
GATLAS: GOOGLE EARTH VISUALIZATION FOR ATLAS

Ken Edwards Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive, Ottawa, ON. K1S 5B6. Canada.
ken.edwards@cmcelectronics.ca gwainer@sce.carleton.ca

ABSTRACT
ATLAS is a modeling language that allows one to define a
static view of a city section for simulating traffic in an area.
By using ATLAS TSC, an intermediary compiler, and
CD++, a Cell-DEVS system, traffic simulations may be run.
The outputs of the simulation are a collection of individual
cell-space simulation results that are difficult to analyze as
a whole. This problem is solved by using GATLAS ((ATLAS
in Google Earth) to generate KML files from the CD++
outputs so that the simulation results may be examined as a
whole in Google Earth.

1 INTRODUCTION
ATLAS (Advanced Traffic Language Specifications) is a
high-level specification language defined to represent city
sections as cell spaces [1, 2]. The models are formally
specified, avoiding a high number of errors in the
application, thus reducing the problem solving time.
ATLAS specifications were used as a basis to define the
TSC compiler, which can be used to convert a city plan file
(used as input) into a DEVS formal model [3], producing a
coupled model file that can be simulated using the CD++
environment. [4].

Although a VRML-based visualization tool was defined in
[2], new technologies for visualization are available based
on Web Services and Service Oriented Architecture. The
emergence of recent XML-based technologies paved the
way for new types of architectures and message exchanges
on the Internet. This eXtensible Markup Language has
provided interoperability between partners and enabled
companies to deploy a myriad of machine consumable Web-
based services, which can be later integrated in many
different ways to produce multiple sets of services. A
system reusing existing distributed services and combining
them to provide added value through a web application is
called a Mash-Up. The idea of using existing web-based
products as a visual aid in displaying other information is
often referred to as a “mash-up”. Although we have shown
that mashups for modeling and simulation can be created [5]
(building a web mash-up that uses Google Maps and web-
based system for interacting with a CD++ model and
simulation), Web Services technologies are still complex to
mashup. In this work we show a mechanism to deal with a

larger system, which focuses on the visualization of the
results of a simulation in Google Earth.

2 BACKGROUND
In recent years, a variety of simulation languages and tools
have been created, using different formal methods: queuing
networks [6], DEVS [7], Cellular Automata [8], software
agents, etc. Our research has focused on the construction of
traffic microsimulations that describe precisely the local
behavior of traffic, using DEVS and Cell-DEVS [3,4].

Cell-DEVS is an extension of DEVS, especially devoted to
define cell spaces. Each cell is defined as an atomic DEVS,
and a procedure to couple cells is depicted. Timing delay
constructions let the modeler to define the cell timing
behavior. Each cell, built as an atomic model, can be
described as:

TDC = < X, Y, θ, N, delay, d, δint, δext, τ, λ, ta >

X defines the external inputs, Y the external outputs. θ is the
cell state definition, and N is the set of inputs. Delay defines
the kind of delay for the cell, and d its duration. Finally,
there are several functions: dint for internal transitions, dext
for external transitions, τ, for local computations, λ for
outputs and ta for the state's duration. Each cell uses the set
of inputs to compute the cell's next state using the τ
function. The delay allows to defer the transmission of the
results. This behavior is defined by the dint, dext, λ and ta
functions. A modeler only focuses in defining the local
computing function, the kind of delay and its length.

ATLAS [1] is a specification language built on top of DEVS
and Cell-DEVS formalisms. DEVS formalism permits to
specify discrete events systems using a modular description.
A model is seen as composed by atomic submodels than can
be combined into coupled models. The behavior for each of
the constructions presented in this language was validated in
terms of their correctness when built as Cell-DEVS models.
Then, a compiler was built following the specifications [9].
The compiler, called ATLAS TSC (Traffic Simulator
Compiler), generates code by using a set of templates that
can be redefined by the user. In this way, ATLAS
specifications can be translated into different tools with

213

facilities to define cellular models. It also avoids version
problems if the underlying tools are modified.

Figure 1: ATLAS Software Architecture

ATLAS allows representing the structure of a city section
defined by a set of streets connected by crossings. The
language constructions define a static view of the model.
ATLAS formal specifications were used to build the
ATLAS TSC compiler and the syntax for its language
sentences. Following, we present the main constructions of
ATLAS and its syntax in TSC.

a) Segments: represent sections of a street between two
crossings. Every lane in a given segment has the same
direction (one way) and a maximum speed. They are
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈
City ∧ n, max ∈ Ν ∧ a, dir ∈ {0,1} }, where p1 and p2
represent the boundaries of the segment (City = { (x,y) / x, y
∈ R }), n is the number of lanes, and dir represents the
vehicle direction. The parameter a defines the shape of the
segment (straight or curve, allowing to define the city shape
more precisely, including the exact number of cells), and
max is the maximum speed allowed in the segment. This
constraint was included in ATLAS TSC. The compiler
permits defining the segments by delimiting them using the
sentences begin segments and end segments. At least one
segment must be defined, using the following syntax:

id = p1,p2,lanes,shape,direction, speed, parkType

These values map the parameters mentioned previously,
with shape: [curve|straight] and direction:

[go|back]. Finally, parkType is used to define parking
constructions, formally specified in the following
paragraphs.

b) Parking: border cells in a segment can be used for
parking. If we review the construction used for Segments in
ATLAS TSC also includes information for the parking
segments. In this case,

parkType: [parkNone|parkLeft|parkRight|parkBoth]

defines an area where vehicles can park.

c) Crossings: these constructions are used to represent the
places where more than one segment intersects. They are
specified as: Crossings = { (c, max) / c ∈ City ∧ max ∈ Ν ∧
∃ s, s’ ∈ Segments ∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’,
p2’, n’, a’, dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c
∨ p2’ = c) }. In ATLAS TSC, the definitions for crossings
are delimited by the separators begin crossings and end
crossings. Each sentence defines a crossing as:

id = p, speed, tLight, crossHole, pout

Parameters p and speed represent (p1,p2) and max of the
formal specification. Pout defines the probability that a
vehicle leaves the crossing, used to simulate random routing

d) Traffic lights: crossings with traffic lights define a set of
models representing the traffic lights in a corner and the
corresponding controller. The model sends a value
representing the color of the traffic light to a cell in the
intersection corresponding to the input segment affected by
the traffic light. The following qualifier is added to a
standard crossing definition in ATLAS TSC for crossings
with traffic lights: tLight: [withTL|withoutTL].

e) Railways: they are built as a sequence of level crossings
overlapped with the city segments. In ATLAS TSC, the
begin railnets and end railnets act as separators. Each
railnet is defined using the following syntax:

id = (s1, d1) {,(si, di)}

where si is the identifier of a segment crossed by the
railway, and di is the distance between the beginning of the
segment si and the railway. The compiler automatically
generates the sequence number.

f) Men at work: In ATLAS TSC, the begin jobsites and
end jobsites separators define an area with accidents or
men at work. Each sit is defined as:

in t : firstlane, distance, lanes

Here, firstlane defines the first lane affected by the jobsite,
distance is the distance between the center of the jobsite
and the beginning of the segment, and lanes is the number
of lanes occupied.

g) Traffic signs identify the segment where the traffic sign
is used, the type of sign, and the distance from the
beginning of the segment up to the sign. In ATLAS TSC,
the begin ctrElements and end ctrElements delimiters
define all the signs, with:

in t : ctrType, distance

being the definition for each sign. Here, ctrType: [bump |

depression | intersection | saw | stop | school].

214

The distance parameter defines the distance to the
beginning of the segment. An extension of this construction
allows us to define potholes, whose size is one cell. The
definition of these elements is done using the begin holes
and end holes separators. Each hole is defined as:

in t : lane, distance

A pothole can also be included in a crossing. Previously
defined in the Crossings paragraphs, crossHole:
[withHole|withoutHole] defines if a crossing contains a
pothole or not.

h) Experimental frameworks: experimental framework
constructions permit build experiments on a city section by
providing inputs and outputs to the area to be studied. They
are associated with segments receiving inputs, or those used
as outputs

DEVS is a discrete event paradigm. It uses a continuous
time base, which allows accurate timing representation.
Precision of the conceptual models can be improved, and
CPU time requirements reduced. The TSC compiler for the
ATLAS specification language implements the ATLAS
constructions as DEVS and Cell-DEVS models, using a
generic rule generation mechanism for describing the traffic
behavior. The compiler generates rules based on macro
templates, entitling changes in the model implementation in
a flexible way. The formal specification avoids a high
number of errors in the developed application, and the
problem solving time is highly reduced..

Google Maps is one of the leading online consumer
mapping technologies. One of the features of Google Maps
if viewing current traffic conditions, see Figure 2.

Figure 2 - Traffic in Google Maps

Although the presentation in Figure 2 is compelling, Google
Maps are not ideal for simulation projects, because the
Google Maps API has no sense of time. Therefore,
visualizing simulation results over time would require an
extension of the Google Maps API that took time-based

events into account. Instead, Google Earth allows users to
view satellite imagery, maps, terrain, and user-defined data
on a model of the Earth and may be downloaded via
<http://earth.google.com/>. Google Earth (originally
named EarthViewer 3D) explicitly allows for time-based
events though its use of KML, formerly Keyhole Markup
Language. KML is an open standard officially named the
OpenGIS® KML Encoding Standard (OGC KML). It is
maintained by the Open Geospatial Consortium, Inc.
(OGC), and its complete specification can be found at
<http://www.opengeospatial.org/standards/kml/>.

Different KML entities can be used for modeling within a
simulation, in particular Style, GroundOverlay, Path
(LineString), Point, and TimeSpan.

Styles are defined so that they may be applied to objects in
the KML file. A GroundOverlay is used to drape a user-
defined image over the surface of the earth. This can be
useful to use custom imagery (in our case, it is useful to
block out the underlying GoogleEarth imagery because of
alignment issues between the simulation and GoogleEarth).

We used various objects of type LineString to draw the
traffic segments (sections of traffic between two corners).

A Point is used to define a singular location in KML. We
have used a point to define the position of a car, and
referenced the carPlacemark Style to draw an icon of a car
at this point. Within this definition, we used the TimeSpan
markup to define the start and the end time between which
this object exists. The TimeSpan markup is used to animate
the cars.

3 GATLAS IMPLEMENTATION
GATLAS (ATLAS in Google Earth) uses a number of Perl
scripts in order to be able to process the text files containing
the simulation results, the TSC files and the interaction with
Google Earth. Three main data objects were created to
create the visualization, one hash each for segments,
crossings, and events.

The segments and crossings hashes each have as their first
dimension key the name of the segment or crossing. The
second dimension’s key is a property name, one for each
item in the description of the segment or crossing in the
.plan file. One last key for each crossing or segment (model)
contains a 2D array to model the cell space for that object.
This is used to generate the visualization, as it will be
discussed in detail later.

Initially, we build the necessary data structures, and then we
pass them back and forth to various helper functions, in the
following order:

215

1. Parse the TSC Plan File: this file contains the TSC
definition for the simulation area.

2. Parse the DEVS Coupled Model File: this file
contains the coupled model specification generated
by ATLAS TSC.

3. Parse the Log File generated by CD++.
4. Build the corresponding KML file.

Figure 3 – A section of Buenos Aires and its corresponding

Google Map.

Figure 3 shows the topology of an ATLAS model that
represents a section of the city of Buenos Aires, Argentina.
In Figure 4 we can see the definition of this model in
ATLAS/TSC.

As we can see in the figure, each road segment includes the
name of the street based on the city map (Monroe,
Roosevelt, Usuahia, Tunez, etc.). Each of the road segments
include the various parameters discussed earlier: the
start/end points of the segment, the number of lanes on each
segment, the shape of the segment (straight/curve), the
direction of the vehicles (go/back), the maximum speed
allowed on the segment, and parking information. We can
also see the information about one of the crossings in the
map (as it can be seen in the position array, this crossing
ends at position 10 in the Y axis in the 2D plane). Each of
the crossing constructions shows the connection to a

different segment, and the kind of connection, which can
include Traffic Lights or potholes).

begin segments
 Monroe_Exit = (0,10),(10,10),1, straight, back,

20,300,parkNone
 Monroe_In = (100,10),(110,10),1,straight,back,

20,300,parkNone
 Roosevelt_In= (0,20),(10,20),1,straight,go,20,

300,parkNone
 Roosevelt_Exit = (100,20),(110,20), 1,straight,

go,20,300,parkNone

. . .
 Libertador_In1=(100,0),(100,10),4,straight,go,20,

300,parkNone
 Libertador_Exit1=(100,50),(100,60),4,straight,go,

20,300,parkNone
 Libertador_Exit2 = (100,0),(100,10),4,straight,

back,20,300,parkNone
 Libertador_In2=(100,50),(100,60),4,straight,back,

20,300,parkNone
 Usuahia1 =(52,45),(60,45),1,straight,back,20,

300,parkNone
 Tunez = (65,10),(65,20),1,straight,go,20,300,

parkNone
end segments

begin crossings
 c010_10_ = (10,10),20,withoutTL,withoutHole,300
 c020_10_ = (20,10),20, withoutTL,withoutHole,300
 c030_10_ = (30,10),20,withoutTL,withoutHole,300
 ...
 c090_10_ = (90,10),20,withoutTL,withoutHole,300
 c100_10_ = (100,10),20,withoutTL,withoutHole,300
...
end crossings

Figure 4. ATLAS/TSC definition of the maps in Figure 3.

 Based on this notation, the TSC compiler builds a
DEVS coupled model with CD++ notation as follows.

components : BigCounter@TSCCounter Monroe_Exit
components : Monroe_ExitCons@TSCConsumer
components : Monroe_InGen@TSCGenerator Monroe_In
components : Roosevelt_InGen@TSCGenerator
components : Roosevelt_In
components : Roosevelt_ExitCons@TSCConsumer
...
components : c010_10_ c010_10_Counter@TSCCounter
...
out : arrived_BigCounter qty_Cons_Monroe_Exit
...
link : y_co_car09@Monroe_Exit
 x_t_car0@Monroe_ExitCons
link : quantity@Monroe_ExitCons
 qty_Cons_Monroe_Exit
link : quantityAcum@Monroe_ExitCons
 qty_Cons_Acum_Monroe_Exit
[Monroe_Exit]
type : cell width : 10 height : 1
delay : transport border : nowrapped
neighbors : (0,-1) (0,0) (0,1)
in : x_c_car00 x_c_canEnter00
out : y_c_space00 y_co_car09
link : x_c_car00 x_c_car@Monroe_Exit(0,0)
link : x_c_canEnter00
 x_c_canEnter@Monroe_Exit(0,0)

216

link : y_c_space@Monroe_Exit(0,0) y_c_space00
link : y_co_car@Monroe_Exit(0,9) y_co_car09
portInTransition : x_c_canEnter@Monroe_Exit(0,0)
 segment1-canEnter-startcross-rule
portInTransition : x_c_car@Monroe_Exit(0,0)
 segment1-startcross-rule
localtransition : segment1-lane-rule
zone : segment1-cons-rule { (0,9) }

[c010_10_]
type : cell width : 18 height : 1
delay : transport border : wrapped
neighbors : (0,-1) (0,0) (0,1)
in : x_t_car0 x_t_car1 x_t_car2 ... x_t_car17
out : y_t_space0 y_t_space1 y_t_space2 ...
link : x_t_car0 x_t_car@c010_10_(0,0)
link : x_t_car1 x_t_car@c010_10_(0,1)
localtransition : cellIn-rule
portInTransition : x_t_car@c010_10_(0,0) car-rule
...
zone : c010_10_-cellOut-rule { (0,5) }
...

Figure 5. Translation of the maps in Figure 3 into CD++

This model contains all the rules for the model to execute;
each segment and crossing is translated into a Cell-DEVS
model, and they are interconnected through input/output
ports. It first defines all of the components generated by
TSC: a TSCcounter model used as an experimental
framework connected to the the model exits, a
TSCGenerator to generate traffic in the zone, and one Cell-
DEVS model for each of the segments and crossing. For
instance, we show the coupled model definition of
Monroe_Exit , a 10x1 Cell-DEVS model that (is used to
receive and transmite vehicles in the zone (using the links
defined at the topmost level). We also show the definition of
the crossing c010_10_, which is connected to each of the
input/output segments in position (10,10) on the plane.

Based on the complete model specification, the following
simulation results were obtained:

00:01:00:000 arrived_bigcounter 435
00:01:00:000 solved_bigcounter 220
00:01:00:000 qty_cons_monroe_out 1
00:01:00:000 qty_cons_acum_monroe_out 1
00:01:00:000 qty_cons_roosevelt_out 56
00:01:00:000 qty_cons_acum_roosevelt_out 56
00:01:00:000 qty_cons_ugarte_out 0
00:01:00:000 qty_cons_acum_ugarte_out 0
00:01:00:000 qty_cons_congreso_out 19
00:01:00:000 qty_cons_acum_congreso_out 19
00:01:00:000 qty_cons_usuahia1 0
00:01:00:000 qty_cons_acum_usuahia1 0

As we can see, in 1 simulated hour, 435 vehicles arrived in
the area and 220 left the region (using different streets).
Although this cumulative information is useful for statistical
purposes, it does not provide any information on the
microsimulation for each of the vehicles. This information,

instead, can be found in the detailed simulation log showed
in the following figure.

...
X / 00:00:00:010 / Root / x_t_car0 / 1 to top(01)
X / 00:00:00:010 / top(01) / x_t_car0 / 1 to
MonroeExit(02)
D / 00:00:00:010 / MonroeExit(02) / 00:00:59:990
to top(01)
D / 00:00:00:010 / top(01) / 00:00:59:990 to
Root(00)
X / 00:00:00:020 / Root(00) / x_t_car1 / 1 to
top(01)
X / 00:00:00:020 / top(01) / x_t_car1 / 1 to
MonroeExit(02)
D / 00:00:00:020 / MonroeExit(02) / 00:00:59:980
to top(01)
D / 00:00:00:020 / top(01) / 00:00:59:980 to
Root(00)
X / 00:00:00:030 / Root(00) / x_t_car2 / 1 to
top(01)
X / 00:00:00:030 / top(01) / x_t_car2 / 1 to
MonroeExit(02)
D / 00:00:00:030 / MonroeExit(02) / 00:00:59:970
to top(01)

…
Figure 6. Execution of the models using CD++ (.log files).

This figure shows two different outputs provided by the
simulator: the first part includes a summary of the
simulation results on the different streets; the second part
shows a detailed log file showing the simulation execution
at every single submodel and at every timestam.

These results were mashed up into a Google Map, using an
advanced program (written in Perl due to the ease with
which text may be processed). Three main data objects were
created to create the visualization, one hash each for
segments, crossings, and events. The segments and
crossings hashes each have as their first dimension key the
name of the segment or crossing. The second dimension’s
key is a property name, one for each item in the description
of the segment or crossing in the .plan file. One last key for
each crossing or segment is ‘model’ that contains a 2D array
to model the cell space for that object. This is used to
generate the visualization and is explained in detail later in
this paper.

The main function of this program is to create the data
structures and then passes them back and forth to various
helper functions, which, in turn parse the Plan File, parse the
corresponding MA and Log File, and then create a
KML file for visualization.

TSC takes a .plan file as input, containing a list of segments
and crossings contained in the model. An example of a
segment and a crossing definition from mapa.plan file is
shown here:

217

Monroe_Exit = (0,10),(10,10),1,straight,back,20,
 300, parkNone
c060_10_ = (60,10),20,withoutTL,withoutHole,300

Figure 7 - Plan File Sample

The idea was to build a function of the same name that
looks for the segment and crossing definitions and fills in
the hashes accordingly. Regular expressions were used to
parse the file, and care was taken to disregard changes in
whitespace. The segments are parsed as follows:

/^\s*(\S+)\s*=\s*\(\s*(\S+)\s*,\s*(\S+)\s*\),\s*\(
\s*(\S+)\s*,\s*(\S+)\s*\)\s*,\s*(\S+)\s*,\s*(\S+)\
s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*
/

Likewise, the regular expression for crossings is defined as
follows:

/^\s*(\S+)\s*=\s*\(\s*(\S+)\s*,\s*(\S+)\s*\)\s*,\s
(\S+)\s,\s*(\S+)\s*,\s*(\S+)\s*,\s*(\S+)\s*,\s*(
\S+)\s*/

The need for the .ma file to be parsed came about because
the size of each crossing is determined by TSC. This
crossing size is included in the .ma file definition for the
crossing, and it is based on the number of lanes of each of
the roads leading into the crossing. Thus, we created a
program that parses the .ma file and looks for the length of
crossings that were detected in the .plan file. A new key in
the crossing hash was added to hold this value.

3.1 Simulation Outputs
Once the GATLAS data structures are filled up with the
segment and crossing definitions, we parse the log file for
events detailing the movement of cars around the segments
and crossings, as discussed earlier. For instance,

#Message Y / 00:00:38:400 /
libertador_b1(0,6)(1478) / out / 1 to
libertador_b1(1471)

This message indicates that a car is being placed in lane 0,
cell 6 of the libertador_b1 segment at time 00:00:38:400 (1
indicates the presence of a vehicle; if that value were
0.0000, it would indicate that the car is being removed from
that cell). The regular expression used to parse these events
as follows:

/Message Y \/\s*(\S*)\s*\/
(.*)\((.*),(\d*)\).*\/.*\/\D*([0-9\.]*).*/

In DEVS, output messages are part of the set Y, so this
regular expression detects only the output messages of each
cell. The %events hash has as its first key the time, and then
successive keys are the element (segment or crossing), lane,
and cell. The final value recorded is whether a car is being
placed in or removed from the cell. Once the log file is
parsed, all output messages matching the above regular

expression are stored in the %events hash for later
processing.

3.2 ATLAS/TSC Data Processing
Once the .plan, .ma, and .log file have been processed, all of
the data required to visualize the traffic simulation is
known. It is at this point that the last two steps in our
process occur, create the traffic models and create the KML
file.

We first loop through each segment and crossing to create a
2-dimensional array. Each of these two dimensional arrays
is a representation of the cell space used by Cell-DEVS to
model the segment or crossing. This model is used in the
createKML function described later. The width of each array
is simply the number of lanes of the segment, 1 for a
crossing, which is taken from the .plan file. The length of a
segment is the number of cells that are used to model the
distance between the start point and end point. Note that
these points are defined in terms of the cell space, so the
distance between the start point and end point is determined
and the length is taken to be the floor of that.

As noted previously the length of a crossing is determined
by the value read in the .ma file. The length of the segment
could have also been read from the .ma file, but the segment
length calculation was implemented prior to the time that it
was determined that the crossing length would need to be
read from the .ma file.

Then, we need to create the KML file, and for doing so, we
loop through each discrete time in the %event hash. Then
for each element (crossing or segment) the model for that
element has its elements set or cleared based on the data in
the event hash. Once the element’s models are filled for a
given time step, the time value is reformatted from CD++
format to ISO format, and then each element and timestamp
pair is sent to a function that returns the KML markup for
that element which is then written to a file.

Segments are modeled by looking through each cell in the
2d model array and seeing if there is a car present. If there
is, a call is made to CDppSegmentToKMLPosition, the
prototype of which is seen in Figure 8.

my ($kml_latitude,$kml_longitude) =
 &CDppSegmentToKMLPosition (

 $segment_ref->{"start_x"} ,
 $segment_ref->{"start_y"} ,
 $segment_ref->{"end_x"} ,
 $segment_ref->{"end_y"} ,
 $segment_ref->{"direction"} ,
 $segment_ref->{"num_cells"} ,
 $lane_i,
 $cell_j
) ;

Figure 8 - Call to CDppSegmentToKMLPosition

218

CDppSegmentToKMLPosition translates the position of the
car in the model to a latitude/longitude position which is
then inserted in the KML file. The
CDppSegmentToKMLPosition function uses the start and
end position of the model, the direction, the number of cells
in the model, and the position of the given car in the model
to calculate the latitude-longitude pair for that car. If the
direction is ‘back’, the start and end points are swapped.

The car’s position in terms of cells between the start and end
point is then calculated using the fact that the car should be
positioned in the middle of the cell that it is occupying,
shown in Figure 9.

my $car_pos_x = $start_x + ($end_x-
$start_x)/(2*$num_cells) * (2*$cell+1);
my $car_pos_y = $start_y + ($end_y-
$start_y)/(2*$num_cells) * (2*$cell+1);

Figure 9 - Car's Model Position Calculation

Once the car’s position between the start and end position is
calculated, it’s position offset from the line between start
and end is calculated, to take the number of lanes in the
street into account. A unit vector in the direction of start to
end is derived, rotated 90 degrees, and then the car is
displaced in that direction by a scale factor. At the time this
report is written, the scale factor being used is 1, so the car
is moved over a distance of one cell.

Once the car’s position is calculated within the model, the
distance between this position and the origin of the model is
determined – this distance is still measured in units of cells.
This cell distance is then transformed into a distance in
kilometers based on the fact that a cell is 7.5 meters on one
side. The angle this vector position of the car makes with
the x-axis is then derived. This angle is then added to an
model-specific angle that is hard coded – the angle the
model’s x-axis makes with the equator of the earth.

Finally this new total angle, the distance from the origin in
km, and the origin’s position as a latitude-longitude pair are
used as inputs into an equation from
<http://www.movable-

type.co.uk/scripts/latlong.html>, which equation
produces a new latitude-longitude pair given an initial
position, a bearing, and a distance. The resulting latitude-
longitude pair is then returned up the call stack and inserted
into the KML template for the car using the time of the
event and the next event time.

Crossings are modeled using the same methodology as
segments, the only difference being how the position of the
car is determined. A crossing has a static x-y coordinate, so
if all cars in the crossing were drawn at that point, they
would overlap and it would look as though cars disappeared
in the crossing if there was more than one car in the

crossing. Thus, the position of the car is determined to be
the position of the crossing, plus an offset that is calculated
by drawing a circle of radius R around the crossing position
and then placing the car on that circle based on its position
within the crossing model. This has the effect of having the
cars look as though they are driving in a roundabout while
they are in the crossing.

Once the first KML files were being produced by the
system, it became evident that the combination of the
models (the .plan files) and the transformation functions
being used were not exact enough so that the cars followed
the streets they were supposed to when visualized in Google
Earth. The lack of traffic lining up with roads can be seen in
Figure 10. It was not within the scope of this project to
remodel the area, so it was decided that the cars previously
modeled would be drawn on top of a white image covering
the Google Earth imagery. Thus, it was then necessary to
draw the segments so that the cars followed some sort of
road system.

The segments were position in KML using the same
algorithm as was used to place the cars, this time the start
and end points were transformed to latitude-longitude pairs
and then drawn as lines in KML, as shown below.

Figure 10 - Simulation Result

It was at this time that the approach of drawing a white box
and then drawing the segments as lines in KML was taken,
whose results can be seen in Figure 11. Vehicles were seen
to follow the roads and enter and exit the system.

219

Figure 11 - Final Simulation Result

4 CONCLUSIONS
ATLAS-based traffic simulations were successfully
visualized in Google Earth. Future work could look into
working with a ATLAS/TSC .plan file that more
realistically models a true roadway system, so that the
transformation equations may be verified. If a system was
produced that allowed a user to specify a ATLAS/TSC
model using Google Maps – this time Google Maps would
be the better choice because its API is well suited for user
interaction – then the positions of the cars could be
calculated using the start and end latitude-longitude pairs
rather than the cell space positions, which would lead to
much better accuracy in the visualizations.

An alternative approach for mapping of the real world to the
ATLAS model would be to use a GIS data set to determine
the geometry of the model based only on element names.

ACKNOWLEDGMENTS
This work has been partially funded by NSERC and
GRAND NCE. Ken Edwards would like to acknowledge the
support of Esterline CMC Electronics in this work.

REFERENCES
1. G. WAINER, A. DAVIDSON. “Defining a Traffic
Modeling language Using Cellular Discrete-Event
abstractions”. Journal of Cellular Automata. Volume 2,
Number 4, 2007. pp. 291-343
2. G. WAINER “ATLAS: a specification language for
traffic modelling and simulation”.. Simulation Modeling,
Practice and Theory. Elsevier. Volume 14, No. 3, pp. 317-
337. April 2006.
3. ZEIGLER,B.; KIM,T.; PRAEHOFER,H. Theory of
Modeling and Simulation. Academic Press. 2000.
4. G. WAINER “Discrete-Event Modeling and
Simulation: a Practitioner’s approach”. G. Wainer. CRC
Press. Taylor and Francis. 2009.
5. Y. HARZALLAH, V. MICHEL, Q. LIU, G. WAINER.
"Distributed Simulation and Web Map Mash-Up for Forest
Fire Spread". Proceedings of IEEE International Conference
on Web Services. Honolulu, HI. IEEE Press. 2008.
6. CAMERON, G.; WYLIE, B.; MC. ARTHUR, D.
"TOMICS: Moving Vehicles on the Connection Machine".
Proceedings of IEEE Supercomputing '95. 1995.
7. CHI, S.; LEE, J.; KIM, Y. "Using the SES/MB
framework to analyze traffic flow". Transactions of the
SCS. Vol. 14, No. 4, pp. 211-221. 1997.
8. CHOPARD, B.; DUPUIS, A.; LUTHI, P. “A Cellular
Automata Model for Urban Traffic and its applications to
the city of Genoa”. Proceedings of Traffic and Granular
Flow. 1997.
9. ERL,T. Service-Oriented Architecture, Concepts,
Technology, and Design. Pearson. 2005.
10. ALONSO,G. Web Services : Concepts, Architectures
and Applications. Springer-Verlag. 2003.
11. FOX,G.; PIERCE,M.; MUSTACOGLY,A.F.; and
TOPCU,A.E. “Web 2.0 for E-Science Environments”.
International Conference on Semantics, Knowledge and
Grid, IEEE. 2007.

220

