
Interfacing DEVS and Visualization Models for Emergency Management

Mohammad Moallemi, Shafagh Jafer, Ahmed Sayed Ahmed, Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University, Centre of Visualization and Simulation (V-Sim)
{moallemi, sjafer, asahmed ,gwainer}@sce.carleton.ca

Keywords: Cell-DEVS, Emergency simulation, real-time
DEVS.

Abstract
 We introduce a method to integrate Cell-DEVS models
with DEVS-based robotic agents and an advanced Immer-
sive environment for Emergency Management. The emer-
gency is handled by an autonomous robot controlled by a
real-time DEVS model. The model controlling the robot in-
teracts with a simulation for emergencies, receiving real-
time data about its location on a cell space. The immersive
environment is used to visualize the emergency and its man-
agement. The simulation results of both the cell-DEVS
emergency model and the DEVS-based robotic first re-
sponder are visualized dynamically at real-time. The goal is
to show how to integrate cellular modeling in a real-time
platform and the DEVS formal framework as a collabora-
tion mechanism. The real-time visualization allows for su-
pervisory control of the emergency and first responders ac-
tivities.

1. INTRODUCTION
 Emergency simulation has received increasing attention
in recent years and several research works have been devel-
oped and proposed for this purpose. Specifically, disaster
management and evacuation strategies are the two most im-
portant subjects within this field. Due to the devastating oc-
currence and destructive impacts of emergencies, it is im-
practical to perform real-world studies of this nature. An al-
ternative to field based experiments is modeling and simula-
tion (M&S) [1]. Generally, such simulations are large-scale
programs, which in return raise the need for efficient simu-
lation engines. Modeling, simulation, and visualization
techniques can help address many of the challenges in
emergency response planning [1].
 Since emergency crisis are processes that distribute
over both time and space, simulations should take into con-
sideration the system evolution in both time and space. In
this paper we present an integrated emergency management
system based on the Discrete-Event System Specification
(DEVS) [3] and Cell-DEVS [4]. We focus on the interop-
eration of different DEVS and Cell-DEVS models with the
purpose of integrating emergency simulation with emer-
gency management. The emergency simulation is based on
Cell-DEVS, and the emergency management is performed
by a robotic agent controlled by a DEVS model to respond

to the emergency at real-time (RT) using the CD++ toolkit
 [5] [6]. We also use a visualization engine that takes the re-
sults of the emergency simulation and the emergency man-
agement as input and produces 3-D visualizations of the si-
mulation scenarios.

2. RELATED WORK AND MOTIVATION
 A number of M&S applications exist for studying indi-
vidual aspects of emergency response scenarios. However, a
number of simulation tools have to be integrated to address
multiple aspects of a single disaster event. In [7], a frame-
work for M&S for emergency response is presented which
systematically integrates M&S tools to address the overall
response. In [8], the authors integrate gaming and simula-
tion systems for training decision makers and responders to
work together as a team. A discrete-event environment in-
troduced in [9] presents the processes of analysis and design
of a multi-agent system for a crisis response organization
with the purpose of building a simulation testbed to experi-
ment with different coordination mechanisms. Also, virtual
simulation with RT emergency response has become an
emerging technique that plays a key role for efficient emer-
gency management systems due to its capabilities to provide
RT system observations [10] [11] [12].
 We introduce a simulation-driven architecture for inte-
grating emergency simulation with robotic first responders
moving towards the emergency locations, which are spread
out on the field. The robot is placed on a grid corresponding
to the simulated emergency area, and reaches every loca-
tion, dealing with the emergency. Our work differs from the
previously mentioned works in three different ways:
1. The RT cellular emergency simulation is an on-demand

data source of the scenario, which is to be used by the
robot. A supervisory control station can be used to up-
date the emergency simulation data with a real emer-
gency situation and the information of the area.

2. This multimodel combines a Cell-DEVS cellular mod-
el, a DEVS-based robotic controller, and virtual reality
visualization. This component-oriented approach pro-
vides model reusability and interoperability, allowing
integration or replacement of any of the components.

3. Using a simulation-driven approach for controlling the
robot allows testing the robot controller in a fully simu-
lated environment, then using the same model for con-
trolling a real robot. Model-continuity from early simu-

lation stages to finally embedding it on the hardware
speeds up the development process while increasing the
reliability of the product and reducing risk and cost.

3. THE SYSTEM ARCHITECTURE
 Figure 2 presents a detailed overview of the system.
The emergency simulation sub-system is in charge of the
Cell-DEVS emergency model. It communicates with the
DEVS emergency response sub-system informing it about
the dimensions of the emergency area, and sends updates
about the location of the emergency team on the grid. At the
same time, it also sends this information to the visualization
sub-system providing it with RT data about the scene. The
DEVS-based control model uses the emergency information
received from the Cell-DEVS engine to respond to the
emergency. Based on these commands, the robot moves on
the simulated grid area and deals with the emergencies one
after another. The emergency response sub-system dynami-

cally updates the emergency simulation and visualization
sub-systems when emergencies have been solved. This
process continues until all emergencies are dealt with. The
visualization sub-system produces 3D scenes from the dy-
namically received updates from both the emergency simu-
lation and the emergency response sub-systems.

3.1. Emergency Simulation
 We used a Cell-DEVS model to represent an area that
has a number of emergency locations (e.g. road bombs or
explosions) which are ignited randomly during the simula-
tion. The model is defined according to the conventions of
Cell-DEVS using CD++ toolkit. It consists of an atomic
component tested with various dimensions from 30 x 30
(900 cells) to 200 x 200 (40,000 cells). Initially, the model
will locate different emergency locations on the plane, and it
will locate the current position of the emergency team in the
field.

Figure 1. System Architecture

 In order to run the model in RT, we have modified the
CD++ simulation engine, making the virtual time-advance
of the DEVS simulation algorithm replaced by a RT version
of the algorithm. This allows the emergency simulation to
interact with the emergency response and the visualization
sub-systems in RT. We have also added a generic interface
to the simulation engine enabling it to interact with the ex-
ternal environment (e.g., an external network). The simula-
tor sends the dimensions of the cell space at the start of the
simulation, submits any cell updates, and at the same time
receives input to the cellular model using the message struc-
ture (Section 6).

4. ROBOTIC FIRST RESPONDER AGENT
 In this section, we discuss the details of the design and
implementation of a DEVS-based controller for the autono-
mous first responder robot. The controller model can be also
used for swarm robotic applications [13] in which a large

number of homogeneous autonomous robots are engaged in
an activity. We used the e-puck robotic kit [14] as a proto-
type for first responder robot to deploy the simulation-
driven controller developed for emergency response system.
The E-puck is a small mobile robot capable of moving and
spinning and is equipped with sensors and motors. It uses
eight infrared distance proximity sensors (IR) to detect ob-
stacles around it. There are eight LEDs mounted on the top
shaping a ring. The robot can interact with a PC via Blue-
tooth connection. The reason, why we use a DEVS model
for the robotic agent and not doing this in the Cell-DEVS
model, is the limitations of a cellular modeling formalism.

4.1. The Logical Controller
 Initially, the robot model receives the size of the cell
space and builds a copy of the cellular space for itself. The
robot also receives the updates of cell values from the cell-
DEVS model and marks the changes on its own copy.

 The controller model consists of two levels of controls:
a High-level and a Low-level control. The first on is respon-
sible for path planning towards the closest emergency loca-
tion (using the data provided by the cell space); the low-
level control is responsible for avoiding obstacles.

a) Higher Level Controller (HLC)
 This controller must locate the emergency locations on
the cell space, find the closest one and steer the robot to-
wards it. The HLC must know the current position of the
robot on the cellular space. Afterwards, it calculates the dis-
tance to each location and chooses the closest one as the tar-
get emergency site to arrive at. By knowing the length of
each cell (which is mapped to an area on the ground) and
the speed of the robot, we update the position of the robot.
The Cell-DEVS model uses the 9 nearest neighbors and
there are eight regions defined in the space (Figure 2.a). The
HLC decides the next movement based on the region where
the incident is located in. This process continues until the
robot arrives at the target emergency location. Figure 2.b
shows a sample scenario where initially, the robot locates
the emergency in R2 and moves one step to North east.
Again the target is in R2, and also in the next step. There-
fore after moving three steps to North East, the robot finds
the fire in R1, where the robot catches it by moving one step
to the North.

e-puck

Figure 2. a) Region definitions b) HLC example

b) Lower Level Controller (LLC)

 In outdoor emergency control missions, first responders
usually work in hazardous environments. The robot must
thus avoid obstacles: large obstacles that are marked on the
cell space (e.g. rivers, houses, cliffs) and smaller obstacles,
detected by the robot sensors (e.g. trees, stones). The LLC is
applied after the HLC, deciding based on the neighborhood
information acquired from the local cell space and the sen-
sor inputs. In other words, HLC has a top view to the entire
cell space while LLC only observes the neighborhood and
the sensor range area surrounding the robot. If LLC detects
obstacles in the direction determined by HLC, a new open
direction adjacent to the previous direction is assigned to the
robot. The deviation from the original path determined by
HLC is restored in the next steps by HLC. Figure 3 illus-
trates an example scenario in which the robot tries to reach
the emergency with a river and the stone in the path. The
HLC steers the robot towards the emergency until the robot
reaches the river (which is marked in the cell space, thus the
LLC guides the robot towards the NW). Then, the LLC cor-
rects the HLC decisions until the robot reaches the bridge.

The red arrows show the original directions determined by
HLC, which were corrected later by LLC.

Figure 3. Sample scenario for HLC and LLC

4.2. Controller Model Specifications
 We divided the model responsibilities into two parts.
The Model Reader is responsible for creating the local cell
space, updating the cell space by receiving the updates from
the Cell-DEVS engine, and signaling the Controller compo-
nent to make path-planning decisions. The Controller im-
plements the HLC and LLC algorithms, sending control
commands to the robot and informing the visualization en-
gine about the robot movements.
 Figure 4 depicts an abstract representation of the behav-
ior of the two components using a DEVS graph [15] that
summarizes the behavior of the DEVS atomic component
by rendering the states, transitions, inputs, outputs and state
durations of the atomic component. The Model Reader starts
in the state wait for dimension, where it is waiting to receive
the dimensions of the cell space from the Cell-DEVS en-
gine. As soon this happens, it builds a local copy of the cell
space, and then changes to idle (which corresponds to the
movement period of the robot). During the idle state, the
Model Reader also receives cell space updates and marks
them on the local copy. If an emergency update is received,
it is added to the emergency list. At the end of this state, the
Controller is signaled to carry out the next movement.
 The Controller starts by sending the initial position of
the robot to the visualization engine and stops (a state where
it receives periodic signals from the Model Reader). If there
is an emergency location in the emergency list, the Control-
ler changes to Calculate next step and the following tasks
are executed in the corresponding external transition: sort
the emergency list, find the closest site, apply the HLC and
LLC algorithms, and calculate the next step. Based on the
result of the control algorithms, the Controller changes to
one of the movement states, the output function triggers the
movement commands for the robot, and the next step infor-
mation for the visualization engine is sent. This sequence is
repeated until it reaches the emergency site. In that case, it
changes to prepare extinguish. After this, it outputs the stop
command to the robot, informs the Cell-DEVS and visuali-
zation engines about the emergency restraint, and transitions
to the stop state, where it waits for the next location.

M
o
v
e
 t
h
e
 r
o
b
o
t
fo
rw
a
rd

&

In
fo
rm
 t
h
e
 v
is
u
a
liz
a
ti
o
n

a
b
o
u
t
th
e
 n
e
x
t
s
te
p

R
e
c
e
iv
e
d
 S
ig
n
a
l
fr
o
m

M
o
d
e
l
R
e
a
d
e
r

Figure 4. DEVS Graph of the robot controller

5. CONTROLLER IMPLEMENTATION
 E-CD++ is an open-source embedded RT DEVS-based
modeling, simulation and application development envi-
ronment [16], built as a Real-Time extension of the CD++
simulator. ECD++ allows defining driver interface functions
for each input and output port of a DEVS model, in which
the integer I/O values of a DEVS system are translated to
signals to the external environment.
 Figure 5 shows a screenshot of the different stages of a
sample scenario in which the robot starts on cell (2,1) and
moves to the closest emergency on the first row. The cellu-
lar animation tool renders a basic animation of the cellular
model by reading the log file of CD++ simulator. In the end,
the robot arrives at two other emergency locations that are
the closer to the previous ones.

Figure 5. Animation of the emergency management

6. VISUALIZATION
 Visualization of emergency behavior can provide a
number of benefits. First, it provides an interactive envi-
ronment to verify the accuracy of these models by compar-

ing the results of an actual emergency with the output of a
simulated version. Once the model is validated, it can then
be used to predict not only the behavior of an existing emer-
gency, but also the consequences of preventive measures.
Displaying these predictions in a visually informative man-
ner allows the Emergency Department to better educate the
first responders on existing emergency hazards. Further-
more, enabling interactive manipulation of the simulation
along with the visualization allows for emergency training
in terms of resource allocation and emergency behavior.
While experimentation would be risky and costly to perform
in a real-life situation, these risks can be mitigated by simu-
lating untested approaches first. 3D user interfaces provide a
more intuitive form of interaction. Additionally, high-
fidelity graphics enables an observer in better comparing a
simulated emergency to a historic emergency.

6.1. 3D Visualization Engine Description
 The 3D visualization engine is used to visualize the
simulation output results of both the emergency simulation
model and the robotic first responder agent. The visualiza-
tion engine is implemented using Vega Prime and OpenGL
[14]. Vega Prime is a high-performance software environ-
ment for RT simulation and virtual reality applications. It
serves as an application programmer interface (API) consist-
ing of a graphical user interface called LynX Prime and
Vega Prime libraries and header files of C++-callable func-
tions. 3D scenes are rendered using 3D openflight mod-
els. The terrain model consists of trees, different buildings,
roads, etc. the robotic agent is represented by a 3D truck
model. We can control how the effect of environment and-
time of the day in the 3D scene visualization. Figure 6 show
in a window that is divided into two channels; one for per-
spective view of 3D scene (on the left), and the other chan-

nel is for orthographical view of the 3D scene which acts as
2D Map of the area (on the right).
• On the perspective view of the first channel, the move-

ment of the emergency responder truck is displayed as a
3D model representing the robot, and it is observed us-
ing a fixed camera. The observer view can be changed
to five positions (back, front, left side, right side, or ro-
tate) around the emergency responder.

• On the orthographical view of the second channel, a red
grid represents the cellular grid of the emergency simu-
lated area. The emergency locations received from the

Cell-DEVS engine are rendered by flashing yellow cir-
cles and the emergency responder truck is represented
by a white circle. The white circle changes to green
when the robot extinguishes an emergency location in
the scene, after which the emergency special effects and
the flashing yellow circle is removed from the 3D
scene. The orthographical view is capable of zooming
in and out and the cellular grid can be removed for a
better view (see Figure 6).

Figure 6- 3D Visualization Engine zoomed map

6.2. 3D Visualization Engine Implementation
 The 3D visualization subsystem (implemented in Visual
C++) is shown in Figure 7. It consists of two main compo-
nents: (i) the Receiver, which receives the data from the
DEVS-based robot model and the Cell-DEVS emergency
model, (ii) the Visualizer, which is responsible for the dis-
play of the visualization scene.
 The Receiver component is a separate thread, spawned
for receiving the emergency and suppression data.

Figure 7- 3D Visualization Engine Architecture

 The 3D visualization engine is capable of deploying
different 3D terrain openflight models and different cellular
areas (dimensions and initial values) without changing the
code of the visualization.

6.3. Global Message Structure
 The collaboration of the three components is based on a
global message structure transferred over a network infra-

structure. The network_struct contains the following five
data fields:
1. msg_id: an integer data type used to decode the type of

the message and the value of the next fields in the mes-
sage. There are generally five types of messages:
• The dimension message carries the size of the cell

space from the Cell-DEVS engine to the DEVS
and visualization at the start of the execution.

• The robot initial location message carries the ini-
tial coordinates of the robot from the DEVS engine
to the visualization.

• The cell space update message carries the cell val-
ue changes during the execution from the Cell-
DEVS engine to the DEVS and visualization.

• The next movement message carries the direction of
the next movement at the start of each step from
DEVS to the visualization engine.

• The extinguish message carries the location of the
emergency that has been extinguished by the robot,
from the DEVS sub-system to the Cell-DEVS and
visualization sub-systems.

2. x: used to carry the horizontal axis value (the horizontal
dimension or the horizontal coordinate).

3. y: used to carry the vertical axis value (the vertical di-
mension or the vertical coordinate).

4. dir: carries the next direction. Directions are the same
as the regions shown in Figure 2.a.

5. value: carries the value of the cell and is used in the cell
update message.

7. CONCLUSIONS
 We presented a DEVS-based emergency management
simulation and visualization system. Our system offers a ro-
bust software framework to make the RT emergency re-
sponse system more flexible and more scalable. A robotic
agent acting as a first responder is placed in a virtual envi-
ronment generated from a Cell-DEVS emergency simula-
tion. The controller of the robot is a DEVS-based emer-
gency response model that interacts with the emergency
simulation through messaging and is informed about the
map of the area and the location of the incident (e.g. road
bombs, fire, explosions, etc). Both the emergency simula-
tion and the emergency response sub-systems run in RT and
communicate with each other and with a 3D visualization
engine. The purpose of the visualization system is to pro-
vide 3D scenes and to visually monitor the activities of the
robotic first responder. Although the emergency model is a
simulation, it can be simply replaced with more complex
emergency simulation models or a real emergency database
fed from real-world data.
 The proposed generic interface and message structure
that enables the emergency simulation, the emergency re-
sponse, and visualization sub-systems interchange data, en-
ables our system to simulate emergency management in RT
under various conditions. One of the future extension plans
of this work is the integration of Google-mapTM free virtual
reality web service with visualization engine and inject the
terrain data to the Cell-DEVS engine. Some videos of this
work can be found in [17].
8. REFERENCES
[1] Kincaid, J. P., Donovan, J., Pettitt, B., “Simulation
techniques for training emergency response”. International
Journal of Emergency Management, vol. 1, pp. 238-246,
2003.
[2] Jain, S. C.R. McLean, “Modeling and Simulation of
Emergency Response: Workshop Report, Relevant Stan-
dards and Tools,” National Institute of Standards and Tech-
nology Internal Report, NISTIR-7071. 2003.
[3] Zeigler, B. Praehofer, H. Kim, T. 2000. Theory of
Modeling and Simulation, 2nd ed. Academic Press.
[4] Wainer, G., “Applying Cell-DEVS Methodology for
Modeling the Environment”. In Simulation, Transactions of
the SCS. Vol. 82, No. 10, 635-660. October 2006.
[5] Wainer, G., “CD++: A toolkit to develop DEVS mod-
els”. Software–Practice and Experience, 32:1261-1306.
2002.
[6] Wainer, G., “Discrete-event modeling and simulation; a
practitioner's approach”. CRC/Taylor & Francis. 2009.
[7] Jain, S., McLean, C., “A Framework for Modeling and
Simulation For Emergency Response”. Proceedings of the
Winter Simulation Conference. 2003.
[8] Jain, S., McLean, C., “Integrated simulation and gam-
ing architecture for incident management training”. Pro-

ceedings of 37th Winter simulation conference, Orlando,
FL. 2005.
[9] Gonzalez, R., “Analysis and design of a multi-agent
system for simulating a crisis response organization”. Pro-
ceedings of the International Workshop on Enterprises &
Organizational Modeling and Simulation, Amsterdam, The
Netherlands. 2009.
[10] Boukerche, A., Zhang, M., Pazzi, R., “An adaptive vir-
tual simulation and RT emergency response system”. Pro-
ceedings of the IEEE international conference on Virtual
Environments, Human-Computer Interfaces and Measure-
ment Systems, Hong Kong, China. 2009.
[11] McGrath, D., Hunt, A., Bates, M., “A Simple Distrib-
uted Simulation Architecture for Emergency Response Ex-
ercises”. Proceedings of the 9th IEEE International Sympo-
sium on Distributed Simulation and Real-Time Applica-
tions, p.221-228, October 10-11, 2005.
[12] Liu, K., Shen, X., Georganas, N., El Saddik, A.,
Boukerche, A., “SimSITE: The HLA/RTI Based Emergency
Preparedness and Response Training Simulation”. Proceed-
ings of the 11th IEEE International Symposium on Distrib-
uted Simulation and Real-Time Applications, 2007.
[13] Sahin, E., Spears, “Swarm Robotics: State-of-the-art
Survey”. Lecture Notes in Computer Science 3342, Sprin-
ger-Verlag, 126–14. 2005.
[14] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci,
A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano, and
A. Martinoli. “The e-puck, a robot designed for education in
engineering”, In Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, volume 1,
pages 59–65, 2009.
[15] Zeigler, B.P., Song, H., Kim, T., Praehofer, H., “DEVS
Framework for Modelling, Simulation, Analysis, and De-
sign of Hybrid Systems”. Proceedings of HSAC, LNCS,
Vol. 999. Ithaca, NY. 1995.
[16] Moallemi, M., Wainer, G. A., “Designing an Interface
for Real-Time and Embedded DEVS”. Spring Simulation
Conference, DEVS Symposium, Orlando, Florida, USA,
2010.
[17] Emergency Management 1. Available via:
<http://www.youtube.com/watch?v=9aNVZRkrtC8>. [Ac-
cessed December, 2010].

