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Abstract 
 We introduce a method to integrate Cell-DEVS models 
with DEVS-based robotic agents and an advanced Immer-
sive environment for Emergency Management. The emer-
gency is handled by an autonomous robot controlled by a 
real-time DEVS model. The model controlling the robot in-
teracts with a simulation for emergencies, receiving real-
time data about its location on a cell space. The immersive 
environment is used to visualize the emergency and its man-
agement. The simulation results of both the cell-DEVS 
emergency model and the DEVS-based robotic first re-
sponder are visualized dynamically at real-time. The goal is 
to show how to integrate cellular modeling in a real-time 
platform and the DEVS formal framework as a collabora-
tion mechanism. The real-time visualization allows for su-
pervisory control of the emergency and first responders ac-
tivities. 
 
1. INTRODUCTION 
 Emergency simulation has received increasing attention 
in recent years and several research works have been devel-
oped and proposed for this purpose. Specifically, disaster 
management and evacuation strategies are the two most im-
portant subjects within this field. Due to the devastating oc-
currence and destructive impacts of emergencies, it is im-
practical to perform real-world studies of this nature. An al-
ternative to field based experiments is modeling and simula-
tion (M&S) [1]. Generally, such simulations are large-scale 
programs, which in return raise the need for efficient simu-
lation engines. Modeling, simulation, and visualization 
techniques can help address many of the challenges in 
emergency response planning [1].  
 Since emergency crisis are processes that distribute 
over both time and space, simulations should take into con-
sideration the system evolution in both time and space. In 
this paper we present an integrated emergency management 
system based on the Discrete-Event System Specification 
(DEVS)  [3] and Cell-DEVS [4]. We focus on the interop-
eration of different DEVS and Cell-DEVS models with the 
purpose of integrating emergency simulation with emer-
gency management. The emergency simulation is based on 
Cell-DEVS, and the emergency management is performed 
by a robotic agent controlled by a DEVS model to respond 

to the emergency at real-time (RT) using the CD++ toolkit 
 [5] [6]. We also use a visualization engine that takes the re-
sults of the emergency simulation and the emergency man-
agement as input and produces 3-D visualizations of the si-
mulation scenarios.  
 
2. RELATED WORK AND MOTIVATION 
 A number of M&S applications exist for studying indi-
vidual aspects of emergency response scenarios. However, a 
number of simulation tools have to be integrated to address 
multiple aspects of a single disaster event. In  [7], a frame-
work for M&S for emergency response is presented which 
systematically integrates M&S tools to address the overall 
response. In  [8], the authors integrate gaming and simula-
tion systems for training decision makers and responders to 
work together as a team. A discrete-event environment in-
troduced in  [9] presents the processes of analysis and design 
of a multi-agent system for a crisis response organization 
with the purpose of building a simulation testbed to experi-
ment with different coordination mechanisms. Also, virtual 
simulation with RT emergency response has become an 
emerging technique that plays a key role for efficient emer-
gency management systems due to its capabilities to provide 
RT system observations  [10] [11] [12].   
 We introduce a simulation-driven architecture for inte-
grating emergency simulation with robotic first responders 
moving towards the emergency locations, which are spread 
out on the field. The robot is placed on a grid corresponding 
to the simulated emergency area, and reaches every loca-
tion, dealing with the emergency. Our work differs from the 
previously mentioned works in three different ways: 
1. The RT cellular emergency simulation is an on-demand 

data source of the scenario, which is to be used by the 
robot. A supervisory control station can be used to up-
date the emergency simulation data with a real emer-
gency situation and the information of the area.  

2. This multimodel combines a Cell-DEVS cellular mod-
el, a DEVS-based robotic controller, and virtual reality 
visualization. This component-oriented approach pro-
vides model reusability and interoperability, allowing 
integration or replacement of any of the components.  

3. Using a simulation-driven approach for controlling the 
robot allows testing the robot controller in a fully simu-
lated environment, then using the same model for con-
trolling a real robot. Model-continuity from early simu-



lation stages to finally embedding it on the hardware 
speeds up the development process while increasing the 
reliability of the product and reducing risk and cost. 

 
3. THE SYSTEM ARCHITECTURE 
 Figure 2 presents a detailed overview of the system. 
The emergency simulation sub-system is in charge of the 
Cell-DEVS emergency model. It communicates with the 
DEVS emergency response sub-system informing it about 
the dimensions of the emergency area, and sends updates 
about the location of the emergency team on the grid. At the 
same time, it also sends this information to the visualization 
sub-system providing it with RT data about the scene. The 
DEVS-based control model uses the emergency information 
received from the Cell-DEVS engine to respond to the 
emergency. Based on these commands, the robot moves on 
the simulated grid area and deals with the emergencies one 
after another. The emergency response sub-system dynami-

cally updates the emergency simulation and visualization 
sub-systems when emergencies have been solved. This 
process continues until all emergencies are dealt with. The 
visualization sub-system produces 3D scenes from the dy-
namically received updates from both the emergency simu-
lation and the emergency response sub-systems.  

 
3.1. Emergency Simulation  
 We used a Cell-DEVS model to represent an area that 
has a number of emergency locations (e.g. road bombs or 
explosions) which are ignited randomly during the simula-
tion. The model is defined according to the conventions of 
Cell-DEVS using CD++ toolkit. It consists of an atomic 
component tested with various dimensions from 30 x 30 
(900 cells) to 200 x 200 (40,000 cells). Initially, the model 
will locate different emergency locations on the plane, and it 
will locate the current position of the emergency team in the 
field. 

 
Figure 1. System Architecture 

 
 In order to run the model in RT, we have modified the 
CD++ simulation engine, making the virtual time-advance 
of the DEVS simulation algorithm replaced by a RT version 
of the algorithm. This allows the emergency simulation to 
interact with the emergency response and the visualization 
sub-systems in RT. We have also added a generic interface 
to the simulation engine enabling it to interact with the ex-
ternal environment (e.g., an external network). The simula-
tor sends the dimensions of the cell space at the start of the 
simulation, submits any cell updates, and at the same time 
receives input to the cellular model using the message struc-
ture (Section 6).  
 
4. ROBOTIC FIRST RESPONDER AGENT 
 In this section, we discuss the details of the design and 
implementation of a DEVS-based controller for the autono-
mous first responder robot. The controller model can be also 
used for swarm robotic applications  [13] in which a large 

number of homogeneous autonomous robots are engaged in 
an activity. We used the e-puck robotic kit  [14] as a proto-
type for first responder robot to deploy the simulation-
driven controller developed for emergency response system. 
The E-puck is a small mobile robot capable of moving and 
spinning and is equipped with sensors and motors. It uses 
eight infrared distance proximity sensors (IR) to detect ob-
stacles around it. There are eight LEDs mounted on the top 
shaping a ring. The robot can interact with a PC via Blue-
tooth connection. The reason, why we use a DEVS model 
for the robotic agent and not doing this in the Cell-DEVS 
model, is the limitations of a cellular modeling formalism.  
 
4.1. The Logical Controller 
 Initially, the robot model receives the size of the cell 
space and builds a copy of the cellular space for itself. The 
robot also receives the updates of cell values from the cell-
DEVS model and marks the changes on its own copy.  



 The controller model consists of two levels of controls: 
a High-level and a Low-level control. The first on is respon-
sible for path planning towards the closest emergency loca-
tion (using the data provided by the cell space); the low-
level control is responsible for avoiding obstacles.  

a) Higher Level Controller (HLC) 
 This controller must locate the emergency locations on 
the cell space, find the closest one and steer the robot to-
wards it. The HLC must know the current position of the 
robot on the cellular space. Afterwards, it calculates the dis-
tance to each location and chooses the closest one as the tar-
get emergency site to arrive at. By knowing the length of 
each cell (which is mapped to an area on the ground) and 
the speed of the robot, we update the position of the robot. 
The Cell-DEVS model uses the 9 nearest neighbors and 
there are eight regions defined in the space (Figure 2.a). The 
HLC decides the next movement based on the region where 
the incident is located in. This process continues until the 
robot arrives at the target emergency location. Figure 2.b 
shows a sample scenario where initially, the robot locates 
the emergency in R2 and moves one step to North east. 
Again the target is in R2, and also in the next step. There-
fore after moving three steps to North East, the robot finds 
the fire in R1, where the robot catches it by moving one step 
to the North.  

 
e-puck

 
Figure 2. a) Region definitions    b) HLC example 

 
b) Lower Level Controller (LLC) 

 In outdoor emergency control missions, first responders 
usually work in hazardous environments. The robot must 
thus avoid obstacles: large obstacles that are marked on the 
cell space (e.g. rivers, houses, cliffs) and smaller obstacles, 
detected by the robot sensors (e.g. trees, stones). The LLC is 
applied after the HLC, deciding based on the neighborhood 
information acquired from the local cell space and the sen-
sor inputs. In other words, HLC has a top view to the entire 
cell space while LLC only observes the neighborhood and 
the sensor range area surrounding the robot. If LLC detects 
obstacles in the direction determined by HLC, a new open 
direction adjacent to the previous direction is assigned to the 
robot. The deviation from the original path determined by 
HLC is restored in the next steps by HLC. Figure 3 illus-
trates an example scenario in which the robot tries to reach 
the emergency with a river and the stone in the path. The 
HLC steers the robot towards the emergency until the robot 
reaches the river (which is marked in the cell space, thus the 
LLC guides the robot towards the NW). Then, the LLC cor-
rects the HLC decisions until the robot reaches the bridge. 

The red arrows show the original directions determined by 
HLC, which were corrected later by LLC. 

 
Figure 3. Sample scenario for HLC and LLC 

 
4.2. Controller Model Specifications 
 We divided the model responsibilities into two parts. 
The Model Reader is responsible for creating the local cell 
space, updating the cell space by receiving the updates from 
the Cell-DEVS engine, and signaling the Controller compo-
nent to make path-planning decisions. The Controller im-
plements the HLC and LLC algorithms, sending control 
commands to the robot and informing the visualization en-
gine about the robot movements.  
 Figure 4 depicts an abstract representation of the behav-
ior of the two components using a DEVS graph  [15] that 
summarizes the behavior of the DEVS atomic component 
by rendering the states, transitions, inputs, outputs and state 
durations of the atomic component. The Model Reader starts 
in the state wait for dimension, where it is waiting to receive 
the dimensions of the cell space from the Cell-DEVS en-
gine. As soon this happens, it builds a local copy of the cell 
space, and then changes to idle (which corresponds to the 
movement period of the robot). During the idle state, the 
Model Reader also receives cell space updates and marks 
them on the local copy. If an emergency update is received, 
it is added to the emergency list. At the end of this state, the 
Controller is signaled to carry out the next movement.  
 The Controller starts by sending the initial position of 
the robot to the visualization engine and stops (a state where 
it receives periodic signals from the Model Reader). If there 
is an emergency location in the emergency list, the Control-
ler changes to Calculate next step and the following tasks 
are executed in the corresponding external transition: sort 
the emergency list, find the closest site, apply the HLC and 
LLC algorithms, and calculate the next step. Based on the 
result of the control algorithms, the Controller changes to 
one of the movement states, the output function triggers the 
movement commands for the robot, and the next step infor-
mation for the visualization engine is sent. This sequence is 
repeated until it reaches the emergency site. In that case, it 
changes to prepare extinguish. After this, it outputs the stop 
command to the robot, informs the Cell-DEVS and visuali-
zation engines about the emergency restraint, and transitions 
to the stop state, where it waits for the next location. 
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Figure 4. DEVS Graph of the robot controller 

 
5. CONTROLLER IMPLEMENTATION  
 E-CD++ is an open-source embedded RT DEVS-based 
modeling, simulation and application development envi-
ronment  [16], built as a Real-Time extension of the CD++ 
simulator. ECD++ allows defining driver interface functions 
for each input and output port of a DEVS model, in which 
the integer I/O values of a DEVS system are translated to 
signals to the external environment.  
 Figure 5 shows a screenshot of the different stages of a 
sample scenario in which the robot starts on cell (2,1) and 
moves to the closest emergency on the first row. The cellu-
lar animation tool renders a basic animation of the cellular 
model by reading the log file of CD++ simulator. In the end, 
the robot arrives at two other emergency locations that are 
the closer to the previous ones.  

 
Figure 5. Animation of the emergency management 

 
6. VISUALIZATION 
 Visualization of emergency behavior can provide a 
number of benefits. First, it provides an interactive envi-
ronment to verify the accuracy of these models by compar-

ing the results of an actual emergency with the output of a 
simulated version. Once the model is validated, it can then 
be used to predict not only the behavior of an existing emer-
gency, but also the consequences of preventive measures. 
Displaying these predictions in a visually informative man-
ner allows the Emergency Department to better educate the 
first responders on existing emergency hazards. Further-
more, enabling interactive manipulation of the simulation 
along with the visualization allows for emergency training 
in terms of resource allocation and emergency behavior. 
While experimentation would be risky and costly to perform 
in a real-life situation, these risks can be mitigated by simu-
lating untested approaches first. 3D user interfaces provide a 
more intuitive form of interaction. Additionally, high-
fidelity graphics enables an observer in better comparing a 
simulated emergency to a historic emergency. 
 
6.1. 3D Visualization Engine Description 
 The 3D visualization engine is used to visualize the 
simulation output results of both the emergency simulation 
model and the robotic first responder agent. The visualiza-
tion engine is implemented using Vega Prime and OpenGL 
[14]. Vega Prime is a high-performance software environ-
ment for RT simulation and virtual reality applications. It 
serves as an application programmer interface (API) consist-
ing of a graphical user interface called LynX Prime and 
Vega Prime libraries and header files of C++-callable func-
tions.  3D scenes are rendered using 3D openflight mod-
els. The terrain model consists of trees, different buildings, 
roads, etc. the robotic agent is represented by a 3D truck 
model. We can control how the effect of  environment and-
time of the day in the 3D scene visualization. Figure 6 show 
in a window that is divided into two channels; one for per-
spective view of 3D scene (on the left), and the other chan-



nel is for orthographical view of the 3D scene which acts as 
2D Map of the area (on the right). 
• On the perspective view of the first channel, the move-

ment of the emergency responder truck is displayed as a 
3D model representing the robot, and it is observed us-
ing a fixed camera. The observer view can be changed 
to five positions (back, front, left side, right side, or ro-
tate) around the emergency responder.  

• On the orthographical view of the second channel, a red 
grid represents the cellular grid of the emergency simu-
lated area. The emergency locations received from the 

Cell-DEVS engine are rendered by flashing yellow cir-
cles and the emergency responder truck is represented 
by a white circle. The white circle changes to green 
when the robot extinguishes an emergency location in 
the scene, after which the emergency special effects and 
the flashing yellow circle is removed from the 3D 
scene. The orthographical view is capable of zooming 
in and out and the cellular grid can be removed for a 
better view (see Figure 6). 

 
Figure 6- 3D Visualization Engine zoomed map 

 
6.2. 3D Visualization Engine Implementation 
 The 3D visualization subsystem (implemented in Visual 
C++) is shown in Figure 7.  It consists of two main compo-
nents: (i) the Receiver, which receives the data from the 
DEVS-based robot model and the Cell-DEVS emergency 
model, (ii) the Visualizer, which is responsible for the dis-
play of the visualization scene. 
 The Receiver component is a separate thread, spawned 
for receiving the emergency and suppression data. 

 

 
Figure 7- 3D Visualization Engine Architecture 

  
 The 3D visualization engine is capable of deploying 
different 3D terrain openflight models and different cellular 
areas (dimensions and initial values) without changing the 
code of the visualization.  
 
6.3. Global Message Structure 
 The collaboration of the three components is based on a 
global message structure transferred over a network infra-

structure. The network_struct contains the following five 
data fields: 
1. msg_id: an integer data type used to decode the type of 

the message and the value of the next fields in the mes-
sage. There are generally five types of messages:  
• The dimension message carries the size of the cell 

space from the Cell-DEVS engine to the DEVS 
and visualization at the start of the execution.  

• The robot initial location message carries the ini-
tial coordinates of the robot from the DEVS engine 
to the visualization.  

• The cell space update message carries the cell val-
ue changes during the execution from the Cell-
DEVS engine to the DEVS and visualization. 

• The next movement message carries the direction of 
the next movement at the start of each step from 
DEVS to the visualization engine.  

• The extinguish message carries the location of the 
emergency that has been extinguished by the robot, 
from the DEVS sub-system to the Cell-DEVS and 
visualization sub-systems. 

2. x: used to carry the horizontal axis value (the horizontal 
dimension or the horizontal coordinate).  

3. y: used to carry the vertical axis value (the vertical di-
mension or the vertical coordinate). 

4. dir: carries the next direction. Directions are the same 
as the regions shown in Figure 2.a.  

5. value: carries the value of the cell and is used in the cell 
update message. 

   



 
7. CONCLUSIONS 
 We presented a DEVS-based emergency management 
simulation and visualization system. Our system offers a ro-
bust software framework to make the RT emergency re-
sponse system more flexible and more scalable. A robotic 
agent acting as a first responder is placed in a virtual envi-
ronment generated from a Cell-DEVS emergency simula-
tion. The controller of the robot is a DEVS-based emer-
gency response model that interacts with the emergency 
simulation through messaging and is informed about the 
map of the area and the location of the incident (e.g. road 
bombs, fire, explosions, etc). Both the emergency simula-
tion and the emergency response sub-systems run in RT and 
communicate with each other and with a 3D visualization 
engine. The purpose of the visualization system is to pro-
vide 3D scenes and to visually monitor the activities of the 
robotic first responder. Although the emergency model is a 
simulation, it can be simply replaced with more complex 
emergency simulation models or a real emergency database 
fed from real-world data.  
 The proposed generic interface and message structure 
that enables the emergency simulation, the emergency re-
sponse, and visualization sub-systems interchange data, en-
ables our system to simulate emergency management in RT 
under various conditions. One of the future extension plans 
of this work is the integration of Google-mapTM free virtual 
reality web service with visualization engine and inject the 
terrain data to the Cell-DEVS engine. Some videos of this 
work can be found in  [17].  
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