
Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 65

DEMES: a Discrete-Event methodology for Modeling and Simulation of
Embedded Systems

1Gabriel Wainer SMSCS 2Rodrigo Castro MSCS

1Department of Systems and Computer Engineering

VSim Centre. Carleton University. Ottawa, ON.
K1S 5B6. Canada.

2 Computer Science Department
Universidad de Buenos Aires and CIFASIS-
CONICET (Rosario, Santa Fe). Argentina.

http://www.sce.carleton.ca/faculty/wainer

In the last thirty years, the Software Engi-
neering community has spent a tremendous ef-
fort in creating formal methods and tools for de-
veloping embedded systems, in particular, those
with real-time constraints. Despite these efforts,
most existing methods are still hard to scale up,
and they require expensive testing efforts with
no guarantees for bug-free products. Instead,
systems engineers have often relied on modeling
and simulation (M&S) techniques to improve the
development task and obtain higher quality
products. M&S-based testing is widely used for
the early stages of a project; however, when the
development tasks switch towards the target en-
vironment, early models are often abandoned. In
order to deal with these issues, we introduce
DEMES (Discrete-Event Modeling of Embed-
ded Systems) an M&S-based development
methodology based on discrete-event systems
specifications. DEMES combines the advantages
of a practical approach with the rigor of a formal
method, in which one consistently use models
throughout the development cycle.

Introduction to DEMES

Formal methods for embedded systems de-
velopment use mathematical notations to define
the system’s requirements, allowing proving sys-
tem properties (liveness, timeliness, etc.). These
techniques have had success, but they are still
difficult to apply and do not scale up well. In-
stead, construction of system models and their
analysis through simulation (M&S) reduces cost
and risk, allowing exploring changes and testing
of dynamic conditions in a risk-free environ-
ment. This is a useful approach, moreover con-
sidering that testing under actual operating con-
ditions may be impractical and in some cases
impossible. Despite the net gains, most project
managers are reluctant to use M&S because they

require extra initial resources for models that
will not be part of the final application. DEMES
deals with these issues by using a model-based.
The approach combines the advantages of M&S
with the rigor of a formal methodology based on
DEVS (Discrete Event Systems Specification)
formalism [1]; it supports rapid prototyping and
encourages reuse. DEVS is a well-defined for-
malism that is expressive, operates at a high lev-
el of specification, and it can be used to repre-
sent both computing systems and the physical
systems they control. DEVS models have a rich
structural representation of components, and
formal means for explicitly specifying their tim-
ing, which is central for real-time systems.

DEMES enables the incremental construc-
tion of such embedded applications using a dis-
crete-event architecture for both simulation and
the target product architecture. The use of DEVS
for DEMES offers the following advantages:
- Reliability: logical and timing correctness rely
on DEVS system theoretical roots and sound
mathematical theory.
- Model reuse: DEVS has well-defined concepts
for coupling of components and hierarchical,
modular model composition.
- Hybrid modeling and knowledge reuse: it
has been proven that DEVS is the most general
discrete event formalism (i.e., every other meth-
od can be expressed as DEVS), and many tech-
niques used for embedded systems have been
mapped into DEVS (e.g., Verilog, VHDL,
Timed Automata, State Charts, etc.). Hence, we
can use different methods while keeping inde-
pendence at the level of the executive, using the
most adequate technique on each part of system
architecture and reusing existing expertise.
- Process flexibility: these hybrid modeling ca-
pabilities are transparent for the executive,
which is defined by an abstract mechanism that

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 66

is independent from the model itself. Existing
DEVS tools have showed their ability to execute
such variety of models with high performance.
- Testing: defining experimental frames (i.e., the
set of conditions under which the system is ob-
served or experimented with) can be automated.

DEMES uses M&S for the initial stages,
and replaces models incrementally with hard-
ware surrogates without modifying the original

models. The transition can be done in incremen-
tal steps, incorporating models in the target envi-
ronment after thorough testing in the simulated
platform, allowing reusing of models throughout
the process. The approach does not impose any
order in the deployment in the actual hardware
platform, providing flexibility to the overall pro-
cess. Figure 1 shows the architecture of the pro-
cess used in DEMES.

Figure 1. DEMES development cycle.

Initially (1), we define a specification mod-

el of the System of Interest (SoI) using a formal
model (using DEVS or alternative techniques
translated to equivalent DEVS models). Once
the DEVS specification model is complete,
model-checking can be used for validation of the
model properties (2). The same models are then
used to run DEVS simulations of the behavior of
the different submodels under specific loads (3).
In brief, we first study system properties analyti-
cally, and complement the proofs using simula-
tion, which can also be used for hard-
ware/software codesign (and for training).

The same DEVS specification model is
used to derive test cases (4), which can be also
used for the simulation studies. Deriving test
cases from both the model (4) and from the sim-
ulation results (5) allows us to check that the
models conform to the requirements. Once we
are satisfied with both analytical and simulated
results, the models are incrementally moved into
a target platform. A real-time Executive (6) exe-
cutes the models on the particular hardware (9).
If the hardware is not readily available, the soft-
ware components can still be developed incre-
mentally and tested against a model of the hard-
ware to verify viability and take early design de-

cisions. As the design process evolves, both
software and hardware models can be refined,
progressively setting checkpoints in real proto-
types. The executive allows to execute dynamic
models and to schedule static and dynamic tasks.

At this point, those parts that are still un-
verified in the formal and simulated environ-
ments are tested, increasing the confidence of
the engineer into the implemented system (7).
Any modifications require going back to the
same model specifications (8), which ensure that
we can provide a consistent set throughout the
development. This software lifecycle is cyclic,
allowing refinement following a spiral approach.
On each cycle of the spiral, we end with a proto-
type application consisting of software/hardware
components interacting with simulated compo-
nents.

Other Model-Based approaches

Different techniques have been proposed to
deal with the issues discussed earlier. For in-
stance, BIP [2] defines components as the super-
position of three layers: Behavior (a set of transi-
tions); Interactions (between transitions) and
Priorities (to choose amongst interactions). BIP
preserves properties during model composition

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 67

and supports analysis and transformations across
heterogeneous boundaries (untimed/timed, asyn-
chronous/synchronous, event /data-triggered).

Ptolemy II [3] is a structured and hierar-
chical method for modeling heterogeneous sys-
tems using specific MoC that covers the flow of
data and control. ECSL (Embedded Control Sys-
tems Language) supports the development of
distributed controllers [4], including a domain-
specific environment for automotive systems
(extending the Matlab family with capabilities
for specification, verification, scheduling, per-
formance analysis, etc.).

SystemC and Esterel are system-level lan-
guages used to simulate and execute models,
which have widespread industry adoption [5].
SystemC represents hardware/software systems
at different abstraction levels, allowing choosing
the desired level of detail for each component.
Esterel is used for hardware/software synthesis
through a synchronous reaction-based language
and higher-level statements for concurrency.

One of the most popular techniques, UML-
RT, provides an object-oriented methodology. A
comparison between DEVS and UML-RT [6]
shows that, although available in the UML-RT
Profile, time, scheduling and performance are
coded using UML constructions (i.e., not for-
mally defined). Instead, DEVS provides sound
syntax/semantics for structure, behaviour, time
representation and composition, which lend
themselves to well-defined computation. DEVS,
however, is not intended for software design and
development, and "it is key to support the trans-
formation of simulation models to their software
model counterparts and their complementary
roles in handling modeling and computational
complexity of embedded systems". DEMES
software development environment focuses on
complementing these shortcomings.

Modeling with DEVS

A real system modeled with DEVS [1] is
described as a hierarchical and modular compo-
site of models that can be behavioral (atomic) or
structural (coupled). A DEVS atomic model is:

AM = < X, S, Y, int, ext, , ta >
Every state s S is associated with a life-

time, defined by the time advance function ta(s).
When a model receives an input event X, the ex-
ternal transition function ext is triggered. This

function uses the input event, the current state
and the time elapsed since the last event to de-
termine the next model’s state. If no events oc-
cur before ta(s), the model activates the output
function (outputs Y) and moves to a new state
determined by the internal transition function
int. A DEVS coupled model is:

CM = < X, Y, D, {Mi}, {Zij}, select >
CM represents a set of basic components

Mi (iD) interconnected through their interfaces
(X, Y). The translation function Zij converts the
outputs of a model into inputs for others, and the
select function is used for tie-breaking. The clo-
sure under coupling (i.e., a coupled model has an
atomic equivalent) enables model reuse.

In the last few years, DEVS has been used
for modeling applications with real-time con-
straints. RT-DEVS [7] introduced a DEVS-
based framework for the transformation from the
system design to the implementation of embed-
ded systems. In [8] the authors present a formal
mapping of DEVS models into timed Communi-
cating Sequential Process (tCSP) for hard-
ware/software codesign. DEVS/DOC [9], a co-
design methodology, was used to predict archi-
tectural decisions that could lead to incorrect
system behavior, introducing a modeling layer
on top of fine grained DEVS modeling con-
structs. In [10] DEVS was implemented on a
TINI Chip using a just-as-needed real time envi-
ronment to run on the chip efficiently. A co-
development methodology defined in [11] facili-
tated the repetitive testing of on-going system
specifications. PowerDEVS, which supports
continuous and hybrid systems with quantized
state numerical methods was extended with real-
time support.

E-CD++: an environment for DEMES

CD++ [12] provides a mechanism to build
DEVS models (which can be implemented in
C++ or using a built-in language) using DEVS
formal specifications. The ButtonInputModule
model shows parts of the transition functions for
a component of a cruise control system (CCS).

ButtonInputModule::ButtonInputModule (const
string &name) : Atomic(name),
 in_BUTTON(addInputPort("in_BUTTON")),
 out_ON(addOutputPort("out_ON")),
 out_RESUME(addOutputPort("out_RESUME"))
 {reactionTime = VTime(0, 0, 0, 15);}

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 68

Model &ButtonInputModule::externalFunction (
const ExternalMessage &msg) {
 if(msg.port() == in_BUTTON) {
 inType=(int)msg.value();
 holdIn(active, reactionTime);}}
Model &ButtonInputModule::outputFunction (
const InternalMessage &msg) {
 switch(inType) {
 case ON: //take action {
 sendOutput(msg.time(), out_ON, HIGH); }
 case OFF: //take action {
 sendOutput(msg.time(), out_OFF, HIGH);
 ...} ... } }

Model &ButtonInputModule::internalFunction (
const InternalMessage &) {passivate();}

RT-CD++ [13] integrates simulation mod-

els and hardware components for the DEMES
methodology. We thoroughly tested the perfor-
mance of RT-CD++ using real applications and
synthetic benchmarks. In all cases, we obtained
a small overhead (2% to 3% for large models)
thanks to the use of a Flat Coordinator execu-
tive, which enhanced performance by lowering
the internal messaging overhead. Figure 2 out-
lines the software hierarchy generated to execute
the CCS model above. Root Coordinator man-
ages the interaction with an Experimental Frame
(used to test the model). Coordinators synchro-
nize the subcomponents. Each external input can
be associated to a timing constraint. When the
processing of such an event is completed, the
Coordinator checks to see if the deadlines were

met (to obtain performance metrics, or to pro-
vide alternate actions if a deadline is missed).

Figure 2. RT-CD++ simulation scheme

RT-CD++ was the base for Embedded

CD++ (E-CD++) [14]. The time advance func-
tion is tied to the real-time clock, and in-
puts/outputs can interact with external devices.
The engine runs on a single board computer
(SBC), interacting with hardware components.
An Eclipse-based IDE (E-CD++ Eclipse-based
IDE) helps non-expert users following the
DEMES methodology (including a graphical en-
vironment based on DEVS-Graphs). We includ-
ed a Flexible Dynamic Structure algorithm in E-
CD++ based on Dynamic structure DEVS [15],
supporting structural changes for changing envi-
ronments.

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 69

Figure 3. E-CD++ Eclipse-based IDE

Applying E-CD++ for DEMES

We show how to use DEMES to develop
embedded applications incrementally, integrat-
ing simulation models and hardware compo-
nents. Initially, we develop models entirely in E-
CD++, and we replace them with hardware sur-
rogates at later stages of the process, making the
transition in incremental steps, incorporating
models in the target environment with hardware-
software components after thorough testing in
the simulated platform (using the specification
models throughout the process).

On web reference http://youtube.com/arslab
the reader will find a sample application built as
an experimentation environment for the con-
struction of robotic controllers. We also built a
model of the CODEC of the Analog Devices
2189M EZ-KITLITE. This was originally built
as a DEVS model, and it was later replaced it by
a hardware prototype on a DSP board. These ex-
amples were used to experiment model-to-
hardware transition without modifying the origi-
nal design.

Elevator Application

We show the ideas above with a simple ex-
ample of an elevator servicing a four-floor build-

ing. Initially we model and simulate the entire
system, using the structure presented in Figure 4.

Button Controller

Elevator

Controller
Unit

Display Controller

Elevator Box

Engine

Sensor
Controller

btn_1
btn_2
btn_3
btn_4

led1
led2
...
dir_display
flr_display

Figure 4. Scheme of the elevator system

The system consists of an Elevator Control

Unit (ECU), the Elevator Box (formed by two
atomic models: the engine and a sensor control-
ler), a button and display controllers. Most of the
logic of the ECU is located in the external transi-
tion function, which handles the buttons pressed
and schedules the next internal transition to con-
trol the engine or to display a new value (e.g.,
the elevator starts moving, or a new floor is
reached). Users can define the activation time

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 70

for the engine, customizing its timing behavior.
Different experimental frames were applied to
this model, allowing the analysis of different
scenarios. We started by analyzing the behavior
of each submodel independently (using the spec-
ifications for their physical counterparts) and
then conducted integration tests as in Table 1.

Time Deadline In-port Out-Port Val.

Experimental Frame
00:11:510
00:14:600
00:19:500

...

00:11:700
00:14:800
00:19:700

...

btn_3
sensor_2
sensor_3

led3
flr_display
flr_display

1
1
1

Outputs
00:11:510
00:11:510
00:14:610
00:19:510
00:19:510
00:19:510

...

00:11:700

00:14:800
00:19:700

...

 led3
dir_display
flr_display
led3
flr_display
dir_display

1
1
2
0
3
0

Table 1. Experimental frame for the elevator.

Once satisfied with the overall behavior of
the simulated model, we progressively replaced
the models by hardware components. The first
step was to replace the button controller (using a
keypad to send requests to the simulated ECU,
which remain unchanged). Replacing this com-
ponent is straightforward (we only removed the
original component from the coupled model def-
inition file and changed the coupling data).

Testing the model only requires reusing the
experimental frames used for simulation. As we
built the button controller model following the
hardware specifications for the actual buttons,
and the interfaces of the models do not change,
the transition is transparent (the results obtained
were equivalent to Table 1, regardless of the
changes). After conducting extensive tests, we
also moved the remaining components to the
microcontroller (and only the elevator’s engine
is still simulated).

Embedded Network Control

In this section we show how to apply
DEMES to design a supervisory control for net-
work Quality of Service (QoS) embedded in a
Network Processor. The goal is to enforce low-
level traffic shaping actions according to high-
level QoS policies (which assign finite network
resources to multiple competing traffic flows)
and the evolving performance of traffic [16].
This discipline spans several domains, specifica-

tion languages and temporal dynamics. At the
higher levels, we find coarse-grained global pol-
icies (with a few changes per day). At lower lev-
els, QoS shaping algorithms modify the assign-
ment of network resources to data-flows (every
few seconds). At the lowest levels, specific algo-
rithms take granular decisions at the microsec-
ond time scale on a per-packet basis. This sce-
nario makes it difficult to design and test QoS
management, and to verify and validate the sys-
tem-wide effects of layer-specific changes.

We designed a QoS shaper prototype that
accepts policies from higher levels while know-
ing the status of the lowest level traffic (e.g., the
current packet drop-rate). Depending on the pol-
icies and the drop-rate, control actions are sent
to the lower packet-level algorithms to enforce
granular decisions. QoS I/O information is ex-
changed through real-time ports between E-
CD++ and the packet handling circuitry.

When a high-level QoS policy changes,
model's parameters get different values, adapting
the QoS Controller with a new behavior for the
shaping actions. These actions regulate the
threshold levels at the low-level algorithm RED
(Random Early Detection). RED discards pack-
ets arriving from incoming queues according to
a probability associated to the queue length. This
probability increases linearly (growing from 0
when a Queue Minimum Threshold QmT is
crossed, and stopping at 1 when a Queue Maxi-
mum Threshold QMT is reached). Our experi-
mental shaper sends commands to RED indicat-
ing that QmT and QMT should be adjusted to
new values, thus affecting the packet drop-rate.
We used an Intel IXP2400 Network Processor,
an OC-48/2.5 Gbps line rate packet chip struc-
tured in two internal levels: a slow data path
with an Intel XScale Core processor (XScale),
and a fast data path with 8 multi-threaded pipe-
lined MicroEngines (ME). IXP2400 allows im-
plementing reconfigurable rule engines that can
be adapted on demand while sustaining high per-
formance packet handling tasks [17].

We embedded E-CD++ into the XScale and
interfaced it to the MEs. The embedded models
executed by E-CD++ interact in real-time with
specialized packet handling code (microblocks)
ran distributed in the MEs. We then followed
DEMES for an incremental co-development pro-
totype of the QoS system.

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April) 71

Figure 5. Modeling a QoS processing system

We first verified the system behavior in a
PC with a standalone version of the E-CD++
simulator. Once the functionality of the QoS
Controller was verified, we moved it into the
XScale processor. In this stage, as the simula-
tor’s experimental frame changed, a new verifi-
cation phase was conducted to reassess simula-
tion results (Figure 5, left). QoS Actuator and
Traffic Sensor send commands and sense drop-
rate values, respectively. They talk to their coun-
terparts in the Packet Processing system: a QoS
Shaper and a Metering System. In the last stage,
we move from embedded simulation to real-time
execution of models (Figure 5, Right).

The MEs replace their DEVS equivalent
models (which originally performed the traffic
generation and consumption, and functions QoS
Shaper, Metering System and Packet Processing
Pipeline). QoS Actuator and Traffic Sensor are
deployed into special Software/Hardware Map-
per models (signal adapters that invoke IXP li-
braries to perform the mapping). The switch is
transparent for the DEVS QoS Controller sys-
tem. Finally, the whole system is validated using
a constant-rate packet-dropping generator code
running on the MEs. In the meantime, a separate
development team reprogrammed other hard-
ware pieces, preparing the RED algorithm to re-
act to the new Shaping commands, interleaving

the software and hardware co-development pro-
cess and starting a new incremental cycle of sys-
tem verification and validation.

Conclusion

M&S techniques can offer significant sup-
port for the design and test of complex embed-
ded applications. DEMES allows for a seamless
transition capability for studying models through
simulation in a model-based environment, and
then execute the same models directly in hard-
ware. We showed the use of DEVS as the basis
for DEMES, which allowed us to develop in-
crementally different applications including
hardware components and DEVS models. The
transition from simulated models to the actual
hardware can be incremental, incorporating de-
ployed models into the framework when they are
ready. This approach does not impose any order
in the deployment of the hardware components,
providing flexibility to the overall process. The
use of DEVS improves reliability (in terms of
logical correctness and timing), enables model
reuse, and permits reducing development and
testing times. Consequently, the development
cycle is shortened, its cost reduced, and quality
and reliability of the final product improved.

Testing and maintenance phases are highly
improved due to the use of a formal approach.

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April)
72

Relying on experimental frameworks facilitates
testing in a cost-effective manner, allowing users
to build and reuse test frames for each submodel.
Since DEVS is closed under coupling, models
can be decomposed in simpler versions, always
obtaining equivalent behaviour. Finally, the se-
mantics of models are not tied to particular in-
terpretations, thus existing models can be reused.

E-CD++ provides us with a tool for
DEMES, in which embedded systems can be de-
signed following DEVS-based methodologies,
and be implemented on different hardware
(FPGA, SBCs, general purpose processors or
specialized ones like the IXA platform). The
verified models can be deployed to the targets
without modifying a single line of code.

We are currently working on a verification
toolkit to use the timing properties of the DEVS
models under development. In this way, we will
have an environment for DEMES in which the
user builds models, test them in the simulated
environment, uses verification tools to analyze
timing properties, and downloads the resulting
application to the target platform, being able to
provide rapid prototyping and enhanced devel-
opment capabilities.

References

[1] B. P. Zeigler, H. Praehofer and T. G. Kim.
Theory of Modeling and Simulation. 2nd. ed.
Academic Press, 2000.
[2] A. Basu, M. Bozga and J. Sifakis. "Modeling
heterogeneous real-time components in BIP". In
Proceedings of SEFM 2006. Pune, India, 2006.
[3] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J.
Ludvig, S. Neuendorffer, S. Sachs and Y. Xiong.
"Taming heterogeneity—the Ptolemy approach".
Proceedings of the IEEE, V 91, 127-144, 2003.
[4] K. Balasubramanian, A. Gokhale, G. Karsai,
J. Sztipanovits and S. Neema. "Developing Ap-
plications Using Model-Driven Design Envi-
ronments". COMPUTER, V. 39, pp. 33-40, 2006.
[5] J. Brandt and K. Schneider, "How different
are esterel and SystemC?". In Embedded Sys-
tems Specification and Design Languages. , vol.
10, Springer, 2008. pp. 3-13.
[6] D. Huang and H. Sarjoughian. "Software and
simulation modeling for real-time software-
intensive systems". In Proceedings of Eighth
IEEE International Symposium on Distributed

Simulation and Real-Time Applications. DS-RT
2004. pp. 196-203. 2004.
[7] T. G. Kim, S. M. Cho and W. B. Lee,
"DEVS framework for systems development:
Unified specification for logical analysis, per-
formance evaluation and implementation". In
Discrete Event Modeling & Simulation: Ena-
bling Future Technologies. Springer. 2000.
[8] S. Schulz, J. W. Rozenblit, M. Mrva and K.
Buchenriede. "Model-based codesign". Comput-
er, vol. 31, pp. 60-67, 1998.
[9] D. Hild, H. Sarjoughian and B. Zeigler.
"DEVS-DOC: a modeling and simulation envi-
ronment enablingdistributed codesign". IEEE
Trans. On Systems, Man and Cybernetics A, (32),
78-92, 2002.
[10] X. Hu, B. P. Zeigler and J. Couretas. "Devs-
on-A-chip: Implementing DEVs in real-time ja-
va on A tiny internet interface for scalable facto-
ry automation". In Proc. of IEEE SMC. Tucson,
AZ. 2001.
[11] K. C. Kang, J. Y. Lee and H. J. Kim. "Co-
development of real-time systems and their sim-
ulation environments". In Proc. of APSEC 2000.
Singapore, 2000.
[12] G. Wainer. “Discrete-Event Modeling and
Simulation: a Practitioner’s approach”. CRC
Press. Taylor and Francis. 2009.
[13] G. Wainer, E. Glinsky and P. MacSween,
"Model-driven architecture of real-time systems".
In Model-Driven Software Development - Re-
search and Practice in Software Engineering.
vol. II, Springer-Verlag, 2005.
[14] Y. H. Yu and G. Wainer. "E-CD++: An en-
gine for executing DEVS models in embedded
platforms". Proc. of SCSC. San Diego, CA, 2007.
[15] F. J. Barros. "Modeling Formalisms for
Dynamic Structure Systems". ACM Transactions
on Modeling and Computer Simulation, vol. 7,
pp. 501-515, October 1997.
[16] A. Kuzmanovic and E. W. Knightly.
"Measurement-Based Characterization and Clas-
sification of QoS-Enhanced Systems". IEEE
Trans. Parallel Distrib. Syst., V. 14, pp. 671-685,
2003.
[17] S. Gavrilovska, A. Kumar and K. Schwan.
"The execution of event-action rules on pro-
grammable network processors". In Proceedings
of Workshop on Operating System and Architec-
tural Support for the on-Demand IT Infrastruc-
ture (OASIS 2004), Boston, MA, 2004.

Wainer & Castro – SCS M&S Magazine – 2011 / n2 (April)
73

Gabriel Wainer received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the
University of Buenos Aires, Argentina, and
Université d’Aix-Marseille III, France. He is an
Associate Professor at the Department of
Systems and Computer Engineering, Carleton
University. He is the author of four books and
numerous research articles, edited four other
books, and helped organizing numerous
conferences, including being one of the founders
of SIMUTools and SIMAud. Prof. Wainer is the
Vice-President Publications, and was a member
of the Board of Directors of SCS. He is Special
Issues Editor of the SIMULATION, member of
the Editorial Board of Wireless Networks,
JDMS, and International Journal of Simulation
and Process Modelling. He is the head of the
Advanced Real-Time Simulation lab, at Carleton
University's Centre for advanced Simulation and
Visualization (V-Sim). He has been the recipient
of various awards, including IBM Eclipse
Innovation, SCS Leadership, various Best
Papers, and the First Bernard P. Zeigler DEVS
M&S.

Rodrigo Castro received a Ph.D degree (2010)
in EE from Universidad Nacional de Rosario,
Argentina. Since 2007 he is a Lecturer at the
Computer Science Department, Universidad de
Buenos Aires (UBA), Argentina, where he is the
head of the Discrete Event Simulation Group.
He is also a lecturer at the Faculty of
Engineering, UBA. He has been a visiting
scholar at the Advanced Real-Time Simulation
lab (Carleton University, Canada) and the
Modeling and Simulation Research Group (ETH
Zurich, Switzerland). Since 2000, he has
participated in several projects with industry
(Siemens, CISCO, Hewlett-Packard) in the areas
of networking and performance optimization.
Dr. Castro was awarded an Emerging Leaders in
the Americas grant by the Government of
Canada, and he received recognitions from the
Organization of Ibero-American States for the
Education, Science and Culture (OEI) and UBA.

