are used interchangeably hereafter in this dissertation. 
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parallel execution. The PCD++ simulator incorporates various optimization techniques and 

addresses several important issues arising in DEVS-based TW simulations, providing a 

testbed for the research presented in this dissertation. 

Following previous studies [Kim04 and Gli06], which suggest that flattening the 

abstract DEVS processor structure can reduce communication overhead significantly due to 

the elimination of intermediate coordinators in the hierarchy, PCD++ adopts a flat LP 

structure in which the sequential simulation on each node consists of three types of LPs, 

including one Node Coordinator (NC), one Flat Coordinator (FC), and a group of 

Simulators. One can consider that all of the intermediate coordinators previously existed in 

the abstract DEVS processor hierarchy are collapsed into a single FC, which aggregates the 

functionality of these intermediate coordinators in a more efficient way. 

 
Figure 5. Flat LP Structure in PCD++ 

Figure 5 shows the flat LP structure established across two physical processors. A 

parallel simulation is managed by a set of NCs running asynchronously on different nodes in 

a decentralized manner. On each node, the NC is responsible for sending and receiving inter-

node MPI messages as well as advancing the local simulation time, while the FC is in charge 

of synchronizing the child Simulators underneath and routing messages between the local 

LPs using user-defined model coupling information. Messages exchanged between 

Simulators residing on the same node are directly routed to their destinations by the local FC. 

In the case when a Simulator sends a message to a remote Simulator located on another node, 

the message is forwarded by the sender’s FC to the local NC, which then relays the message 

to the corresponding remote NC. On the receiver side, the NC will route the message to the 

destination Simulator through its child FC.  



27 

It is worthwhile to point out that, thanks to the clear separation of model and simulator 

concepts in the DEVS framework, the flat LP structure is implemented transparently to 

modelers, who still define modular P-DEVS model components and construct hierarchical 

systems as usual [Gli06]. Moreover, as will be discussed in Chapter 5, this flat LP structure 

also facilitates the exploitation of fine-grained event-level and data-level parallelism in 

parallel DEVS simulations on the Cell processor. 

The LPs exchange messages that fall into two categories: content messages include the 

external (X) and output (Y) events that represent the actual model input and output data, 

while control messages include the initialization (I), collect (@), internal (*), and done (D) 

events that control the execution of simultaneous events scheduled at each virtual time in line 

with the P-DEVS formalism. 

2.6.1. Event-Processing Algorithms 

Based on the flat LP structure, this section briefly describes the PCD++ event-processing 

algorithms defined for the Simulators, the FC, and the NC respectively, while more details 

can be found in [Liu06 and Liu07]. In the following, an event is denoted as (event_type, 

receive_time_stamp). The send time stamp of an event is by default the current virtual time t. 

• Simulator event-processing algorithms 

As shown in Figure 6, a Simulator triggers the P-DEVS functions defined in its 

associated atomic model by processing the (I), (@), (X), and (*) events received from the 

parent FC. 

When an (I, 0) is received at the beginning of a simulation, a Simulator initializes the 

state variables and returns a (D, t) to the FC (line 1.4). The Simulator then waits for another 

event from the FC. The output function (λ) of an imminent atomic model is called during the 

processing of a (@, t) (line 2.4). As a result, a (Y, t) is sent to the FC, followed by a (D, t). 

The imminent atomic model enters into a transitory state since the internal state transition 

(δint) needs to be performed immediately after the output. A received (X, t) is simply cached 

in the message bag of the associated atomic model (line 3.2). All these cached (X, t) events 

will be consumed by the atomic model as a whole when its state transition function (δext or 

δcon) is triggered by an ensuing (*, t) received from the FC (line 4.4 and 4.9). Upon the 

arrival of a (*, t), the atomic model’s state transition functions are invoked based on the 
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current state of the model and the status of the message bag (line 4.2 to 4.11). The Simulator 

then returns a (D, t) event to the FC (line 4.13), carrying the timing information (ta) of the 

next state change scheduled in the atomic model. 

 
Figure 6. Simulator Event-Processing Algorithms 

• FC event-processing algorithms 

The FC synchronizes its child Simulators, routes input/output messages between them, 

and forwards output messages to the NC when necessary. The FC event-processing 

algorithms are given in Figure 7.  
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Figure 7. FC Event-Processing Algorithms 
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The FC uses a synchronizeSet to record the IDs of those child Simulators with a state 

transition (δint, δext, or δcon) scheduled at the current virtual time. A variable called doneCount 

is used to keep track of the expected number of (D, t) events that will be returned from the 

child Simulators. The FC also uses a map structure called timesOfNextStateChange 

(<SimulatorID, absoluteNextStateChangeTime>) to store the timing information encoded in 

the (D, t) events received from the child Simulators (line 6.3).  

The synchronization task is performed by the FC in two functions, referred to as 

findImminents and findMinTime respectively, as follows. 

(1) Function findImminents is called when a (@, t) is received from the NC (line 

2.3). This function retrieves the IDs of all imminent child Simulators from the 

timesOfNextStateChange map by comparing the stored Simulator timing 

information with the current simulation time t, which is determined by the NC;  

(2) Function findMinTime is invoked when all of the expected (D, t) events have 

already been received from the child Simulators (line 6.6). This function searches 

the timesOfNextStateChange map to find the minimum absolute time of the next 

state change scheduled by the child Simulators. The resulting minimum 

remaining time to the next state change (min_ta) is then wrapped in a (D, t) to be 

sent to the NC (line 6.7), which will use this timing information to determine the 

next simulation time on the host node. 

The FC routes a (Y, t) received from a child Simulator to its local destination 

Simulators as one or more (X, t) events based on the model coupling relation (line 4.6 to 4.8). 

If the (Y, t) also needs to be sent to other remote Simulators or to the external environment, 

the FC just forwards the (Y, t) to the NC (line 4.3). Moreover, the FC caches the (X, t) events 

received from the NC in its bag so that these events can be flushed to the destination child 

Simulators during the processing of (*, t) events (line 5.5). 

• NC event-processing algorithms 

As shown in Figure 8, the NC uses an inter-node message buffer to hold incoming (X, t) 

events from the other remote NCs (line 1.2). If a (Y, t) needs to be sent to remote NCs, it is 

converted to an equivalent (X, t) before transfer (line 2.6). That is, only (X, t) events are sent 

as inter-node MPI messages. 
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Figure 8. NC Event-Processing Algorithms 

The NC determines the next simulation time (min-time) on the host node by calculating 

the minimum among three factors: (i) the minimum time stamp of the events received from 

the external environment (line 3.7); (ii) the minimum time stamp of the events currently 

available in the inter-node message buffer (line 3.8); and (iii) the minimum absolute 

Simulator state change time derived from the (D, t) event received from the FC (line 3.9). 
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The NC controls the message flow by virtue of a flag called next-message-type (either @ or 

*), which is initialized to @ at the beginning of a simulation. The value of this flag 

determines the type of the control message to be sent to the FC in the next simulation round. 

The NC starts the simulation on the host node by sending an (I, 0) to the FC. 

2.6.2. Structural Representation 

Like many other discrete-event simulators, PCD++ defines a set of event-processing 

algorithms for each type of LPs, specifying how to update state data and generate output in 

response to a given type of input events. Although this event-oriented view is adequate to 

describe the simulation execution in great detail, an abstract structural representation of the 

simulation process may be able to reveal certain high-level patterns or computational 

properties that are not immediately obvious in the complex message flow.  

 
Figure 9. PCD++ Message-Passing Scenario 

Based on the event-processing algorithms presented in the previous section, Figure 9 

gives an example PCD++ message-passing scenario, demonstrating that the simulation 

process can be represented concisely as a multi-phased structure. In this scenario, four LPs 

are created on the node, namely a NC, a FC, and two Simulators (S1 and S2). The order of 

event execution is marked by the sequence numbers beside the event types. An event whose 

send time stamp is different from receive time stamp, referred to as a time-changing event, is 
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shown so explicitly (e.g., @1(t1 t2) denotes a collect message with send time stamp t1 and 

receive time stamp t2), whereas all the other events have the same send and receive time 

stamps that are equal to the current virtual time. The locations where the P-DEVS functions 

are invoked in an atomic model are also illustrated in the figure.  

Note that, due to the asynchronous nature of inter-node messaging in a TW simulation, 

a Simulator may need to perform multiple rounds of state transitions at a given virtual time 

(shown as [R0…Rn]) to incorporate additional (X, t) events received from remote senders. 

This is exemplified by S1, which first executes the atomic model’s internal state transition 

(δint) assuming the absence of (X, t) events, but later finds that the assumption is wrong upon 

the arrival of X25 (which is derived from X19 and X23). To correct the false δint, S1 triggers an 

additional confluent state transition (δcon) at the atomic model to combine the scheduled 

internal state transition with the simultaneous external state transition at virtual time t2. More 

details on the asynchronous state transition algorithms can be found in [Liu06 and Liu07]. 

At any virtual time t, the simultaneous events exchanged between the LPs can be 

organized into an optional collect phase (which only occurs if some Simulators are imminent 

at t) and a mandatory transition phase (which consists of at least one round of state transition 

at t). The simulation process begins with an initialization phase at virtual time 0. A 

simulation phase (or round) is initiated by a control message, either (I, t) or (@, t) or (*, t), 

sent from the NC to the FC (e.g., @1, *9, *17, *24, and @29 in Figure 9), and ended by a (D, t) 

message returned back to the NC (e.g., D7, D15, D22, and D28 in Figure 9). Therefore, the 

control messages exchanged between the NC and the FC are also called phase-changing 

events, which include the time-changing events mentioned earlier. At the end of a transition 

phase, the NC determines the next virtual time and advances the simulation on the node.  

 
Figure 10. Multi-Phased Simulation Process on a Node 

Following this phase-oriented view, Figure 10 shows a high-level structured abstraction 

of the simulation process on a node. In the diagram, the complex message flow between the 

LPs disappears. Instead, the simulation is depicted as a sequence of computation units, each 
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of which stands for the execution of simultaneous events occurred at the LPs at a distinct 

virtual time. These computation units are linked together by time-changing events, which 

transform the simulation from one virtual time to the next. In addition, each computation unit 

is composed of one or more simulation phases (separated by phase-changing events) that 

execute the simulation according to the P-DEVS formalism. Although not explicitly defined 

in the PCD++ event-processing algorithms, this multi-phased structure of simulation process 

emerges spontaneously from the underlying event execution and can be exploited directly in 

the development of novel phase-based optimization and scheduling algorithms, as will be 

discussed in Chapter 4 and 5. 

2.6.3. Computational Properties 

The above-described P-DEVS simulation process has several key intrinsic computational 

properties that are particularly relevant to the research of this dissertation. These 

computational properties are generalized as follows. 

Property 1. Time advance property.  

On each node, the virtual simulation time is advanced only by the NC. This property is 

due to the fact that all time-changing events are always sent from the NC to the other local 

LPs, as guaranteed by the PCD++ event-processing algorithms. On the other hand, all the 

events sent by the FC and the Simulators have the same send and receive time stamps that 

are both equal to the current virtual time. In other words, the FC and the Simulators change 

their LVTs passively, in response to the requests from the NC. 

Property 2. Communication property. 

There is no direct communication (i.e., exchange of event messages) between the 

Simulators, even though the atomic models can be coupled with each other in the model 

definition. All events exchanged between the Simulators go through the FC, which translates 

and routes the messages to their (local and remote) destinations based on user-defined 

model-coupling information. In addition, inter-node messaging is handled by the NCs only. 

Property 3. Simultaneous event property. 

At any virtual time, the simulation process involves a relatively large number of 

simultaneous events, which include not only the content messages that carry model input and 
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output data, but also the control messages that enforce a partially-ordered event execution 

following the P-DEVS formalism. This property is particularly pronounced in large-scale, 

densely-interconnected, and highly-active P-DEVS models where many imminent atomic 

models need to send output events (each of which may have multiple destinations) 

simultaneously at each virtual time. Besides, Jha and Bagrodia also pointed out several other 

general causes that can lead to the occurrence of simultaneous events in a discrete-event 

simulation [Jha00], as will be discussed further in Section 3.2.3. 

Property 4. Pending event property. 

During a simulation, the number of pending (input) events fluctuates over time. At the 

end of each simulation phase (or round), all of the events scheduled for the FC and the 

Simulators have already been processed, as guaranteed by the event-processing algorithms. 

Hence, only a relatively small number of pending events remain to be executed by the NC at 

these points in the simulation, including the (D, t) event returned from the FC as well as the 

(X, t) events received from remote NCs. On the contrary, the number of pending events tends 

to increase when the simulation enters into a new simulation phase (or round) as output 

events are generated continuously by the FC and the Simulators. Furthermore, the pending 

events are distributed disproportionately among the LPs during a simulation. Only a 

relatively small fraction of events are sent between the NC and the FC, while most of the 

events are exchanged between the FC and the Simulators, especially in large-scale 

simulations with many Simulators. 

These computational properties rely in no way on the actual P-DEVS or Cell-DEVS 

models to be simulated, although some of them (i.e., Property 3 and Property 4) are most 

prominent in models with certain characteristics. Rather, they are the natural generalization 

of the event-processing algorithms and the flat LP structure employed in the PCD++ 

simulation engine that operates below the model layer (refer to Figure 2). As will be 

discussed later in Chapter 4 and Chapter 5, these intrinsic computational properties can be 

exploited for efficient parallel simulation of P-DEVS or Cell-DEVS models. 
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Chapter 3. Literature Review 

This chapter presents a non-comprehensive review of previous contributions in the literature 

that are most relevant to the research presented in this dissertation. Section 3.1 introduces 

parallel discrete-event simulation and the two main synchronization approaches. Section 3.2 

surveys different techniques for improving the performance of TW simulations. Section 3.3 

summarizes the techniques for high-performance computing on the Cell processor. 

3.1. Parallel Discrete-Event Simulation 

A Parallel Discrete-Event Simulation (PDES) is usually composed of a set of simulation 

entities, referred to as Logical Processes (LPs), which do not share any state variables, but 

instead interact with each other exclusively through the exchange of time-stamped event 

messages [Fuj00]. These LPs are mapped to a collection of physical processors of a parallel 

computing system. When the number of LPs exceeds the number of available processors, 

multiple LPs may coexist on a physical processor. The LPs allocated on the same processor 

typically employ a single Future Event List (FEL) to schedule event execution in a 

sequential manner. As event messages are also exchanged between LPs residing on different 

processors, the major challenge in PDES is thus to synchronize all the LPs in the system so 

that the parallel simulation produces exactly the same results as a sequential execution of the 

simulation program. This synchronization requirement is expressed as a necessary and 

sufficient condition, termed as the Local Causality Constraint, by Fujimoto [Fuj00]. 

Local Causality Constraint:  A discrete-event simulation, consisting of 

LPs that interact exclusively by exchanging time stamped messages obeys 

the local causality constraint if and only if each LP processes events in 

nondecreasing time stamp order. 

To satisfy the local causality constraint, two major schools of thought have emerged 

that are commonly known as conservative approaches and optimistic approaches. 

Conservative approaches strictly avoid any possibility of causality errors (i.e., events are 

processed out of time stamp order) in a simulation. On the other hand, optimistic approaches 
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assume that the events are processed in time stamp order, but rely on certain detection and 

recovery mechanisms to dynamically correct potential causality errors when they actually 

occur. Conservative and optimistic synchronization techniques form the core of a large body 

of research in the field of PDES (see, e.g., [Fuj00, Tro02, and Per06] for surveys on both 

conservative and optimistic techniques). The following subsections give a brief introduction 

to the basic concepts behind these two approaches. 

3.1.1. Conservative Synchronization Algorithms 

In order to avoid causality errors, conservative synchronization algorithms need to determine 

when it is safe to process an event for all the LPs in the system. A LP is not allowed to 

process an event until it is certain that no other events with a smaller time stamp can ever 

occur. To this end, the LPs are explicitly synchronized using some blocking mechanisms. In 

general, conservative synchronization algorithms can be broadly classified into two 

categories, namely synchronous and asynchronous.  

Synchronous conservative algorithms use global barrier synchronization and reduction 

at specific points in the simulation process to iteratively determine which events are safe to 

process (see, e.g., [Lub89, Nic93, Nic95, and Leg96]), making them best suited for shared-

memory computers where the overhead of global synchronization can be minimized.  

On the contrary, asynchronous conservative algorithms obviate the need for global 

barrier computation. Instead, a LP is blocked only when it does not have enough information 

to find an event to process safely. Nevertheless, deadlocks can occur if the blocked LPs form 

a cycle [Cha83], requiring the use of either deadlock-avoidance or deadlock-recovery 

techniques to ensure the progress of the simulation.  

The null message algorithm (also known as the Chandy-Misra-Bryant or CMB 

algorithm), developed independently by Chandy and Misra [Cha79] and Bryant [Bry77], is 

among the first asynchronous deadlock avoidance algorithms used in conservative PDES. In 

the CMB algorithm, potential deadlocks are avoided by requiring the LPs to broadcast 

control messages, referred to as null messages, notifying the other LPs of the earliest time 

stamps when events can arrive at their input channels. These null messages provide the 

receiving LPs with additional information to distinguish between safe and unsafe events. The 

flooding of null messages, however, can dramatically degrade simulation performance. To 
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improve performance, different variants and optimizations of the CMB algorithm have been 

proposed (see, e.g., [DeV90, Woo94, Xia99, Bag00, and Par04]). A critical concept behind 

all of these CMB-based algorithms (and virtually all conservative synchronization algorithms 

in general) is the notion of lookahead, which is used to generate the time stamps of null 

messages. A LP has a lookahead of L if and only if it is guaranteed that any future event sent 

from the LP will have a time stamp of at least T + L, where T is the LP’s current simulation 

time. It has been shown that the larger the lookahead, the better the performance of CMB-

based conservative algorithms [Lin96, Nke01, and Per06]. 

In [Cha81], Chandy and Misra proposed deadlock detection and recovery algorithms 

for conservative PDES. Other techniques have also been developed to detect deadlock 

situations (see, e.g., [Mis86, Gro91, and Bou95]). Once detected, a deadlock can be broken 

by allowing the LPs involved in the deadlock cycle to process the events with the smallest 

time stamp. In order to enlarge the set of safe events, a global reduction computation can be 

used to derive a Lower Bound on the Time Stamp (LBTS) among the events that can be 

received by a LP in the future (i.e., the minimum time stamp of the next future event in the 

entire simulation system) [Fuj01, Per01, and McL03]. With such information, each LP can 

safely process any pending events with time stamps less than the LBTS value. 

The success of conservative synchronization algorithms largely depends upon the 

ability to predict the future, in terms of the lookahead or LBTS, in order to achieve 

acceptable performance [Fuj00 and Tro02]. This in turn requires an effective use of 

application-specific information such as the topological structure of the network of LPs, the 

characteristics of the communication network, and the underlying model behavior. A side 

effect of this requirement is that a seemingly minor change to the model could affect the 

simulation performance dramatically, hindering the robustness of the application [Fuj90]. 

Perhaps the most prominent drawback of conservative approaches is that they often cannot 

fully exploit the potential parallelism available in a simulation [Fuj90], especially when the 

estimated lookahead or LBTS values are overly pessimistic and when global 

synchronizations are performed too frequently in the synchronous execution mode. 

Nonetheless, when the application characteristics are favorable with predictable lookahead, 

conservative approaches can reduce execution time significantly with moderate memory 

consumption (see, e.g., [Mey99, Bou00, Liu02, and Chu06]). 



39 

3.1.2. Optimistic Synchronization Algorithms 

Jefferson’s Time Warp (TW) mechanism [Jef85] is one of the first and remains the best 

known optimistic synchronization protocol that uses virtual time to model the passage of 

time in a simulation. A TW simulation is driven by a set of Time Warp Logical Processes 

(TWLPs), each of which has its own Local Virtual Time (LVT) and processes events 

autonomously without explicit synchronization. TWLPs differ from ordinary LPs, such as 

those used in sequential and conservative simulations, in the way how the states and events 

are managed. Specifically, an ordinary LP maintains only one copy of its state (i.e., its 

current state), which is updated repeatedly during event execution. Furthermore, an ordinary 

LP does not need to keep a record of past input and output events, allowing the events to be 

reclaimed immediately after execution. In contrast, each TWLP needs to manage a history of 

its past events (both input and output) and states in three structures: an input queue that 

contains recently arrived input events sorted in receive time stamp order, an output queue 

that holds negative copies of recently sent output events (i.e., anti-messages) sorted in send 

time stamp order, and a state queue that stores the recent states of the TWLP. As will be 

discussed shortly, the historical data saved in these queues cannot be discarded until it is 

guaranteed that no event with a smaller time stamp can ever be received by any TWLP in the 

system. Hence, in a TW simulation, the events and states are considered as persistent in the 

sense that they continue to exist in the queues for a while after having been processed or 

updated by the TWLPs. 

A causality error is manifested by the arrival of an event with a time stamp4 that is less 

than the LVT of the receiving TWLP. Such an event is called a straggler event. 

Consequently, the TWLP recovers from the causality error by undoing the effects caused by 

those events processed speculatively during previous computation. This recovery operation is 

known as rollback. As a result, the state of the TWLP is restored to the one that was saved 

just prior to the virtual time as indicated by the straggler’s time stamp. Since false messages 

(i.e., those generated during speculative event processing) may have spread to other TWLPs, 

they must be cancelled as well. Cancellation of false messages is achieved by sending anti-

messages previously stored in the output queues. An anti-message is a copy of the original 
                                                 

4 The receive time of an event is used interchangeably with the time stamp of the event, while the send time of 
an event is referred to explicitly hereafter. 
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positive output message with a negative flag. When an anti-message encounters its positive 

counterpart in a TWLP’s input queue, they annihilate each other immediately, thus 

cancelling the positive one. If the false messages have already been processed before the 

arrival of anti-messages, the destination TWLPs are also rolled back, leading to further 

propagation of rollbacks in the system. The rollbacks caused by straggler events are referred 

to as primary rollbacks, while those triggered by anti-messages are known as secondary 

rollbacks. The time stamp of the straggler or anti-message is commonly called rollback time. 

The rollback-handling algorithms constitute the local control mechanism of the TW protocol. 

The TW protocol also includes a global control mechanism that requires a distributed 

computation involving all of the TWLPs in the simulation system to handle such global 

issues as memory management, I/O operations, and termination detection. A key concept 

behind the global control mechanism is the Global Virtual Time (GVT), which is defined 

as follows [Fuj00].  

Definition: Global Virtual Time at wall clock time T (GVTT) during the 

execution of a TW simulation is defined as the minimum time stamp 

among all unprocessed and partially processed messages and anti-

messages in the system at wall clock time T. 

It has been shown that GVT never decreases, even though the LVTs can be reset 

frequently during rollbacks [Jef85]. That is, any TWLP will never receive an event with a 

smaller time stamp than the current GVT. Therefore, all the events and states5 saved before 

the GVT can be discarded safely through a procedure known as fossil collection to free up 

the memory occupied by these historical data. In addition, I/O operations scheduled before 

the GVT can also be committed irrevocably. Note that the global control mechanism must 

estimate GVT and perform fossil collection every so often to reduce the possibility of 

memory stalls, where the simulation cannot complete because of memory exhaustion. Since 

GVT estimation incurs a significant overhead in terms of processor time and network 

bandwidth, a trade-off between TW execution efficiency and memory space usage needs to 

be sought in choosing the frequency of GVT computation [Jef85].  

                                                 
5 In fact, the last state saved just prior to the current GVT in each state queue cannot be discarded in case that a 
TWLP might receive a straggler or anti-message with a time stamp that is exactly equal to the GVT. 
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Fujimoto summarized a few advantages of optimistic synchronization algorithms over 

conservative techniques [Fuj03]. First, optimistic algorithms can generally exploit higher 

degrees of parallelism, while conservative techniques tend to force a sequential execution 

when it is not absolutely necessary. Secondly, unlike conservative techniques, optimistic 

algorithms are less reliant on application-specific information for correct execution, even 

though execution efficiency can be improved if such information is available. Thirdly, since 

events are processed in a non-blocking manner, optimistic algorithms do not suffer from the 

deadlock problem as asynchronous conservative algorithms do. On the other hand, the 

persistent storage of historical data and the possibility of cascaded rollbacks in optimistic 

simulations could result in performance degradation to a certain extent.  

The TW protocol has been employed in many real-world applications, achieving 

significant speedups in simulations of communication networks [Car95 and Ber98], 

battlefield scenarios [Bae92 and Wie06], biological phenomena [Pre90], and computer 

systems [Yau03].  

3.2. Challenges of Optimistic PDES with Time Warp 

In order to reduce operational overhead and improve performance of TW-based optimistic 

simulations, a wide variety of techniques and optimization strategies have been proposed in 

the literature. While these results are very encouraging, several challenging issues remain to 

be resolved to meet the ever-increasing demands and performance requirements in large-

scale TW simulation of complex systems. This section evaluates some of the most relevant 

previous contributions made towards this goal. 

3.2.1. Memory Management 

It is well-known that TW-based optimistic parallel simulation requires more memory space 

to execute efficiently than an equivalent sequential simulation [Jef90, Gro91, Lin91b, Pre95, 

and Fuj00]. This additional memory space requirement stems mainly from the need for 

saving historical input/output events and states in the persistent queues during a simulation. 

Different memory-conserving techniques have been proposed to reduce memory 

consumption in TW simulations. One challenge, though, is to maintain high-performance 

TW execution without undue overhead even when the system memory is tight.  
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• Fossil collection algorithms 

Fossil collection is one way to reduce the possibility of memory stalls in TW 

simulations. To achieve efficient fossil collection, different approaches have been attempted 

in the literature. For instance, Young et al. proposed an optimistic fossil collection technique 

that allows each TWLP to make its own fossil collection decisions based on locally predicted 

information without estimating GVT globally [You96 and You98]. Introducing optimism to 

fossil collection comes with a risk in that a TWLP may later be rolled back to a previous 

state that has already been reclaimed in the speculative fossil collection. To make this 

technique feasible, a recovery mechanism is used to reconstruct the erroneously reclaimed 

historical data. The recovery mechanism employs a distributed algorithm to create consistent 

checkpoints during a simulation, saving the states of all processes and inter-process 

communication channels. While this technique can reduce the cost of GVT computation, it 

entails extra overhead for risk prediction and fossil recovery. Young et al. demonstrated that 

the optimistic fossil collection can achieve a comparable performance with the GVT-based 

algorithms [You99].  

A fossil identification mechanism, proposed by Chetlur and Wilsey [Che06], also 

attempts to reclaim fossil data without the need for GVT estimation. This mechanism uses an 

extended time stamp structure, known as plausible total clock, to record the causal relation 

between events. Based on this causal information, a TWLP may be able to reclaim certain 

historical data beyond the current GVT value, thus releasing more memory. However, this 

approach incurs an additional communication overhead for transferring extra causal 

information associated with events. Moreover, it assumes a static TWLP interconnection 

topology with certain special characteristics.  

Vee and Hsu proposed an enhanced fossil collector, referred to as PAL, which can 

reduce the cost of fossil collection by prioritizing the TWLPs based on the amount of fossil 

data they have (thus allowing for more efficient retrieval of fossil data from the TWLPs), and 

by concentrating all committed events in a shared data structure so that the memory buffers 

can be reused later in event-saving operations (thus reducing memory allocation and 

deallocation overhead) [Vee02].  

Although these efforts are intellectually stimulating, memory management using fossil 

collection alone has two main drawbacks. First, fossil collection still constitutes a significant 
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overhead in large-scale simulations because the operation needs to handle a large number of 

TWLPs and a great amount of fossil data that are usually scattered across the entire 

simulation system. Secondly, even frequent fossil collection cannot guarantee the absence of 

memory stalls if the GVT does not advance sufficiently fast, especially when the simulation 

needs to execute a large number of simultaneous events at each virtual time (some examples 

can be found in Table 3 and Table 6 of Section 5.2). This research aims to accelerate fossil 

collection in DEVS-based TW simulations by reducing the amount of fossil data kept in the 

system and by managing them in a concentrated manner for efficient batch operations. 

• Memory stall recovery algorithms 

Different approaches that aim to recover from memory stalls in TW simulations have 

been explored, resulting in the development of techniques such as cancelback [Jef90, Das93, 

and Aky93], artificial rollback [Lin91b and Lin94], and pruneback [Pre95]. Both cancelback 

and artificial rollback require a global pool of memory to be shared by all of the TWLPs in 

the system. All memory requests are granted from the pool, and released memory is returned 

to the pool. They differ in how to deal with situations when the pool runs out of memory. 

Under the cancelback mechanism, some future pending events are returned to their original 

senders, thus forcing the sender TWLPs to roll back and release memory. With artificial 

rollback, the TWLPs with the greatest LVTs (i.e., the most aggressive ones) are rolled back 

artificially, releasing memory in the process. The need for a common memory pool, 

nonetheless, makes these two approaches best-suited for shared-memory architectures.  

On the other hand, the pruneback mechanism does allow for recovery from memory 

stalls on distributed-memory multiprocessors. Instead of using rollback as the means to 

memory reclamation, the pruneback mechanism releases the memory occupied by past states 

in the state queues, producing an effect that is similar to infrequent state-saving strategies. 

This technique thus incurs a cost similar to infrequent state saving as well. That is, a TWLP 

may have to roll back further in the past than is really necessary, and resume forward event 

processing from there (an action called coast forward in the PDES literature). In addition, the 

pruneback mechanism targets only past states, while the memory used by past input/output 

events remains unaffected.  

All these techniques attempt to recover from memory stalls at the expense of a time 

penalty, which can be very high in certain circumstances. To address this problem, this 
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research attempts to reduce the amount of memory used for saving historical events and 

states during forward execution, without introducing an additional overhead during rollbacks. 

• Checkpointing algorithms 

Instead of trying to recover from memory stalls, an alternative approach is to save 

fewer historical data in the first place. To this end, different checkpointing algorithms have 

been proposed to reduce state-saving overhead. Some of them, known as infrequent state-

saving or periodic state-saving techniques, focus on reducing the number of states saved in a 

simulation (see, e.g., [Lin93, Pre94, Ron94, Fle95, Sko96, Qua98, and Qua01a]), while 

others, known as incremental state-saving techniques, try to reduce the amount of data that 

need to be saved in each state (see, e.g., [Bau93, Wes96, Ron96, and Fen06]). There are also 

techniques that multiplex different state-saving mechanisms to improve performance (see, 

e.g., [Gom97 and Tay00]).  

While these techniques can reduce state-saving overhead, they inevitably increase the 

computational cost in one form or another. For instance, infrequent state saving requires an 

extra coast-forward operation with a higher rollback overhead, while incremental state saving 

needs to keep track of the changes made to individual state variables with an increased event-

processing overhead. Moreover, incremental state saving can improve performance only 

when a small portion of the state data is subject to modification during each event execution, 

making it mainly suitable for simulations such as digital logic circuits [Bau93]. 

• Other memory conserving techniques 

A relatively new technique for conserving memory in optimistic parallel simulation is 

called reverse computation [Car99, Car02, Tan05b, Tan06, and Nab07], which allows the 

LPs to restore their states by computing the inverse operations for each event being rolled 

back. It has been shown that reverse computation can achieve a significant performance 

improvement in such simulations as queuing network models [Car99], personal 

communication service networks [Car02], and physical systems [Tan06]. This technique, 

however, usually requires annotation and manipulation of source code at the individual 

statement level, making it difficult to modify model logic. Although this issue can be 

alleviated by using advanced code transformation and compilation tools to generate reverse 

code automatically, certain destructive operations (which result in loss of data) might not be 
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perfectly reversible (e.g., certain bit-wise and floating-point operations) [Bau07], thus 

limiting the applicability of the technique. Furthermore, reverse computation potentially 

increases the computational cost during rollbacks, especially when a large number of events 

need to be processed reversely at the LPs. 

In [Liu07], Liu and Wainer proposed a user-controlled state-saving mechanism that 

allows for efficient and flexible checkpointing at runtime. With this mechanism, a TWLP can 

make its own state-saving decisions on an event-by-event basis using application-level 

knowledge. A specific type of user-controlled state-saving, referred to as the Message Type-

based State-Saving (MTSS) strategy, was implemented in the PCD++ simulator so that a 

TWLP can save its state only for a certain type of events in DEVS-based TW simulations, 

reducing memory consumption and state-saving overhead while avoiding the need for coast-

forward operations during rollbacks. In other words, it is risk-free in the sense that, unlike 

other infrequent state-saving techniques, no performance penalty is incurred as the result of 

saving fewer states. However, as will be discussed in Chapter 4, the MTSS strategy can be 

enhanced to further reduce the number of states saved in DEVS-based TW simulations. 

Other techniques have also been investigated to reduce memory consumption. One 

example is the event reconstruction technique proposed by Li and Tropper [Li04]. The 

motivation is to reduce the overhead associated with event saving. Based on the observation 

that the size of events can be very large in some cases, they suggested a method for 

reconstruction of both input and output events by comparing the differences between 

adjacent states saved in the state queues. Significant performance gain has been obtained in 

VLSI logic simulations. Yet it is recognized that this method works well only in a certain 

class of simulations with fine event granularity and small state size.  

3.2.2. Cascaded Rollback 

Rollback propagation can have a significant impact on the performance of optimistic PDES 

systems. As mentioned earlier, two types of rollbacks may occur in a TW simulation, namely 

primary rollbacks and secondary rollbacks. An optimistic synchronization protocol is said to 

be aggressive if primary rollbacks are allowed, while the protocol is considered to allow risk 

if secondary rollbacks are possible. The TW protocol is aggressive and allows risk. In 

general, both the rollback width (i.e., how many TWLPs are involved in a rollback 
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propagation) and rollback depth (i.e., how many events are unprocessed by a TWLP during a 

rollback) cannot be bounded easily. Without care, this can lead to uncontrolled rollback 

behavior commonly known as domino effect that jeopardizes the stability and scalability of 

the entire system. A major cause of the domino effect lies in the need for cancellation of 

many false messages during secondary rollbacks, which give rise to cascaded rollback where 

a large number of TWLPs are involved in the propagation [Fuj00]. 

• Optimism control mechanisms 

One approach to rollback reduction is through optimism control, which tries to regulate 

inappropriate (overly) optimistic execution in TW simulations. The Moving Time Window 

(MTW) algorithm, which puts a bound on the difference in the LVTs of the TWLPs, is an 

early example of this approach [Sok91]. Many other techniques for optimism control have 

been developed over the last two decades, including the Breathing Time Warp protocol 

[Ste93], the Global Progress Window algorithm [Tay97 and Tay01], the Elastic Time 

algorithm [Sri98 and Qua01b], the Switch Time Warp mechanism [Sup00],  and varied flow-

control and learning based algorithms (see, e.g., [Sac04, Wan07 and Wan09]).  

In addition, various adaptive algorithms have been used to improve simulation 

performance by adjusting specific control parameters dynamically at runtime to influence the 

degree of optimism (see, e.g., [Fer95, Das96, and Pan97]).  

The basic idea behind all these optimism-limiting techniques is to improve event 

temporal locality in a TW simulation so that most of the events processed concurrently have 

relatively close time stamps. In doing so, these techniques sacrifice the degree of parallelism 

to a certain extent. Moreover, these techniques often rely on knowledge of certain aspects of 

the global simulation state in order to tune the control parameters, incurring an extra 

overhead for information collection and analysis during the simulation. 

• Event cancellation algorithms 

Rollback efficiency can also be improved using diverse cancellation mechanisms. The 

original TW protocol adopts an aggressive cancellation scheme that sends anti-messages 

immediately when a TWLP is rolled back. The lazy cancellation mechanism, originally 

proposed by Gafni [Gaf88] and subsequently analyzed by Lin and Lazowska [Lin91a], is one 

of the first attempts to reduce the communication overhead of event cancellation. With this 
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mechanism, the sending of anti-messages at a TWLP is suspended until its necessity has 

been verified when events are reprocessed after a rollback. However, cancellation of false 

messages may be delayed as a result, and additional computation and memory space is 

required to realize the lazy cancellation algorithms.  

A throttled lazy cancellation scheme has been proposed recently to slow down the 

spread of potentially incorrect computation when events are re-evaluated during lazy 

cancellation operations [Sol08], but only at the expense of increased communication cost for 

broadcasting special control messages to block and unblock the TWLPs (which is not unlike 

the mechanism used in the Wolf Calls protocol originally proposed by Madisetti et al. to 

contain error propagation in TW simulations [Mad88]). Furthermore, broadcasting control 

messages is not without its limitations. For one thing, it may block some TWLPs 

unnecessarily. For another, the effectiveness of this mechanism depends on the relative 

speeds at which errorneous computation and control messages may spread.  

To further reduce the communication overhead of event cancellation, an optimization 

strategy called early cancellation can be used to cancel false messages in place in the buffer 

of a programmable network interface controller [Nor02], which demonstrates the potential of 

using specialized hardware to improve TW performance, but also limits the utility of the 

strategy in TW simulations on general-purpose computing platforms.  

Other studies have shown that cancellation performance can be improved by capturing 

the causal relationship between events [Che01]. By exploiting event causal dependency, a 

proactive cancellation mechanism was developed that can be used to prevent cascaded 

rollbacks [Che09a]. Using a similar strategy, a batch-based cancellation algorithm was 

proposed that allows a TWLP to recover from a causality error with at most one rollback 

[Zen04]. However, this algorithm introduces extra communication overhead for exchanging 

causal inforamtion and rollback histories between TWLPs as well as additional computation 

overhead for reclaiming these data during fossil collection.  

• LP aggregation techniques 

Besides, different LP aggregation techniques have been investigated to mitigate the 

overhead of event cancellation. One example is the Local Time Warp protocol proposed by 

Rajaei et al. [Raj93 and Raj07]. In this protocol, the global simulation space is divided into 

several sub-regions referred to as clusters, each of which contains a set of TWLPs. While the 
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TWLPs within a cluster are executed optimistically based on the TW mechanism, the clusters 

themselves are synchronized in a conservative fashion, thus preventing false messages from 

propagating beyond cluster boundaries. As a result, the problems of cascaded rollbacks and 

memory stalls need to be handled only locally. However, the Local Time Warp protocol, like 

many other hybrid approaches that combine both conservative and optimistic algorithms in a 

simulation, may suffer from reduced parallelism. Furthermore, it requires careful control to 

balance the optimistic local simulation of individual clusters with the global virtual time 

horizon established by the conservative algorithm [Bou05].  

The clustered adaptive-risk technique, proposed by Soliman and Elmaghraby [Sol96 

and Sol97], is another example that aims to control the degree of risk in TW simulations. 

Similar to the Local Time Warp protocol, the TWLPs are grouped into clusters. Nonetheless, 

instead of applying a conservative synchronization protocol at the global level, the technique 

uses an adaptive algorithm to keep the probability of cross-cluster rollback propagation 

below a certain user-defined threshold. This is achieved by tuning the intervals between the 

release times of buffered inter-cluster messages based on observed simulation behavior at 

runtime, at the cost of additional computation and memory space overhead.  

While the above techniques can be used to improve rollback performance, every TWLP 

in the system is still subject to rollback operations that are triggered either locally or globally, 

thus requiring each TWLP to maintain its persistent event and state queues, just like in the 

original TW mechanism.  

To enhance the performance of TW-based digital logic simulations, Avril and Tropper 

introduced a Clustered Time Warp protocol that uses the TW protocol to synchronize 

clusters of LPs globally, whereas the execution of LPs in each cluster is scheduled 

sequentially by a cluster environment with the aid of a time zone table (to detect changes in 

virtual time), a cluster input queue (to receive events from other clusters), and a cluster 

output queue (to hold anti-messages that might be sent to other clusters during rollbacks) 

[Avr95]. The rationale behind this approach is that a logic circuit can be partitioned naturally 

into different functional units, each of which will then be simulated on a distinct processor. 

Two types of rollback mechanisms are defined in the protocol, referred to as clustered 

rollback and local rollback. Under the former mechanism, rollbacks are handled at the 

cluster level. When a straggler or anti-message is received by a cluster, all of the LPs 
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included in the cluster are rolled back together if they have executed an event with a time 

stamp greater than the rollback time. Although this mechanism can reduce memory 

consumption (since individual LPs do not need to keep anti-messages in their output queues, 

and all input events with time stamps greater than the rollback time are discarded during 

rollbacks), some LPs may be rolled back unnecessarily. Under the latter mechanism, the 

cluster environment simply forwards the received straggler or anti-messages to the 

destination LPs so that they can make rollback decisions individually. In this case, the LPs 

must maintain anti-messages in their output queues; and rollbacks are carried out in the same 

way as in the original TW protocol. In the same vein, two checkpointing mechanisms are 

defined, including the clustered checkpointing mechanism that saves states for the LPs only 

when remote events (from other clusters) are received, and the local checkpointing 

mechanism that saves the state for a LP whenever the simulation time is changed in the time 

zone table, regardless of whether the time change is caused by a local event or a remote one. 

Since both mechanisms use infrequent state saving, coast-forward operations are required 

during rollbacks with the associated overhead. Using several digital circuit models as 

benchmarks, different combinations of these rollback and checkpointing mechanisms have 

been evaluated quantitatively in [Avr01]. The experiments showed that, while memory usage 

can be reduced by up to 40% in some cases, the execution time is comparable or even worse 

than obtained with the original TW protocol, indicating that a trade-off must be made 

between execution efficiency and memory conservation. 

In this research, cascaded rollback is controlled by virtue of a lightweight rollback 

mechanism, which enables most of the LPs to recover from causality errors without the need 

for event cancellation, allowing for purely optimistic TW simulation with bounded rollback 

propagation on each node, as will be discussed in Chapter 4. 

3.2.3. Event Management 

A central issue that needs to be addressed in any discrete-event simulation system is event 

management, which has been studied extensively in the literature from different aspects (e.g., 

event scheduling, event ordering, and event set implementation, just to name a few). The 

following discussion briefly reviews two of these event management problems that are most 

relevant to the research presented in this dissertation. 
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• Event set implementation 

The relative performance of different event set data structures and algorithms has been 

a topic of research since the early days of discrete-event simulation [Com79 and McC81]. 

The need for handling potential rollbacks in optimistic parallel simulations makes event 

management more complex than in a sequential simulation, mainly because past events that 

have already been processed remain in the event queues. As a result, efficient insertion and 

retrieval of both historical and future events become necessary for the overall simulation 

performance [Ron93].  

Numerous non-trivial data structures have been investigated in the context of TW-

based optimistic simulations. Most of these data structures can be characterized into three 

broad categories: list structures, tree structures and multi-list structures. Examples of list 

structures include the Indexed Lists [Nik93] and the SPEEDES Queue [Ste96]. Tree 

structures are exemplified by Binary Heaps, Skew Heap, and Splay Trees [Jon86 and Jon89], 

while the Lazy Queue [Ron91], the Ladder Queue [Tan05a], and the Calendar Queues 

[Bro88, Oh97, Oh99, and Tan00]) are based on multi-list structures. A primary motivation 

behind these efforts is to achieve efficient event queue operations as the number of events 

stored in the event queues increases in large-scale and fine-grained simulations. While these 

techniques have proven to be quite useful in improving performance, an attractive alternative 

solution is to keep the event queues relatively short throughout a simulation, an approach that 

is adopted by the technique presented in Chapter 4 of this dissertation.  

• Simultaneous events 

The way how simultaneous events are managed in discrete-event simulation can have 

serious implications on simulation correctness, reproducibility, and performance [Wie97, 

Ron99, and Fuj00]. As noted by Jha and Bagrodia [Jha00], simultaneous events may occur in 

a discrete-event simulation for three general reasons. First, the physical system may include 

many independent activities. As a result, when the system is decomposed into a set of LPs, it 

is convenient to represent the interactions between different portions of the system as 

simultaneous events. Secondly, the limited resolution of simulation time can also lead to 

events with the same time stamp even though these events are not truly parallel in the 

physical system. Finally, the need for modeling activities with zero delay time (or a delay 
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that is negligible compared to the duration of other activities being modeled) often 

necessitates the use of zero-delay LPs that generate output events with the same time stamp 

as the received input events.  

Many previous studies have been devoted to ordering of simultaneous events (see, e.g., 

[Agr91, Meh92, Ron99, and Jha00]). Two types of tie-breaking mechanisms are commonly 

used in discrete-event simulation [Ron99 and Jha00]. One of them, referred to as user-

consistent and deterministic, bundles all of the simultaneous events received by a LP and 

executes them based on a set of protocol-independent, user-specified rules. The other, 

referred to as arbitrary and deterministic, relies on the simulation protocol to choose a well-

defined implicit ordering of the events. Still, some researchers argue that the appropriate way 

of handling simultaneous events is to take all possible orderings into account when 

evaluating the simulation results, rather than forcing the users or the protocols to choose an 

ordering that may not always serve well the intention of the simulation [Wie97 and Pes07a]. 

Various approaches have been taken to implement tie-breaking mechanisms in the context of 

PDES. Some of them extend the time stamps of event messages to impose a ranking on the 

simultaneous events for deterministic execution [Agr91, Meh92, and Wan06], while others 

employ the concept of aging for the same purpose [Meh92].  

The simultaneous event problem has also been tackled in DEVS simulations. As 

discussed in Chapter 2, the classical DEVS formalism achieves tie-breaking using the Select 

function. Kim et al. proposed a protocol-transparent scheme to implement the Select function 

in distributed simulation environment [Kim97]. The P-DEVS formalism realizes user-

consistent and deterministic tie-breaking by virtue of the bag structure to bundle the external 

events scheduled for a LP at each virtual time, and by the confluent state transition function 

to define the rules for resolving transition collisions. A P-DEVS simulator is responsible for 

collecting all of the simultaneous external events in the bag of an atomic model so that these 

events can be processed as a whole, necessitating the use of a control flow to ensure proper 

event delivery at each virtual time, as illustrated by the PCD++ event-processing algorithms 

presented in Section 2.6. 

Although these techniques provide a well-founded basis for handling simultaneous 

events in PDES, the performance consequence of processing a large number of simultaneous 

events at each virtual time in a simulation has not yet attracted enough attention from the 
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research community. This performance issue is especially important in large-scale TW 

simulations. Without careful design and proper control, the expanded execution of 

simultaneous events could have a detrimental effect on TW performance in terms of 

increased overhead for state-saving, rollback, fossil collection, and dynamic load migration. 

This research addresses the above performance issue by proposing an event management 

scheme that is especially adept at efficient execution of simultaneous events in DEVS-based 

TW simulations, a topic that will be discussed in Chapter 4 of this dissertation.  

3.2.4. Dynamic Process Migration 

Dynamic load-balancing algorithms typically rely on the runtime system state information to 

make decisions regarding the movement of workload from one processor to another during 

execution. According to Willebeek-LeMair and Reeves [Wil93], dynamic load balancing can 

be organized as a process consisting of four major components, including (1) processor load 

evaluation; (2) load balancing profitability determination; (3) load migration strategy, and (4) 

load selection strategy. All of these components have been studied extensively in the PDES 

literature, leading to the development of a large number of dynamic load-balancing 

algorithms. An exhaustive review of these load-balancing algorithms is beyond the scope of 

this dissertation (but, see, [Rei90, Gla93, Jia94, Sch95, Bou97, Wil98, El-K99, Car00, Iko00, 

Low02, Li04, and Pes07b] for related works on this topic). Instead, the following discussion 

summarizes some of the efforts that aim to facilitate load migration (also known as process 

migration) in TW simulations. While dynamic load balancing is concerned primarily with 

distributing the workload as evenly as possible among the processors, process migration 

focuses on the operation of load transfer to achieve a certain load-balancing objective. 

To minimize the communication overhead and the interference with normal system 

execution, agile process migration is recognized as crucial to efficient dynamic load 

balancing in parallel and distributed systems [Art89]. Even more so in large-scale TW 

simulations where a potentially unbounded amount of event and state data associated with a 

TWLP must be transferred between processors. An early work, presented by Reiher and 

Jefferson [Rei90], employed a phase-based computation model to reduce process migration 

cost in the Time Warp Operating System. In this model, the life span of a TWLP is divided 

into multiple phases, each representing a portion of the execution history of the TWLP 
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during a specific interval of virtual time. These phases can be transferred individually across 

processors as needed in order to implement a finer-grained load balancing scheme below the 

LP granularity. Yet this computation model suffers from increased overhead for message 

routing and scheduling during both forward execution and rollbacks because each TWLP can 

consist of many small fragments scattered all over the system. 

Different dynamic load balancing and process migration algorithms have been 

investigated in the SPEEDES simulation framework [Wil98]. These algorithms use a central 

coordinator to make global load redistribution decisions regularly during a simulation. If load 

migration is warranted, the actual load selection and transfer operations are then handled by 

each pair of chosen nodes at the LP level. With the Breathing Time Warp protocol [Ste93], a 

parallel simulation is executed in a cyclic fashion. Each simulation cycle starts with a purely 

optimistic TW execution, but then switches to a risk-free synchronization mode using the 

Breathing Time Buckets algorithm [Ste91]. After the risk-free execution stage, a new GVT 

value is computed, followed by the reclamation of historical state and event data. Therefore, 

the amount of data to be transferred can be minimized if load migration is carried out at the 

end of a simulation cycle. This data minimization strategy, however, has two main 

drawbacks. First, the conservative risk-free execution might reduce the degree of achievable 

parallelism in a simulation. Secondly, the success of this strategy still depends on GVT 

computation and fossil collection, which, if performed too frequently, could adversely affect 

simulation performance. 

Based on the Clustered Time Warp concepts, Avril and Tropper developed a dynamic 

load-balancing algorithm that transfers all of the TWLPs included in a cluster as a group 

[Avr96]. Although this approach makes it easier to implement the load-balancing algorithm 

since migration decisions are made only for clusters (instead of for individual TWLPs), it 

reduces the flexibility of the mechanism and shifts some of the responsibilities to the users, 

who also need to consider load-balancing issues when partitioning the model. 

In a more recent study, Li and Tropper argued that the event reconstruction technique, 

originally intended for memory conservation in Clustered Time Warp, can also be used to 

facilitate process migration because only the state data associated with a TWLP need to be 

transferred [Li04]. Nonetheless, the study did not indicate whether the proposed migration 

scheme would be realized at the cluster level or at the individual LP level. In addition, this 
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migration scheme can be applied only to models with certain event and state characteristics 

that motivated the development of the Clustered Time Warp in the first place. 

As will be discussed later, the technique presented in Chapter 4 of this dissertation can 

be used to facilitate dynamic process migration in DEVS-based TW simulations by reducing 

the amount of data that need to be transferred across cluster nodes. 

3.2.5. DEVS-based Time Warp Simulation 

A number of studies have been devoted to DEVS-based TW simulations. The DEVS-Ada 

simulator, developed by Christensen [Chr90], is one of the first efforts towards optimistic 

parallel DEVS simulation using the TW protocol. In DEVS-Ada, a DEVS model is 

partitioned into several major coupled models (each can have a hierarchy of atomic and 

coupled subcomponents). A major coupled model is then wrapped into a TWLP that executes 

on a distinct node. Although this coarse-grained partition scheme may reduce event-

scheduling complexity as the messages sent between the subcomponents of a major coupled 

model are treated as internal events of the corresponding TWLP, the enlarged process 

granularity not only makes it difficult to realize dynamic load balancing, but also increases 

checkpointing and rollback overhead since some of the subcomponents may be required to 

perform state-saving and rollback operations unnecessarily.  

Seong et al. developed another optimistic parallel DEVS simulator called P-

DEVSIM++ [Seo95], which employs the TW protocol to synchronize the execution of both 

external and internal events in DEVS simulations. The key idea is to use the TW rollback 

mechanism to ensure that transition collisions are handled properly according to a given 

DEVS Select function.  

In [Kim96], an event-scheduling algorithm was proposed that schedules the execution 

of DEVS models hierarchically on each node, while using the TW protocol for global 

synchronization. The model-partitioning issue raised in such parallel simulation has been 

discussed in [Kim98], resulting in a hierarchical partitioning algorithm for improved load 

balancing in the simulation. Nonetheless, all of the above-mentioned studies discuss TW-

enabled optimistic parallel simulaiton in the context of the classical DEVS formalism, which, 

as discussed in Chapter 2, hinders the exploitation of potential parallelism in a simulation 

because of the serialization constraint imposed by the tie-breaking Select function. 
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Based on the P-DEVS formalism, Nutaro proposed a risk-free optimistic simulation 

mechanism to reduce the possibility of rollback thrashing in simulating P-DEVS 

approximation of continuous systems [Nut04]. With this risk-free algorithm, a TWLP must 

withhold the sending of speculative inter-process output events until it is certain that doing so 

will not cause rollbacks at the destination processes. This is achieved by allowing a TWLP to 

emit only those output events with time stamps right after the current GVT. While this 

approach can contain rollback propagation and improve performance so long as inter-process 

communication is infrequent, it limits the achievable parallelism and increases operational 

overhead as GVT must be computed every so often in a simulation. 

Nutaro also proposed an abstract simulation algorithm for correct TW execution of a 

flat P-DEVS coupled model that consists of interacting atomic models [Nut08]. The 

correctness proof focuses on the high-level operations performed by each TWLP, which 

encapsulates the logic of a corresponding P-DEVS atomic model. Nutaro proved that, in 

theory, the proposed algorithm produces the same input-output behavior (up to the GVT) as 

would be exhibited by a sequential abstract DEVS processor. It is suggested that this abstract 

simulation algorithm can thus provide a basis for correct TW simulation of DEVS-based 

models. However, implementation and performance issues are not considered in the work. 

In [Sun08], Sun and Nutaro implemented a modified TW algorithm to improve the 

performance of P-DEVS simulations on shared-memory multiprocessor computers. The 

improvement is obtained by executing the P-DEVS output (λ) and state transition functions 

(δint, δext, and δcon) at the due atomic models synchronously and in parallel at each virtual 

time. The experiments demonstrated that the simulation of a compute-intensive forest fire 

propagation model can run up to 4 times faster on 8 processors over the equivalent sequential 

implementation. However, the proposed algorithm cannot deliver much performance gain in 

models with lower computation intensity (in some cases, the parallel simulation runs even 

slower than the sequential one). Moreover, the algorithm does not attempt to address the 

various issues involved in TW simulations, such as those mentioned in the previous sections. 

By taking advantage of the intrinsic computational properties of the DEVS-based 

simulation process, a Lightwight Time Warp (LTW) protocol is proposed in Chapter 4 to 

addresses the above-mentioned challenges in a systematic way. The performance impact of 

the LTW protocol is evaluated quantitatively in Chapter 6 and summarized in Chapter 7. 
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3.3. Challenges of Efficient PDES on Cell Processor 

The IBM Cell processor [Kha05 and Che07] represents a departure from the traditional 

design of microprocessor architectures, and offers new opportunities for effective control of 

hardware resources in return for optimized performance. The architectural features of the 

Cell processor are also attractive for studying computing paradigms on heterogeneous CMP 

platforms. As will be discussed in the following subsections, the irregular computation and 

complex data dependency commonly found in PDES pose significant challenges to software 

development on heterogeneous CMP architectures, requiring innovative redesign of existing 

simulation algorithms to realize the full performance potential on such platforms. 

3.3.1. Asymmetric Architecture with Explicit Memory Control 

The latest Cell processor adopts a heterogeneous CMP architecture with nine independent 

processing elements (or cores): a main dual-threaded Power Processor Element (PPE) and 

eight specialized co-processors called Synergistic Processing Elements (SPEs). These cores 

are tightly coupled by a high-bandwidth, low-latency, on-chip Element Interconnect Bus 

(EIB) [Kis06]. While the PPE uses a hardware-controlled conventional cache hierarchy 

(32KB L1, 512KB L2) to access the system main memory, each SPE can directly access only 

a private, non-coherent, on-chip Local Storage (LS) of 256KB that contains both code and 

data (including the runtime call stack) of an SPE thread at any time. Data sharing between 

the main memory and the LS of an SPE is achieved mainly through software-managed, 

explicitly-addressed Direct Memory Access (DMA) transfers, which are handled 

autonomously by a Memory Flow Controller (MFC) associated with each SPE. An SPE 

can also communicate 32-bit short messages with the other cores over the EIB channels, 

including mailboxes (one 4-entry inbound channel, and two single-entry outbound channels) 

and signals (two single-entry inbound channels)6. Moreover, the SPEs support both scalar 

and 128-bit SIMD operations that can be applied at 2, 4, 8, and 16-way granularities. An 

architectural overview of the Cell processor is given in Figure 11 [Are08]. 

                                                 
6 An inbound channel is used to send messages to the local SPE from the PPE or other SPEs, while an outbound 
channel is used to send messages in the opposite direction. 
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Figure 11. Cell Processor Block Diagram 

The design of the Cell processor presents a set of features that must be taken into 

consideration when developing high-performance algorithms. These architectural features 

are outlined as follows, while an extensive documentation on the Cell platform can be found 

at [IBM10a]. 

• Heterogeneous processing elements 

The two types of cores integrated on a Cell processor are designed to provide different 

functionalities. As a general-purpose core based on the 64-bit PowerPC ISA, the PPE is 

intended to execute control-intensive code. It is used to host the operating system and to 

orchestrate the execution of different threads involved in a parallel application. On the other 

hand, the SPEs are optimized to execute compute-intensive code based on a 128-bit SIMD 

ISA. As a result, it is necessary to partition the computation of a Cell application according 

to the functional specialization of the cores. To attain good performance, the most compute-

intensive portion of the application code (organized as computational kernels) must be 

offloaded to the SPEs. In addition, an efficient SPE implementation should also take 

advantage of the SIMD instructions to streamline the kernel computation. However, the 

workload of a general-purpose PDES system depends not only on the computational 

properties of the simulator, but also on the model behavior. Hence, an in-depth analysis and 

generalization of the simulation workload characteristics are required to match the hardware 
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capabilities. The irregular PDES computation also complicates the SIMDization effort when 

porting simulation code to the SPEs. 

• Limited LS size with explicit memory control 

An SPE thread relies on its LS to execute a designated computational kernel, which in 

many cases has a memory footprint that is much larger than the size of the LS, necessitating 

the division of the kernel workload into a sequence of working sets small enough to fit into 

the on-chip local memory. Moreover, an application is responsible for scheduling DMA data 

transfers across memory domains (i.e., main memory and LS) explicitly during the 

computation, requiring a careful balancing of the computation and communication 

granularity to hide memory latency and ensure timely data availability [Lev07 and Var07]. 

Furthermore, a DMA transfer also has its own requirements with respect to data address 

alignment and transfer size. In particular, when the transfer size is 16 bytes or larger (up to 

16KB), the addresses of the data in both memory domains must be aligned to at least 16-byte 

boundaries (peak performance is obtainable when the addresses are aligned on 128-byte 

cache-line boundaries) [Are08]. These DMA transfer requirements can lead to increased 

software complexity for handling such issues as data padding, address alignment, and 

macroscopic data prefetching (e.g., double-buffering). 

• Multiple levels of parallelism 

In order to harness the Cell potential, an application needs to simultaneously exploit 

parallelism at multiple levels of the system. As noted by Gschwind [Gsc06 and Gsc07], the 

Cell processor offers at least five distinct forms of parallelism that can be utilized in an 

application, including (1) thread-level parallelism with hardware multithreading on the PPE 

and across multiple SPEs; (2) data-level parallelism by virtue of extensive SIMD 

instruction support on the SPEs; (3) compute-transfer parallelism using autonomous, 

programmable MFC engines; (4) memory-level parallelism by overlapping and interleaving 

multiple DMA transfer requests from each core as well as from multiple cores; and (5) a 

certain degree of instruction-level parallelism enabled by a statically-scheduled, power-

aware, dual-issue microarchitecture. Based on application-specific knowledge, a software 

developer thus needs to determine the appropriate form and the right amount of parallelism 

that should be exploited at each system level in an application. 
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• SPE programming considerations 

Several practical programming considerations also need to be taken into account when 

developing algorithms on the SPEs [IBM09]. First of all, only one thread can be executed by 

an SPE at any time, and context switch on these co-processors is considered as very 

expensive in terms of both time and system resources. For this reason, an SPE is usually 

assigned with a reusable task that operates on a stream of data. Secondly, the SPEs do not 

support hardware dynamic branch prediction, assuming that all branches will not be taken. If 

a branch is taken, however, a significant performance penalty is incurred. Hence, the SPE 

code should be designed in a way that either avoids (or at least minimizes) branching 

instructions or uses explicit branch hints to assist the compiler to improve instruction 

prefetching. Thirdly, C++ exception handling and I/O streams are not supported on the SPEs, 

and the standard C++ STL (Standard Template Library) container classes should be used 

with caution since the generated binary image can easily exceed the size of the LS. Therefore, 

it is a common practice to develop SPE programs in C and organize LS data in array-based 

buffers. Finally, all SPE memory accesses operate on 128-bit quadwords, which must be 

aligned on 16-byte boundaries in the LS. A sub-quadword scalar value is kept in a specific 

preferred slot of a SIMD register, thus requiring the compiler to generate extra rotation 

instructions to align the data, if necessary, at the cost of inflated code size and reduced 

performance. To minimize this extra rotation cost, scalar values should be either replaced by 

quadword vectors, or aligned and padded properly whenever possible to meet the SPE data 

layout requirement. 

3.3.2. Multi-Grained Parallelization Strategies 

As mentioned earlier, the performance of a Cell application depends on effective exploitation 

of multi-grained parallelism (in terms of both form and amount) at different system levels. 

Exploring multi-grained parallelism on the Cell processor has been investigated recently in a 

number of studies. For instance, Williams et al. demonstrated the potential of the Cell 

processor for scientific computing by combining three forms of parallelism (i.e., task 

parallelism, pipelined parallelism, and data parallelism) in several scientific computational 

kernels [Wil06]. Blagojevic et al. proposed an adaptive algorithm for dynamically choosing 

the form and degree of task-, data-, and loop-level parallelism in bioinformatics applications 
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[Bla07a, Bla07b, and Bla08]. Petrini et al. optimized the performance of a radiation transport 

application by exploiting several dimensions of parallelism such as thread-level parallelism, 

data-streaming parallelism, vector parallelism, and pipeline parallelism [Pet07]. 

While these studies provide valuable insight, it remains a challenging task to combine 

multi-grained parallelism coherently in general-purpose PDES on the heterogeneous Cell 

processor. To begin with, a PDES system typically includes different types of 

computational kernels such as LP synchronization and event execution, each with its own 

specific data access pattern and workload characteristics (e.g., compute-bound or memory-

bound), requiring different parallelization strategies to be developed for different types of 

kernels. Moreover, most of the existing PDES techniques take a coarse-grained 

parallelization strategy at the LP level to exploit parallelism across multiple nodes of a 

parallel computing system, without paying much attention to other forms of parallelism 

available on multicore processors. In some cases, this LP-oriented strategy might actually 

make the task of kernel parallelization more difficult to achieve because a computational 

kernel could be implemented collectively by several LPs and a LP could also encapsulate 

different types of kernel computation. In addition, the complex causal and data dependency 

involved in a PDES program further increases the complexity of the parallelization task.  

3.3.3. Abstract Programming Models  

A programming model is an abstract description about how a computation is executed. A 

variety of programming models have been developed for different parallel computing 

platforms [Ski98]. Broadly speaking, most of the existing parallel programming models are 

based on either distributed-memory message passing or shared-memory multiprocessing 

paradigms. Although these paradigms are often applied to program conventional 

multiprocessor systems, there has been a growing interest in extending their use to emerging 

CMP architectures like the Cell processor. 

In a recent work [Sta08], Stamatakis and Ott studied the performance of a 

bioinformatics application using MPI [Gro99], Pthreads [Nic96], and OpenMP [Cha07] 

based parallelization strategies on different parallel architectures, including AMD Barcelona 

system (2-way, quad-core), Intel Clovertown system (2-way, quad-core), Sun x4600 system 

(8-way, dual-core), SGI Altix 4700 system (2-way, dual-core), and a cluster of SMP 
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(Symmetric Multiprocessing) AMD Opteron processors (4-way, single-core). Based on the 

test results, the authors concluded that there is no universally best-suited programming model 

with respect to execution efficiency and code portability for the studied application. Instead, 

they suggested that the selection of programming models should rest on software engineering 

criteria and promoting data locality in the application.  

McCool presented a general discussion of the scalability and portability issues 

associated with different parallel programming models for a range of CMP architectures, 

with a focus on Graphics Processing Units (GPUs) and the Cell processor [McC08]. Some 

of the programming models, exemplified by MIMD (Multiple Instruction, Multiple Data), 

exploit task-level parallelism by decomposing a program into separate tasks that run 

concurrently on different processing elements. Communication and synchronization of these 

tasks can be achieved by either message passing or shared memory regions. Other 

programming models expose data-level parallelism following a data decomposition strategy. 

One simple example in this category is the SIMD (Single Instruction, Multiple Data) 

model, which can be generalized as the SPMD (Single Program, Multiple Data) model 

where the computational kernel may also include control flow with branching conditions 

instead of just a sequence of in-order data manipulation instructions. A widely used data-

level parallel programming model on CMP architectures is known as the stream 

programming paradigm, which constructs a parallel computation from a data-flow 

perspective where compute-intensive kernels operate on streams of input and output data that 

are typically organized in contiguous arrays  [Thi02, Gum08, and Kud08]. Data locality is 

enhanced both spatially (as contiguous data streams) and temporally (with a producer-

consumer style of data processing between kernels).  

To improve programmability and accessibility of the architectural features of the Cell 

processor, Khale et al. proposed six programming models [Kha05], including (1) function 

offload model where the SPEs are used to accelerate certain compute-intensive functions 

dispatched by a main application running on the PPE; (2) device extension model in which 

the SPEs serve as intelligent front ends to external devices using direct memory mapping; (3) 

SPE-centric computational acceleration model where the SPEs execute the bulk of the 

application code under the control of the PPE; (4) streaming model in which the SPEs are 

organized as a pipeline to process the data that stream through it and the PPE is used as a 
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stream controller; (5) shared-memory multiprocessor model where a Cell processor is 

viewed as an asymmetric shared-memory multiprocessor with two distinct ISAs; and (6) 

asymmetric thread runtime model in which an application is constructed as a pool of 

threads, each of which can be scheduled on either the PPE or the SPEs at runtime based on 

the architectural characteristics of the cores. 

Although these abstract parallel programming models provide general guidelines for 

developing new computing techniques for PDES, significant efforts are still required to 

customize and integrate them effectively to address the specific needs of different 

computational kernels when porting a PDES system to the Cell platform. 

3.3.4. Automated Compilation Techniques 

One way to facilitate software development on CMP architectures with explicit memory 

control is to use advanced compilation techniques. For instance, the IBM XL C/C++ 

Compiler for Multicore Acceleration [IBM08a] includes several automated techniques that 

allow for compiler-assisted branch prediction, instruction prefetching, data and code 

partitioning, and SPE code vectorization on the Cell processor [Eic05 and Eic06]. Knight et 

al. developed an optimizing compiler for processors with a hierarchy of memories managed 

explicitly by software [Kni07]. The proposed compiler addresses issues such as data padding, 

software pipelining, and memory space allocation for programs written in the Sequoia 

programming language [Fat06], which provides an abstraction of the memory hierarchy as 

private address spaces allocated to different concurrent tasks. 

Without a full understanding of high-level application logic, these compilation 

techniques usually support performance optimization only at data or function levels. While 

this approach works well for certain types of applications, it is inadequate on its own to 

handle the highly irregular computation in PDES systems whose complex data dependency is 

revealed only at runtime. On the other hand, compiler-assisted code optimization can help 

further improve PDES performance when application-level parallelism has already been 

properly analyzed and extracted. 
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3.3.5. Middleware Frameworks 

Efforts towards providing a layer of abstraction on top of the Cell programming primitives 

have led to the development of several middleware frameworks. Some of these frameworks 

are briefly reviewed as follows. 

The RapidMind framework [McC06] is an embedded programming language inside 

C++ that employs a simple data-parallel programming model built around a few C++ 

container types, including Value<N, T> that holds N values of type T, Array<D, T> 

that represents a multi-dimensional (1, 2, or 3) array of data elements with type T, and 

Program objects that encapsulate a sequence of operations. A parallel computation is 

executed by applying programs to arrays, and consequently generating new arrays. 

RapidMind also includes runtime components for handling certain low-level execution 

details such as task queuing, data streaming, task synchronization, and load balancing. The 

framework can be used to develop a class of high-performance applications on both GPUs 

and the Cell processor.  

The Cell Superscalar (CellSs) framework [Bel06 and Per07] allows for exploiting 

functional parallelism of a sequential application on the Cell processor based on user-

supplied annotation (similar to those used in OpenMP) in the source code. An annotated code 

segment represents a task that can be executed on the SPEs. To exploit parallelism, CellSs 

uses a runtime component that builds a data dependency graph, reflecting the dynamic 

relationship between the isolated tasks. Independent tasks are then scheduled on different 

SPEs for concurrent execution, while multiple dependent tasks may be co-scheduled on the 

same SPE to facilitate data reuse. However, CellSs does not support code SIMDization and 

other low-level code optimization, but instead relies on either the programmer or a native 

Cell compiler (e.g., IBM XL Compiler) to improve application performance manually or 

semi-automatically. 

Currently, MPI is considered as the de facto standard for parallel programming on 

conventional distributed-memory multiprocessor architectures. To enable certain existing 

MPI-based parallel applications to be ported to the Cell processor, Kumar et al. conducted a 

feasibility study in which certain core MPI functionalities (e.g., blocking point-to-point and 

collective messaging) are implemented using Cell programming primitives [Kum07]. The 

SPEs are used as a group of nodes for hosting the MPI processes, while the application data 
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are actually stored in the main memory to circumvent the LS size limitation. The MPI 

Microtask framework is another effort towards enabling MPI applications on the Cell 

processor [Oha06]. With MPI Microtask, programmers do not need to explicitly manage the 

on-chip LS as long as they can partition a MPI application into a set of small chunks called 

microtasks that can fit into the LS. The framework includes a preprocessor that transforms a 

MPI program defined in microtasks into a Cell program based on the streaming model. A 

resident runtime environment (which occupies the lowest 16KB memory in the LS) is then 

used to handle task synchronization, context switch, and message buffer management.  

The IBM Software Development Kit (SDK) for Multicore Acceleration [IBM08b] 

also includes an Accelerated Library Framework (ALF) that attempts to facilitate software 

development on the Cell processor by providing an Application Programming Interface 

(API) for data- and task-parallel libraries and applications [IBM08c]. An application is 

decomposed into two types of tasks: control tasks are executed on the PPE, whereas compute 

tasks are mapped to the SPEs. The framework has two runtime libraries, referred to as host 

runtime and accelerator runtime, which provide a set of key services such as task 

management, double-buffered data transfer, and certain error handling capabilities. The ALF 

framework is part of an on-going development project that is being actively pursued by IBM. 

Some early studies indicate that the current ALF implementation may shy of a high enough 

level of abstraction and a full support for varied SPE communication patterns [Cra08].  

To summarize, these middleware frameworks have exhibited notable success in a range 

of applications, such as image processing, list ranking and sorting, matrix multiplication, and 

fast Fourier transformation. Yet some of them assume a strict data-parallel programming 

model or adhere to a pure C programming language, while others provide only a minimal set 

of functionality of a standard library for specific applications. These limitations greatly 

hinder their applicability to complex object-oriented PDES systems. Besides, they usually 

rely on some runtime components to support parallel execution, introducing a nonnegligible 

overhead in terms of both time and memory space. 

3.3.6. Application Development on Cell 

Various applications have been developed on the Cell platform to study performance 

characteristics and to serve as examples of porting legacy software to the heterogeneous Cell 
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architecture. Some examples include key scientific computational kernels [Wil07], radiation 

transport algorithms [Pet07], wavefront algorithms [Aji08], Fourier transform [Bad07a and 

Che09b], regular expression scanning [Sca09b], list ranking [Bad07b], image processing 

[Sai07 and Ara09], and molecular dynamics [Oli07], among many others. Most of these Cell 

applications optimize performance by exploiting application-specific perallelism (typically at 

the task and data levels) based on careful analysis of the underlying algorithms and a priori 

knowledge of the workload characteristics.  

The Cell processor has also been used to host M&S applications. For instance, 

Meredith et al. improved the performance of bio-molecular simulations by farming out the 

most compute-intensive molecular dynamics calculation to the SPEs of a Cell processor 

[Mer07]. In a similar vein, De Fabritiis optimized the performance of bio-molecular 

simulations by parallelizing the code for computing non-bonded force field using SPE SIMD 

intrinsics, while the majority of the simulation code remains unchanged on the PPE [DeF07]. 

Yet another example of Cell-accelerated bio-molecular simulation was presented by Shi and 

Kindratenko [Shi08], in which the authors implemented the NAMD SPEC 2006 CPU 

benchmark [SPEC10] on the Cell processor following the function offload programming 

model. Porting these bio-molecular simulations to the Cell processor is relatively 

straightforward due to the fact that there is only one dominant numerically-intensive 

computational kernel in the simulation and the kernel computation is rather compact (less 

than 500 lines of C code), making it easy to fit into the on-chip LS.  

Several studies have focused on lattice Boltzmann simulation on the Cell processor. 

Peng et al. proposed a parallel lattice Boltzmann algorithm that divides the simulation into 

several sub-domains, each of which is represented by a three-dimensional floating-point 

array mapped to a distinct Cell processor [Pen08]. The values within each sub-domain are 

processed by multi-threaded collision and streaming functions executed concurrently across 

the SPEs of a Cell processor, while inter-domain communication is handled by the PPE using 

MPI messaging. However, the proposed algorithm does not utilize SIMD programming to 

further parallelize the SPE code, and the performance gain is mainly achieved by allowing 

the SPE threads to process independent data in parallel. In [Wil08], Williams et al. 

developed an application-specific auto-tuning environemnt for performance optimization of 

lattice Boltzmann simulations on different multicore architectures, including the Cell 
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processor, Intel Clovertown, AMD Opteron X2, and Sun Niagara2. The optimization 

strategies include loop unrolling, code reordering, software-controlled data prefetching, and 

SIMD vectorization. The experimental results indicate that the Cell processor can achieve 

high raw performance gain and power efficiency for demanding numerical simulations such 

as lattice Boltzmann computations. 

Financial modeling is another field that has attracted attention from the multicore high-

performance computing community. Agarwal et al. developed efficient parallel pseudo- and 

quasi-random number generators as well as normalization techniques, which are then used to 

accelerate Monte Carlo simulations in different financial pricing systems on the Cell 

processor [Aga08]. Bader et al. also used the Cell processor to speed up random number 

generation in financial risk assessment with Monte Carlo simulations [Bad08]. Docan et al. 

presented a parallelization strategy for financial risk analysis on the Cell processor [Doc09]. 

Instead of focusing on random number generation, the proposed strategy uses the PPE to 

generate a large set of Monte Carlo simulation scenarios for predicting future returns from 

different investment portfolios, whereas the SPEs are used to execute the option pricing 

algorithms concurrently based on independent simulation scenarios. However, none of these 

techniques attempts to parallelize the Monte Carlo simulation itself on the Cell platform. 

While the capability of the Cell processor has been demonstrated in a broad array of 

applications, its potential has yet to be realized in discrete-event simulations [Per06]. In 

particular, formalism-based general-purpose PDES on the Cell platform remains an 

interesting and challenging research problem. To this end, a Multicore Acceleration of 

DEVS Systems (MADS) technique is proposed in Chapter 5 to achieve efficient parallel 

DEVS simulation on the Cell processor. The performance impact of the MADS technique is 

evaluated quantitatively in Chapter 6 and summarized in Chapter 7. 
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Chapter 4. The Lightweight Time Warp Protocol 

This chapter proposes a novel Lightweight Time Warp protocol for efficient TW simulation 

of P-DEVS and Cell-DEVS models on distributed-memory multiprocessor clusters. Section 

4.1 outlines the research problem and the underlying design rationales. Section 4.2 

introduces the basic concepts and a set of generalized assumptions that underpin the 

proposed algorithms. Section 4.3 presents a rule-based event-scheduling mechanism that 

makes use of two types of event queues. Section 4.4 describes an aggregate checkpointing 

technique and an enhanced risk-free infrequent state-saving strategy. Section 4.5 covers a 

lightweight mechanism for efficient rollback operations, while Section 4.6 discusses several 

implications of the proposed algorithms. The performance impact of the Lightweight Time 

Warp protocol will be analyzed quantitatively in Chapter 6 and summarized in Chapter 7. 

4.1. Problem Statement and Design Methodologies 

This chapter aims to tackle the various challenges of DEVS-based TW simulation on 

distributed-memory multiprocessors by exploiting the intrinsic computational properties of 

the underlying simulation process presented in Section 2.6. Specifically, the research 

attempts to systematically address the issues discussed in Section 3.2, improving simulation 

performance (in terms of both execution time and memory consumption) without 

complicating the synchronization mechanism unnecessarily, sacrificing parallelism, or 

introducing a noticeable extra operational overhead.  

The proposed algorithms, collectively referred to as the Lightweight Time Warp 

(LTW) protocol, are developed based on the following rationales. 

• Purely optimistic synchronization.  

The LTW protocol takes a purely optimistic approach to simulation synchronization, 

preserving the dynamics of the TW mechanism and allowing for the exploitation of an 

increased degree of parallelism in the simulation system. Doing so would also make the 

system less reliant on the knowledge of model behavior for efficient execution, a criterion 

that is particularly important in general-purpose DEVS-based simulations. 
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• Simulator-centered optimization.  

As discussed in Section 2.6, PCD++ employs a flat LP structure that consists of only 

two coordinators (i.e., one NC and one FC) on each node, whereas many Simulators are 

created in a typical large-scale simulation. Hence, a substantial reduction in the operational 

overhead at the Simulators would result in a significant improvement in the overall 

simulation performance, which justifies the rationale for the adoption of a Simulator-centered 

optimization strategy that accelerates both forward execution and rollback recovery at the 

Simulators in the LTW protocol. 

• Simultaneous reduction of execution time and memory usage. 

Existing TW memory conservation techniques usually need to make a trade-off 

between execution time and memory usage. In contrast, the LTW protocol seeks to achieve 

both objectives simultaneously by maintaining fewer state and event (both input and output) 

data in the persistent queues during forward execution, while at the same time, incurring no 

additional overhead during rollbacks. Moreover, the LTW protocol also tries to speed up 

fossil collection by managing most of the persistent state data in a more concentrated manner 

on each node, thus allowing for more frequent memory reclamation with a relatively small 

impact on the overall simulation performance. 

• Facilitated event management. 

Instead of using advanced data structures and algorithms to facilitate event queue 

operations, the LTW protocol attempts to keep the event queues relatively short throughout a 

simulation, even though simulation performance can be further improved if such data 

structures are used. In addition, the LTW protocol is designed specifically for efficient 

execution of a large number of simultaneous events at each virtual time, directly addressing 

the computational property of large-scale, densely-interconnected, and highly-active DEVS-

based models (refer to Property 3 in Section 2.6.3). 

• Bounded rollback propagation. 

The LTW protocol is intended to bound rollback width by preventing most of the LPs 

from being involved in rollback propagations, while limiting rollback depth by reducing the 

number of events that need to be unprocessed during rollbacks. As a result, the possibility of 

uncontrolled cascaded rollback would decrease considerably, enhancing the stability and 
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scalability of the simulation system. Furthermore, this objective is achieved naturally using 

the native TW mechanisms without additional dynamic control at runtime. 

4.2. Concepts and Assumptions 

The novelty of the LTW protocol lies in the division of the local simulation space on each 

node into two domains, referred to as the TW domain and the LTW domain respectively. 

The former contains full-fledged TWLPs that maintain past event and state data in the 

persistent queues following the standard TW protocol (or an optimized version). On the other 

hand, the latter contains lightweight LPs that are released from the operational overhead 

associated with TW execution. Figure 12 illustrates the division of simulation domains with 

the LTW protocol in the context of the PCD++ simulator. 

 
Figure 12. Division of Simulation Domains in the LTW Protocol 

In PCD++, the NC is the only full-fledged TWLP created in the TW domain on a node, 

whereas all of the Simulators reside in the LTW domains. On each node, the LPs from 

different domains interact through a mixed-mode interface TWLP, which acts as a gatekeeper 

for the local lightweight LPs. This interface TWLP is realized by the FC in PCD++.  

There are two points that need to be clarified here. First, all of the LPs in the system 

still execute optimistically with potentially different LVT values, just like in the standard TW 

protocol. However, as will be explained later, the lightweight LPs no longer rely on the 

persistent event and state queues to recover from causality errors under the LTW protocol. 

Secondly, unlike many other LP aggregation techniques that require the use of additional 

concrete data structures and simulation entities for the purpose of grouping LPs into different 
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clusters (e.g., the input and output gateway processes created in the Local Time Warp 

protocol [Raj93 and Raj07], and the cluster environment and cluster input/output queues 

used in the Clustered Time Warp protocol [Avr95 and Avr01]), the LTW protocol divides a 

local simulation space into two domains only conceptually based on the functional 

differentiation of the LPs. Such a conceptual division of local simulation space, however, is 

useful for better understanding the LTW algorithms presented in the following sections. 

The LTW protocol makes several generalized assumptions regarding the control of LPs 

in a TW simulation. Note that these assumptions not only specify the conditions under which 

the LTW protocol can be applied to TW simulation of P-DEVS and Cell-DEVS models, but 

also provide a general guideline for utilizing the LTW protocol to improve performance in a 

wide range of TW-based PDES systems. The following is a summary of these LTW 

assumptions. 

Assumption 1. Prior knowledge about timing of state changes at lightweight LPs. 

The interface TWLP is assumed to possess the full knowledge about the timing of state 

changes at the local lightweight LPs. This timing information does not need to be known 

prior to the start of a simulation. Instead, it is obtained by the interface TWLP at runtime, just 

before the actual occurrence of state changes at the local lightweight LPs. In PCD++, this 

assumption is guaranteed by the fact that, on each node, all events to be executed by the 

Simulators come from the parent FC (refer to Property 2 – Communication property in 

Section 2.6.3). Since state changes can happen only as a result of processing input events in a 

discrete-event simulation, the FC knows the exact timing of state changes at the local 

Simulators whenever it schedules events for them. 

Assumption 2. Advancing simulation time from TW domains. 

The full-fledged TWLPs in the TW domain is supposed to advance the simulation time 

on the host node, usually by sending time-changing events (whose receive time stamps are 

greater than their send time stamps) to the other local LPs. On the other hand, the interface 

TWLP and the lightweight LPs do not advance their LVTs voluntarily, nor do they send 

messages across virtual time boundaries (i.e., they only send messages with the same send 

and receive time stamps that are both equal to the current simulation time). In PCD++, this 

assumption is a direct consequence of the event-processing algorithms since the NC is the 
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only TWLP that is in charge of simulation time advancement on each node (refer to Property 

1 – Time advance property in Section 2.6.3). 

Assumption 3. Performing inter-node communication from TW domains. 

The full-fledged TWLPs in the TW domains are assumed to be responsible for inter-

node messaging, whereas the interface TWLP and all of the lightweight LPs on each node 

send event messages to local receivers only. This does not prevent the interface TWLP or 

lightweight LPs from delivering events to remote destinations. It just requires that any 

message to be sent to other nodes must be forwarded to the local full-fledged TWLPs so that 

the message can be routed to remote destinations. In PCD++, this assumption is a direct 

match to the computational properties of the DEVS-based simulation process (refer to 

Property 2 – Communication property in Section 2.6.3). 

Assumption 4. Prior knowledge about timing of rollbacks at lightweight LPs. 

The interface TWLP is assumed to know the timing of rollbacks that will happen at the 

local lightweight LPs. This assumption can be inferred from other two assumptions. Since 

any speculative computation (in terms of virtual time advancement) is initiated in the TW 

domain (Assumption 2), and any straggler or anti-messages from remote nodes are received 

by full-fledged TWLPs first (Assumption 3), potential rollbacks on each node will always 

propagate from the TW domain to the LTW domain through the interface TWLP. As a result, 

the interface TWLP has enough information to figure out when rollbacks will occur at the 

local lightweight LPs. In PCD++, the FC thus knows when rollbacks will happen at the child 

Simulators at runtime. 

These assumptions might seem a bit restrictive, but in practice many TW-based PDES 

systems can be converted, at least partially, into this computing model by imposing an 

appropriate control over the TWLPs.  

4.3. Rule-Based Dual-Queue Event Management 

As discussed in Section 3.2, keeping historical input and output events in the persistent event 

queues is one of the major sources of operational overhead in TW simulations, consuming 

memory space and increasing the cost of event queue operations. To address this problem, 

the LTW protocol classifies the input events into two types, referred to as persistent events 
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and volatile events. While persistent events are preserved in the input queues after being 

processed (i.e., they can be reclaimed only during fossil collection), volatile events are 

discarded right after execution, just like in a sequential or conservative simulation. An event-

scheduling algorithm is then proposed to schedule both types of input events using a set of 

prioritized rules. The following subsections present the LTW event management scheme. 

4.3.1. Introducing a Volatile Input Queue 

On each node, an additional volatile input queue is introduced to manage the volatile events 

sent between the local LPs. Specifically, it is used to hold temporarily the simultaneous 

events exchanged between the FC and its child Simulators within a simulation phase (or 

round) at any given virtual time. It is safe to reclaim these events immediately after execution 

because, as simultaneous events with the same send time stamp, they are either committed 

together in the absence of causality errors or annihilated with each other during rollbacks 

under the TW protocol. Hence, defining these events as volatile captures the overall behavior 

(or net effect) of the TW simulation. On the other hand, the original persistent input queue is 

used only by the NC and the FC to store the events sent between them.  

 
Figure 13. A Message-Passing Scenario with LTW Event Classification 

Figure 13 illustrates this dual-queue event management scheme, where a NC, a FC, and 

two Simulators (denoted as S1 and S2) are created in the local simulation on a node. As 

shown in the diagram, events scheduled for the NC are still inserted into the persistent input 
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queue. However, events received by the FC are put into the persistent input queue only if 

they come from the parent NC. In addition, all events exchanged between the FC and the 

child Simulators are inserted into the volatile input queue.  

Figure 14 depicts the message-passing scenario from the TW perspective, in which all 

of the Simulators appear to be nonexistent in the simulation. As a consequence, the TW 

simulation involves only a small fraction of the total events executed by the LPs, whereas 

most of the input events are no longer under the control of the TW mechanism (refer to 

Property 4 – Pending event property in Section 2.6.3). 

 
Figure 14. A Message-Passing Scenario from the TW Perspective 

Comparing Figure 13 with Figure 14, the simultaneous events executed by the FC and 

the Simulators within a simulation phase (or round) can be viewed as being collapsed into a 

single aggregate event. This aggregate view is just a conceptual aid for demonstrating the 

effect of introducing the volatile input queue. It does not change the actual event granularity 

in the simulation. Note that the time-changing events sent from the NC to the FC (e.g., X23 

and *24) are still kept in the persistent input queue, allowing the simulation to resume forward 

execution after rollbacks. For instance, events X25, *26, D27, D28, and @29 will be cancelled 

should a straggler or anti-message with a time stamp of t2 arrive, and the simulation resumes 

from the unprocessed X23 and *24 thereafter, essentially reinitiating the simulation phase(s) at 

virtual time t2 with the received straggler or anti-message being taken into account. 

Introducing the volatile input queue comes with several appealing features, as follows. 

• Reduced memory consumption with minor extra overhead. 

Events in the volatile input queue are discarded safely and their memory reclaimed 

immediately after execution. Since most of the input events are turned into volatile in a 

simulation, the system memory footprint would be reduced considerably. Furthermore, doing 
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so will not incur a significant extra operational overhead. As will be discussed shortly, the 

only extra operation required by this new event management scheme is to compare the time 

stamps of the next persistent and volatile events available in the queues for proper event 

scheduling during forward execution, at a minor computational cost. 

• Facilitated event queue operation using simple data structures. 

Events in the volatile input queue always have the same time stamp. At any virtual time, 

simultaneous events are added to the volatile input queue as the simulation enters into each 

phase (or round), and deleted as the execution proceeds. By the end of a simulation phase (or 

round), i.e., when the FC sends a (D, t) event back to the NC, the volatile input queue 

becomes empty, allowing the queue to be kept relatively short throughout the simulation. 

Moreover, it is sufficient to implement the volatile input queue using a simple FIFO (First 

In, First Out) data structure, allowing for efficient event queue operation in constant time. 

Consequently, the persistent input queue also becomes much shorter than it would be in the 

standard TW protocol, with accelerated event queue operation as well. Note that advanced 

data structures (e.g., Calendar Queues [Bro88, Oh97, Oh99, and Tan00]) can be used to 

further speed up operations in the persistent input queue, but their operational efficiency 

would be improved with this new event management scheme thanks to the reduced problem 

size (i.e., number of persistent events). 

• Accelerated forward execution with reduced rollback cost. 

For those volatile input events, their counterpart anti-messages need not to be saved in 

the output queues of the sending LPs, essentially eliminating all of the output queues 

previously created for the Simulators, and shortening the output queue associated with the 

FC to a great extent. This not only further decreases memory usage for saving output events 

and accelerates simulation during forward execution, but also reduces rollback overhead 

since message annihilation is no longer required to cancel incorrect volatile input events (as 

they have already been deleted during forward execution), which in turn enhances overall 

simulation performance and system stability.  

• Reduced overhead for fossil collection. 

Using the volatile input queue also reduces the overhead of fossil collection due to a 

significant reduction in the total number of input events and anti-messages saved in the 
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persistent input and output queues. Therefore, more frequent GVT estimation and fossil 

collection could be performed in a simulation without incurring an overwhelming operational 

cost, releasing more memory and resulting in even shorter persistent queues.  

4.3.2. A Rule-Based Event-Scheduling Algorithm 

With the proposed event management scheme, input events are managed collectively by both 

the volatile input queue and the persistent input queue on each node. With two input queues 

at hand, an event-scheduling algorithm is required to ensure a Least-Time-Stamp-First 

(LTSF) event execution, while at the same time enhancing execution efficiency and 

lowering the possibility of potential performance degradation. The following discussion 

assumes that an event scheduler is located on each node to determine the next event to be 

executed in each simulation cycle. Figure 15 illustrates the dual-queue event-scheduling 

mechanism in the LTW protocol. 

 
Figure 15. Dual-Queue Event Scheduling 

The persistent input queue contains events sorted in LTSF order, including unprocessed 

events and those that have already been processed but not yet been fossil collected. On the 

other hand, the volatile input queue contains only simultaneous events that have not yet been 

processed in the current simulation phase (or round) at a specific virtual time. The event 

scheduler maintains two pointers, referred to as p-ptr and v-ptr, to reference the next 

available events in the corresponding input queues respectively. While p-ptr may need to 

be updated whenever the persistent input queue is modified (e.g., during event insertion 

and/or cancellation) in order to ensure that the pointer always refers to the first unprocessed 

persistent event with the smallest time stamp, v-ptr simply points to the first volatile event 

at the head of the volatile input queue. At each event selection point, the event scheduler 

compares the two events based on a set of event-scheduling rules and chooses one of them to 
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execute in the current simulation cycle. In effect, the event-scheduling rules allow the 

scheduler to adjust the priorities of the input queues dynamically on an event-by-event basis. 

During a simulation phase, (X, t) events may arrive from remote NCs (e.g., X12 in 

Figure 13), and will be flushed to the FC and the destination Simulators in the next round of 

computation (e.g., X17 and X19 in Figure 13). To avoid unnecessary rounds in a transition 

phase, the NC needs to execute these remote (X, t) events immediately upon arrival so that 

more (X, t) events can be cached in the inter-node message buffer and sent to the FC in a 

batch (refer to Figure 8 in Section 2.6.1). Likewise, the Simulators may send messages to 

remote destinations during a collect phase (e.g., Y3, Y6 and X7 in Figure 13). As these 

messages are potentially stragglers at the receiving ends, a delay in their delivery could 

postpone rollbacks at the destinations, leading to degraded performance. Note that, according 

to LTW Assumption 3, all these kinds of inter-node messaging are mediated by the persistent 

input queue in the TW domain. Therefore, the event-scheduling rules should grant a higher 

priority to persistent events than volatile events when they have the same time stamp. This 

principle is reflected in the event-scheduling algorithm given in Figure 16. 

 
Figure 16. LTW Event-Scheduling Algorithm 
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This event-scheduling algorithm can be summarized succinctly in the following rules, 

which are listed in priority order (from highest to lowest). 

Rule 1. Idle condition. 

The next event is set to null if the volatile input queue is empty and the next available 

persistent event has a time stamp that is beyond the simulation stop time (line 4). In this case, 

the local simulation becomes idle on the host node, and the NC may be reactivated later upon 

the arrival of (X, t) events from the other nodes. 

Rule 2. Simulation progress. 

Whenever the volatile input queue becomes empty at the end of a simulation phase (or 

round), the event pointed by p-ptr is selected for execution if its time stamp is less than or 

equal to the simulation stop time (line 6). This rule ensures that the NC can (1) advance 

simulation time on the host node during the processing of the persistent (D, t) event returned 

from the FC, or (2) resume forward execution from the unprocessed persistent events in the 

wake of a rollback, or (3) reactivate the local simulation from the idle state as soon as (X, t) 

events from the other nodes become available in the persistent input queue. 

Rule 3. Aggressive inter-node communication. 

If the volatile input queue is not empty (i.e., in the middle of a simulation phase or 

round), a persistent event with a time stamp that is smaller than or identical to that of the 

volatile events will be chosen for execution instead (line 12). This rule guarantees that inter-

node messages will be processed immediately by the NC once they are inserted into the 

persistent input queue.  

Rule 4. LTSF event execution. 

In all other cases, the scheduler chooses the next volatile event to execute in the current 

simulation cycle (line 16), enforcing a LTSF event execution on the host node. 

It is worthwhile to point out that an event selected from the volatile input queue is 

removed from the queue by the scheduler (line 17), and this volatile event will be deleted by 

the receiving LP after execution. In contrast, an event chosen from the persistent input queue 

is simply marked as processed, and the p-ptr is moved to the next available persistent 

event afterwards (line 7 and line 13). 
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4.4. Aggregate State Management 

Under the TW protocol, each TWLP needs to maintain its own persistent state queue in order 

to undo erroneous modifications to state variables during rollbacks. Although this approach 

allows for wide generality and straightforward implementation, it suffers from several 

drawbacks from a performance point of view. First, the persistent state data are scattered 

among individual TWLPs, making it difficult to perform efficient batch operations across 

different state queues. For example, all the state queues must be queried one by one during a 

fossil collection, a costly operation that could otherwise be performed more efficiently in a 

more concentrated fashion. Secondly, state restorations at the TWLPs are triggered solely by 

straggler or anti-messages, requiring an excessive message exchange between the TWLPs 

and putting a heavy burden on the underlying communication infrastructure. To address 

these performance issues, the LTW protocol introduces an aggregate checkpointing scheme 

that allows the lightweight LPs to delegate the responsibility of state management to the 

interface TWLP. In addition, an enhanced risk-free infrequent state-saving mechanism is 

proposed to reduce state-saving overhead in DEVS-based TW simulations. The following 

subsections present the LTW state management scheme. 

4.4.1. Introducing an aggregate state manager 

At the heart of the LTW state management scheme is an aggregate state manager created for 

the FC on each node. This state manager not only manages the state queue for the FC itself, 

but also those used by the child Simulators. Conceptually, one can consider that each 

Simulator still has its own persistent state queue, but under the control of the aggregate state 

manager at the FC. In addition, a Boolean flag, referred to as dirty bit, is associated with the 

state queue of each Simulator. Figure 17 shows the structure of the aggregate state manager. 

 
Figure 17. Structure of FC Aggregate State Manager 
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According to LTW Assumption 1, as discussed in Section 4.2, the FC knows the exact 

timing of when state changes will occur at the child Simulators. Nevertheless, the state of a 

Simulator should be saved after the processing of an event received from the FC because the 

state variables defined in the Simulator are subject to modification during the event 

execution. Moreover, usually not all of the Simulators are involved in the computation of a 

simulation phase (or round) at any given virtual time. Some of them may stay idle for an 

indefinite period of time. This is why the aggregate state manager needs to define a set of 

dirty bits for the child Simulators. After scheduling an input event for a child Simulator, the 

FC instructs the aggregate state manager to set the corresponding dirty bit for that Simulator. 

The actual checkpointing operation will be carried out only when the FC determines that the 

input events previously scheduled for the child Simulators have already been processed, as 

will be explained shortly. Further, the aggregate state manager will save the states only for 

those Simulators with dirty bits set to true. In short, the dirty bits are used to identify those 

active child Simulators that have processed at least one input event at the current virtual time. 

No dirty bit is associated with the state queue of the FC itself since the FC is always involved 

in the computation at each virtual time. 

4.4.2. An Enhanced Risk-Free Infrequent State-Saving Strategy 

In [Liu07], a Message Type-based State-Saving (MTSS) strategy has been proposed to 

reduce state-saving overhead in DEVS-based TW simulations. With this strategy, a TWLP 

needs to save its state only for a specific type of input events, which are processed at the end 

of each round of state transitions performed at a virtual time. As the saved states reflect the 

updates of state variables in the state transitions, they are sufficient for state restoration 

during potential rollbacks. In particular, the NC and the FC need to save states for (D, t) 

events, and the Simulators need to save states for (*, t) events. The checkpointing operations 

can be safely skipped for all the other types of events, reducing memory usage and state-

saving overhead considerably (an improvement of up to 30% in memory consumption and 

state-saving time has been observed in the experiments) [Liu07]. In addition, the MTSS 

strategy is regarded as risk-free in the sense that, unlike other infrequent state-saving 

techniques, no coast-forward operation is required during rollbacks, even though fewer states 

are saved in the state queues.  
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The efficiency of the MTSS strategy, nonetheless, needs to be further improved since a 

TWLP may still save more states than necessary to recover from causality errors without 

resorting to coast-forward operation during rollbacks. As a transition phase may include 

multiple rounds of computation at any virtual time, a TWLP can save multiple states all at 

the same virtual time, even though only the last one will be used for the purpose of state 

restoration during rollbacks, wasting a certain amount of memory for saving past states.  

To illustrate this point, let us revisit the message-passing scenario shown in Figure 9 of 

Section 2.6.2. Based on the MTSS strategy, Simulator S1 will save its state for both *10 and 

*26 at virtual time t2. However, saving a state for *10 is actually unnecessary because it is the 

state saved for *26 (which is processed at the end of the last round of state transition at t2) that 

will be used for state restoration should S1 be rolled back to t2 later in the simulation. In 

order to avoid such unnecessary state saving in a simulation, the MTSS strategy is enhanced 

so that only a single state is saved for an active TWLP at the end of each distinct virtual time, 

as presented next. It also represents a simulation phase oriented optimization based on the 

concepts introduced in Section 2.6.2. 

 
Figure 18. Introducing a State-Saving Phase for Each Virtual Time 

Shown in Figure 18, a state-saving phase is added to the end of each virtual time, 

where the NC determines the next virtual time during the execution of a (D, t) event returned 

from the FC (see line 3.7 in Figure 8 of Section 2.6.1). If the local simulation time is about to 

be advanced to a new value, the NC first instructs the FC to save states for the current virtual 

time (i.e., between line 3.9 and 3.10 in Figure 8). Since all the input events scheduled for the 

FC and the Simulators on the host node have already been processed at this moment (refer to 

Property 4 – Pending event property in Section 2.6.3), the saved states include the latest 

updates of the state variables defined in the TWLPs. Only when the state-saving phase 

completes, can the NC send time-changing events to the FC to initiate the next simulation 

phase at the new virtual time. The state of the NC itself is still saved after processing a (D, t) 

event from the FC, just like in the original MTSS strategy. Hence, the actual checkpointing 
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operations are performed only in the state-saving phases throughout a simulation. Unlike the 

other types of simulation phases, which are marked by real phase-changing events sent 

between the NC and the FC, the state-saving phases do not involve any event execution. 

Instead, it is an abstraction to identify the state-saving points in the simulation process. 

 
Figure 19. LTW State-Saving Algorithm 

Figure 19 gives the LTW state-saving algorithm using the aggregate state manager 

introduced earlier. The algorithm consists of two parts. When the simulation executes in a 

simulation phase (or round) other than the state-saving phases, the aggregate state manager 

performs simple bookkeeping operations by setting the dirty bit to true whenever the FC 

sends a (*, t) event to a child Simulator (line 1.1 to 1.5). Note that the dirty bit does not need 

to be set repeatedly when the FC sends other types of events to the same Simulator, as it 

suffices to identify an active child Simulator when the actual state transition is performed 

during the execution of a (*, t) event.  

On the other hand, when the simulation enters into a state-saving phase (just before the 

advancement of the local simulation time), the aggregate state manager first saves the state of 

the FC (line 2.1), and then it saves the states for those child Simulators whose dirty bits have 

been set to true (line 2.5). After saving the states, the dirty bits of the Simulators are reset 

back to false (line 2.6), making them ready to be used in the next virtual time. 

When compared to the MTSS strategy, the LTW state-saving algorithm has two main 

advantages. First, the aggregate state manager only needs to set a Boolean flag for all but the 

last (*, t) event sent to a Simulator at a virtual time, which can be performed much quicker 
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than actually saving the states in the persistent state queue, resulting in better simulation 

performance. Secondly, only one state is saved for each active Simulator at any virtual time, 

regardless of how many rounds of state transitions may occur at that virtual time, reducing 

memory usage and the length of the state queue with accelerated queue operations.  

In addition, the algorithm can be integrated with other optimizations to further reduce 

state-saving overhead. For instance, incremental state-saving techniques can be used in 

applications where only a small portion of the state data is modified during event execution. 

4.5. Lightweight Rollback Mechanism 

Under the TW protocol, causality errors are detected and recovered through rollbacks, which 

are triggered by the arrival of straggler and/or anti-messages at the TWLPs. With the LTW 

event and state management schemes, however, the lightweight LPs no longer maintain 

historical input/output events and states, making them unable to rely on the TW rollback 

mechanism. Therefore, a new lightweight rollback mechanism is required to allow the 

lightweight LPs to recover from potential causality errors without using anti-messages, as 

presented in the following subsections. 

4.5.1. Full-Fledged, Interface, and Lightweight LPs 

As mentioned in Section 4.2, the LTW protocol classifies the LPs on a node into three types, 

referred to as full-fledged TWLP, interface TWLP, and lightweight LP, which correspond to 

the NC, FC, and Simulators respectively in PCD++. Although they all execute optimistically, 

the TW mechanisms are realized quite differently for each type of LPs, as summarized below. 

• NC – full-fledged TWLP. 

The NC is the only full-fledged TWLP residing in the TW domain on a node. It 

executes as usual under the standard TW protocol (or an optimized version) using the 

persistent input, output, and state queues. Hence, the NC can be precluded from the 

discussion of the LTW rollback algorithm. 

• FC – interface TWLP. 

The FC serves as an interaction mediator between the TW and LTW domains on each 

node. It becomes a mixed-mode TWLP that makes use of both persistent and volatile input 



83 

queues, a persistent output queue, and an aggregate state manager. Since the output events 

sent to the child Simulators are no longer kept in its output queue, the FC cannot use anti-

messages to trigger rollbacks at the Simulators. In addition, the FC is also responsible for 

restoring the states of the Simulators, if necessary, during rollbacks. 

• Simulator – lightweight LP. 

The Simulators are turned into lightweight LPs whose input queues become volatile, 

whose output queues are removed altogether, and whose state queues are delegated to the FC. 

As a result, they are neither expected nor allowed to carry out rollbacks on their own in the 

LTW protocol. Rather, the Simulators simply execute whatever input events received from 

the FC based on their current states, pretty much like in a sequential simulation, yet 

preserving the dynamics of the TW mechanism while reducing the operational overhead. 

Thus, the Simulators can be precluded from the LTW rollback algorithm as well. 

4.5.2. A Lightweight Rollback Algorithm 

Based on LTW Assumption 4, rollbacks always propagate from the FC to the Simulators on 

a node. That is, the FC is presented with an opportunity to intercept rollback propagation and 

to perform any necessary rollback operations on behalf of the child Simulators. Moreover, 

the incorrect input events previously executed by the Simulators have already been deleted in 

the volatile input queue during forward execution. This is one of the most prominent features 

of the LTW protocol, as it allows for saving the execution time that would otherwise be 

wasted on matching messages to their counterpart anti-messages in the persistent input 

queues, especially when a large number of events need to be annihilated during rollbacks. 

The rollback of the FC itself is still triggered by straggler and/or anti-messages received from 

the NC. Hence, the main purpose of the LTW rollback algorithm is to properly restore the 

Simulators’ states, which are managed by the aggregate state manager at the FC. 

One difficulty, however, is that the Simulators execute asynchronously and thus may 

have different LVTs. During a rollback, only the states of those Simulators that have 

involved in speculative computation need to be recovered. For example, if the rollback time 

is 100, the state of a Simulator that has stayed idle since virtual time 80 should not be 

restored at all. To solve this problem, the FC uses an array of Latest state Change Time 

(LCT) values to keep track of the latest virtual times when state transitions are performed at 
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the child Simulators in response to (*, t) events. The LCT value is updated whenever the FC 

sends a (*, t) event to a Simulator. Therefore, the FC can determine whether a Simulator has 

involved in speculative computation by comparing the rollback time with the LCT of the 

Simulator. 

The LTW rollback algorithm consists of two components, one for the FC and the other 

for the event scheduler introduced in Section 4.3.2. Figure 20 gives the algorithm for the FC. 

 
Figure 20. LTW Rollback Algorithm for FC 

At the beginning of a simulation, all LCT values are initialized to virtual time 0 (line 

1.4). When the FC schedules a (*, t) event for a child Simulator, the corresponding LCT 

value is updated to the current virtual time t (line 2.3). If a rollback occurs at virtual time T, 

the FC first takes any necessary actions required by the TW mechanism to roll back its own 

speculative interactions with the NC (line 3.2). It then invokes the event scheduler to roll 

back the events currently available in the volatile input queue (line 3.3). Finally, the FC 

instructs the aggregate state manager to restore the states of the Simulators, if necessary (line 

3.4 to 3.11). 
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State restoration for a Simulator is performed if the Simulator’s LCT is greater than or 

equal to the rollback time (line 3.5), which ensures only those Simulators that have changed 

their states at or after the rollback time are rolled back. The state restoration operations are 

carried out in a similar way as in the TW protocol (line 3.6 to 3.8). After the state restoration, 

a Simulator’s LCT value is reset to the LVT recorded in the recovered state (line 3.9) so that 

the FC can continue to track the latest state change time at the Simulator afterwards. 

 
Figure 21. LTW Rollback Algorithm for Event Scheduler 

The rollback algorithm for the event scheduler is shown in Figure 21. The scheduler 

simply performs a batch operation to clear the volatile input queue if the volatile events have 

a time stamp that is greater than or equal to the rollback time (line 4). 

Using the above rollback algorithms, causality errors can be recovered more efficiently 

than in the TW protocol, due to, for the most part, the reduced message annihilations in the 

persistent input queue. Furthermore, all of the Simulators can be rolled back without sending 

anti-messages, no matter how many Simulators are created in a simulation, with decreased 

communication overhead. As a result, rollback propagation is restricted to the TW domains 

only, and the maximal width of a rollback is bounded by the total number of NCs and FCs 

created in a simulation (i.e., total number of nodes × 2). Besides, the depth of a rollback is 

also decreased because a majority of events executed in a simulation has been removed from 

the persistent input queue, thus limiting the number of events that need to be unprocessed in 

a rollback. 

4.6. Implications of the LTW Protocol 

This section briefly discusses a number of implications of the proposed LTW protocol, 

including its impact on global control mechanisms, compatibility with existing TW 

optimizations, and applicability to other TW-based PDES systems. The performance of the 

LTW protocol will be analyzed in Chapter 6 and summarized in Chapter 7. 
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• Impact on global control mechanisms. 

Though developed largely as a local control mechanism, the LTW protocol also has an 

impact on several key global control mechanisms. As already mentioned in the previous 

sections, the LTW protocol can accelerate fossil collection in a TW simulation for the 

following reasons. First, the persistent input queue has been shortened after the introduction 

of the volatile input queue, and most of the anti-messages are removed from the persistent 

output queues (while the number of persistent output queues is fixed at two per each node, 

regardless of the scale of the simulation system), lowering the overhead associated with 

memory reclamation and improving the efficiency of fossil collection operations. Secondly, 

the amount of historical state data is reduced by the enhanced risk-free infrequent state-

saving strategy, further decreasing the cost of fossil collection. Furthermore, most of the state 

data are now managed by the aggregate state manager in a more concentrated manner on 

each node, allowing for efficient batch operations in the state queues. 

GVT computation is another global control mechanism that can benefit from the LTW 

protocol. In general, a GVT computation requires different processors (nodes) to compute 

their own local estimations, based on which a global GVT value is obtained and broadcast to 

all of the nodes in the simulation system [Mat93, Kan96, Fuj97, and Che05]. Hence, the cost 

of a GVT computation includes the computational overhead for local GVT estimation and 

the communication overhead for collecting and broadcasting new GVT updates. Although 

the LTW protocol is not intended to reduce the cost of inter-node communication, it does 

mitigate the overhead for local GVT estimation since only a few TWLPs (e.g., the NC and 

the FC in PCD++) need to be queried on a node, and the saving would be most pronounced 

in large-scale simulations where many lightweight LPs coexist on each node. Moreover, it is 

straightforward to integrate the LTW protocol with other optimized GVT algorithms to 

further improve performance. 

In addition, the LTW protocol makes it possible to realize agile process migration in 

DEVS-based TW simulations. As model partitioning is carried out at the atomic level in 

PCD++, it is the lightweight Simulators that will be moved around to achieve dynamic load 

balancing at runtime. Under the LTW protocol, the appropriate decision points for process 

migration would be at the end of each state-saving phase when all of the volatile events have 

been processed (and deleted) by the Simulators and the states have been saved by the 
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aggregate state manager. The cost of transferring a Simulator to another node is thus 

minimized at these points, because only the persistent state data need to be migrated. Besides, 

concentrating the Simulators’ state queues at the aggragate state manager allows for the state 

data of multiple Simulators to be packed in an efficient way before sending to a destination 

node, facilitating the migration of closely interrelated Simulators as a group. 

• Compatibility with existing TW optimizations. 

In essence, an optimistic parallel simulation under the LTW protocol can be simply 

viewed as an equivalent TW simulation, but on a smaller scale in terms of the number of 

TWLPs mapped on each node. Hence, many existing TW optimizations can be used 

transparently to further improve simulation performance. For instance, different state-saving 

strategies [Pre94, Tay00, and Fen06], event cancellation techniques [Lin91a, Nor02, and 

Che09a], and event set implementations [Bro88, Ron93, and Tan05a] can be applied to the 

TW domains directly. As the number of TWLPs is reduced significantly in large-scale 

simulations, these TW optimizations are likely to be realized more effectively with the LTW 

protocol, relieving the concern about scalability issues of the optimization algorithms. 

Likewise, various techniques for optimism control can be incorporated into the LTW 

protocol (e.g., [Sok91, Ste93, Tay01, Qua01b, and Sup00]). In a way, the LTW protocol can 

be considered as complementary to the Local Time Warp protocol [Raj07] in the sense that 

the former is a purely optimistic approach to reducing TW operational overhead in the local 

simulation space on each node, while the latter is a locally optimistic approach to mitigating 

cascaded rollbacks in the global simulation space across different nodes. It is not difficult to 

envision that both approaches would be combined consistently in a TW simulation. 

• Applicability to other TW-based PDES systems. 

The LTW protocol could also be applied in other types of TW-based PDES systems by 

imposing an appropriate control over the LPs, as long as the systems under consideration 

satisfy the set of LTW assumptions outlined in Section 4.2. 

Although the discussion of the LTW protocol considers only a single pair of TW and 

LTW domains (i.e., a one-to-one correspondence) on each node, this in no way presents a 

restriction on LP organization in the system. Depending on the specific needs of a simulation 

system, the division of local simulation space can be adapted in many different ways. For 
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example, multiple LTW domains can be utilized on a node to implement domain-specific 

formalisms in a hybrid multi-formalism based simulation, where a shared TW domain takes 

the responsibility of mediating interactions between different LTW domains on the host node 

as well as communicating with the other remote nodes. 

As multicore processors are increasingly used as building blocks in high-performance 

multiprocessor systems, there is a growing interest in parallelizing a single discrete-event 

simulation not only between multiple processors at the cluster level, but also across different 

processing elements mounted on each multicore chip. Towards this goal, the next chapter 

first proposes a computing technique for parallel DEVS simulation on the IBM Cell 

processor, and then discusses possible approaches to integration of the proposed computing 

technique with other cluster-based PDES techniques in order to achieve both conservative 

and optimistic parallel simulation on multiprocessor systems built with multicore nodes. 

Indeed, as will be explained later in Section 5.6, the concept of lightweight LPs introduced in 

the LTW protocol can be used to facilitate such an integration effort in the context of DEVS-

based TW simulations. 
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Chapter 5. Multicore Acceleration of DEVS Systems 

This chapter proposes a new computing technique for high-performance parallel DEVS 

simulation on the IBM Cell processor. Section 5.1 outlines the research problem and the 

underlying design rationales. Section 5.2 generalizes the workload characteristics of different 

types of models and identifies two major computational kernels commonly found in 

demanding DEVS-based simulations. The optimization and parallelization algorithms 

developed for these computational kernels are presented in Section 5.3 and Section 5.4 

respectively. Section 5.5 gives an architectural overview of the computing technique and 

summarizes the multi-grained parallelization strategy used for each computational kernel. 

Section 5.6 discusses several implications of the proposed technique. The performance 

impact of the computing technique will be analyzed in Chapter 6 and reviewed in Chapter 7. 

5.1. Problem Statement and Design Methodologies 

In an effort to address the various challenges of PDES on heterogeneous CMP architectures, 

as discussed in Section 3.3, the research presented in this chapter aims to develop efficient 

and flexible algorithms, collectively referred to as the Multicore Acceleration of DEVS 

Systems (MADS) technique, for high-performance parallel simulation of large-scale and/or 

complex P-DEVS and Cell-DEVS models on the Cell processor, while hiding, to a great 

extent, the technical details of multicore programming from general users. Particularly, the 

proposed MADS technique attempts to optimize and parallelize the sequential DEVS-based 

simulation process, previously hosted on a single cluster node (refer to Figure 5 and Figure 

10 in Chapter 2), using the Cell processor so as to combine parallel simulation at the cluster 

level with accelerated parallel simulation on each multicore node. In addition, this chapter 

also provides valuable insight and practical guidance for other application developers who 

intend to port existing legacy simulation software to current and future multicore CMP 

architectures. 

The following is a summary of the design rationales that have been employed in the 

development of the MADS technique. 
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• Formalism-based general-purpose simulation.  

The MADS technique is developed based on the DEVS M&S framework, as introduced 

in Section 2.1, thus allowing for general-purpose P-DEVS and Cell-DEVS simulations, 

facilitating reuse of existing models, and reducing system validation and verification cost. 

Besides, instead of taking advantage of a priori knowledge of a specific model, the MADS 

technique makes use of generalized workload characteristics to speed up the execution of 

two types of computational kernels commonly found in a wide range of different models, 

while providing an extensible software architecture to accommodate additional kernels as 

needed, thus maximizing the applicability of the proposed technique. 

• Multi-grained parallelization strategy.  

In order to exploit the full potential of the Cell processor, the MADS technique adopts 

a data-flow oriented parallelization strategy that explicitly explores the fine-grained data-

level and event-level parallelism inherent in the DEVS-based simulation process and 

combines multi-grained parallelism at different system levels in a coherent way. Unlike the 

traditional LP-oriented PDES techniques, the proposed parallelization strategy directly 

addresses the computational needs of different types of demanding kernels (which 

correspond to the major performance bottlenecks) in a simulation, making the achievable 

performance gain more deterministic and predictable. 

• Performance-centric design. 

Optimizing simulation performance is regarded as a paramount issue that needs to be 

considered in the design of the MADS technique. In addition to the exploitation of multi-

grained parallelism, varied optimization strategies are utilized to improve data locality and to 

further streamline the parallelized kernel computation. As will be analyzed in this and the 

next chapters, these optimization strategies can lead to a significant performance 

improvement, which, in some cases, is even more prominent than that obtained by the 

parallelization strategies. Moreover, the MADS technique also draws upon the lessons 

learned in other case studies in the literature to enhance performance. For example, the 

various types of simulation data are managed in a way that allows for maximizing DMA 

transfer performance based on the conclusions derived in [Ara09 and Pet07], which state that 

peak DMA performance is achievable when the addresses of the data in both memory 
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domains are cache-line (128-byte) aligned and when the size of transfer is an even multiple 

of 128 bytes that is 512 bytes or larger.  

• Flexible software architecture. 

Although the MADS technique is intended to accelerate certain common computational 

kernels in DEVS-based simulations using the current Cell processor, the underlying software 

architecture is flexible enough for straightforward future expansion. For instance, the 

proposed technique does not assume a fixed number of SPE cores available on the processor, 

not only allowing for transparent portability to future versions of the Cell processor with 

potentially more on-chip processing elements, but also making it possible to implement user-

controlled core allocation and reservation mechanisms in order to meet specific simulation 

requirements. Furthermore, as no assumption is made about the inter-node communication 

and synchronization mechanisms, the MADS technique can be readily integrated with other 

cluster-based PDES techniques (both conservative and optimistic approaches) to achieve 

high-performance parallel simulation on hybrid super cluster systems (e.g., the Roadrunner 

supercomputer [Bar08]). 

• Minimal user knowledge about multicore execution environment. 

The MADS technique tries to hide the technical complexity of multicore programming 

from general users whenever possible. This objective is achieved, in part, by virtue of the 

built-in CD++ specification language, which allows for defining Cell-DEVS models using a 

set of descriptive local transition functions without the need for low-level programming 

[Wai02b]. This extra level of abstraction is especially valuable on the Cell processor as non-

expert users can focus on their modeling issues without being distracted by the details of 

multicore programming. Furthermore, the MADS technique provides the necessary support, 

in terms of memory control and kernel orchestration services, to assist the development of P-

DEVS models on the Cell processor, thus allowing a modeler to benefit from improved 

simulation performance with minimal knowledge about the multicore execution environment. 

5.2. Workload Analysis and Computational Kernels 

A computational kernel is a compute-intensive function (or a group of closely related 

functions) executed on a processing element in order to realize certain functionalities of an 
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application by producing the intended outputs for some given inputs. To leverage the 

computing power of the Cell processor, as discussed in Section 3.3, a software developer 

needs to isolate the major computational kernels in an application and port them to the SPE 

cores for efficient execution. In addition, the granularity of a computational kernel should be 

small enough to fit into the limited on-chip LS, but also large enough to perform sufficient 

computation in order to hide (or overlap) DMA transfer latency [Var07].  

However, extracting computational kernels from a general-purpose DEVS simulator is 

more difficult than doing so for a special-purpose application designed to solve a specific 

problem. For one thing, the workload of a DEVS-based simulation depends greatly on the 

simulated model, requiring the generalization of common workload characteristics for a wide 

variety of different models to be executed efficiently. Furthermore, the simulator is usually 

organized in terms of LPs, which may not be properly aligned with the boundaries of 

potential computational kernels. As a result, the workload analysis needs to take into account 

the varied computation tasks performed by different LPs in order to construct a whole picture 

that accurately reflects the real performance bottlenecks in the simulation system.  

To this end, the original CD++ simulation engine, which implements the event-

processing algorithms presented in Section 2.6.1 based on the flat LP structure, has been 

ported to the general-purpose PPE core of a Cell processor, resulting in a PPE-based 

sequential simulator called CD++/PPE. Two representative Cell-DEVS models are executed 

with the sequential simulator to generate simulation profiles, illustrating several typical 

workload characteristics exhibited in those models commonly found in the most demanding 

parallel DEVS simulations. 

5.2.1. Large-Scale Simulations over a Long Period of Virtual Time 

One type of models that calls for the use of PDES techniques can be found in the simulation 

of large-scale systems over a long period of virtual time, where a large number of LPs need 

to be synchronized repeatedly at many distinct virtual times, leading to a significant 

synchronization overhead that dominates the overall simulation performance. 

The stationary wildfire propagation model introduced in [Wai06] is one such example. 

To attain high-resolution simulation results, this model uses a large two-dimensional cell 

space (1024×1024) with over one million cells to simulate fire spreading scenarios over 50 
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virtual hours following the Rothermel method [Rot72] based on a set of predetermined 

environmental parameters (more details on the wildfire model can be found in Section 6.1.1). 

In order to pinpoint the performance bottlenecks in the simulation, this wildfire model is 

executed with CD++/PPE on an IBM BladeCenter QS22 server [IBM10b], which features 

3.2 GHz IBM PowerXCell 8i processors and 32 GB main memory. Table 1 gives the 

resulting simulation profile obtained on a PPE core, revealing the distribution of execution 

time among the major system components and between the different types of events 

processed by the LPs. 

Table 1. Wildfire Simulation Profile on PPE 

Components Event Type 
Simulators FC NC Bootstrap Other Overhead

(I) 3.06 0.90 ─ 
(*) 515.69 16.96 ─ 
(@) 8.13 55816.60 ─ 
(X) 11.94 0 ─ 
(Y) ─ 94.41 ─ 
(D) ─ 112215.00 3.25 

─ ─ 

Sum (s) 538.82 168143.87 3.25 181.57 134.58 
Total (s) 169002.10 

It is clear that the main performance bottleneck resides at the FC (shaded Sum entry), 

consuming more than 99% of the total execution time. Moreover, the message-wise 

decomposition shows that the FC spends most of the time on processing (@) and (D) events, 

during which the child Simulators are synchronized at each virtual time. A closer look at this 

FC synchronization task reveals that the exact sources of the performance bottleneck lie in 

the two synchronization functions: (1) function findImminents that is called during the 

processing of (@) events (line 2.3 in Figure 7); and (2) function findMinTime that is 

called during the processing of (D) events (line 6.6 in Figure 7).  

Table 2. FC Synchronization Task in the Wildfire Simulation 

Function Name No. of Invocations Accumulated Execution Time (s) 
findImminents 535,549 55804.30 
findMinTime 1,071,099 112189.00 

As shown in Table 2, each synchronization function occupies 99.98% of the execution 

time spent on processing the corresponding type of events at the FC. Together, they 



94 

constitute the most dominant performance bottleneck (99.4% of the total execution time), not 

only because these two functions are invoked frequently in long-running simulations, but 

also because a large amount of timing data need to be processed during each function 

invocation in order to synchronize all of the child Simulators in large-scale simulations. 

Table 1 also shows that a secondary bottleneck exists at the Simulators, consuming 

0.32% of the total execution time. A major component of this Simulator event-processing 

task is the execution of (*) events, where the local transition functions are evaluated at the 

cells. The significance of this bottleneck depends on the complexity of the model behavior. It 

is relatively minor in this example because the wildfire model uses simplified transition rules 

to approximate the real system. More complex rules would be required to obtain more 

precise approximation, leading to higher computational cost at the Simulators. 

Table 3 gives the event counts observed in the wildfire simulation, which includes over 

one million simulation phases (i.e., an initialization phase, 535549 collect phases, and 

535549 transition phases), as indicated by the numbers of phase-changing events (shaded). 

Table 3. Event Counts in Wildfire Simulation 

LPs Event Type Simulators FC NC 
(I) 1,048,576 1 ─ 
(*) 10,285,266 535,549 ─ 
(@) 2,076,507 535,549 ─ 
(X) 18,666,212 0 ─ 
(Y) ─ 2,076,507 ─ 
(D) ─ 13,410,349 1,071,099 

Sum 32,076,561 16,557,955 1,071,099 
Total 49,705,615 

Out of the over 49 million events executed in the simulation, the phase-changing events 

constitute only 4.31% of the total event population, while all the others are simultaneous 

events executed within different simulation phases at distinct virtual times, conforming to the 

computational property of the DEVS-based simulation process (Property 3 in Section 2.6.3).  

5.2.2. Highly-Active Simulation of Complex Model Behavior 

Another type of workload is exemplified in highly-active systems with complex model 

behavior, where the simulation performance is determined by the intensive computation 
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required for the LPs to execute user-defined model logic in the P-DEVS state transition 

functions (evaluation of local transition functions in the case of Cell-DEVS models). 

To illustrate this kind of workload characteristic, a watershed model, previously 

discussed in [Zei97] and later redefined as a Cell-DEVS model in [Wai06], is used as an 

example for performance bottleneck analysis. This model simulates environmental influence 

on the hydrological dynamics of water accumulation over 30 virtual minutes using a three-

dimensional cell space (320×320×2). More details on the watershed model are given in 

Section 6.1.2. Table 4 shows the simulation profile of the watershed model executed with the 

CD++/PPE simulator on a PPE core. 

Table 4. Watershed Simulation Profile on PPE 

Components Event Type 
Simulators FC NC Bootstrap Other Overhead

(I) 0.65 0.15 ─ 
(*) 78082.60 75.27 ─ 
(@) 95.09 72.16 ─ 
(X) 122.58 0 ─ 
(Y) ─ 905.40 ─ 
(D) ─ 16.42 0.002 

─ ─ 

Sum (s) 78300.92 1069.40 0.002 25.22 488.12 
Total (s) 79883.66 

As expected, the Simulator event-processing task becomes the primary bottleneck 

(shaded Sum entry), representing approximately 98% of the total execution time. It is evident, 

in the message-wise decomposition, that the Simulators need to perform compute-intensive 

state transitions during the processing of (*) events.  

Table 5. FC Synchronization Task in the Watershed Simulation  

Function Name No. of Invocations Accumulated Execution Time (s) 
findImminents 331 0.74 
findMinTime 663 1.60 

Unlike the wildfire simulation, the FC synchronization task incurs only a negligible 

computational cost in the watershed simulation (as shown in Table 5), for two reasons. First, 

the watershed model uses a much smaller cell space, which is about 20% of that used in the 

wildfire model, thus greatly reducing the amount of timing data that need to be processed in 

the synchronization functions. Secondly, the watershed model consists of fewer simulation 
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phases over a shorter period of virtual time, effectively reducing the number of invocations 

of the synchronization functions. 

Table 6 gives the corresponding event counts in the watershed simulation. Although the 

simulation consists of only 663 phases, the overall event population is 6.8 times larger than 

what is observed in the wildfire simulation, demonstrating a much higher level of activity 

with an even larger proportion of simultaneous events exchanged between the LPs. 

Table 6. Event Counts in Watershed Simulation 

LPs Event Type 
Simulators FC NC 

(I) 204,800 1 ─ 
(*) 33,996,800 331 ─ 
(@) 33,527,325 331 ─ 
(X) 167,723,421 0 ─ 
(Y) ─ 33,527,325 ─ 
(D) ─ 67,728,925 663 

Sum 235,452,346 101,256,913 663 
Total 339,221,007 

The FC synchronization task and the Simulator event-processing task, referred to as the 

FC Synchronization Kernel (FSK) and the Simulator Event-processing Kernel (SEK) 

respectively thereafter, represent the two common performance bottlenecks in many DEVS-

based simulations. In the wildfire and watershed simulations, the performance is dominated 

overwhelmingly by just one kernel. In general, however, the relative weights of the 

computational kernels can vary in different models and during a single simulation. To 

achieve high-performance parallel DEVS simulation on the Cell processor, the following 

sections propose the optimization and parallelization algorithms for each of these kernels. 

5.3. FC Synchronization Kernel 

The FSK consists of the two synchronization functions, which are invoked regularly by the 

FC at specific points throughout a simulation. As introduced in Section 2.6.1, these two 

functions perform computation based on the Simulator timing data contained in a C++ STL 

map called timesOfNextStateChange (<SimulatorID, absoluteNextStateChangeTime>). The 

computation is data-intensive in nature when a large number of Simulators are involved in a 

simulation. Moreover, as the timing data may not be allocated contiguously in the main 
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memory (depending on the internal implementation of the STL map structure), the 

computation is also considered as memory-bound, which could result in high cache miss rates 

on a hardware-managed cache memory architecture (e.g., the one used by the PPE). Hence, 

improving data locality is an important factor in the development of the FSK algorithms. 

5.3.1. Optimizing FC Synchronization Task 

From the phase-oriented view of the simulation process, as discussed in Section 2.6.2, 

function findImminents is called at the beginning of each collect phase (when a (@) 

event is received from the NC), whereas function findMinTime is invoked at the end of 

each collect and transition phases (when the last (D) event is returned from the child 

Simulators). A closer examination, however, shows that it is actually unnecessary to compute 

the next minimum state change time among the Simulators at the end of collect phases since 

these transitory phases do not advance virtual time at all (i.e., each collect phase must be 

followed by an ensuing transition phase at the same virtual time, as required by the P-DEVS 

formalism). Therefore, it is safe to eliminate the redundant invocations of function 

findMinTime in all of the collect phases. 

This seemly trivial and straightforward optimization was not considered in the original 

FC event-processing algorithms mainly because these algorithms, developed with a pure 

event-oriented mindset that focuses on the processing of individual events, overlook the 

intrinsic correlation between events executed at different points in a simulation. In other 

words, the FC is memoryless in terms of event execution. Consequently, when a (D) event 

arrives, the FC cannot determine whether this is the result of a (@) or (*) event previously 

sent to a Simulator. To ensure correct synchronization, the FC has to invoke function 

findMinTime for every last (D) event received from the Simulators, even though it 

suffices to do so only if the (D) event is a logical consequence of a previous (*) event. 

To implement this optimization in CD++/PPE, a flag called currentPhase is defined in 

the FC to keep track of the type of the current simulation phase, essentially making the FC a 

context-aware LP. This flag is reset to 0, 1, or 2 when a (@), (I), or (*) event is received 

from the NC respectively; and function findMinTime is invoked only if the flag has a 

nonzero value during the processing of (D) events at the FC (line 6.6 in Figure 7). Note that 

this optimization can also be applied in the original sequential CD++ to enhance performance. 
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The performance gain is immediate in large-scale and long-running simulations. In the 

updated wildfire simulation profile given in Table 7, for example, the time required for 

processing (D) events at the FC is decreased by 50.5% as the frequency of findMinTime 

invocations is reduced roughly by half. As a result, the overall simulation performance is 

improved by 34% accordingly. 

Table 7. Wildfire Simulation Profile on PPE (Synchronization Optimized) 

Components Event Type 
Simulators FC NC Bootstrap Other Overhead

(I) 3.07 0.91 ─ 
(*) 497.40 14.38 ─ 
(@) 7.66 55044.50 ─ 
(X) 11.79 0 ─ 
(Y) ─ 93.52 ─ 
(D) ─ 55526.50 2.32 

─ ─ 

Sum (s) 519.92 110679.81 2.32 180.65 121.89 
Total (s) 111504.59 

Depending on the relative significance of the FSK, a certain degree of performance 

gain can be obtained in highly-active simulations of complex model behavior as well. In the 

watershed simulation, however, this optimization does not lead to a noticeable improvement 

since the simulation performance is determined by the SEK. 

5.3.2. Flattening Simulator Timing Data 

Before parallelizing the FSK on the Cell processor, the Simulator timing data need to be 

reorganized in the main memory for several reasons. First, as mentioned earlier in Section 

5.1, efficient DMA transfer requires proper address alignment and data granularity in both 

memory domains (i.e., main memory and on-chip LS), which cannot be guaranteed by the 

standard C++ STL library. Secondly, the opacity of the STL map implementation not only 

makes it difficult to enhance data locality in the main memory, but also poses a challenge in 

partitioning the timing data across different SPE cores on the Cell processor.  

In order to address the above issues, a process ID allocation scheme is used to allocate 

positive IDs for the Simulators (and their associated atomic models) continuously from 0 to 

(N-1), in which N is the total number of Simulators created in a simulation. On the other 

hand, the NC and the FC (along with the coupled models) use negative IDs. Therefore, the 
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FC can use a simple integer array, referred to as the Time Array (TA), to hold the timing 

data for all child Simulators, where the array indexes serve as the Simulator IDs. In addition, 

the FC also creates an integer Imminent ID Array (IA) to contain the IDs of imminent 

Simulators obtained in function findImminents during each collect phase (i.e., IA is used 

as an output buffer). As a result, the original STL map structure, timesOfNextStateChange, is 

replaced by a flat array-based data layout, which is illustrated in Figure 22. 

 
Figure 22. A Flat Data Layout for the FSK 

Both TA and IA are partitioned into m chunks ([C0…Cm]) as evenly as possible, where 

m is the number of SPEs allocated in a simulation to perform the FC synchronization task. 

Each chunk of data is aligned on a 128-byte boundary in the main memory for efficient 

DMA transfer to/from the LS of a specific SPE at runtime. To ensure proper address 

alignment, data padding may be applied to each IA chunk as well as to the last TA chunk, if 

necessary. Since only a fraction of the Simulators are imminent at any virtual time, the 

imminent IDs stored in an IA chunk (i.e., those obtained in findImminents based on the 

timing data in the corresponding TA chunk) is terminated by a -1 so that the FC can retrieve 

them efficiently without the need for a full traversal of the whole array.  

As the TA indexes are used implicitly as Simulator IDs, this flat data layout also 

reduces the amount of data that need to be transferred across memory domains when 

executing the FSK on the SPEs. In addition, the exposure of the timing data in TA and the 

introduction of IA greatly facilitate the parallelization of the FSK following a data-flow 

oriented approach, as will be discussed in the next section. Thanks to the flat LP structure, 
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the Simulator timing data can be concentrated in a single array at the FC, rather than 

scattered around at many intermediate Coordinators in the LP hierarchy, relieving the FSK 

parallelization effort as well. Moreover, the simulation performance is expected to benefit 

from the improved data locality with reduced memory contention and cache miss penalty 

even when the FSK is executed on the PPE alone. 

5.3.3. Processing Simulator Timing Data on SPE 

The Simulator timing data are updated by the FC when the (D) events are received from the 

Simulators (line 6.3 in Figure 7), reflecting the next state change times scheduled 

individually at the child Simulators. In other words, these timing data are mutually 

independent, making it possible to dispatch different chunks of data to different SPEs for 

concurrent processing.  

In a typical large-scale simulation that involves many Simulators, however, each TA 

chunk can contain a large amount of virtual time values, especially when the number of SPEs 

allocated for FSK execution is small. Considering the limited size of LS, it is necessary to 

further divide the timing data stored in a TA chunk into a sequence of blocks, each with a 

predetermined regular size. This block size can be adjusted at compile time, if necessary, to 

adapt to different model conditions. However, better DMA transfer performance can be 

expected when the block size is set to be an even multiple of 128 bytes in the range of from 

512 bytes up to a maximum of 16KB. Similarly, the corresponding IA chunk is also divided 

into the same number of blocks with the same size as applied to the TA chunk. 

On the SPE side, four data buffers are allocated in the LS: a pair of input buffers for 

reading timing data from a given TA chunk, and a pair of output buffers for writing 

imminent Simulator IDs to the corresponding IA chunk. Each LS data buffer has a size that 

is identical to the size of a TA block. Hence, a chosen TA block size determines the total 

amount of data that will be contained in an SPE’s LS at any given time. For example, for a 

16KB block size (which is sufficient to contain 4096 virtual time values or imminent IDs), a 

maximum of 64KB memory will be occupied by the data buffers in the LS. Using a larger 

block size not only allows for more efficient DMA transfers as more data can be transferred 

in one stroke, but also increases the computational granularity on the SPEs, making it more 

likely to overlap computation with concurrent memory I/O operations. 
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Figure 23. Parallel Data Processing on the SPEs 

Figure 23 illustrates the parallelized data processing across multiple SPEs, where each 

SPE streams in and out the data in the corresponding TA and IA chunks using double-

buffered DMA transfers. The two synchronization functions are decoupled from the FC and 

vectorized using SPE SIMD intrinsics to process data that have been made available in the 

local data buffers on each SPE. 

 
Figure 24. Function findMinTime Definition 
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Given in Figure 24, function findMinTime uses a 128-bit, 4-way integer Min Vector 

to scan the Simulator timing data that have been prefetched from the TA chunk into the 

current local input buffer (line 7 to 10). When the full chunk of data is processed, the Min 

Vector contains the four minimum values obtained in the 4 ways. These values are then 

compared horizontally to get the chunk-wise minimum (line 12), which is then sent to the 

PPE code via the outbound mailbox channel (line 13). 

 
Figure 25. Function findImminents Definition 

As shown in Figure 25, function findImminents replicates the PPE-determined 

global minimum state change time in the Min Vector (line 3). It uses another 128-bit, 4-way 

Index Vector to keep track of the 4 Simulator IDs corresponding to the entries in the current 
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input buffer, where the starting index of the TA chunk is given by the PPE code and stored in 

a variable called baseId (line 4). The imminent Simulator IDs are sifted through the Index 

Vector by comparing the global minimums in the Min Vector with the values in the current 

input buffer (line 10 to 15). At the end of the function, a status value is sent back to the PPE 

code through the outbound mailbox channel (line 23), indicating that the imminent IDs are 

made available in the IA chunk. 

Though not shown in the above algorithms, by using multiple Min and Index Vectors 

as simultaneous logical threads, the compute-intensive loops (line 7 to 10 in Figure 24 and 

line 10 to 15 in Figure 25) can be unrolled to further speed up data processing on the SPEs. 

For example, using two pairs of Min and Index Vectors will allow 256-bit, 8-way SIMD 

operations to be performed sequentially during each iteration, with reduced looping overhead. 

5.3.4. FSK Orchestration Algorithms 

During simulation bootstrap, a control block is used to pass the FSK parameters (e.g., the 

starting addresses of the TA and IA chunks, the starting index of the TA chunk, and the TA 

chunk and block sizes) to each SPE thread that hosts an instance of the FSK. Throughout a 

simulation, the FSKs are invoked by the PPE code in a RPC (Remote Procedure Call) 

fashion. In addition to the two synchronization functions, a termination function called 

terminateFSK is defined to exit FSK execution on an SPE thread by the end of a 

simulation, as shown in Figure 26 (line 1.1 to 1.3).  

 
Figure 26. FSK Main Loop and Function terminateFSK 
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Each function is associated with an integer FSK function ID: 0 for findMinTime, 1 

for findImminents, and 2 for terminateFSK. These functions are managed with a 

function pointer array, referred to as FSKFunctions, so that they can be invoked directly 

using the received function ID as array index (line 2.6), without resorting to branching 

instructions on the SPEs.  

 
Figure 27. In-Place Invocation of Function findMinTime at the FC 

On the PPE side, the FSK orchestration algorithm is quite straightforward. To invoke 

function findMinTime, as shown in Figure 27, the FC sends a mailbox message with a 

value of 0 to all of the SPE threads that host the FSKs when the last (D) event is received at 

the end of each transition phase (refer to line 6.6 in Figure 7). The FC then waits for the 

computation results to be returned from the FSKs. When all of the chunk-wise minimums are 

finally available, the FC merges them into a global minimum next state change time (line 5), 

which is then sent to the NC via a (D) event.  

Two points need to be clarified here. First, function findMinTime is invoked in 

place by the FC in the sense that the FC is blocked until all of the chunk-wise minimums are 

returned from the SPE threads (line 3). Secondly, as will be explained shortly, the returned 

chunk-wise minimums are recorded in the main memory (line 4) in order to enhance the 

computational efficiency of function findImminents in the next round. 

 
Figure 28. In-Advance Invocation of Function findImminents at the NC 

Given in Figure 28, function findImminents is no longer called by the FC. Instead, 

it is invoked in advance by the NC when the simulation is about to be advanced to the next 

virtual time (refer to line 3.25 in Figure 8). Hence, when the FC needs to retrieve the 
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imminent IDs in the collect phase of the new virtual time, the FSKs have already executed 

for a while, overlapping the computation on the PPE and on the SPEs. Furthermore, an SPE 

thread is involved in the computation only if it actually found the current global minimum 

(line 2). As imminent Simulator IDs may not exist in some of the chunks at any virtual time, 

this approach would reduce the number of concurrent SPE threads required for the 

findImminents computation, with decreased memory contention for DMA transfer and 

enhanced FSK scalability. 

 
Figure 29. Retrieving Imminent IDs at the FC 

As shown in Figure 29, for each SPE thread that has been invoked by the NC, the FC 

waits for a status message from the outbound mailbox channel (line 3), and then retrieves the 

imminent IDs from the corresponding IA chunk (line 4). 

 
Figure 30. Terminating FSKs at the NC 

The NC is responsible for terminating the SPE threads at the end of a simulation when 

the next simulation time goes beyond the user-specified stop time, as shown in Figure 30. 

5.4. Simulator Event-Processing Kernel 

The SEK includes the Simulator event-processing algorithms for (I), (@) and (*) events as 

well as the P-DEVS state transition functions defined in the atomic models (refer to Figure 6 

in Section 2.6.1). Note that the SEK does not include the Simulator algorithm for processing 

(X) events for reasons that will be explained in Section 5.4.4. During each simulation phase, 

the SEK processes a set of input events scheduled by the FC based on the current states of 

the active Simulators (and their associated atomic models), and returns a set of output events 

back to the FC. The input/output events and the states are handled independently between 

individual Simulators. However, the event execution at the FC and the Simulators are 
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interrelated due to the event-scheduling relationship. In contrast to the FSK, which performs 

regular computation on a large amount of independent timing data, the SEK performs highly 

irregular, compute-intensive computation with a random memory access pattern, making the 

parallelization effort especially challenging on the SPE cores. 

5.4.1. Event Level Parallelism 

Unlike most LP-oriented PDES techniques, the parallelization of the SEK requires direct 

exploitation of the fine-grained event-level parallelism that is inherent in the DEVS-based 

simulation process. Furthermore, the event-level parallelism needs to be exposed in a way 

that allows for a data-flow oriented parallelization strategy. To illustrate such event 

parallelism, Figure 31 shows a step-by-step view of event processing in different types of 

simulation phases based on the flat LP structure.  

These event-processing steps are briefly explained as follows. During the initialization 

phase at virtual time 0, the FC forwards the (I) event received from the NC to each of the N 

Simulators created in a simulation. As a result, each Simulator returns a (D) event to the FC, 

which in turn sends a (D) event back to the NC. A similar pattern can be seen in a transition 

phase at virtual time t, except that in this case the FC sends (*) events only to K active 

Simulators (K ≤ N) whose associated atomic models have a state transition (δint, δext, or δcon) 

scheduled at the current virtual time. During a collect phase at virtual time t, the model 

outputs, encoded in (Y) events, are emitted from M imminent Simulators (M ≤ N) whose 

associated atomic models execute their output functions (λ) in response to the (@) events 

received from the FC. Based on model coupling information, the FC routes these (Y) events 

to their destination Simulators as (X) events, which will be subsequently consumed as inputs 

to the receiving atomic models. Likewise, the FC also sends a (D) event back to the NC after 

processing all of the (D) events received from the Simulators. 

Borrowing terminology from the parallel computing community, the fine-grained 

event-level parallelism in a DEVS-based simulation can be classified into two categories, 

which are referred to as event-embarrassing parallelism and event-streaming parallelism 

respectively. These two forms of event-level parallelism can be exploited in a way that 

avoids causality errors at any virtual time, as described below. 
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Figure 31. Event Level Parallelism in DEVS-based Simulation Process 
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• Event-embarrassing parallelism. 

This type of event-level parallelism exists between the independent events executed 

within each step at the FC and the Simulators (shaded events in Figure 31). Since there is 

neither causal nor data dependency between them, these events can be executed concurrently 

in an arbitrary order. 

• Event-streaming parallelism. 

This type of event-level parallelism exists between the causally-dependent events 

executed in consecutive steps (i.e., between the FC and the Simulators). As the output events 

from the preceding step serve as the inputs to the step that follows, these events can be 

executed concurrently in a pipelined manner. 

At the first and last steps of a simulation phase, the NC and the FC exchange phase-

changing events, providing the natural fork and join points for simulation synchronization. In 

other words, the simulation can be viewed as being barrier-synchronized at the end of each 

simulation phase. Thanks to the flat LP structure, the number of synchronization points is 

minimized, exposing the maximum degree of event-level parallelism in the simulation 

process. Note that, according to the P-DEVS formalism, the simultaneous (X) events 

received by a Simulator in a collect phase (in step 4) must be consumed as a whole by the 

Simulator in the ensuing transition phase (in step 2) [Cho94]. 

5.4.2. LP Virtualization 

To parallelize the SEK on the Cell processor, the Simulators (and their associated atomic 

models) need to be mapped to the SPE cores for concurrent execution. As there are usually 

many more Simulators than the number of available SPEs in a typical large-scale simulation, 

several important issues must be considered when developing a partitioning scheme for the 

Simulators. 

First of all, the small size of the on-chip LS imposes a tight upper-bound on the total 

number of Simulators (and their associated atomic models) that can be hosted simultaneously 

on an SPE. Secondly, as discussed in Section 3.3.1, an SPE can execute only one thread at a 

time; and SPE thread context switch is both time-consuming and resource-demanding. Hence, 

it is impractical to swap in and out Simulators (as distinct SPE threads) between the main 
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memory and the LS at runtime without incurring an excessive operational overhead. Thirdly, 

in a typical simulation, only a fraction of the Simulators are actually active at any virtual 

time. Therefore, an ideal partitioning scheme should be able to map only those active 

Simulators to the available SPEs during execution. Finally, to enhance simulation 

performance, the partitioning scheme should also be flexible enough to facilitate dynamic 

load balancing between the SPEs. 

In view of the common practice of Cell programming, where the SPEs are usually 

assigned with reusable tasks operating on a stream of data, this research addresses the above-

mentioned issues through the concept of LP virtualization, by which the Simulators (and 

their associated atomic models) are turned into virtual LPs that share the functionalities 

provided by a limited group of SPE threads, and the mapping of active Simulators to the SPE 

threads is determined dynamically at each virtual time throughout a simulation.  

To this end, the state data originally encapsulated in the Simulator-atomic pairs of 

objects are separated from the event-processing and model logic. While the state data are 

maintained in the main memory, the Simulator event-processing algorithms and the model 

state transition functions are wrapped into the SEK and executed by the SPE threads. During 

a simulation, the state data of an active Simulator is matched to a specific SPE thread using a 

PPE-based SEK job-scheduling algorithm, as will be discussed in Section 5.4.6. On the other 

hand, the PPE is used to host the remaining concrete LPs such as the NC and the FC. 

The following discussion assumes that all of the Simulators (and their associated 

atomic models) created in a simulation are executed on the SPEs. However, in some cases, 

not all of the Simulators are suitable for porting to these co-processors (i.e., some of the 

Simulators might still need to be implemented as concrete LPs on the PPE), a topic that will 

be discussed further in Section 5.6. 

5.4.3. Virtual LP State Management 

In Section 5.3.2, a process ID allocation scheme has been introduced to align the Simulator 

IDs so that the timing data can be managed conveniently in flat arrays. As will be discussed 

shortly in this and the next sections, it turns out that this process ID allocation scheme also 

facilitates the management of state and event data for the virtual LPs.  
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In the original CD++ environment, the Simulators and atomic models are created 

individually at random memory locations. In order to transfer the state data of virtual LPs 

across memory domains, the state variables previously defined in a Simulator-atomic pair of 

objects are repacked into a C struct, referred to as virtualLPState, which has an adjustable 

size of 512 bytes. Note that the size of virtualLPState needs to be big enough to contain the 

state data of any Simulator-atomic pair of objects, while at the same time, meeting the 

requirements of peak DMA transfer performance. 

The state data of all of the virtual LPs are then stored in a flat 128-byte aligned array, 

referred to as the state buffer, in the main memory, where the array indexes serve as the IDs 

of the virtual Simulators. On each SPE, a pair of 128-byte aligned local state caches is 

allocated in the LS to hold the state data of at most two active Simulators at any time. Figure 

32 illustrates the resulting layout of state data in both memory domains. 

 
Figure 32. Virtual Simulator State Management 

In addition to enhanced data locality, this state management scheme circumvents the 

hardware limitation of small LS size, while hiding memory latency by allowing for 

prefetching the state data of the next active Simulator concurrently with event execution for 

the current one. 

5.4.4. Decentralized Event Management 

For efficient DMA transfer of input and output events for the virtual LPs, the raw data 

included in all types of CD++ event objects are encoded in a uniform-sized C struct of 32 
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bytes; and a pair of flat 128-byte aligned arrays, referred to as the current event buffer and 

the backup event buffer respectively, is allocated in the main memory to exchange the 

simultaneous events passed between the FC and the virtual Simulators during a simulation 

phase. Each event buffer entry has an adjustable size of 1KB to hold up to 32 events at a time 

for a dedicated virtual Simulator.  

To allow for double-buffered DMA transfer of event data, a pair of 128-byte aligned 

local event caches is allocated in the LS of an SPE to contain the input/output events for the 

current and the next active Simulators. Each local event cache has the same size as an event 

buffer entry in the main memory. 

At any step of a simulation phase, the FC and a Simulator may exchange exactly one 

control message (either an (I), or (@), or (*) event) and optionally a list of content messages 

(either (X) or (Y) events). Hence, the first slot in each event buffer entry is reserved for 

passing the control messages, whereas the following slots are used for passing the content 

messages, if any. This convention allows the FC and the Simulators to immediately separate 

the control event from the other content events, without even checking the actual event types 

during event processing. 

 
Figure 33. Virtual Simulator Event Management 

As shown in Figure 33, the original FEL is used to send phase-changing events 

between the FC and the NC only at the beginning and the end of each simulation phase. 
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Together, the FEL and the event buffer entries form a network of bidirectional 

communication channels with a star topology centered at the FC. 

During a collect phase, the FC translates (Y) events received from the source 

Simulators into (X) events that will be subsequently processed by the destination Simulators 

(refer to line 4.5 to 4.9 in Figure 7). Instead of putting these (X) events into the entries of the 

current event buffer, the FC writes them into the corresponding entries of the backup event 

buffer. Hence, using a pair of event buffers allows the FC to process the (Y) events, received 

from some of the virtual Simulators, on the PPE concurrently with event execution of the 

other virtual Simulators on the SPEs without additional synchronization, facilitating the 

exploitation of event-streaming parallelism. After writing the (*) events as well as any 

additional (X) events into the backup event buffer entries at the beginning of the ensuing 

transition phase (refer to line 5.3 to 5.13 in Figure 7), the FC resets an integer flag, referred 

to as eventBufferIndex (either 0 or 1), to swap the two event buffers. On the other hand, the 

virtual Simulators always work on the current event buffer as determined by the FC.  

This decentralized event management scheme has several major advantages. First, 

multiple input/output events of a Simulator are stored in the same event buffer entry, 

allowing them to be transferred efficiently in a single DMA operation. Secondly, all of the 

simultaneous events are removed from the FEL, reducing event queue operational overhead. 

Thirdly, the simultaneous events are read and written directly in the two event buffers 

without the need for dynamic memory allocation and deallocation, further decreasing the 

operational cost. Fourthly, the Simulators no longer need to process (X) events during collect 

phases, reducing the overhead of DMA operations required for transferring event data and 

simplifying the SEK algorithms. As the (X) and (*) events targeting a Simulator are packed 

together in the same event buffer entry by the FC, they can be consumed as a whole in the 

transition phases, satisfying the P-DEVS event-processing requirement as mentioned in 

Section 5.4.1. Finally, the hardware-controlled PPE cache memory would also be better 

utilized because of increased event data locality in the main memory. 

5.4.5. Evaluating Local Transition Functions on SPE 

As mentioned earlier, the behavior of Cell-DEVS atomic models is specified using a set of 

local transition functions coded in the CD++ specification language [Wai02b]. Each local 
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transition function consists of several state transition rules, which are evaluated sequentially 

by active cells at each virtual time to determine their future states. A state transition rule is 

composed of three expressions separated by spaces, defining a postcondition, a delay, and a 

precondition for the rule. During evaluation, a state transition rule is fired if its precondition 

is found to be true; and the rule’s postcondition defines the cell’s next state, which will be 

sent to the neighboring cells after a period calculated from the delay expression. In the 

original CD++ simulator, these state transition rules are represented as syntax trees (one 

syntax tree for each rule expression), which are loaded into system main memory during 

simulation bootstrap, and the evaluation is performed recursively at runtime [Wai02b].  

However, recursive computation on the SPEs is problematic due to the very limited 

size of runtime call stack and the lack of stack overflow protection on these cores [IBM09]. 

Furthermore, the syntax trees are not well-suited for efficient DMA transfer on the Cell 

processor. To solve these problems, the syntax trees derived from the state transition rules of 

each local transition function are converted into a sequence of floating-point values 

organized in postfix format and concatenated in a flat 128-byte aligned array called the rule 

buffer in the main memory, as shown in Figure 34. A packed state transition rule has four 

components, including a precondition tree (CT), a delay tree (DT), a postcondition tree 

(PT), and a rule header that gives the numbers of syntax nodes included in the syntax trees.  

 
Figure 34. Evaluation of a Local Transition Function 

A pair of 128-byte aligned local rule caches is allocated in the LS of an SPE, where 

each local rule cache has a size that is sufficient to contain any one of the rules packed in a 

main memory rule buffer. Double-buffered DMA transfer is used to fetch the next rule from 
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a rule buffer while an SPE thread is busy evaluating the current one. Note that, unlike the 

state and event data, the transition rules are read-only in a simulation, allowing them to be 

accessed simultaneously by multiple SPE threads without the need for synchronization. 

To pack the syntax trees into a rule buffer, a rule-packing scheme is used to index the 

various types of syntax nodes supported in the CD++ specification language using an 

operation type starting from 0. Each node in a syntax tree is represented by two values: an 

integer operation type and an optional floating-point operand value (an operand value is 

required to represent certain types of syntax nodes, while in the other cases, it is used as a 

placeholder to ensure a uniform size for all types of syntax nodes). Table 8 lists the 

representation of some of the CD++ syntax nodes. 

Table 8. CD++ Syntax Node Representation (Partial) 

Syntax Node Op. Type Representation Description 

Constant 0 <0, constantValue> A constant value 
CellVar 1 <1, neighborIndex> Retrieve the value of a neighboring cell 

StateCount 2 <2, –> Count the neighboring cells with a given value
RealEqual 7 <7, –> Compare two given operands (true if equal) 
BoolAnd 13 <13, –> Boolean AND of two given operands 
BoolOr 14 <14, –> Boolean OR of two given operands 

… … … … 

 
Figure 35. Transforming the Syntax Trees of a State Transition Rule 
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Using a state transition rule borrowed from the classical Life Game model [Gar70], as 

an example, Figure 35 illustrates this rule-packing scheme, which transforms the syntax trees 

of a rule into a flat data layout that is suitable for DMA transfer and computation on the SPEs. 

Note that the CT is packed before the PT and DT as the precondition will be evaluated first. 

On the SPEs, the original recursive rule evaluation algorithm is replaced by an iterative 

one that scans a local rule cache one syntax node at a time. Moreover, by virtue of two 

pointers (shown as currentNode and stackTop in Figure 34), the local rule cache itself is used 

as a software-managed call stack to hold the intermediate operands (i.e., the stack is 

overlapped with the syntax nodes that have already been evaluated in the local rule cache), 

allowing the rules to be evaluated in place without burdening the SPE runtime call stack. 

Figure 36 shows a skeleton of the SEK rule evaluation algorithm. For each type of 

syntax nodes, an evaluation function is defined on the SPEs. To reduce branching 

instructions during rule evaluation, these functions are called directly through a function 

pointer array, referred to as evalFunctions, which uses the operation types of the syntax 

nodes as array indexes. 

These evaluation functions are defined in a similar way. Each of them performs the 

required operation based on operands retrieved from either the syntax node itself (e.g., line 

1.2), or the state data available in the current local state cache (e.g., line 2.2), or the 

intermediate operands on top of the stack in the current local rule cache. The computation 

result is then pushed back into the stack at stackTop, growing and shrinking the software-

managed call stack accordingly. 

New types of syntax nodes can also be easily added, if desired, to meet the 

requirements of specific Cell-DEVS models. In this case, a modeler only needs to pack the 

new syntax nodes following the rule-packing scheme described earlier, and implement the 

corresponding evaluation functions (with new entries added to evalFunctions) on the SPEs. 

When a local transition function is invoked in a Cell-DEVS atomic model, the next rule 

to be evaluated is prefetched into the next local rule cache (line 3.5), while the syntax trees 

available in the current local rule cache are executed (line 3.6 to 3.25). Once a valid rule is 

found (line 3.11), the cell’s new state and delay values are computed (line 3.17 and 3.23) and 

the rule evaluation is terminated (line 3.24). 
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Figure 36. Double-Buffered Rule Evaluation on the SPEs 

5.4.6. Processing SEK Jobs on SPE 

During a simulation phase, an SEK job executes a set of events scheduled for an active 

Simulator that has been mapped to an SPE thread. The execution assumes that the event and 

state data of the active Simulator have already been made available in the current local event 
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cache and local state cache respectively in the LS, whereas memory control and SEK 

orchestration are considered as separate supporting services, which will be presented in the 

next section. Decoupling SEK job execution from these services allows a modeler to 

implement the output (λ) and state transition functions (δint, δext, and δcon) for P-DEVS atomic 

models on the SPEs in a way that is similar to what they do in the original sequential CD++ 

simulator (SIMD vectorization is desired, but not absolutely required, in the implementation 

of these P-DEVS functions), without having to cope with the details of DMA transfer and 

thread scheduling in the multicore environment, thus reducing the complexity of software 

development and promoting developer productivity with reduced M&S cost.  

The SEK job-processing algorithms are encapsulated in three job handlers, referred to 

as initJobHandler, collJobHandler, and transJobHandler, which are 

invoked during the initialization, collect, and transition phases accordingly. Figure 37 gives a 

skeleton of the SEK job-processing algorithms. 

In essence, they follow the definition of the Simulator event-processing algorithms for 

(I), (@), and (*) events respectively (refer to Figure 6 in Section 2.6.1), with a few 

exceptions. First, these SEK job-processing algorithms are coarse-grained because, as 

mentioned in Section 5.4.4, the local event cache may contain multiple input events (a 

control message and a list of content messages) scheduled for a Simulator. All of these input 

events are processed with a single invocation of the respective job handler. Secondly, the 

generated output events and updated state variables are directly written in the current local 

event and state caches, which will then be transferred back to the corresponding entries in the 

current event and state buffers in the main memory. 

Note that, in the case of Cell-DEVS models, the P-DEVS functions have already been 

implemented in the SEK job-processing algorithms. Specifically, the SEK rule evaluation 

algorithm, as shown in Figure 36, is triggered in transJobHandler when the external 

(δext) and confluent (δcon) state transitions are performed at the cells (line 3.5 and 3.10). 

Besides, SPE SIMD intrinsics are also used to parallelize the handling of multiple content 

messages in the local event cache for Cell-DEVS models. 
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Figure 37. SEK Job-Processing Algorithms 

On the PPE side, the IDs of the active Simulators are used as the SEK job IDs, which 

are scheduled by the FC in each simulation phase through a set of pending job queues (one 

for each SPE thread that hosts an instance of the SEK). Each job queue is a 128-byte aligned 

integer array containing the pending job IDs for an SEK, as depicted in Figure 38. A pair of 

local job caches is allocated in an SPE’s LS so that the job IDs can be transferred across 
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memory domains in chunks using double-buffered DMA. Each chunk has an adjustable size 

of 32 job IDs (128 byte in total). An SEK processes the pending job IDs available in the 

current local job cache sequentially. These job IDs are used as offsets to calculate the 

addresses of the event and state buffer entries in the main memory when accessing the data 

of active Simulators from the SPEs. 

 
Figure 38. Pending Job Queue for an SEK 

At the beginning of a simulation phase, the FC first executes the phase-changing events 

in the FEL, and then directly writes the generated events into the event buffer entries based 

on the IDs of the receiving Simulators. These Simulator IDs are inserted into the pending job 

queues under a certain job-scheduling policy, thus mapping the active Simulators to the 

SEKs. Since the SEK jobs executed in a simulation phase are of the same type with similar 

computational intensity, simple yet effective scheduling policies (e.g., round-robin, shortest-

queue-first, or weighted round-robin) can be used to achieve fine-grained dynamic load-

balancing between the SPE threads. 

5.4.7. An SEK Memory Control and Notification Algorithm 

Several key services must be provided on the SPEs to support the SEK job-processing 

algorithms given in Figure 37. These services include a memory control service for efficient 

prefetching of simulation data using double-buffered DMA transfer and a notification service 

for notifying the PPE code about the progress of job processing on an SPE. Together, they 

constitute the SEK memory control and notification algorithm, which is encapsulated in a 

function called provideService. Figure 39 shows a skeleton of the algorithm. 
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Figure 39. SEK Memory Control and Notification Algorithm 

The purpose of the memory control service is to fetch the input events and states of the 

active Simulators into the local event and state caches, and to transfer the generated output 

events and updated states back to the original event and state buffer entries in the main 

memory after job execution. The transfer of event and state data, however, relies on the 

availability of pending job IDs in the local job caches since these job IDs are used to 
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calculate the main memory addresses of the corresponding event and state buffer entries (line 

9, 11, 13, and 25). Hence, double-buffered DMA transfer needs to be considered at two 

distinct layers, including the job-data layer for transfer of pending job IDs in chunks (line 2 

and 8) and the simulation-data layer for transfer of event and state data for each individual 

job within a chunk (line 10, 12, 19, 20, 22 and 23). Once the simulation data become 

available in the local event and state caches, the corresponding SEK job handlers are invoked 

using a function pointer array called jobFunctions (line 21), allowing for overlapping SEK 

job execution with concurrent memory I/O on an SPE. 

On the other hand, the notification service sends signals periodically to the PPE code, 

indicating the actual number of SEK jobs that have been processed in the pending job queue 

since the last notification (line 28). In this way, the FC can process the output events 

generated from those Simulators without waiting for the completion of all pending jobs, 

exploiting event-streaming parallelism between the PPE and the SPEs on a Cell processor. 

The frequency of notification (NOTIFY_FREQ) can be adjusted at compile time. 

Note that a control message, sekCtrMsg, is used to determine the address of the current 

event buffer in the main memory (line 3) and the function ID of a proper SEK job handler 

(line 21). Moreover, the total number of job IDs in the pending job queue, totalPendingJobs, 

must be known in order to schedule DMA transfers on the SPEs (line 4). These two variables 

are initialized at the beginning of each simulation phase in the SEK main loop, as will be 

presented in the next section. 

5.4.8. SEK Orchestration Algorithms 

When a simulation starts, the addresses of the various buffers allocated in the main memory 

are passed, through a control block, to a group of SPE threads dedicated to SEK execution. 

Similar to the FSK, the SEK also includes a termination function, referred to as 

terminateSEK, which is invoked at the end of a simulation to exit SEK execution on an 

SPE thread. Figure 40 gives the definition of the SEK main loop and the termination function. 

The SEK computation is triggered on an SPE thread upon the arrival of two mailbox 

messages (i.e., sekCtrMsg and totalPendingJobs as defined in Figure 39) (line 2.5 to 2.6). In 

response, either provideService or terminateSEK is invoked through a function 

pointer array, referred to as SEKFunctions, based on the value of sekCtrMsg (line 2.7). 
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Figure 40. SEK Main Loop and Function terminateSEK 

While totalPendingJobs is just an integer that indicates the total number of pending 

jobs that have been scheduled for an SEK, sekCtrMsg encodes three parameters compactly in 

its four least significant bits, as illustrated in Figure 41. These parameters are then extracted 

with bit operations at different points in the SEK algorithms (eventBufferIndex and 

SEKJobHandlerID are used in line 3 and line 21 of Figure 39 respectively, and 

SEKFunctionID is used in line 2.7 of Figure 40). 

 
Figure 41. SEK Control Message Bit Pattern 
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Figure 42. SEK Orchestration Algorithm on PPE (Part I) 
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On the PPE side, as shown in Figure 42, the FC sends two mailbox messages to the 

SEKs at the beginning of each simulation phase when the pending job IDs have been inserted 

into the job queues based on some job-scheduling policy (line 1.5 to1.8, line 2.5 to 2.10, and 

line 3.6 to 3.11). After that, the FC waits for notification signals from the SEKs (line 1.9, 

2.11, and 3.12). Once notified, the FC can immediately proceed to process the generated 

output events that have been made available in the corresponding entries of the current event 

buffer, thus overlapping SEK execution on the SPEs with output event processing on the 

PPE. This part of SEK orchestration algorithm is encapsulated in a function called 

processSEKOutputs, which is given in Figure 43. 

 
Figure 43. SEK Orchestration Algorithm on PPE (Part II) 

The FC performs two major tasks in function processSEKOutputs, namely 

checking for notification signals from the SEKs (line 1.3 to 1.8) and processing output events 

for the completed SEK jobs (line 1.9 to 1.14). Note that an SPE’s outbound mailbox channel 

can contain at most one message at a time. That is, if a previously sent notification signal has 

not yet been received by the PPE, an SEK will be blocked when it tries to send another signal 

after processing NOTIFY_FREQ more jobs. To reduce the possibility of blocking at the 

SEKs, the FC uses non-blocking polling to quickly scan the status of the outbound mailbox 

channels (line 1.4), and processes the output events from just one SEK (even when output 
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events have been produced from multiple SEKs) before going back to poll the channels again 

(line 1.13). In other words, as long as there are still notifications to be received from the 

SEKs, the algorithm tries to shorten the channel-polling interval, while at the same time 

allowing for concurrent event execution on the PPE. When all of the pending jobs are 

finished by the SEKs, the FC executes the remaining output events (line 1.16) and sends 

phase-changing events to the NC via the FEL (line 1.17), ending the current simulation phase. 

 
Figure 44. Terminating SEKs at the NC 

At the end of a simulation, the SEKs are terminated by the NC with two special 

mailbox messages (SEK_TERMINATE_SIG and zero), as shown in Figure 44. 

5.5. Parallel DEVS Simulation on the Cell Processor 

Based on the FSK and SEK algorithms presented in the previous two sections, Figure 45 

gives an architectural overview of the proposed MADS computing technique, showing the 

major thread components along with the data flow and interactions between them.  

During simulation bootstrap, the PPE main thread spawns a PPE helper thread, which 

in turn creates a set of SPE threads (one on each SPE). The NC and the FC are executed 

respectively by the two PPE threads, which share the FEL in the main memory to process 

phase-changing events in a producer-consumer fashion. The SPE threads, on the other hand, 

are divided into two groups: one for the FSKs and the other for the SEKs. More SPE threads 

should be reserved for the FSKs in large-scale and long-running simulations with moderate 

model complexity, whereas more SPE threads are needed to speed up the SEKs in medium-

sized simulations of complex model behavior over a relatively short period of virtual time. 

The actual number of SPE threads to be created in each group can be adjusted at 

compile time based on the knowledge of the simulated model. If the number of threads is set 

to zero for a group, the corresponding computational kernel will be hosted on the PPE 

instead. This is useful in models where the overall simulation performance is dominated 
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overwhelmingly by just one type of the kernels (e.g., the wildfire and watershed simulations 

as analyzed in Section 5.2), thus obviating the need for parallel execution of the other type of 

kernel that constitutes only a negligible performance bottleneck. 

 
Figure 45. Architectural Overview of the MADS Technique 

The following is a summary of the multi-grained parallelization strategies employed in 

the FSK and SEK algorithms. 

• Multi-grained parallelization strategy for the FSK. 

The FSK algorithms realize multi-grained parallelism on the Cell processor as follows. 

Thread-level parallelism is applied across multiple SPEs, each of which hosts an instance of 

the FSK that works on a corresponding pair of TA and IA chunks to exploit the massive 

data-level parallelism existed in the FC synchronization task. On an SPE thread, data-

streaming parallelism is utilized to process the chunk of data as a stream of blocks, hiding 

memory latency with double-buffered DMA transfers. In addition, the synchronization 

functions are implemented using explicit SPE SIMD intrinsics to explore vector parallelism. 

Moreover, loop-level parallelism is used to further accelerate data processing on the SPEs by 

virtue of simultaneous logical threads. 
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• Multi-grained parallelization strategy for the SEK. 

Taking advantage of the fine-grained event-level parallelism inherent in the DEVS-

based simulation process, the SEK algorithms combine multi-grained parallelism at different 

system levels, as follows. Thread-level parallelism is achieved both on the PPE itself and 

between the PPE and a group of SPEs, where each SPE thread executes an instance of the 

SEK. During each simulation phase, the independent events targeting different active 

Simulators are executed concurrently at distinct SEKs, realizing event-embarrassing 

parallelism. Moreover, event-streaming parallelism is utilized by executing the causally-

dependent events passed between the Simulators (running on the SPEs) and the FC (running 

on the PPE) in a two-stage pipeline. Double-buffered DMA is applied at multiple layers to 

transfer pending job IDs, simulation data of individual jobs, and rule data in the case of Cell-

DEVS models, hiding memory latency with data-streaming parallelism. On each SPE thread, 

the SEK job-processing algorithms are implemented with SPE SIMD intrinsics whenever 

possible to explore vector parallelism. Due to the irregular nature of the event computation, 

only partial vectorization is applied to parallelize the most time-consuming loops in the SEK 

code. Throughout a simulation, the PPE main thread handles file I/O and inter-node 

messaging in parallel with event computation at the helper and the SPE threads, exploiting 

the PPE hardware SMT capability to realize compute-I/O parallelism. 

5.6. Implications of the MADS Technique 

This section briefly discusses the implications of the proposed MADS technique, including 

possible approaches to accommodating additional types of computational kernels, supporting 

P-DEVS and Cell-DEVS simulations that cannot be fully parallelized on the SPEs, and 

integrating with existing cluster-based PDES techniques on hybrid super cluster systems. It 

also summarizes several generalizable concepts and methods of the MADS technique for 

PDES on other CMP architectures. 

• Accommodating additional computational kernels. 

The MADS technique is intended to accelerate two types of typical computational 

kernels commonly found in demanding DEVS-based simulations. However, this does not 

exclude the possibility of incorporating other types of computational kernels (e.g., random 

number generation) into the software architecture to address the needs of specific models. To 
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accommodate a new computational kernel, a user can reserve a group of SPEs to host the 

parallelized kernel computation, while using the rest of the SPEs to support the FSK and/or 

the SEK. In an extreme case, both FSK and SEK can be executed on the PPE if the new 

kernel becomes the solely predominant bottleneck in a simulation. The PPE helper thread can 

also be extended to orchestrate the SPE threads dedicated to the new kernel. In this sense, the 

MADS technique allows for a modular, extensible software architecture that can be adapted 

to varied performance and simulation requirements. 

• Supporting P-DEVS and Cell-DEVS models with SPE-incompatible components. 

Although the FSK can always be parallelized on a Cell processor, if desired, in any P-

DEVS and Cell-DEVS simulations, it may not always be possible, or suitable, to port all of 

the Simulators (and their associated atomic models) to the SPEs. In some cases, as pointed 

out in Section 5.4.2, a portion of the Simulators have to be implemented as concrete LPs on 

the general-purpose PPE. One example is that the state transition functions defined in certain 

atomic models require frequent access to a legacy library that is unsuitable to be hosted on 

the co-processors (e.g., due to irregular memory access patterns, excessive working storage 

requirements, or control-intensive pointer-chasing computations that are not straightforward 

to be redesigned for efficient execution on the SPEs). As a result, a simulation may include a 

mix of both virtual and concrete Simulators, which must be scheduled properly during each 

simulation phase.  

This issue can be solved within the MADS framework as follows. During simulation 

bootstrap, the concrete Simulators are created after those virtual Simulators so that they are 

associated with greater process IDs (i.e., virtual Simulators use IDs in the range of [0…M-1], 

while concrete Simulators use IDs in the range of [M…N-1], where M and N represent the 

number of virtual Simulators and the total number of Simulators respectively). The event and 

state data of both types of Simulators are still managed in the event and state buffers as usual. 

For concrete Simulators, the SEK job-processing algorithms (Figure 37) are implemented on 

the PPE to directly operate on the corresponding event and state buffer entries in the main 

memory, while the SEK orchestration algorithm (Figure 42) is enhanced accordingly so that 

the concrete Simulators can process events on the PPE in parallel with virtual Simulator 

event-processing on the SPEs in a simulation phase. 
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• Integrating with cluster-based PDES techniques. 

The MADS technique can also be integrated with cluster-based PDES techniques to 

achieve both conservative and optimistic parallel simulation on hybrid multiprocessor 

clusters with multicore nodes. 

Integration of the MADS technique with cluster-based conservative PDES algorithms 

(both synchronous and asynchronous) can be realized in a relatively straightforward way. 

Since inter-node messaging is handled by the NC at the PPE main thread (refer to Property 2 

in Section 2.6.3), the parallelized execution of computational kernels on a multicore node, 

carried out by the FC and the Simulators at the PPE helper thread and the SPE threads, is 

essentially invisible at the cluster level, thus allowing existing conservative synchronization 

algorithms to be implemented at the PPE main thread in a similar way as before.  

On the other hand, combining the MADS technique with cluster-based optimistic 

PDES algorithms (e.g., the TW protocol) is a more elaborate task, mainly because the 

TWLPs are required to perform complex checkpointing and rollback operations using 

sophisticated data structures, a control-intensive computation with highly-irregular memory 

access pattern, posing a significant challenge to porting the TWLPs to the SPEs on a Cell 

processor. This task, however, can be greatly simplified by taking advantage of the LTW 

protocol proposed in Chapter 4. Under the LTW protocol, as analyzed in Section 4.5.1, the 

Simulators are turned into lightweight LPs that execute in a manner quite similar to that in a 

sequential simulation. As the lightweight LPs are shielded from the complexity of optimistic 

synchronization at the cluster level, they can be readily implemented as virtual LPs on a Cell 

processor using the MADS technique presented in this chapter. 

• Generalizing the MADS concepts for PDES on CMP architectures. 

Several key concepts and methods derived from the MADS technique could be 

generalized to achieve efficient PDES on other CMP architectures. First of all, the MADS 

technique directly tackles different types of computational kernels identified in the 

simulation process, providing an alternative method that would be more effective in 

alleviating PDES performance bottlenecks on CMP architectures than the traditional LP-

oriented model-decomposition approach. Moreover, the proposed methods for simultaneous 

exploitation of multi-grained parallelism at different system levels would offer valuable 
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insight on developing new PDES algorithms for leveraging the architectural features of 

emerging multicore processors. In view of the fact that the performance discrepancy between 

memory latency and processor speed continues to widen (a problem known as the “Memory 

Wall” [McK04]), the data restructuring and macroscopic prefetching strategies employed in 

the MADS technique would shed some light on how to organize a PDES program from a 

data-flow perspective in order to increase data locality and ensure timely data availability on 

CMP architectures in general. Furthermore, the concept of LP virtualization could be 

extended to other multicore and shared-memory multiprocessors to improve processor 

utilization, to address resource constraints of the underlying hardware architecture, and to 

realize fine-grained load balancing. Last but not least, the methods used in the MADS 

technique for hiding the technical details of multicore programming from non-expert users 

would also be of practical importance in designing PDES systems on CMP architectures to 

enhance system usability, to promote modeler productivity, and to reduce M&S cost. 
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Chapter 6. Performance Analysis 

This chapter analyzes the performance of the LTW protocol and the MADS technique 

proposed in the previous two chapters. Section 6.1 introduces the benchmark models used in 

the experiments. Section 6.2 summarizes the experimental configurations and performance 

metrics. Section 6.3 presents a comparative performance evaluation of the TW and the LTW 

protocols on distributed-memory multiprocessor clusters, while Section 6.4 evaluates the 

potential of the MADS technique to accelerate large-scale DEVS-based simulations on the 

Cell processor.  

6.1. Introduction to the Benchmark Models 

Two realistic environmental models with varied workload characteristics were tested in the 

experiments, namely a wildfire propagation model and a watershed model. These models 

have been studied extensively in the DEVS research community (see, e.g., wildfire 

simulation [Nta04, Hu07, Nta08, and Fil09] and watershed simulation [Zei93, Moo96, 

Ame01, and Bro09]), thus allowing them to be used as de facto benchmarks for performance 

evaluation. In [Wai06], the wildfire and watershed models have been redefined as executable 

Cell-DEVS models in the CD++ specification language, as briefly described in this section. 

6.1.1. Definition of a Wildfire Model 

Two versions of the wildfire model were evaluated in the experiments, including a simplified 

version, referred to as Fire1, which uses predetermined fire spread rates at reduced runtime 

computational cost; and a generalized version, referred to as Fire2, which computes fire 

spread rates dynamically based on environmental parameters obtained at runtime, with a 

higher computational intensity. Both versions simulate fire propagation scenarios over 50 

virtual hours in a 2D cell space. 

• The Fire1 model. 

The Fire1 model [Wai06] uses the Rothermel method [Rot72] to obtain the spread rate 

in every direction prior to the simulation based on a specific set of environmental parameters 
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(a fuel model type number of 9, a southwest wind at a speed of 24.135 km/h, and a cell size 

of 15.24×15.24 m2), as summarized in Figure 46. 

 
Figure 46. Predetermined Spread Rates for the Fire1 Model [Wai06] 

Figure 47 gives a skeleton of the Fire1 model definition. A cell’s value stands for the 

virtual time when the cell is ignited (zero for a non-burning cell). The precondition of a 

transition rule is used to detect the presence of fire in a specific neighboring cell. For 

example, the first rule will be triggered if the current cell (0,0) is non-burning and the 

southwest neighbor (1,-1) has already been ignited. Hence, the fire will spread to the current 

cell at virtual time (1,-1) + (21.552615/17.967136), which becomes the new value of the 

current cell. This value will be sent to the neighboring cells after a delay of 

(21.552615/17.967136) * 60000 ms, the interval between the current virtual time and the 

expected ignition time at the cell. 

 
Figure 47. A Skeleton of the Fire1 Model Definition in CD++ [Wai06] 

This Fire1 model (with a size of 1024×1024) has been analyzed in Section 5.2.1, and it 

is used to evaluate both the LTW protocol and the MADS technique in this chapter. 

• The Fire2 model. 

To support more sophisticated wildfire simulation applications, the Fire1 model has 

been generalized in this research to allow for determination of fire spread rates based on 

changing environmental parameters [Har08]. Specifically, the CD++ specification language 

has been extended to include a new syntax node, referred to as fsr, which calculates the 

spread rate in any given direction at runtime by invoking the fireLib library [Bev96]. 
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Figure 48 shows a skeleton of the generalized Fire2 model when defined under the same 

environmental conditions as shown in Figure 46. 

 
Figure 48. A Skeleton of the Fire2 Model Definition in CD++ 

Comparing Figure 47 with Figure 48, the spread rate in a given direction is no longer a 

fixed constant in the Fire2 model. Instead, it is the computation result of the fsr syntax 

node based on a set of four parameters (i.e., azimuth, fuel type, wind speed, and wind 

direction), which are provided by the runtime environment of an application (e.g., a global 

weather service). Therefore, highly dynamic and realistic simulation results can be obtained 

by feeding real-time environmental data into the model. As expected, the time for processing 

a (*, t) event at the Simulators becomes 6.68 times longer than what is required in the Fire1 

model (calibrated on a 3.2GHz Intel Xeon processor), a significant increase in computational 

intensity. 

Note that the Fire2 model is only used to evaluate the LTW protocol on multiprocessor 

clusters. Executing this model on the Cell processor would require porting the third-party 

fireLib library to the SPEs, an undertaking that is beyond the scope of this dissertation. 

6.1.2. Definition of a Watershed Model 

The Watershed model, as defined in [Wai06], uses a 3D cell space to simulate water 

accumulation in a drainage basin over 30 virtual minutes under constant rain condition (7.62 

mm/h) based on a set of hydrological equations [Zei97]. In addition, different types of 

ground soil (grasses and stones) are also considered in the Watershed model by defining 

zones with different local transition functions within the cell space. Figure 49 shows a 

skeleton of the Watershed model definition in the CD++ environment. 



134 

 
Figure 49. A Skeleton of the Watershed Model Definition in CD++ [Wai06] 

In the model, the height of accumulated water at a cell depends on the rain intensity, 

the water exchanged with the neighboring cells (both inflows and outflows), and the amount 

of water absorbed by ground soil of different types. A local transition function thus computes 

future height values for the cells at each virtual time, taking into account the initial water 

level, the cumulative rain precipitation, the dynamic water flow between the cells, and the 

specific soil condition. The 3D cell space is composed of two planes: plane 0 and plane 1. 

While the former represents the ever-changing heights of retained water at different cells, the 

latter defines the topographical configuration of the terrain that remains unchanged 

throughout a simulation. 

This Watershed model (with a size of 320×320×2) has been analyzed in Section 5.2.2, 

and it is used in the performance analysis of both the LTW protocol and the MADS 

technique in this chapter. 

6.2. Experimental Configurations and Performance Metrics 

The PCD++ simulator [Liu07] has been extended in this research to include the LTW 

protocol proposed in Chapter 4. The sequential CD++/PPE simulator, previously introduced 

in Section 5.2, has been parallelized on the Cell processor using the MADS technique 

proposed in Chapter 5, resulting in a new parallel simulator called CD++/Cell. The 

performance of the LTW protocol and the MADS technique was studied in the experiments 

using the PCD++ and CD++/Cell simulators respectively on their intended platforms. 
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Note that the performance results presented in the following sections not only depend 

on the degree of parallelism available in the tested models, but also depend on the specific 

experimental configurations summarized here. Consequently, they should be viewed as 

indicators of potential performance gain that is achievable by the proposed techniques. 

6.2.1. Configuration and Metrics for the LTW Protocol 

The performance of the LTW protocol was evaluated on a cluster of 28 HP Proliant DL140 

servers running on Linux WS 2.4.21 and communicating over Gigabit Ethernet using 

MPICH 1.2.7 [Gro09], which is a portable implementation of the MPI standard [Gro99]. 

Each cluster node features dual 3.2GHz Intel Xeon processors with 1GB 266MHz main 

memory and 2GB disk swap space. Note that severe memory-swapping activities will occur 

if the maximum space requirement of a simulation approaches (or goes beyond) the physical 

limit of 1GB on a node. Moreover, a simulation will fail to complete when the memory usage 

cannot be contained within the maximum allowable virtual memory space of 3GB (i.e., the 

accumulated size of physical memory and disk swap space). 

The benchmark models were executed in a series of stress tests with a total of 160 

different test cases. For each test case, the performance of the LTW protocol was compared 

with that of the customized/optimized TW protocol as implemented in the PCD++ simulator 

(along with its WARPED middleware layer) [Liu07]. To ensure a fair comparison, the 

PCD++ simulator was configured to be the same for both TW and LTW simulations in all 

aspects, except those directly related to the LTW algorithms under study. In particular, both 

protocols employed aggressive cancellation, multi-list implementation of event set (applied 

to the persistent input queue in the LTW simulations), copy state-saving optimized with the 

MTSS strategy [Liu07] (the LTW simulations were further optimized with the enhanced risk-

free state-saving strategy proposed in Section 4.4.2), and the pGVT algorithm [Kan96]. 

Moreover, the PCD++ event-logging capability was turned off in all test cases to minimize 

the impact of file I/O operations on simulation performance. In addition, the corresponding 

test cases were based on the same model partitioning scheme, which divides a cell space into 

horizontal rectangles (or rows) as evenly as possible across the participating cluster nodes. 

Table 9 shows a list of 14 performance metrics (organized into 5 categories) collected 

in the experiments through extensive instrumentation and measurement. Among them, the 
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total execution time (T) and the maximum memory consumption (MEM) are the two primary 

metrics that indicate the overall simulation performance. 

Table 9. Performance Metrics Defined for the LTW Protocol 

Category Metrics Description 
T Total Execution time (s) Overall 

MEM Maximum memory consumption (MB) 
PEE Number of events executed in persistent input queue 
VEE Number of events executed in volatile input queue 

PQLen Average length of persistent input queue 
Event set 

VQLen Average length of volatile input queue 
SS Total number of states saved in state queues Check-

pointing OPT-SK Number of states reduced by the enhanced risk-free strategy 
Fossil 

collection FCT Average time spent on a single fossil collection (ms) 

PriRB Number of primary rollbacks  
SecRB Number of secondary rollbacks 

RB Total number of rollbacks (i.e., PriRB + SecRB) 
EI Number of events imploded in persistent input queue 

Rollback 

ER Number of events unprocessed in persistent input queue 

To demonstrate the absolute performance of both protocols, the benchmark models 

were also executed using a sequential CD++ simulator on a single cluster node, with the 

corresponding metrics (denoted as Tseq and MEMseq) collected in the experiments. Using the 

sequential simulation as the baseline case, the overall speedup of a parallel simulation on N 

cluster nodes is thus defined as follows. 

     seqT
Overall Speedup = ,  where N>1

 T(N)
                                       (1) 

The other metrics in Table 9 provide additional insight into the impact of the LTW 

algorithms on the optimistic parallel simulation, allowing for an objective assessment of the 

effectiveness of the proposed synchronization protocol. 

The experimental results for each test case were averaged over 20 independent 

simulation runs7. Besides, for those test cases executed on multiple cluster nodes, the results 

were also averaged over the participating nodes to obtain a per-node evaluation. The lengths 

                                                 
7 A more comprehensive performance evaluation with thorough sensitivity analysis is beyond the scope of this 
dissertation and can be addressed in future research. 
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of the event queues (i.e., PQLen and VQLen) were averaged over samples collected every 20 

event insertions in the queues. 

6.2.2. Configuration and Metrics for the MADS Technique 

The performance of the MADS technique was analyzed on an IBM BladeCenter QS22 server 

[IBM10b] with two 3.2 GHz IBM PowerXCell 8i processors and 32 GB main memory. Note 

that the Cell processors included in a QS22 server are interconnected through a Rambus 

FlexIO interface bus using the fully coherent Broadband Interface (BIF) protocol, thus 

allowing a Cell application to scale across the two Cell processors (with 2 PPEs and 16 SPEs 

in total) in a transparent manner, even though the inter-processor communication via FlexIO 

has a relatively lower bandwidth and higher latency than the intra-processor on-chip 

communication via EIB [IBM09]. 

The CD++/Cell simulator was implemented on Red Hat Enterprise Linux 5.2 using the 

IBM SDK for Multicore Acceleration 3.1 [IBM10a]. The Fire1 and the Watershed models of 

varied sizes were used to evaluate the impact of the FSK and SEK algorithms respectively.  

The major performance metrics are the total execution time (T) of the overall 

simulation and the turn-around time (T) of each synchronization function in the case of the 

FSK. Another metric, referred to as scale-up, is defined as follows to measure how the 

execution performance scales as a function of the number of SPEs involved in a computation. 

T(PPE with one SPE)Scale-up = ,  where N>1
 T(PPE with N SPEs)

             (2) 

Since the PPE differs from the SPEs in many striking features, the scale-up definition 

given in (2) uses the total execution time (or turn-around time) attained with the CD++/Cell 

simulator on the PPE with one SPE (instead of on the PPE alone) as the baseline case, 

leading to a more conservative estimate than what would be obtained from the traditional 

definition of speedup (which is based on a purely sequential execution) because the baseline 

case has already exploited a certain degree of parallelism on the Cell processor (e.g., data-

streaming parallelism and SIMD vector parallelism). 

When the SEK is executed on multiple SPEs, the SEK jobs were scheduled using the 

round-robin policy. For the FSK, the size of each TA block was set to 16KB in all of the test 

cases. Again, event-logging was turned off in the experiments, and the performance analysis 
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was based on experimental results averaged over 20 independent simulation runs to strike a 

balance between data reliability and testing effort. 

6.3. Evaluation of the LTW Protocol 

This section analyzes the performance of the LTW protocol using the benchmark models 

introduced in Section 6.1. These models have been verified prior to the actual performance 

testing to ensure that the parallel simulations generate the same results as in the 

corresponding sequential simulations.  

Several notations are used in the following tables: a “×” mark indicates a failed test 

case due to memory exhaustion, while a shaded table entry attributes the poor performance to 

severe memory swapping activities. A “―” mark stands for a case excluded in the testing 

because either the performance trend is already clear in the series, or the model cannot be 

divided further based on the given partitioning scheme. The best execution time obtained in 

each series is also highlighted.  

Table 10 gives the total execution time (T) and the maximum memory consumption 

(MEM) obtained in the simulations of the Fire1 model with varied sizes on different 

numbers of cluster nodes. It is clear that the LTW protocol outperforms its TW counterpart in 

all of the successful test cases. First, the maximum memory consumption is decreased by 

45% up to 92% on each node, making it possible to execute larger models on fewer cluster 

nodes and reducing the simulation cost considerably. Secondly, the total execution time is 

decreased by 24% up to 60% among those test cases with sufficient memory, and this 

outstanding improvement in execution time is achieved with a much smaller memory 

footprint at the same time. 

Figure 50 shows the overall simulation speedups achieved in those test cases with 

sufficient memory, demonstrating that the LTW protocol attains better and more consistent 

simulation performance than the TW protocol. Note that, in some cases (e.g., 50×50 Fire1 on 

2 and 4 nodes), the performance of the TW simulation is even worse than that of the 

sequential execution (with a speedup of less than 1), mainly because the excessive 

communication and operational overhead incurred in the optimistic parallel simulation. Such 

scenarios, however, do not arise in the LTW cases tested in the experiments. 
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Table 10. Total Execution Time and Maximum Memory Consumption for Fire1 

Size Seq. Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

T × 9.08 5.87 5.26 5.01 5.39 5.49 5.55 5.95 ― ― ― ― ― ― 
TW 

MEM × 813.57 220.42 109.94 61.79 43.73 34.84 26.37 22.22 ― ― ― ― ― ― 

T 5.78 3.61 3.02 2.98 2.78 3.01 3.23 3.25 3.54 ― ― ― ― ― ― 50
×5

0 

 5.54  
(T)  

29.11 
(MEM)  LTW 

MEM 63.53 65.83 27.42 20.58 14.25 13.24 11.98 9.95 9.31 ― ― ― ― ― ― 

T × × 2749.13 484.91 40.09 35.66 34.46 32.35 33.51 32.53 32.44 33.4 35.0 35.19 35.96 
TW 

MEM × × 2279.42 1492.31 882.82 576.61 410.19 307.79 244.6 197.97 162.92 137.77 121.47 103.03 91.75 

T 78.21 43.84 31.62 24.35 23.58 22.61 22.26 21.62 21.86 21.88 22.03 22.2 22.0 22.46 21.76 

10
0×

10
0  56.07  

(T) 
110.59 
(MEM)  LTW 

MEM 405.5 373.25 271.62 160.26 110.94 82.65 66.75 55.65 48.18 43.55 38.92 36.22 34.05 32.3 29.94 

T × × × × × 1516.48 893.43 572.83 314.03 202.71 141.46 140.98 142.63 142.01 143.18
TW 

MEM × × × × × 2309.12 1935.02 1449.83 1131.65 906.07 744.91 623.9 527.05 460.76 404.44

T 1489.77 517.92 394.56 122.44 112.93 110.63 111.7 109.67 107.02 107.23 105.27 107.1 106.75 104.88 104.74

15
0×

15
0  260.65 

(T) 
242.69 
(MEM) LTW 

MEM 1418.85 1294.08 986.62 660.31 415.01 296.96 230.4 186.68 161.7 137.22 123.85 105.07 96.8 90.88 85.09 

T × × × × × × × × × × 4324.31 1236.26 1065.79 881.61 737.14
TW 

MEM × × × × × × × × × × 1848.93 1560.7 1528.73 1188.06 1058.7

T 12571.7 6894.36 1425.16 920.86 646.56 350.58 334.77 331.2 333.12 326.7 327.56 327.46 322.93 330.03 327.24

20
0×

20
0 815.43  

(T) 
432.13 
(MEM) LTW 

MEM 1679.36 1644.54 1393.66 1229.82 1145.6 805.17 582.49 431.18 393.15 291.49 244.01 209.52 235.47 186.1 188.68
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Figure 50. Fire1 Overall Speedups (Test Cases with Sufficient Memory) 
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In order to figure out the underlying reasons that cause the differences in simulation 

performance, the other metrics are compared. Using the test case of 100×100 Fire1 on 14 

nodes, as an example, Table 11 presents a comparison of the synchronization protocols. 

Table 11. Comparison for 100×100 Fire1 on 14 Nodes 

Metrics TW LTW LTW vs. TW 
PEE 96685.07 10597.71  
VEE 0 67214.07  

PQLen 24798.12 2636.95 ↓ 89.37% 
VQLen 0 121.89  

SS 52819.64 22675.14 ↓ 57.07% 
OPT-SK 0 18445.36  

FCT 488.14 84.15 ↓ 82.76% 
PriRB 613.14 604.00 ↓  1.49% 
SecRB 11922.07 981.14 ↓ 91.77% 

RB 12535.21 1585.14 ↓ 87.35% 
EI 61751.93 5826.36 ↓ 90.56% 
ER 48118.79 5790.93 ↓ 87.97% 

Thanks to the introduction of the volatile input queue, the average length of the 

persistent input queue is shortened significantly by 89.37% in the LTW simulation, reducing 

the overhead of event queue operations and memory consumption considerably. On the other 

hand, the volatile input queue is kept short throughout the simulation with an average length 

of just 121.89 events, despite the fact that a majority of 86.38% input events executed on 

each node have been turned into volatile under the LTW protocol.  

Owning to the enhanced risk-free infrequent state-saving strategy, which further 

reduces the number of state-saving by 44.86% on top of the MTSS strategy, the total number 

of states saved in the LTW simulation is 57.07% fewer than in the TW simulation, leading to 

less memory usage as well.  

As expected, the time spent on a fossil collection operation is decreased from 488.14 

ms to just 84.15 ms accordingly, a significant reduction of 82.76%.  

When comparing the rollback performance, the LTW protocol also demonstrates a big 

advantage over the TW counterpart. The number of secondary rollbacks is reduced by 

91.77%, showing that rollback propagation is effectively contained within the TW domain on 

each node. Moreover, the number of primary rollbacks is reduced slightly by 1.49%, which, 

combined with the fact that the total number of events executed on each node (i.e., PPE + 
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VEE) is decreased by 19.52%, suggests a more stable system with less speculative 

computation. As a consequence, the numbers of events imploded and unprocessed in the 

persistent input queue are both declined by roughly 90%, further accelerating rollback 

operations in the simulation. 

The experimental results for the Fire2 and the Watershed models are given in Table 12 

and Table 13 respectively. Again, the LTW protocol reduces maximum memory 

consumption by approximately 34% up to 92% in the Fire2 simulations and by 73% up to 

93% in the Watershed simulations. The reduction in memory usage is more prominent for the 

Watershed model largely because, with a higher proportion of simultaneous events 

exchanged between the LPs at each virtual time, a larger percentage of states are reduced 

with the enhanced risk-free infrequent state-saving strategy. 

For those test cases with sufficient memory, the total execution time is decreased by 

13% up to 32% in the Fire2 simulations and by 5% up to 91% in the Watershed simulations. 

A general trend reflected in the experimental results is that the reduction in the total 

execution time and maximum memory consumption is greater for models with larger sizes, 

indicating an improved scalability of the synchronization algorithms. 

The overall simulation speedups achieved in the Fire2 and the Watershed simulations 

with sufficient memory are shown in Figure 51and Figure 52 respectively. The impact of the 

LTW protocol is most evident in the Watershed simulations, where the number of 

simultaneous events executed at each virtual time grows with the model sizes. As model size 

increases, the parallel simulation under the TW protocol suffers from an overwhelming 

increase in both state-saving overhead and rollback cost, resulting in a performance 

degradation that essentially nullifies the effectiveness of the TW synchronization protocol, 

even when given adequate memory (e.g., in all but the smallest Watershed cases). In contrast, 

significant speedups are achieved in the LTW cases, demonstrating that the LTW protocol is 

especially adept at efficient execution of simultaneous events in optimistic parallel 

simulations. 
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Table 12. Total Execution Time and Maximum Memory Consumption for Fire2 

Size Seq. Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

T × 20.89 13.93 12.19 10.91 10.41 10.8 10.64 10.84 10.55 11.31 12.51 12.76 13.39 13.44 
TW 

MEM × 800.26 226.82 108.41 65.37 46.29 34.54 28.13 23.23 20.19 18.19 16.31 14.81 13.72 12.85 

T 20.26 14.23 10.38 9.69 9.46 8.84 9.01 8.51 8.64 8.4 8.32 9.28 9.34 9.51 10.27 50
×5

0 

 19.29  
(T)  

29.52 
(MEM)  LTW 

MEM 81.24 66.92 34.99 22.6 17.77 14.65 13.02 11.76 10.83 10.17 9.63 9.29 8.99 8.73 8.49 

T × × 3284.37 460.32 68.67 54.63 52.03 48.92 48.58 46.96 46.37 47.53 48.69 49.39 49.97 
TW 

MEM × × 2159.1 1319.08 658.14 576.72 411.14 310.95 240.42 198.4 163.47 149.65 112.23 99.94 83.78 

T 206.16 114.98 60.09 54.37 51.22 44.11 41.61 40.37 38.87 37.55 35.54 36.83 36.23 36.46 36.48 

10
0×

10
0  119.95  

(T) 
109.57 
(MEM)  LTW 

MEM 314.37 285.18 248.32 137.73 102.24 81.63 65.57 54.35 48.91 45.62 42.6 38.42 35.75 33.84 32.03 

T × × × × × 4448.08 2487.95 651.06 394.92 244.97 167.25 164.79 167.42 165.64 168.88
TW 

MEM × × × × × 1817.71 1375.23 1399.3 1086.72 905.96 744.91 562.55 532.14 425.91 399.51

T 1592.43 493.61 223.65 178.2 174.63 165.84 168.66 167.14 140.67 140.21 137.0 134.3 136.11 133.1 134.01

15
0×

15
0  414.25 

(T) 
243.71 
(MEM) LTW 

MEM 1210.37 924.16 641.79 586.92 385.41 269.62 205.4 172.18 139.44 122.16 112.93 104.22 94.47 89.39 85.79 

T × × × × × × × × × 12112.7 3206.02 1501.28 1202.48 900.05 764.21
TW 

MEM × × × × × × × × × 1943.55 1785.9 1618.94 1522.69 1475.58 1243.95

T 11707.5 3363.07 1339.92 1173.69 562.68 414.52 412.92 412.89 381.1 376.58 417.44 373.11 372.6 370.04 371.56

20
0×

20
0 1033.61  

(T) 
424.96 
(MEM) LTW 

MEM 1661.95 1562.62 1267.71 1292.97 885.61 438.81 363.5 313.96 289.68 274.55 240.98 227.23 208.62 192.61 173.08
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Figure 51. Fire2 Overall Speedups (Test Cases with Sufficient Memory) 
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Table 13. Total Execution Time and Maximum Memory Consumption for Watershed 

Size Seq. Prot. Metric 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 

T × × 2059.62 899.49 84.97 87.06 86.59 88.76 ― ― ― ― ― ― ― 
TW 

MEM × × 1718.02 997.21 691.2 536.37 422.49 333.53 ― ― ― ― ― ― ― 

T 262.99 171.18 112.69 100.54 79.45 82.27 82.08 82.59 ― ― ― ― ― ― ― 

15
×1

5×
2 258.27 

(T)  
43.99 

(MEM)  LTW 
MEM 45.66 27.91 148.48 121.54 128.96 113.14 101.29 90.39 ― ― ― ― ― ― ― 

T × × × × 2451.7 857.3 757.65 724.55 638.97 676.42 ― ― ― ― ― 
TW 

MEM × × × × 1618.94 1180.67 967.51 778.53 643.52 535.21 ― ― ― ― ― 

T 473.81 268.87 181.94 155.09 140.14 104.77 108.52 109.58 110.35 112.87 ― ― ― ― ― 

20
×2

0×
2 471.86 

(T) 
72.67 

(MEM)  LTW 
MEM 76.02 40.04 164.35 136.36 130.82 149.81 137.24 129.85 115.87 111.99 ― ― ― ― ― 

T × × × × × × × 2002.73 1948.95 1922.21 1705.19 1597.08 1585.6 ― ― 
TW 

MEM × × × × × × × 1519.54 1434.77 1262.59 1063.03 774.38 663.21 ― ― 

T 748.49 469.65 306.25 257.18 195.16 176.19 172.39 136.18 136.37 142.69 143.86 139.54 141.85 ― ― 

25
×2

5×
2 735.39 

(T) 
115.48 
(MEM) LTW 

MEM 119.8 70.46 164.86 128.68 131.07 132.81 132.27 153.82 141.87 128.25 114.39 113.95 103.44 ― ― 

T × × × × × × × × 5381.55 4475.37 3133.72 3130.89 2920.06 2765.2 2784.83
TW 

MEM × × × × × × × × 2192.96 1867.83 1602.25 1388.87 1206.87 1055.31 924.49

T 1098.11 616.28 390.68 293.33 237.82 208.26 204.82 198.27 169.12 168.45 168.01 165.54 165.64 166.55 162.43

30
×3

0×
2 1041.39 

(T) 
168.46 
(MEM) LTW 

MEM 174.08 89.69 163.07 164.18 151.55 171.62 148.91 138.31 117.57 139.45 156.5 149.91 130.2 122.69 114.69

 

 



146 

 
Figure 52. Watershed Overall Speedups (Test Cases with Sufficient Memory)  
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Table 14 and Table 15 compare the other metrics measured in the 100×100 Fire2 

simulation on 20 nodes and the 20×20×2 Watershed simulation on 18 nodes respectively. 

From these comparisons, a similar pattern can be observed in terms of performance 

improvement, suggesting that the LTW protocol is suitable for simulating models with 

different computation and communication characteristics. 

Table 14. Comparison for 100×100 Fire2 on 20 Nodes 

Metrics TW LTW LTW vs. TW 
PEE 68346.55 11658.75  
VEE 0 56057.00  

PQLen 17533.37 2149.91 ↓ 87.74% 
VQLen 0 75.31  

SS 33833.00 17565.40 ↓ 48.08% 
OPT-SK 0 15591.10  

FCT 245.12 58.36 ↓ 76.19% 
PriRB 769.95 740.55 ↓  3.82% 
SecRB 12794.35 2036.45 ↓ 84.08% 

RB 13564.30 2777.00 ↓ 79.53% 
EI 46877.55 7197.90 ↓ 84.65% 
ER 29512.45 6651.60 ↓ 77.46% 

Table 15. Comparison for 20×20×2 Watershed on 18 Nodes 

Metrics TW LTW LTW vs. TW 
PEE 1253641.94 361457.78  
VEE 0 856256.00  

PQLen 334016.67 77790.62 ↓ 76.71% 
VQLen 0 26.04  

SS 371273.33 73186.94 ↓ 80.29% 
OPT-SK 0 288247.50  

FCT 61313.67 395.63 ↓ 99.35% 
PriRB 173.50 159.94 ↓  7.81% 
SecRB 22816.67 2165.33 ↓ 90.51% 

RB 22990.17 2325.28 ↓ 89.89% 
EI 625210.33 175521.11 ↓ 71.93% 
ER 569337.94 172280.33 ↓ 69.74% 

In summary, the experimental results indicate that the LTW protocol outperforms the 

TW counterpart in various aspects, including shortened execution time, reduced memory 

consumption, lowered operational cost, accelerated event queue operations, and enhanced 

system stability and scalability. 
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6.4. Evaluation of the MADS Technique 

This section evaluates the performance impact of the MADS technique using the Fire1 and 

the Watershed models introduced in Section 6.1. Based on the workload analysis presented 

in Section 5.2, the Fire1 model is used to examine the performance of the FSK algorithms, 

while the Watershed model is used to gauge the performance of the SEK algorithms. The 

correctness of the parallel simulations has been verified before the actual performance testing. 

6.4.1. Performance of the FSK algorithms 

Using the 1024×1024 Fire1 model previously analyzed in Chapter 5, Figure 53 summarizes 

the total execution times (T) attained on the PPE with the sequential CD++/PPE simulator 

and on 1 to 16 SPEs with the parallel CD++/Cell simulator. In the diagram, the PPE-based 

sequential executions are denoted as ORG (refer to Table 1 of Section 5.2.1), SYN (refer to 

Table 7 of Section 5.3.1), and FLT. 

 
Figure 53. Total Execution Time in the 1024×1024 Fire1 Simulation 

When the simulation data are reorganized in flat arrays, the total execution time (FLT) 

is reduced by a factor of 13.79 from what is attained with the original CD++/PPE (ORG) and 

by a factor of 9.09 from the synchronization-optimized execution (SYN). As the performance 

of the Fire1 simulation is largely determined by the FSK that has a regular access pattern 

when processing the Simulator timing data contiguously in the main memory, the increased 

data locality greatly improves the utilization of the cache hierarchy of the PPE, resulting in a 

significant reduction in memory contention and execution time.  
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To illustrate this point, Table 16 gives the simulation profile of the PPE-based FLT 

execution. Comparing Table 16 with Table 7, it is evident that the biggest improvement 

comes from the FC, where the time spent on processing (@) and (D) events is reduced by 

more than 89% from the SYN execution. In addition, the simulation bootstrap time is 

decreased by 50% since most of the simulation data are allocated and initialized in batches 

with big arrays. The use of the event buffers also accelerates Simulator event execution and 

FEL operations (Other overhead) by 7.1% and 23.81% respectively. 

Table 16. 1024×1024 Fire1 Simulation Profile on PPE (Data Flattened) 

Components Event Type 
Simulators FC NC Bootstrap Other Overhead

(I) 2.58 0.76 ─ 
(*) 491.68 12.60 ─ 
(@) 6.24 5650.61 ─ 
(X) ─ 0 ─ 
(Y) ─ 76.41 ─ 
(D) ─ 5821.37 1.62 

─ ─ 

Sum (s) 500.51 11561.75 1.62 89.10 102.53 
Total (s) 12255.51 

With the introduction of one SPE, the parallel simulation runs 1.78 times faster than the 

sequential FLT execution, mainly because of more efficient data processing algorithms and 

the exploitation of data-streaming parallelism on the SPE. Overall, the parallel CD++/Cell 

simulator further reduces the total execution time from the best sequential performance of 

over 3 hours on the PPE (FLT) to approximately 20 minutes when the FSK is parallelized on 

16 SPEs (or a factor of up to 9.74). Together, the FSK optimization and parallelization 

algorithms accelerate the 1024×1024 Fire1 simulation on a QS22 server by a large factor of 

up to 134.34 over the original CD++/PPE implementation. 

Figure 54 shows the scale-ups of the FSK itself based on the turn-around times 

measured for the individual synchronization functions. Both synchronization functions 

exhibit a significant level of scalability (super-linear in the case of findImminents), due 

to SIMD code vectorization on the SPEs and reduced memory latency with double-buffered 

DMA transfer. Function findImminents performs better than function findMinTime 

because of the reasons that have been explained in Section 5.3.4. First, all of the SPE threads 

are engaged in the findMinTime computation, whereas an SPE thread is involved in the 
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findImminents computation only if it has found the global minimum. Secondly, function 

findMinTime is called in place by the FC, while function findImminents is called in 

advance by the NC once the next simulation time is determined. As a whole, the FSK attains 

an overall scale-up of 13.4 on 16 SPEs. 

 
Figure 54. FSK Scale-Ups in the 1024×1024 Fire1 Simulation 

 
Figure 55. Total Execution Time in Fire1 Simulations with Varied Sizes 
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Figure 55 presents the execution times attained in the Fire1 simulations of different 

sizes (896×896, 768×768, and 640×640) with the optimized CD++/PPE and with the 

CD++/Cell on up to 16 SPEs. The parallel simulations with 16 SPEs run 8.37, 7.27, and 7.69 

times faster than the best sequential executions on the PPE (FLT) in the 896×896, 768×768, 

and 640×640 Fire1 simulations respectively. 

 
Figure 56. Overall Simulation Scale-Ups in Fire1 Simulations 

Figure 56 shows the overall simulation scale-ups achieved in the Fire1 simulations of 

varied sizes on 2 to 16 SPEs with the parallel CD++/Cell simulator. The experimental results 

indicate that the FSK algorithms can obtain better scalability in larger simulations and on a 

greater number of SPEs. Since the FSK is a data-intensive, high-throughput kernel with a 

relatively light computational intensity, the overall simulation performance depends 

primarily on the effective bandwidth provided by the EIB and MIC of a Cell processor when 

transferring data to/from the main memory. Hence, as long as the memory path has not yet 

been saturated, more DMA transfer requests from the SPEs can be handled concurrently with 

improved utilization of the memory bandwidth, resulting in a higher level of scalability in 

larger simulations using multiple SPE cores. 
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6.4.2. Performance of the SEK algorithms 

The 320×320×2 Watershed model, previously analyzed in Chapter 5, has been executed on 

the PPE and across the SPEs of a QS22 server to evaluate the performance of the SEK 

algorithms. The resulting total execution times (T) are summarized in Figure 57, where the 

sequential executions with the original and the optimized CD++/PPE simulator are denoted 

respectively as ORG (refer to Table 4 of Section 5.2.2) and FLT (which combines flattened 

simulation data management with optimized FC synchronization task). The synchronization-

optimized sequential execution (SYN) is not shown separately in the figure because, as 

mentioned in Section 5.3.1, optimizing the FC synchronization task alone does not have a 

noticeable impact on the Watershed simulation performance. 

 
Figure 57. Total Execution Time in the 320×320×2 Watershed Simulation 

Unlike the 1024×1024 Fire1 model, flattening the simulation data in the 320×320×2 

Watershed model leads to only a marginal improvement of 4.78% in terms of total execution 

time (i.e., FLT vs. ORG), due to the following reasons. First, the performance of the 

Watershed simulation is dominated by the compute-intensive SEK, rather than the data-

intensive FSK as in the Fire1 simulation. Therefore, the performance of the Watershed 

simulation is much less sensitive to the improved data locality. Secondly, at any virtual time, 

the event and state data of different active Simulators are stored in different event and state 

buffer entries, which may not be contiguous in the main memory. As a result, while the FSK 

can fully benefit from the enhanced locality of Simulator timing data, the SEK may exploit 

increased data locality only during the processing of multiple input/output events for a single 

active Simulator as these events are packed together in the same event buffer entry.  
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Given in Table 17, the updated FLT execution profile illustrates the quantitative impact 

of flattening simulation data on the Watershed simulation performance. When compared to 

the ORG execution, the Simulator and FC event execution time is reduced by 3.92% and 

37.91% respectively, thanks to improved data locality in the event buffers. Moreover, the 

time spent on FEL operations (Other overhead) is decreased by 70.12% since all of the 

simultaneous events, which constitute a vast majority of the total event population, are 

executed without using the FEL. Besides, the simulation bootstrap time is declined by 

16.61% due to the batch allocation and initialization of simulation data in flat arrays. 

Table 17. 320×320×2 Watershed Simulation Profile on PPE (Data Flattened) 

Components Event Type 
Simulators FC NC Bootstrap Other Overhead

(I) 0.36 0.03 ─ 
(*) 75198.80 15.42 ─ 
(@) 32.64 37.27 ─ 
(X) ─ 0 ─ 
(Y) ─ 596.99 ─ 
(D) ─ 14.26 0.001 

─ ─ 

Sum (s) 75231.80 663.97 0.001 21.03 145.86 
Total (s) 76062.66 

When the simulation is executed with one SPE, the total execution time is shortened 

dramatically by a factor of 5.56 over the best sequential execution (FLT). There are several 

reasons for this exceptional performance gain. First, memory latency is minimized 

effectively because of the software-managed multi-layered double buffering strategy for 

DMA transfer of all kinds of simulation data (job IDs, events, states and rules) to and from 

the SPE. Secondly, using the PPE along with an SPE allows for pipelined event execution 

between the FC and the virtual Simulators, taking advantage of the event-streaming 

parallelism. Thirdly, the SEK is implemented in SIMD-aware C code on the SPE, making it 

more efficient than the object-oriented scalar C++ implementation on the PPE. In addition, 

the SEK computation is further boosted on the SPE with various low-level code 

optimizations, which include improving data access efficiency by proper LS address 

alignment, reducing runtime call stack usage by in-place rule evaluation and by replacing 

function parameters and local variables with aligned global variables and registers, removing 
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branches whenever possible or using branch hints explicitly, and enhancing performance by 

loop unrolling and in-line substitution.  

Overall, the total execution time is reduced from the best sequential performance of 

more than 21 hours (FLT) to just 26 minutes when the SEK is parallelized on 16 SPEs (or a 

significant improvement by a factor of up to 48.31). Comparing to the original CD++/PPE 

execution (ORG), the SEK optimization and parallelization algorithms together accelerate 

the 320×320×2 Watershed simulation by a factor of up to 50.74 on a QS22 server. 

Figure 58 shows the execution times obtained in the Watershed simulations of varied 

sizes (256×256×2, 192×192×2, and 128×128×2) with the optimized CD++/PPE and with the 

CD++/Cell on up to 16 SPEs. The parallel simulations with 16 SPEs run 28.09, 27.69, and 

29.46 times faster than the PPE-based FLT executions respectively. 

 
Figure 58. Total Execution Time in Watershed Simulations with Varied Sizes 

Figure 59 gives the overall simulation scale-ups attained in the Watershed simulations 

of varied sizes. The experimental results suggest that, regardless of the difference in the size 

of the models, the Watershed simulations exhibit similar scalability across the SPEs. Since 

the Watershed simulation is mainly dominated by the compute-intensive SEK hosted on the 

SPEs, the cumulative computing power of the available SPEs becomes a major limiting 

factor in the overall simulation performance. Therefore, as long as the SPEs are fully utilized, 

the total execution time is expected to improve at a similar rate when an increasing number 

of SPEs join the parallel simulation. 
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Figure 59. Overall Simulation Scale-Ups in Watershed Simulations 

As illustrated in Figure 56 and Figure 59, the scale-ups grow a bit slower when more 

and more SPEs are used in the simulations, mainly because the overhead of kernel 

orchestration increases with the number of SPEs. In addition, when the number of SPEs goes 

beyond eight, the scaling of the simulation performance also suffers from reduced bandwidth 

and increased latency of inter-processor communication through the FlexIO interface bus, 

resulting in a change in the slope of the scale-ups. 

In summary, the experiments demonstrate that the proposed MADS technique can be 

used to accelerate both memory-bound and compute-bound computational kernels in 

demanding parallel DEVS simulations on the heterogeneous Cell processor. In the Fire1 and 

Watershed simulations, significant performance improvements have been obtained with the 

FSK and SEK algorithms, proving that porting DEVS-based simulators to heterogeneous 

multicore platforms such as the Cell processor is worth the effort.  
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Chapter 7. Conclusion and Future Work 

This chapter summarizes the content of the dissertation, outlines the major contributions of 

the research, and proposes a list of open issues and avenues for future research. Section 7.1 

recaps the primary objectives and areas of research covered in the dissertation. Section 7.2 

reviews the key high-level contributions made in the research. Section 7.3 suggests several 

future research directions. 

7.1. Summary of the Dissertation 

This dissertation addressed software development and performance issues that arise in large-

scale parallel simulation of P-DEVS and Cell-DEVS models. In particular, this dissertation 

was primarily concerned with improving the performance of DEVS-based TW simulation on 

distributed-memory multiprocessor clusters and achieving high-performance parallel DEVS 

simulation on heterogeneous CMP architectures as exemplified by the IBM Cell processor. 

To fulfill these two objectives, a Lightweight Time Warp (LTW) protocol and a Multicore 

Acceleration of DEVS Systems (MADS) technique have been proposed, and their 

effectiveness has been evaluated quantitatively in the CD++ environment using different 

benchmark models with varied characteristics. The rest of this section briefly summarizes the 

main concepts and qualitative results of these two research endeavors. 

The LTW protocol exploits the intrinsic computational properties of the DEVS-based 

simulation process to improve TW execution efficiency, while decreasing memory 

consumption at the same time. This is achieved by classifying the LPs hosted on each node 

into three categories: full-fledged TWLP, interface TWLP and lightweight LPs, which 

correspond to the NC, the FC, and the Simulators in PCD++ respectively. Such an 

arrangement enables a purely optimistic TW simulation to be driven by only a few full-

fledged TWLPs, whereas most of the processes are turned into lightweight LPs whose input 

and output events are no longer maintained in persistent queues and whose states are 

managed by the interface TWLP in a concentrated manner. Moreover, the MTSS strategy is 

enhanced to further reduce the number of states saved in the state queues without the need 
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for coasting forward during rollbacks. As a consequence, both forward execution and 

rollback recovery are accelerated; and rollback propagation is restricted to between the full-

fledged and the interface TWLPs only, lowering the possibility of cascaded rollback and 

enhancing system stability and scalability. The simulation performance also benefits from 

facilitated queue operations, fossil collection, and GVT estimation. Due to the elimination of 

past input/output events and the reduction in the number of historical states, the lightweight 

LPs can be migrated between cluster nodes efficiently at decreased computation and 

communication cost. Besides, the LTW protocol can be readily integrated with many other 

TW optimization strategies to further improve simulation performance, and its applicability 

can be extended to other types of TW-based PDES systems under certain conditions and with 

an appropriate control of the LPs. 

The MADS technique adopts a formalism-based performance-centric approach to 

general-purpose P-DEVS and Cell-DEVS simulation on the Cell processor. To this end, the 

workload characteristics of different types of models are generalized; and a variety of 

optimization and parallelization strategies are used to accelerate both memory-bound and 

compute-bound computational kernels commonly found in demanding parallel DEVS 

simulations. As these computational kernels directly reflect the major performance 

bottlenecks in the system, the proposed technique is more targeted than the traditional LP-

oriented approach, making the achievable performance gain more deterministic and 

predictable. In addition to explicit exploitation of the inherent data and event parallelism in 

the simulation process, the MADS technique combines multi-grained parallelism at different 

levels of the system to leverage the full potential of the Cell processor, while hiding, to a 

great extent, the technical details of multicore programming from non-expert users. The 

various sorts of simulation data are reorganized in flat array-based buffers, improving 

simulation performance with increased data locality and facilitating the parallelization of the 

computational kernels from a data-flow perspective. By virtue of the concept of LP 

virtualization, the MADS technique allows for efficient mapping of an arbitrary number of 

Simulators to a limited set of SPE cores dynamically throughout a simulation, improving 

processor utilization, addressing the resource constraints of the underlying hardware 

architecture, and making it possible to achieve fine-grained dynamic load-balancing in a 

straightforward way. Furthermore, the MADS technique also provides a flexible software 
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architecture that can be easily extended to accommodate extra computational kernels, to 

support simulations with SPE-incompatible model components, and to integrate with other 

cluster-based conservative and optimistic PDES techniques. 

The outcomes of the research would help bridge the gap between PDES algorithms 

developed for traditional multiprocessor clusters and those for emerging CMP architectures, 

paving the way towards achieving large-scale high-performance parallel simulation on 

hybrid supercomputers. 

7.2. Review of Key Contributions 

This section reviews the key high-level contributions made in the two primary areas of 

research, namely the LTW protocol and the MADS technique, highlighting how the various 

challenges discussed in Chapter 3 have been addressed in the dissertation. 

7.2.1. Lightweight Time Warp Protocol 

The LTW protocol takes a proactive approach to addressing the challenges of DEVS-based 

TW simulations, improving performance without complicating the synchronization protocol 

unnecessarily, sacrificing potential parallelism, or introducing a noticeable extra operational 

overhead. The key contributions of the LTW protocol are summarized as follows. 

• Introduced a high-level abstraction that represents a DEVS-based simulation concisely 

as a well-structured multi-phased process, revealing the general execution pattern 

hidden behind the complex message flow among the LPs. 

• Identified several model-independent computational properties of the underlying 

simulation process, providing the basis for developing new optimization and 

synchronization algorithms for DEVS-based TW simulations. 

• Introduced the concept of volatile events in order to obviate the need for saving most of 

the input and output events during forward execution, reducing memory consumption, 

shortening the persistent input queue with accelerated queue operations, and alleviating 

the overhead of fossil collection.  

• Developed an event management scheme that holds the simultaneous events exchanged 

between the interface TWLP and the lightweight LPs temporarily in a volatile input 

queue, which can be implemented using simple data structures with constant-time 
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queue operations, allowing for efficient execution of a large number of simultaneous 

events in DEVS-based TW simulations. 

• Enhanced the risk-free infrequent state-saving strategy to further reduce memory 

consumption for saving past states and the cost of fossil collection, without increasing 

the overhead of rollback operations. 

• Developed a lightweight rollback mechanism that is able to recover the lightweight LPs 

from causality errors without the need for sending anti-messages, mitigating rollback 

cost, limiting rollback propagation (both width and depth), and reducing the possibility 

of uncontrolled cascaded rollback. 

7.2.2. Multicore Acceleration of DEVS Systems 

In contrast to the LP-oriented model-decomposition approach, the MADS technique 

addresses the challenges of general-purpose parallel DEVS simulation on the heterogeneous 

Cell processor from a data-flow perspective, overcoming the performance bottlenecks in the 

simulation process while satisfying the requirements of the underlying hardware architecture. 

The key contributions of the MADS technique are summarized as follows. 

• Identified and addressed two distinct types of computational kernels that are commonly 

found in demanding DEVS-based simulations, making the proposed technique 

applicable to simulations of a variety of different models. 

• Developed multi-grained parallelization strategies that combine fine-grained data and 

event parallelism inherent in the simulation process with other forms of parallelism 

available at different levels of the system to accelerate the computational kernels, 

providing an alternative approach to PDES on emerging CMP architectures. 

• Introduced the concept of LP virtualization for efficient mapping of LPs to a limited 

group of processing elements at runtime, allowing for improved processor utilization, 

reduced synchronization overhead, and fine-grained dynamic load balancing. 

• Proposed varied methods for restructuring and optimizing simulation code and data, 

offering valuable insight and practical guidance for software development on CMP 

architectures. 

• Provided the necessary support for general users to harness the potential of the Cell 

processor in P-DEVS and Cell-DESV simulations without being distracted by the 



160 

technical details of multicore programming, enhancing modeler productivity and 

lowering user learning curve with reduced M&S cost. 

• Developed a modular, extensible software framework for meeting the needs of specific 

simulation requirements and for accommodating future expansion and development. 

7.3. Suggestions for Future Research 

There are a number of interesting topics for future research on DEVS-based high-

performance parallel simulation with various extensions of the work presented in this 

dissertation. Some of the more prominent topics and open issues are suggested in this section. 

7.3.1. Future Research on the LTW protocol 

The following summarizes a list of issues that warrant further investigation in the context of 

the LTW protocol proposed in this dissertation.  

• Integration of the LTW protocol with other TW optimization strategies to further 

improve the performance of P-DEVS and Cell-DEVS simulation on distributed-

memory multiprocessor cluster systems. As the full-fledged and the interface TWLPs 

still rely on the persistent input, output and state queues, simulation performance could 

be enhanced using different state-saving strategies, event cancellation techniques, and 

event set implementations in the TW domains. Moreover, varied optimism control 

techniques could be applied to regulate overly optimistic execution at the cluster level.  

• Incorporation of dynamic load balancing algorithms to support migration of lightweight 

LPs in DEVS-based TW simulations, taking advantage of the reduced overhead for 

transferring these LPs across cluster nodes. This research would allow for a quantitative 

evaluation of the impact of the LTW protocol on dynamic process migration. In 

addition, mechanisms for dynamic creation and deletion of lightweight LPs should be 

investigated to support runtime structural changes in optimistic DEVS systems.  

• Application of the LTW concepts to other types of TW-based PDES systems. This 

research would investigate general methods for constructing a PDES system in a way 

that complies with the LTW assumptions as outlined in Chapter 4. If the LTW protocol 

could not be directly applied to a PDES system as a whole, algorithms would be 

required to detect the appropriate conditions under which certain parts of the system (or 
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certain periods of a single simulation) are able to execute in a lightweight manner in 

order to reduce TW operational overhead.  

• Performance evaluation using an extended set of models with thorough sensitivity 

analysis. This sensitivity analysis would be useful to determine the effects that different 

model attributes (e.g., computational intensity, interconnectivity, and partition 

schemes), simulator configurations (e.g., event and state sizes, GVT estimation and 

fossil collection frequency, and checkpointing interval), and system parameters (e.g., 

size of available memory space, number of participating cluster nodes, inter-node 

communication characteristics, and background load fluctuation) have on simulation 

performance under the LTW protocol. Besides, additional performance metrics could 

be collected in the experiments to evaluate other aspects of the simulation performance. 

For instance, the number of active nodes (or LPs) at each virtual time and the 

percentage of useful work performed by the LPs (i.e., the proportion of events 

committed among the total number of events processed) would be useful to analyze the 

actual degree of parallelism available in a simulation under specific configurations and 

the effectiveness of the optimistic synchronization protocol.  

7.3.2. Future Research on the MADS technique 

Several issues with respect to the MADS technique need to be investigated in future research, 

as outlined below. 

• Incorporation of additional computational kernels (e.g., random number generation and 

special-purpose libraries) into the MADS software architecture to meet the 

requirements of specific P-DEVS and Cell-DEVS simulations. 

• Integration of the MADS technique with cluster-based conservative and optimistic 

synchronization algorithms to achieve high-performance parallel DEVS simulation on a 

cluster of Cell processors or on Cell-accelerated hybrid supercomputers. 

• Sensitivity analysis of the varied MADS parameters (e.g., size of TA and IA blocks, 

size of event buffer entries, size of state buffer entries, size of pending job chunks, SEK 

notification frequency, and the number of SPEs allocated to each computational kernel) 

in order to evaluate their impact on simulation performance quantitatively. In addition, 

experiments could be conducted to evaluate the improvement of modeler productivity 
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as a result of the proposed methods for hiding multicore programming details. 

• Investigation of new ways to exploiting the potential of the Cell processor in PDES 

systems. One possible direction would be to accelerate certain types of computation in 

TW simulations (e.g., rollback operation, GVT estimation, and fossil collection). 

• Development of techniques for interfacing MADS-based parallel DEVS simulation 

with different graphical modeling and visualization tools [Wai09b] on multicore 

platforms towards the realization of interactive virtual reality and simulation-based 

serious games [Wai10]. 

• Extension of the key methods derived from the MADS technique, especially the data-

flow oriented multi-grained parallelization strategy and the LP virtualization technique, 

to other homogeneous and heterogeneous CMP architectures. 
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