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1 Introduction 
 

As discussed earlier in Chapter 16, there are two different interoperability objectives that one 

must consider when standardizing DEVS environments: (1) Standardizing DEVS model 

representation to allow a platform-independent DEVS model representation that can be 

executed by any DEVS-based simulation tool. (2) Standardizing Interoperability Middleware to 

interface different simulation environments and allow synchronization for the same simulation 

run across a distributed network regardless of their model representation. 

 

This chapter focuses on approaches by different groups to standardize the simulation 

middleware. All of the implementations discussed in this chapter are based on a Service 

Oriented Architecture (SOA) design, which employs the concept of deploying services so that 

they can be invoked by clients. This concept is applied in CORBA and SOAP/REST Web-

services. 

 

This kind of middleware is of interest in order to overcome current distributed simulation 

challenges and to meet future expectations in this area [1][2]. A standardized DEVS simulation 

protocol should enable different DEVS implementations to simulate the same DEVS model 

hierarchy partitioned between various DEVS engines in distributed fashion. Moreover, each 

DEVS domain in this distributed system should be able to execute its legacy models and, thus, 

perform distributed simulation experiments between different heterogeneous models and 

engines. The middleware designs showed in this chapter offer simulation resources as a set of 

services that can be invoked by simulators, and where these simulators act as peers (i.e., clients 

and servers at the same time) to each other to synchronize a simulation session.  

 

The designs presented in this chapter show that different methods can be employed for DEVS 

simulation synchronization. One option is to expose the actual DEVS simulators and 

coordinators (and to take care of synchronization at that level). A second option considers 

placing the DEVS coordinators and simulators of a domain behind a wrapper so that this 

wrapper routes all information to the appropriate coordinator/simulator. Further, the 

synchronization protocols can pass all simulation data between distributed entities in the form of 

procedure parameters (relying on CORBA or SOAP-based Web-services), or can pass 

simulation data between distributed entities in the form of XML messages. 

 

2 DEVS/SOA 
 

As discussed in the previous chapter, DEVS/SOA is a DEVS simulation platform implemented 

in both Java and .NET programming environments. It manages messages in XML format, which 

enables the publication of web services (including the publishing of simulators and even atomic 

or coupled models as web services). As discussed earlier, there are now many libraries for 

expressing DEVS models around the world. All have efficient implementations for executing 

the DEVS protocol and most of them provide the advantages of Object Orientation (such as 

encapsulation, inheritance, and polymorphism). In order to simplify notation, we use the term 

DEVS/JAVA to denote a DEVS library implemented in Java (for example DEVSJAVA or 



 

 

xDEVS) and DEVS/NET to denote a DEVS library implemented in any language supported by 

.NET (for example ADEVS in C, CD++ in C++ and DEVS.NET in C#). 

 

2.1 DEVS/SOA simulation layer 
 
The DEVS/SOA simulator integrates the common DEVS/SOA atomic model interface pictured 

at the bottom of Figure 1 to support multi-framework interoperability. This modeling interface 

plus a customized adapter allow the aggregation of DEVS/JAVA native models (xDEVS, 

MicroSim, DEVSJAVA, etc) in parallel with DEVS/NET based models (ADEVS, CD++, 

DEVS.NET, etc). A noteworthy achievement of a DEVS modeling common interface is the 

presence of an embedded "translator" that is in charge of mapping incoming messages to XML 

and outgoing messages the other way around. 

 
Figure 1. DEVS/SOA architecture 

 
 

The communication between a given DEVS/SOA atomic models and its corresponding 

Simulator are detailed in an XML format. Therefore, the essential duty of the aforementioned 

DEVS modeling interface translator is to bind the platform independent XML data types to the 

message objects exchanged between the DEVS/SOA simulator and the DEVS atomic models.  
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Figure 2. DEVS/SOA XML Message Mapping (centralized in root coordinator) 

 
Figure 2 illustrates the message passing process of the coupled model consisting of an 

Experimental Frame (ExpFrame, which generates jobs to be processed, and it computes the 

performance obtained when processing those jobs) and a Processor (which models the activity 

of a server that we want to simulate) using DEVS/SOA . Dashed lines represent the model 

dataflow   

i. The ExpRrame DEVS/SOA atomic model requests an output message from a 

platform specific model (xDEVS or DEVS.NET) using GetValuesOnPort and 

GetOutput;  

ii. a simulator requests an XML formatted output message from the DEVS/SOA 

atomic model using GetOutput;  

iii. the Coordinator requests an XML formatted output message from a Simulator and 

sends it to another simulator through the corresponding ports coupling;  

iv. a simulator receives an XML formatted message using Receive;  

v. the DEVS/SOA atomic model receives a platform specific message;  

vi. the platform specific Processor model receives the value of the message.  

It should be mentioned that each operation embodies a specific input or output port. The right-

hand side of Figure 2 symbolizes the translation procedure that converts a DEVS message 

(DEVS model input or output) built from class objects into an XML based document (marshall), 

and vice versa (unmarshall). The corresponding steps (1) and (2) can be seen on the left-hand 

side of the figure. Because of this XML serialization, DEVS model inputs and outputs are sent 

through the web within SOAP. 

 

Figure 3 depicts the DEVS/SOA simulator interface. The DEVS/SOA simulator is implemented 

as a classic DEVS simulator, with the difference that data are managed in XML. Thus, the input 

and output of a function can be declared using standard data types (string and double) and 

the publication of such interfaces as web services can be easily performed. 

 
public interface Simulator{ 

   public void setModel(String XmlModel); // Receive the corresponding DEVSML part 

   void initialize(double t); // Typical DEVS initialization function 

   double getTN(); // Returns the time of the next event 

   void deltfcn(double t); // Encapsulate the call to deltint, deltext and deltcon in the model 

   void lambda(double t); // Output function 

   String[] getOutput(String portName); // Returns the values at output ports as XML 

   void receive(String portTo, String[] xmlMessage); // Receive messages in XML format 
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} 
Figure 3. Simulator interface 

 

Technically, these operations, expressed in the WSDL file of the DEVS/SOA Simulator service, 

wrap the classic DEVS simulation protocol with the purpose of achieving a qualified and 

standardized DEVS simulation. 

 
Finally, Figure 4 shows the DEVS/SOA Coordinator interface. Likewise, as pictured in Figure 

1, the Coordinator service layer together with a web service frontend invokes DEVS simulation 

operations against the Simulator service layer. Again, the communication is driven by the 

standard SOAP protocol and the operations are detailed in the Simulator service WSDL file 

allowing platform-independent interactions. Moreover, assuming that a coordinator is already 

provided by the client application with the root DEVS model based on DEVSML syntax, the 

initial coordination task comprehends parsing the DEVSML document looking for DEVS 

atomic or coupled models and their connections. Each atomic or coupled model supplies the 

coordinator with the associate remote simulator location in order to enable communications 

among them. The connections among the models let the coordinator be aware of the entire 

distributed circuit to carry out proper performance analysis. After the communication between 

the coordinator (coordination service layer) and the respective simulators (simulation service 

layer) is set up, the coordinator proceeds to activate and initialize all simulators by feeding them 

with their proper DEVSML based model definition. Next, the coordinator continues with the 

simulation initialization within the DEVS/SOA simulation protocol. 
 

public interface Coordinator{ 

   public void setModel(String XmlModel); // Initialize the model with the DEVSML file 

   public String[] simulate(int numIterations); // Simulate a given number of cycles 

} 
Figure 4. DEVS/SOA Coordinator interface 

 

As Figure 1 illustrates, the client application requires a web service frontend to provide access 

to the Coordinator service layer. The baseline communication is settled within the SOAP 

protocol and the operations are detailed in the Coordinator WSDL file. This arrangement 

provides platform independent interactions. Assembled with a web service framework, the 

client application acquires the capacity to look over the web for the coordinator service hosted 

at the remote location stated at the DEVSML root model (see Error! Reference source not 

found.). Once the connection is established, the web client application activates the remote 

coordinator by supplying a model specified using DEVSML, and it subsequently executes the 

simulation according to specific parameters. As soon as the simulation completes, the client 

application receives a summary of the overall simulation performance and cumulative results. 

The aforementioned operations are specified inside the DEVS/SOA Coordinator WSDL file. 

 

When composing a DEVS/SOA model, one important simplification, which is not mandatory, is 

that every coupled model can work as an atomic model [3]. For example, Figure 5 shows that 

the root model can be simulated in two different ways: with each atomic model on a different 

computer (as seen on the left-hand side of the figure), or with the Experimental Frame on one 

computer (i.e., the coupled model ExpFrame shown on the right-hand side figure, which is the 

composition of Generator and Transducer atomic models on the left) and the Processor on 

another (as seen on the right-hand side).  

 



 

 

 
Figure 5. Simplification of DEVS models 

 

2.2 DEVS/SOA application 
 

As stated above, to build a web service-based infrastructure, both the coordinator and simulators 

are published as web services. Thus, we have two Coordinators (DEVS/SOA Coordinator and 

stub) and two Simulators (DEVS/SOA Simulator and stub).  

 

On the server side, all the Coordinators and the Simulators must be placed in a directory 

accessible by the selected web server (Apache Tomcat and Axis2 to allow web service 

development, or MS Internet Information Server with .NET), as well as all the models to share 

by every particular server and their corresponding DEVS libraries to allow interoperability. For 

example, for a particular case where Apache Tomcat and Axis 2 is being used, the server side 

content comprises: 

• TOMCAT_HOME/webapps/axis2/WEB-INF/services: 

o Simulator.aar: Axis2 archived web service and stub of DEVS/SOA Simulator. 

o Coordinator.aar: Axis2 archived web service and stub of DEVS/SOA 

Coordinator. 

• TOMCAT_HOME/shared/lib: 

o xdevs.jar: xDevs M&S API. 

o devsjava.jar: DESJAVA M&S API. 

o Several xDEVS and DEVSJAVA models. 

 

Since both web services and stubs are installed in the server, they are able to act both as a 

simulation services and as clients to another server. For a fully Symmetrical Service architecture 

design, refer to [3]. By this symmetrical design, when a distributed DEVS/SOA is executed on 

multiple machines (say on a server farm), each machine can serve as a DEVS coordinator as 

well as a DEVS simulator facilitating the recursive DEVS hierarchical design principles. 

 

Similarly, the client application contains just two executable classes (the DEVS/SOA 

coordinator and simulator stubs), namely DevsSoaSimulator.jar and DevsSoaCoordinator.jar. A 

graphical UI client for DEVS/SOA was implemented in [3]. To execute the model, the user 

must compose an XML file describing the distributed architecture (as depicted in Error! 

Reference source not found.) and run the simulation as follows (in the Java client 

application): 

 
// xmlCoupledModelAsString is a DEVSML file, which has been previously loaded 

CoordinatorServiceInterface service = new  

 CoordinatorService("http://localhost:8080/devsoa/Coordinator",true); 

service.setCoupledModel(xmlCoupledModelAsString); 

String[] response = service.simulate(numIterations); 
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or using the client Coordinator as a executable file: 

 
java -jar DevsSoaCoordinator.jar  -file=ef-p.xml -numIter=110 

 

To this end, the software required in a DEVS/SOA Java Axis2 client application is: 

• Java Development Kit (JDK): Version 1.4 or later. 

• Axis2: Versión 1.4.1 or later standard binary distribution. 

To conclude, the purpose of DEVS/SOA is to support distributed simulation and 

interoperability. The distributed arrangement of the ongoing simulations enables the user to 

partition the original model and distribute it between several processors or cores in the same 

computer, among several computers connected through Internet, or between both. In the same 

manner, the user is able to compose a complex DEVS model using different submodels that 

may be hosted on different computers. Furthermore, the interoperability quality allows the user 

to compose a complex DEVS model with different submodels implemented using distinct 

DEVS M&S frameworks or libraries. Every computer involved in the M&S process must act as 

a repository providing DEVS models (implemented for a specific DEVS library), as a server 

(providing Simulators and Coordinators as web services), and as a client (communicating with 

the Coordinator on any machine). 

 

3 Distributed DEVS Simulation Protocol (DDSP) 
 

In [6], a flexible and scalable XML-based message-oriented mechanism was developed with the 

goal to allow interoperability between different DEVS implementations. The main objective of 

the protocol is to enable different DEVS implementations to interface and coordinate among 

each other to simulate the same model structure across their diverse domains. To do so, the 

developed simulation protocol uses SOAP-based Web-Services technology as the 

communication framework to exchange control and standardized simulation XML messages.  

 

3.1 Introduction to DDSP  
 

The idea of DDSP is to provide interoperability with minimum design changes to each DEVS 

implementation, mainly by hiding the detailed implementation behind a wrapper (i.e., a SOAP-

engine port) and focusing only on the exchanged XML messages. This point is important 

because various DEVS implementations are different (even if they are implemented with the 

same programming language). Interfacing the same tool implementation in a parallel/distributed 

environment can require weeks of programming and debugging by programmers who 

understand that tool implementation very well. One cannot expect interfacing different DEVS 

implementations that were developed by different independent teams to be internally structured 

the same. Further, different teams have extended their tools over the years to accommodate 

different optimizing algorithms or modeling technique. For example, the Cell-DEVS extension 

[7] allows for representing each cell in the cell space as a DEVS model that is only activated 

when it receives external inputs from its neighboring cells. CD++ [8] provides an environment 

for DEVS and Cell-DEVS models. However, it extends the software design into different C++ 

classes to implement both DEVS and Cell-DEVS. Figure 6 shows a fragment of the design of 

distributed CD++ (DCD++). The figure clearly shows that this version of the simulation 

software uses a specific implementation to simulate Cell-DEVS models (using the AtomicCell 

and CoupledCell methods). The various DEVS versions have in common that coordinators 

synchronize coupled models, and simulators execute atomic models where the simulation is 

advanced according to the DEVS theory rules. However, each DEVS version provides different 

software design and implementations. In fact, the internal implementation for a DEVS 

coordinator, for instance, can vary between parallel, standalone, and distributed for the same 

DEVS tool because each of these DEVS coordinators can use a different algorithm to coordinate 

its children. 



 

 

 
Figure 6: Snippet of the DCD++ Model/Simulators hierarchy 

 

Hiding the internal implementation increases the protocol chances of success since various 

DEVS teams are not expected to change their internal design and software implementation in a 

way that jeopardizes their existing DEVS tools integrity. Further, they can have full freedom to 

extend/change their own internal software implementation. This is because a DEVS tool is 

always in conformance with the standards as soon as it handles the standardized XML 

simulation messages correctly.   

 

The DEVS Distributed Simulation Protocol also supports interfacing DEVS legacy models. 

This allows a modeler to assemble and simulate heterogeneous DEVS models that were 

originally intended to run in a specific DEVS environment. The protocol expects each tool to 

react to expected messages (with a standardized format constructed as XML documents) in 

order to correctly synchronize and carry out simulation of the overall model (which is spread 

over different domains). Having a message-oriented protocol that hides implementation detail 

(behind wrappers) and focuses only on the information needed (within exchanged messages) 

has many advantages. To summarize a few:  

 

• Maintainability: Protocol changes are only applied to the protocol messages rather than 

to every DEVS implementation, 

• Scalability: the contents of the XML message being exchanged are easy to add (or 

remove) by adding (or removing) the Remote Procedure Calls (RPCs) interface, and 

• Testing: local testing is easy to perform by each group before executing integration 

testing between different DEVS domains. The general rule is that if a DEVS 

implementation can interface with itself via exchanging XML standardized messages, it 

should be able to interface with a different DEVS implementation using the same 

standardized messages (in case both implementations conform to the standardized 

messages and rules). 

 

3.2 Web-Service DEVS Wrapper 
 

Each DEVS implementation should execute its own specific models. This requirement enables 

both the utilization of hundreds of legacy models for each DEVS tool as well as the integration 

with other models in different DEVS tools. This requirement is essential to make DEVS 

standards attainable because we can never expect all legacy models to be rewritten. This 

requirement is satisfied by enclosing all models in a single outer model and making each DEVS 

tool responsible for simulating its specific models. For example, in Figure 7, Coupled1 can be in 

DEVSJAVA while Coupled2 can be in DCD++. In this case, the main DEVS domain owns the 

Root coordinators and simulates both heterogeneous models, giving the impression of 

simulating a single distributed heterogeneous DEVS model. 



 

 

 
Figure 7: Coupled model partitioned across DEVS Domains 

 

As shown in Figure 7, both coupled models interface without worrying about how the other 

implementation performs the simulation internally. Therefore, coupled models are viewed as 

black boxes with input/output ports. However, it is still possible for a DEVS implementation to 

know more details about the model structure in other domains, depending on the level of detail 

that is made available to the domains when the structure is distributed, as described in the XML 

structure document. 

 

The concept is to have each DEVS implementation use a single communication entry point, 

implemented as a DEVS-Wrapper (Figure 8). Therefore, a coupled model may physically be 

partitioned among different machines within a DEVS implementation domain, but other DEVS 

domains “believe” the coupled model actually exist on the machine through which they 

communicate with the coupled model. The DEVS-Wrapper is actually a Web-service port that 

exposes a number of stubs (interfaces), allowing other DEVS domains to invoke them in an 

RPC-style mechanism, as discussed in the communication framework section. Therefore, the 

DEVS-wrapper interfaces are described in WSDL document allowing domains to construct the 

necessary stubs. 

 
Figure 8: Connecting Two DEVS Domains 

 

This requirement simplifies the coordination via one single Web-service port described in a 

single WSDL document. This approach does not require the DEVS-wrapper operations to be 

exposed in a separate Web-service port or to be merged with other existing ports, but it leaves 

this decision to individual teams since it is a software design issue rather than a standardization 

one. Further, the DEVS-wrapper port needs to be described by a WSDL document where other 

domains can use the standardized interfaces. The DEVS-Wrapper component is expected to 

perform the following tasks: 

• Translate incoming standardized simulation messages to specific domain simulation 

messages. 
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• Transmit simulation messages to other DEVS domains according to the DEVS 

standards. 

• Route incoming simulation messages to the correct models/ports within its domain. 

 

The protocol should minimize its dependency on the communication framework, requiring few 

(or no) changes to the standardized simulation messages if one needs to move the simulation 

protocol to other communication engines in the future. In DCD++, this requirement is 

implemented by sending all simulation messages as XML documents in SOAP attachments via 

exposed DEVS-wrapper interfaces. Therefore, if the communication mechanism changes, those 

same XML documents can still be transmitted without changes.  

 

Although SOAP messages are standardized XML documents, they are hidden from the Web-

service applications and are only seen as programming stubs with input/output parameters. 

Consequently, a DEVS standard would need to define its own XML messages. Eventually, the 

standard is realized by the programming code, hence if it only relies on SOAP XML messages, 

all DEVS interfaces become a matter of simply gluing programming remote procedures 

together. This makes the standard extremely sensitive to changes since programming language 

procedures by nature are sensitive to many factors such as the order, type, and number of 

parameters that are passed into them. Therefore, the standard can never claim to be using XML 

messages for communication because the SOAP messages are only handled by the SOAP 

engine (i.e., the communication layer below a Web-service application that is responsible for 

SOAP messages handling), and this engine is enabled to invoke the appropriate service stub. 

 

The DDSP implementation uses Web-services technology to transfer standardized simulation 

messages between different domains. All messages are transmitted through SOAP/HTTP 

engines, hence wrapped within SOAP and HTTP envelopes, as shown in Figure 9, where a 

DEVS Wrapper communicates with other DEVS domains by invoking the deployed-service 

stubs in a remote procedure call style. Simulation messages are passed into those stubs as SOAP 

attachments in the form of XML documents. 

 
Figure 9: Connecting Domains using Web-Services 

 

Stubs are constructed from the deployed WSDL document by the service provider (other DEVS 

domains). To support SOAP-based web-services, each DEVS domain should have the following 

engines: 

• HTTP Server (e.g., Tomcat [9]). 

• SOAP Engine (e.g., AXIS   [10] ). 

• XML parser: the proposed protocol is not making any assumptions regarding a specific 

XML parser. 

 

A DEVS-Wrapper is actually a Web-service port connected to the AXIS SOAP engine that 

encapsulates the necessary operations, allowing different DEVS domains to communicate with 

each other and clients to activate DEVS simulation services. The standard here assumes that 
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individual DEVS domains provide their own interfaces for clients allowing them to invoke the 

services of the individual DEVS domains (such as user authentication, file submission, etc.). 

The remaining discussion in this section focuses only on the communication between various 

DEVS domains. 

 

Figure 10 shows the AXIS Java interface for the DEVS-wrapper operations. They are described 

in WSDL documents, so that other AXIS Java communication classes may be constructed by 

various DEVS domains (these operations are stubs that allow DEVS domains to communicate 

with each other).  

 
1  import javax.activation.DataHandler; 

2  

3  public interface DEVSWrapperType extends java.rmi.Remote { 

4 

5    public DataHandler retrieveResultFile(int SupportiveSession); 

6    public boolean startSimulation(int SupportiveSession); 

7    public boolean isSimRunning(int session); 

8    public boolean StopSimulation(int session); 

9    public boolean setDEVSXML(int session, String filename,  

10              DataHandler file); 

11   public boolean deleteSession(int SupportiveSession); 

12   public int createSupportiveSession(int MainSession); 

13 } 

Figure 10: DEVS-Wrapper AXIS-Port Services 

 

The DEVS-Wrapper services in Figure 10 can be summarized as follows: 

• retrieveResultFile : Is used to retrieve simulation result files from a support DEVS 

domain. 

o Input: The support DEVS domain session number. 

o Output: The results file. 

• startSimulation : It starts the simulation on a support DEVS domain. In this case the 

simulation engine starts and waits for the first simulation message from the main DEVS 

domain. 

o Input: The support DEVS domain session number. 

o Output: True on success; false otherwise. 

• isSimRunning : It checks if a simulation is running on a DEVS domain. 

o Input: The support DEVS domain session number. 

o Output: True if simulation is running. Otherwise false. 

• StopSimulation : It stops the simulation normally on a support DEVS domain. 

o Input: The support DEVS domain session number. 

o Output: True on success. Otherwise false. 

• setDEVSXML : It sends an XML document to a DEVS domain. XML document is 

either configuration file or a simulation message. 

o Input:  

▪ A DEVS domain session number. 

▪ XML document file name. 

▪ The actual XML file. 

o Output: True on success; false otherwise. 

• deleteSession : It deletes a simulation session on a support DEVS domain. This 

operation releases all resources used for this session. 

o Input: The support DEVS domain session number. 

o Output: True on success. Otherwise false. 

• createSupportiveSession : It creates a simulation session on a support DEVS domain. 

This operation allocates all necessary resources needed for this session. The support and 

main DEVS domains are accepted to bind both session numbers together. This gives 

each DEVS domain the freedom to allocate its session numbers without worrying about 

possible conflict with other DEVS domain session numbers. 



 

 

o Input: The Main DEVS domain session number. 

o Output: The support session number or -1 on failure. 

 

Initially, the main DEVS domain creates support simulation sessions and establishes full 

connections with all support domains. Each DEVS domain should know each participant 

DEVS-Wrapper port URI and its associated session number for all participant DEVS domains. 

This allows DEVS domains to have multiple concurrent simulation sessions using the same 

Web-service port. 

 

The main DEVS domain opens a session with all relevant support domains, and it broadcasts 

this information to support domains in one XML document (using the method setDEVSXML). 

The simulation session document contains the main domain session number (which all support 

DEVS domains know upon invoking createSupportiveSession by the main domain), and the 

support URIs paired with their session number, as shown in Figure 11 

 
<Sessions ver=”1.0”> 

   <Session Type=”Main”> 

      <Number>123</Number>  

      <URI>http://…</URI>  

   </Session> 

   <Session Type=”Supportive”> 

      <Number>1000</Number>  

      <URI>http://…</URI>  

   </Session> 

   … 

</Sessions> 
Figure 11: Domain-Simulation Sessions XML Binding Document Example 

 

After receiving the XML document in Figure 11, each domain should be able to send messages 

on a session to any other domain.  

 

The main principle followed here is to enclose all various DEVS domain heterogeneous models 

within a single coupled model. This simplifies the simulation coordination, as each DEVS 

domain hides its internal activities and coordinates with other DEVS domains. This approach 

has been adopted in the variant of DEVS/SOA developed by [12] [13] which supports 

interoperability across different web service platforms using the XML namespace 

concept to be described next. 
 

3.3 Model Structure XML Document  
 

The Model structure XML document (shown in Figure 12) is initially submitted by the modeler 

to the main DEVS domain to describe how the overall model is structured so that each DEVS 

version can identify which models belong to its domain. Further, from this document, the main 

machine can identify the participant support domains.  

 

The model structure document contains enough information to allow different domains to create 

local models, coordinators (i.e., coupled model processor), and simulators (i.e., atomic model 

processor). It also includes data on how they will relate to other models in different domains. 

 

The main DEVS domain must pass this document before it starts the simulation (i.e., before 

invoking service startSimulation on support domains). The model structure document contains 

the following information (see Figure 12): 

• model names,  

• model type (coupled/atomic),  

• model input/output ports,  

• coupled models internal submodels and their ports connections,  



 

 

• models domain URIs, and 

• coupled models synchronization algorithms used (e.g., the Head/Proxy Coordinator 

discussed earlier).  

 

The DEVS models hierarchy can easily be mapped into this XML document. For example, 

assume two models connected with each other as in Figure 7 (two DEVS domains where each 

model is specific to its domain implementation). In this case, the two models would be enclosed 

within an outer model (Coupled0), resulting in the XML document shown in Figure 12. This 

XML document also serves as an agreement contract between various implementations on the 

used synchronization schemes. For example, the coordination scheme that is used can be set by 

the COUPLED_SYNC field to simulate a distributed coupled model across various domains. In 

this way, the standard can easily adopt any new schemes that may appear in the future. 

 
<MODEL_STRUCTURE ver=”1.0”> 

 <COUPLED_SYNC> 

    <scheme ver=”1.0”>HeadProxy</scheme> 

 </COUPLED_SYNC> 

 <Models> 

   <Model Type=”Coupled”> 

     <Name> Coupled0 </Name> 

       <Components> 

        <Name Type=”Coupled”>Coupled1</Name> 

        <Name Type=”Coupled”>Coupled2</Name> 

       </Components> 

     <URI>http://… </URI> 

     <LINKS> 

        <LINK> 

          <FROM> 

            <Component>Coupled1</Component> 

     <Port>OUT1</Port> 

          </FROM> 

          <TO> 

            <Component>Coupled2</Component> 

     <Port>IN2</Port> 

          </TO>  

        </LINK> 

        … 

     </LINKS> 

     … 

   </Model> 

   <Model Type=”Coupled”> 

     <Name> Coupled1 </Name> 

     <Ports> 

       <Port Type=”in”>IN1</Port> 

       <Port Type=”out”>OUT1</Port> 

     </Ports> 

     <URI>http://… </URI> 

     … 

   </Model> 

   <Model Type=”Coupled”> 

     <Name> Coupled2 </Name> 

     <Ports> 

       <Port Type=”in”>IN2</Port> 

       <Port Type=”out”>OUT2</Port> 

     </Ports> 

     <URI>http://… </URI> 

     … 

   </Model> 

 

  </Models> 

     … 

</MODEL_STRUCTURE> 
Figure 12: XML Model Structure Document Example 

 



 

 

The simplest way of structuring a DEVS model is to have one coupled model at each of the 

DEVS domains connected to one other via their input/output ports, where each coupled model 

views the coupled models in other domains as “black boxes”. Even with this simple scenario, 

another top-coupled model should then be created to wrap all coupled models across various 

domains. Therefore, there will be at least one coupled model partitioned across DEVS domains. 

By having one Coordinator simulating a single coupled model distributed over the network, it 

becomes a performance bottleneck (because of the number of messages exchanged between the 

parent Coordinator and its children). For this reason, we propose to adopt a Head/Proxy 

Coordinator structure. Other algorithms can be adopted if they are scalable and it is needed. The 

Head/Proxy extends the coordinator concept, as follows: 

• Head Coordinator: it is in charge of simulating the entire coupled model. It coordinates 

the internal models that exist in its domain and (via Proxy Coordinators) the other 

internal models that exist in other domains. 

• Proxy Coordinator: it acts as an agent on behalf of the Head Coordinator to simulate the 

internal submodels of a coupled model that exist in its DEVS domain. A Proxy 

Coordinator passes all the unknown messages to its Head Coordinator; however, a 

Proxy Coordinator usually passes only one message to its head Coordinator on behalf of 

the coupled model internal partitions its domain (which is possibly distributed among 

different machines in the same domain). 

 

Note that the domain that owns the first internal model as structured in the XML model 

structure document will create the Head coordinator for the parent and other domains will create 

proxy coordinators. For example, the domain that owns Coupled 1 in Figure 13 creates the Head 

coordinator for the outer model Coupled 0 while the others create Proxy coordinators. Note 

further that the main domain always owns the Root coordinator and drives the overall 

simulation. This is not related to the Head/Proxy algorithm. Therefore, it is possible for the top-

level model to have its Head coordinator in a support domain since this depends on how the 

modeler described it in the XML structure document. However, the modeler should structure the 

top-level model to have its Head coordinator in the main DEVS domain to be near the Root 

coordinator in the main DEVS domain for performance reasons. 

 

Using a single Coordinator adds unnecessary overhead if two child simulators want to exchange 

messages and are running on a machine different from their coordinator. As shown in Figure 13, 

Simulator 3 sends an output message that is to be translated into external message to Simulator 

2, which resides on the same machine as its sibling Simulator 3. Therefore, sending this 

message to the coordinator, it ends up being transmitted twice as remote messages because the 

coordinator is running on a machine different from the source and destination of the message. 

 

 
Figure 13: superfluous messages exchange in distributed simulation 

 

The above-described problem could have been avoided if there is a coordinator responsible for 

message routing locally in each machine. Therefore, having a proxy coordinator on Machine 2 

(in Figure 13) causes the message from Simulator 3 to Simulator 2 to be sent locally, thereby 

improving the performance of the simulator. Further, one DONE message is sent to the Head 



 

 

Coordinator (on Machine 1) from the Proxy Coordinator (on Machine 2) on behalf of Simulator 

2 and Simulator 3. 

 

3.4 Format and Content of Messages  
 

Simulation messages are constructed as XML documents and sent to other domains as SOAP 

attachments (using the AXIS stub setDEVSXML where the receiver session number is one of 

its parameters). Therefore, any changes in the simulation messages will be made to the message 

XML document rather than to the input/output parameters of the AXIS stub, thereby increasing 

scalability and portability.  

 

The simulation message types are listed as follow (note that the specific simulation phases are 

discussed in the next section): 

• Init (I): Simulation starts when the Init message is passed to the top-coupled model 

Coordinator, which then pushes it downward to its children.  

• Collect (@): it is used to start the collection phase. The top model Coordinator 

propagates it downward.  

• Internal (*): it is used to start the transition phase.  

• Done (D): it is used by Coordinators to identify which children need to be simulated at 

this phase. It is used by the Root Coordinator to advance the simulation time and switch 

simulation phases. 

• External Message (X): Messages from the environment, or as a result of output 

messages.  

• Output Message (Y): Generated during the collection phase. 

 

Table 1 shows all possible fields in an XML message document. All fields are not required to be 

sent with each message type. However, if the sender chooses to send all fields in a message the 

required fields (based on the message type) are the only ones that the receiver must consider. 

The Next-change-time element is used by DONE messages to inform the parent Coordinator 

about the next expected internal change (in turn, the parent Coordinator passes a DONE 

message to its parent including the minimum next change of its model children, whether local or 

in other domains). Eventually only one DONE message is received by the Root Coordinator (in 

the main domain), which then starts another simulation phase. All Coordinators (including 

Root) use this message to know which children branches should be involved in each simulation 

cycle. This prevents many unnecessary message transmissions across the network. 

 
Table 1:  Simulation Message XML Fields 

Element Format Allowed Values Comments 
MessageType Character I, @, D, X, Y, * I = INIT,  

@ = Collect,  

D = Done,  

X = External,  

Y = Output, 

 * = Internal. 
Time String 

Hours:Minutes:Secs:mSec 
Numbers separated 

by colon (“:”) 
Example: 08:50:00:00 

SrcModel String Known Model 

Name 
Source Model 

DestModel String Known Model 

Name 
Destination Model 

Port String Known Port Name Destination Port. 
Value C++/Java double N/A Mandatory only for External 

and Output messages. 



 

 

NextChange See Time element See Time element Next Change Time. 

Mandatory only for DONE 

messages. 
IsFromProxy Java boolean True or False Mandatory only for DONE 

messages if Head/Proxy  

Algorithm is used. This allows 

Head to synchronize its 

Proxies. 

 

Figure 14 shows an example of an INIT message from model Coupled0 to port IN of model 

Coupled2. In this example, the sender domain chose to send all fields; however, the receiver 

must only use the fields relevant to the INIT message. 

 
<Message ver=”1.0”> 

   <MessageType>I</MessageType> 

   <Time>00:00:00:00</Time> 

   < SrcModel>Coupled0</SrcModel> 
   < DestModel>Coupled2</DestModel> 
   <Port>IN</Port> 

   <Value>-1.0</Value> 

   <NextChange>00:00:00:00</NextChange> 

   <IsFromProxy>false</IsFromProxy> 
</Message> 

Figure 14: Initialization Simulation Message with All Fields Example 

 

The developed protocol in this section has simplified the simulation by wrapping all distributed 

models across various DEVS domains in one single coupled model; hence it becomes the 

responsibility of coupled Coordinators to locate their children (i.e., internal models) in order to 

pass them the needed simulation messages (perhaps by having a database that stores each model 

description along with its domain URI). Further, simulation messages can be specific to a 

certain domain when they are exchanged within the domain itself, but when they must exit to 

another domain, the DEVS-Wrapper (discussed in the communication section) translates them 

to the standardized XML message documents and passes them as SOAP attachments using the 

AXIS stub setDEVSXML to other domains DEVS-Wrappers. For example, as shown in Figure 

15 a DEVS domain does not need to use the standards within its domain. However, when a 

message must travel to another domain, it has to be translated first to the standard format so that 

it can cross the DEVS protocol bridge. 

 
Figure 15: An Internal Look of a DEVS Domain 

 

4 Shared Abstract Model  
 

In [14], an approach for on-line model-based interoperability named the Shared Abstract Model 

(SAM) was defined. The Shared Abstract Model is used to specify an Abstract Model Interface, 

shown in Figure 16. The specification of the Abstract Model Interface is based on the DEVS 

Atomic Model formalism. The interface is specified in terms of OMG-IDL, and it is executed 

using CORBA. Based on the Abstract Model Interface definition, the SAM approach requires a 
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Model Proxy (corresponding to the atomic stub of Figure 16). Then, models have to be wrapped 

into model adapters that will make their interfaces match the standard one. This approach is 

predominantly aimed at integrating existing legacy models or models specified in different 

DEVS implementations (and for simulation engines responsible for executing a non-native 

model implementation). Writing the model adapters for the Shared Abstract Model can be a 

tedious task, notably because of the use of generic messages that have to be converted before 

being processed by the model. Fortunately, this task of writing the two adapters (one for atomic 

and one for coupled models) must be done only once for each DEVS engine implementation. 

The two adapters can then be used for all models specified within the DEVS engine 

implementation. 

 

 
 

Figure 16: The Shared Abstract Model concept for a simulator executing non-native models 

using Proxy Model, Adapter Model, and the Abstract Interface Model 

 

Considering the DEVS-Suite simulation engine, its simulator (Simulator1 in Figure 17) can 

directly execute Model Implementation A (i.e., there is no need for syntactic translation from 

one programming language to another). However, the same simulator cannot execute the Model 

Implementation B, which is implemented for direct execution using the ADEVS simulator 

(Simulator2 in Figure 17). The Model Proxy and Model Adapter are used to overcome the 

syntactical differences between the Java and C++ programming languages which also 

necessitates Process1 and Process2 to communicate with one another (i.e., send and receive 

messages). The Model Proxy translates the method invocations of the Simulator1 to those of the 

Abstract Model Interface. The Simulator1 then can use the Model Adapter to execute the 

transition, time advance, and output functions defined for Model Implementation B. The 

inheritance relationship from Model Adapter to the Abstract Model Interface allows Model 

Implementation B and other models that are developed in other programming languages to be 

uniformly executed using Simulator1. Therefore, a simulator can execute its own models (e.g., 

the arrow from Simulator2 to Model Implementation C), models that are developed for other 

variants of parallel DEVS simulators (e.g., the arrows from Simulator1 to Model 

Implementation B), and any model that can be wrapped inside an atomic DEVS model but does 

not have its own simulator.  
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Figure 17: Example of the Shared Abstract Model for ADEVS and DEVS-Suite  

 

The specifications for the Model Proxy and Model Adapter are straightforward since their 

operations have a one-to-one relationship to those that are defined for the Abstract Model 

Interface. However, to support message mappings between different simulation engines, it is 

necessary to develop modules that can translate one kind of message to another kind. Figure 18 

and Figure 19 show the implementations of the Model Proxy and Model Adapter for DEVS-

Suite. The listings exclude implementations for error handling.  

 
interface DEVS {// OMG-idl (CORBA) 

 // start of simulation 

 double doInitialize() 

 

 // time of next internal transition without input messages 

 // value also returned by doInitialize and state transition functions. 

 double timeAdvance() 

 

 // produce outputs for current simulation time 

 // output does not have any side effect (no state change) 

 Message outputFunction() 

 

 // internal state transition without input messages 

 double internalTransition() 

 

 // external state transition with input messages 

 double externalTransition(in double e, in Message msg) 

 

 // input message is received at the time of internal state transition 

 double confluentTransition(in Message msg) 

}; 

 

Message: bag { inputPort -> value } 

Figure 18: The Abstract Model Interface specification 

 
void initialize() { 

 ta = devsMod.doInitialize(); 

 if(ta == devsBridge.DEVS.TA_INFINITY) 

  passivate(); 

 else 

  holdIn("active",ta); 
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} 

 

//External Transition Function 

void deltext(double e, MessageInterface x){  

 MsgEntity[] msg = trans.devs2CorbaInputs(x); 

 ta = devsMod.externalTransition(e, msg); 

 if(ta == devsBridge.DEVS.TA_INFINITY) 

  passivate(); 

 else 

  holdIn("active",ta); 

} 

//Internal Transition Function 

void deltint() { 

 ta = devsMod.internalTransition(); 

 if(ta == devsBridge.DEVS.TA_INFINITY) 

  passivate(); 

 else 

  holdIn("active",ta); 

} 

//Confluent Transition Function 

void deltcon(double e, MessageInterface x){ 

 MsgEntity[] msg = trans.devs2CorbaInputs(x); 

 ta = devsMod.confluentTransition(msg); 

 if(ta == devsBridge.DEVS.TA_INFINITY) 

  passivate(); 

 else 

  holdIn("active",ta); 

} 

//Output Function 

MessageInterface out() { 

 MsgEntity[] msg = devsMod.outputFunction(); 

 MessageInterface devsMsg = trans.corba2DevsOutputs(msg); 

 return devsMsg; 

} 

Figure 19: Proxy implementation for the DEVS-Suite atomic model 

 

Figure 19 shows an example where an Abstract Model Interface is defined for DEVS-Suite and 

ADEVS simulation engines. A pair of Model Proxy and Model Adapter is defined (shown in 

solid lines) such that ADEVS Model Implementation B can be simulated using the DEVS-Suite 

Simulator1. Using the same Abstract Model Interface with another pair of Model Proxy and 

Model Adapter (shown in dotted lines), Model Implementation A can be simulated using the 

ADEVS Simulator2.  

 

In order for one simulation engine to execute a coupled model that is implemented for by 

another simulator, it is necessary to also account for coupled models and so Model Adapters for 

coupled models are needed as well. Rather than specifying the Model Adapter as the 

coordinator, the Model Adapter is defined based on the Abstract Interface Model (see Figure 

18). Examination of the Model Adapter for DEVS-Suite coupled model enforces the 

coordinator’s logic (see Figure 20). The comments in Figure 18 relate the association defined 

between the Abstract Interface Model and the Model Adapter. This formulation uses the closure 

under coupling property which allows treating an atomic and coupled model as a basic DEVS 

model component. Thus, the correctness of the simulation cycle of every DEVS coupled model 

remains legitimate—that is, the executor (either a simulator for atomic models or a coordinator 

for coupled models) guarantees the correct ordering of events and transmission of events among 

hierarchical models in concert with the method invocations of the Abstract Model Interface. 

 
//Initialize simulator  

double doInitialize(){ 

 coord.initialize(); 

 return timeAdvance(); 

} 

 

//query for time to next event (1. nextTN and 2. outTN) 



 

 

double timeAdvance(){ 

 return coord.tN() – coord.tL(); 

} 

 

// ComputeIO is called (5. applyDelt) 

 double internalTransition(){ 

 coord.DeltFunc(coord.tN(), [empty set]); 

 return timeAdvance(); 

} 

 

// ComputeIO is not called (5. applyDelt) 

double externalTransition(e, x){ 

 coord.DeltFunc(coord.tL() + e, x); 

 return timeAdvance(); 

} 

 

// ComputeIO is called (5. applyDelt) 

 double confluentTransition(x){ 

 coord.DeltFunc(coord.tN(), x); 

 return timeAdvance(); 

} 

 

// 3. getOut and 4. returnOut 

MsgEntity[] outputFunction(){ 

 coord.ComputeIO(coord.tN()); 

 return coord.getOutputs(); 

} 

Figure 20: Model Adapter implementation for the DEVS-Suite coupled model 

 

5 RESTful Interoperability Simulation Environment (RISE)  
 

Interoperating applications that have been developed independently and that interact with each 

other is not a trivial task, since this interaction involves not only passing remote messages, but 

also synchronizing them (interpreting messages and reacting to them correctly). This fact further 

applies to interoperating DEVS-based tools in order to synchronize the same simulation run. 

The value proposition, however, of such interoperability is that it enables a plug-and-play 

middleware approach, which is an appropriate method to interface independently-developed 

software applications [15]. The Plug-and-play type of interoperability is already applied by the 

World Wide Web (WWW) network. The principles of the Web interoperability have been 

recently called the Representational State Transfer (REST) style [16]. These RESTful Web 

Services [17] has been gaining attention with the advent of Web 2.0 [18] and the concept of 

mashups (grouping various services from different providers presented as a bundle). 

 
Figure 21: Uniform Channels for RESTful Resources 

 

The RESTful Web-services lightweight approach hides internal software implementation (in 

“black boxes” called resources). Each resource exposes uniform channels (connectors) and 

describes connectivity semantics between resources in the form of messages (usually XML). 

RESTful services are distributed across a set of connected resources where each resource is 

named with a URI (similar to a website). Service consumers connect with those resources via 



 

 

standardized virtual uniform channels where semantic messages and the corresponding methods 

are assigned to those resources. In RISE, the channels are the HTTP methods shown in Figure 

21: GET channel (to read a resource entirely or partially), PUT channel (to create a new 

resource or update existing data), POST channel (to append new data to a resource), and 

DELETE channel (to remove a resource). Resources use those channels to transfer their data (or 

potentially, their data representation) among each other, hence transferring their representational 

state, as specified by the name of the Representational State Transfer style [16]. REST exposes 

all services as URIs, hides internal implementation, employs message-oriented synchronization 

semantics (i.e., XML), and accesses each service (URI) via standardized channels. These are the 

ingredients for plug-and-play interoperability even at runtime, and they are being used on the 

WWW every day. A detailed study of the current and future challenges of distributed simulation 

algorithms and middleware is provided in [15].  

 

Other approaches, such as CORBA or SOAP-based Web-services, expose functionalities in 

heterogeneous RPCs that often reflect internal implementation and describe semantics as 

procedure parameters. The RPC style literally splits software implementation across the 

distributed environment. It is worth noting that the SOAP-based Web-services transfer all RPC 

representations (as SOAP XML messages) via the HTTP POST channel. This overloading of 

the POST channel has resulted in making connectors that were once standardized uniformly into 

a more heterogeneous interface, which is more complex to use. RPC-style is heterogeneous in a 

sense that they are programming procedures invented by different programmers. Of course, the 

XML SOAP standard is powerful enough to describe those RPCs. However, applications 

interoperability is realized as RPC-style in another software layer above the SOAP handling 

layer (usually called SOAP engine) which converts RPCs from/to SOAP messages. For 

example, Figure 9 shows a typical SOAP-based Web-services protocol stack while Figure 10 

shows RPCs exposed within a port. 

 

In recent years a RESTful middleware application has been developed called RESTful 

Interoperability Simulation Environment (RISE), formally known as RESTful-CD++ [19][20], 

that has provided promising results in this area. RISE also allows any application or device 

attached to the Web to be in the simulation loop at runtime, using Web 2.0 mashup concepts. 

RISE middleware serves as a container to support concrete services; hence, concrete services 

are plugged into the middleware. In this case, concrete services are wrapped and accessed 

through URIs at the middleware level, rendering the middleware independent of any specific 

service. This allows additional services to be plugged into the middleware without affecting 

other existing services. This is similar to adding additional services or links to a regular website. 

The distributed CD++ (DCD++) simulation package was plugged into the middleware. In this 

case, multiple CD++ instances can perform distributed simulation session across the Web where 

the simulation model is split among those CD++ distributed instances, enabling each to simulate 

its portion of the model, as shown in Figure 22. The simulation manager, shown in Figure 22, 

manages a CD++ instance by handling, for instance, the geographic existence of model 

partitions, XML synchronization simulation messages, and synchronization algorithms. The 

simulation manager is seen externally as a URI (e.g., similar to web site URIs). The distributed 

CD++ instances synchronize among each other via sending simulation XML messages 

(wrapped in HTTP envelopes) to each other’s URIs via an HTTP POST channel. RESTful 

DCD++ is described in [19][20]. 



 

 

 
Figure 22: DCD++ Simulation Session between two Online Simulation Engines 

 

RESTful applications APIs, including RISE, are expressed as URI templates [21] that can be 

created at runtime. Variables in URI templates (written within braces {}) are assigned at 

runtime by clients before a request is sent to the server, enabling clients to name their URIs at 

the server side. For example, username in template <…/users/ {username}> can be substituted 

with any string to obtain the actual URI instance (such as <…/users/user1> or 

<…/users/user2>). Further, URIs may include query variables to define the request scope by 

appending them to a URI after the question mark “?”. For instance, a request via the GET 

channel to URI <http://www. google.com/search?q=DEVS> would instruct the Google search 

engine to return information only about keyword “DEVS”. As another example, RISE 

middleware [19][20] defines the simulation framework URI template as 

/cdpp/sim/workspaces/{userworkspace}/  {servicetype}/{framework}, where {userworkspace} is 

a specific workspace. The workspace allows users to define their specific URI hierarchy while 

avoiding naming conflicts. The {servicetype} is the selected simulation service (e.g., DCD++), 

allowing a client to use different services simultaneously. The {framework} is the simulation 

experiment framework; hence, a user may create multiple experiment frameworks that use the 

same simulation service. The experiment is configurable by its owner, for instance, to have 

different simulation partitions conduct the same simulation session. To further illustrate, the 

<…>/cdpp/sim/workspace/Bob/DCDpp/MyModel URI indicates that the user workspace 

belongs to user Bob, and the servicetype is DCDpp (which selects the distributed CD++ 

engine). The framework is named MyModel, which is the name of the simulation experiment. In 

this case, the modeler may select a different simulation engine (instead of DCDpp) or a different 

framework (instead of MyModel), because these variables are assigned at runtime according to 

the API URI template. Therefore, URI templates enable modelers to name their URIs without 

being in conflict with other users. The RESTful-CD++ API is fully described in [19]. 

 

The RISE standards approach is derived from the lessons learned of the RISE middleware. The 

RISE standards approach divides the entire simulation space into domains. Each domain wraps 

a DEVS model and DEVS-based simulation engine to simulate that model. Each domain is 

accessed via three URIs (i.e., API) to exchange semantics (i.e., synchronization and 

configuration) as standardized XML messages. Thus, a domain’s interior is fully hidden, which 

makes the standard easier to understand and to support. This is because each domain only needs 

to be able to transmit/handle the standardized XML messages according to the approved rules 

while they are free to change whatever they need within their domain without affecting other 

domains. The RISE approach achieves this at three levels: (1) the interoperability framework 

architecture level, (2) The model interoperability level, and (3) the simulation synchronization 

level. These aspects are summarized next. 

 

The interoperability framework architecture level provides the URI template (API) that allows 

modelers to create a simulation environment (including distributing simulations, starting 

simulation, and retrieving results). RISE requires three RESTful resources (URIs) for each 

domain so that other domains and modelers can use them to setup and conduct simulations. The 

focus here is on the parts of the URI template that are relevant to the RISE standard. The main 

functionality of those URIs is left to design for specific domains (the RISE standard may be part 
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of different services provided by a specific domain). These resources (URIs) are described as 

follows:  

1. …/{framework}: represents a simulation environment in a domain. It is named by the 

modeler upon creation. The modeler uses this URI to submit all necessary information to 

execute simulation in that domain such as the simulation model and the RISE XML 

configuration. This URI is the parent of the other two needed resources described next. This 

resource uses HTTP channels as follows: The PUT channel is used to create and/or update 

the resource with the XML configuration document (for instance, inter-connections of the 

different simulation model ports across domains). The DELETE channel is used to remove 

this resource. POST is used to submit, as a zip file, all necessary scripts related to the model 

that is supposed to run on this domain. GET is used to read a simulation status on that 

domain as an XML document. 

2. …/{framework}/simulation: represents active simulation in a domain. The modeler uses this 

URI to start/abort simulation, and to manipulate simulation during runtime. This resource 

uses HTTP channels as follows: The PUT channel (with a null message) is used to create 

this resource. DELETE is used to abort simulation. POST is used by simulation engines in 

domains to exchange simulation XML synchronization messages. 

3. …/{framework}/results: is automatically created by a domain upon successfully completing 

the simulation, allowing retrieval of the simulation results. 

 

The model interoperability level provides XML rules for combining different models. This 

XML document is provided via the PUT channel to resource …/{framework}. This is a 

straightforward step, because of the assumption that each domain contains an entire model with 

external ports. In this case, the modeler defines an interconnection between ports analogous to a 

DEVS coupled model. It is worth noting that this is different from RESTful DCD++ in the sense 

that DCD++ partitions a single model across the distributed environment. On the other hand, the 

developed approach here is placing an entire model in each domain. This is because it aims at 

interoperating heterogeneous environments with many implementation differences, and, 

therefore, the more flexible, practical, and powerful interoperability is achieved when hiding 

implementation. This makes sense because the heterogeneity devil resides in the software 

design and implementation details. For example, Figure 23 shows two models placed at two 

different domains. In this case, the model is wrapped in URI …/{framework}: The first model 

URI is …/Domain1 and the second model URI is …/Domain2. In order to conduct different 

simulation session experiments, different URI frameworks are needed in a given domain. Each 

model in Figure 23 has two external ports connected to the other model ports. This 

interconnection is shown in the XML document in Figure 24. For example, Lines 7-10 show the 

connection link of port OUT1 (at …/Domain1) to port IN1 (at …/Domain2). The XML 

document also shows other configuration such as “Type” at Line 3 is set to “C”, indicating that 

the simulation will be synchronized according to a RISE conservative based algorithm. 

Likewise, the “Type” attribute can be set to “O” to conduct optimistic synchronization. Line #5 

selects the main domain, which is mainly needed to manage the conservative-based simulation. 

 
Figure 23: RISE Models Interconnection across DEVS Domains 

 
1 <ConfigFramework> 

2 … 

3 <RISE Version=”1.0” Type=”C”> 

4  <Domains> 

5   <Main><URI>…/Domain1</URI></Main> 

URI: …/Domain1 

OUT1 
 

IN1 
 

URI: …/Domain2 
 

IN2 
 

OUT2 
 



 

 

6    <Links> 

7     <Link> 

8   

<From><Port>OUT1</Port><URI>…/Domain1</URI></From> 

9   

<TO><Port>IN2</Port><URI>…/Domain2</URI></TO> 

10     </Link> 

11     <Link> 

12   

<From><Port>OUT2</Port><URI>…/Domain2</URI></From> 

13   

<TO><Port>IN1</Port><URI>…/Domain1</URI></TO> 

14     </Link> 

15    </Links> 

16   </Domains> 

17 </RISE> 

18 … 

19 </ConfigFramework> 

Figure 24: RISE XML Configuration corresponding to Figure 23 

 

The simulation synchronization level provides high-level simulation algorithms 

(i.e., conservative/optimistic) and synchronization channels in order to carry out simulation 

among different domains. The modeler starts the simulation via the main domain (i.e., using the 

PUT channel to create URI …/{framework}/simulation). Consequently, the main domain starts 

simulation, in the same way, on all other domains, as shown in Figure 25. Afterward, all 

simulation engines at different domains are ready to exchange XML simulation messages to 

synchronize the simulation session. All of the simulation messages are sent to a domain via URI 

…/{framework}/simulation using the POST channel. 

 
Figure 25: Starting Simulation Overview 

 

The conservative-based approach expects the main domain to create the RISE Time Manager 

(RISE-TM) to manage time advancement of the entire space. This is not required for the 

optimistic-based approach where domains may directly send messages to each other, provided 

domains would detect and correct any error because of receiving a straggler message. Hiding 

this detail allows moving algorithm complexity to the interior of domains, while the RISE 

standard layer simply comprises channels to exchange simulation messages. On the other hand, 

the conservative approach requires more handling at RISE, since it owns the RISE-TM 

component. Note that the RISE-TM URI is the same as the main domain URI. Thus, the 

synchronization between the main domain simulation and the RISE-TM is specific to the 

internal implementation of the simulation software. However, they are separated in the 

discussion here for clarity. RISE-TM executes a simulation cycle in the following steps, as 

shown in Figure 26: (1) Execute all events in all domains at the current RISE time. This starts a 

new simulation cycle with the current or newly calculated RISE time. RISE-TM always starts 

the first phase with time zero. The domains must always execute all events with current RISE 

time, if any, and respond to the RISE-TM with the following information: all external messages 

generated for other domains stamped with RISE time (or larger) and its next time. The next time 

is the time of next event in a domain larger than RISE time. If no more events exist, this value is 

then set to “-1”, indicating infinity. (2) Once RISE-TM receives all replies from relevant 

domains, it calculates the next RISE time and starts a new simulation cycle. Further, the RISE-

TM merges all generated external messages and passes them to all relevant domains at the 

beginning of a simulation cycle. Note that the new simulation cycle may be a continuation of 
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the current simulation cycle since external messages may be stamped with current RISE time. 

Note further that the RISE-TM stops simulation if it calculates a new RISE time to be infinity. 

 

 
Figure 26: RISE Conservative-based Simulation Cycle at Time t 

 

Figure 27 shows a domain-2 response message to RISE-TM (i.e., step #2 at Figure 26). Line #2 

indicates the message source domain URI, hence allowing RISE-TM to wait for all replies. 

Lines 3-15 contain all newly generated simulation events by the source domain. For instance, 

Lines 5-10 show a generated event at port IN1 in Domain1 with value 9. Line 14 specifies the 

minimum time of all enclosed external messages from the source domain. RISE-TM must 

include this time when calculating next RISE time. Line 16 specifies the time of the next event 

of Domain1. RISE-TM must include this time when calculating next RISE time.  Figure 28 

shows an example of a message sent by RISE-TM to all relevant domains. In this case, the new 

RISE-TM is calculated (i.e., Line #2), hence all events with this time must be executed at this 

cycle. Lines 3-17 forward all generated external messages. At this point, it becomes the 

responsibility of a domain to forward events to appropriate models through specified ports. 

 
1 <RISE Version=”1.0”> 

2 <URI>…/Domain2</URI> 

3  <XEvents> 

4    <MessagesCount>2</MessagesCount> 

5       <XEvent> 

6          <Time>00:00:01:000</Time> 

7          <Port>IN1</Port> 

8          <Value>9</Value> 

9          <URI>…/Domain1</URI>  

10       </XEvent> 

11       <XEvent> 

12      … … … 

13       </XEvent> 

14    <Time>00:00:01:000</Time> 

15  </XEvents> 

16  <Next>00:00:03:000</Next> 

17 </RISE> 

Figure 27: RISE Domain XML Document Response to RISE-TM Example 

 
1 <RISE Version=”1.0”> 

2  <Time>00:00:01:000</Next> 

3  <XEvents> 

4    <MessagesCount>1</MessagesCount> 

5       <XEvent> 

6          <Time>00:00:01:000</Time> 

7          <Port>IN1</Port> 

8          <Value>9</Value> 

9          <URI>…/Domain1</URI>  

10       </XEvent> 

17  </XEvents> 

18 </RISE> 

Figure 28: RISE-TM Message to Start a Cycle 

 

6 DEVS Namespaces  
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The WSDL for a DEVS simulator service defines data types used by each operation. When the 

web service communicates with a user, the operations of the web service receive an argument as 

an XML document encapsulated in a SOAP message. The XML document is created in 

conformance with a type of schema in WSDL. The data types in WSDL are only defined for 

operations of a DEVS simulator not a DEVS model. In the view of simulation, the structure of a 

DEVS message consists of a set of contents, each of which includes a port name and a value. In 

the DEVS formalism, values are defined as abstract sets that are not further constrained. 

Therefore, different DEVS simulation environments can have different class representations and 

associated object instance representations for values. To overcome this problem, a DEVS 

message is converted to an XML document at the web service level. This approach requires that 

different DEVS environments can translate back and forth between their internal value 

representations and a common XML representation. The namespace is the concept in XML that 

enables services to access a Schema employed by other services and thereby to parse documents 

to extract data corresponding to the instances of the Schema. 

 

Thus, in order to interoperate DEVS simulator services in different platforms or languages, the 

namespace concept can be used to provide information about DEVS model messages. This 

gives rise to the DEVS namespace to support interoperability of DEVS simulator services on 

different web service platforms [12].  
 

The DEVS namespace is an indicator of a schema document for types of messages that are used 

in DEVS models. The types are expressed in an element of XML Schema that describes the 

structure of the XML document. XML Schema assigns a unique name to each element. For 

example, if the name of the element is Job, then Job element is unique in the schema 

document. The uniqueness of a type provides clarity for message passing between systems that 

need to interoperate. 

 

Figure 29 illustrates the conversion of a language class to a schema type. If a Job class is used 

in the DEVS model, the Job class should be expressed as a corresponding schema data type. In 

the example, the class Job has two variables named id and time which are assigned to int and 

double type, respectively. The schema data type represents all variables in the class. The name 

of class is the name of a data type and variables become sub elements of the data type. The sub 

elements are assigned to primitive data types like variables in the class. 

 
Figure 29: Conversion of Job class to schema data type 

 

Conversion of a class to a schema is performed by a service provider. For example, in a Java 

environment, the JAXB library performs this conversion and in addition supports dynamic 

invocation in which data are bound from a class instance to a corresponding document. The 

schema document resulting from the conversion is registered into a DEVS namespace storage to 

access through the network.  

 

DEVS messages are defined as pairs consisting of a port and a value in the DEVS modeling and 

simulation. Implementations of the DEVS theory use these pairs to express DEVS messages. 

That means that the DEVS messages can be converted to a common expression in XML. A 

common XML message is designed to cover generic DEVS messages.  

Class Job {

     int id;

     double time;

}

<xsd:element name="Job">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="id" type="xsd:int"/>

<xsd:element name="time" type="xsd:double"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>



 

 

 

 
Figure 30: The structure of the XML message 

 
Figure 30 represents the structure of the XML message starting with a Message tag. The 

Message tag consists of content tags whose elements are a port and an entity tag. The entity tag 

expresses any object as a message used in the DEVS model. It has a class tag containing an 

identifier for the object. Tags under the class tag are created according to the number of 

variables of the object. The tags have an attribute called type describing the type of the variable. 

 

 
Figure 31. The DEVS message and XML message in the web service. 

 
Figure 31 represents conversion of DEVS messages to XML messages and vice versa. A DEVS 

simulator service consists of DEVS modeling and simulation (DEVS M&S), DEVS interface, 

and web service. The DEVS M&S handles the DEVS messages, and the DEVS interface 

converts DEVS messages to XML messages. The web service then generates a SOAP message 

including the XML messages. This procedure is called serialization. The opposite procedure 

converts XML messages to DEVS messages and is called deserialization. 

 

Seo [13] created a web service called NamespaceService through which a Schema of a DEVS 

simulator service is registered and browsed. A service provider has responsibility of registration 

of a schema. When the provider registers the schema, the provider uses a GUI called schema 

data register. The GUI has client code for NamespaceService web service, which can help easily 

invoke operations. It displays the response of the operations. Any DEVS developer who uses a 

Java based environment or .Net based environment can use the GUI to register a schema. If a 

developer wants to browse the DEVS namespace storage, the developer can use a browsing GUI 

consisting of two parts. One part is to display all schema documents in the DEVS namespace 

storage and the other part is to show the schema document corresponding to the name of the 

document chosen by the user. This concept can be extended to support browsing based on 
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search criteria such as metadata about which applications have used the schema, the kinds of 

operations supported, and so on. 

 

7 SUMMARY 
 
This chapter introduced different methods to standardize DEVS simulation middleware. Theis 

middleware supports interfacing different simulation environments along with synchronization 

for distributed simulations. Most of the software introduced in this chapter is based on a Service 

Oriented Architecture, with Web Services deployed such that they can be easily invoked by 

clients. 

 

The DEVS/SOA distributed simulation platform manages distributed simulation through the 

interchange of XML messages and the publication of web services. The DEVS/SOA simulator 

is based on a net-centric infrastructure that permits coordinating different atomic models written 

in varied tools and libraries. The environment provides a well-defined interface for atomic 

model Simulators and coupled model Coordinators that can be remotely invoked. Client 

applications are based on DEVSML models. 

 

DDSP provides interoperability with minimum design changes to the relevant DEVS engines by 

providing a wrapper SOAP interface and XML messages for simulation synchronization. DDSP 

hides the internal implementation of the simulation tools (improving interoperability and 

supporting DEVS legacy models). The protocol implementation uses Web-services to 

interchange simulation messages, and a DEVS wrapper is employed to call service stubs using a 

remote procedure call. 

 

The Shared Abstract Model defines an abstract Model Interface based on DEVS atomic models, 

and executed using CORBA. The system uses a model Proxy and a model Adapter to distribute 

the workload depending on the source and destination of the simulation messages, using the 

abstract model interface to standardize this communication. 

 

RISE is a RESTful Interoperability Simulation Environment based on Representational State 

Transfer (REST). RISE uses RESTful web services and messages (in XML) to transfer 

information between simulation engines. Uniform channels are used to expose the simulation 

resources, based on the methods that are widely used for the World Wide Web (and the HTTP 

protocol). This approach hides the internal implementation and it uses message-oriented 

synchronization based on XML. 

 

Finally, we introduced DEVS namespaces, which permit quickly finding the service data types 

and operations available. The namespace enables the services to access an XML Schema 

employed by other services, and to parse documents to extract data for that Schema. The 

namespace indicates the type of messages used in the model, and it assigns a unique name to 

each element. In order to browse the namespace storage, a namespace service is available to 

register and browse Schemas for DEVS simulation services.  
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