

Standardizing DEVS Simulation
Middleware

Gabriel A. Wainer, Khaldoon Al-Zoubi, Olivier Dalle, David R.C. Hill, Saurabh Mittal,

José L. Risco Martín, Hessam Sarjoughian, Luc Touraille, Mamadou K. Traoré, Bernard

P. Zeigler.

1 Introduction

As discussed earlier in Chapter 16, there are two different interoperability objectives that one

must consider when standardizing DEVS environments: (1) Standardizing DEVS model

representation to allow a platform-independent DEVS model representation that can be

executed by any DEVS-based simulation tool. (2) Standardizing Interoperability Middleware to

interface different simulation environments and allow synchronization for the same simulation

run across a distributed network regardless of their model representation.

This chapter focuses on approaches by different groups to standardize the simulation

middleware. All of the implementations discussed in this chapter are based on a Service

Oriented Architecture (SOA) design, which employs the concept of deploying services so that

they can be invoked by clients. This concept is applied in CORBA and SOAP/REST Web-

services.

This kind of middleware is of interest in order to overcome current distributed simulation

challenges and to meet future expectations in this area [1][2]. A standardized DEVS simulation

protocol should enable different DEVS implementations to simulate the same DEVS model

hierarchy partitioned between various DEVS engines in distributed fashion. Moreover, each

DEVS domain in this distributed system should be able to execute its legacy models and, thus,

perform distributed simulation experiments between different heterogeneous models and

engines. The middleware designs showed in this chapter offer simulation resources as a set of

services that can be invoked by simulators, and where these simulators act as peers (i.e., clients

and servers at the same time) to each other to synchronize a simulation session.

The designs presented in this chapter show that different methods can be employed for DEVS

simulation synchronization. One option is to expose the actual DEVS simulators and

coordinators (and to take care of synchronization at that level). A second option considers

placing the DEVS coordinators and simulators of a domain behind a wrapper so that this

wrapper routes all information to the appropriate coordinator/simulator. Further, the

synchronization protocols can pass all simulation data between distributed entities in the form of

procedure parameters (relying on CORBA or SOAP-based Web-services), or can pass

simulation data between distributed entities in the form of XML messages.

2 DEVS/SOA

As discussed in the previous chapter, DEVS/SOA is a DEVS simulation platform implemented

in both Java and .NET programming environments. It manages messages in XML format, which

enables the publication of web services (including the publishing of simulators and even atomic

or coupled models as web services). As discussed earlier, there are now many libraries for

expressing DEVS models around the world. All have efficient implementations for executing

the DEVS protocol and most of them provide the advantages of Object Orientation (such as

encapsulation, inheritance, and polymorphism). In order to simplify notation, we use the term

DEVS/JAVA to denote a DEVS library implemented in Java (for example DEVSJAVA or

xDEVS) and DEVS/NET to denote a DEVS library implemented in any language supported by

.NET (for example ADEVS in C, CD++ in C++ and DEVS.NET in C#).

2.1 DEVS/SOA simulation layer

The DEVS/SOA simulator integrates the common DEVS/SOA atomic model interface pictured

at the bottom of Figure 1 to support multi-framework interoperability. This modeling interface

plus a customized adapter allow the aggregation of DEVS/JAVA native models (xDEVS,

MicroSim, DEVSJAVA, etc) in parallel with DEVS/NET based models (ADEVS, CD++,

DEVS.NET, etc). A noteworthy achievement of a DEVS modeling common interface is the

presence of an embedded "translator" that is in charge of mapping incoming messages to XML

and outgoing messages the other way around.

Figure 1. DEVS/SOA architecture

The communication between a given DEVS/SOA atomic models and its corresponding

Simulator are detailed in an XML format. Therefore, the essential duty of the aforementioned

DEVS modeling interface translator is to bind the platform independent XML data types to the

message objects exchanged between the DEVS/SOA simulator and the DEVS atomic models.

D
EV

S/SO
A

 C
o

o
rd

in
ator

D
EV

S/SO
A

 Sim
u

lato
r

Figure 2. DEVS/SOA XML Message Mapping (centralized in root coordinator)

Figure 2 illustrates the message passing process of the coupled model consisting of an

Experimental Frame (ExpFrame, which generates jobs to be processed, and it computes the

performance obtained when processing those jobs) and a Processor (which models the activity

of a server that we want to simulate) using DEVS/SOA . Dashed lines represent the model

dataflow

i. The ExpRrame DEVS/SOA atomic model requests an output message from a

platform specific model (xDEVS or DEVS.NET) using GetValuesOnPort and

GetOutput;

ii. a simulator requests an XML formatted output message from the DEVS/SOA

atomic model using GetOutput;

iii. the Coordinator requests an XML formatted output message from a Simulator and

sends it to another simulator through the corresponding ports coupling;

iv. a simulator receives an XML formatted message using Receive;

v. the DEVS/SOA atomic model receives a platform specific message;

vi. the platform specific Processor model receives the value of the message.

It should be mentioned that each operation embodies a specific input or output port. The right-

hand side of Figure 2 symbolizes the translation procedure that converts a DEVS message

(DEVS model input or output) built from class objects into an XML based document (marshall),

and vice versa (unmarshall). The corresponding steps (1) and (2) can be seen on the left-hand

side of the figure. Because of this XML serialization, DEVS model inputs and outputs are sent

through the web within SOAP.

Figure 3 depicts the DEVS/SOA simulator interface. The DEVS/SOA simulator is implemented

as a classic DEVS simulator, with the difference that data are managed in XML. Thus, the input

and output of a function can be declared using standard data types (string and double) and

the publication of such interfaces as web services can be easily performed.

public interface Simulator{

 public void setModel(String XmlModel); // Receive the corresponding DEVSML part

 void initialize(double t); // Typical DEVS initialization function

 double getTN(); // Returns the time of the next event

 void deltfcn(double t); // Encapsulate the call to deltint, deltext and deltcon in the model

 void lambda(double t); // Output function

 String[] getOutput(String portName); // Returns the values at output ports as XML

 void receive(String portTo, String[] xmlMessage); // Receive messages in XML format

Job

Id

Name

Time

< …… ……

……

……
……

…… />

Job (XML)

1 2

2

1

Unmarshall

Marshall

Simulator
192.168.1. 4

Simulator
192.168.1. 3

Coordinator
192.168.1. 2

GetOutput 1 GetOutput 1Receive 2 Receive 2

GetOutput

GetOutput
Receive

Receive

GetValuesOnPort GetValuesOnPortReceiveToPort ReceiveToPort

ExpFrame
(xDEVS)

Processor
(DEVS.NET)

DEVS/SOA Atomic DEVS/SOA Atomic

SOAP

}
Figure 3. Simulator interface

Technically, these operations, expressed in the WSDL file of the DEVS/SOA Simulator service,

wrap the classic DEVS simulation protocol with the purpose of achieving a qualified and

standardized DEVS simulation.

Finally, Figure 4 shows the DEVS/SOA Coordinator interface. Likewise, as pictured in Figure

1, the Coordinator service layer together with a web service frontend invokes DEVS simulation

operations against the Simulator service layer. Again, the communication is driven by the

standard SOAP protocol and the operations are detailed in the Simulator service WSDL file

allowing platform-independent interactions. Moreover, assuming that a coordinator is already

provided by the client application with the root DEVS model based on DEVSML syntax, the

initial coordination task comprehends parsing the DEVSML document looking for DEVS

atomic or coupled models and their connections. Each atomic or coupled model supplies the

coordinator with the associate remote simulator location in order to enable communications

among them. The connections among the models let the coordinator be aware of the entire

distributed circuit to carry out proper performance analysis. After the communication between

the coordinator (coordination service layer) and the respective simulators (simulation service

layer) is set up, the coordinator proceeds to activate and initialize all simulators by feeding them

with their proper DEVSML based model definition. Next, the coordinator continues with the

simulation initialization within the DEVS/SOA simulation protocol.

public interface Coordinator{

 public void setModel(String XmlModel); // Initialize the model with the DEVSML file

 public String[] simulate(int numIterations); // Simulate a given number of cycles

}
Figure 4. DEVS/SOA Coordinator interface

As Figure 1 illustrates, the client application requires a web service frontend to provide access

to the Coordinator service layer. The baseline communication is settled within the SOAP

protocol and the operations are detailed in the Coordinator WSDL file. This arrangement

provides platform independent interactions. Assembled with a web service framework, the

client application acquires the capacity to look over the web for the coordinator service hosted

at the remote location stated at the DEVSML root model (see Error! Reference source not

found.). Once the connection is established, the web client application activates the remote

coordinator by supplying a model specified using DEVSML, and it subsequently executes the

simulation according to specific parameters. As soon as the simulation completes, the client

application receives a summary of the overall simulation performance and cumulative results.

The aforementioned operations are specified inside the DEVS/SOA Coordinator WSDL file.

When composing a DEVS/SOA model, one important simplification, which is not mandatory, is

that every coupled model can work as an atomic model [3]. For example, Figure 5 shows that

the root model can be simulated in two different ways: with each atomic model on a different

computer (as seen on the left-hand side of the figure), or with the Experimental Frame on one

computer (i.e., the coupled model ExpFrame shown on the right-hand side figure, which is the

composition of Generator and Transducer atomic models on the left) and the Processor on

another (as seen on the right-hand side).

Figure 5. Simplification of DEVS models

2.2 DEVS/SOA application

As stated above, to build a web service-based infrastructure, both the coordinator and simulators

are published as web services. Thus, we have two Coordinators (DEVS/SOA Coordinator and

stub) and two Simulators (DEVS/SOA Simulator and stub).

On the server side, all the Coordinators and the Simulators must be placed in a directory

accessible by the selected web server (Apache Tomcat and Axis2 to allow web service

development, or MS Internet Information Server with .NET), as well as all the models to share

by every particular server and their corresponding DEVS libraries to allow interoperability. For

example, for a particular case where Apache Tomcat and Axis 2 is being used, the server side

content comprises:

• TOMCAT_HOME/webapps/axis2/WEB-INF/services:

o Simulator.aar: Axis2 archived web service and stub of DEVS/SOA Simulator.

o Coordinator.aar: Axis2 archived web service and stub of DEVS/SOA

Coordinator.

• TOMCAT_HOME/shared/lib:

o xdevs.jar: xDevs M&S API.

o devsjava.jar: DESJAVA M&S API.

o Several xDEVS and DEVSJAVA models.

Since both web services and stubs are installed in the server, they are able to act both as a

simulation services and as clients to another server. For a fully Symmetrical Service architecture

design, refer to [3]. By this symmetrical design, when a distributed DEVS/SOA is executed on

multiple machines (say on a server farm), each machine can serve as a DEVS coordinator as

well as a DEVS simulator facilitating the recursive DEVS hierarchical design principles.

Similarly, the client application contains just two executable classes (the DEVS/SOA

coordinator and simulator stubs), namely DevsSoaSimulator.jar and DevsSoaCoordinator.jar. A

graphical UI client for DEVS/SOA was implemented in [3]. To execute the model, the user

must compose an XML file describing the distributed architecture (as depicted in Error!

Reference source not found.) and run the simulation as follows (in the Java client

application):

// xmlCoupledModelAsString is a DEVSML file, which has been previously loaded

CoordinatorServiceInterface service = new

 CoordinatorService("http://localhost:8080/devsoa/Coordinator",true);

service.setCoupledModel(xmlCoupledModelAsString);

String[] response = service.simulate(numIterations);

Root Coordinator
192.168.1.2

Coordinator
192.168.1.3

Simulator
192.168.1.3

Simulator
192.168.1.3

Simulator
192.168.1.4

DEVS/SOA
Atomic

DEVS/SOA
Atomic

DEVS/SOA
Atomic

Root Coordinator
192.168.1.2

Simulator
192.168.1.3

Simulator
192.168.1.4

DEVS/SOA
Atomic

DEVS/SOA
Atomic

Generator
xDEVS

Transducer
xDEVS

Processor
DEVS.NET ExpFrame

xDEVS
Processor
DEVS.NET

job /XML

job / xDEVS job /DEVS.NET

job /XML job /XML

job /XML

job /XML

job /XML job /XML

job /XML

job /XML

job /XML job /XML

job / xDEVS job / xDEVS

job /DEVS.NET 1

1

a) Original model b) Simplified model

or using the client Coordinator as a executable file:

java -jar DevsSoaCoordinator.jar -file=ef-p.xml -numIter=110

To this end, the software required in a DEVS/SOA Java Axis2 client application is:

• Java Development Kit (JDK): Version 1.4 or later.

• Axis2: Versión 1.4.1 or later standard binary distribution.

To conclude, the purpose of DEVS/SOA is to support distributed simulation and

interoperability. The distributed arrangement of the ongoing simulations enables the user to

partition the original model and distribute it between several processors or cores in the same

computer, among several computers connected through Internet, or between both. In the same

manner, the user is able to compose a complex DEVS model using different submodels that

may be hosted on different computers. Furthermore, the interoperability quality allows the user

to compose a complex DEVS model with different submodels implemented using distinct

DEVS M&S frameworks or libraries. Every computer involved in the M&S process must act as

a repository providing DEVS models (implemented for a specific DEVS library), as a server

(providing Simulators and Coordinators as web services), and as a client (communicating with

the Coordinator on any machine).

3 Distributed DEVS Simulation Protocol (DDSP)

In [6], a flexible and scalable XML-based message-oriented mechanism was developed with the

goal to allow interoperability between different DEVS implementations. The main objective of

the protocol is to enable different DEVS implementations to interface and coordinate among

each other to simulate the same model structure across their diverse domains. To do so, the

developed simulation protocol uses SOAP-based Web-Services technology as the

communication framework to exchange control and standardized simulation XML messages.

3.1 Introduction to DDSP

The idea of DDSP is to provide interoperability with minimum design changes to each DEVS

implementation, mainly by hiding the detailed implementation behind a wrapper (i.e., a SOAP-

engine port) and focusing only on the exchanged XML messages. This point is important

because various DEVS implementations are different (even if they are implemented with the

same programming language). Interfacing the same tool implementation in a parallel/distributed

environment can require weeks of programming and debugging by programmers who

understand that tool implementation very well. One cannot expect interfacing different DEVS

implementations that were developed by different independent teams to be internally structured

the same. Further, different teams have extended their tools over the years to accommodate

different optimizing algorithms or modeling technique. For example, the Cell-DEVS extension

[7] allows for representing each cell in the cell space as a DEVS model that is only activated

when it receives external inputs from its neighboring cells. CD++ [8] provides an environment

for DEVS and Cell-DEVS models. However, it extends the software design into different C++

classes to implement both DEVS and Cell-DEVS. Figure 6 shows a fragment of the design of

distributed CD++ (DCD++). The figure clearly shows that this version of the simulation

software uses a specific implementation to simulate Cell-DEVS models (using the AtomicCell

and CoupledCell methods). The various DEVS versions have in common that coordinators

synchronize coupled models, and simulators execute atomic models where the simulation is

advanced according to the DEVS theory rules. However, each DEVS version provides different

software design and implementations. In fact, the internal implementation for a DEVS

coordinator, for instance, can vary between parallel, standalone, and distributed for the same

DEVS tool because each of these DEVS coordinators can use a different algorithm to coordinate

its children.

Figure 6: Snippet of the DCD++ Model/Simulators hierarchy

Hiding the internal implementation increases the protocol chances of success since various

DEVS teams are not expected to change their internal design and software implementation in a

way that jeopardizes their existing DEVS tools integrity. Further, they can have full freedom to

extend/change their own internal software implementation. This is because a DEVS tool is

always in conformance with the standards as soon as it handles the standardized XML

simulation messages correctly.

The DEVS Distributed Simulation Protocol also supports interfacing DEVS legacy models.

This allows a modeler to assemble and simulate heterogeneous DEVS models that were

originally intended to run in a specific DEVS environment. The protocol expects each tool to

react to expected messages (with a standardized format constructed as XML documents) in

order to correctly synchronize and carry out simulation of the overall model (which is spread

over different domains). Having a message-oriented protocol that hides implementation detail

(behind wrappers) and focuses only on the information needed (within exchanged messages)

has many advantages. To summarize a few:

• Maintainability: Protocol changes are only applied to the protocol messages rather than

to every DEVS implementation,

• Scalability: the contents of the XML message being exchanged are easy to add (or

remove) by adding (or removing) the Remote Procedure Calls (RPCs) interface, and

• Testing: local testing is easy to perform by each group before executing integration

testing between different DEVS domains. The general rule is that if a DEVS

implementation can interface with itself via exchanging XML standardized messages, it

should be able to interface with a different DEVS implementation using the same

standardized messages (in case both implementations conform to the standardized

messages and rules).

3.2 Web-Service DEVS Wrapper

Each DEVS implementation should execute its own specific models. This requirement enables

both the utilization of hundreds of legacy models for each DEVS tool as well as the integration

with other models in different DEVS tools. This requirement is essential to make DEVS

standards attainable because we can never expect all legacy models to be rewritten. This

requirement is satisfied by enclosing all models in a single outer model and making each DEVS

tool responsible for simulating its specific models. For example, in Figure 7, Coupled1 can be in

DEVSJAVA while Coupled2 can be in DCD++. In this case, the main DEVS domain owns the

Root coordinators and simulates both heterogeneous models, giving the impression of

simulating a single distributed heterogeneous DEVS model.

Figure 7: Coupled model partitioned across DEVS Domains

As shown in Figure 7, both coupled models interface without worrying about how the other

implementation performs the simulation internally. Therefore, coupled models are viewed as

black boxes with input/output ports. However, it is still possible for a DEVS implementation to

know more details about the model structure in other domains, depending on the level of detail

that is made available to the domains when the structure is distributed, as described in the XML

structure document.

The concept is to have each DEVS implementation use a single communication entry point,

implemented as a DEVS-Wrapper (Figure 8). Therefore, a coupled model may physically be

partitioned among different machines within a DEVS implementation domain, but other DEVS

domains “believe” the coupled model actually exist on the machine through which they

communicate with the coupled model. The DEVS-Wrapper is actually a Web-service port that

exposes a number of stubs (interfaces), allowing other DEVS domains to invoke them in an

RPC-style mechanism, as discussed in the communication framework section. Therefore, the

DEVS-wrapper interfaces are described in WSDL document allowing domains to construct the

necessary stubs.

Figure 8: Connecting Two DEVS Domains

This requirement simplifies the coordination via one single Web-service port described in a

single WSDL document. This approach does not require the DEVS-wrapper operations to be

exposed in a separate Web-service port or to be merged with other existing ports, but it leaves

this decision to individual teams since it is a software design issue rather than a standardization

one. Further, the DEVS-wrapper port needs to be described by a WSDL document where other

domains can use the standardized interfaces. The DEVS-Wrapper component is expected to

perform the following tasks:

• Translate incoming standardized simulation messages to specific domain simulation

messages.

DEVS

Wrapper
Simulation

Root

Coordinator

DEVS

Wrapper
Simulation

Coupled1

OUT1

IN1

Coupled2

IN2

OUT2

Coupled0

• Transmit simulation messages to other DEVS domains according to the DEVS

standards.

• Route incoming simulation messages to the correct models/ports within its domain.

The protocol should minimize its dependency on the communication framework, requiring few

(or no) changes to the standardized simulation messages if one needs to move the simulation

protocol to other communication engines in the future. In DCD++, this requirement is

implemented by sending all simulation messages as XML documents in SOAP attachments via

exposed DEVS-wrapper interfaces. Therefore, if the communication mechanism changes, those

same XML documents can still be transmitted without changes.

Although SOAP messages are standardized XML documents, they are hidden from the Web-

service applications and are only seen as programming stubs with input/output parameters.

Consequently, a DEVS standard would need to define its own XML messages. Eventually, the

standard is realized by the programming code, hence if it only relies on SOAP XML messages,

all DEVS interfaces become a matter of simply gluing programming remote procedures

together. This makes the standard extremely sensitive to changes since programming language

procedures by nature are sensitive to many factors such as the order, type, and number of

parameters that are passed into them. Therefore, the standard can never claim to be using XML

messages for communication because the SOAP messages are only handled by the SOAP

engine (i.e., the communication layer below a Web-service application that is responsible for

SOAP messages handling), and this engine is enabled to invoke the appropriate service stub.

The DDSP implementation uses Web-services technology to transfer standardized simulation

messages between different domains. All messages are transmitted through SOAP/HTTP

engines, hence wrapped within SOAP and HTTP envelopes, as shown in Figure 9, where a

DEVS Wrapper communicates with other DEVS domains by invoking the deployed-service

stubs in a remote procedure call style. Simulation messages are passed into those stubs as SOAP

attachments in the form of XML documents.

Figure 9: Connecting Domains using Web-Services

Stubs are constructed from the deployed WSDL document by the service provider (other DEVS

domains). To support SOAP-based web-services, each DEVS domain should have the following

engines:

• HTTP Server (e.g., Tomcat [9]).

• SOAP Engine (e.g., AXIS [10]).

• XML parser: the proposed protocol is not making any assumptions regarding a specific

XML parser.

A DEVS-Wrapper is actually a Web-service port connected to the AXIS SOAP engine that

encapsulates the necessary operations, allowing different DEVS domains to communicate with

each other and clients to activate DEVS simulation services. The standard here assumes that

DEVS Protocol

DEVS-Wrapper

Stubs Interfaces (WSDL)

SOAP Engine (e.g. AXIS)

HTTP Server (e.g. Tomcat)

DEVS-Wrapper

Stubs Interfaces (WSDL)

SOAP Engine (e.g. .NET)

HTTP Server (e.g. Microsoft)

individual DEVS domains provide their own interfaces for clients allowing them to invoke the

services of the individual DEVS domains (such as user authentication, file submission, etc.).

The remaining discussion in this section focuses only on the communication between various

DEVS domains.

Figure 10 shows the AXIS Java interface for the DEVS-wrapper operations. They are described

in WSDL documents, so that other AXIS Java communication classes may be constructed by

various DEVS domains (these operations are stubs that allow DEVS domains to communicate

with each other).

1 import javax.activation.DataHandler;

2

3 public interface DEVSWrapperType extends java.rmi.Remote {

4

5 public DataHandler retrieveResultFile(int SupportiveSession);

6 public boolean startSimulation(int SupportiveSession);

7 public boolean isSimRunning(int session);

8 public boolean StopSimulation(int session);

9 public boolean setDEVSXML(int session, String filename,

10 DataHandler file);

11 public boolean deleteSession(int SupportiveSession);

12 public int createSupportiveSession(int MainSession);

13 }

Figure 10: DEVS-Wrapper AXIS-Port Services

The DEVS-Wrapper services in Figure 10 can be summarized as follows:

• retrieveResultFile : Is used to retrieve simulation result files from a support DEVS

domain.

o Input: The support DEVS domain session number.

o Output: The results file.

• startSimulation : It starts the simulation on a support DEVS domain. In this case the

simulation engine starts and waits for the first simulation message from the main DEVS

domain.

o Input: The support DEVS domain session number.

o Output: True on success; false otherwise.

• isSimRunning : It checks if a simulation is running on a DEVS domain.

o Input: The support DEVS domain session number.

o Output: True if simulation is running. Otherwise false.

• StopSimulation : It stops the simulation normally on a support DEVS domain.

o Input: The support DEVS domain session number.

o Output: True on success. Otherwise false.

• setDEVSXML : It sends an XML document to a DEVS domain. XML document is

either configuration file or a simulation message.

o Input:

▪ A DEVS domain session number.

▪ XML document file name.

▪ The actual XML file.

o Output: True on success; false otherwise.

• deleteSession : It deletes a simulation session on a support DEVS domain. This

operation releases all resources used for this session.

o Input: The support DEVS domain session number.

o Output: True on success. Otherwise false.

• createSupportiveSession : It creates a simulation session on a support DEVS domain.

This operation allocates all necessary resources needed for this session. The support and

main DEVS domains are accepted to bind both session numbers together. This gives

each DEVS domain the freedom to allocate its session numbers without worrying about

possible conflict with other DEVS domain session numbers.

o Input: The Main DEVS domain session number.

o Output: The support session number or -1 on failure.

Initially, the main DEVS domain creates support simulation sessions and establishes full

connections with all support domains. Each DEVS domain should know each participant

DEVS-Wrapper port URI and its associated session number for all participant DEVS domains.

This allows DEVS domains to have multiple concurrent simulation sessions using the same

Web-service port.

The main DEVS domain opens a session with all relevant support domains, and it broadcasts

this information to support domains in one XML document (using the method setDEVSXML).

The simulation session document contains the main domain session number (which all support

DEVS domains know upon invoking createSupportiveSession by the main domain), and the

support URIs paired with their session number, as shown in Figure 11

<Sessions ver=”1.0”>

 <Session Type=”Main”>

 <Number>123</Number>

 <URI>http://…</URI>

 </Session>

 <Session Type=”Supportive”>

 <Number>1000</Number>

 <URI>http://…</URI>

 </Session>

 …

</Sessions>
Figure 11: Domain-Simulation Sessions XML Binding Document Example

After receiving the XML document in Figure 11, each domain should be able to send messages

on a session to any other domain.

The main principle followed here is to enclose all various DEVS domain heterogeneous models

within a single coupled model. This simplifies the simulation coordination, as each DEVS

domain hides its internal activities and coordinates with other DEVS domains. This approach

has been adopted in the variant of DEVS/SOA developed by [12] [13] which supports

interoperability across different web service platforms using the XML namespace

concept to be described next.

3.3 Model Structure XML Document

The Model structure XML document (shown in Figure 12) is initially submitted by the modeler

to the main DEVS domain to describe how the overall model is structured so that each DEVS

version can identify which models belong to its domain. Further, from this document, the main

machine can identify the participant support domains.

The model structure document contains enough information to allow different domains to create

local models, coordinators (i.e., coupled model processor), and simulators (i.e., atomic model

processor). It also includes data on how they will relate to other models in different domains.

The main DEVS domain must pass this document before it starts the simulation (i.e., before

invoking service startSimulation on support domains). The model structure document contains

the following information (see Figure 12):

• model names,

• model type (coupled/atomic),

• model input/output ports,

• coupled models internal submodels and their ports connections,

• models domain URIs, and

• coupled models synchronization algorithms used (e.g., the Head/Proxy Coordinator

discussed earlier).

The DEVS models hierarchy can easily be mapped into this XML document. For example,

assume two models connected with each other as in Figure 7 (two DEVS domains where each

model is specific to its domain implementation). In this case, the two models would be enclosed

within an outer model (Coupled0), resulting in the XML document shown in Figure 12. This

XML document also serves as an agreement contract between various implementations on the

used synchronization schemes. For example, the coordination scheme that is used can be set by

the COUPLED_SYNC field to simulate a distributed coupled model across various domains. In

this way, the standard can easily adopt any new schemes that may appear in the future.

<MODEL_STRUCTURE ver=”1.0”>

 <COUPLED_SYNC>

 <scheme ver=”1.0”>HeadProxy</scheme>

 </COUPLED_SYNC>

 <Models>

 <Model Type=”Coupled”>

 <Name> Coupled0 </Name>

 <Components>

 <Name Type=”Coupled”>Coupled1</Name>

 <Name Type=”Coupled”>Coupled2</Name>

 </Components>

 <URI>http://… </URI>

 <LINKS>

 <LINK>

 <FROM>

 <Component>Coupled1</Component>

 <Port>OUT1</Port>

 </FROM>

 <TO>

 <Component>Coupled2</Component>

 <Port>IN2</Port>

 </TO>

 </LINK>

 …

 </LINKS>

 …

 </Model>

 <Model Type=”Coupled”>

 <Name> Coupled1 </Name>

 <Ports>

 <Port Type=”in”>IN1</Port>

 <Port Type=”out”>OUT1</Port>

 </Ports>

 <URI>http://… </URI>

 …

 </Model>

 <Model Type=”Coupled”>

 <Name> Coupled2 </Name>

 <Ports>

 <Port Type=”in”>IN2</Port>

 <Port Type=”out”>OUT2</Port>

 </Ports>

 <URI>http://… </URI>

 …

 </Model>

 </Models>

 …

</MODEL_STRUCTURE>
Figure 12: XML Model Structure Document Example

The simplest way of structuring a DEVS model is to have one coupled model at each of the

DEVS domains connected to one other via their input/output ports, where each coupled model

views the coupled models in other domains as “black boxes”. Even with this simple scenario,

another top-coupled model should then be created to wrap all coupled models across various

domains. Therefore, there will be at least one coupled model partitioned across DEVS domains.

By having one Coordinator simulating a single coupled model distributed over the network, it

becomes a performance bottleneck (because of the number of messages exchanged between the

parent Coordinator and its children). For this reason, we propose to adopt a Head/Proxy

Coordinator structure. Other algorithms can be adopted if they are scalable and it is needed. The

Head/Proxy extends the coordinator concept, as follows:

• Head Coordinator: it is in charge of simulating the entire coupled model. It coordinates

the internal models that exist in its domain and (via Proxy Coordinators) the other

internal models that exist in other domains.

• Proxy Coordinator: it acts as an agent on behalf of the Head Coordinator to simulate the

internal submodels of a coupled model that exist in its DEVS domain. A Proxy

Coordinator passes all the unknown messages to its Head Coordinator; however, a

Proxy Coordinator usually passes only one message to its head Coordinator on behalf of

the coupled model internal partitions its domain (which is possibly distributed among

different machines in the same domain).

Note that the domain that owns the first internal model as structured in the XML model

structure document will create the Head coordinator for the parent and other domains will create

proxy coordinators. For example, the domain that owns Coupled 1 in Figure 13 creates the Head

coordinator for the outer model Coupled 0 while the others create Proxy coordinators. Note

further that the main domain always owns the Root coordinator and drives the overall

simulation. This is not related to the Head/Proxy algorithm. Therefore, it is possible for the top-

level model to have its Head coordinator in a support domain since this depends on how the

modeler described it in the XML structure document. However, the modeler should structure the

top-level model to have its Head coordinator in the main DEVS domain to be near the Root

coordinator in the main DEVS domain for performance reasons.

Using a single Coordinator adds unnecessary overhead if two child simulators want to exchange

messages and are running on a machine different from their coordinator. As shown in Figure 13,

Simulator 3 sends an output message that is to be translated into external message to Simulator

2, which resides on the same machine as its sibling Simulator 3. Therefore, sending this

message to the coordinator, it ends up being transmitted twice as remote messages because the

coordinator is running on a machine different from the source and destination of the message.

Figure 13: superfluous messages exchange in distributed simulation

The above-described problem could have been avoided if there is a coordinator responsible for

message routing locally in each machine. Therefore, having a proxy coordinator on Machine 2

(in Figure 13) causes the message from Simulator 3 to Simulator 2 to be sent locally, thereby

improving the performance of the simulator. Further, one DONE message is sent to the Head

Coordinator (on Machine 1) from the Proxy Coordinator (on Machine 2) on behalf of Simulator

2 and Simulator 3.

3.4 Format and Content of Messages

Simulation messages are constructed as XML documents and sent to other domains as SOAP

attachments (using the AXIS stub setDEVSXML where the receiver session number is one of

its parameters). Therefore, any changes in the simulation messages will be made to the message

XML document rather than to the input/output parameters of the AXIS stub, thereby increasing

scalability and portability.

The simulation message types are listed as follow (note that the specific simulation phases are

discussed in the next section):

• Init (I): Simulation starts when the Init message is passed to the top-coupled model

Coordinator, which then pushes it downward to its children.

• Collect (@): it is used to start the collection phase. The top model Coordinator

propagates it downward.

• Internal (*): it is used to start the transition phase.

• Done (D): it is used by Coordinators to identify which children need to be simulated at

this phase. It is used by the Root Coordinator to advance the simulation time and switch

simulation phases.

• External Message (X): Messages from the environment, or as a result of output

messages.

• Output Message (Y): Generated during the collection phase.

Table 1 shows all possible fields in an XML message document. All fields are not required to be

sent with each message type. However, if the sender chooses to send all fields in a message the

required fields (based on the message type) are the only ones that the receiver must consider.

The Next-change-time element is used by DONE messages to inform the parent Coordinator

about the next expected internal change (in turn, the parent Coordinator passes a DONE

message to its parent including the minimum next change of its model children, whether local or

in other domains). Eventually only one DONE message is received by the Root Coordinator (in

the main domain), which then starts another simulation phase. All Coordinators (including

Root) use this message to know which children branches should be involved in each simulation

cycle. This prevents many unnecessary message transmissions across the network.

Table 1: Simulation Message XML Fields

Element Format Allowed Values Comments
MessageType Character I, @, D, X, Y, * I = INIT,

@ = Collect,

D = Done,

X = External,

Y = Output,

 * = Internal.
Time String

Hours:Minutes:Secs:mSec
Numbers separated

by colon (“:”)
Example: 08:50:00:00

SrcModel String Known Model

Name
Source Model

DestModel String Known Model

Name
Destination Model

Port String Known Port Name Destination Port.
Value C++/Java double N/A Mandatory only for External

and Output messages.

NextChange See Time element See Time element Next Change Time.

Mandatory only for DONE

messages.
IsFromProxy Java boolean True or False Mandatory only for DONE

messages if Head/Proxy

Algorithm is used. This allows

Head to synchronize its

Proxies.

Figure 14 shows an example of an INIT message from model Coupled0 to port IN of model

Coupled2. In this example, the sender domain chose to send all fields; however, the receiver

must only use the fields relevant to the INIT message.

<Message ver=”1.0”>

 <MessageType>I</MessageType>

 <Time>00:00:00:00</Time>

 < SrcModel>Coupled0</SrcModel>
 < DestModel>Coupled2</DestModel>
 <Port>IN</Port>

 <Value>-1.0</Value>

 <NextChange>00:00:00:00</NextChange>

 <IsFromProxy>false</IsFromProxy>
</Message>

Figure 14: Initialization Simulation Message with All Fields Example

The developed protocol in this section has simplified the simulation by wrapping all distributed

models across various DEVS domains in one single coupled model; hence it becomes the

responsibility of coupled Coordinators to locate their children (i.e., internal models) in order to

pass them the needed simulation messages (perhaps by having a database that stores each model

description along with its domain URI). Further, simulation messages can be specific to a

certain domain when they are exchanged within the domain itself, but when they must exit to

another domain, the DEVS-Wrapper (discussed in the communication section) translates them

to the standardized XML message documents and passes them as SOAP attachments using the

AXIS stub setDEVSXML to other domains DEVS-Wrappers. For example, as shown in Figure

15 a DEVS domain does not need to use the standards within its domain. However, when a

message must travel to another domain, it has to be translated first to the standard format so that

it can cross the DEVS protocol bridge.

Figure 15: An Internal Look of a DEVS Domain

4 Shared Abstract Model

In [14], an approach for on-line model-based interoperability named the Shared Abstract Model

(SAM) was defined. The Shared Abstract Model is used to specify an Abstract Model Interface,

shown in Figure 16. The specification of the Abstract Model Interface is based on the DEVS

Atomic Model formalism. The interface is specified in terms of OMG-IDL, and it is executed

using CORBA. Based on the Abstract Model Interface definition, the SAM approach requires a

DEVS Protocol
Session

Other DEVS

Domain

Session

PCD++

E-CD++

PCD++

E-CD++ Session

Session

User

DCD++ Domain (No need to follow standards)

Model Proxy (corresponding to the atomic stub of Figure 16). Then, models have to be wrapped

into model adapters that will make their interfaces match the standard one. This approach is

predominantly aimed at integrating existing legacy models or models specified in different

DEVS implementations (and for simulation engines responsible for executing a non-native

model implementation). Writing the model adapters for the Shared Abstract Model can be a

tedious task, notably because of the use of generic messages that have to be converted before

being processed by the model. Fortunately, this task of writing the two adapters (one for atomic

and one for coupled models) must be done only once for each DEVS engine implementation.

The two adapters can then be used for all models specified within the DEVS engine

implementation.

Figure 16: The Shared Abstract Model concept for a simulator executing non-native models

using Proxy Model, Adapter Model, and the Abstract Interface Model

Considering the DEVS-Suite simulation engine, its simulator (Simulator1 in Figure 17) can

directly execute Model Implementation A (i.e., there is no need for syntactic translation from

one programming language to another). However, the same simulator cannot execute the Model

Implementation B, which is implemented for direct execution using the ADEVS simulator

(Simulator2 in Figure 17). The Model Proxy and Model Adapter are used to overcome the

syntactical differences between the Java and C++ programming languages which also

necessitates Process1 and Process2 to communicate with one another (i.e., send and receive

messages). The Model Proxy translates the method invocations of the Simulator1 to those of the

Abstract Model Interface. The Simulator1 then can use the Model Adapter to execute the

transition, time advance, and output functions defined for Model Implementation B. The

inheritance relationship from Model Adapter to the Abstract Model Interface allows Model

Implementation B and other models that are developed in other programming languages to be

uniformly executed using Simulator1. Therefore, a simulator can execute its own models (e.g.,

the arrow from Simulator2 to Model Implementation C), models that are developed for other

variants of parallel DEVS simulators (e.g., the arrows from Simulator1 to Model

Implementation B), and any model that can be wrapped inside an atomic DEVS model but does

not have its own simulator.

Process1 Process2

Abstract Model

Interface

Model

Proxy

Model

Adapter
Middleware

Model

Implementation B
Simulator1

Model

Implementation A

Figure 17: Example of the Shared Abstract Model for ADEVS and DEVS-Suite

The specifications for the Model Proxy and Model Adapter are straightforward since their

operations have a one-to-one relationship to those that are defined for the Abstract Model

Interface. However, to support message mappings between different simulation engines, it is

necessary to develop modules that can translate one kind of message to another kind. Figure 18

and Figure 19 show the implementations of the Model Proxy and Model Adapter for DEVS-

Suite. The listings exclude implementations for error handling.

interface DEVS {// OMG-idl (CORBA)

 // start of simulation

 double doInitialize()

 // time of next internal transition without input messages

 // value also returned by doInitialize and state transition functions.

 double timeAdvance()

 // produce outputs for current simulation time

 // output does not have any side effect (no state change)

 Message outputFunction()

 // internal state transition without input messages

 double internalTransition()

 // external state transition with input messages

 double externalTransition(in double e, in Message msg)

 // input message is received at the time of internal state transition

 double confluentTransition(in Message msg)

};

Message: bag { inputPort -> value }

Figure 18: The Abstract Model Interface specification

void initialize() {

 ta = devsMod.doInitialize();

 if(ta == devsBridge.DEVS.TA_INFINITY)

 passivate();

 else

 holdIn("active",ta);

Adevs DEVSJAVA

Abstract Model Interface

Model Proxy Model Proxy

Model Adapter Model Adapter

Simulator2Simulator1

Model

Implementation

A

Model

Implementation

C

Model

Implementation

B

Process1 Process2

Adevs DEVSJAVA

Abstract Model Interface

Model Proxy Model Proxy

Model Adapter Model Adapter

Simulator2Simulator1

Model

Implementation

A

Model

Implementation

C

Model

Implementation

B

Process1 Process2

}

//External Transition Function

void deltext(double e, MessageInterface x){

 MsgEntity[] msg = trans.devs2CorbaInputs(x);

 ta = devsMod.externalTransition(e, msg);

 if(ta == devsBridge.DEVS.TA_INFINITY)

 passivate();

 else

 holdIn("active",ta);

}

//Internal Transition Function

void deltint() {

 ta = devsMod.internalTransition();

 if(ta == devsBridge.DEVS.TA_INFINITY)

 passivate();

 else

 holdIn("active",ta);

}

//Confluent Transition Function

void deltcon(double e, MessageInterface x){

 MsgEntity[] msg = trans.devs2CorbaInputs(x);

 ta = devsMod.confluentTransition(msg);

 if(ta == devsBridge.DEVS.TA_INFINITY)

 passivate();

 else

 holdIn("active",ta);

}

//Output Function

MessageInterface out() {

 MsgEntity[] msg = devsMod.outputFunction();

 MessageInterface devsMsg = trans.corba2DevsOutputs(msg);

 return devsMsg;

}

Figure 19: Proxy implementation for the DEVS-Suite atomic model

Figure 19 shows an example where an Abstract Model Interface is defined for DEVS-Suite and

ADEVS simulation engines. A pair of Model Proxy and Model Adapter is defined (shown in

solid lines) such that ADEVS Model Implementation B can be simulated using the DEVS-Suite

Simulator1. Using the same Abstract Model Interface with another pair of Model Proxy and

Model Adapter (shown in dotted lines), Model Implementation A can be simulated using the

ADEVS Simulator2.

In order for one simulation engine to execute a coupled model that is implemented for by

another simulator, it is necessary to also account for coupled models and so Model Adapters for

coupled models are needed as well. Rather than specifying the Model Adapter as the

coordinator, the Model Adapter is defined based on the Abstract Interface Model (see Figure

18). Examination of the Model Adapter for DEVS-Suite coupled model enforces the

coordinator’s logic (see Figure 20). The comments in Figure 18 relate the association defined

between the Abstract Interface Model and the Model Adapter. This formulation uses the closure

under coupling property which allows treating an atomic and coupled model as a basic DEVS

model component. Thus, the correctness of the simulation cycle of every DEVS coupled model

remains legitimate—that is, the executor (either a simulator for atomic models or a coordinator

for coupled models) guarantees the correct ordering of events and transmission of events among

hierarchical models in concert with the method invocations of the Abstract Model Interface.

//Initialize simulator

double doInitialize(){

 coord.initialize();

 return timeAdvance();

}

//query for time to next event (1. nextTN and 2. outTN)

double timeAdvance(){

 return coord.tN() – coord.tL();

}

// ComputeIO is called (5. applyDelt)

 double internalTransition(){

 coord.DeltFunc(coord.tN(), [empty set]);

 return timeAdvance();

}

// ComputeIO is not called (5. applyDelt)

double externalTransition(e, x){

 coord.DeltFunc(coord.tL() + e, x);

 return timeAdvance();

}

// ComputeIO is called (5. applyDelt)

 double confluentTransition(x){

 coord.DeltFunc(coord.tN(), x);

 return timeAdvance();

}

// 3. getOut and 4. returnOut

MsgEntity[] outputFunction(){

 coord.ComputeIO(coord.tN());

 return coord.getOutputs();

}

Figure 20: Model Adapter implementation for the DEVS-Suite coupled model

5 RESTful Interoperability Simulation Environment (RISE)

Interoperating applications that have been developed independently and that interact with each

other is not a trivial task, since this interaction involves not only passing remote messages, but

also synchronizing them (interpreting messages and reacting to them correctly). This fact further

applies to interoperating DEVS-based tools in order to synchronize the same simulation run.

The value proposition, however, of such interoperability is that it enables a plug-and-play

middleware approach, which is an appropriate method to interface independently-developed

software applications [15]. The Plug-and-play type of interoperability is already applied by the

World Wide Web (WWW) network. The principles of the Web interoperability have been

recently called the Representational State Transfer (REST) style [16]. These RESTful Web

Services [17] has been gaining attention with the advent of Web 2.0 [18] and the concept of

mashups (grouping various services from different providers presented as a bundle).

Figure 21: Uniform Channels for RESTful Resources

The RESTful Web-services lightweight approach hides internal software implementation (in

“black boxes” called resources). Each resource exposes uniform channels (connectors) and

describes connectivity semantics between resources in the form of messages (usually XML).

RESTful services are distributed across a set of connected resources where each resource is

named with a URI (similar to a website). Service consumers connect with those resources via

standardized virtual uniform channels where semantic messages and the corresponding methods

are assigned to those resources. In RISE, the channels are the HTTP methods shown in Figure

21: GET channel (to read a resource entirely or partially), PUT channel (to create a new

resource or update existing data), POST channel (to append new data to a resource), and

DELETE channel (to remove a resource). Resources use those channels to transfer their data (or

potentially, their data representation) among each other, hence transferring their representational

state, as specified by the name of the Representational State Transfer style [16]. REST exposes

all services as URIs, hides internal implementation, employs message-oriented synchronization

semantics (i.e., XML), and accesses each service (URI) via standardized channels. These are the

ingredients for plug-and-play interoperability even at runtime, and they are being used on the

WWW every day. A detailed study of the current and future challenges of distributed simulation

algorithms and middleware is provided in [15].

Other approaches, such as CORBA or SOAP-based Web-services, expose functionalities in

heterogeneous RPCs that often reflect internal implementation and describe semantics as

procedure parameters. The RPC style literally splits software implementation across the

distributed environment. It is worth noting that the SOAP-based Web-services transfer all RPC

representations (as SOAP XML messages) via the HTTP POST channel. This overloading of

the POST channel has resulted in making connectors that were once standardized uniformly into

a more heterogeneous interface, which is more complex to use. RPC-style is heterogeneous in a

sense that they are programming procedures invented by different programmers. Of course, the

XML SOAP standard is powerful enough to describe those RPCs. However, applications

interoperability is realized as RPC-style in another software layer above the SOAP handling

layer (usually called SOAP engine) which converts RPCs from/to SOAP messages. For

example, Figure 9 shows a typical SOAP-based Web-services protocol stack while Figure 10

shows RPCs exposed within a port.

In recent years a RESTful middleware application has been developed called RESTful

Interoperability Simulation Environment (RISE), formally known as RESTful-CD++ [19][20],

that has provided promising results in this area. RISE also allows any application or device

attached to the Web to be in the simulation loop at runtime, using Web 2.0 mashup concepts.

RISE middleware serves as a container to support concrete services; hence, concrete services

are plugged into the middleware. In this case, concrete services are wrapped and accessed

through URIs at the middleware level, rendering the middleware independent of any specific

service. This allows additional services to be plugged into the middleware without affecting

other existing services. This is similar to adding additional services or links to a regular website.

The distributed CD++ (DCD++) simulation package was plugged into the middleware. In this

case, multiple CD++ instances can perform distributed simulation session across the Web where

the simulation model is split among those CD++ distributed instances, enabling each to simulate

its portion of the model, as shown in Figure 22. The simulation manager, shown in Figure 22,

manages a CD++ instance by handling, for instance, the geographic existence of model

partitions, XML synchronization simulation messages, and synchronization algorithms. The

simulation manager is seen externally as a URI (e.g., similar to web site URIs). The distributed

CD++ instances synchronize among each other via sending simulation XML messages

(wrapped in HTTP envelopes) to each other’s URIs via an HTTP POST channel. RESTful

DCD++ is described in [19][20].

Figure 22: DCD++ Simulation Session between two Online Simulation Engines

RESTful applications APIs, including RISE, are expressed as URI templates [21] that can be

created at runtime. Variables in URI templates (written within braces {}) are assigned at

runtime by clients before a request is sent to the server, enabling clients to name their URIs at

the server side. For example, username in template <…/users/ {username}> can be substituted

with any string to obtain the actual URI instance (such as <…/users/user1> or

<…/users/user2>). Further, URIs may include query variables to define the request scope by

appending them to a URI after the question mark “?”. For instance, a request via the GET

channel to URI <http://www. google.com/search?q=DEVS> would instruct the Google search

engine to return information only about keyword “DEVS”. As another example, RISE

middleware [19][20] defines the simulation framework URI template as

/cdpp/sim/workspaces/{userworkspace}/ {servicetype}/{framework}, where {userworkspace} is

a specific workspace. The workspace allows users to define their specific URI hierarchy while

avoiding naming conflicts. The {servicetype} is the selected simulation service (e.g., DCD++),

allowing a client to use different services simultaneously. The {framework} is the simulation

experiment framework; hence, a user may create multiple experiment frameworks that use the

same simulation service. The experiment is configurable by its owner, for instance, to have

different simulation partitions conduct the same simulation session. To further illustrate, the

<…>/cdpp/sim/workspace/Bob/DCDpp/MyModel URI indicates that the user workspace

belongs to user Bob, and the servicetype is DCDpp (which selects the distributed CD++

engine). The framework is named MyModel, which is the name of the simulation experiment. In

this case, the modeler may select a different simulation engine (instead of DCDpp) or a different

framework (instead of MyModel), because these variables are assigned at runtime according to

the API URI template. Therefore, URI templates enable modelers to name their URIs without

being in conflict with other users. The RESTful-CD++ API is fully described in [19].

The RISE standards approach is derived from the lessons learned of the RISE middleware. The

RISE standards approach divides the entire simulation space into domains. Each domain wraps

a DEVS model and DEVS-based simulation engine to simulate that model. Each domain is

accessed via three URIs (i.e., API) to exchange semantics (i.e., synchronization and

configuration) as standardized XML messages. Thus, a domain’s interior is fully hidden, which

makes the standard easier to understand and to support. This is because each domain only needs

to be able to transmit/handle the standardized XML messages according to the approved rules

while they are free to change whatever they need within their domain without affecting other

domains. The RISE approach achieves this at three levels: (1) the interoperability framework

architecture level, (2) The model interoperability level, and (3) the simulation synchronization

level. These aspects are summarized next.

The interoperability framework architecture level provides the URI template (API) that allows

modelers to create a simulation environment (including distributing simulations, starting

simulation, and retrieving results). RISE requires three RESTful resources (URIs) for each

domain so that other domains and modelers can use them to setup and conduct simulations. The

focus here is on the parts of the URI template that are relevant to the RISE standard. The main

functionality of those URIs is left to design for specific domains (the RISE standard may be part

RESTful-CD++ Middleware

URI

Simulation
Manager

CD++ Engine

RESTful-CD++ Middleware

URI

Simulation
Manager

CD++ Engine XML Messages
(Semantics)

XML wrapped in HTTP Messages

Simulation Logical Processors

of different services provided by a specific domain). These resources (URIs) are described as

follows:

1. …/{framework}: represents a simulation environment in a domain. It is named by the

modeler upon creation. The modeler uses this URI to submit all necessary information to

execute simulation in that domain such as the simulation model and the RISE XML

configuration. This URI is the parent of the other two needed resources described next. This

resource uses HTTP channels as follows: The PUT channel is used to create and/or update

the resource with the XML configuration document (for instance, inter-connections of the

different simulation model ports across domains). The DELETE channel is used to remove

this resource. POST is used to submit, as a zip file, all necessary scripts related to the model

that is supposed to run on this domain. GET is used to read a simulation status on that

domain as an XML document.

2. …/{framework}/simulation: represents active simulation in a domain. The modeler uses this

URI to start/abort simulation, and to manipulate simulation during runtime. This resource

uses HTTP channels as follows: The PUT channel (with a null message) is used to create

this resource. DELETE is used to abort simulation. POST is used by simulation engines in

domains to exchange simulation XML synchronization messages.

3. …/{framework}/results: is automatically created by a domain upon successfully completing

the simulation, allowing retrieval of the simulation results.

The model interoperability level provides XML rules for combining different models. This

XML document is provided via the PUT channel to resource …/{framework}. This is a

straightforward step, because of the assumption that each domain contains an entire model with

external ports. In this case, the modeler defines an interconnection between ports analogous to a

DEVS coupled model. It is worth noting that this is different from RESTful DCD++ in the sense

that DCD++ partitions a single model across the distributed environment. On the other hand, the

developed approach here is placing an entire model in each domain. This is because it aims at

interoperating heterogeneous environments with many implementation differences, and,

therefore, the more flexible, practical, and powerful interoperability is achieved when hiding

implementation. This makes sense because the heterogeneity devil resides in the software

design and implementation details. For example, Figure 23 shows two models placed at two

different domains. In this case, the model is wrapped in URI …/{framework}: The first model

URI is …/Domain1 and the second model URI is …/Domain2. In order to conduct different

simulation session experiments, different URI frameworks are needed in a given domain. Each

model in Figure 23 has two external ports connected to the other model ports. This

interconnection is shown in the XML document in Figure 24. For example, Lines 7-10 show the

connection link of port OUT1 (at …/Domain1) to port IN1 (at …/Domain2). The XML

document also shows other configuration such as “Type” at Line 3 is set to “C”, indicating that

the simulation will be synchronized according to a RISE conservative based algorithm.

Likewise, the “Type” attribute can be set to “O” to conduct optimistic synchronization. Line #5

selects the main domain, which is mainly needed to manage the conservative-based simulation.

Figure 23: RISE Models Interconnection across DEVS Domains

1 <ConfigFramework>

2 …

3 <RISE Version=”1.0” Type=”C”>

4 <Domains>

5 <Main><URI>…/Domain1</URI></Main>

URI: …/Domain1

OUT1

IN1

URI: …/Domain2

IN2

OUT2

6 <Links>

7 <Link>

8

<From><Port>OUT1</Port><URI>…/Domain1</URI></From>

9

<TO><Port>IN2</Port><URI>…/Domain2</URI></TO>

10 </Link>

11 <Link>

12

<From><Port>OUT2</Port><URI>…/Domain2</URI></From>

13

<TO><Port>IN1</Port><URI>…/Domain1</URI></TO>

14 </Link>

15 </Links>

16 </Domains>

17 </RISE>

18 …

19 </ConfigFramework>

Figure 24: RISE XML Configuration corresponding to Figure 23

The simulation synchronization level provides high-level simulation algorithms

(i.e., conservative/optimistic) and synchronization channels in order to carry out simulation

among different domains. The modeler starts the simulation via the main domain (i.e., using the

PUT channel to create URI …/{framework}/simulation). Consequently, the main domain starts

simulation, in the same way, on all other domains, as shown in Figure 25. Afterward, all

simulation engines at different domains are ready to exchange XML simulation messages to

synchronize the simulation session. All of the simulation messages are sent to a domain via URI

…/{framework}/simulation using the POST channel.

Figure 25: Starting Simulation Overview

The conservative-based approach expects the main domain to create the RISE Time Manager

(RISE-TM) to manage time advancement of the entire space. This is not required for the

optimistic-based approach where domains may directly send messages to each other, provided

domains would detect and correct any error because of receiving a straggler message. Hiding

this detail allows moving algorithm complexity to the interior of domains, while the RISE

standard layer simply comprises channels to exchange simulation messages. On the other hand,

the conservative approach requires more handling at RISE, since it owns the RISE-TM

component. Note that the RISE-TM URI is the same as the main domain URI. Thus, the

synchronization between the main domain simulation and the RISE-TM is specific to the

internal implementation of the simulation software. However, they are separated in the

discussion here for clarity. RISE-TM executes a simulation cycle in the following steps, as

shown in Figure 26: (1) Execute all events in all domains at the current RISE time. This starts a

new simulation cycle with the current or newly calculated RISE time. RISE-TM always starts

the first phase with time zero. The domains must always execute all events with current RISE

time, if any, and respond to the RISE-TM with the following information: all external messages

generated for other domains stamped with RISE time (or larger) and its next time. The next time

is the time of next event in a domain larger than RISE time. If no more events exist, this value is

then set to “-1”, indicating infinity. (2) Once RISE-TM receives all replies from relevant

domains, it calculates the next RISE time and starts a new simulation cycle. Further, the RISE-

TM merges all generated external messages and passes them to all relevant domains at the

beginning of a simulation cycle. Note that the new simulation cycle may be a continuation of

Modeler

Domain-1

Domain-N Domain-2

2: Start Simulation

1: Start Simulation

the current simulation cycle since external messages may be stamped with current RISE time.

Note further that the RISE-TM stops simulation if it calculates a new RISE time to be infinity.

Figure 26: RISE Conservative-based Simulation Cycle at Time t

Figure 27 shows a domain-2 response message to RISE-TM (i.e., step #2 at Figure 26). Line #2

indicates the message source domain URI, hence allowing RISE-TM to wait for all replies.

Lines 3-15 contain all newly generated simulation events by the source domain. For instance,

Lines 5-10 show a generated event at port IN1 in Domain1 with value 9. Line 14 specifies the

minimum time of all enclosed external messages from the source domain. RISE-TM must

include this time when calculating next RISE time. Line 16 specifies the time of the next event

of Domain1. RISE-TM must include this time when calculating next RISE time. Figure 28

shows an example of a message sent by RISE-TM to all relevant domains. In this case, the new

RISE-TM is calculated (i.e., Line #2), hence all events with this time must be executed at this

cycle. Lines 3-17 forward all generated external messages. At this point, it becomes the

responsibility of a domain to forward events to appropriate models through specified ports.

1 <RISE Version=”1.0”>

2 <URI>…/Domain2</URI>

3 <XEvents>

4 <MessagesCount>2</MessagesCount>

5 <XEvent>

6 <Time>00:00:01:000</Time>

7 <Port>IN1</Port>

8 <Value>9</Value>

9 <URI>…/Domain1</URI>

10 </XEvent>

11 <XEvent>

12 … … …

13 </XEvent>

14 <Time>00:00:01:000</Time>

15 </XEvents>

16 <Next>00:00:03:000</Next>

17 </RISE>

Figure 27: RISE Domain XML Document Response to RISE-TM Example

1 <RISE Version=”1.0”>

2 <Time>00:00:01:000</Next>

3 <XEvents>

4 <MessagesCount>1</MessagesCount>

5 <XEvent>

6 <Time>00:00:01:000</Time>

7 <Port>IN1</Port>

8 <Value>9</Value>

9 <URI>…/Domain1</URI>

10 </XEvent>

17 </XEvents>

18 </RISE>

Figure 28: RISE-TM Message to Start a Cycle

6 DEVS Namespaces

RISE Time
Manager (RISE-

TM)

Domain-1 Domain-2

1: Execute Events at time t (and
Send All Collected External
Messages)

All Events with time t are executed

2: Receive Domain Replies (All External
(X) Messages and Next-Time Report)

The WSDL for a DEVS simulator service defines data types used by each operation. When the

web service communicates with a user, the operations of the web service receive an argument as

an XML document encapsulated in a SOAP message. The XML document is created in

conformance with a type of schema in WSDL. The data types in WSDL are only defined for

operations of a DEVS simulator not a DEVS model. In the view of simulation, the structure of a

DEVS message consists of a set of contents, each of which includes a port name and a value. In

the DEVS formalism, values are defined as abstract sets that are not further constrained.

Therefore, different DEVS simulation environments can have different class representations and

associated object instance representations for values. To overcome this problem, a DEVS

message is converted to an XML document at the web service level. This approach requires that

different DEVS environments can translate back and forth between their internal value

representations and a common XML representation. The namespace is the concept in XML that

enables services to access a Schema employed by other services and thereby to parse documents

to extract data corresponding to the instances of the Schema.

Thus, in order to interoperate DEVS simulator services in different platforms or languages, the

namespace concept can be used to provide information about DEVS model messages. This

gives rise to the DEVS namespace to support interoperability of DEVS simulator services on

different web service platforms [12].

The DEVS namespace is an indicator of a schema document for types of messages that are used

in DEVS models. The types are expressed in an element of XML Schema that describes the

structure of the XML document. XML Schema assigns a unique name to each element. For

example, if the name of the element is Job, then Job element is unique in the schema

document. The uniqueness of a type provides clarity for message passing between systems that

need to interoperate.

Figure 29 illustrates the conversion of a language class to a schema type. If a Job class is used

in the DEVS model, the Job class should be expressed as a corresponding schema data type. In

the example, the class Job has two variables named id and time which are assigned to int and

double type, respectively. The schema data type represents all variables in the class. The name

of class is the name of a data type and variables become sub elements of the data type. The sub

elements are assigned to primitive data types like variables in the class.

Figure 29: Conversion of Job class to schema data type

Conversion of a class to a schema is performed by a service provider. For example, in a Java

environment, the JAXB library performs this conversion and in addition supports dynamic

invocation in which data are bound from a class instance to a corresponding document. The

schema document resulting from the conversion is registered into a DEVS namespace storage to

access through the network.

DEVS messages are defined as pairs consisting of a port and a value in the DEVS modeling and

simulation. Implementations of the DEVS theory use these pairs to express DEVS messages.

That means that the DEVS messages can be converted to a common expression in XML. A

common XML message is designed to cover generic DEVS messages.

Class Job {

 int id;

 double time;

}

<xsd:element name="Job">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="id" type="xsd:int"/>

<xsd:element name="time" type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Figure 30: The structure of the XML message

Figure 30 represents the structure of the XML message starting with a Message tag. The

Message tag consists of content tags whose elements are a port and an entity tag. The entity tag

expresses any object as a message used in the DEVS model. It has a class tag containing an

identifier for the object. Tags under the class tag are created according to the number of

variables of the object. The tags have an attribute called type describing the type of the variable.

Figure 31. The DEVS message and XML message in the web service.

Figure 31 represents conversion of DEVS messages to XML messages and vice versa. A DEVS

simulator service consists of DEVS modeling and simulation (DEVS M&S), DEVS interface,

and web service. The DEVS M&S handles the DEVS messages, and the DEVS interface

converts DEVS messages to XML messages. The web service then generates a SOAP message

including the XML messages. This procedure is called serialization. The opposite procedure

converts XML messages to DEVS messages and is called deserialization.

Seo [13] created a web service called NamespaceService through which a Schema of a DEVS

simulator service is registered and browsed. A service provider has responsibility of registration

of a schema. When the provider registers the schema, the provider uses a GUI called schema

data register. The GUI has client code for NamespaceService web service, which can help easily

invoke operations. It displays the response of the operations. Any DEVS developer who uses a

Java based environment or .Net based environment can use the GUI to register a schema. If a

developer wants to browse the DEVS namespace storage, the developer can use a browsing GUI

consisting of two parts. One part is to display all schema documents in the DEVS namespace

storage and the other part is to show the schema document corresponding to the name of the

document chosen by the user. This concept can be extended to support browsing based on

<Message>

 <content>

 <port> port name</port>

 <entity>

 <class> class name </class>

< variable name type = variable type> value </variable name>

.

.

 </entity>

 </content>

 <content>

.

.

</Message>

XML Message

SOAP

Web Sevice Middleware
DEVS Message / XML

Message Convertor
XML MessageDEVS Message

Web ServiceDEVS M&S DEVS Interface NetWork

Deserialize XML to DEVS

Serialize DEVS to XML

search criteria such as metadata about which applications have used the schema, the kinds of

operations supported, and so on.

7 SUMMARY

This chapter introduced different methods to standardize DEVS simulation middleware. Theis

middleware supports interfacing different simulation environments along with synchronization

for distributed simulations. Most of the software introduced in this chapter is based on a Service

Oriented Architecture, with Web Services deployed such that they can be easily invoked by

clients.

The DEVS/SOA distributed simulation platform manages distributed simulation through the

interchange of XML messages and the publication of web services. The DEVS/SOA simulator

is based on a net-centric infrastructure that permits coordinating different atomic models written

in varied tools and libraries. The environment provides a well-defined interface for atomic

model Simulators and coupled model Coordinators that can be remotely invoked. Client

applications are based on DEVSML models.

DDSP provides interoperability with minimum design changes to the relevant DEVS engines by

providing a wrapper SOAP interface and XML messages for simulation synchronization. DDSP

hides the internal implementation of the simulation tools (improving interoperability and

supporting DEVS legacy models). The protocol implementation uses Web-services to

interchange simulation messages, and a DEVS wrapper is employed to call service stubs using a

remote procedure call.

The Shared Abstract Model defines an abstract Model Interface based on DEVS atomic models,

and executed using CORBA. The system uses a model Proxy and a model Adapter to distribute

the workload depending on the source and destination of the simulation messages, using the

abstract model interface to standardize this communication.

RISE is a RESTful Interoperability Simulation Environment based on Representational State

Transfer (REST). RISE uses RESTful web services and messages (in XML) to transfer

information between simulation engines. Uniform channels are used to expose the simulation

resources, based on the methods that are widely used for the World Wide Web (and the HTTP

protocol). This approach hides the internal implementation and it uses message-oriented

synchronization based on XML.

Finally, we introduced DEVS namespaces, which permit quickly finding the service data types

and operations available. The namespace enables the services to access an XML Schema

employed by other services, and to parse documents to extract data for that Schema. The

namespace indicates the type of messages used in the model, and it assigns a unique name to

each element. In order to browse the namespace storage, a namespace service is available to

register and browse Schemas for DEVS simulation services.

REFERENCES
[1] S. Strassburger, T. Schulze, R. Fujimoto “Future trends in distributed simulation and

distributed virtual environments: results of a peer study”. Proceedings of Winter

Simulation Conference (WSC 2008). Miami, FL, USA. 2008.

[2] C. Boer, A. Bruin and A. Verbraeck “A survey on distributed simulation in industry”.

Journal of Simulation. Vol. 3, No. 1, pp. 3–16. March 2009.

[3] S. Mittal, J. L. Risco-Martín, and B. P. Zeigler (2009), “DEVS/SOA: A Cross-Platform

Framework for Net-centric Modeling and Simulation in DEVS Unified Process,”

Simulation, vol. 85, no. 7, pp. 419-450.

[4] A. Moreno, J. L. Risco-Martín, E. Besada, S. Mittal, and J. Aranda (2009),

"DEVS/SOA: Towards DEVS Interoperability in Distributed M&S," in Proceedings of

the 2009 13th IEEE/ACM International Symposium on Distributed Simulation and Real

Time Applications: IEEE Computer Society.

[5] C. Seo and B. P. Zeigler (2009), "Automating the DEVS modeling and simulation

interface to web services," in Proceedings of the 2009 Spring Simulation

Multiconference San Diego, California: Society for Computer Simulation International.

[6] K. Al-Zoubi, and G. Wainer, “Interfacing and Coordination for a DEVS Simulation

Protocol Standard,” in The 12-th IEEE International Symposium on Distributed

Simulation and Real Time Applications, Vancouver, British Columbia, Canada, 2008.

[7] G. Wainer; N. Giambiasi “Timed Cell-DEVS: modeling and simulation of cell spaces".

In Discrete Event Modeling & Simulation: Enabling Future Technologies. Springer-

Verlag. 2001.

[8] G. Wainer, “Discrete-Event Modeling and Simulation: A Practitioner's Approach”. CRC

press, Taylor & Francis Group. Boca Raton, Florida. 2009.

[9] Apache Tomcat. Available via http://tomcat.apache.org/. [Accessed July, 2008].

[10] Apache Axis. Available via http://ws.apache.org/axis/. [Accessed July, 2008].

[11] B. Zeigler; P. Hammods “Modeling & Simulation-Based Data Engineering: Pragmatics

into Ontologies for Net-Centric Information Exchange”. Academic Press. 2007.

[12] C. Seo and B.P. Zeigler. “DEVS Namespace for Interoperable DEVS/SOA”.

Proceedings of the 2009 Winter Simulation Conference.

[13] C. Seo. “Interoperability between DEVS Simulators using Service Oriented Architecture

 and DEVS Namespace”. Doctoral Dissertation, ECE Dept, Univ. Arizona.Tucson.

[14] T. Wutzler and H.S. Sarjoughian, "Interoperability among Parallel DEVS Simulators and

Models Implemented in Multiple Programming Languages," Simulation, vol.83, no 6, pp

473-490, 2007.

[15] G. Wainer G.; K. Al-Zoubi "An Introduction to Distributed Simulation". Chapter 11,

Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical

Domains. Banks C., Soklowski J. (Editors). Wiley. New Jersey, 2010.

[16] R. T. Fielding “Architectural Styles and the Design of Network-based Software

Architectures”, Doctoral dissertation, University of California, Irvine, 2000. Available

at: <http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>. Accessed October

2008.

[17] L. Richardson, S. Ruby “RESTful Web Services”, O’Reilly Media, Inc., Sebastopol,

California. 2007.

[18] T. O'Reilly “What Is Web 2.0”. <http://

www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html>.

Accessed May 2009.

[19] K. Al-Zoubi; G. Wainer “Performing Distributed Simulation with RESTful Web-

Services Approach”. Proceedings of the Winter Simulation Conference (WSC 2009).

Austin, TX, USA. 2009.

[20] K. Al-Zoubi; G. Wainer “Using REST Web Services Architecture for Distributed

Simulation”. Proceedings of Principles of Advanced and Distributed Simulation PADS

2009, Lake Placid, New York, USA. 2009.

[21] J. Gregorio “URI Templates”. <http://bitworking.org/projects/URI-Templates/>.

Accessed October 2008.

