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Abstract. Distributed simulation practice outside the military sector is still 

limited. Having plug-and-play or automatic middleware interoperability is one 

of the main challenges is needed to advance distributed simulation, as indicated 

by several surveys; hence, interoperability must be achieved effortlessly with 

rational cost. They further indicate the need of having general pluggable 

container where lightweight commercial-off-the-shelf (COTS) simulation 

components can be plugged into the container with minimal development time. 

However, existing middleware solutions have been complex so far to overcome 

these distributed simulation issues. The RESTful Interoperability Simulation 

Environment (RISE) is the first existing middleware to be based on RESTful 

Web-services. RISE uses the Web plug-and-play interoperability style to 

overcome distributed simulation issues. Our focus here on plugging simulation 

components into RISE and on interoperating independent-developed simulation 

engines to perform the same distributed simulation session. 

Keywords: Distributed Simulation, REST, Web-service, SOA, Interoperability, 

DEVS, CD++. 

1   Introduction 

Distributed simulation technologies were created to execute simulations on 

distributed computer systems (i.e., on multiple processors connected via 

communication networks)  [15]. Distributed Simulation is a computer program that 

models real or imagined systems over time. On the other hand, distributed computer 

systems interconnect various computers (e.g. personal computers) across a 

communication network. Distributed simulation offers many benefits such as: (1) 

allowing across-organization simulation collaboration in order to participate in same 

simulation run without the need of physically being in the same location, hence 

enabling simulation assets reuse, (2) Allowing complex simulation incremental 

development. In this case, a complex model can be divided into smaller models so 

they can be developed and verified individually. Afterward, these smaller models can 

be integrated together to form the overall complex simulation model. Other benefits 

also include reducing execution time, interoperating different vendor simulation 



toolkits, providing fault tolerance and information hiding – including the protection of 

intellectual property rights [6][15].   

Distributed Simulation middleware is responsible of connecting and synchronizing 

several simulation components across geographical regions, allowing simulation 

assets reuse without being physically at the same location. Interoperating scattered 

simulation assets is the main challenge of a distributed simulation middleware. In 

practice, making independently developed applications interact with each other is not 

a trivial task, since this interaction involves not only passing remote messages, but 

also synchronizing them (i.e. interpreting messages and reacting to them correctly). 

Particularly, simulation packages can be based on different formalism, implemented 

independently by different teams, or support different synchronization algorithms. In 

general, modelers use the simulation tools that they are familiar with, and can be 

experts within a simulation tool environment, but unable to use others.  

The defense sector is currently one of the largest users of distributed simulation 

technology, mainly to provide virtual distributed training environment between 

remote parties, relying on the High Level Architecture (HLA) [21] middleware to 

provide a general architecture for simulation interoperability and reuse. On the other 

hand, the current adoption of distributed simulation in the industry is still limited in 

spite of HLA introduction in 1996.  Other technologies such as CORBA and SOAP-

based Web-services (WS) were used outside the military sectors to overcome HLA 

interoperability and scalability issues. However, existing distributed simulation 

middlewares still lack of plug-and-play interoperability, dynamicity, and composition 

scalability. Those approaches are described in the background section. 

Lack of plug-and-play and dynamic interoperability to interface independent-

developed simulation components, and the ability to reuse commercial-off-the-shelf 

(COTS) simulation components effortlessly are documented needed features in future 

distributed simulation middleware, as indicated by a number of surveys of experts 

from different simulation backgrounds such as [6][28]. Those surveys pointed out that 

having plug-and-play or automatic middleware interoperability is one of the main 

challenges to advance distributed simulation use in the industry; hence, 

interoperability must be achieved effortlessly with rational cost. They further indicate 

the need of having general pluggable container where lightweight commercial-off-

the-shelf (COTS) simulation components can be plugged into the container with 

minimal development time. COTS concept reduces the cost of distributed simulation 

with the “Try-before-buy” mentality. This concludes that plug-and-play can mean two 

things. The first one is that any component in the overall system structure can be 

replaced with another one easily without affecting the entire system. The second one 

is that independent-developed simulation components can interoperate (synchronize) 

with each other for the same distributed simulation run. To achieve plug-and-play or 

Automated/semi-automatic interoperability between independent-developed 

simulation packages, not only semantics must be standardized but also flexible to 

adapt to future changes. Further, simulation functionalities should be self-contained 

components (black boxes) that: (1) Hide their internal software design and 

implementation, hence interact with other components with self-contained messages 

(e.g. XML messages) that are not tied to software implementation, uncomplicated to 

standardize and easy to adapt to future changes. Further, this point becomes more 

important since already existing simulation packages should be expected to have no 



or minimal software implementation changes to comply with any new proposed 

standards, (2) Connect with other components via universal standardized interface 

(i.e. uniform connectors). In this case, components can be plugged into a complex 

structure easily, since they already know how they will be connected to other existing 

components in the structure, (3) Reached via unique universal standardized 

addressing scheme from anywhere, and (4) Support dynamic interoperability at 

runtime. Simulation components should be able to join/disjoin the overall structure 

without other components pre-knowledge. In other words, no new code or 

compilation should be required to achieve components interoperability. This point 

goes beyond simulation components to any device. In this case, real devices may be 

introduced into the simulation loop without stopping (and perhaps recompiling code) 

and restarting the current simulation-run in progress. We show here that RESTful 

Web-services interoperability contains the ingredients to advance distributed 

simulation on those fronts. 

RESTful Web-services [26] imitates the Web interoperability style. The major 

RESTful Web-services (i.e. Web style) interoperability principles are universal 

accepted standards, resource-oriented, uniform channels, message-oriented, and 

implementation hiding. These principles are the Web interoperability characteristics; 

hence, REST is a reverse engineering of the Web interoperability style. Thus, REST 

has been in used in many products since the 1990’s, but without its official name 

“REST”.  On the other hand, the Representational State Transfer (REST) is first used 

in [13] to describe the Web architecture principles.  The name is derived because of 

the fact that on the Web a resource transfers its representation (state) in a form of a 

message to another resource. For example, a Web browser transfers a URI 

representation (e.g. as HTML document) using HTTP GET channel. REST exposes 

all services as resources with uniform connectors (channels) where messages are 

transferred between those resources through those uniform channels (i.e. called 

methods in HTTP standards). Because those characteristics conform to universally 

accepted standards, REST subsequently contains the recipe of   plug-and-play and 

dynamic interoperability with infinite composition scalability. REST is a style, 

analogy with object-oriented, therefore, system designers must conform to those 

principles to obtain those benefits [26].  

REST is usually implemented using HTTP, URIs, and usually XML because these 

are the main pillars of the Web today. In this case, resources (services) are named and 

addressed by URIs, resources connectors are HTTP channels, and connectivity 

semantics are usually described in XML messages. RESTful Web Services has been 

gaining increased attention with the advent of Web 2.0  [25] and the concept of 

mashup. Mashup applications deliver new functions and services on the Web by 

combining different information or capabilities from more than one existing source, 

allowing reusability and rapid development. Nowadays, RESTful Web-service is 

supported in conjunction with SOAP-based Web-services in tools developed by 

leading companies such as IBM [19] and Sun Microsystems (e.g. NetBeans IDE 

[24]).  

Based on these ideas, we designed RESTful Interoperability Simulation 

Environment (RISE) middleware (formally called RESTful-CD++ [1][2][35]). RISE 

strictly follows the Web standards and interoperability style, hence, to avoid losing 

the main provided benefits such as plug-and-play and dynamic capabilities. Our main 



motivations behind proposing such plug-and-play middleware with dynamic 

capabilities is to provide practical solutions for distributed simulation identified 

needed capabilities to overcome its limited use in the industry while maintaining 

rational cost. Having dynamic plug-and-play/automatic interoperability is recognized 

needed capabilities in a distributed simulation middleware [6][28][35]. 

Thanks to RESTful Web-services principles, RISE, which is the first existing 

RESTful WS middleware, is designed as a multipurpose online plug-and-play 

simulation interoperability middleware. First, the middleware provides a pluggable 

container to support different simulation components (e.g. CD++ [34]); hence, 

components become online Web services with minimal development time. Plugging 

commercial-off-the-shelf (COTS) simulation components quickly reduces cost and 

increases reusability. We plugged the distributed CD++ (DCD++) into RISE, 

allowing conservative-based distributed simulation between different CD++ 

instances. RISE-based DCD++ is described here along with its synchronization 

algorithms. Second, RISE forms the foundation for developing distributed simulation 

standards [3][30][31][32][33]. From our DEVS standardization [30][31][32][33] 

experience and the rationale behind CORBA declining [17], having practical 

standards indicates certain features that standards must be have such as simple to 

support, avoid software changes to legacy systems, allow legacy systems to use their 

existing resources (e.g. modeling methods), and allow different teams to evolve 

independently. The RISE-based standard is described here, aiming in interoperating 

independent-developed simulation packages.  

In addition, RISE provides different functionalities that are not covered here such 

as making simulation assets part of workflows, Web 2.0 mashup, and Data fusion 

(DF). Workflows enable simulation experiments automation, repeatability and 

reusability, as described in [4]. Mashup concept groups various services from 

different providers and presents them as a bundle in order to provide single integrated 

service. IBM enterprise mashup solutions [19] [20] argue that integrating different 

RESTful plugging functions (called widgets) enable self-designed service 

Aggregation and information, rapid application development, unlock legacy systems 

via Web 2.0 [25] without major software upgrade. Thus, one of RISE objectives is to 

mashup applications/devices into simulation loop, allowing better-obtained results 

and analysis.  DF is defined as collecting information from different sources to 

achieve inferences, which potentially leads to better accuracy from relaying on a 

single source of information. DF is applied by the military to build integrated images 

from various information sources in battlefields [27]. DF is similar to mashup in a 

sense of putting information into simulation loop. DF is highly dynamic, which makes 

it easier to achieve using RESTful WS plug-and-play interoperability.  

2   Background on Distributed Simulation 

At present, most works in distributed simulation are invested in optimizing 

simulation algorithms and in achieving efficient interoperability between different 

independent-developed simulation entities. These two areas define the current 



challenges of distributed simulation and future trends [28]. For further thorough 

details, we discuss distributed simulation current state-of-the-art in [35].  

Parallel/distributed simulations are typically composed of a number of sequential 

simulations where each is responsible of part of the entire model. Each of these 

subparts is a sequential simulation, which is usually referred to as a logical process 

(LP). The main purpose of synchronization algorithms is to produce the same results 

as if the simulation were preformed sequentially in a single processor. The second 

purpose is to optimize the simulation speed by executing the simulation as fast as 

possible. They fall in two categories: Conservative and optimistic. Conservative 

algorithms were introduced in late 1970s by Chandy-Misra  [9] and Bryant [8]. This 

approach always satisfies local causality constraint via ensuring safe timestamp-

ordered processing of simulation events within each LP. In current systems, the 

common implementation of conservative-based distributed simulation cycle to 

advance simulation time (e.g. [9][10][39]) is summarized as follows: (1) Time-

coordinator requests minimum time from all LPs. (2) Time-coordinator calculates 

global minimum time, broadcasts it to all LPs, and waits for their replies. (3) Time-

coordinator instructs all LPs to execute events with the minimum global time, waits 

for all LPs replies, and starts again with step #1. In optimistic algorithms, each LP 

maintains its Local Virtual time (LVT) and advances “optimistically” without explicit 

synchronization with other processors. On the other hand, a causality error is detected 

if a LP receives a message from another processor with a timestamp in the past (i.e. 

with a time-stamp less than the LVT); such messages are called straggler messages. 

To fix the detected error, the LP must rollback to the event before the straggler 

message timestamp; hence undo all performed computation. Time Warp algorithms 

focus on providing efficient rollback by reducing memory and communication 

overhead such as the mechanisms presented in [15]. 

Distributed simulation Middleware main objective is interfacing different 

simulation environments, allowing synchronization for the same simulation run across 

a distributed network. Those simulation entities are usually heterogeneous. For 

example, each simulation environment may differ from other entities in its simulation 

engine, algorithms, model representation, and formalism. This comes as no surprise 

that a number of surveys placed the middleware of distributed simulation as the most 

area of interest to overcome current distributed simulation challenges and to meet 

future expectation, as indicated by a number of surveys of experts of different 

simulation background [6][28]. 

The defense sector is currently one of the largest users of distributed simulation 

technology, mainly to provide virtual distributed training environment between 

remote parties, relying on the High Level Architecture (HLA) [21] middleware to 

provide a general architecture for simulation interoperability and reuse. On the other 

hand, the current adoption of distributed simulation in the industry is still limited. 

Further, HLA could not make a breakthrough in the industry since its adoption in 

1996 due to a number of issues such as its complexity, tied to programming languages 

and lack of interoperability in interfacing different Run-Time Infrastructure (RTI) 

vendors, since RTI-to-RTI interface is not standardized. RTI is the software layer that 

connects and synchronizes different HLA simulation entities (called federates) 

together where federates are interfaced with local RTIs via callback function interface 

(Figure 1). The HLA interoperability and scalability issues have caused the 



consideration of using existing Service-oriented architectures (SOA) technologies in 

distributed simulation middleware, mainly CORBA [18], SOAP-based WS [12], and 

RESTful WS [26].  

 

Figure 1: HLA Interaction Overview Model 

 

WSDL and SOAP are the main elements enable SOAP-based Web-services (WS) 

interoperability. SOAP-based Web-services provides interoperability in a similar way 

as CORBA: WSDL corresponds to IDL role whereas SOAP corresponds to ORB data 

marshalling/serialization function. Further, Web-service ports addressed by URIs 

whereas CORBA objects addressed by references. Both ports and objects contain a 

collection of procedures (i.e. called services by WS) similar to a Java/C++ classes. 

Those procedures glue software components across the network, hence providing and 

RPC-style type of software interoperability, as shown in Figure 2. The server exposes 

a group of services via ports (Figure 2). Each service is actually an RPC where 

semantic are described via that procedure parameters. Client programmers need to 

construct service stubs with their software at compile time. Clients, at run time, 

consume a service by invoking its stub, which is in turn converted into XML SOAP 

message (to describe the RPC call), wrapped within HTTP message and sent to the 

server port, using the appropriate port URI. Once the message is received at the server 

side, the HTTP server passes the message into the SOAP layer (usually called SOAP 

engine like Apache AXIS [36]). SOAP engines are usually running inside HTTP 

servers as Java programs, called Servlets. The SOAP layer parses the SOAP message 

and converts it into an RPC call, applied to the appropriate procedure of the proper 

port. The server returns results into clients in the same way. Thus, the SOAP message 

role is to provide a common representation among all parties to the invoked procedure 

at runtime. In a distributed simulation environment, different components act as peers 

to each other. This means that each acts as client when it needs to send information 

while acts as a server via exposing different RPCs (i.e. services), as shown in Figure 

2. Service providers need to publish their services, as XML WSDL documents. 

Clients programming stubs (Figure 2) are generated via compiling the WSDL 

document into programming stubs. Programmers then need to write the body of those 

stubs and compiling them with their software. [23][29] are examples of SOAP-based 

WS distributed simulation. 

In reality, RPCs are heterogeneous interface, since they were invented by different 

programmers, and need to be written and compiled before being used. RPCs also 

expose internal implementation, leading to impractical and complex interoperability 

standards. It is almost impossible to interoperate independent-developed simulation 

systems via RPC-style without requesting major software implementation changes. 

This makes it impractical to support. Further, existing solutions lack of composition 

scalability, for example, programming stub is needed for every remote service. 



However, in case of HLA the scalability is even worst, since the RTI is treated like a 

bus where all simulation entities use it for synchronizations. Furthermore, API 

complexity makes it difficult for distributed simulation to break outside expert 

programmers circle. 

 

Figure 2: SOAP-based WS RPC-based Architecture Model 

 

RESTful WS exposes all services as resources with uniform connectors (channels) 

where messages are transferred between those resources through those uniform 

channels. REST is usually implemented using HTTP, URIs, and usually XML 

because these are the main pillars of the Web today. In this case, resources (services) 

are named and addressed by URIs, resources connectors are HTTP channels (usually 

called methods), and connectivity semantics are usually described in XML messages 

(Figure 3). RESTful applications APIs are expressed as URI templates [16] that can 

be created at runtime. Variables in URI templates (written within braces {}) are 

assigned at runtime by clients before a request is sent to the server, enabling clients to 

name their services URIs at the server side. For example, username in template 

<…/users/ {username}> can be substituted with any string to get the actual URI 

instance (such as <…/users/user1> or <…/users/user2>). Further, URIs may include 

query variables to define the request scope by appending them to a URI after the 

question mark “?”. For instance, request via GET channel to URI <http://www. 

google.com/search?q=DEVS> would instruct Google search engine to return 

information only about keyword “DEVS”. RESTful services can be described 

formally using XML either using Application Description Language (WADL) [37] or 

WSDL 2.0 [22][38]. 

 

Figure 3: RESTful WS Architecture Model 

 

From distributed simulation viewpoint, there are some differences between SOAP-

based WS and RESTful WS as follows: (1) SOAP groups all services as procedures 

and expose them via a port (i.e. addressed by single URI) whereas REST exposes 

each service as a resource (i.e. addressed by single URI). (2) SOAP-based WS 



communicates simulation information (i.e. semantics) in form of procedure 

parameters whereas REST defines them as XML messages. (3) SOAP-based WS 

transmits all SOAP messages (i.e. RPC description) using HTTP POST channel 

whereas REST uses all HTTP channels to transfer simulation semantics. (4) SOAP-

based WS clients need to have a stub for each corresponding service while REST 

clients communicate in the same uniform way. (5) SOAP-based WS client stubs 

skeleton usually built via tools, but they still need to be written, integrated with 

existing software and compiled by programmers whereas REST does not usually 

require this process, hence follows a dynamic approach. 

REST critics usually raise few issues such as REST only uses the four HTTP 

channels to transfer all messages so that those methods might not be enough for some 

applications: mainly, GET (to read), POST (to append new data), PUT (to 

create/update), and DELETE (to remove). This misleading comes from naming those 

virtual channels as “methods” in HTTP standards (RFC 2616 [14]), hence being 

confused with regular programming methods. Perhaps, it is ample to mention that 

SOAP-based WS transfers all SOAP messages using only the HTTP POST channel, 

thus, single method is enough in this case. Another issue is that REST heavily 

depends on HTTP, on other hand; SOAP-based WS can send SOAP messages using 

different protocol from HTTP like TCP/IP. This is because SOAP is a message 

describes an RPC via a network so that it can be sent using TCP socket. This is a 

misleading issue because: (1) HTTP is the Web protocol, thus sending SOAP 

messages using different protocol from HTTP makes it not Web service any more, 

hence complicates interoperability with other heterogeneous even further. (2) REST is 

message-oriented, thus, those messages are portable to different protocols like 

TCP/IP. For example, all simulation synchronization messages presented here 

portable to different protocol, similar to SOAP. However, a universal standard is part 

of REST principles and makes no sense to use different protocol from HTTP. 

3   RISE Middleware API 

Each experiment is wrapped up and manipulated via a set of URIs (i.e. an 

experiment API), hence allowing their online access from anywhere. Simulation 

experiment is various resources (URIs) hold all necessary information for simulation 

setup such as model scripts and model partitions where they are simulated in a single 

simulation run. These URIs are created and manipulated according to the middleware 

URI template (API), shown in Figure 4. The full RISE design and API described in 

[1][2]. The URI API template can be created at runtime. Variables (written within 

braces {}) in URI templates are assigned at runtime by clients before a request is sent 

to the server. The resource that best matches the request’s URI will receive the 

request and it will become its responsibility to respond to the client.  

Line #1 (Figure 4) shows a specific user workspace.  This allows multiple users to 

use the middleware where each owns a single workspace (e.g. …/workspaces/Bob). 

Line #2 holds a specific service supported by RISE such as DCD++ (e.g. 

…/workspaces/Bob/DCDpp). In this case, for instance, other simulation components 

may be supported by RISE similar to adding new links to a Web site. Modelers 



(clients) usually interact with a number of resources during the course of a simulation 

experiment, as shown in Lines 3-6: (1) the framework resource (Line #3) holds an 

experiment input data (such as the model source code, simulation input variables and 

sub-models interconnections). The POST channel is used to submit files to a 

framework. PUT is used to create a framework or update simulation configuration 

settings. DELETE is used to remove a framework. The GET channel is used to 

retrieve a framework state. (2) A simulation resource (Line #4) wraps an active 

simulation engine (e.g. CD++), which interacts with other remote simulation, if any. 

It is worth to note that in case of DCD++, this URI is the modeler single entry to a 

simulation experiment. However, it needs to communicates with other URIs (e.g. on 

different machines) to perform distributed simulation. This resource exchanges 

synchronized messages with other simulation entities (in case of distributed 

simulation) via the POST channel, and POST can be used by modelers to input 

variables in order to manipulate simulation at runtime dynamically. The PUT channel 

is used to create this resource, hence to start simulation. The DELETE channel is used 

to abort simulation and remove this resource. (3) The results resource (Line #5) holds 

the simulation output files (if the simulation was completed successfully). The GET 

channel is used to retrieve results where the DELETE channel is used to remove those 

results. The PUT and POST channels are disabled for this resource. (4) The debug 

resource (Line #6) holds model-debugging files. For example, a modeler can print 

debugging information inside his model source code to be retrieved later via this 

resource. The GET channel is used to retrieve model-debugging files where the 

DELETE channel is used to remove those files. PUT and POST channels are disabled 

for this resource. 

 

Figure 4: Simulation Experiment API in RISE 

4   RISE-based Distributed CD++ Simulation Algorithms 

This section discuss the distributed CD++ (DCD++) simulation session between 

different CD++ instances. At this point, a modeler should have already created an 

experiment URI (i.e. …/{framework}) where {framework} is the experiment name 

created by the modeler.  Note that this URI is the parent for all other URIs that are 

created or deleted during the simulation process. This section is divided into two 

parts: the first part discusses the distributed simulation architecture while the second 

part discusses the simulation synchronization algorithms. The CD++ is plugged into 

RISE as shown in Figure 5 where each CD++ instance is reached via a URI and 

accessed via HTTP channels. 



The purpose of the simulation manager (Figure 5) component is to manage a 

distributed CD++ (DCD++) simulation engine instance in the distributed simulation 

environment where various DCD++ instances participate to execute single simulation 

experiment. A simulation engine instance is usually called Logical processor (LP) in 

the distributed simulation environment, CD++ in our case. The simulation manager is 

able to synchronize a DCD++ instance with another remote DCD++, using the 

presented algorithms and semantics here. It is also capable to synchronize a DCD++ 

instance with none-CD++ simulation engine using standard protocols semantics, 

hence the ability of multiple semantics support.  In DCD++, single DEVS or Cell-

DEVS model is partitioned among those DCD++ engines where each instance 

simulates its partition.  

 

Figure 5: Distributed Simulation between two CD++ instances 

 

DCD++ follows the conservative synchronization approach in which the casualty 

is strictly prohibited. On the other hand, it provides a number of improvement 

techniques comparing to other existing conservative-based simulation summarized as 

follows: (1) it avoids the required steps to loop all simulation entities to calculate the 

simulation global minimum time and then broadcasting it to all entities before an 

entity being able to proceed. This allows Root coordinator (which manages time) to 

start a new simulation phase without asking each logical processor (LP) its minimum 

time. (2) It aggregates remote simultaneous events together in single XML message, 

hence reducing the cost of several network messages to the cost of one message. (3) 

Provides modelers with experimental framework template where they can freely 

create as many as they like of different simulation scenarios. (4) It avoids unnecessary 

remote message transmission when it can be performed locally. (5) It avoids 

involving irrelevant models within current simulation phase (i.e. models that do not 

have events to execute or to send/receive at current time). This method can ignore 

huge part of the model partitions at certain simulation phases. (6) It uses simultaneous 

message transmissions to avoid blocking messages when a number of messages need 

to be sent to multiple remote LPs. (7) Exploiting thread-pool concepts to avoid 

creating a thread every time a message is sent. (8) Reusing TCP connections to 

transmit multiple HTTP messages to avoid establishing a connection with every 

message, which is very expensive.  

 



4.1   Distributed CD++ (DCD++) Architecture  

In the RESTful DCD++ grid various machines need to coordinate and exchange 

simulation messages (as HTTP messages) to carry out the simulation. Each physical 

machine in the grid needs to have at least one instance of the RISE middleware 

installed on it, since the DCD++ is plugged into it, as shown in Figure 6. DCD++ 

instances act as peers to each other. This means that when a simulation message is 

sent to an URI, the sender is an HTTP client, delivering an HTTP request using an 

HTTP channel where the receiver URI is a server, processing HTTP requests and 

responding with HTTP responses according to the HTTP standards.  

Figure 6 shows an example of three DCD++ engines in distributed simulation 

conference where each DCD++ instance is plugged into RISE middleware. This 

conference represents an experiment during active simulation. The modeler 

manipulates and interacts with the simulation via the main DCD++ instance URIs, 

which resides on the main RISE middleware. The main RISE is the server that the 

modeler has on it a user account, selects it to setup experiments, and executes them. 

CD++ simulation engines are actually online simulation services that can be reached 

via URIs and accessed via HTTP channels. Thus, a main RISE in an experiment is not 

necessary the main middleware in another experiment. Further, the main server (e.g. 

machine #3 in Figure 6) sets up experiment resources on supportive servers on behalf 

of the modeler. In this case, the main RISE owns those resources; hence, it instructs 

supportive servers to hide all of its resources from external users. After all, those 

resources are URIs on the Web.  

 

Figure 6: Conceptual View of a Distributed Simulation Session 

 

Plugging components (e.g. DCD++) into the middleware provides a separation 

between provided services and the middleware. This clearly provides a number of 

advantages such as simulation components become independent of underlying 

technology, hence moving easily to another technology that might appear in the 

future, and applying the concept of pluggable container middleware where 

lightweight commercial-off-the-shelf (COTS) simulation components can be plugged 

into the middleware with minimal development time. COTS concept reduces the cost 

of distributed simulation with the business mentality of “Try-before-buy” attitude 

[6][28]. 

Each active DCD++ simulation component instance is wrapped by URI 

(…/{framework}/simulation), as shown in Figure 7. The modeler creates this URI via 

PUT channel on the main RISE server to start the simulation, which in turn starts the 

simulation on other supportive RISE servers. The request to start a simulation on 

RISE creates all necessary Inter-Process Communication (IPC) queues, simulation 

managers and the DCD++ simulation engines. During active simulation, as shown in 

Figure 7, simulation managers send messages to remote active-simulation URIs 



(where it is then passed to the corresponding simulation manager). Simulation 

managers communicate with the actual CD++ simulation engines via operating 

system IPC queues, since CD++ runs as a separate process outside RISE middleware. 

It is worth to note that the modeler may use URI (…/{framework}/simulation) to 

manipulate simulation during runtime such as inserting an external event (i.e. 

simulation input variable) to change the course of the simulation. This is helpful 

during simulation training session when instructors like to change conditions during 

an exercise. 

 

Figure 7: DCD++ Simulation Session between Two Machines 

 

The DCD++ virtual network (Figure 7) is constructed and destructed based on the 

way a modeler partitions the model under simulation between different machines. 

Figure 8 shows example of DCD++ XML model partitioning information for both 

standard DEVS models (the top figure) and the Cell-DEVS model (the bottom figure). 

Model partitioning is a section of a larger XML configuration document for 

customizing the entire experiment options. The model-partitioning document 

describes each atomic model or cells zone location. Thus, the DCD++ virtual network 

shown in Figure 7 is reconstructed, if modeler redistributed models across different 

machines. Note that the DCD++ simulation session is actually performed among 

different URIs (within one or more RISE instances) coordinating among each other. 

However, those URIs are usually located on different physical machines. Note further 

that a RESTful-CD++ is identified via its port and IP address (Figure 8), relieving 

modelers of figuring out full URIs path every time a model is moved to another 

machine. 

 

Figure 8: XML Model Partitioning Example 

 

The modeler (i.e. client GUI software) is expected to check on the active 

simulation status periodically. This is usually done via GET channel to URI 



(…/{framework}?sim=status). In this case, RISE responds with an XML document 

similar to the following: <Simulation><Status>RUNNING</Status></Simulation>. 

The simulation goes into different states (from the modeler viewpoint), as shown in 

Figure 9: IDLE, INIT, RUNNING, ABORTED, ERROR, DONE and STOPPING. 

When a framework is created, the status is initialized with the IDLE state, which 

indicates that the simulation was never run on this framework. It moves into the INIT 

state upon receiving the request to start the simulation. The simulation goes into 

RUNNING state, if initialization was successful. The RUNNING state indicates that 

all simulation engines everywhere are up and running. In this state, the CD++ 

simulation engines can exchange simulation messages. Further, the modeler can 

manipulate simulation like inserting external events. Furthermore, dynamic online 

simulation results can be retrieved during this state. The simulation goes from 

RUNNING state to ERROR because of various possible errors such as failing to 

transmit a simulation message or a server failure in the grid. Further, the simulation 

goes into ABORTED state, if the modeler chooses to stop the simulation during the 

RUNNING state (via applying DELETE method to resource 

{framework}/simulation). In the normal completion, the simulation goes into 

STOPPING state. In this state, the main server collects simulation results from all 

supportive servers. The simulation goes into ERROR if it fails to stop properly such 

as failing to collect results from supportive servers or failing to stopping supportive 

simulations. Upon normal completion, the simulation status goes into DONE state, 

which means simulation results can now be retrieved from URI 

…/{framework}/results. Note that releasing system resources such as Linux queues, 

threads and processes occur in all exiting states: ABORTED, ERROR and 

STOPPING. 

 

Figure 9: Simulation State Diagram 

 

Simulation is automatically aborted (to ensure simulation accuracy) by a 

simulation manager, if, for any reason, it fails to transmit a simulation message to a 

remote simulation URI during a session. In this case, if the simulation manager is 

supportive, it aborts simulation and silently removes itself from the distributed 

simulation conference. On the other hand, if it is the main simulation manager, it also 

aborts simulation on all other supportive servers, since it is the actual owner of all 

simulation resources in the session. To make the matter worse, suppose a supportive 

server fails while the main server is waiting for a DONE simulation message from a 

process on that failed supportive server (simulation phases are discussed in next 

section). In this case, the Root coordinator, which drives the whole simulation, cannot 

advance the simulation to another phase because it is waiting for a DONE message 

from a dead simulation participant. This is a deadlock situation. To overcome this 



possibility of deadlock, the main simulation manager starts a watchdog thread at the 

beginning of the simulation (and stops it at the end of the simulation) to keep 

watching all supportive simulation resources, as shown in Figure 10. The watchdog 

sends periodic (e.g. every two minutes) messages to every simulation URI checking if 

it is alive or dead. The main simulation manger only hears from the watchdog the bad 

news, which leads to aborting the simulation everywhere. Therefore, the session stays 

in deadlock at most for the watchdog period before the simulation is aborted. 

Supportive servers also need to watch the main server (Figure 10). This allows them 

to release system resources such as processes, threads, connections, and IPC queues. 

 

Figure 10: Watchdog Periodic Checking in a Simulation Session 

 

HTTP messages are synchronous. This means that when an HTTP message is sent 

via TCP connection, the sender is blocked until a response is received. This argument 

also applies to the RPC-style SOAP-based web-services because SOAP messages 

(that describe RPCs) are enveloped in HTTP messages; hence, it is still an HTTP 

synchronies transmission. This fact often goes unnoticed by SOAP-based WS 

programmers. This is because SOAP engines handle SOAP messages at a different 

layer of the software stack. Further, SOAP engines are often used from a third-party 

provider through available open source like Apache AXIS [36]. HTTP synchronies 

transmission is obviously a performance concern, particularly when multiple 

messages need to be sent at the same time to different destinations. For this reason, 

simulation messages are transmitted concurrently where each message lives on its 

own thread. Figure 11 shows example of two simulation managers. The top manager 

is sending two concurrent messages (each message is actually an HTTP client thread) 

where the bottom manager is receiving two messages concurrently (assuming via the 

same URI). Therefore, receiving messages by a simulation manager must be thread-

safe to avoid message contention, since each request is handled by a separate thread. 

Further, in this case only the sender-message thread is blocked until the HTTP 

response is received back without blocking the entire application or other messages 

transmission. Note that all RISE threads are started from a thread pool, avoiding a 

new thread creation every time a thread is started. 

Security is always a concern when communicating in cloud computing 

environment as in the case of RESTful-Web services. Other based RESTful Web-

services such as Amazon Web-service (AWS) which requires developers to apply for 

an “Access Key ID” and a “Secret Access Key” [5]: The “Access Key ID” identifies 

the developer who is accessing AWS while the “Secret Access Key” is used to 

generate a keyed-Hash Message Authentication Code (HMAC), enabling AWS to 

authenticate the user. HMAC is calculated over service (i.e. URI), operation (e.g. user 

authorized to use POST channel or not to use), and timestamp (i.e. to prevent replay 

attacks). To prevent in-flight tampering, AWS recommends all requests should be 



sent over HTTPS [5]. This scenario is portable for RISE. On the other hand, we chose 

to encode user name and password into a single string with base 64 encoding 

according to HTTP Basic Authentication method, defined in RFC 2617. This method 

does not add extra overhead, and it is supported by Web browsers and Web 

programming languages. Therefore, all simulation messages need to be authenticated 

according to this method. Note that the main server authorizes all simulation 

participants to use POST channel on all URIs, allowing them to pass simulation 

messages within the simulation conference. 

 

Figure 11: Concurrent Message Passing to/from Simulation Managers 

4.2   DCD++ Simulation Synchronization Algorithms  

DCD++ executes the model by passing messages among the different processors in 

the model hierarchy. Coordinators are the processors responsible for executing 

coupled models while Simulators are associated with atomic models and they are 

responsible for executing each of the DEVS functions defined by the model 

depending on the time and type of the received message. A Root coordinator is in 

charge of driving the simulation as a whole and interacting with the environment, 

since DCD++ is a conservative-based engine. Because DCD++ is a conservative-

based engine, there is a special coordinator called Root coordinator which is 

responsible for the following: (1) Starting and stopping the simulation, (2) Connecting 

the simulator with the environment in terms of passing external events/output from/to 

the environment, and (3) Advancing the simulation clock. As shown in Figure 12, 

“coordinator” processors coordinate the simulation of one or more coupled/atomic 

models where “simulator” processors simulate atomic models. The processors are 

created and initialized at the beginning of the simulation in a hierarchy that matches 

the model hierarchy in terms of the parent-child relationship.  

 

Figure 12: Message exchange during a simulation cycle 

 

A number of simulation messages are used to synchronize simulation among 

processors hierarchy, shown in Figure 12. Simulation messages can be categorized as 

follows: (1) Content messages represent events generated by a model. Content 



simulation messages include External messages (X) and Output messages (Y). Output 

messages (Y) are usually converted to external messages for their destinations. (2) 

Synchronization messages cause the simulation to move into another simulation phase 

(those phases discussed next). Synchronization messages include Initialize message 

(I), Internal message (*), Collect message (@), and Done message (D). Initialize 

message (I) starts the initialization phase. Internal message (*) starts the transition 

simulation phase. The top model Coordinator propagates it downward in the 

hierarchy. Collect message (@) starts the collection phase. Done message (D) marks a 

simulation phase end. It is also used by Coordinators to identify which children needs 

to be simulated at the next phase. It further used to calculate the global minimum 

simulation time. 

The simulation phases for the entire simulation are driven by the Root coordinator 

(which is the parent of the highest model’s coordinator). They are divided into three 

phases (shown in Figure 13): (1) Initialization phase initializes all models in the 

hierarchy; hence, it eventually executes every initialization method of every atomic 

model. In response, a DONE message propagates upward in the model hierarchy 

where each Coordinator calculates the minimum next change of its children and 

passes it in a DONE message to its parent. Eventually, the Root receives DONE 

message with smallest time, which updates the simulation clock and starts the 

Collection phase. (2) In the Collection phase, some of the output messages are 

collected to ensure their execution at the same time with internal events. (3) In the 

Transition phase, all the collected external messages are executed along with 

simultaneous internal events. The Root coordinator handling of a DONE message 

arrival is described in Figure 14. 

 

Figure 13: Root Coordinator Simulation Phases State Diagram 

 

 

Figure 14: Root Coordinator Handling DONE Message Algorithm 

 

The head/proxy is originally intended to solve redundant number of messages from 

remote CD++ processors back to their parent coordinator. The main motivation 



behind Head/Proxy algorithm is that network messages in distributed environment are 

expensive and have direct affect on performance. For example, assume the 

coordinator in Figure 15 is coordinating three simulators where two of its children 

(simulator #2 and #3) are residing on a remote machine. Figure 15 shows a fragment 

of the collection phase messages when the coordinator receives a collect (@) message 

from its parent. As shown in Figure 15, Simulator 3 sends an output message to the 

parent coordinator to translate it to external message for Simulator 2. Obviously, the 

transmission of those two messages (in Figure 15) could have been avoided if another 

coordinator (we call proxy) was placed in server 2 so that converting the output 

message (from simulator 3) to an external message (to simulator 2) is done locally, as 

shown in Figure 16. 

 

Figure 15: Unnecessary remote messages in distributed simulation 

 

The idea of the head/proxy depends on using two kinds of coordinators for each 

coupled DEVS/Cell-DEVS model: (1) Head Coordinator: is responsible for 

synchronizing the model execution, interacting with upper level coordinators and 

message routing among the local and remote model components. (2) Proxy 

Coordinator: is responsible for message routing among the local model components 

dispensing with the need to send remote messages if the head coordinator is residing 

on a different machine than that used to run the sending and receiving processors. The 

advantage of using proxy coordinators (as shown Figure 16) is that converting all 

remote messages between local processors to local messages. The proxy coordinator 

forwards one DONE message to the head coordinator once it receives all DONE 

messages from its children. Note that in this collection phase (Figure 16) simulator #2 

does not forward the external message to the Atomic #2 model. In this phase, 

simulator #2 inserts the external message in its bag, waiting for the next internal (*), 

which starts the next transition phase. This allows simulator #2 to execute any 

scheduled internal events along with the already collected external message 

simultaneously. 

 

Figure 16: Proxy Advantage of Preventing Unnecessary remote messages 



 

Proxy coordinators avoid remote message transmission when it is possible to route 

them locally, but still forward all none-local messages to the head coordinator. For 

example, suppose the output message from simulator #3 is transmitted to simulator #1 

(instead of simulator #2), as shown in Figure 17. In this case, the proxy coordinator 

has no choice but to transmit the external message to the head coordinator remotely. 

The external message ends up queued at simulator #1, waiting to be executed in the 

next transition phase upon receiving internal (*) message from head coordinator. In 

fact, simulation events that are exchanged in the same simulation phase are 

simultaneous events; hence, they need to be executed in the same virtual time. To 

clarify this point, consider how Root coordinator advances simulation Time and 

phases, as shown Figure 18, which is a depiction of the model hierarchy partitions 

shown in Figure 17. Assume that Simulators #2 and #3 outputs a job to simulator #1 

every two seconds where Simulator #1 takes one second to process each regardless of 

the number of jobs are being process. In this simple example, shown in Figure 18-A: 

(1) as part of simulation initialization, I message is sent to the Head coordinator, 

which passes it to Simulator #1 and Proxy coordinator. Consequently, the Proxy 

reroutes message I to Simulator #2 and #3. Simulator #2 and #3 reply with D 

messages with a scheduled change in two seconds from now. (2) Root advances time 

to (t2) and starts Collection phase by sending @ message to Head coordinator, which 

only sends it to the proxy. This message is not send Simulator #1 because it did not 

schedule a change in previous phase, hence becomes irrelevant in this phase. The 

Proxy passes @ message to Simulator #2 and #3, which cause them to send two jobs 

(i.e. Y message) to Simulator #1 (via Head and Proxy coordinators). Simulator #1 

receives these Y messages as external messages (X) where it holds them to be 

executed in the next phase. (3) Root starts transition phase causing Simulator #1 to 

schedule a change at one second from now (when it will execute the two received 

jobs). In addition, Simulators #2 and #3 schedule a change at two seconds from now 

(when they will produce their next jobs). 

 

Figure 17: Head/Proxy Remote messages Transmission 

 

Figure 18 shows two types of messages: Remote and local. All exchanged 

messages between the Head and Proxy coordinator are remote messages (shown in 

red); hence, they are usually measured in range of milliseconds to seconds. On the 

other hand, all other messages are local (shown in blue); hence, they are measured in 

few microseconds in DCD++, since a processor simply sends a message by inserting 

it in the unprocessed events queue. To reduce the communication high cost, the 

DCD++ groups simultaneous events heading to the same destination in one message. 

For example, as shown in Figure 18-B, the proxy sends two Y messages and D 



messages for the cost of one message. This shows huge improvement in performance, 

particularly, for models with intensive communication overhead. Grouping remote 

simultaneous events make sense for obvious performance reasons, but also avoid 

inaccurate simulation results or deadlock in the simulation. This is because P-DEVS 

messages, as previously mentioned, belong into two categories: (1) Content messages 

(i.e. Y and X) represent DEVS models communication. These messages must be 

exchanged within a simulation phase. (2) Synchronization Messages (I, @, * and D) 

synchronize the start or an end of simulation phase; hence, they mark simulation 

phases boundaries. Therefore, Content messages must arrive at destination within the 

correct simulation phase to be executed at the correct virtual time. Further, 

synchronization messages must arrive at the start or end of the correct simulation 

phase to ensure correct simulation and to avoid deadlock, since a Coordinator may 

hang forever waiting for a synchronization message to be able to start a new phase or 

end the current phase. Of course, we can never guarantee message arrival at 

destination in the same order of their transmission order. On the other hand, DCD++ 

guarantees the correct message-order arrival by grouping messages in one XML 

document, as shown Figure 19. 

 

 

Figure 18: DCD++ Simulation Phases and Time Advancement 

 

 



Figure 19: Multiplexing Simultaneous Simulation Messages Together 

 

The simulation message contains (at least) the following information (see Figure 

19): Message type, simulation time, source processor Id, destination port Id, content 

value, next change time, sender model Id, and destination Processor Id. DCD++ keeps 

unique IDs for each model, port and processor (i.e. coupled model coordinator or 

atomic model simulator) in the DCD++ grid. In this case, simulation managers always 

organize messages in the order they received from the DCD++ engine, allowing them 

to be handled in the correct order upon arrival at destination. Simultaneous messages 

aggregation is accomplished by having message bags in simulation managers to hold 

content messages to remote processors where those messages are sent with the first 

synchronization message (i.e. indicates the start/end of a phase) heading to the same 

processor, according to the shown algorithm in Figure 20. Message aggregation 

shows clearly that XML message-oriented semantics is much flexible to handle than 

procedure parameters semantics as in the RPC-style approaches. 

 

Figure 20: Dispatching Simulation Messages in Single XML Document 

5   Distributed Simulation Interoperability Standards 

The need for a widely accepted standardized framework is growing necessity 

nowadays, allowing sharing and reusability across organizations, laboratories and 

research teams. On the other hand, the specialization of knowledge and fragmentation 

in the distributed simulation field has also grown than ever. This caused the DEVS 

simulation community to start the interoperability standardization effort to 

interoperate various DEVS-based simulation packages together (e.g. CD++ [34]). 

DEVS standard proposals [30][31][32][33]  categorized the standards into two parts: 

(1) Standardizing DEVS model representation allows a platform-independent DEVS 

model representation so that it can be executed by a DEVS-based simulator. In this 

case, a model may be retrieved and executed locally without the need to perform 

distributed simulation for obvious performance reasons. (2) Since, it is not always 

possible to run simulation locally on single or multiprocessor machine, the second 

part deals with Standardizing Interoperability Middleware protocol for interfacing 

different simulation environments allowing synchronization for the same simulation 

run across a distributed network regardless of their model representation, as shown in 

Figure 21. The second part is handled by the distributed simulation middleware, 

hence our presented topic here. The basic requirements of the interoperability 



standards are to allow legacy systems to run their specific model representations, 

practical software changes (i.e. wrapper to translate messages from/to standardized 

protocol, see Figure 21), flexible for improvements, independent of any formalism or 

technology. 

 

Figure 21: Concept of Standardized Distributed simulation Middleware 

 

Plugging simulation components into RISE, enabling them to be online, hence 

accessed via URIs on the Web is one objective of RISE. Further, those components 

may need to synchronize between each other to simulate a single model within the 

same simulation model, hence distributed simulation session. In this case, distributed 

simulation synchronization is still under one team control. Thus, protocols can be 

customized as needed for specific simulation environment similar to DCD++ 

previously discussed here. On the other hand, having different independent-developed 

simulation environment synchronize between each other is another story of 

complexity. The main complex issue is to bring different teams agree on an 

interoperability standard. In reality, people do not support standards that require 

software changes that might affect an existing implementation. The preferred solution 

is usually by having a wrapper that translates standards from/to local messages. 

Further, programmers, in practice, do not like to read complex standards, particularly 

when they are simply evaluating standard proposals without being forced to use it. 

The lesson learned of the process of having DEVS interoperability standards is that 

standards should be simple and quickly to understand, fast to support, and without 

software changes to existing systems. RISE-based standards, presented here, uses the 

RESTful Web-services plug-and-play and dynamic interoperability style to overcome 

these issues. The RISE-based proposal details are described in [3] where we discussed 

all of the submitted proposals by the DEVS community in [30][31][32][33]. The 

following summarizes the RISE-based proposals in conjunction with the needed 

wrappers for both CD++ [34] and DEVS/SOA [33] that allow both environments to 

interoperate. 

The RISE-based standards [3][30][31][32][33]  divides the entire simulation space 

into domains. Each domain wraps a DEVS model and DEVS-based simulation engine 

to simulate that model. Each domain is accessed via three URIs (i.e. the wrapper API 

in Figure 21) to exchange semantics (i.e. synchronization and configuration) as 

standardized XML messages. The wrapper API (i.e. URIs) is created at runtime for 

each experiment setup. The standards completely hide interior implementation 

domain, avoiding software changes in existing implementation. For example, 



RESTful DCD++ performs distributed simulation while DEVS/SOA uses 

DEVSJAVA [11] engine to perform distributed simulation using SOAP-based WS.  

Interoperability is achieved at three levels: (1) the interoperability framework 

architecture level (API), (2) The model interoperability level, and (3) the simulation 

synchronization level. These aspects are summarized next. 

The interoperability framework architecture level (API) provides the URI template 

that allows modelers to setup experiment resources across the network, as shown in 

Figure 22. These resources (URIs) are described as follows:  (1) …/{framework}: 

represents a simulation environment domain. It is named by the modeler upon 

creation. The modeler uses this URI to submit all necessary information, including 

RISE XML configuration. (2) …/{framework}/simulation: represents active 

simulation in a domain, hence used by other domains to exchange simulation 

messages to synchronize a simulation session. The modeler further uses this URI to 

start/abort simulation, and to manipulate simulation during runtime or to retrieve 

online results while simulation is in progress. (3) …/{framework}/results: is 

automatically created by a domain upon completing the simulation successfully, 

maintaining simulation results and future results retrieval. 

 

 

Figure 22: A Domain Wrapper Application Programming Interface (API) 

 

The model interoperability level provides XML rules for binding different models 

together. This XML document is provided via PUT channel to URI …/{framework} 

as part of its initial configuration before a simulation is conducted. However, any 

dynamic changes during runtime are submitted to URI …/{framework}/simulation. 

This is mainly when a domain joins/disjoins a simulation session at runtime.  

Connecting models across domains is a straightforward step, because of our 

assumption that each domain contains an entire model with external ports. For 

example, Figure 23 shows two models placed at two different domains. In this case, 

the model is wrapped in URI …/{framework}: The first model URI is …/Domain1 

and the second model URI is …/Domain2. Each model, in Figure 23, has two external 

ports connected to the other model ports. This interconnection is shown in the XML 

document in Figure 24. For example, Lines 7-10 shows the connection link of port 



OUT1 (at …/Domain1) to port IN1 (at …/Domain2). The XML document also shows 

other configuration such as “Type” at Line 3 is set to “O”, indicating that the 

simulation will be synchronized according RISE conservative based algorithm; hence, 

“Type” attribute can be set to “O” to conduct optimistic synchronization. Line #5 

selects the main domain, which is mainly needed to manage the conservative-based 

simulation. Based on this document Figure 24, each domain needs to build a routing 

table to identify each of its output port connections so that messages can be 

transmitted to their destination. 

 

 

Figure 23: Models Interconnection across Domains 

 

 

Figure 24: Model Interconnection XML Configuration 

 

The simulation synchronization level provides high-level simulation algorithms 

(i.e. conservative/optimistic) and synchronization channels in order to carry 

simulation among different domains. In the optimistic type, XML synchronization 

messages are sent directly to other domains, since domains should be able to detect 

errors (e.g. due to straggler messages) and fix them. On the other hand, the 

conservative type needs to place a Time-Management component (e.g. called here 

RISE-TM) to synchronize all participants to satisfy local causality constraint via 

ensuring safe timestamp-ordered processing of simulation events within each domain. 

Our focus here is on the conservative-type algorithms, since it involves more work 

from the standards perspective. 

RISE-TM executes a simulation cycle in the following steps, as shown in Figure 

25: (1) Execute all events in all domains at current time. This starts a new simulation 

cycle with current or newly calculated RISE time. RISE-TM always starts the first 

phase with time zero. The domains must always execute all events with current RISE 

time, if any, and respond to the RISE-TM with the following information: all external 

messages generated for other domains stamped with RISE time (or larger), and its 

next time. The next time is the time of next event in a domain larger than RISE time. 



(2) Once RISE-TM receives all replies from relevant domains, it calculates the next 

RISE time and starts a new simulation cycle. 

 

Figure 25: RISE Conservative-based Simulation Cycle at Time t 

 

 

Figure 26: RISE-TM and Domains Exchanged Messages Example 

 

Figure 26-A shows an example of messages sent by RISE-TM to a domain (i.e. 

step #1 in Figure 25). Line #2, in Figure 26-A, specifies the current RISE time, hence 

every event with this time, in this domain, must be executed in this cycle. Lines 3-17 

enclose all collected external messages from all other domains, if any. Figure 26-B 

shows an example of a domain reply to RISE-TM (i.e. step #2 in Figure 25).  

Line #2, in Figure 26-B, indicates the URI of the source domain. Lines 3-15 

enclose all of this domain generated external messages to other domains. Line #4 

specifies the count of enclosed messages. Lines 5-10 define the first external message. 

Line #6 specifies the execution time of this message. Line #7 specifies the model 

destination port (see Figure 23 and Figure 24). Line #8 specifies the message content. 

Line #9 indicates the destination domain (see Figure 23 and Figure 24). Line #14 

specifies the minimum time of all enclosed external messages. RISE-TM must 

include this time when calculating next RISE time. Line #16 specifies the time of the 

next event of that domain. RISE-TM must include this time when calculating next 

RISE time. Further, it is recommended that RISE-TM does not include domains in the 

next simulation cycle if they have nothing to do. Note that this value must be set to “-

1”, indicating infinity, if there is no more events in that domain. This XML document 

guarantees that all of the domain events stamped with RISE time have executed. This 

guarantee must be ensured by the RISE-TM by ensuring that the “next” event time 

(i.e. Line #16 shown in Figure 26-B) is larger than the current RISE time, since it is 



the time of the next event in a domain. Therefore, domains must only respond once 

with this XML document. 

This method simplifies the synchronization protocol to avoid impractical software 

changes for a simulation package implementation. It also intended to handle 

synchronization between DEVS to None-DEVS simulation environments, since it 

hides all details behind wrappers, including DEVS formalism. The following 

discusses the changes require to interoperate DCD++ and DEVS/SOA simulation 

environments to conduct single simulation session. We focus here is on the simulation 

synchronization level of the standard. 

In DCD++, the Simulation manager (see Figure 7) on the main server is the RISE 

wrapper (Figure 21) of the entire DCD++ domain. It is worth to note that other 

supportive DCD++ machines are not even aware of being part of a session bridged to 

another heterogeneous simulation environment. The simulation manager of the main 

server is extended to act as RISE-TM (i.e. the coordinator of all heterogeneous 

domains), or as a domain wrapper (i.e. it is being coordinated by other heterogeneous 

domain), as shown in Figure 25. Therefore, the main simulation manager handles 

exchanged messages between DCD++ machines according to its specific algorithms, 

while treat RISE messages according to the standards. Thus, the main DCD++ 

modifications is in adding new synchronization level between the main simulation 

manager and its associated CD++ engine. This is done in three parts: (1) having the 

CD++ engine forward all Y (i.e. output) messages that is intended to other domains to 

the simulation manager. These are the Y messages received by the Root coordinator 

(see Figure 18). Regular CD++ considers those messages as output to the 

environment. (2) Having simulation-manager forward all X messages, received from 

other domains, to its associated CD++ engine. (3) The CD++ needs to ask the 

simulation-manager permission before advancing the simulation clock beyond RISE 

time upon starting new simulation phase (see Figure 18). These parts are discussed in 

the next paragraphs. 

First, the CD++ Root coordinator forwards all Y (i.e. output) messages to its 

associated simulation manager. This message also includes the simulation timestamp 

and the model source port. Note that the CD++ does not know where those messages 

need to be sent; hence, it treats them as output messages to the simulation 

environment. At this point, the simulation-manager converts those Y messages into X 

(i.e. external) messages and stores them so that they can be transmitted altogether in 

single XML document. The simulation-manager also needs to add the destination port 

and URI. This is easily done based on routing tables constructed based on the 

configuration document (Figure 24). For example, Y messages received from port 

OUT1 in Domain-1, at Figure 23, need to be routed to port IN2 of domain-2. Once 

those messages need to be transmitted, the simulation-manager builds the XML 

message, shown in Figure 26-B, and sends them to RISE-TM. However, if this 

simulation manager is the acting as the RISE-TM, it merges them with other domains 

messages, if any, and sends them back to relevant domains, as shown in Figure 26-A. 

Note that this special treatment is only for RISE messages, but messages belong to the 

DCD++ region need to be handled according to its specific algorithms.  

Second, the simulation-manger needs to filter its domain X messages upon their 

arrival from other domains, and forwards them to the CD++. The simulation manager 

receives them as the message shown in Figure 26-B, if it is the acting RISE-TM while 



receives as the message shown in Figure 26-A, if it is not the acting RISE-TM. 

Subsequently, the CD++ saves them in special queue until the beginning of next 

simulation cycle where Root coordinator will insert them in the simulation event list 

similar to any other local events. 

Third, the CD++ needs to consult the simulation manager before advancing to new 

cycle (Figure 18). The entire DCD++ simulation cycles are driven by the Root 

coordinator, specifically, upon a DONE message arrival, as described in Figure 14. In 

this case, the Root checks DCD++ next event time against last known RISE time, it 

then proceeds if they are equal to each other. Otherwise, (1) it requires RISE Time 

update from simulation manager, (2) Insert any received external messages from other 

domains into the simulation event list, (3) calculate next event time, and (4) report 

next time to simulation manager. Based on the next event time and the current RISE 

time, the simulation manager knows the end of the current simulation cycle. These 

steps are handled in the following algorithm: 

 
While (RISE Time != DCD++ Next Time) { 

Get RISE Time from Simulation Manager; 

Insert Other Domains Collected X messages; 

Calculate new DCD++ Next Time; 

Report Next Time to Simulation manager; 

} 

 

DEVS/SOA [33] uses DEVSJAVA [11] simulation engine to perform distributed 

simulation using SOAP-based WS. As illustrated in Figure 27, the DEVS/SOA 

protocol is executed as following (shown in Figure 27): (Step #1 and #2) the highest 

coordinator (i.e. Root) requests the next event time of each of its children simulators 

and coordinators. Messages nextTN and outTN are performed in a single RPC 

invocation. (2) The Root requests each of its children to compute its output messages 

to other simulators (i.e. getOut and outTN). (3) Finally, each simulator executes its 

ApplyDeltFunc method, which computes the combined effect of the received 

messages and internal scheduling on its state.  

 

Figure 27: DEVS/SOA Distributed Simulation Protocol 

 

DEVS/SOA needs to have wrapper (see Figure 21) to translate internal 

DEVS/SOA commands, shown in Figure 27, into RISE messages. This wrapper, 

similar to DCD++ simulation manager, needs to exchange RISE XML messages in 

HTTP envelopes. Further, the Root coordinator should not advance beyond current 



RISE time. The major requirements of this wrapper is to translate DEVS/SOA RPC 

internal commands into RISE XML messages (Figure 26)  and vice versa, as follows.  

RISE XML message (Figure 27-A) corresponds to DEVS/SOA "nextTN", 

"getOut", "ApplyDelta" calls. Upon this message arrival from RISE-TM, all 

DEVS/SOA simulators must execute all internal/external events at this cycle time (i.e. 

element <Time>). Further, RISE-TM forwards previous output messages from 

previous cycles, if any, in this message. 

RISE XML message (Figure 27-B) corresponds to DEVS/SOA "returnOut" and 

"OutTN" calls: (1) returnOut (i.e. output message) is RISE external message, defined 

in element <XEvent>. (2) OutTN (i.e. next time) defined in element <Time>. 
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