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In the last thirty years, the Software Engi-
neering community has spent a tremendous ef-
fort in creating formal methods and tools for de-
veloping embedded systems, in particular, those 
with real-time constraints. Despite these efforts, 
most existing methods are still hard to scale up, 
and they require expensive testing efforts with 
no guarantees for bug-free products. Instead, 
systems engineers have often relied on modeling 
and simulation (M&S) techniques to improve the 
development task and obtain higher quality 
products. M&S-based testing is widely used for 
the early stages of a project; however, when the 
development tasks switch towards the target en-
vironment, early models are often abandoned. In 
order to deal with these issues, we introduce 
DEMES (Discrete-Event Modeling of Embed-
ded Systems) an M&S-based development 
methodology based on discrete-event systems 
specifications. DEMES combines the advantages 
of a practical approach with the rigor of a formal 
method, in which one consistently use models 
throughout the development cycle.  

Introduction to DEMES 

Formal methods for embedded systems de-
velopment use mathematical notations to define 
the system’s requirements, allowing proving sys-
tem properties (liveness, timeliness, etc.). These 
techniques have had success, but they are still 
difficult to apply and do not scale up well. In-
stead, construction of system models and their 
analysis through simulation (M&S) reduces cost 
and risk, allowing exploring changes and testing 
of dynamic conditions in a risk-free environ-
ment. This is a useful approach, moreover con-
sidering that testing under actual operating con-
ditions may be impractical and in some cases 
impossible. Despite the net gains, most project 
managers are reluctant to use M&S because they 

require extra initial resources for models that 
will not be part of the final application. DEMES 
deals with these issues by using a model-based. 
The approach combines the advantages of M&S 
with the rigor of a formal methodology based on 
DEVS (Discrete Event Systems Specification) 
formalism [1]; it supports rapid prototyping and 
encourages reuse. DEVS is a well-defined for-
malism that is expressive, operates at a high lev-
el of specification, and it can be used to repre-
sent both computing systems and the physical 
systems they control. DEVS models have a rich 
structural representation of components, and 
formal means for explicitly specifying their tim-
ing, which is central for real-time systems.  

DEMES enables the incremental construc-
tion of such embedded applications using a dis-
crete-event architecture for both simulation and 
the target product architecture. The use of DEVS 
for DEMES offers the following advantages:  
- Reliability: logical and timing correctness rely 
on DEVS system theoretical roots and sound 
mathematical theory. 
- Model reuse: DEVS has well-defined concepts 
for coupling of components and hierarchical, 
modular model composition.  
- Hybrid modeling and knowledge reuse: it 
has been proven that DEVS is the most general 
discrete event formalism (i.e., every other meth-
od can be expressed as DEVS), and many tech-
niques used for embedded systems have been 
mapped into DEVS (e.g., Verilog, VHDL, 
Timed Automata, State Charts, etc.). Hence, we 
can use different methods while keeping inde-
pendence at the level of the executive, using the 
most adequate technique on each part of system 
architecture and reusing existing expertise.  
- Process flexibility: these hybrid modeling ca-
pabilities are transparent for the executive, 
which is defined by an abstract mechanism that 
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is independent from the model itself. Existing 
DEVS tools have showed their ability to execute 
such variety of models with high performance. 
- Testing: defining experimental frames (i.e., the 
set of conditions under which the system is ob-
served or experimented with) can be automated. 

DEMES uses M&S for the initial stages, 
and replaces models incrementally with hard-
ware surrogates without modifying the original 

models. The transition can be done in incremen-
tal steps, incorporating models in the target envi-
ronment after thorough testing in the simulated 
platform, allowing reusing of models throughout 
the process. The approach does not impose any 
order in the deployment in the actual hardware 
platform, providing flexibility to the overall pro-
cess. Figure 1 shows the architecture of the pro-
cess used in DEMES. 

 

 
Figure 1. DEMES development cycle. 

 
Initially (1), we define a specification mod-

el of the System of Interest (SoI) using a formal 
model (using DEVS or alternative techniques 
translated to equivalent DEVS models). Once 
the DEVS specification model is complete, 
model-checking can be used for validation of the 
model properties (2). The same models are then 
used to run DEVS simulations of the behavior of 
the different submodels under specific loads (3). 
In brief, we first study system properties analyti-
cally, and complement the proofs using simula-
tion, which can also be used for hard-
ware/software codesign (and for training). 

The same DEVS specification model is 
used to derive test cases (4), which can be also 
used for the simulation studies. Deriving test 
cases from both the model (4) and from the sim-
ulation results (5) allows us to check that the 
models conform to the requirements. Once we 
are satisfied with both analytical and simulated 
results, the models are incrementally moved into 
a target platform. A real-time Executive (6) exe-
cutes the models on the particular hardware (9). 
If the hardware is not readily available, the soft-
ware components can still be developed incre-
mentally and tested against a model of the hard-
ware to verify viability and take early design de-

cisions. As the design process evolves, both 
software and hardware models can be refined, 
progressively setting checkpoints in real proto-
types. The executive allows to execute dynamic 
models and to schedule static and dynamic tasks. 

At this point, those parts that are still un-
verified in the formal and simulated environ-
ments are tested, increasing the confidence of 
the engineer into the implemented system (7). 
Any modifications require going back to the 
same model specifications (8), which ensure that 
we can provide a consistent set throughout the 
development. This software lifecycle is cyclic, 
allowing refinement following a spiral approach. 
On each cycle of the spiral, we end with a proto-
type application consisting of software/hardware 
components interacting with simulated compo-
nents. 

Other Model-Based approaches  

Different techniques have been proposed to 
deal with the issues discussed earlier. For in-
stance, BIP [2] defines components as the super-
position of three layers: Behavior (a set of transi-
tions); Interactions (between transitions) and 
Priorities (to choose amongst interactions). BIP 
preserves properties during model composition 
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and supports analysis and transformations across 
heterogeneous boundaries (untimed/timed, asyn-
chronous/synchronous, event /data-triggered).  

Ptolemy II [3] is a structured and hierar-
chical method for modeling heterogeneous sys-
tems using specific MoC that covers the flow of 
data and control. ECSL (Embedded Control Sys-
tems Language) supports the development of 
distributed controllers [4], including a domain-
specific environment for automotive systems 
(extending the Matlab family with capabilities 
for specification, verification, scheduling, per-
formance analysis, etc.).  

SystemC and Esterel are system-level lan-
guages used to simulate and execute models, 
which have widespread industry adoption [5]. 
SystemC represents hardware/software systems 
at different abstraction levels, allowing choosing 
the desired level of detail for each component. 
Esterel is used for hardware/software synthesis 
through a synchronous reaction-based language 
and higher-level statements for concurrency.  

One of the most popular techniques, UML-
RT, provides an object-oriented methodology. A 
comparison between DEVS and UML-RT [6] 
shows that, although available in the UML-RT 
Profile, time, scheduling and performance are 
coded using UML constructions (i.e., not for-
mally defined). Instead, DEVS provides sound 
syntax/semantics for structure, behaviour, time 
representation and composition, which lend 
themselves to well-defined computation. DEVS, 
however, is not intended for software design and 
development, and "it is key to support the trans-
formation of simulation models to their software 
model counterparts and their complementary 
roles in handling modeling and computational 
complexity of embedded systems". DEMES 
software development environment focuses on 
complementing these shortcomings. 

Modeling with DEVS  

A real system modeled with DEVS [1] is 
described as a hierarchical and modular compo-
site of models that can be behavioral (atomic) or 
structural (coupled). A DEVS atomic model is:  

AM = < X, S, Y, int, ext, , ta > 
Every state s  S is associated with a life-

time, defined by the time advance function ta(s). 
When a model receives an input event X, the ex-
ternal transition function ext is triggered. This 

function uses the input event, the current state 
and the time elapsed since the last event to de-
termine the next model’s state. If no events oc-
cur before ta(s), the model activates the output 
function  (outputs Y) and moves to a new state 
determined by the internal transition function 
int. A DEVS coupled model is: 

CM = < X, Y, D, {Mi}, {Zij}, select > 
CM represents a set of basic components 

Mi (iD) interconnected through their interfaces 
(X, Y). The translation function Zij converts the 
outputs of a model into inputs for others, and the 
select function is used for tie-breaking. The clo-
sure under coupling (i.e., a coupled model has an 
atomic equivalent) enables model reuse. 

In the last few years, DEVS has been used 
for modeling applications with real-time con-
straints. RT-DEVS [7] introduced a DEVS-
based framework for the transformation from the 
system design to the implementation of embed-
ded systems. In [8] the authors present a formal 
mapping of DEVS models into timed Communi-
cating Sequential Process (tCSP) for hard-
ware/software codesign. DEVS/DOC [9], a co-
design methodology, was used to predict archi-
tectural decisions that could lead to incorrect 
system behavior, introducing a modeling layer 
on top of fine grained DEVS modeling con-
structs. In [10] DEVS was implemented on a 
TINI Chip using a just-as-needed real time envi-
ronment to run on the chip efficiently. A co-
development methodology defined in [11] facili-
tated the repetitive testing of on-going system 
specifications. PowerDEVS, which supports 
continuous and hybrid systems with quantized 
state numerical methods was extended with real-
time support.  

E-CD++: an environment for DEMES 

CD++ [12] provides a mechanism to build 
DEVS models (which can be implemented in 
C++ or using a built-in language) using DEVS 
formal specifications. The ButtonInputModule 
model shows parts of the transition functions for 
a component of a cruise control system (CCS). 

 
ButtonInputModule::ButtonInputModule ( const 
string &name ) : Atomic( name ), 
 in_BUTTON( addInputPort("in_BUTTON") ), 
 out_ON( addOutputPort("out_ON") ), 
 out_RESUME( addOutputPort("out_RESUME"))  
 {reactionTime = VTime( 0, 0, 0, 15 );} 
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Model &ButtonInputModule::externalFunction ( 
const ExternalMessage &msg ) { 
  if( msg.port() == in_BUTTON ) { 
 inType=(int)msg.value(); 
 holdIn( active, reactionTime );}} 
Model &ButtonInputModule::outputFunction ( 
const InternalMessage &msg ) { 
  switch(inType) { 
   case ON: //take action { 
  sendOutput( msg.time(), out_ON, HIGH); } 
   case OFF: //take action { 
  sendOutput( msg.time(), out_OFF, HIGH); 
   ...}  ... } } 
 
Model &ButtonInputModule::internalFunction  ( 
const InternalMessage & ) {passivate();}  

 
RT-CD++ [13] integrates simulation mod-

els and hardware components for the DEMES 
methodology. We thoroughly tested the perfor-
mance of RT-CD++ using real applications and 
synthetic benchmarks. In all cases, we obtained 
a small overhead (2% to 3% for large models) 
thanks to the use of a Flat Coordinator execu-
tive, which enhanced performance by lowering 
the internal messaging overhead. Figure 2 out-
lines the software hierarchy generated to execute 
the CCS model above. Root Coordinator man-
ages the interaction with an Experimental Frame 
(used to test the model). Coordinators synchro-
nize the subcomponents. Each external input can 
be associated to a timing constraint. When the 
processing of such an event is completed, the 
Coordinator checks to see if the deadlines were 

met (to obtain performance metrics, or to pro-
vide alternate actions if a deadline is missed). 

Figure 2. RT-CD++ simulation scheme 
 
RT-CD++ was the base for Embedded 

CD++ (E-CD++) [14]. The time advance func-
tion is tied to the real-time clock, and in-
puts/outputs can interact with external devices. 
The engine runs on a single board computer 
(SBC), interacting with hardware components. 
An Eclipse-based IDE (E-CD++ Eclipse-based 
IDE) helps non-expert users following the 
DEMES methodology (including a graphical en-
vironment based on DEVS-Graphs). We includ-
ed a Flexible Dynamic Structure algorithm in E-
CD++ based on Dynamic structure DEVS [15], 
supporting structural changes for changing envi-
ronments. 
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Figure 3. E-CD++ Eclipse-based IDE 

Applying E-CD++ for DEMES 

We show how to use DEMES to develop 
embedded applications incrementally, integrat-
ing simulation models and hardware compo-
nents. Initially, we develop models entirely in E-
CD++, and we replace them with hardware sur-
rogates at later stages of the process, making the 
transition in incremental steps, incorporating 
models in the target environment with hardware-
software components after thorough testing in 
the simulated platform (using the specification 
models throughout the process).  

On web reference http://youtube.com/arslab 
the reader will find a sample application built as 
an experimentation environment for the con-
struction of robotic controllers. We also built a 
model of the CODEC of the Analog Devices 
2189M EZ-KITLITE. This was originally built 
as a DEVS model, and it was later replaced it by 
a hardware prototype on a DSP board. These ex-
amples were used to experiment model-to-
hardware transition without modifying the origi-
nal design.  

Elevator Application 

We show the ideas above with a simple ex-
ample of an elevator servicing a four-floor build-

ing. Initially we model and simulate the entire 
system, using the structure presented in Figure 4. 

Button Controller 

 
Elevator 

Controller 
Unit 

Display Controller

Elevator Box

Engine

Sensor 
Controller 

btn_1 
btn_2 
btn_3 
btn_4 

led1 
led2 
... 
dir_display 
flr_display 

 
Figure 4. Scheme of the elevator system 

 
The system consists of an Elevator Control 

Unit (ECU), the Elevator Box (formed by two 
atomic models: the engine and a sensor control-
ler), a button and display controllers. Most of the 
logic of the ECU is located in the external transi-
tion function, which handles the buttons pressed 
and schedules the next internal transition to con-
trol the engine or to display a new value (e.g., 
the elevator starts moving, or a new floor is 
reached). Users can define the activation time 
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for the engine, customizing its timing behavior. 
Different experimental frames were applied to 
this model, allowing the analysis of different 
scenarios. We started by analyzing the behavior 
of each submodel independently (using the spec-
ifications for their physical counterparts) and 
then conducted integration tests as in Table 1. 

  
Time Deadline In-port Out-Port Val.

Experimental Frame 
00:11:510 
00:14:600 
00:19:500 

... 

00:11:700 
00:14:800 
00:19:700 

... 

btn_3    
sensor_2 
sensor_3 

led3 
flr_display  
flr_display  

1 
1 
1 

Outputs 
00:11:510 
00:11:510 
00:14:610 
00:19:510 
00:19:510 
00:19:510 

... 

00:11:700 
 

00:14:800 
00:19:700 

 
 

... 

 led3        
dir_display 
flr_display 
led3        
flr_display 
dir_display 

1 
1 
2 
0 
3 
0 

Table 1. Experimental frame for the elevator. 
 

Once satisfied with the overall behavior of 
the simulated model, we progressively replaced 
the models by hardware components. The first 
step was to replace the button controller (using a 
keypad to send requests to the simulated ECU, 
which remain unchanged). Replacing this com-
ponent is straightforward (we only removed the 
original component from the coupled model def-
inition file and changed the coupling data). 

Testing the model only requires reusing the 
experimental frames used for simulation. As we 
built the button controller model following the 
hardware specifications for the actual buttons, 
and the interfaces of the models do not change, 
the transition is transparent (the results obtained 
were equivalent to Table 1, regardless of the 
changes). After conducting extensive tests, we 
also moved the remaining components to the 
microcontroller (and only the elevator’s engine 
is still simulated). 

Embedded Network Control 

In this section we show how to apply 
DEMES to design a supervisory control for net-
work Quality of Service (QoS) embedded in a 
Network Processor. The goal is to enforce low-
level traffic shaping actions according to high-
level QoS policies (which assign finite network 
resources to multiple competing traffic flows) 
and the evolving performance of traffic [16]. 
This discipline spans several domains, specifica-

tion languages and temporal dynamics. At the 
higher levels, we find coarse-grained global pol-
icies (with a few changes per day). At lower lev-
els, QoS shaping algorithms modify the assign-
ment of network resources to data-flows (every 
few seconds). At the lowest levels, specific algo-
rithms take granular decisions at the microsec-
ond time scale on a per-packet basis. This sce-
nario makes it difficult to design and test QoS 
management, and to verify and validate the sys-
tem-wide effects of layer-specific changes.  

We designed a QoS shaper prototype that 
accepts policies from higher levels while know-
ing the status of the lowest level traffic (e.g., the 
current packet drop-rate). Depending on the pol-
icies and the drop-rate, control actions are sent 
to the lower packet-level algorithms to enforce 
granular decisions. QoS I/O information is ex-
changed through real-time ports between E-
CD++ and the packet handling circuitry. 

When a high-level QoS policy changes, 
model's parameters get different values, adapting 
the QoS Controller with a new behavior for the 
shaping actions. These actions regulate the 
threshold levels at the low-level algorithm RED 
(Random Early Detection). RED discards pack-
ets arriving from incoming queues according to 
a probability associated to the queue length. This 
probability increases linearly (growing from 0 
when a Queue Minimum Threshold QmT is 
crossed, and stopping at 1 when a Queue Maxi-
mum Threshold QMT is reached). Our experi-
mental shaper sends commands to RED indicat-
ing that QmT and QMT should be adjusted to 
new values, thus affecting the packet drop-rate. 
We used an Intel IXP2400 Network Processor, 
an OC-48/2.5 Gbps line rate packet chip struc-
tured in two internal levels: a slow data path 
with an Intel XScale Core processor (XScale), 
and a fast data path with 8 multi-threaded pipe-
lined MicroEngines (ME). IXP2400 allows im-
plementing reconfigurable rule engines that can 
be adapted on demand while sustaining high per-
formance packet handling tasks [17]. 

We embedded E-CD++ into the XScale and 
interfaced it to the MEs. The embedded models 
executed by E-CD++ interact in real-time with 
specialized packet handling code (microblocks) 
ran distributed in the MEs. We then followed 
DEMES for an incremental co-development pro-
totype of the QoS system.  
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Figure 5. Modeling a QoS processing system

We first verified the system behavior in a 
PC with a standalone version of the E-CD++ 
simulator. Once the functionality of the QoS 
Controller was verified, we moved it into the 
XScale processor. In this stage, as the simula-
tor’s experimental frame changed, a new verifi-
cation phase was conducted to reassess simula-
tion results (Figure 5, left). QoS Actuator and 
Traffic Sensor send commands and sense drop-
rate values, respectively. They talk to their coun-
terparts in the Packet Processing system: a QoS 
Shaper and a Metering System. In the last stage, 
we move from embedded simulation to real-time 
execution of models (Figure 5, Right).  

The MEs replace their DEVS equivalent 
models (which originally performed the traffic 
generation and consumption, and functions QoS 
Shaper, Metering System and Packet Processing 
Pipeline). QoS Actuator and Traffic Sensor are 
deployed into special Software/Hardware Map-
per models (signal adapters that invoke IXP li-
braries to perform the mapping). The switch is 
transparent for the DEVS QoS Controller sys-
tem. Finally, the whole system is validated using 
a constant-rate packet-dropping generator code 
running on the MEs. In the meantime, a separate 
development team reprogrammed other hard-
ware pieces, preparing the RED algorithm to re-
act to the new Shaping commands, interleaving 

the software and hardware co-development pro-
cess and starting a new incremental cycle of sys-
tem verification and validation. 

Conclusion 

M&S techniques can offer significant sup-
port for the design and test of complex embed-
ded applications. DEMES allows for a seamless 
transition capability for studying models through 
simulation in a model-based environment, and 
then execute the same models directly in hard-
ware. We showed the use of DEVS as the basis 
for DEMES, which allowed us to develop in-
crementally different applications including 
hardware components and DEVS models. The 
transition from simulated models to the actual 
hardware can be incremental, incorporating de-
ployed models into the framework when they are 
ready. This approach does not impose any order 
in the deployment of the hardware components, 
providing flexibility to the overall process. The 
use of DEVS improves reliability (in terms of 
logical correctness and timing), enables model 
reuse, and permits reducing development and 
testing times. Consequently, the development 
cycle is shortened, its cost reduced, and quality 
and reliability of the final product improved. 

Testing and maintenance phases are highly 
improved due to the use of a formal approach. 
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Relying on experimental frameworks facilitates 
testing in a cost-effective manner, allowing users 
to build and reuse test frames for each submodel. 
Since DEVS is closed under coupling, models 
can be decomposed in simpler versions, always 
obtaining equivalent behaviour. Finally, the se-
mantics of models are not tied to particular in-
terpretations, thus existing models can be reused.  

E-CD++ provides us with a tool for 
DEMES, in which embedded systems can be de-
signed following DEVS-based methodologies, 
and be implemented on different hardware 
(FPGA, SBCs, general purpose processors or 
specialized ones like the IXA platform). The 
verified models can be deployed to the targets 
without modifying a single line of code.  

We are currently working on a verification 
toolkit to use the timing properties of the DEVS 
models under development. In this way, we will 
have an environment for DEMES in which the 
user builds models, test them in the simulated 
environment, uses verification tools to analyze 
timing properties, and downloads the resulting 
application to the target platform, being able to 
provide rapid prototyping and enhanced devel-
opment capabilities. 
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