

Standardizing DEVS model
representation

Gabriel A. Wainer, Khaldoon Al-Zoubi, Olivier Dalle, David R.C. Hill, Saurabh Mittal,

José L. Risco Martín, Hessam Sarjoughian, Luc Touraille, Mamadou K. Traoré, Bernard

P. Zeigler.

1 Introduction

As discussed in the previous chapter, the idea of Standardizing DEVS model representation is to

allow a platform-independent DEVS model representation to be executed by a DEVS-based

simulator. In this case, a DEVS model is executed in a single processor or parallel/distributed

simulation environment. This allows model reusability without the need for performing long-

distance distributed simulation. Typically, models are stored in repositories and retrieved as

needed. This type of interoperability is very important to achieve, because often modelers

already have or can easily install a DEVS simulator on their machine. However, it is much more

difficult for them to retrieve and reuse already existing models that were intended to run on a

specific DEVS environment. Therefore, we need some way to provide access and share these

numerous models. Having a platform independent DEVS model representation format allows us

to go a step further in automatic model transformations and generate entire local copies of

distant models.

Using transformations based on code parsing, we can generate the XML description of existing

models written for a specific framework. These files can be stored in model repositories,

accessible through Internet, so that anyone (with the proper authorizations) can access them [1].

When facing a problem to which Modeling & Simulation (M&S) will be applied, the modeler

starts by searching for an existing model that could fulfill the requirements. If there is none, the

modeler can write their own but still take advantage of existing models by reusing them in their

coupled models. To do so, the users download a model description from a repository in their

framework, and then they use generic transformations to generate the code for the model. After

this, they simulate their models and those of other users on their own simulation platform.

Compared to distributed simulation interoperability, this approach has the benefit that it

drastically reduces the communications with remote servers. In fact, after the model description

has been downloaded, there is no more need for accessing the network (hence the "off-line"

appellation). However, the drawback of this is that a given model can have several

unsynchronized versions all over the world. A solution to this issue could be to use some sort of

update feed, but this is still more complicated than simply invoking a service without caring

about the underlying implementation, which can continuously improve and evolve.

Simultaneously, knowing the details about the implementation can provide insight into the

structure of the model (which is an important factor for model-based publishing [2].

To sum up both interoperability solutions exposed here, we can say that the simulator-based

approach (i.e., via distributed simulation middleware, as discussed in Section Error! Reference
source not found.) is aimed at coupling distributed or local models over remote servers,

whereas the model-based approach aims at integrating distributed models in a local simulation.

Although the DEVS mathematical formulation is universal and well known, representing

complex models with DEVS is still a difficult task (and, it is not easy to understand).

Consequently, there are a number of alternatives to represent DEVS models with different

notations and tool support. In the following sections, we will introduce model-based efforts by

different M&S groups around the world that have tackled the problem of standardizing DEVS

models and their simulators.

2 DEVSML

DEVSML is a novel way of writing DEVS models in XML. DEVSML is built on JAVAML (an

XML implementation of JAVA). JAVAML is used to specify the behavioral logic of atomic

models and the structure of coupled models. DEVSML models are transformable back and forth

between Java and DEVSML, with the objective to provide interoperability between various

models and to reuse and create dynamic scenarios.

The layered architecture of DEVSML is shown in Figure 1. A DEVS model can be provided as

a set of platform-specific components, as a set of DEVSML components, or as a combination of

both (see layer 1 in the Figure). Next, the final composed model can be transformed into a full

DEVSML representation (layers 2 and 3). To do so, the user must provide the platform from

which their model originates (e.g. DEVSJAVA, CD++, etc.). Finally, using layer 4, the

DEVSML model can be transformed to any of the compatible DEVS platforms (layer 5)

Figure 1: DEVSML layered architecture

2.1 DEVS Structure

To ensure that the final DEVSML complex model is "DEVS compliant", a single atomic

Document Type Definition (DTD) and a single coupled DTD are defined. Thus, every DEVSML

atomic or coupled model may be validated against the DEVSML DTDs. Both DTDs are listed

below:

<!-- DEVS ATOMIC MODEL -->

<!ENTITY % variable-info

 "name CDATA #REQUIRED

 type CDATA #REQUIRED">

<!ELEMENT atomic

(inputs,outputs,states,ta,deltint,deltext,deltcon,lambda,services?,java-specific?)>

<!ATTLIST atomic

DEVS MODELS

DEVSML ENGINE

PLATFORM-SPECIFIC REPRESENTATION

1

2

3

4

5

 name ID #REQUIRED

 simulator (devsjava|xdevs) #REQUIRED

 host CDATA #REQUIRED>

<!ELEMENT inputs (port*)>

<!ELEMENT port EMPTY>

<!ATTLIST port

 name CDATA #REQUIRED>

<!ELEMENT states (state*)>

<!ELEMENT state EMPTY>

<!ATTLIST state

 %variable-info;>

<!ELEMENT outputs (port*)>

<!ELEMENT ta (block?)>

<!ELEMENT deltint (block?)>

<!ELEMENT deltext (block?)>

<!ELEMENT deltcon (block?)>

<!ELEMENT lambda (block?)>

<!ELEMENT services (service*)>

<!ELEMENT service (method)>

<!ATTLIST service

 name ID #REQUIRED

 port CDATA #REQUIRED>

<!ELEMENT java-specific (package-decl,import*,constructor*,method*)>

<!ELEMENT import EMPTY>

Figure 2: DEVSML atomic DTD

<!-- DEVS COUPLED MODEL -->

<!ENTITY % connection-info

 "component_from CDATA #REQUIRED

 port_from CDATA #REQUIRED

 component_to CDATA #REQUIRED

 port_to CDATA #REQUIRED">

<!ELEMENT devs (scenario,models)>

<!ELEMENT scenario (coupled)>

<!ELEMENT coupled

(inputs,outputs,components,internal_connections,external_input_connections,

external_output_connections,java-source-program)>

<!ATTLIST coupled

 name ID #REQUIRED

 model CDATA #REQUIRED

 simulator (devsjava|xdevs) #REQUIRED

 host CDATA #REQUIRED>

<!ELEMENT inputs (port*)>

<!ELEMENT port EMPTY>

<!ATTLIST port

 name CDATA #REQUIRED>

<!ELEMENT outputs (port*)>

<!ELEMENT components (coupledRef|atomicRef)*>

<!ELEMENT coupledRef (components?)>

<!ATTLIST coupledRef

 name CDATA #REQUIRED

 model CDATA #REQUIRED

 simulator (devsjava|xdevs) #IMPLIED

 host CDATA #REQUIRED>

<!ELEMENT atomicRef EMPTY>

<!ATTLIST atomicRef

 name CDATA #REQUIRED

 model CDATA #REQUIRED

 simulator (devsjava|xdevs) #IMPLIED

 host CDATA #REQUIRED>

<!ELEMENT internal_connections (connection*)>

<!ELEMENT external_input_connections (connection*)>

<!ELEMENT external_output_connections (connection*)>

<!ELEMENT connection EMPTY>

<!ATTLIST connection

 %connection-info;>

<!ELEMENT models (model*)>

<!ELEMENT model (java-source-program)>

<!ATTLIST model

 name ID #REQUIRED>

Figure 3: DEVSML coupled DTD

Both DTDs define the structure and behavior of a DEVS model. As Figure 2 and Figure 3 show,

both atomic and coupled components are formed by standard DEVS structural definitions. In

the following code snippet (Figure 4), we show how the structure of a Lorentz Attractor coupled

model may be defined. Note that typically, a DEVS coupled model consists of structural

definitions, so no JavaML code is needed in the transformation from Java to DEVSML.

<devs>

 <scenario>

 <coupled name="root" model="LorentzAttractor" simulator="xdevs" host="127.0.0.1">

 <inputs/>

 <outputs/>

 <components>

 <atomicRef name="fxu" model="Function" simulator="xdevs" host="127.0.0.1"/>

 <atomicRef name="integrator" model="Integrator"

 simulator="xdevs" host="127.0.0.1"/>

 <atomicRef name="gxu" model="Function" simulator="xdevs" host="127.0.0.1"/>

 <atomicRef name="scope" model="Scope" simulator="xdevs" host="127.0.0.1"/>

 </components>

 <internal_connections>

 <connection component_from="fxu" port_from="out"

 component_to="integrator" port_to="in"/>

 <connection component_from="integrator" port_from="out"

 component_to="fxu" port_to="x"/>

...

Figure 4: Code snippet for a Lorentz Attractor coupled model

The structure definition of both atomic and coupled DEVS components is easy to describe in

XML following the DTD shown in Figure 2 and Figure 3.

2.2 DEVS behavior

The behavior of a DEVS model is limited to atomic components, that is, the body of the

transition and output functions, as well as the time advance function. When the behavior of an

atomic DEVS component is generated, all this code is transformed to JavaML. However,

platform-specific sentences are transformed to platform-independent ones, extending the

JavaML specification with new tags such as platform-specific, state-assignment, port-read, etc.

For example, if an atomic component contains DEVSJAVA code such as:

void deltint() {

 holdIn("standby", 3.5); // DEVSJAVA library function call

}

It is transformed to DEVSML using the following extension of JavaML:

<deltint>

 <block>

 <platform-specific>

 <state-assignment op="=">

 <lvalue>

 <var-ref name="phase"/>

 </lvalue>

 <literal-string value="standby"/>

 </state-assignment>

 <state-assignment op="=">

 <lvalue>

 <var-ref name="sigma"/>

 </lvalue>

 <literal-number kind="float" value="3.5"/>

 </state-assignment>

 </platform-specific>

 </block>

</deltint>

Using these special tags, a DEVSML model can be transformed to any supported DEVS

simulation engine. The main disadvantage of using this methodology is the portability between

different programming languages (for example, between Java and C++). Every programming

language has its native as well as external libraries to simplify applications code, (e.g.,

containers, numeric libraries, etc). With DEVSML, transformations between DEVS simulation

engines developed in different programming languages would be possible only if no specialized

functions or libraries were used. However, the DEVSML reverse engineering provides full

interoperability between models developed in the same programming language which is a great

advantage when models from different repositories are used to compose bigger coupled models

using DEVSML seamless integration capabilities. Furthermore, all the DEVSML files

generated can be stored in a Library for reuse. The composed integrated model is complete in

every respect as it contains behavior and is ready for simulation. Based on the information

contained in the DEVSML model description, the corresponding simulator is called; after the

simulator has instantiated the model, the model executes with the designated simulator.

DEVSML provides new concepts for easily integrating reverse engineering into a DEVS/XML

standard providing both interoperability and reuse. Note that in this example two DTDs were

created instead of two XML Schemas (the reason is that JavaML is defined in terms of DTDs;

the DTD definition is included in the DEVS/XML standard).

2.3 A DEVSML application

Figure 5 shows the Java application that implements DEVSML principles. It contains two

simulators, namely, xDEVS and DEVSJAVA, demonstrating the validation of DEVSML

atomic and coupled models with the same Atomic and Coupled DTDs. It converts any

atomic/coupled model from their Java implementation to DEVSML and vice versa. It also

validates any DEVSML model description and integrates any coupled DEVSML description

into a composite DEVSML coupled model ready to be simulated with the target simulator. The

tool also generates a Java code library from a composite DEVSML coupled model. It contains

various web services in operation. The five web services that are publicly offered are: (1)

convert Java model to DEVSML; (2) convert DEVSML to Java code; (3) validate the existing

DEVSML model; (4) integrate coupled and atomic DEVSML models towards a portable

'Composite' Coupled DEVSML file that is simulatable at any remote server; and (5) simulate

the Composite Coupled file and send console messages at the Server to the Client window

providing evidence that the simulation is running. The users can select their own Source and

Target directories and can choose their implementation, that is, Java code and Simulator

compatibility. The Server application checks for compatibility as well.

Figure 5: Client application snapshot implemented as an applet

To conclude, DEVSML partially solves the interoperability in DEVS/XML, and fully supports

the reuse between different simulation platforms by means of reverse engineering.

3 DEVS/SOA

This section presents DEVS/SOA in detail. We start by introducing how DEVS/SOA works in

general terms, from a user point of view. Next, we present an overview and the software

architecture of DEVS/SOA [3] and its implementation using web standards. Finally, we show

how the DEVS/SOA framework is able to integrate several DEVS and non-DEVS models.

As stated before, there are many libraries for expressing DEVS models. All have efficient

implementations for executing the DEVS protocol and provide advantages of Object Oriented

frameworks such as encapsulation, inheritance, and polymorphism. In order to simplify

notation, we use the term DEVS/JAVA to denote a DEVS library implemented in Java (for

example DEVSJAVA or xDEVS) and DEVS/NET to denote a DEVS library implemented in

any language supported by .NET (for example aDEVS in C, CD++ in C++, and DEVS.NET in

C#).

First of all, DEVS/SOA is another DEVS simulation platform. Implemented in both Java and

.NET programming environments, DEVS/SOA includes a modeling library as well as a

simulation library. The main difference with respect to other DEVS simulation libraries is that

the modeling package (including both atomic and coupled classes) are “adapters” of other

DEVS simulation engines. For instance, as seen in Figure 27, a DEVS/SOA atomic component

can be written in DEVSJAVA or xDEVS (as well as its own DEVS/SOA native atomic

component). Thus, DEVS/SOA allows interoperability among different DEVS simulation

engines using diverse web services infrastructures.

The same situation happens in the DEVS/SOA .NET infrastructure. The “magic” of

interoperability between DEVS/SOA Java and DEVS/SOA .NET resides in the message-

passing interface. As Figure 28 shows, when a simulator must send a message to another one,

all the objects (or entities) included in the message are passed from one simulator to the other in

XML format. To this end, some intermediate libraries such as JAXB in Java and native .NET

transformations are used to transform an object representation to its XML equivalent (both at

the model level, not at the simulator level). Managing messages in XML format makes possible

the publication of web services, giving DEVS/SOA the ability to publish simulators (and even

atomic or coupled models) as web services.

How to compose a DEVS/SOA model? As stated before, each DEVS M&S library is developed

using a particular programming language (Java, C, C++, C#, etc.). Since DEVS/SOA provides

interoperability, the composition of the desired DEVS model at the client application level is

completed using a platform independent mechanism. Therefore, our approach describes DEVS

coupled models exploiting the XML description format. Figure 8 shows the DEVSML

representation of a DEVS coupled model including an Experimental Frame and a Processor [12]

using three different platforms: xDEVS, DEVSJAVA, and DEVS.NET. The DEVS/XML

notation used to define the structure of DEVS/SOA distributed and interoperable models is

based on DEVSML (see Section Error! Reference source not found.). The root coupled

element determines the root model identification and the localization of the DEVS web

coordination service. The children nodes of the root element represent DEVS atomic models,

connections among DEVS models, or other DEVS coupled models (in a recurrent manner). The

data included for each atomic model item are: its name, the platform where the model can be

simulated, the class that implements the model that must be instantiated, the localization of the

DEVS web simulation service that has access to the model implementation class repository, and

finally, the names of the input and output ports of a model as well as the class types of their

messages (as internal elements). The connection items designate links between a model output

and a model input port.

Figure 6. Heterogeneous DEVS/SOA model

DEVS/SOA
(DEVSJAVA)

DEVS/SOA
(xDEVS)

DEVS/SOA

Figure 7. Interoperability in DEVS/SOA

DEVS/SOA Java
Simulator

DEVS/SOA Model
DEVSJAVA

DEVS/SOA NET
Simulator

DEVS/SOA Model
CD++

DEVS/SOA Java
Simulator

DEVS/SOA Model
native

XML XML

Figure 8. EFP DEVS/SOA model structure (DEVSML)

Summarizing, from a user’s perspective, the use of DEVS/SOA M&S implies:

• Compose a DEVS model according to the localization of the original submodels.

• Write a DEVSML file as a result of the modeling phase.

• Partition the composed model either manually or through the DEVS/SOA automated

mechanism

• Deploy the models

• Run the distributed simulation.

• Wait for the results.

The main advantage of DEVS/SOA with respect to other distributed M&S methods is that the

original models remain encoded in the native programming language related to the selected

DEVS library. Therefore, from a user point of view, no middleware is needed (although of

course DEVS/SOA is built using web services technologies), and, most important, the software

engineer does not need special distributed programming skills.

3.1 DEVS/SOA software architecture

In DEVS/SOA, an implementation of the DEVS formalism is developed within SOA so as to

provide DEVS M&S services over the WWW. DEVS/SOA allows distributing simulations over

multiple processors in the same computer, over Internet, or over both. A DEVS coupled model

is split into different submodels that run on multiple computers in a distributed manner. For this

purpose, the DEVS/SOA coordinator deals with simulators hosted anywhere on the web. Every

DEVS/SOA simulator is responsible for managing its corresponding DEVS atomic model.

Communications between simulators and coordinators are performed using standard

technologies. As a result, DEVS models can be composed in a transparent, open, and scalable

way. Another advantage of this architecture is the interoperability among DEVS submodels.

Since the communication among simulators is performed in a standard way such as XML, the

associated DEVS submodels can be implemented using different DEVS simulation engines.

<?xml version="1.0" encoding="UTF-8"?>
<coupled name="efp" host="http://192.168.1.2:8080/axis2/services/Coordinator">
<coupled name="ef" platform="devsjava" class="Ef“ host="http://192.168.1.4:8080/axis2/services/Simulator">
<atomic name="generator" platform="xdevs" class="Generator“ host="http://192.168.1.4:8080/axis2/services/Simulator">
<inport name="stop" class="Job"/>
<outport name="out" class="Job"/>

</atomic>
<atomic name="transducer" platform="xdevs" class="Transducer“ host="http://192.168.1.4:8080/axis2/services/Simulator">
<inport name="solved" class="Job"/>
<inport name="arrived" class="Job"/>
<outport name="out" class="Job"/>

</atomic>
<inport name="in" class="Job"/>
<outport name="out" class="Job"/>

<connection atomicFrom="ef" portFrom="in" atomicTo="transducer" portTo="solved"/>
<connection atomicFrom="generator" portFrom="out" atomicTo="ef" portTo="out"/>
<connection atomicFrom="generator" portFrom="out" atomicTo="transducer" portTo="arrived"/>
<connection atomicFrom="transducer" portFrom="out" atomicTo="generator“ portTo="stop"/>

</coupled>
<atomic name="processor" platform="devs.net" class="Processor“ host="http://192.168.1.3:3158/Simulator.asmx">
<inport name="in" class="Job"/>
<outport name="out" class="Job"/>

</atomic>
<connection atomicFrom="ef" portFrom="out" atomicTo="processor" portTo="in"/>
<connection atomicFrom="processor" portFrom="out" atomicTo="ef" portTo="in"/>

</coupled>

Figure 9. DEVS/SOA architecture

The proposed DEVS/SOA architecture, whose basics are captured in Figure 9, embraces three

levels of interoperability between DEVS M&S elements. The outer level comprehends the

interaction between the client application layer and the DEVS coordinator service. It is

implemented using the SOAP communication protocol according to the operations detailed at

the Coordinator WSDL file. Next, a similar interoperability level is encountered as the

communication between the DEVS coordinator and simulation services. Again, the SOAP

protocol specification is applied for exchanging structured information between both types of

services. The operations offered by the Simulator service are encoded in the Simulator WSDL

file. Finally, the third level is at the junction of a DEVS simulator with its associated native

DEVS model, responsible for implementing the DEVS/SOA atomic models. The messages

among different native DEVS models are expressed in XML. In the following, these three levels

(modeling, simulation, and client application) are described in detail.

3.2 DEVS/SOA modeling layer

Figure 10 shows excerpts of the DEVS/SOA atomic interface, base class, and the DEVSJAVA

atomic adapter. The former follows a classic DEVS atomic structure. In addition, the given

interface includes functions to receive input data in XML and to obtain the output in XML (both

implemented in the DEVS/SOA atomic model). The DEVS/SOA atomic model (class

AtomicBase) implements the previous interface, including functions getOutput and

receive, which send and receive data in XML. Finally, the DEVSJAVA adapter inherits from

this DEVS/SOA JAVA atomic model and implements the DEVS/SOA atomic interface. By

using these classes, heterogeneous DEVS/SOA and DEVSJAVA models can coexist in a

simulation. Thus, to allow interoperability with other DEVS simulation platforms, a new

adapter (only one class per simulation framework) must be implemented.

public interface AtomicInterface {

 // DEVS protocol

 void initialize();

 double ta();

 void deltint();

 void deltext(double e);

 void deltcon(double e);

 void lambda();

 // Source code is omitted for brevity ...

 Ports getInput();

 Ports getOutput();

 String[] getOutput(String portName); // Get values at output port in XML

D
EV

S/SO
A

 C
o

o
rd

in
ator

D
EV

S/SO
A

 Sim
u

lato
r

 void receive(String portTo, String[] xmlValue) throws Exception; // Receive input data in XML

}

public class AtomicBase implements AtomicInterface {

 // Source code is omitted for brevity ...

 public String[] getOutput(String portName) {

 Port port = output.get(portName);

 Set<Object> values = port.getValues();

 String[] xmlValues = new String[values.size()];

 int i = 0;

 for(Object value : values) {

 StringWriter writer = new StringWriter();

 Result result = new StreamResult(writer);

 JAXB.marshal(value, result);

 String xmlValue = writer.toString();

 xmlValues[i++] = xmlValue;

 }

 return xmlValues;

 }

 public void receive(String portTo, String[] xmlValues) throws Exception {

 Port port = this.getInput().get(portTo);

 for(int i=0; i<xmlValues.length; i++) {

 if(xmlValues[i]!=null) {

 StringReader reader = new StringReader(xmlValues[i]);

 Object value =

 JAXB.unmarshal(reader, Class.forName(port.getPortClass()));

 this.getInput().get(portTo).addValue(value);

 }

 }

 }

 // Source code is omitted for brevity ...

}

public class AtomicDevsJava extends AtomicBase implements AtomicInterface {

 private genDevs.modeling.atomic model;

 public AtomicDevsJava(Element xmlAtomic) throws Exception { // Constructor

 super(xmlAtomic);

 // It processes the corresponding portion of the input DEVSML file ...

 }

 // Source code is omitted for brevity ...

 public void deltext(double e) { // external transition function

 genDevs.modeling.message msg = buildMessage();

 model.deltext(e, msg);

 }

 public void lambda() {

 genDevs.modeling.message msg = model.out();

 genDevs.modeling.ContentIteratorInterface itr = msg.mIterator();

 while(itr.hasNext()) {

 genDevs.modeling.ContentInterface devsJavaPort = itr.next();

 Port port = output.get(devsJavaPort.getPortName());

 if(port!=null)

 port.addValue(devsJavaPort.getValue());

 }

 }

 // Source code is omitted for brevity ...

 public genDevs.modeling.message buildMessage() {

 genDevs.modeling.message msg = new genDevs.modeling.message();

 Map<String, Port> ports = input.ports;

 Iterator<String> itr = ports.keySet().iterator();

 while(itr.hasNext()) {

 String portName = itr.next();

 Set<Object> values = ports.get(portName).getValues();

 for(Object value : values) {

 genDevs.modeling.content con = model.makeContent(portName, (entity)value);

 msg.add(con);

 }

 }

 return msg;

 }

}

Figure 10. DEVS/SOA JAVA atomic interface, base class, and the DEVSJAVA adapter

4 DML: DEVS Markup Language

The DEVS Markup Language DML [4] is a design that standardizes the representation of

DEVS models (which can be defined in different DEVS platforms), and at the same time is as

generic and flexible as possible. The idea is to use an XML representation of a specific

programming language, for example the Java Markup Language, as done in DEVSML. This

approach has the advantage that many tools are available to manipulate and transform the source

code and the XML representation. However, it induces a strong coupling between the model

and a particular language, therefore restricting its deployment scope.

To enlarge this scope, a more generic representation could be employed, such as Metal [5] or

Object Oriented XML (O2XML) [6]. These markup languages enable a representation of most

object-oriented programming languages by specifying a common denominator between them.

Thereby, an XML document can be transformed into source code in any object-oriented target

language. Though this solution seems attractive, it prevents the modeler from using certain

language features or libraries (e.g., pseudo-random numbers generation with the Stochastic

Simulation library [7]; matrix operations using Boost uBLAS, etc.). Consequently, such a high-

level language with a small set of features would reduce the universality of the standard, and

make the representation of legacy models very difficult as they are usually written in a specific

programming language and use advanced language functionalities and libraries.

To resolve this issue, one should let the modelers use their favorite language and delegate the

task of interpreting them to simulators or proxies. That would imply developing an architecture

in which a model is composed of several modules in multiple languages, this model being itself

simulated by an application possibly written in yet another language. Even though this

architecture is conceivable (using technologies such as JNI, RMI, CORBA, and Web Services),

the complexity and the loss of performance would be high.

DML tries to reach a compromise between generality and flexibility, by defining an XML

representation of source code.

4.1 DEVS structure

Describing the structure of DEVS models is done by translating the set of formalism into an

XML representation. Input and output ports, parameters, and state variables are characterized by

a name and a type. To allow the deployment of the model on any simulator, this type should be

as generic as possible. However, in real-world applications, the modeler may need to use certain

types defined in particular language libraries. To satisfy these apparently contradictory

requirements, three different kinds of types must be considered:

- intrinsic types, which are natively supported by all object-oriented languages

(e.g., integer, string, float, etc.),

- custom types, which are types that are defined by the modeler in a language independent

manner, and

- language dependent types, which have to be bound to a particular type, for each targeted

languages. This notion, close to the one of Abstract Data Types, lets the modeler

conceive algorithms using abstract types that must be matched to library or language

types in order to generate the source code on the target platform.

Figure 11 shows an example of the use of these different types. In this example, the state

variable sigma is a floating-point number, whereas phase is a more complex type, namely, an

enumeration with two possible values: busy or idle. Finally, the variable queue has an abstract

type, which we bind to specific types in Java and C++. Therefore, to make this model

deployable on a simulator written in another language, the modeler has to specify what type can

be used as a queue in this language. We can also imagine having repositories of abstract types

along with their bindings in numerous programming languages, to allow their reusability in

several models.

<state>

 <variable>

 <name>phase</name>

 <type kind="custom">procPhase</type>

 </variable>

 <variable>

 <name>buffer</name>

 <type kind="languageDependent">Queue</type>

 </variable>

 <variable>

 <name>sigma</name>

 <type>double</type>

 </variable>

</state>

...

<type id="procPhase" xsi:type="enum">

 <value>busy</value>

 <value>idle</value>

</type>

<type id="Queue" xsi:type="languageDependent">

 <implementation lang="java">

 java.util.LinkedList<String>

 </implementation>

 <implementation lang="c++">

 std::queue<std::string>

 </implementation>

</state>

Figure 11: Sample of XML representation of state variables

The XML Schema for coupled DEVS models includes ports, components, and coupling

declarations, as well as a tie-breaking function in the case of classic DEVS. Components are

described by their name and the type of model they instantiate. The couplings are pairs of ports,

if necessary qualified by their component's name. Finally, the Select function is described by

ordered sets indicating priorities among components.

4.2 DEVS Behavior

One of the main issues in standardizing behavior of atomic DEVS models boils down to the

following question: How can we describe application logic in a language-independent manner?

Several efforts have been directed towards providing an XML representation of source code.

Some of them are oriented towards a sole programming language, for example, JAVAML [8],

PascalML [9], or CppML [10], while others propose vocabularies that contain a common

denominator between object-oriented languages [6][10].

None of these frameworks is generic or open to extension with language dependent features.

DML proposes a compromise between both approaches, by drawing inspiration from the

concept of weaving used in Aspect Oriented Programming [11], or more simply from the C and

C++ macros. The main concept is to use a pseudo-language such as O2XML so that the major

part of the code can be reused across different simulators, while supporting the possibility to

include language specific code snippets. This concept is illustrated in Figure 12, where generic

programming constructs are represented in XML, and use of libraries is abstracted and tied to

the specific implementations in several languages. This semi-generic language can also be used

to create custom types (i.e., classes, enumerations), which become usable in the variables and

ports declarations.

<if>

 <test>

 <binaryExpr op="equality">

 <lhs>

 <var>phase</var>

 </lhs>

 <rhs>

 <enumValue>

 <enum>procPhase</enum>

 <value>idle</value>

 </enumValue>

 </rhs>

 </binaryExpr>

 </test>

 <then>

 <codeSnippet id="enqueue" queue="buffer" element="job" />

 </then>

</if>

...

<codeSnippet id="enqueue">

 <parameter name="queue" />

 <parameter name="element" />

 <impl lang="java">

 queue.offer(element);

 </impl>

 <impl lang="c++">

 queue.push(element);

 </impl>

</codeSnippet>

Figure 12: Representation of model dynamics using a semi-generic language

This approach has two advantages:

- It allows the use of programming language features and libraries.

- It permits the representation of legacy models written for a specific simulator.

By limiting the language-dependent code snippets to a minimum, the migration of models

between platforms becomes easier, and thereby their portability and reusability are enhanced.

4.2.1 Parameterization and initialization

The above description of DEVS models is not sufficient to produce an executable specification.

Indeed, models can have parameters, which need to be set prior to simulation, and their initial

state must be specified in some way.

Figure 13 depicts how a model, regarded as a template, can be instantiated into several

parameterized models depending on the values assigned to each parameter. After that, the state

must be initialized to obtain a ready-to-simulate model. A simulator can then be fed with this

Java C++

if (phase == procPhase.idle)

{

 queue.offer(element);

} if (phase == procPhase::idle)

{

 queue.push(element);

}

executable model, along with an input trajectory if need be, and produce the output of the

simulation.

Figure 13: Parameterization and initialization of a model

To perform these operations, two approaches are possible depending on the degree of freedom

required. The simplest is to restrict parameterization and initialization to pairs of variable

identifiers and values. However, these operations can sometimes be more complex than mere

assignments (e.g., for file manipulation or random number generation). Therefore, in DML

these two activities are described in a similar fashion as the model dynamics, using the source

code representation outlined in the previous paragraph.

Consequently, the modeler needs to define two functions for each atomic model in the

hierarchy: one to set the parameters values, and the other one to initialize the state. Ideally, these

functions should be kept separate from the model definition, so that it can be easily reused with

different scenarios.

In order to simulate a DEVS model, four specifications are needed: structure, dynamics,

parameterization, and initialization. Given these specifications and if required an input

trajectory, a simulator can then produce results representing the model behavior.

4.2.2 Model behavior

The behavior of a model is normally fully represented by its output trajectory. However, it is

common to desire its state trajectory and, in the case of coupled models, the behavior of its

components as well. These two aspects can be described by sets of values annotated with a

timestamp. Figure 14 shows a sample state trajectory of a coupled model, namely the

pipeSimple defined in [12].

The XML schema for this representation of a trajectory can be deduced from the model

structure: each variable or port becomes an XML tag accepting a value in accordance with its

type. Another solution would be to have a tag variable with an attribute containing the name of

the variable.

In the case of variables of complex type, the value at a given time can be obtained by serializing

the object from memory, as is done when exchanging data between web services. This supposes

providing an XML Schema describing the structure of the object, for later use (e.g., in a

visualization tool). For custom types, this schema can be deduced from the type definition made

in the model specification; for language dependent types, the schema can often be automatically

generated from the source code.

<behavior id="pipeSimple">

 <state>

 <snapshot time="0">

 <component id="p0">

 <phase>idle</phase>

 <queue />

 <sigma>infinity</sigma>

 </component>

 <!-- other components -->

 </snapshot>

 <snapshot time="3">

 <component id="p0">

 <phase>busy</phase>

 <queue>

 <elem>job1</elem>

 </queue>

 <sigma>10</sigma>

 </component>

 <!-- and so on -->

Figure 14: Sample state trajectory

This XML representation of trajectories has the valuable advantage that it can be easily

processed by a machine while remaining human readable. However, because of the potentially

huge size of data generated, it may be necessary to switch to a more compact representation,

such as the eXternal Data Representation standard [13].

5 DCD++

Distributed CD++ (DCD++) Error! Reference source not found.Error! Reference source

not found. supports simulation over SOA in two versions: SOAP-based Web-service Error!

Reference source not found.[14] and RESTful Web-services Error! Reference source not
found.Error! Reference source not found.Error! Reference source not found.. The Distributed

DEVS Simulation Protocol (described in Section 5.2) is based on SOAP DCD++ whereas RISE

(described in Section 5.1) is based on RESTful DCD++. Both versions provide modelers with

the complete required cycle to run a simulation experiment. This includes submitting a model to

be simulated (i.e., usually partitioned over different machines) and retrieving simulation results.

Both versions decouple model representations from simulation, hence different simulation

engines can collaborate in the same simulation run. This enables different model representations

to participate in the same simulation run, hence allowing DEVS simulation engines to execute

legacy models and standardized model representations. In this section, we discuss the modeling

structure and partitions for both approaches followed by DEVS model behaviors.

5.1 RESTful Interoperability Simulation Environment (RISE)

RESTful Interoperability Simulation Environment (RISE) provides lightweight thin middleware

based on RESTful Web-services. RISE is independent of any simulation environment and

provides interoperability at three levels. First, the interoperability framework architecture level

provides the URI templates API that allows modelers to create simulation/modeling

environment (including modeling configuration, distributing simulations, starting simulation

and retrieving results). Second, the model interoperability level provides XML rules for binding

different models together. Third, the simulation synchronization level provides high-level

simulation algorithms and synchronization channels. The first and third levels are discussed in

Chapter 18 whereas the second level is discussed in this Section.

RISE Experiment framework is a URI created by the modeler (see URI templates API in

Chapter 18) to contain a domain, where a domain is a simulation environment that contains a

model and simulation engine. RISE completely wraps a domain interior, hence simplifying

interoperability between heterogeneous domains. RISE modeling interoperability level assumes

an entire model is placed in a domain, hence a domain at this level can be viewed as a model

wrapped within a URI (e.g. …/myFireModel), as shown in Figure 15. RISE treats all models

(domains) as black boxes with input and output ports. In other words, each model views other

heterogeneous models as part of its environment. It is worth to note that a model (within a

domain) may be partitioned among different processors, simulated by conservative/optimistic

algorithms according to DEVS/none-DEVS formalism. However, at the RISE layer the model is

seen as a URI (which contains both the model and the simulation engine that simulates it).

Figure 15: RISE Domain Models Interconnections

Modelers need to configure the experiment frameworks by sending XML configuration

documents via PUT channels to their URIs (e.g. …/MyFireModel). This represents models

interconnections shown in Figure 15 in the XML document. Note that the model

interconnections map is converted into routing tables by simulation engines (see Chapter 18),

allowing them to route messages during simulation according to the model URI and message

input port. Further, plug-and-play capability of RESTful Web-services takes this configuration

to another level. This plug-and-play level allows modelers to overwrite model interconnection

during simulation runtime, allowing simulation engines to create routing tables. Thus, models

(without prior knowledge) may join or leave a simulation session at runtime. In such a case, the

XML configuration is sent to the simulation engine URI (…/MyFireModel/simulation).

In Figure 15, Model-2 influences Model-1 via ports-2 and 3 of Model-2. Model-3 influences

both Model-1 and Model-2 via Port -1 of Model-3. This implies that the output ports of a model

can generate RISE external messages addressed to their connected input ports during

simulation, thereby influencing the receiving models. Note that Port-1and Port-3, of Model-3

and Port-4 of Model-1 are not used by RISE. These ports can still be used by modelers, for

instance, to influence a model dynamically during active simulation. Figure 16 shows the XML

configuration document for the example in Figure 15. This document needs to be submitted to

each domain (typically constructed and submitted by client software). The RISE configuration

must be the enclosed element <RISE> body (which starts on line 4 in Figure 16). The domains

are free to define their own specific configuration outside the <RISE> block. Line #3 shows

RISE protocol version, and simulation type where “C” type stands for Conservative-based and

“O” type for Optimistic-based simulation. Lines 4-32 define domains (models) configurations.

Line #5 defines the Main domain URI. The Main domain is needed during active simulation,

Domain-3
Domain-2

Model-2

Port-1 Port-2 Port-3
Port-4

Domain-1

Model-1

Port-1 Port-2 Port-3 Port-4

Model-3

Port-1
Port-2

Port-3

RISE Layer

discussed in Chapter 18. Lines 6-31 define RISE ports interconnections. For example, Lines 7-

12 define the connection from port #2 in URI <…/Domain-2> to port #1 in URI <…/Domain-

1>.

1 <ConfigFramework>

2 …

3 <RISE Version=”1.0” Type=”C”>

4 <Domains>

5 <Main><URI>…/Domain-1</URI></Main>

6 <Links>

7 <Link>

8 <From><Port>Port-2</Port>

9 <URI>…/Domain-2</URI></From>

10 <TO><Port>Port-1</Port>

11 <URI>…/Domain-1</URI></TO>

12 </Link>

13 <Link>

14 <From><Port>Port-3</Port>

15 <URI>…/Domain-2</URI></From>

16 <TO><Port>Port-2</Port>

17 <URI>…/Domain-1</URI></TO>

18 </Link>

19 <Link>

20 <From><Port>Port-1</Port>

21 <URI>…/Domain-3</URI></From>

22 <TO><Port>Port-4</Port>

23 <URI>…/Domain-2</URI></TO>

24 </Link>

25 <Link>

26 <From><Port>Port-1</Port>

27 <URI>…/Domain-3</URI></From>

28 <TO><Port>Port-3</Port>

29 <URI>…/Domain-1</URI></TO>

30 </Link>

31 </Links>

32 </Domains>

33 </RISE>

34 …

35 </ConfigFramework>

Figure 16: RISE Model Domain Configuration

RISE is independent of any modeling representation or simulation engines. For example, CD++

uses RISE to simulate different distributed model partitions. In this case, the CD++ domain is

viewed as a single model that is executable by a CD++ engine. In the RESTful DCD++ Error!

Reference source not found.Error! Reference source not found.), the modeler partitions the

DEVS or Cell-DEVS model among different RISE instances. Note that the CD++ interior

domain is hidden behind a single URI, as discussed previously, even though it is using other

RISE middleware instances to simulate its own domain model partitions. RISE in this case is a

server with an IP address and port number, hence RISE is usually placed on a machine by itself.

However, multiple instances of RISE may be placed on the same machine by assigning different

port numbers, usually for testing purposes. For example, assume a modeler created experiment

framework <…/cdpp/sim/ workspaces/Bob/DCDpp/Producer_Consumer>. The RISE server

then creates experiment Producer_Consumer. Workspace Bob and service DCDpp are created,

if they do not already exist. DCDpp service indicates that the simulation is using the DCD++

engine to execute the model. Assume further that the modeler wants to place atomic model

“Producer” on a server while atomic model “Consumer” is placed on a different server. In this

case, the modeler needs to send the following partitioning (Figure 17) to the experiment URI:
<DCDpp>

 <Servers>

 <Server IP="10.0.40.8" PORT="8080">

 <MODEL>Producer</MODEL></Server>

 <Server IP="10.0.40.9" PORT="8282">

 <MODEL>Consumer</MODEL></Server>

 </Servers>

 </DCDpp>

Figure 17: RESTful DCD++ Model Partitions by a Modeler

Though it is easier for a modeler to partition a model in terms of IP address and port number,

the simulation is conducted among URIs (which allows multiple users and experiments to be

performed simultaneously). Thus, the main server must convert the modeler documents into the

format shown in Figure 18. In this case, the main server assigns an ID to every server in the

distributed simulation where “0” is its own ID. It further creates a name for each server (i.e., a

combination of the server IP and port number). This name is the server user account on all other

servers. This is needed because all messages during simulation are authenticated according to a

user name and password. Furthermore, it assigns a URI for each model partition. The model

partition at the main server is assigned the URI created by the modeler while other server

partitions are assigned slightly modified URIs. This is because the main server needs to create

experiment partitions on other supportive servers similar to other clients. This also ensures URI

uniqueness on all servers, since supportive servers on an experiment may be used as main

servers by other modelers for other experiments.

<DCDpp>

 <Servers>

 <Server ID=”0” NAME="10_0_40_8_8080">

 <URI>…/workspaces/Bob/DCDpp/Producer_Consumer</URI>

 <MODEL>Producer</MODEL></Server>

 <Server ID=”1” NAME="10_0_40_9_8282">

 <URI>…/workspaces/10_0_40_8_8080/DCDpp/Producer_Consumer_Bob</URI>

 <MODEL>Consumer</MODEL></Server>

 </Servers>

 </DCDpp>

Figure 18: RESTful DCD++ Model Partitions by the Main Server

5.2 Modeling using the Distributed DEVS Simulation Protocol

In [14], a flexible and scalable XML-based message-oriented mechanism was developed to

allow interoperability between different DEVS implementations based on the SOAP-based

DCD++ Error! Reference source not found. simulation package. This section focuses on the

modeling part while simulation synchronization is described in Chapter 18. The interoperability

is achievable with minimum design changes to each DEVS implementation, mainly by hiding

the detailed implementation behind a wrapper (i.e., a SOAP port) and focusing only on the

exchanged XML messages. This method assumes the simulation is conducted among different

domains where a domain contains a DEVS model (with an engine capable of executing that

model). The model in this case represents a complete reusable feature that a modeler wants to

plug into an overall model hierarchy. The main idea behind modeling here is wrapping all

models across domains within a single DEVS coupled model, which can be simulated by the

main domain simulation engine while other domains only simulate their portion of the overall

coupled model. For example, Coupled 1 and Coupled 2 are wrapped within Coupled 0, as

shown in Figure 19. This information is described in the Model structure XML document.

Figure 19: Coupled model partitioned across DEVS Domains

The Model structure XML document (shown in Error! Reference source not found.) is initially

submitted by the modeler to the main DEVS domain to describe how the overall model is

structured so that each DEVS version can identify which models belong to its domain. Further,

from this document, the main domain can identify the participant supportive domains. The

model structure document contains enough information to allow different domains to create

local models, coordinators (i.e., coupled model processor), and simulators (i.e., atomic model

processor). It also includes data on how they will relate to other models in different domains.

The main DEVS domain must pass this document before it starts the simulation. The model

structure document contains the following information (Error! Reference source not found.):

• model names,

• model type (coupled/atomic),

• model input/output ports,

• coupled models internal submodels and their ports connections,

• models domain URIs, and

• coupled models synchronization algorithms used (e.g., the Head/Proxy Coordinator

discussed in Chapter 18).

The DEVS models hierarchy can easily be mapped into this XML document. For example,

assume two models connected with each other as in Figure 19 (two DEVS domains where each

model is specific to its domain implementation). In this case, the two models would be enclosed

within an outer model (Coupled 0), resulting in the XML document shown in Error! Reference
source not found.. This XML document also serves as an agreement contract between various

implementations on the used synchronization schemes. For example, the COUPLED_SYNC

keyword can be used to choose different coordination schemes to simulate a distributed coupled

model across various domains. In this way, the standard can easily adopt any new schemes that

may appear in the future.

<MODEL_STRUCTURE ver=”1.0”>

 <COUPLED_SYNC>

 <scheme ver=”1.0”>HeadProxy</scheme>

 </COUPLED_SYNC>

 <Models>

 <Model Type=”Coupled”>

 <Name> Coupled0 </Name>

 <Components>

 <Name Type=”Coupled”>Coupled1</Name>

 <Name Type=”Coupled”>Coupled2</Name>

 </Components>

 <URI>http://… </URI>

 <LINKS>

 <LINK>

 <FROM>

 <Component>Coupled1</Component>

 <Port>OUT1</Port>

Coupled 1

OUT1

IN1

Coupled 2

IN2

OUT2

Coupled 0

 </FROM>

 <TO>

 <Component>Coupled2</Component>

 <Port>IN2</Port>

 </TO>

 </LINK>

 …

 </LINKS>

 …

 </Model>

 <Model Type=”Coupled”>

 <Name> Coupled1 </Name>

 <Ports>

 <Port Type=”in”>IN1</Port>

 <Port Type=”out”>OUT1</Port>

 </Ports>

 <URI>http://… </URI>

 …

 </Model>

 <Model Type=”Coupled”>

 <Name> Coupled2 </Name>

 <Ports>

 <Port Type=”in”>IN2</Port>

 <Port Type=”out”>OUT2</Port>

 </Ports>

 <URI>http://… </URI>

 …

 </Model>

 </Models>

 …

</MODEL_STRUCTURE>
Figure 20: XML Model Structure Document Example

A given domain can use any model representation, since each domain should contain a

simulation engine capable of executing that model partition. For example, the SOAP-based

DCD++ Error! Reference source not found. partitions a model among different machines

where each machine is wrapped within a SOAP port. Figure 21 shows an example of such

partition. Lines 2-11 list all machines participating in the distributed simulation. Each machine

has a rank (i.e., id) and a SOAP-port URI. Lines 12-19 describe the model partitions. In this

example, a 30x30 Cell-DEVS fire coupled model (i.e., each cell is an atomic model) is split

between two machines.

1 <Grid>

2 <MACHINES>

3 <MACHINE>

4 <MACHINE_RANK>0</MACHINE_RANK>

5 <MACHINE_URI>http://.../CDppPortType</MACHINE_URI>

6 </MACHINE>

7 <MACHINE>

8 <MACHINE_RANK>1</MACHINE_RANK>

9 <MACHINE_URI> http://.../CDppPortType</MACHINE_URI>

10 </MACHINE>

11 </MACHINES>

12 <MODEL_PARTITIONS>

13 <PARTITION machine="0">

14 <ZONE>fire(0,0)..(14,29)</ZONE>

15 </PARTITION>

16 <PARTITION machine="1">

17 <ZONE>fire(15,0)..(29,29)</ZONE>

18 </PARTITION>

19 </MODEL_PARTITIONS>

20 </Grid>

Figure 21: SOAP-based DCD++ Cell-DEVS Model Partitioning

5.3 CD++ DEVS Model Structure and Behavior

CD++ DEVS modeling behavior is the same for both SOA versions. This is mainly because

DCD++ separates SOA (RESTful or SOAP Web-services) from the actual modeling/simulation

environment. This separation allows CD++ to be portable to other platforms other than SOA

and to keep the door open for algorithms optimization and other improvement. In other words,

separation between simulation environment and Web-services allows both parts to evolve

independently with less complexity.

CD++ represents its coupled models in textual format by connecting ports of models together

similar to what has been discussed so far. The coupled model representation is parsed and its

information is loaded into a coordinator where it is simulated. For example, Figure 22 shows a

CD++ coupled model for a barbershop. In this example, “top” coupled model is defined in lines

2-27. Lines 4-7 lists the models enclosed in the “top” coupled model. In this case, Line #5

shows an atomic model instance named “reception” defined in C++ class “Reception”. This

allows more instances of an atomic model to be used, if needed. Line #6 declares a coupled

model named “Barber” and its definition should come later. Lines 8-13 define “top” model

input/output ports. Lines 14-25 define port connections for the “top” model. For instance, Lines

15-23 define a connection from input port “newcust” of the “top” model to port “newcust” of

the “reception” atomic model. Lines 29-32 define the “Barber” coupled model in a similar way

to the “top” model. Lines 33-39 initialize certain values for the “reception” atomic model.

1 <Models>

2 <Model Type=”Coupled”>

3 <Name>top</Name>

4 <Components>

5 <Name Type=”Atomic” Class=”Reception”>reception</Name>

6 <Name Type=”Coupled”>Barber</Name>

7 </Components>

8 <Ports>

9 <Port Type=”in”>newcust</Port>

10 <Port Type=”in”>next</Port>

11 <Port Type=”out”>cust</Port>

12 <Port Type=”out”>finished</Port>

13 </Ports>

14 <LINKS>

15 <LINK>

16 <FROM>

17 <Port>newcust</Port>

18 </FROM>

19 <TO>

20 <Component>reception</Component>

21 <Port>newcust</Port>

22 </TO>

23 </LINK>

24 …

25 </LINKS>

26 …

27 </Model>

28

29 <Model Type=”Coupled”>

30 <Name>Barber</Name>

31 …

32 </Model>

33 <Model Type=”Atomic”>

34 <Name>reception</Name>

35 <Parameter>

36 <Name>numberofChairs</Name><Value>3</Value>

37 </Parameter>

38 …

39 </Model>

40 </Models>

Figure 22: CD++ Coupled Model Example

The CD++ provides a template for modelers where they need to overwrite four C++ methods, as

shown in Figure 23. Methods initFunction, externalFunction, internalFunction, and

outputFunction are wrappers to initialize model specific values, handle a message from a port,

handle an internal transition, and generate outputs, respectively. The new atomic model is then

inherited from the shown Atomic class in Figure 23. During simulation, those methods are

invoked by the atomic model “simulator” according to the DEVS formalism.

Figure 23: CD++ Atomic Model Template

6 CoSMoS

The design of CoSMoS is based on the separation of model specification and simulator

protocol. This partitioning was used to develop the concept of the Shared Abstract Model

(which will be fully discussed in the following chapter). The concept of interoperability,

however, cannot be completely divorced from model specification. One simulation engine can

correctly execute a model that is developed for another simulation engine if and only if both

simulation engines adhere to the same mathematical specification. The implication is to have a

syntactical standard for model specification that conforms to the mathematical specification.

Model specification should consist of (i) visual syntax, (ii) database syntax, and (iii)

programming syntax. To achieve this objective, the Component-based System Modeling

(CoSMo) framework has been developed [15][16][15]. The CoSMo has a unified framework

that supports logical, visual, and database persistent modeling. It is aimed at discrete-event,

discrete-time, continuous-time, and cellular automata specifications. The goal is to provide a

mechanism for visual model development, and for storing logical models in databases, while

also providing support and management facilities for developing a family of interrelated

models. Such capabilities are useful for individual users and crucial for teams of users, for

example for purposes of software/hardware co-design [18].

The top down concept of CoSMo has a visual syntax for logical models, which serves as the

basis for storing logical specification of models in alternative database and flat files. Given the

stored logical models, they can be translated to different programming languages for different

target simulation engines. Other approaches to interoperability are generally defined in terms of

programming syntax such as C++, Java, and XML—standardization is based on the traditional

software engineering concepts and techniques. For example, simulation tools such as DEVS-

Suite render a visual representation of models from implemented code that persist in flat files.

In CoSMo, visual and database persistence of models are proposed to be integral to

standardization.

The CoSMo environment supports developing Parallel DEVS models and generating partial

code for execution using DEVS-Suite. For coupled DEVS models, it generates complete code.

For atomic models, it generates partial code. For the transition, output, and time advance

functions only template code is generated. Other translators can be developed in a

straightforward manner for other simulators such as ADEVS. As shown in Figure 24, the

separation of a modeling engine and a simulation engine has important implications for

standardization particularly when standardization is not at the level of XML [15] and DEVSML

[19], or high-level programming languages such as Java. In effect, the CoSMo Simulator

environment (called CoSMoS) is built from CoSMo and DEVS-Suite. Users can develop

models using well-formed visual syntax that in turn allows generating “standardized” models

stored in relational databases which in turn can be used to generate XML-based and high-level

programming code. Standardization, from the perspective of the CoSMoS framework, enhances

visual model development, model management via databases as well as reducing errors in

programming code.

Figure 24: separation of a modeling engine and a simulation engine

The underlying concept of CoSMoS can enable interoperability among multiple simulation

engines. The CoSMoS architecture and realization supports adding translators as plug-ins. The

CoSMoS framework also aids in supporting interoperating simulators given current and new

generations of middleware technologies such as service-oriented computing. As a result, the

XML Schema translator developed for CoSMo can be used to support SOA-based distributed

simulation. For example, the DEVS/SOA environment [19] can be a target simulation engine

and thus writing models at the level of DEVSML, one can visually develop models that are

logically correct with respect to the parallel DEVS formalism. Therefore, users can

automatically generate code for atomic and coupled models given target simulation engines.

The structures of the atomic and coupled models as well as their relationships are formulated as

a set of tables and relations in a relational database. The axioms of CoSMo also provide a set of

rules for creating a family of models such that composition and specialization relationships

among different model designs do not conflict with one another.

The visual, and programming elements for DEVS mathematical specifications, and the support

repositories, must account for the behaviors of atomic and coupled models. A key obstacle to

Mod
el

Spe
cif

ica
tio

ns

with
 A

bs
tra

ct
Sim

ulat
or

Simulator

Design and Implementation

ModelModel

SimulatorSimulator
SimulatorSimulator

DEVS-Suite

CoSMo

CoSMoS

Mod
el

Spe
cif

ica
tio

ns

with
 A

bs
tra

ct
Sim

ulat
or

Simulator

Design and Implementation

ModelModel

SimulatorSimulator
SimulatorSimulator

DEVS-Suite

CoSMo

CoSMoS

achieving this goal is the lack of visual notation for atomic models. Different authors have

proposed and used variations of the Statecharts formalism to represent states and functions of

atomic models. The visual statechart elements (states, function, and transitions) are adapted

such that internal, external, and output functions can be distinguished (solid, small dashed, and

large dashed lines are used). In other work [20], a notation that is also derived from Statecharts

is developed for specifying the conditionals and distinguishing between transition functions

with at=0 and ta>0. From the perspective of making DEVS accessible to a broader community

of users, the UML visual notation is proposed for modeling the behavior of atomic models [21].

In this work, the developed DEVS/UML models are executed using a parallel DEVS simulation

engine. Unfortunately, developing a simple visual notation suitable for complete behavior

specification of atomic model remains challenging since Java and other such programming

languages allow arbitrary logic and, compared to visual notation, can capture complete details

of a model dynamics. Therefore, existing notations and tools can only support generating partial

and complete source code for atomic models. The CoSMo modeling engine can be extended

once a standardized visual notation for atomic models becomes available. The extension of the

relational database and model translators to target programming code will be straightforward.

Finally, it is noted that although use of generic modeling formalisms is important, it is equally

important to provide users with user-friendly, yet formally grounded, capabilities for developing

simulation models. In DEVS, as in other general-purpose M&S approaches, domain knowledge

must be incorporated into the generic atomic and coupled model specifications. It is only then

that the model dynamics of a system can be simulated and evaluated. For certain application

domains, such as electrical systems, visual notation (and thus programming code templates) are

available. However, for other application domains, such as biological and social-ecological

systems, universal agreements do not exist. Nonetheless, standardization for the generic atomic

and coupled DEVS models is highly important and undoubtedly necessary toward developing

domain-specific standards and more generally enabling a new kind of model verification and

simulation validation.

7 SUMMARY

This chapter has focused on various methods for standardizing DEVS model representations,

which is necessary to enable platform-independent DEVS models to interoperate with each

other. The concept relies on defining a generic representation that other tools can use to

understand how a model is created, which allowis sharing of existing models. Most of the

examples in this chapter are based on XML descriptions that can be transformed and

manipulated to achieve interoperability.

We showed how DEVSML (an XML notation built on JAVAML) can be used to transform

different compatible DEVS platforms. DEVS coupled models are built using Document Type

Definitions, and the atomic models are transformed into a combination of JavaML code with

special tags.

DEVS/SOA includes a model library and a simulation library (implemented in Java and .Net).

Interoperability is achieved by using standardized XML for message passing, and the ability to

publish simulators, atomic, and coupled models as web services.

DML, the DEVS Markup Language, standardizes the DEVS model representation using an

XML representation of specific languages (e.g., JavaML), and provides the common

denominator of most object-oriented languages in order to allow the use of the features of

language libraries. Modelers can use their favorite programming language, which is interpreted

by a simulation proxy.

DCD++ supports simulation on SOAP-based or RESTful Web Services (also called the

Distributed DEVS Simulation Protocol, DDSP, and the RESTful Interoperability Simulation

Environment, RISE). In both cases, different simulation engines can interoperate to execute a

complete simulation. DDSP introduces an XML-based environment to interoperate different

DEVS implementations, using SOAP-based messages. RISE provides an interoperability

framework (and API based on URIs so the modelers can create models, simulations, and

experiments), a model interoperability layer (providing XML rules to combine different models

together, and simulation synchronization algorithms.

Finally, CoSMoS provides a visual syntax, a programming syntax, and a database syntax that

allow the models to be visually created, to be stored in a persistent data store, and overall make

implementation and interoperability of components easy. CoSMoS supports the creation of

models and generates code that can (partially) be executed on the DEVS-Suite environment.

These different efforts show the varied possibilities in achieving model interoperability, sharing,

and reuse, based on a DEVS-based methodology.

REFERENCES
[1] R. Chreyh, G. Wainer. "CD++ Repository: An Internet Based Searchable Database of

DEVS Models and Their Experimental Frames". 2009 Spring Simulation Conference -

March 2009.

[2] Pieter J. Mosterman, Don Bouldin, and Andrzej Rucinski, "A Peer Reviewed Online

Computational Modeling Framework," paper ID pmo131763 in proceedings of the

Canadian Design Engineering Network (CDEN) 2008 Conference, Halifax, Nova Scotia,

July 27-29, 2008.

[3] S. Mittal, J. L. Risco-Martín, and B. P. Zeigler (2009), “DEVS/SOA: A Cross-Platform

Framework for Net-centric Modeling and Simulation in DEVS Unified Process,”

Simulation, vol. 85, no. 7, pp. 419-450.

[4] L. Touraille, M.K. Traore, D.R.C. Hill. "A Mark-up Language for the Storage, Retrieval,

Sharing and Interoperability of DEVS Models". Proceedings of the 2009 ACM/SCS

Spring Simulation Multiconference, SpringSim 2009, San Diego, CA, USA, March 22-

27, 2009

[5] M. Lemos. "MetaL: An XML-based Meta-Programming Language". http://www.meta-

language.net/

[6] M. Wiharto, P. Stanski. "An Architecture for Retargeting Application Logic to Multiple

Component Types in Multiple Languages". Fifth Australasian Workshop on Software

and System Architectures, 2004.

[7] P. L'Ecuyer, L. Meliani, J. Vaucher. "SSJ: A Framework for Stochastic Simulation in

Java". Proceedings of the 2002 Winter Simulation Conference.

[8] G. J. Badros, “JavaML: a markup language for Java source code,” Computer Networks,

vol. 33, no. 1, pp. 159-177, 2000.

[9] G. McArthur, J. Mylopoulos, S.K. Ng. "An Extensible Tool for Source Code

Representations Using XML". Proceedings of the Ninth Working Conference on

Reverse Engineering. 2002.

[10] E. Mamas, K. Kontogiannis. "Towards Portable Source Code Representations Using

XML". Proceedings of the Seventh Working Conference on Reverse Engineering. 2000.

[11] G. Kiczales et al. "Aspect-Oriented Programming". Proceedings of the European

Conference on Object-Oriented Programming. 1997.

[12] B. Zeigler; T. Kim; H. Praehofer. Theory of Modeling and Simulation: Integrating

Discrete Event and Continuous Complex Dynamic Systems. Academic Press. 2000.

[13] H. Vangheluwe, J. de Lara, J.-S. Bolduc, E. Posse, "DEVS Standardization: some

thoughts". Winter Simulation Conference 2001.

http://www.meta-language.net/
http://www.meta-language.net/

[14] K. Al-Zoubi, and G. Wainer, “Interfacing and Coordination for a DEVS Simulation

Protocol Standard,” in The 12-th IEEE International Symposium on Distributed

Simulation and Real Time Applications, Vancouver, British Columbia, Canada, 2008.

[15] H.S. Sarjoughian, and R. Flasher, (2007), System Modeling with Mixed Object and Data

Models. DEVS Symposium, Spring Simulation Multi-conference, Norfolk, VA, USA.

[16] H.S. Sarjoughian, V. Elamvazhuthi, (2009), “CoSMoS: A Visual Environment for

Component-Based Modeling, Experimental Design, and Simulation”, Proceedings of the

International Conference on Simulation Tools and Techniques, March, 1-9, Rome, Italy.

[17] W. Hu and H. S. Sarjoughian, (2005), “Discrete event simulation of network systems

using distributed object computing,” Proceedings of the Intl. Symposium on

Performance Evaluation and Telecom. Systems, San Diego, CA, pp. 884-893.

[18] M. Traoré, (2009), “A Graphical Notation for DEVS”, High Performance Computing &

Simulation Symposium, Proceedings of the Spring Simulation Conference, March, San

Diego, CA, ACM Press.

[19] S. Mittal, J. L. Risco-Martín, and B. P. Zeigler, “DEVSML: automating DEVS

execution over SOA towards transparent simulators,” in Spring Simulation

Multiconference, SpringSim 2007, Norfolk, Virginia, USA, 2007, pp. 287-295.

[20] D. Huang, H.S. Sarjoughian, (2004), “Software and Simulation Modeling for Real-time

Software-intensive System”, The 8th IEEE International Symposium on Distributed

Simulation and Real Time Applications, 196-203, October, Budapest, Hungary.

[21] J. Mooney, H.S. Sarjoughian, (2009), “A Framework for Executable UML models”,

High Performance Computing & Simulation Symposium, Proceedings of the Spring

Simulation Conference, March, San Diego, CA, ACM Press.

