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Abstract 
We introduce advanced techniques to develop embedded re-
al-time controllers for networking applications using a 
Modeling and Simulation (M&S) based methodology. Our 
solution relies on the DEVS formalism and the Embedded 
CD++ (ECD++) real-time simulator. We show how DEVS-
based prototypes can be embedded in the target hardware, 
consisting of an Intel IXP2400 Network Processor. We de-
veloped interface libraries allowing DEVS models to inter-
act with specialized microcontrollers for high performance 
packet handling. We also introduce a portable Virtual Lab 
for developing prototypes and deploying them for quick val-
idation on a real-world network. Our approach provides 
model continuity, eliminating the need for adapting logic or 
structure of the controllers when evolving from standalone 
simulations to execution in the target platform. 
 
1. INTRODUCTION 
Although the software engineering community has attempt-
ed to define and use formal methods for developing embed-
ded real-time systems, attempts have not been successful. 
Most existing formal methods are still difficult to scale up. 
Instead, modeling and simulation (M&S) techniques have 
shown to be a cost-effective approach to solve this problem. 
Nevertheless, when a project evolves toward the final target 
platform, most initial models and simulations are abandoned 
[1]. To deal with these issues, we introduced an approach 
based on the DEVS formalism [2]. The method combines 
the advantages of a practical approach with the strictness of 
a formal method: models initially used for specification, 
simulation, and verification are preserved for validation and 
implementation [3]. 
 Our goal is to provide a procedure completely based on 
DEVS models, to be embedded in the target hardware, run 
in real-time, and can be connected to external hardware 
transparently. The strategy provides model continuity by 
encapsulating the interaction with external hardware in spe-
cial atomic models (Mappers) that are capable of interacting 
with control interfaces (Drivers) for each device. To achieve 
our goals, we used the DEVS-based ECD++ (Embedded 
CD++) M&S tool [4], and embedded it on an Intel IXP2400 
Network Processor (NP). Then, we equipped the software 
with interface libraries for communication between the 
DEVS engine and the hardware. Setting up and tuning an 
operational suite of hardware and software tools for experi-
mentation with NPs can be tedious and complex. Moreover, 

in that context, implementing executives and low-level li-
braries can be a time-consuming and error prone. To cope 
with these difficulties we introduce a portable Virtual Lab 
for experimentation with ECD++ and the RadiSys ENP-
2611 networking board [5] based on the IXP2400.  
 
2. BACKGROUND 
Different techniques have been proposed to achieve continu-
ity and consistency of models when implemented in embed-
ded systems. For example BIP [6] defines the components 
as a superposition of three layers: Behavior (a set of transi-
tions), interactions (between transitions) and Priorities (to 
choose between transitions). BIP preserves properties during 
model composition and supports analysis and transfor-
mations between heterogeneous boundaries (timed/not 
timed, synchronous/asynchronous, event-triggered/data-
triggered). Metropolis [7] is an environment for electronic 
system design that supports specification, simulation, formal 
analysis, and synthesis. It is based on meta-models with 
formal semantics, and it captures the design at a high level 
of abstraction, implementing different Models of Computa-
tion (MoC). Ptolemy II [8] allows hierarchical and struc-
tured modeling of heterogeneous systems using a specific 
MOC that provides data flow and control flow. ECSL (Em-
bedded Systems Control Language) [9] supports the devel-
opment of distributed controllers, including a specific do-
main environment for automotive systems (extending the 
Matlab family with capabilities for specification, verifica-
tion, planning, performance analysis, etc.) SystemC and 
Esterel are system level languages used to simulate and run 
models that have benefitted from a growing industry adop-
tion [9] SystemC represents hardware and software systems 
at different levels of abstraction, allowing choosing the de-
sired level for each component. Esterel is used to synthesize 
hardware and software through a language based on reaction 
and high-level statements to handle concurrency. One of the 
most popular techniques is UML-RT, which provides an ob-
ject-oriented methodology [11]. In [12] the authors propose 
a comparison between UML-RT and DEVS showing that 
despite Profile UML-RT specify time, planning, and per-
formance using UML objects, they are not formally defined.  
 DEVS theory [2] provides sound semantics for repre-
senting structure, behavior, and time, leading to a well-
defined and unambiguous MoC. However, DEVS is not in-
tended for software design and development. Thus, it is es-
sential to provide support for the evolution from DEVS 



models to equivalent software components that can operate 
on the complexity of embedded environments.  
 Different tools help in implementing the four functions 
required to build atomic DEVS models, and to declare the 
structural relationships required to build coupled DEVS 
models (see [14], [15], and [16], among others). In particu-
lar, ECD++ [17] is able to define and execute DEVS models 
in embedded environments with real-time capabilities, al-
lowing users to develop Hardware-In-The-Loop (HIL) ap-
plications. 
 
2.1. Network Processors 
A Network Processor (NP) is a class of System-on-a-Chip 
(SoC) that combines the flexibility of generic purpose CPUs 
with high performance special-purpose circuits to transmit 
packets at line speed [18]. An NP combines heterogeneous 
devices into a single integrated circuit, including general-
purpose processors, special-purpose microcontrollers, 
switch units, cryptographic units, memory controllers, etc. 
In our case, we used a 2.5 Gbps Intel IXP2400 processor 
[19]. This NP is structured in two levels: the Slow and the 

Fast Data Paths. The first one is a generic-purpose XScale 
processor (ARM V5TE, 600 MHz, 32 bit) called the Core 
processor, running RT Linux. The Fast Data Path consists of 
a cluster of 8 multithreaded RISC microcontrollers (600 
MHz, 32 bits, called MicroEngines, ME), implementing a 
six-stage pipeline with a single clock cycle to complete. The 
IXP2400 allows the design of flexible reconfigurable rules 
in the Core, so that they can adapt dynamically without hin-
dering the ability of the MEs to sustain their nominal packet 
processing [20]. Figure 1 (Left) shows the hardware archi-
tecture of this NP along with its associated software archi-
tecture (Right). Its design makes it possible to embed 
ECD++ in the Core, and use NP libraries to communicate 
ECD++ with the MEs. In this processor, network packets 
are transmitted via the Media Switch Fabric (MSF), which 
provides access to external managers of the network physi-
cal layer. The packets are received, processed and transmit-
ted by Microcode running in the MEs. If needed, exception 
packets can be sent to the Core for special treatment. MEs 
do not have an operating system and are programmed in As-
sembler or MicroC, an adapted version of ANSI C. 

 
Figure 1. ECD++ embedded on an Intel IXP2400 NP 

 The MEs provide 8 hardware threads each, and use 
hardware signals to manage the context switching with zero 
latency. These characteristics, together with local low laten-
cy access registers, make it possible to handle packets at line 
speed. Internal timers provide a real-time accuracy of 16 
clock cycles (~0.26 ns). Memory is organized hierarchically, 
and is shared between the ME and the Core: SRAM (8 Mb) 
and DRAM (256 Mb) are external (accessed both by the 
MEs and the Core) and a scratchpad memory (16 Kb) is 
used for fast signaling between ME threads and the Core 
(interrupts, data sharing, ring structures). Local Memory 
(2Kb per ME) provides low latency communication between 
MEs (not accessible by the Core). Special Next Neighbor 
(NN) registers can be accessed only by 2 adjacent MEs. Lo-
cal memory access needs 1 clock cycle, the Scratchpad 60, 
SRAM 150, and DRAM 300 cycles. MEs operate much 
faster than the external memory, (instructions in 1 clock cy-
cle), thus memory access is a source of blocking.  

 The orchestration of software tasks running at the Core 
with those running at the MEs is achieved by the standard 
Intel Internet Exchange Architecture (IXA) [21]. A network 
application based on IXA consists mainly of a pipeline of 
tasks applied to a stream of packets. Several tasks are dis-
tributed to MEs using different load balancing strategies.  

3. ECD++ IN A NETWORK PROCESSOR 
Figure 1 also shows the relationship between the NP hard-
ware architecture and the IXA software architecture. At the 
Slow/Fast paths we can see three main libraries: Core Com-
ponents (CC), Resource Manager (RM) and MicroBlocks 
(MB). CC is an Application Program Interface (API) that al-
lows the creation of Linux kernel modules in the Core, 
which in turn uses the RM API to access the memory struc-
tures shared between the Core and the ME. As the same 
memory locations are referenced differently on each of 
them, the MEs use the MB API to access the shared 



memory using their own pointer structure. We mapped two 
components into these software levels: ECD++I/O Core is a 
Core Component invoked by ECD++ to communicate 
DEVS models with protocols at the Fast Data Path. 
ECD++I/O microblock is a piece of Microcode at the ME 
level that communicates with DEVS models at the Core lev-
el by “importing” variable shared at both processing levels.  
 From a DEVS modeler’s perspective, the only require-
ment to communicate with MEs will be to agree with 
MicroBlock developers upon shared variable names. 
ECD++ will execute DEVS models at the Slow Data Path, 
and the subsystems representing “the network” will be re-
placed by ports to and from the real network hardware (i.e., 
the Fast Data Path with MEs running packet protocols). 

4. IMPLEMENTATION 
ECD++ was ported into the Core of the NP, and new librar-
ies were developed for DEVS models to communicate with 
the traffic management layers, allowing embedded DEVS 
models to control high performance network packets.  

4.1. Interface Library 
The interface libraries allow any ECD++ atomic model to 
access variables in shared memory space with the MEs us-
ing the services SetIXAVar() and GetIXAVar(). Each atomic 
model interacts with MEs by meeting three requirements: 
 - Declaring one parameter of the atomic model as an 
IXA Variable. This is done in the coupled model (independ-
ent from the behavioral code), which specifies the structure 
of the coupled model and parameters for atomic models. 
 - Including the ECD++IXA_Library.h header in the 
atomic model’s .cpp file. This provides the interfaces to in-
voke the SetIXAVar() and GetIXAVar() methods.  
 - Associating a block of Microcode to run on the ME 
space. The Microcode must import the same IXA Variable 
from the Core space. 
 The communication is resolved transparently through 
the ECD++I/OLibrary (Figure 2, Left). A SW/HWMapper 
DEVS atomic model uses the communication infrastructure 
to share variables with ECD++Micro-block Microcode.

 

 
Figure 2. Left: ECD++ Input/Output libraries for IXA. Right: Automatic generation process. 

 Thus, Mapper models manage the access to the various 
shared external variables, encapsulating this functionality 
away from the rest of the models defining the dynamic spec-
ification of the system. The ECD++IOCore_Interface can 
be used from a console for monitoring or modifying shared 
variables, while ECD++ simultaneously operates on them. 

4.2. Automatic Interface Generation 
The IXA communication interfaces provide services to a set 
of user-defined IXA Variables. The libraries must be rebuilt 
whenever variables are added, removed or renamed. To do 
so, we designed a flexible mechanism for the generation of 
libraries, which automatically detects the IXA Variables de-
clared by the modeler.  
 As seen in Figure 2 (Right), there are five steps to pro-
duce libraries accessible for a DEVS atomic model. Steps 1 
and 2 were discussed in the previous Section; they are need-
ed to access IXA variables. These steps are the same for 
each ECD++ Mapper model. Steps 3 and 4 use Perl scripts 

to parse the coupled model file and generate libraries based 
on IXA variables declared. After the libraries have been 
generated, they are included to compile a new ECD++ simu-
lator executive (Step 5). The binary obtained runs in the tar-
get processor (IXP2400 in our case). This mechanism auto-
mates the definition of Mapper models, hiding many low-
level implementation details. This procedure assumes that, 
for each IXA Variable declared in a Mapper model, there 
will be a counterpart of Microcode (run in MEs) explicitly 
declaring the same IXA Variable name within the Core 
memory space (microcoding details are out the scope of this 
paper; it involves a development environment, tools, and 
code very specific to the underlying hardware; this infor-
mation adds little value to modelers). The automatically 
generated interface code does not alter model behavior or 
the model coupling structure. Instead, it provides means for 
accessing low level, technology-specific memory positions 
from the code that implements the model logic. In this way, 
the modeler does not need to deal with platform-specific de-



tails. The overhead required to invoke the interfaces (from 
an ECD++ internal or external transition function) stay 
within the documented bounds for standard read/write oper-
ations between IXA Core Components and MEs [18,19]. 
This is an a priori knowledge a model developer must han-
dle about the hardware environment.  

4.3. Case study A: Basic Event Counter 
We show the emulation of a traffic event monitor as a basic 
proof of concept for our methodology. An IXA Variable 
EventCounter will provide information about the number of 
certain traffic events occurring at the MEs, getting incre-
mented by the MEs when the monitored events occur. The 
ResetCommand will allow resetting EventCounter to zero. 
Additionally, the ResetCommand  code number may be con-
sumed by the ECD++MicroBlock to perform additional ac-
tions. Figure 3 shows the coupled model definition for this 
example. The model includes a single atomic model named 
eventCounter (an instance of the trafficEventCounter atomic 
model type). Its outputs are sent through the port counter to 

the counterStatus coupled output port. trafficEventCounter 
uses two IXA Variables. The directive useIXAVar[0] indi-
cates that they are shared with Microcode running on ME 0. 
 
components : eventCounter@trafficEventCounter 
out : counterStatus 
Link : counter@eventCounter counterStatus 
[eventCounter] 
pollingPeriod : 00:00:02:000 
counterLimit : 30000000 
EventCounter : 0 %%useIXAVar[0] 
ResetCommand : 7 %%useIXAVar[0] 

Figure 3. IXA_EventCounter.ma Coupled Model 

 The atomic model trafficEventCounter (in Figure 5) 
queries the EventCounter IXA Variable (initialized to 0) in 
the ME, which counts the number of traffic events on each 
pollingPeriod. When EventCounter exceeds the 
counterLimit, the model must send a command through the 
IXA Variable ResetCommand. Command number 7 is inter-
preted by the Microcode as a request to reset EventCounter. 

 
trafficEventCounter::trafficEventCounter(...):Atomic(name),counter(addOutputPort("counter")) {} 
 
Model &trafficEventCounter::initFunction() { 
    EventCounter = getParameter( description(),"EventCounter" )  ; // IXA Variable 
    ResetCommand = getParameter( description(),"ResetCommand" ) ; // IXA Variable 
    state = Sleeping; 
    holdIn(active, pollingPeriod); // Time Advance ...} // End of Initialization   
 
Model &trafficEventCounter::internalFunction(...){ 
 switch (state) { 
     case Sleeping:   ... 
        currentCounter = GetIXAVar("EventCounter"); 
        state = Notifying; 
        holdIn(active, 0); // transmit immediately  
     case Notifying:  ... 
        if ( currentCounter > counterLimit ) 
           SetIXAVar("ResetCommand", strResetCommand);  
        state = Sleeping; 
        holdIn(active, pollingPeriod); ... 
} // End of Internal Transition Function  
 
Model &trafficEventCounter::outputFunction(...) { 
   switch (state) { 
         case Notifying:  // Transmit information observed 
               sendOutput(msg.time(), counter, currentCounter); ... 
} // End of Output Function 

Figure 4. trafficEventCounter Atomic model 

 Figure 5 shows some details about this model. The 
counter port defined in the constructor will output values 
read from the ME. During model initialization, initial values 
for the IXA Variables are taken from the coupled model file 
in Figure 4. The model can be in two states: Sleeping or No-
tifying. The model starts Sleeping, and waits pollingPeriod 
seconds before sending the next query for EventCounter. 
When this time is consumed, the internal transition function 
triggers, reading the new value of the counter with 
GetIXAVar("EventCounter"), and changes the model 
state to Notifying. This transient state (lifetime=0) triggers 
the output function, which sends the last counter value 

through eventCounter; then the internal transition decides 
whether or not to send a reset command. If so, the command 
SetIXAVar("ResetCommand",strResetCommand) 
writes the IXA Variable ResetCommand, and the Microcode 
running in the ME reacts to this change. Finally, the model 
returns to the Sleeping state for pollingPeriod seconds, re-
peating the cycle. Figure 5 shows the execution results of 
the IXA_Event Counter model embedded in the ENP-2611. 
 Figure 5 shows 10 seconds of RT execution, in which 
the atomic model eventCounter detects twice a condition 
where the counter in the ME exceeds the counterLimit 
threshold. In those cases, the system sends the expected re-



set command, which is reflected in a drop of the counter be-
low the threshold at the subsequent measurement period. 
 

 
Figure 5. IXA_EventCounter: ECD++ in the IXP2400. 

5. ADVANCED M&S TOOLS  
CD++Builder [22] is an Eclipse plugin [5] for developing 
DEVS models integrating various existing tools within a 
common environment. It reduces the learning curve for new 
users and simplifies the definition and simulation of DEVS 
models. CD++Builder’s graphical editors for coupled and 
atomic models enhance usability through a standard Eclipse 
GUI, and allow users to specify complex DEVS systems 
without programming, reusing existing libraries. Eclipse is a 
popular cross-platform environment with a familiar inter-

face for users. It provides a framework designed to be ex-
tensible, making it easy to incorporate new functions within 
the same platform. Here, we extended CD++Builder in or-
der to enable ECD++ DEVS models to be created and visu-
alized using graphical notations, simplifying the building 
process for the embedded targets.  
 Figure 6 (Right) shows CD++Builder general features, 
including assistance for building embedded DEVS models 
for the IXA architecture. The graphical editor for DEVS 
coupled models (shown on the center pane) was extended in 
this work to support IXA Variable declarations. Atomic 
models that make use of IXA Variables can be represented 
graphically, and ECD++ simulation results that run on the 
embedded target can be visualized graphically. The compi-
lation process now supports ECD++ integration into the NP, 
following the workflow in Figure 2 (Right), needed for gen-
erating customized IXA libraries. The ECD++ build process 
can run automatically, and the build process can be custom-
ized to configure the different parameters using a GUI. 
CD++Builder performs all the steps required to obtain an 
ECD++ binary executable on an IXA-compliant platform 
automatically. This reduces errors when running the ECD++ 
build tasks, expediting the experimentation process. The 
build flow runs integrated within the same environment 
used to design the models and visualize simulation results. 

 
Figure 6. Left: Virtual Laboratory. Right: CD++Builder M&S Environment 

 
5.1. Virtual Lab 
Experimentation with the IXP2400 processor and the refer-
ence IXA architecture offers great power and flexibility to 
develop embedded applications for network control. How-
ever, installation and configuration of the many tools and li-
braries consists of tedious error-prone tasks, and experts’ as-
sistance, sometimes taking full working weeks. To solve 
these problems, we developed a reference virtual laboratory 
containing all the necessary infrastructure, tools and librar-
ies set up in easily portable virtual machines. This provides 
an environment ready to create, test, and execute embedded 

DEVS models using the IXP2400 processor and the IXA 
reference architecture. Figure 6 (Left) shows a scheme of a 
testbed including the virtual laboratory combining logical 
and physical information. At the bottom of the figure, 
LinuxHost and WindowsHost represent virtual machines. In 
a separate machine (Host PCI) the RadiSys ENP-2611 
board is connected in a PCI slot, administered via a dedicat-
ed Ethernet subnet and a terminal via RS232. If required, 
both physical machines can be collapsed into a single one. 
 To enable the execution of all the development tools, 
three operating systems are installed: Embedded Linux 



(MontaVista) on the ENP-2611; Linux on LinuxHost (in-
cluding the SDKs provided by Intel and RadiSys, ECD++, 
and the tools presented in this paper: the automatic genera-
tor of libraries for ECD++/IXA and the advanced 
CD++Builder GUI) and Windows on WindowsHost (needed 
to develop Microcode for the MEs using Developer Work-
bench, an advanced IDE provided by Intel).  
 CD++Builder in LinuxHost is used to design and devel-
op control systems based on DEVS; the Developer Work-
bench on WindowsHost is used to create Microcode for the 
MEs. When both the DEVS models and the Microcode are 
ready, binary files are downloaded to the IXP2400 processor 
through automated scripts. After performing integrated real-
time tests, results analysis can be conducted using the log 
files generated by ECD++ on embedded Linux, accessed via 
an NFS server mounted on the LinuxHost. This laboratory 
can be replicated, eliminating any preliminary effort before 
developing models for IXP2400 with CD++Builder.  

5.2. Case Study B: Supervisory Control System 
We now present a DEVS-based supervisory control system 
for Quality of Service (QoS) to monitor the traffic rate (TR) 
of packets, accepting dynamic policies for adapting its con-
trol rules. Reconfigurations occur at the Core of the NP, 
without risking the ability of the MEs to sustain nominal 
packet throughput. Depending on the policies and the state 
of TR, the system sends updated control actions to low-level 
algorithms at the MEs to enforce queue length management. 
 The information to and from MEs is delivered through 
Mapper models. All DEVS models impose their own over-
head and also experience extra delays when interfacing with 
the MEs. Yet, this is the standard scenario for any code run-
ning at the Slow Data Path, regardless of which methodolo-
gy it is developed with. In our methodology, the first step is 
to verify system behavior completely simulated in ECD++ 
(i.e., models run in the Core, not interacting with the MEs). 
  

 
Figure 7. Left: Verification (embedded simulation). Right: Validation (embedded HIL execution) 

 
Figure 7 (Left) shows a diagram of the control models. Traf-
fic Actuator and Traffic Sensor are responsible for sending 
control commands and sense the TR, respectively. These 
models communicate with their counterparts QoS Shaper 
and Metering System, which emulate the packet processing 
hardware. Having verified the basic functionality of the QoS 
Controller model under a simplified scenario (using synthet-
ic traffic generated by DEVS models) we proceed with the 
validation step under a realistic scenario: the Controller, Ac-
tuator and Sensor DEVS models are not changed, but now 
communicate with the real packet processors (MEs). In Fig-
ure 8 (Right) the actual hardware replaces the set of models 
that emulated its functions. This is possible thanks to the 
DEVS Mapper models (QoS Shaper SW/HW and Meter 

SW/HW), which operate as interfaces with MEs through the 
IXA Variables. A low-level algorithm running on the MEs 
should be able to apply Active Queue Management(AQM) 
techniques to ensure an average queue length, as indicated 
from the controller. In turn, the MEs make available updated 
information to the supervisory control about the number of 
packets transmitted at a given period. Thus, a QoS supervi-
sory system designed with ECD++ can supervise an AQM  
controller by adjusting its set-point following a set of rules 
which may also vary according a QoS Policy Manager. 
 Figure 8 (Left) shows a snapshot of the QoS Control 
system modeled with CD++Builder. Figure 8 (Right) shows 
a DEVS Graph representing the control rules. The states re-
flect the condition of the packet processing system. The 
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controller uses the rateThreshold to classify the intensity of 
traffic (High or Low). Initially, if TR > rateThreshold, the 
model transitions to state 1 and time T increases. If TR ≤ 
rateThreshold, the controller transitions to state 3. States 

combine the TR level (High or Low) and the amount of un-
interrupted time T (Transient or Sustained) during which a 
given TR level is held. sustainedThreshold distinguishes be-
tween 2 values for the TR rate (Transient or Sustained).

 Figure 8. QoS_Control for IXP2400. Left: ECD++ Model within the CD++Builder GUI. Right: TrafficQoSControl logic. 
 

 When T crosses the sustainedThreshold, the model 
evolves from 1 to 2 depending on whether the system was in 
a high TR level or low TR level, respectively. When the 
traffic rate crosses the rateThreshold, T is reset and the state 

returns to 1 or 2. Both thresholds are parameters defined at 
the trafficQoSControl atomic model. Also the commands to 
be sent to AQM every time there is a state change in the 
state machine are initialized as parameters.  

 

 
Figure 9. Real time simulation results 

 
 The trafficActuator block (responsible for sending these 
commands) ignores the difference between a standard 
DEVS model and a DEVS Mapper (capable of communi-
cating with MEs). The Mapper role is accomplished by the 
trafficShaper model, declaring IXA Variables and invoking 

the SetIXAVar() service. Following the steps outlined in 
Section 4, an executable binary and ECD++/MEs communi-
cation libraries are generated for the QoS_Control system. 
 The validation step is done by placing a traffic genera-
tor in the LinuxHost server of the virtual laboratory (IP 
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192.168.25.3, see Figure 7, Left) generating packets for a 
Client machine (192.168.25.5). The route implies traffic 
passing through the ENP-2611, making the control system 
will react to real traffic measurement package. Experimental 
results are shown in Figure 9. The TR average level, meas-
ured by trafficSensor/trafficMeter every 1 second can be ob-
served in the upper temporal sequence (receiveTraffic port). 
In the lower temporal sequence (receiveShapeAction port) 
we can validate the expected behavior for the state machine, 
which sends the correct sequence of commands to the ME. 
In turn, the temporal sequence for the receiveCommand port 
shows the states to which trafficQoSControl state machine 
transitions to. Therefore, we see that the supervisory control 
system reacts as desired to changes in the sensed variables. 
 
6. CONCLUSIONS 
We introduced new tools supporting a DEVS-based M&S 
methodology to implement real-time embedded network 
controllers. We obtained a simplified process that can pro-
duce final software products from DEVS models to embed 
them in the target hardware, and to execute in real-time in-
terconnected with specialized traffic microcontrollers.  
 The ECD++ DEVS real-time simulator was embedded 
into the Intel IXP2400 hybrid network processor. By means 
of interface libraries DEVS models can interact with a clus-
ter of in-chip microcontrollers for high performance packet 
handling. The continuity of DEVS models is guaranteed by 
encapsulating the interface with external hardware into spe-
cial Mapper models, which invoke setter and getter func-
tions to interact with low-level communication drivers. 
 CD++Builder environment provides visual modeling 
capabilities and automate the code generation of interface 
libraries for Mapper models, greatly enhancing the process 
of designing embedded systems for network control. This is 
one of many tools included in a portable Virtual Lab we 
built to facilitate experimentation with ECD++ and the 
RadiSys ENP-2611 networking board (based on the 
IXP2400 processor). Tools are pre-installed in virtual ma-
chines making it possible to easily reproduce the Lab, start 
developing controllers and deploy them for quick validation 
on hardware.  
 The examples studied show that final implementation 
and validation of DEVS-based network controllers can be 
carried out successfully; completely eliminating the need for 
adapting neither logic nor structure when evolving from 
standalone simulations (verification phase) to Hardware-In-
The-Loop executions (validation phase).  
 The methodology promotes engineering solutions fully 
based on DEVS modeling and simulation. 
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