
M&S-BASED DESIGN OF EMBEDDED CONTROLLERS ON NETWORK PROCESSORS

Rodrigo Castro1, Iván Ramello2, Matías Bonaventura1, Gabriel A. Wainer3

1 Departamento de Computación
Universidad de Buenos Aires.

FCEyN. Ciudad Universitaria, Pabellón I.
(1428) Buenos Aires. Argentina.
{rcastro,abonaven}@dc.uba.ar

2 Departamento de Computación
Universidad Nacional de Rosario

FCEIA. Pellegrini 250
(2000) Rosario, Argentina.
iramello@fceia.unr.edu.ar

3 Department of Systems and
Computer Engineering.

Carleton University. 1125 Colonel
By Dr. Ottawa, ON. Canada.

gwainer@sce.carleton.ca

Abstract
We introduce advanced techniques to develop embedded re-
al-time controllers for networking applications using a
Modeling and Simulation (M&S) based methodology. Our
solution relies on the DEVS formalism and the Embedded
CD++ (ECD++) real-time simulator. We show how DEVS-
based prototypes can be embedded in the target hardware,
consisting of an Intel IXP2400 Network Processor. We de-
veloped interface libraries allowing DEVS models to inter-
act with specialized microcontrollers for high performance
packet handling. We also introduce a portable Virtual Lab
for developing prototypes and deploying them for quick val-
idation on a real-world network. Our approach provides
model continuity, eliminating the need for adapting logic or
structure of the controllers when evolving from standalone
simulations to execution in the target platform.

1. INTRODUCTION
Although the software engineering community has attempt-
ed to define and use formal methods for developing embed-
ded real-time systems, attempts have not been successful.
Most existing formal methods are still difficult to scale up.
Instead, modeling and simulation (M&S) techniques have
shown to be a cost-effective approach to solve this problem.
Nevertheless, when a project evolves toward the final target
platform, most initial models and simulations are abandoned
[1]. To deal with these issues, we introduced an approach
based on the DEVS formalism [2]. The method combines
the advantages of a practical approach with the strictness of
a formal method: models initially used for specification,
simulation, and verification are preserved for validation and
implementation [3].
 Our goal is to provide a procedure completely based on
DEVS models, to be embedded in the target hardware, run
in real-time, and can be connected to external hardware
transparently. The strategy provides model continuity by
encapsulating the interaction with external hardware in spe-
cial atomic models (Mappers) that are capable of interacting
with control interfaces (Drivers) for each device. To achieve
our goals, we used the DEVS-based ECD++ (Embedded
CD++) M&S tool [4], and embedded it on an Intel IXP2400
Network Processor (NP). Then, we equipped the software
with interface libraries for communication between the
DEVS engine and the hardware. Setting up and tuning an
operational suite of hardware and software tools for experi-
mentation with NPs can be tedious and complex. Moreover,

in that context, implementing executives and low-level li-
braries can be a time-consuming and error prone. To cope
with these difficulties we introduce a portable Virtual Lab
for experimentation with ECD++ and the RadiSys ENP-
2611 networking board [5] based on the IXP2400.

2. BACKGROUND
Different techniques have been proposed to achieve continu-
ity and consistency of models when implemented in embed-
ded systems. For example BIP [6] defines the components
as a superposition of three layers: Behavior (a set of transi-
tions), interactions (between transitions) and Priorities (to
choose between transitions). BIP preserves properties during
model composition and supports analysis and transfor-
mations between heterogeneous boundaries (timed/not
timed, synchronous/asynchronous, event-triggered/data-
triggered). Metropolis [7] is an environment for electronic
system design that supports specification, simulation, formal
analysis, and synthesis. It is based on meta-models with
formal semantics, and it captures the design at a high level
of abstraction, implementing different Models of Computa-
tion (MoC). Ptolemy II [8] allows hierarchical and struc-
tured modeling of heterogeneous systems using a specific
MOC that provides data flow and control flow. ECSL (Em-
bedded Systems Control Language) [9] supports the devel-
opment of distributed controllers, including a specific do-
main environment for automotive systems (extending the
Matlab family with capabilities for specification, verifica-
tion, planning, performance analysis, etc.) SystemC and
Esterel are system level languages used to simulate and run
models that have benefitted from a growing industry adop-
tion [9] SystemC represents hardware and software systems
at different levels of abstraction, allowing choosing the de-
sired level for each component. Esterel is used to synthesize
hardware and software through a language based on reaction
and high-level statements to handle concurrency. One of the
most popular techniques is UML-RT, which provides an ob-
ject-oriented methodology [11]. In [12] the authors propose
a comparison between UML-RT and DEVS showing that
despite Profile UML-RT specify time, planning, and per-
formance using UML objects, they are not formally defined.
 DEVS theory [2] provides sound semantics for repre-
senting structure, behavior, and time, leading to a well-
defined and unambiguous MoC. However, DEVS is not in-
tended for software design and development. Thus, it is es-
sential to provide support for the evolution from DEVS

models to equivalent software components that can operate
on the complexity of embedded environments.
 Different tools help in implementing the four functions
required to build atomic DEVS models, and to declare the
structural relationships required to build coupled DEVS
models (see [14], [15], and [16], among others). In particu-
lar, ECD++ [17] is able to define and execute DEVS models
in embedded environments with real-time capabilities, al-
lowing users to develop Hardware-In-The-Loop (HIL) ap-
plications.

2.1. Network Processors
A Network Processor (NP) is a class of System-on-a-Chip
(SoC) that combines the flexibility of generic purpose CPUs
with high performance special-purpose circuits to transmit
packets at line speed [18]. An NP combines heterogeneous
devices into a single integrated circuit, including general-
purpose processors, special-purpose microcontrollers,
switch units, cryptographic units, memory controllers, etc.
In our case, we used a 2.5 Gbps Intel IXP2400 processor
[19]. This NP is structured in two levels: the Slow and the

Fast Data Paths. The first one is a generic-purpose XScale
processor (ARM V5TE, 600 MHz, 32 bit) called the Core
processor, running RT Linux. The Fast Data Path consists of
a cluster of 8 multithreaded RISC microcontrollers (600
MHz, 32 bits, called MicroEngines, ME), implementing a
six-stage pipeline with a single clock cycle to complete. The
IXP2400 allows the design of flexible reconfigurable rules
in the Core, so that they can adapt dynamically without hin-
dering the ability of the MEs to sustain their nominal packet
processing [20]. Figure 1 (Left) shows the hardware archi-
tecture of this NP along with its associated software archi-
tecture (Right). Its design makes it possible to embed
ECD++ in the Core, and use NP libraries to communicate
ECD++ with the MEs. In this processor, network packets
are transmitted via the Media Switch Fabric (MSF), which
provides access to external managers of the network physi-
cal layer. The packets are received, processed and transmit-
ted by Microcode running in the MEs. If needed, exception
packets can be sent to the Core for special treatment. MEs
do not have an operating system and are programmed in As-
sembler or MicroC, an adapted version of ANSI C.

Figure 1. ECD++ embedded on an Intel IXP2400 NP

 The MEs provide 8 hardware threads each, and use
hardware signals to manage the context switching with zero
latency. These characteristics, together with local low laten-
cy access registers, make it possible to handle packets at line
speed. Internal timers provide a real-time accuracy of 16
clock cycles (~0.26 ns). Memory is organized hierarchically,
and is shared between the ME and the Core: SRAM (8 Mb)
and DRAM (256 Mb) are external (accessed both by the
MEs and the Core) and a scratchpad memory (16 Kb) is
used for fast signaling between ME threads and the Core
(interrupts, data sharing, ring structures). Local Memory
(2Kb per ME) provides low latency communication between
MEs (not accessible by the Core). Special Next Neighbor
(NN) registers can be accessed only by 2 adjacent MEs. Lo-
cal memory access needs 1 clock cycle, the Scratchpad 60,
SRAM 150, and DRAM 300 cycles. MEs operate much
faster than the external memory, (instructions in 1 clock cy-
cle), thus memory access is a source of blocking.

 The orchestration of software tasks running at the Core
with those running at the MEs is achieved by the standard
Intel Internet Exchange Architecture (IXA) [21]. A network
application based on IXA consists mainly of a pipeline of
tasks applied to a stream of packets. Several tasks are dis-
tributed to MEs using different load balancing strategies.

3. ECD++ IN A NETWORK PROCESSOR
Figure 1 also shows the relationship between the NP hard-
ware architecture and the IXA software architecture. At the
Slow/Fast paths we can see three main libraries: Core Com-
ponents (CC), Resource Manager (RM) and MicroBlocks
(MB). CC is an Application Program Interface (API) that al-
lows the creation of Linux kernel modules in the Core,
which in turn uses the RM API to access the memory struc-
tures shared between the Core and the ME. As the same
memory locations are referenced differently on each of
them, the MEs use the MB API to access the shared

memory using their own pointer structure. We mapped two
components into these software levels: ECD++I/O Core is a
Core Component invoked by ECD++ to communicate
DEVS models with protocols at the Fast Data Path.
ECD++I/O microblock is a piece of Microcode at the ME
level that communicates with DEVS models at the Core lev-
el by “importing” variable shared at both processing levels.
 From a DEVS modeler’s perspective, the only require-
ment to communicate with MEs will be to agree with
MicroBlock developers upon shared variable names.
ECD++ will execute DEVS models at the Slow Data Path,
and the subsystems representing “the network” will be re-
placed by ports to and from the real network hardware (i.e.,
the Fast Data Path with MEs running packet protocols).

4. IMPLEMENTATION
ECD++ was ported into the Core of the NP, and new librar-
ies were developed for DEVS models to communicate with
the traffic management layers, allowing embedded DEVS
models to control high performance network packets.

4.1. Interface Library
The interface libraries allow any ECD++ atomic model to
access variables in shared memory space with the MEs us-
ing the services SetIXAVar() and GetIXAVar(). Each atomic
model interacts with MEs by meeting three requirements:
 - Declaring one parameter of the atomic model as an
IXA Variable. This is done in the coupled model (independ-
ent from the behavioral code), which specifies the structure
of the coupled model and parameters for atomic models.
 - Including the ECD++IXA_Library.h header in the
atomic model’s .cpp file. This provides the interfaces to in-
voke the SetIXAVar() and GetIXAVar() methods.
 - Associating a block of Microcode to run on the ME
space. The Microcode must import the same IXA Variable
from the Core space.
 The communication is resolved transparently through
the ECD++I/OLibrary (Figure 2, Left). A SW/HWMapper
DEVS atomic model uses the communication infrastructure
to share variables with ECD++Micro-block Microcode.

Figure 2. Left: ECD++ Input/Output libraries for IXA. Right: Automatic generation process.

 Thus, Mapper models manage the access to the various
shared external variables, encapsulating this functionality
away from the rest of the models defining the dynamic spec-
ification of the system. The ECD++IOCore_Interface can
be used from a console for monitoring or modifying shared
variables, while ECD++ simultaneously operates on them.

4.2. Automatic Interface Generation
The IXA communication interfaces provide services to a set
of user-defined IXA Variables. The libraries must be rebuilt
whenever variables are added, removed or renamed. To do
so, we designed a flexible mechanism for the generation of
libraries, which automatically detects the IXA Variables de-
clared by the modeler.
 As seen in Figure 2 (Right), there are five steps to pro-
duce libraries accessible for a DEVS atomic model. Steps 1
and 2 were discussed in the previous Section; they are need-
ed to access IXA variables. These steps are the same for
each ECD++ Mapper model. Steps 3 and 4 use Perl scripts

to parse the coupled model file and generate libraries based
on IXA variables declared. After the libraries have been
generated, they are included to compile a new ECD++ simu-
lator executive (Step 5). The binary obtained runs in the tar-
get processor (IXP2400 in our case). This mechanism auto-
mates the definition of Mapper models, hiding many low-
level implementation details. This procedure assumes that,
for each IXA Variable declared in a Mapper model, there
will be a counterpart of Microcode (run in MEs) explicitly
declaring the same IXA Variable name within the Core
memory space (microcoding details are out the scope of this
paper; it involves a development environment, tools, and
code very specific to the underlying hardware; this infor-
mation adds little value to modelers). The automatically
generated interface code does not alter model behavior or
the model coupling structure. Instead, it provides means for
accessing low level, technology-specific memory positions
from the code that implements the model logic. In this way,
the modeler does not need to deal with platform-specific de-

tails. The overhead required to invoke the interfaces (from
an ECD++ internal or external transition function) stay
within the documented bounds for standard read/write oper-
ations between IXA Core Components and MEs [18,19].
This is an a priori knowledge a model developer must han-
dle about the hardware environment.

4.3. Case study A: Basic Event Counter
We show the emulation of a traffic event monitor as a basic
proof of concept for our methodology. An IXA Variable
EventCounter will provide information about the number of
certain traffic events occurring at the MEs, getting incre-
mented by the MEs when the monitored events occur. The
ResetCommand will allow resetting EventCounter to zero.
Additionally, the ResetCommand code number may be con-
sumed by the ECD++MicroBlock to perform additional ac-
tions. Figure 3 shows the coupled model definition for this
example. The model includes a single atomic model named
eventCounter (an instance of the trafficEventCounter atomic
model type). Its outputs are sent through the port counter to

the counterStatus coupled output port. trafficEventCounter
uses two IXA Variables. The directive useIXAVar[0] indi-
cates that they are shared with Microcode running on ME 0.

components : eventCounter@trafficEventCounter
out : counterStatus
Link : counter@eventCounter counterStatus
[eventCounter]
pollingPeriod : 00:00:02:000
counterLimit : 30000000
EventCounter : 0 %%useIXAVar[0]
ResetCommand : 7 %%useIXAVar[0]

Figure 3. IXA_EventCounter.ma Coupled Model

 The atomic model trafficEventCounter (in Figure 5)
queries the EventCounter IXA Variable (initialized to 0) in
the ME, which counts the number of traffic events on each
pollingPeriod. When EventCounter exceeds the
counterLimit, the model must send a command through the
IXA Variable ResetCommand. Command number 7 is inter-
preted by the Microcode as a request to reset EventCounter.

trafficEventCounter::trafficEventCounter(...):Atomic(name),counter(addOutputPort("counter")) {}

Model &trafficEventCounter::initFunction() {
 EventCounter = getParameter(description(),"EventCounter") ; // IXA Variable
 ResetCommand = getParameter(description(),"ResetCommand") ; // IXA Variable
 state = Sleeping;
 holdIn(active, pollingPeriod); // Time Advance ...} // End of Initialization

Model &trafficEventCounter::internalFunction(...){
 switch (state) {
 case Sleeping: ...
 currentCounter = GetIXAVar("EventCounter");
 state = Notifying;
 holdIn(active, 0); // transmit immediately
 case Notifying: ...
 if (currentCounter > counterLimit)
 SetIXAVar("ResetCommand", strResetCommand);
 state = Sleeping;
 holdIn(active, pollingPeriod); ...
} // End of Internal Transition Function

Model &trafficEventCounter::outputFunction(...) {
 switch (state) {
 case Notifying: // Transmit information observed
 sendOutput(msg.time(), counter, currentCounter); ...
} // End of Output Function

Figure 4. trafficEventCounter Atomic model

 Figure 5 shows some details about this model. The
counter port defined in the constructor will output values
read from the ME. During model initialization, initial values
for the IXA Variables are taken from the coupled model file
in Figure 4. The model can be in two states: Sleeping or No-
tifying. The model starts Sleeping, and waits pollingPeriod
seconds before sending the next query for EventCounter.
When this time is consumed, the internal transition function
triggers, reading the new value of the counter with
GetIXAVar("EventCounter"), and changes the model
state to Notifying. This transient state (lifetime=0) triggers
the output function, which sends the last counter value

through eventCounter; then the internal transition decides
whether or not to send a reset command. If so, the command
SetIXAVar("ResetCommand",strResetCommand)
writes the IXA Variable ResetCommand, and the Microcode
running in the ME reacts to this change. Finally, the model
returns to the Sleeping state for pollingPeriod seconds, re-
peating the cycle. Figure 5 shows the execution results of
the IXA_Event Counter model embedded in the ENP-2611.
 Figure 5 shows 10 seconds of RT execution, in which
the atomic model eventCounter detects twice a condition
where the counter in the ME exceeds the counterLimit
threshold. In those cases, the system sends the expected re-

set command, which is reflected in a drop of the counter be-
low the threshold at the subsequent measurement period.

Figure 5. IXA_EventCounter: ECD++ in the IXP2400.

5. ADVANCED M&S TOOLS
CD++Builder [22] is an Eclipse plugin [5] for developing
DEVS models integrating various existing tools within a
common environment. It reduces the learning curve for new
users and simplifies the definition and simulation of DEVS
models. CD++Builder’s graphical editors for coupled and
atomic models enhance usability through a standard Eclipse
GUI, and allow users to specify complex DEVS systems
without programming, reusing existing libraries. Eclipse is a
popular cross-platform environment with a familiar inter-

face for users. It provides a framework designed to be ex-
tensible, making it easy to incorporate new functions within
the same platform. Here, we extended CD++Builder in or-
der to enable ECD++ DEVS models to be created and visu-
alized using graphical notations, simplifying the building
process for the embedded targets.
 Figure 6 (Right) shows CD++Builder general features,
including assistance for building embedded DEVS models
for the IXA architecture. The graphical editor for DEVS
coupled models (shown on the center pane) was extended in
this work to support IXA Variable declarations. Atomic
models that make use of IXA Variables can be represented
graphically, and ECD++ simulation results that run on the
embedded target can be visualized graphically. The compi-
lation process now supports ECD++ integration into the NP,
following the workflow in Figure 2 (Right), needed for gen-
erating customized IXA libraries. The ECD++ build process
can run automatically, and the build process can be custom-
ized to configure the different parameters using a GUI.
CD++Builder performs all the steps required to obtain an
ECD++ binary executable on an IXA-compliant platform
automatically. This reduces errors when running the ECD++
build tasks, expediting the experimentation process. The
build flow runs integrated within the same environment
used to design the models and visualize simulation results.

Figure 6. Left: Virtual Laboratory. Right: CD++Builder M&S Environment

5.1. Virtual Lab
Experimentation with the IXP2400 processor and the refer-
ence IXA architecture offers great power and flexibility to
develop embedded applications for network control. How-
ever, installation and configuration of the many tools and li-
braries consists of tedious error-prone tasks, and experts’ as-
sistance, sometimes taking full working weeks. To solve
these problems, we developed a reference virtual laboratory
containing all the necessary infrastructure, tools and librar-
ies set up in easily portable virtual machines. This provides
an environment ready to create, test, and execute embedded

DEVS models using the IXP2400 processor and the IXA
reference architecture. Figure 6 (Left) shows a scheme of a
testbed including the virtual laboratory combining logical
and physical information. At the bottom of the figure,
LinuxHost and WindowsHost represent virtual machines. In
a separate machine (Host PCI) the RadiSys ENP-2611
board is connected in a PCI slot, administered via a dedicat-
ed Ethernet subnet and a terminal via RS232. If required,
both physical machines can be collapsed into a single one.
 To enable the execution of all the development tools,
three operating systems are installed: Embedded Linux

(MontaVista) on the ENP-2611; Linux on LinuxHost (in-
cluding the SDKs provided by Intel and RadiSys, ECD++,
and the tools presented in this paper: the automatic genera-
tor of libraries for ECD++/IXA and the advanced
CD++Builder GUI) and Windows on WindowsHost (needed
to develop Microcode for the MEs using Developer Work-
bench, an advanced IDE provided by Intel).
 CD++Builder in LinuxHost is used to design and devel-
op control systems based on DEVS; the Developer Work-
bench on WindowsHost is used to create Microcode for the
MEs. When both the DEVS models and the Microcode are
ready, binary files are downloaded to the IXP2400 processor
through automated scripts. After performing integrated real-
time tests, results analysis can be conducted using the log
files generated by ECD++ on embedded Linux, accessed via
an NFS server mounted on the LinuxHost. This laboratory
can be replicated, eliminating any preliminary effort before
developing models for IXP2400 with CD++Builder.

5.2. Case Study B: Supervisory Control System
We now present a DEVS-based supervisory control system
for Quality of Service (QoS) to monitor the traffic rate (TR)
of packets, accepting dynamic policies for adapting its con-
trol rules. Reconfigurations occur at the Core of the NP,
without risking the ability of the MEs to sustain nominal
packet throughput. Depending on the policies and the state
of TR, the system sends updated control actions to low-level
algorithms at the MEs to enforce queue length management.
 The information to and from MEs is delivered through
Mapper models. All DEVS models impose their own over-
head and also experience extra delays when interfacing with
the MEs. Yet, this is the standard scenario for any code run-
ning at the Slow Data Path, regardless of which methodolo-
gy it is developed with. In our methodology, the first step is
to verify system behavior completely simulated in ECD++
(i.e., models run in the Core, not interacting with the MEs).

Figure 7. Left: Verification (embedded simulation). Right: Validation (embedded HIL execution)

Figure 7 (Left) shows a diagram of the control models. Traf-
fic Actuator and Traffic Sensor are responsible for sending
control commands and sense the TR, respectively. These
models communicate with their counterparts QoS Shaper
and Metering System, which emulate the packet processing
hardware. Having verified the basic functionality of the QoS
Controller model under a simplified scenario (using synthet-
ic traffic generated by DEVS models) we proceed with the
validation step under a realistic scenario: the Controller, Ac-
tuator and Sensor DEVS models are not changed, but now
communicate with the real packet processors (MEs). In Fig-
ure 8 (Right) the actual hardware replaces the set of models
that emulated its functions. This is possible thanks to the
DEVS Mapper models (QoS Shaper SW/HW and Meter

SW/HW), which operate as interfaces with MEs through the
IXA Variables. A low-level algorithm running on the MEs
should be able to apply Active Queue Management(AQM)
techniques to ensure an average queue length, as indicated
from the controller. In turn, the MEs make available updated
information to the supervisory control about the number of
packets transmitted at a given period. Thus, a QoS supervi-
sory system designed with ECD++ can supervise an AQM
controller by adjusting its set-point following a set of rules
which may also vary according a QoS Policy Manager.
 Figure 8 (Left) shows a snapshot of the QoS Control
system modeled with CD++Builder. Figure 8 (Right) shows
a DEVS Graph representing the control rules. The states re-
flect the condition of the packet processing system. The

QoS Policy Manager

QoS Controller
Traffic

Actuator

Packet Processing
Pipeline

Traffic
Generator

Traffic
Consumer

Metering System

QoS Shaper

XScale
Linux User

Space

XScale
Linux Kernel

Space

Microengine
Space`

IXP2400
Chip

C/C++

Microengine C

DEVS Models
on ECD++

Packet Processing
Pipeline Traffic

Generator
Traffic

Consumer
Metering System

QoS Shaper

QoS Shaper
SW/HW
Mapper

SW/HW
Driver

SW/HW
Driver

HAL HAL

Meter
SW/HW
Mapper

Simulated DEVS QoS system. Simulated DEVS Packet Processing system. Executed DEVS QoS system. Real-World Packet Processing system.

IXP Core
Component
IXP Microengine
Component

Model-to-RealWorld
Component

SW/HW Transition
Component

IXP Built-in
Hardware Abstraction
Layer Library

Embedded Model
Component

ECD++ DEVS
Model

Traffic
Sensor

QoS Policy Manager

QoS Controller
Traffic

Actuator
Traffic
Sensor

controller uses the rateThreshold to classify the intensity of
traffic (High or Low). Initially, if TR > rateThreshold, the
model transitions to state 1 and time T increases. If TR ≤
rateThreshold, the controller transitions to state 3. States

combine the TR level (High or Low) and the amount of un-
interrupted time T (Transient or Sustained) during which a
given TR level is held. sustainedThreshold distinguishes be-
tween 2 values for the TR rate (Transient or Sustained).

 Figure 8. QoS_Control for IXP2400. Left: ECD++ Model within the CD++Builder GUI. Right: TrafficQoSControl logic.

 When T crosses the sustainedThreshold, the model
evolves from 1 to 2 depending on whether the system was in
a high TR level or low TR level, respectively. When the
traffic rate crosses the rateThreshold, T is reset and the state

returns to 1 or 2. Both thresholds are parameters defined at
the trafficQoSControl atomic model. Also the commands to
be sent to AQM every time there is a state change in the
state machine are initialized as parameters.

Figure 9. Real time simulation results

 The trafficActuator block (responsible for sending these
commands) ignores the difference between a standard
DEVS model and a DEVS Mapper (capable of communi-
cating with MEs). The Mapper role is accomplished by the
trafficShaper model, declaring IXA Variables and invoking

the SetIXAVar() service. Following the steps outlined in
Section 4, an executable binary and ECD++/MEs communi-
cation libraries are generated for the QoS_Control system.
 The validation step is done by placing a traffic genera-
tor in the LinuxHost server of the virtual laboratory (IP

1 2

3 4
t > Tth

Time Threshold

LOW

HIGH

Transient Sustained

Traffic QoS Control
atomic model logic

Rate
Threshold

Time Threshold = 6 sec
Rate Threshold = 5 pkt/sec

192.168.25.3, see Figure 7, Left) generating packets for a
Client machine (192.168.25.5). The route implies traffic
passing through the ENP-2611, making the control system
will react to real traffic measurement package. Experimental
results are shown in Figure 9. The TR average level, meas-
ured by trafficSensor/trafficMeter every 1 second can be ob-
served in the upper temporal sequence (receiveTraffic port).
In the lower temporal sequence (receiveShapeAction port)
we can validate the expected behavior for the state machine,
which sends the correct sequence of commands to the ME.
In turn, the temporal sequence for the receiveCommand port
shows the states to which trafficQoSControl state machine
transitions to. Therefore, we see that the supervisory control
system reacts as desired to changes in the sensed variables.

6. CONCLUSIONS
We introduced new tools supporting a DEVS-based M&S
methodology to implement real-time embedded network
controllers. We obtained a simplified process that can pro-
duce final software products from DEVS models to embed
them in the target hardware, and to execute in real-time in-
terconnected with specialized traffic microcontrollers.
 The ECD++ DEVS real-time simulator was embedded
into the Intel IXP2400 hybrid network processor. By means
of interface libraries DEVS models can interact with a clus-
ter of in-chip microcontrollers for high performance packet
handling. The continuity of DEVS models is guaranteed by
encapsulating the interface with external hardware into spe-
cial Mapper models, which invoke setter and getter func-
tions to interact with low-level communication drivers.
 CD++Builder environment provides visual modeling
capabilities and automate the code generation of interface
libraries for Mapper models, greatly enhancing the process
of designing embedded systems for network control. This is
one of many tools included in a portable Virtual Lab we
built to facilitate experimentation with ECD++ and the
RadiSys ENP-2611 networking board (based on the
IXP2400 processor). Tools are pre-installed in virtual ma-
chines making it possible to easily reproduce the Lab, start
developing controllers and deploy them for quick validation
on hardware.
 The examples studied show that final implementation
and validation of DEVS-based network controllers can be
carried out successfully; completely eliminating the need for
adapting neither logic nor structure when evolving from
standalone simulations (verification phase) to Hardware-In-
The-Loop executions (validation phase).
 The methodology promotes engineering solutions fully
based on DEVS modeling and simulation.

7. REFERENCES
[1] Wainer, G., Glinsky, E., MacSween, P. “A Model-Driven

Technique for Development of Embedded Systems Based on
the DEVS Formalism”. In Model-driven Software Develop-
ment - Volume II of Research and Practice in Software Engi-
neering. Springer-Verlag. 2005.

[2] Zeigler, B; Praehofer, H; Kim, T. 2000, “Theory of Modeling
and Simulation”, 2nd Ed. Academic Press.

[3] Saadawi, H., Wainer, G., Moallemi, M. “Principles of DEVS
Models Verification for Real-Time Embedded Applications”.
In “Real-Time Simulation Technologies: Principles, Method-
ologies and Applications”. Taylor and Francis. In Press. 2011.

[4] Wainer, G. "Discrete-Event Modeling and Simulation: A
Practitioner’s Approach". CRC Press, 2009.

[5] Budinsky, F., Brodsky, S.A., Merks, E. Eclipse modeling
framework. Pearson Education, 2003.

[6] Bozga, M., Basu, A., Sifakis, J. “Modeling heterogeneous re-
al-time components in BIP”. In Proceedings of SEFM 2006,
New York, NY. 2006.

[7] Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone,
C. and Sangiovanni-Vincentelli, A. "Metropolis: An integrat-
ed electronic system design environment". IEEE Computer,
36(4):45–52, 2003.

[8] Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J.,
Neuendorffer, S., Sachs, S., Xiong, Y. “Taming heterogenei-
ty-the Ptolemy approach”. Proceedings of the IEEE,
91(1):127–144, 2003.

[9] Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits J.,
Neema, S. “Developing applications using model-driven de-
sign environments”. Computer, 39(2):33–40, 2006.

[10] Brandt, J., Schneider, K. “How different are Esterel and
SystemC”. Forum on specification and Design Languages,
FDL 2007, Barcelona, Spain. 2007.

[11] Selic, B. "Using UML for modeling complex real-time sys-
tems" Languages, Compilers and Tools for Embedded Sys-
tems. LNCS vol. 1474. pp. 250-262. Springer Verlag, 1998.

[12] Huang, D., Sarjoughian, H. “Software and simulation model-
ing for real-time software-intensive systems”. Proceedings of
DS-RT. Budapest, Hungary. 2004.

[13] Cellier, F., Kofman, E. (2006). Continuous System Simula-
tion. Springer. New York.

[14] Sarjoughian, H, Zeigler, B. “DEVSJAVA: Basis for a DEVS-
based collaborative M&S environment”. Proc. of the Interna-
tional Conference on Web-based Modeling & Simulation, San
Diego, CA. 1998.

[15] Bergero, F., Kofman, E. “PowerDEVS. A Tool for Hybrid
System Modeling and Real Time”. Simulation: Transactions
of the Society of Modeling and Simulation International.
87(1-2) 113–132, 2010.

[16] Traoré, M. 2008, “SimStudio: a next generation modeling and
simulation framework”. Proceedings of SIMUTools 2008.
Marseille, France.

[17] Yu, J., Wainer, G. “E-CD++: a tool for modeling embedded
applications”. In Proceedings of the 2007 SCS Summer Com-
puter Simulation Conference. San Diego, CA. 2007.

[18] Comer, D. Network Systems Design Using Network Proces-
sors: Intel 2XXX Version. Prentice-Hall, Inc., 2005.

[19] Intel IXP2400 Network Processors. Intel Press, 2004.
[20] Gavrilovska, A., Kumar, S. and Schwan, K. “The execution of

event-action rules on programmable network processors”.
Proceedings of OASIS 2004. Boston, MA. 2004.

[21] Carlson, B. Intel Internet Exchange Architecture and Applica-
tions: A Practical Guide to Intel’s Network Processors. Intel
Press, 2003.

[22] Bonaventura, M., Wainer, G., Castro, R. “Advanced IDE for
modeling and simulation of discrete event systems”. In Proc.
of DEVS Symposium of Theory of Modeling and Simulation.
Orlando, FL. 2010.

	Abstract
	1. Introduction
	2. background
	2.1. Network Processors

	3. ECD++ IN A Network Processor
	4. Implementation
	4.1. Interface Library
	4.2. Automatic Interface Generation
	4.3. Case study A: Basic Event Counter

	5. Advanced M&S Tools
	5.1. Virtual Lab
	5.2. Case Study B: Supervisory Control System

	6. Conclusions
	7. References

