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The Cell-DEVS formalism is based on DEVS, a continuous time technique,
which provides a framework for multiformalism/multimodeling simula-
tion. We present a survey of different applications showing how to model
complex cell spaces as Cell-DEVS models in the CD++ toolkit.
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1 INTRODUCTION

The Cell-DEVS formalism allows defining a cell space [11] seen as a lattice
of cells holding a computing apparatus in charge of updating the cell state
according to a local rule. This is done using the present cell state and the
cell’s neighborhood information using a discrete-event approach and explicit
timing delays. Cell-DEVS is based on DEVS (Discrete EVent systems Spec-
ifications), a technique that allows the modular description of discrete-event
systems that can be integrated hierarchically [14]. Different existing tech-
niques (Bond Graphs, Cellular Automata, State Charts, Partial Differential
Equations, Petri Nets, Timed Automata, etc.) have been mapped to DEVS,
and the independence of the simulation engines and the models allowed to
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execute simulations in standalone, parallel, or distributed fashion. In this arti-
cle, we survey different Cell-DEVS models in varied application domains.
The aim is to provide the means to understand current features, limitations
and potentials of the solutions.

2 THE CELL-DEVS FORMALISM AND CD++

A real system modeled using DEVS can be described as a hierarchy of sub-
models, each being behavioral (atomic) or structural (coupled). An atomic
model is described as M = (X, Y , S, δint , δext , λ, D). The model’s interface
is composed of input and output ports X and Y respectively. Input exter-
nal events are received into input ports, and activate the external transition
function (δext). Each state has an associated duration (D) that, when con-
sumed, triggers the output (λ) and internal transition function (δint). S
represents all the possible model states. A coupled model is defined as:
CM = 〈I , X , Y , D, {Mi}, {Ii}, {Zij}〉. Here X and Y define the model’s inter-
face. D is an index of components, and for each i ∈ D, Mi is a basic (atomic
or coupled) model. Ii is the set of influencees of model i, and determines
which models it will send outputs to. For each j ∈ Ii, Zij is the i to j translation
function, in charge of translating outputs of a model to inputs for the others.

Cell-DEVS allows defining cell spaces as DEVS models with explicit
delays. Cell-DEVS atomic models can be specified as:

TDC = 〈X, Y , S, N , delay, d, δint , δext , τ , λ, D〉

Here, X and Y represent the model’s interface, S is the cell state, and N is a set
of input events. These inputs activate the local computing (τ ) and delay (d)
functions associated to each cell. The state changes can be transmitted to other
models after this delay. A coupled Cell-DEVS is created by putting together a
number of cells interconnected by the neighborhood relationship. The coupled
Cell-DEVS is an array of atomic cells of a given size and dimensions. Each
cell is connected to its neighborhood and other DEVS models through I/O
ports.

CD++ [10] is a simulation tool that provides a specification language that
allows describing model coupling and formal specifications of Cell-DEVS.
The model specification includes the definition of the size and dimension of
the cell space, the shape of the neighborhood and borders. The cell’s local
computing function is defined specifying a set of rules. We created a large
number of applications in a variety of fields, including artificial systems,
biology, defense, emergency planning, construction, environmental sciences,
physics, urban traffic, etc. [8]. In the following sections, we will introduce a
few examples in different fields to show some recent results. All the models
and tools are available for public use at http://cell-devs.sce.carleton.ca.
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3 EVACUATION AND CROWD MODELING

Sophisticated evacuation models have been developed to assist rescue and
emergency response crews with proper situation analysis and reaction proce-
dures. Various efforts focused on the cellular models [6, 7, 5] to understand
bottlenecks and to present solutions to congestion. The rules in Figure 1 char-
acterize a person’s behavior [1]: A person goes to the closest exit, a person
in panic goes in the opposite direction, people move at different speeds. We
have created such a model for the Society for Arts and Technology (SAT), a
building in downtown Montreal [9].

The model uses two layers. Layer 0 is responsible for the boundaries (walls,
exits, etc) and people. Layer 1 is responsible for the objects (i.e. internal walls,
chairs, etc.) and the distance to the closest exit. The first set of rules serves
to define what path a person should follow using the orientation plane and
taking the direction that decreases the potential of a cell. A different set of
rules governs the panic behavior (the cell’s potential is increased) [7]. To do
so, we store direction of movement of individuals (1:W; 2:SW; 3:S; 4:SE; 5:E;
6:NE; 7:N; 8:NW), speed (expressed as 1-5 cells per second), last movement
direction, emotional state (the higher this value is, the lower the probability
that a person panics), moving potential (people try to reduce their distance to
the exit) and panic level (the number of cells a person will move increasing
the cell potential).

Figure 2 a) considers eight people without panic placed at random inside
the building at a high level of patience. The building is evacuated in 13:015s.
In Figure 2 b) we included panic into one of the persons (the person moves
away from the exit).

In order to observe the effect of panic, we introduced panic in each person.
Figure 2 c) shows that evacuation time is tripled. Further studies, presented
in [9], increased the number of people, and added people close to the other
exits. The increased amount of people did not result in increased evacuation
time: as long as the panic level is low, the evacuation was properly controlled.
A higher panic factor produces bottlenecks in front of the two exits, and the
chaotic behavior of people affect the total evacuation time.

type : cell dim : (49,27,2) delay : INERTIAL
border : wrapped localtransition : EvaRule
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0) (0,0,0) (0,1,0)
... (1,0,1) (1,1,1)

[EvaRule] % Rules to control movement of each person
rule:{#pos1+1}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+3}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...
rule:{#pos1+5}{1000/#pos0}{(0,0,0)>0 AND #pos0=0 ...

FIGURE 1
Evacuation rules in CD++.
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FIGURE 2
Evacuation sequences (left to right) for different scenarios. a) Evacuation without panic and high
level of patience: 13:015s. b) Evacuation with one person in panic: 05:004s. c) Evacuation with
panic: 15:519s.

4 ROBOT PATH PLANNING

This problem deals with the design of positions and orientations of robots
in the presence of obstacles. We need a spatial planner to find a path free
of obstacles, which, in general, consists of two phases: route planning (a
sequence of sub-goals that must be reached before the final goal) and path
generation (use the plan, apply heuristics to reach the goal).

Our first example presents a model of robots in an industrial plant carrying
a load in one-way routes from the source to a destination. The robots can move
N/S/E/W, following predefined routes at different speeds. Figure 3 shows the
plant represented by a 20x20 Cell-DEVS, linked to four models that generate
a load at the source points. A cell containing a route 1 robot can have the
values 1,10,11 (moving horizontally) or 2,20,21 (vertically). For example, a
route 1 robot at the source is indicated by a 1 in cell (12,19). The next cell on
the route will get ready to receive the robot by acquiring a value of 10 or 11
after a delay of 1000 ms. 10 will be used if the robot continues horizontally,
and 11 if the robot turns. Then, the original cell will change to 0 (and a the
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components : Floor Source1@Generator Source2@Generator
Source3@Generator Source4@Generator

link : out@Source1 in1@Floor link : out@Source2 in2@Floor
link : out@Source3 in3@Floor link : out@Source4 in4@Floor

[Floor]
type : cell dim : (20,20) delay : inertial border : nowrapped
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)
in : in1 in2 in3 in4
link : in1 in@Floor(12,19) link : in2 in@Floor(0,10)
link : in3 in@Floor(9,0) link : in4 in@Floor(19,6)
localtransition : RobotsMov

[RobotsMov]
rule : 10 1000 {(0,1)=1 and (0,0)=0 and cellpos(1)!=4}
rule : 11 1000 {(0,1)=1 and (0,0)=0 and cellpos(1)=4}
rule : 0 0 {(0,-1)=10 and (0,0)=1}
rule : 0 0 {(0,-1)=11 and (0,0)=1}
rule : 2 0 {(0,0)=11}
rule : 1 0 {(0,0)=10}
rule : 20 2000 {(-1,0)=2 and (0,0)=0 and cellpos(0)!=17}
...

FIGURE 3
Model definition for robot routes.

FIGURE 4
Two robots reaching an intersection.

new cell will change to 1 or 2, respectively). Collisions are avoided by only
allowing step 1 to take place if the destination cell is empty.

Figure 4 shows different robots at different speeds. This figure also shows
the collision avoidance between a robot in route 2 and other in route 4.
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More advanced route planners use Voronoi diagrams. We defined a model
based on [12] that produces a Voronoi diagram that can be used to determine
a path equidistant from obstacles. Paths are calculated by marking the inter-
sections of expanding wavefronts. The model executes in two stages. Stage
1-Object boundary detection: the cells and their neighbors are examined and
compared to a set of 12 edge code templates. Each cell matching a configu-
ration uses the corresponding code (1-12) for the second stage. Stage 2-Cells
with edge codes are expanded: cells where expansions intersect are given
a timestamp and considered part of the final Voronoi diagram. The 3D cell
model is divided into four 2D models by using separate zones for each plane.

Figure 6 shows the execution of the model using a partial boundary and
two obstacles. The inputs in the first plane remain unchanged, and edge codes
are generated after one iteration. The third plane is initially populated with
edge codes > 4, and these values are successively propagated across their
neighborhoods. The final plane is the Voronoi diagram which can give a
number of possible paths. We built a Cell-DEVS model to generate the shortest

[Path-Finding]
dim : (10, 10, 4) delay : transport
neighbors : (-1,0,0)(0,-1,0)(0,0,0)(0,1,0)...(0,1,-1)
zones : bound-rule { (0,0,1)..(9,9,1) }

plane2-rule { (0,0,2)..(9,9,2) }
plane3-rule { (0,0,3)..(9,9,3) }

[bound-rule]
rule: 1 10 { (0,0,-1) =1 and (0,-1,-1)=1 and (-1,0,-1)=1 and
(0,1,-1) =1 and (1,0,-1) =1 }
...
rule: 12 10 { (0,0,-1) =1 and (0,-1,-1)=1 and (-1,0,-1)=0 and
(0,1,-1) =0 and (1,0,-1) =1 }
[plane2-rule]
rule: {(0,0,-1)+.1} 10 { (0,0,-1) >4 and (0,0,-1)<13}
...
[plane3-rule]
rule: {(time)} 10 { (0,0,0)=0 and (-1,0,-1) != (0,1,-1) }
...

FIGURE 5
Cell-DEVS model definition in CD++.

+----------+ +----------+ +----------+
0|1111111111| 0| | 0| |
1|111 | 1| 57 | 1| 57777 |
2| | 2| 222222 | 2| 57 92 |
3| | 3| 22222222 | 3| 57 1922 |
4| | 4| 222 22 | 4| 5 192 2 |
5| 111 | 5| 22 192 2 | 5| 11119222 |
6| 111 | 6| 22 857 2 | 6| 88885777 |
7| | 7| 222 22 | 7| 8 857 7 |
8| | 8| | 8| 88577 |
9|1111111111| 9| | 9| |
+----------+ +----------+ +----------+

FIGURE 6
Partial boundary and two obstacles.
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FIGURE 7
Shortest path for two Voronoi diagrams.

path based on a flooding technique introduced in [3]. The algorithm consists
of two phases: flooding and selection. The flooding algorithm explores all
possible paths starting on the output node in parallel, choosing only valid
cells. When a node is found, the path is divided. If two paths are crossed, only
the one with the best value continues. Selection starts when we get to the end
node; we backtrack, looking for the minimum cost according to the chosen
criteria, as seen in Figure 7.

5 MODELS IN PHYSICS AND CHEMISTRY

This section introduces some of our models in Physics and Chemistry [4],
which include particle collisions, finite element approximation of heat, flow
injection analysis, binary solidification, plastic deformation, etc.

5.1 Diffusion Limited Aggregation (DLA)
DLA occurs when diffusing particles stick to and progressively enlarge an
initial seed, growing in an irregular shape (resembling frost on a window). A
mobile particle has same probability of walking toward each direction. When
a mobile particle finds a seed, it sticks to it, forming aggregates. We defined a
Cell-DEVS implementation [4], where a percentage of the cells are occupied
by mobile particles. A particle can move in four directions (N/S/E/W), an
empty cell will be occupied if there is at least one mobile particle trying to
move in (and there is no seed adjacent), a mobile particle that cannot move
will select a new direction at random, and it will disappear if it strays too far
from the center.

Figure 8 presents a case with a concentration of 40% (grid: 71x71),
showing fractal growth properties based on the initial configuration.
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FIGURE 8
One seed and 40% concentration

5.2 Snowflake Growth Simulation
This model is based on the one described in [13], adding some parameters to
influence the desired diversity. We assume the value of a cell measures the
amount of humidity in the location. Values of one or higher correspond to ice,
while lower values represent water. Each cell is classified as either receptive
or non-receptive. The first stage is to determine the receptive sites: those that
are ice or have an immediate ice neighbor. At the next stage, the values of the
cells are given by the value:

Vu = 0. 5 · Vo + 0. 5 ·
∑

Vn/8 (1)

where Vu is the update value of cell, Vo the original value of cell, and Vn the
value of the 8 neighbors.

The model was tested using different models for the three different group
variable vectors (γ , β), as shown in Figure 9.

FIGURE 9
Snowflake formation. (a) β = 0.3, γ = 0.001, (b) β = 0.4, γ = 0.01, (c) β = 0.05, γ = 0.0035.
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5.3 A 3D model of Reaction-Diffusion
Reaction diffusion systems can be described by a set of partial differential
equations as follows [12]:

x′
i = Di∇2xi + fi(x1, x2, . . . , xn), i = 1. . . n (2)

where the first term represents the diffusion equation and the second term
is the reaction equation. To simulate reaction diffusion systems we apply
diffusion first, and then reaction, as follows:

x̂ = 1
#N

∑

xi∈N

xi (3)

ẋ = f (x) = x(t) − x(t − �t)
�t

(4)

In this case, we need to know the previous state of the cell, so we used a
second 3D model as memory of the previous state and a 3D Von Neumann
neighborhood. Thus, we implemented the model as a 4D Cell-DEVS, in
which a hyperplane is used to save the previous value from the cell, and
a different one is used to calculate the diffusion as in Equation 4. Figure
10 represents the different reaction of two substances. The first group of 5
squares (each consisting of 5x5 cells) from the first row represents the first
step of our simulation; the next group of 5 squares (5x5 cells) from the same
row represents the initial state.

The next rows represent the following step in our simulation, until the fifth
row (34th step of simulation) where the system reached equilibrium.

FIGURE 10
Execution results.
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5.4 Driven Duffusion
Driven diffusion describes the random motion of two types of particles under
the influence of an external field. The field may drive one species of parti-
cles along the field direction and the other species against it [3]. This kind
of model can simulate the behavior for certain materials such as superionic
conductors and solid electrolytes, which are differentiated by their attribute
of positive/negative charge. The particle space contains approximately the
same amount of positive and negative particles so that the total charge of
the system is zero. Initially, the space is occupied by the two randomly dis-
tributed particles A and B, and each particle has a randomly chosen direction
(N/E/S/W). In the case of an external electrical field appearance (assuming
the field points to the NE), the preferable moving direction of particle A is
N or E while the preferable moving direction of particle B is S or W. The
probability of A and B hops along that preferable direction is a, and the
probability against the direction is (1 − a). In our first test case, about 10%
of the cell space is occupied by randomly distributed particles, as seen in
Figure 11 a).

After 100 time steps, the particles are still randomly distributed. The cell
space remains disordered over the simulated time steps, while the distributions
of particles A and B are homogeneous (high current in the system). Similar
results were obtained with a density of 20%. Then, we show in Figure 11 b)
a case in which density of the whole space is higher (40%). We can see that
the distribution of the two particles now exhibits a striped structure. Within
each strip, there are two sub-strips, each with approximately the same amount
of particles. This indicates the non-homogeneities of the distribution of two
particles and thus results in reduced current in the system. Similar results
were obtained with higher densities.

6 BIOLOGY AND THE ENVIRONMENT

Cell-DEVS has been used to define a variety of models in environmental
sciences, including pollution, watershed formation, vegetation growth, etc.

FIGURE 11
Particle diffusion for initial state (left) and after 100 steps (right). a) Density 10%. b) Density
40%.
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6.1 Pesticide Percolation in the Soil
This model, based on [2], shows how water (e.g. from rain) gets contaminated
with pesticides in the soil, and how the rain washes away the pesticides.
Water particles have two states (contaminated or clean), while soil parti-
cles use four states for varying degrees of contamination used as the water
washes away the contaminants in the soil. We use two different rules for our
model:

• Reaction: clean cells become contaminated if any of the neighbors is
contaminated. Contaminated water particles are assumed to be saturated,
and do not cause contamination to clean soil particles. Contaminated soil
will pollute neighboring clean water cells.

• Diffusion: water cells move their contents to an empty neighbor. Clean
water mixed with polluted water remains clean.

The cell values assignment is as follows:
Empty Cells will get:

I. A value of -1 (clean water) if cells W/E and above are sources of
clean water (i.e. value=-1 and does not have a direct neighbor with a
value> 2).

II. A value of 1 if:

i. E and up neighbors are not sources of clean water AND either a)
W cell=-1, does not have an empty cell below, and it has at least
one neighbor with value> 2, or b) W cell=-1 and does not have an
empty cell below.

ii. W and N neighbors are not sources of clean water AND either a)
E cell=-1, does not have an empty cell below, and has at least one
neighbor with a value> 2, or b) E cell=-1 and does not have an
empty cell below.

iii. W/E neighbors are not sources of clean water AND either a) the N
cell=-1 and at least one neighbor with value> 2, or N cell = -1.

Water Cells will get: a value of 0 (empty space) if any of the E/W or S
neighbors are empty.

Simulations start with a percolation bed composed of contaminated soil
cells, and empty cells in between. Empty cells at the top of the bed are contin-
ually filled with water (simulating flooding), which can leave the percolation
bed through the bottom row. Figure 12 shows how water is blocked by soil
particles and flows around them. It also shows how pollutants get transferred
from the soil to the clean water particles. In the end, water has washed away
all contaminants. Note how soil particles at the bottom right corner are not
cleaned because clean water never reaches them.
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FIGURE 12
a) Initial Environment. b) Final state.

The following scenario represents an environment where water flows, car-
rying away contaminants as it peculates to the bottom of the soil. Eventually
all the soil particles in contact with water have become clean.

6.2 Ants colony
We simulated an ant colony in which ants look for food to pick and carry
to their shared anthill. Ants carrying food leave a pheromone trace, allowing
other ants of the same colony to find the way to places with food. Thus, a kind
of group intelligence is achieved. Ants have no memory, so food searching
is carried at random. The field is partitioned in a lattice of cells representing
an empty parcel of soil, leaves, an ant or an obstacle. An empty cell may
have traces of pheromones. A cell can have an integer number of leaves, and
each ant can load only one at a time. There are two types of ants: searchers
(B), or carriers (C). When an ant has no food, they look for pheromones. If
no pheromones are found, they will move at random. Collision avoidance
rules are implemented: if two or more ants want to move to a single cell, they
will change direction. When an ant grabs the food on a cell, it starts moving

FIGURE 13
a) Initial Environment. b) Final state.
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[rules] % Check for collision if direction is 0 (North)
rule : {(0,0)+2} 1000 {#(isAnt00) and #(dir00)=0 and ((#(isAnt19)
and #(dir19)=3) or (#(isAnt99) and #(dir99)=1) or (#(isAnt08)
and #(dir08)=2))}
% If my direction is 1 (West)
rule : {(0,0)+2} 1000 {#(isAnt00) and #(dir00)=1 and ((#(isAnt19)
and #(dir19)=2) or (#(isAnt20) and #(dir20)=3) or (#(isAnt11)
and #(dir11)=0))}
...
% Food cell
rule : {if(#(food00)-(if(#(isAntB01) and #(dir01)=0,1,0)+if(#(isAntB90)
and #(dir90)=1,1,0)+if(#(isAntB09) and #(dir09)=2,1,0)+if(#(isAntB10)
and #(dir10)=3,1,0))>0,(#(food00)-(if(#(isAntB01)
...

FIGURE 14
Ants colony model.

FIGURE 15
4 ants and 4 leaves (2 leaves sharing the leftmost food cell)

back to the mound, leaving a trail of pheromones. The necessary information
in each cell is coded with an integer number representing the configurations
0FFD, 00CC, Q00D with the following coding: F (number of pheromones in
the cell (1-99)), D (direction (0: N, 1: E, 2: S, 3: W)), C (quantity of food in
the cell (1-99)) and Q (load indicator (1: ant of type C; 0: type B). Figure 14
shows the rules used distinguishing the actions to be taken depending on the
type of cell. We can see the first leaves found 2 s. after the starting, and then
two more ants find a leave (two pheromone trails can be seen). Finally, the 3
carrying ants left their load at the anthill, and they look for new leaves (and
no other ant have found food so far).

Figure 15 shows the simulations results for the model.

6.3 Virus Survival
This model shows the competition between population and viruses. Popula-
tion is represented by individuals residing in a cell, including their age, or a
virus. Population and the viruses follow specific active rules, as showed in
the following figure.

Initially, there is a group of people (values 1-6: 1 represent children; 2
to 5 represent adults; 6 represent elder people). People in cells will follow
the following rules: Age increment (each cell increments age periodically
by 1 and it dies when is greater than 6 and resets to 0), People reproduc-
tion (on each empty cell with at least two adult neighbors, the value is 1
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[survival_rules]
rule : {(0,0)+1} 100 {((0,0)>=1) and ((0,0)<=5) and
(not(((0,-1)=8 and (0,1)=8) or ((-1,0)=8 and(1,0)=8)))}
rule : 0 100 {(0,0)=6}
rule : 1 100 {(0,0)= 0 and (stateCount(2)+
stateCount(3) +stateCount(4)+stateCount(5)>=2)}
rule : 8 100 {(0,0) = 0 and stateCount(8)>=1 and
(stateCount(2)+stateCount(3)+stateCount(4)+stateCount(5)<=1)}
...

FIGURE 16
Execution results for the ants colony model.

(newborn)), Virus state change (active viruses reproduce themselves and kill
people; inactive viruses die after a given time), Virus reproduction (active
viruses can self-reproduce and share the same living space with persons).
Competition between viruses and persons follows the rules: Virus killing peo-
ple (individuals will die in a cell surrounded by at least two viruses vertically
or horizontally distributed), People killing virus (viruses will die in a cell
surrounded by at least two people vertically or horizontally arranged), People
movement (mature people move at random).

In Figure 17, congregation prevents the individuals from being killed,
however, it also restricts reproduction (population size grows, while viruses
disappear). In the second case, since individuals are sparse, there is more
space to reproduce. However, the number of individuals decreases due to the
viruses. Reproduction leads to congregation, and congregation is helpful to
avoid being killed. However, movement has an opposite effect.

FIGURE 17
(a) Congregated scenario (b) Moving people.



jca_ha(7)_wainer page 105

A SURVEY ON THE APPLICATION OF THE CELL-DEVS FORMALISM 105

FIGURE 18
Bacteria concentration/surface temperature.

6.4 Bacteria
We simulated the proliferation of the Vibrio parahaemolyticus bacteria grow-
ing in a sample of infected food stored in a freezer. In an adequate medium
and with enough time, bacteria can reproduce through binary fission. In a rich
medium, they proliferate in only ten minutes (we could find around 1 million
bacteria in 5 hs.). During their growing state, bacteria secrete different toxins
that can modify organoleptic food’s properties. Pathogen bacteria have the
ability to grow at acidic medium (4,5 pH) but their proliferation is improved
in a neutral environment (7 pH). Vibrio parahaemolyticus is a marine bac-
terium that easily develops at 15◦C so it can be found in flake, intestine or
directly over fish, crustaceous and mollusk. Optimal conditions for prolif-
eration are 3% salt concentration, 7,5-8,5 pH and 37◦C, but it grows in a
wide temperature window (15◦C-43◦C). We considered optimal reproductive
values for all variables and studied the impact in bacterial growth during tem-
perature changes. The bacterial development inside the food is modeled in
2D: concentration and temperatures. We used temperatures of (-10◦C-0◦C),
which propagate as the average temperature in neighboring cells. Prolifer-
ation depends on temperature: cannot proliferate with temperatures < 8◦C
during 10 s., proliferate with temperatures 8◦C-60◦C during 30 s. and die
with temperatures over 60◦C during 10 s.

We established 100 bacteria/cell, delivering 10% of the excess to the neigh-
boring cells progressively contaminating the food. Figure 18 shows an initial
temperature of 23◦C for the whole cluster and different contaminated zones.

The results allow us to observe how temperature can propagate and how
bacteria progress while they have favorable conditions to proliferate.

7 CONCLUSION

Cell-DEVS allows describing complex systems using cellular models based
on DEVS models. Complex timing behavior for the cells in the space can
be defined using very simple constructions. The CD++ tool, based on the
cell-DEVS formalism, permits defining complex cell-shaped models using a
high-level specification language. The discrete event nature of the formalism
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provides better precision and performance, due to the independent timing for
each cell. The use of a formal base improves the development, checking and
maintaining phases, facilitating the testing and reuse of the components.
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