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Abstract
Data mining is the process of extracting patteromfdata.

A main step in this process is referred to as datavidely used by the machine

classification. In this work, we investigate theeusf the
Cell-DEVS formalism for classifying data. The cells a
Cell-DEVS based grid are individually very simplaitb

research field with many unfolded issues that agendd
currently investigated.

Classification, as one of the main data mininggas
deals with the categorization of data for its mefective
and efficient use. Classification techniques haweenb
learning and statistics
communities over the past several decd8gsin this task,
data is classified into different classes accordiogany
criteria, and not only in terms of their relativegortance or

together they can represent complex behavior amd afrequency of use. Classification, as a form of datalysis,

capable of self-organization. Three classifier ni@dare
implemented
scenarios are presented investigating the effect \dn

Neumann versus Moore neighborhood in the classifier

models. We show that effective classification perfance,

techniques, can be obtained from the collectiveabiehn of
discrete-event cellular grids.

1. INTRODUCTION

The rapid emergence of computer and database tecie®
has turned data processing into a challenging thak is
almost impossible to perform manually. Today's blases
contain numerous data with many independent atathu
that need to be considered simultaneously in dalextract
accurate system behavior. Human's limited capéaitgdata
processing has led to the need for automated ¢ixinaof
useful knowledge from huge databases.

Data mining and knowledge discovgiy[2] have been
widely recognized as core techniques in findingtsgic
information hidden in very large databases.
techniques focus on extracting new information fraharge
pool of data. This process requires the use ofistpated
data analysis algorithms to discover previously ngwn
valid patterns and relationships in large data. $¢tseover,
data mining is not only about collection and mamaget of
data, but it also includes analysis and prediction.

Data mining is a relatively young discipline witlide
and diverse applications. Some of the applicatiomains
in this field include: financial data analysis (elganking
and loan services), retail industry (e.g. on-lit®pping),
telecommunication industry (e.g. long-distance phtme
services), biological data analysis (e.g. bioinfatice and
biomedical research), intrusion detection (e.g.ermeét
security), and many other fields. Data mining iscaigoing

is a well-known method used for extracting models

using Cell-DEVS. Different simulation describing important data classes. Data classificaglong

with prediction, are used in predicting future datands
which are vastly used for pattern recognitig. Many

lassificati d dicti thods h b d
comparable to those produced by complex data mininC assification and prediction Methods nave beepyse

gy researchers, such as decision tree classifiglesbased
classifiers, k-nearest-neighbor classifiers, fuzzy logic
techniques, and many othddd. Most of these algorithms
suffer from memory constraints, limiting the applion of
the technique to small data sizes only. Develogicajable
classification and prediction techniques capablhanfdling
large-scale data set remains as a challenge ifighds

In a recent effor{5], Cellular Automata (CA)6] was
applied to data mining for the purpose of datasifastion.
The study made use of the powerful characteristic3A to
show that effective classification performance chea
achieved by very simple transition rules amongdékular
neighbors that make purely local decisions. Howettes
study does not compete with classical models ofa dat

Thesglassification, and the time complexity of the altion

grows as it is applied over larger cellular models.

We are thus interested in studying the applicatbn
Cellular Discrete Event System Specification (T#HVS)
[7] to resolve the data classification problem. ik@lCA,
Cell-DEVS does not require updating the entireutatl grid
at every time step. Rather, only cells with updateitjhbor
values are evaluated. This improvement overconestue
of the original CA by reducing the overall executicost,
leading to faster classifications over large-sadd¢a sets.
We have implemented different classification modedsg
the CD++ development environmd®{ which implements
Cell-DEVS theory and allows visualization of thelglar
models in real-time. The models used in this pager

similar to those studied 5] where the original CA



technique was applied to data classification. Wansthat by analyzing or learning from a training set. Teeand step
effective classification performance, comparablethose in data classification process is ensuriagcuracy. The
produced by complex data mining techniques, can baccuracy of a classifier on a given test set ispireentage
obtained from the collective behavior of discretere  of the data that is correctly classified. If thewaacy of the
cellular grids, which is composed of very simpléiscéhat  classifier is considered acceptable, the classifir be then
make local decisions solely based on the informatio used for similar future data sets.
gathered from their immediate neighbors. The models
presented here stand as the basis for explorirgrdating 2.2. Cellular Automata
with Cell-DEVS. Investigating more complex and nfatu A cellular automaton (CA)6] [9] [10] is a discrete dynamic
models and techniques are our next research directi system that provides a platform for performing cterp
towards DEVS-based data mining. _ computations based on local information only. CArave
The remainder of this paper is organized as f®low jnq4yced for the first time by Von Neumahiri] to study
Section 2 provides basic background on data cleasdn, self-reproducing systems. A CA is an infinite regun-
and cellular automata, and presents related rdsearthe dimensional lattice where each cell takes a finigdue.
scope of our work. Segtipn 3 descr.ibes an apprtmglsing Cells’ states are updated according to a local mlea
Ce_II-DE\_/S for data mining, and hlghllghts the bets;eb_f simultaneous, synchronous fashion at discrete ttegs.
using this methodolqu over the _classmal CA. Secil The automaton evolves by triggering a local tramsit
presents three clas§|f|er models |mplemgnted UQBQ' function on each cell, which uses the current siatbe cell
DEVS. in CD++ envwo_nment_. It also provides _some_lcbas and a finite set of nearby cells (called the negghbod of
experiments on two-dimensional patterns using wifie the cell). Neighbor cells can be in the local imiaeg or

cellular_neighborhood def_inition. Section 5 prowdée they can include remote cells. The two most widged

concluding remarks, and discusses our future relsgdan. neighborhoods are the Von Neumann neighborhoagli(Ei
1.A), in which each cell has neighbors to the nosituth,

east and west; and the Moore neighborhood (FiguBg, 1
which adds the diagonal cells to the northeast{he@st,

southwest and northwest.

2. BACKGROUND

2.1. Data Classification

Data mining is an interdisciplinary field, whichrabines a
set of disciplines including database systems,istits,
machine learning, visualization, and informatioriesce.
Moreover, depending on the kinds of data to be thineher . .
techniques such as pattern recognition, image sisaly

computer graphics or even bioinformatics might be
integrated as well. Therefore, the challenge idistinguish
among the different data mining systems, and taotifjethe
appropriate technique that best meets one’s needs.

An important part of data mining is pattern
classification. A data mining system has the paaérdf
generating thousands or even millions of pattdins. very
important to identify the patterns that are inténgs and
provide meaningful information. A pattern is coreied

useful if[1]: (1) it is easily understood by humans, (2) can
be validated with new or test data, and (3) is wlsehd
novel [1]. A data mining system is said to dmmplete if it
is able to generate all of the interesting patte@isviously
since it is often unrealistic and inefficient foatd mining
systems to generate all of the possible pattersgr-u
supplied constraints and conditions are used tmwagdown
the search. Data classification, as a form of datdysis is a
technique for identifying useful and interestingtpens by
focusing on predefined characteristics among tta dfthe
set being under study.

The process of data classification is implemertgd
first building a classifier that describes a predained set
of data classes or concepts. This step is refdoegb the
learning step (ortraining phase), since the classifier is built

A) (B)
Figure 1. Neighborhoods: (A) Von Neumann, (B) Moore

The grid is seeded with initial values, and thiea ¢tell
space evolves by executing a series of discretesteps. At
each timestep, called generation, each cell computes its
new value by evaluating the cells in its immediate
neighborhood. Based on these values, it then apjitiée
update rule to calculate its new state. Each celtetes the
same update rule, and all cells’ values are updated
simultaneously and synchronously. This update tales
into account only its neighboring cells, thus, ptecessing
is entirely local; avoiding any global or macro dyri
computation.

The global state of a CA strongly depends upon its
update rules. The simplicity of the update rules dne
overall interesting and complex patterns that cam b
obtained by CA, makes them a good candidate foloerp
data mining, and, specifically, data classificatiG# can be
used as form of instance-based learning where #iis c
represent points of the instance sp§g The cells are
connected according to the attribute value rangése
resulting instance space acts as the grid for wtiiehCA
evolves. The grid is seeded with initial value.(ithe



training instances), and the CA runs until a statle is
reached (convergence point). The intention is ¢edis with
similar class assignments will group and merge distinct
regions over the cell space.

2.3. CA and Classification
A number of studies have been proposed aiming iagus

CA models for classification. The model proposed[1j
uses a two dimensional CA, and an attribute thanghs
over time in order to provide a dynamic and aceurat
classification. This approach mixes a group ofgifes's to
improve the classification accuracy. The resultgorted
show that the iterative process of combining cfessi in
CA leads to superior accuracy, since a combinatbn
methods can be applied to a single model. Anothar C
classifier model proposed in[5] makes use of
multidimensional CA to classify data according tass
assignments. The study shows that effective gdmatian
can be achieved with very simple rules and celis thake
purely local decisions. The experiments presentethat
paper also reported that the performance obtaisedjCA

is comparable to the more traditional (and compldada
mining algorithms. The study in[13] provides an

enhancement over the model presentefbjirby modifying
the transition rules to make the new model surpghss
previous model in terms of performance and accurac
However, both of these studies still suffer frongthitime
complexity due to the discrete-time update natfi€/

CA has also been used in other domains of datmgin
The research presented[i¥] proposes a cellular automata
model that can be used in Neuroimaging, specifictdl
functional magnetic resonance imaging (fMRI) briamages
classification. The experimental results showedt tGA
outperformed the support vector machine classifoat

method[15] in terms of accuracy, sensitivity, specifigity

generation). Aiming at overcoming this limitatiori the
original CA, in this research we propose the useCeli-
DEVS for data classification. Cell-DEVS formalism
requires only those cells with sate change to raptdge
their evaluation rules leading to a major speedugr ¢the
conventional CA.

2.4. Céel-DEVSfor Datamining

Despite its widespread application, CA has two majo
limitations, making it computationally inefficienEirst, due
to its discrete-time nature, simulation precisiomda
execution efficiency is greatly restricted. Secgnéit each
time step, all the cells are evaluated synchropusl
incurring an unnecessarily computational cost wbely a
small fraction of the cells needs to be updatece Tell-

DEVS formalism[7] overcomes these issues by integrating

DEVS [17] and CA to present each cell as an atomic DEVS
model. Cell-DEVS solves the problem of unnecessary
processing burden in cells and allows for morecedfit
asynchronous execution, using a continuous timee,bas
without loosing accuracy. The formalism allows déafg an
n-dimensional cell space to represent complex gisevent
spatial models, where each cell is a DEVS atomicleho
allowing for specifying both temporal and spatielations
between model components. In this methodology, eath

)phanges state in response to the occurrence ofseirean

event-driven fashion.
A Cell-DEVS atomic model is defined §H38]:
TDC=<XVY,1,56,N,d, dn, Oxts I, A, D >,

where X is a set of external input eventg;is a set of
external output eventd; represents the model's modular
interface;Sis the set of sequential states for the @i the
cell state definition;N is the set of states for the input
events; d is the delay for the cellgy is the internal
transition function;d, is the external transition functiom;

and performance. Moreover, a data clustering andp the local computation functiontis the output function;

visualization model for cellular ants was preseriteflL6].
The CA provided a decentralized multi-agent systaat
can autonomously detect data similarity patterhssfering)

in multi-dimensional datasets and then determine th
corresponding visual cues, such as position, ccod
shape size, of the visual objects. The researcivshwo
new features of the cellular ant method: color simape size
negotiation because of combining CA insights wititad
clustering.

The major limitation of all of the previous stuslie
mentioned above is the time complexity of the CAdeils,
which grows exponentially especially when the spkice is
large and is composed of more than two dimensiQ#s.
requires updating all of the cell space at evemetistep.
This leads to major speedup drawbacks as mosteofehs
do not necessarily need to re-compute their ladaksr(their
state is the same from current generation to puosvio

andD is the state's duration function. The modularrfate
(I) represents the input/output ports of the cell ameir
connection to the neighbor cell. Communications ragno
cells are performed through these ports. The vahsested
through input ports are used to compute the fustate of
the cell by evaluating the local computation fuooti
7. Once 1 is computed, if the result is different from the
current cell’'s state, this new state value mussdrg out to
all neighboring cells informing the state changéhedwise,
the cell remains in its current state and therefareoutput
will be propagated to other cells. This will happenen the
time given by the delay function expires. Finalithe
internal, external transition functions and outfunctions
(A) define this behavior. Cell-DEVS improves execntio
performance of cellular models by using a disceatent
approach. It also enhances the cell's timing d&dini by
making it more expressive.



CD++ [8] is an open-source object-oriented modelingof @ given cell considering its immediate neighbgrias
and simulation environment that implements both BEV dictated by the Cell-DEVS model specification. Ihod our
and Cell-DEVS theories in C++. The tool provides amodels, a cell space is seeded with initial valaes| then
specification language that defines the model'pting, the ~ the model evolves through a series cell computatidine
initial values, the external events, and the Idcahsition ~ Simulation is divided into a number of generatiofseach
rules for Cell-DEVS models. CD++ also includes antimestep, a new generation starts, requiring eash to
interpreter for Cell-DEVS models. The languagedsdsl on compute its new value by examining its neighboreds.
the formal specifications of Cell-DEVS. The model Based on the values of its neighboring cells, télé then
specification includes the definition of the sizeda @applies its evaluation rule to compute its newest&tach
dimension of the cell space, the shape of the beidgtood cell executes the same rule, but only those cetls avnew
and the border. The cell's local computing functisn State broadcast their new status to their neighbocells.
defined using a set of rules with the fopostcondition ~ This will avoid the simultaneous and synchronoudate of
delay {precondition}_ These indicate that when the all the Ce”S, as in the Original CA. The simulatio
precondition is met, the state of the cell changes to thedenerations proceed until all cells are assigneldss.
designatedpostcondition after the duration specified by
delay. If the precondition is not met, then the nexterig 3.1 Two-class Classifier Model
evaluated until a rule is satisfied or there aremwe rules. Our first classifier model creates a 2-D cell sp#uat is
CD++ also provides a visualization tool, call@D++ initially seeded with two different classes. Celise
Modeler, which takes the result of the Cell-DEVS classified as eithefype 1 (cell's value = 1) offype 2 (cell's
simulation as input and generates a 2-D representafthe  value = 2) based on the following voting ru[bk

cell space evolution over the simulation time. Thaature 0 . class 1 neighbors + class 2 nsigh = 0

of the tool provides an interactive environmenbalhg for 1 . class 1 neighbors > class 2 nmigh

visual tracking of the classification process askes place 2 . class 1 neighbors < class 2 mgigs

over discrete timesteps. Rand({1,2}) : class 1 neighbors = class 2 neighbors
We propose using Cell-DEVS for data classificatiAn

model is presented as a cellular grid with inipaints that Given the above voting rules, the formal Cell-DEVS

are spread over the cell space. Using simple vatites, a  specification of the model is as follows:

cell's neighbors are examined and the cell's vahieet TDC=<X,VY,|,S,0,N, d,8, Sext, T, A, D >

according to the number of neighbors that aresetgiven X=Y=0

class. Such model can be constructed in any diroensi S={0, 1, 2}

allowing incorporating more sophisticated featurasd N ={(-1,0), (0,-1), (0,0), (0,2), (1,0)}

classification rules. The simplicity of the compidaal d=100 ms

rules and the ease of extending the model into &i-mu 7. N=>S

dimensional classifier makes Cell-DEVS a good chdir A 60 by 60 cell space was chosen, with a gridaiht

applying data classification for large-scale da&ssIn filled with zeros (no class), and 4 seeds (twoscef[Type 1,
addition, Cell-DEVS addresses major issues in datang  and two cells offype 2). A cell with a value of zero has not
regarding mining methodology, user interaction,been assigned any class. As the simulation evollkiesgrid

performance, and diverse data types. is filled with Type 1 andType 2 cells according to the results
of the evaluation rules, which are based on thkscehlue
3. CELL-DEVSCLASSIFIER MODELS and the value of its immediate neighbors. The model

In this section, we present our classifier modelseld on  specification in CD++ is presented below.
Cell-DEVS, and implemented in the CD++ environment.[1. [top]

Three different classifier models were constructaut L Somponents ¢ twoClass

examined with different data:

. type : cell
e A two-class data classifier with Von Neumann

. dim : (60, 60)

WO~ WN

. delay : transport
neighborhood . defaultDelayTime : 100
! . . . border : nowrapped
* A three-class data classifier with Von Neumann|9. neighbors : twoClass(-1,0) twoClass(0,-1)
. 10. neighbors : twoClass(0,0)twoClass(0,1l) twoClass(1l,0)
and Moore neighborhoods, and 11 ittt e

* A parabola data classifier with Von Neumann and|12. localtransition : twoClass-rule
13. [twoClass-rule]

Moore neigthI’hOOdS- 14. rule : 1 100 {statecount(l)>statecount(2) }
The purpose of these models is to show the alwlity |i5- rule : 2 100 {statecount(2)>statecount(l) }
. o . . .. 16. rule : 0 100 {statecount(l)=0 and statecount(2)=0}
Cell-DEVS theory in exploiting classification chateristics 17. rule : {if (uniform(0,1)>0.5,1,2)} 100
among the data set. We will show how simple eviunat { statecount(l)=statecount(2) }

. . 18. le : 0,0)} 100 t }
rules classify the data as a result of only locahputations rule (.00} {




Line 1 through line 11 show the specification bé t
model in terms of size, delay of each generatidre (t

the cell to be transmitted to the neighbors. Thection

statecount(n) returns the number of neighboring cells with

timestep from one generation to another which i® 10the valuen. The rule at line 17 shows a tie-breaking

msec.), and the neighborhood definition of each téhe
14 through line 18 present the evaluation rules tfor
classifier. These rules examine each cell's foughimors
and set its class to the majority class. Each pudsents the
resulting value of the cell if the condition pretshin the
brackets is met. It takes 100 milliseconds for thkie of

scenario where if the cell has equal numbecla$sl and
class2 neighbors, it will be assigned a class type based
the value returned by the random function. Thatfishe
generated random number, from the uniform distiilout
betweer0 and1, is larger thard.5, then the cell is assigned
to classl, otherwise, the cell’s value will be of typkass2.

*

Initial Generation 2

Generation 8

Final

Generation 15

Figure 2. Two-Class M odel with Von Neumann Neighbor hood

Figure 2 shows the simulation results, from five
different generations, from the beginning of thendation
throughout completion (all cells are assigned agjlaThe
rule-base nature of Cell-DEVS modeling scheme wadléor
applying rule-base data mining algorithms which #re
main techniques used in data classification. Thiéulae
rules apply theif-then rule-base data mining strategy by
examining only local information obtained from thell’'s
immediate neighbors. As we can see, the classditat

process forms gradually, where the two classest sta

distributing evenly. However, as the simulation lges,
overlapping between the two classes neighborsgeridie-
breaking scenarios, and random classification tffdloe
final layout. By looking at the final results ofetlyeneration,
we can see that the majority of the grid is filleidh Type2
cells, which indicates that based on our data ifiesson
rules and the initial seeds the data set was hag@uped

[

. rule : 1 100 {statecount(1l)> statecount(2) and statecount(l)> statecount(3)}

. rule :
. rule :

0 100 {statecount(1)=0 and statecount(2)=0 and statecount(3)=0}
{if (uniform(0,1)>0.66,1,if (uniform(0,1)>0.5,2,3))} 100

{ statecount(1l)=statecount(2) and statecount(2)=statecount(3) }
{if (uniform(0,1)>0.5,1,2)} 100 {statecount(l)=statecount(2)}
{if (uniform(0,1)>0.5,2,3)} 100 {statecount(2)=statecount(3)}
{if (uniform(0,1)>0.5,1,3)} 100 {statecount(l)=statecount(3)}
{(0,0)} 100 { t }

Line 1 through line 9 represent the rules for grssig
the cells to one of the three classes based omdjerity of
the neighboring cells’ class types. Line 10 indésathe rule
for an empty cell that remains unclassified as laagll of
its neighboring cells are empty as well. As in tive-class

2, rule : 2 100 {statecount(2)> statecount(l) and statecount(2)> statecount(3)}
3. rule : 3 100 {statecount(3)> statecount(l) and statecount(3)> statecount(2)}
4. rule : 1 100 {statecount(2)> statecount(3) and statecount(2)< statecount (1)}
5. rule : 1 100 {statecount(3)> statecount(2) and statecount(3)< statecount (1)}
6. rule : 2 100 {statecount(l)> statecount(3) and statecount(1l)< statecount(2)}
7. rule : 2 100 {statecount(3)> statecount(l) and statecount(3)< statecount(2)}
8. rule : 3 100 {statecount(l)> statecount(2) and statecount(1l)< statecount(3)}
9. rule : 3 100 {statecount(2)> statecount(l) and statecount(2)< statecount(3)}
1

1

= o

r12. rule :
13. rule :

14, rule :
15. rule :

into Type2 class showing that our classifier model was moremodel, tie-breaking rules were required to addréss

biased towards one of the class types. The resht&ned
from this model are in-line with the objectives déta
classification which are discovering previously oaotwn
valid patterns and relationships in a data setsiBylating
the two-class model we could recognize a patterongnthe
data set and clearly separate the two data tygesnexon
the cellular grid, proving the accuracy and comest of
our classifier model.

3.2. Three-classClassifier Model

The three-class model adds an extra data clase tgrid, to
observe how classification results are affectede Tell-
DEVS model specification is the same one usedhfertio-
class model. The only modification to the model's
implementation was updating the evaluation rulesl an
adding extra rules for the new class typgpe 3 (cell’'s
value = 3). The rules are as follows.

situations were a cell happens to have equal number
neighbors of different class types. Uniform randoomber
generation function was used to break the tie Isygasmg
priority based on the random number returned. Fstance,
line 13 shows the case where a cell is assighasd? if it
had equal number aflass2 and class3 neighbors and the
random number generator returns a value greateiOtba
Similarly, the 60x60 cell space was seeded witkeeh
classes and the simulation was carried out untilcells
were assigned a class. Figure 3 illustrates thaulation
results for five different generations. Similar sddication
behavior was observed as in the two-class modeé Th
classification spread of the three classes contirmenly
throughout the simulation generations until tie nec@s
start. The random number generator plays a bigifact the
final classification layout of the grid. The resulbf this
model show more complicated data classification ganmed



to the two-class model. Successful classificatiomasw
achieved even though extra data type and evaluaties
were used. This model shows the scalability of D&ENVS
in terms of performingmulti-type classification without
sacrificing accuracy or correctness.

Another distribution of the data was also studigdere
ambient data classification was modeled by plading
three different class types in an ambient fashidre same
model was used, with only changing the positionttaf
initial seeds. The simulation results are preseimegigure
4 showing the two classes that are surrounded d&yHind
class. More precisely, this model shows the cajpkoif
Cell-DEVS in classifying data sets that have irtaving
zones. The rule-based nature of the formalism ceaklly
handle multi-type classification while avoiding classes’
collision. As shown on the last frame of Figuretie blue

(i.e. the surrounding cells afypel). Moreover, the results
show that with the surrounding class, the other tlesses
happen to occupy almost same amount of cells regliflt a
more even classification.

In order to see how different neighborhood affetie
classification results, we have run the model whibih
normal and ambient distribution using Moore neighbod
definition as well. As was mentioned earlier in thaper,
Moore neighboring extends the cell's neighborhood b
including the diagonal cells as well, providing aomm
restricted classification. With Moore neighborhoaghch
evaluation rule needs to take into consideratiamr fmore
neighboring cells. On the other hand, when théscellue
is computed to a new value, eight neighboring callst be
updated as opposed to only 4 cells in the case @f V
Neumann neighborhood. The results obtained forsttrae

cells (lassl cells) form a barrier between the other twosimulation scenarios of the three-class model sesgnted

classes making the tie-breaking scenarios easitreasther
two classes can only have a tie scenario with ltird tlass

in Figure 5 and Figure 6.
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Figure 3. Three-Class M odd with Von Neumann Neighborhood and Normal Distribution of Initial Seeds
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Figure 5. Three-Class M odd with M oore Neighborhood and Normal Distribution of Initial Seeds

Comparing the results of the three-class modekund distribution of the classes. This was clearly obsdrin the
Von Neumann neighboring (Figure 3 and 4) with thoseambient model where the surrounded classes hadtseroo

obtained with Moore neighboring (Figure 5 and 6pveh

and more similar

distribution under Von Neumann

that Von Neumann neighborhood allows more evemeighboring.



Initial Generation 2

Generation 8

Generation 10 Final

Figure 6. Three-Class Model with M oore Neighborhood and Ambient Distribution of Initial Seeds

The results indicate that given the same dataasdt
applying the same decision rules, the overall diaaton
pattern is greatly affected by the decision paransetn this
example, such parameters were the cell’s neighloorho
definition, which affected the classification preseby
requiring a larger parameter set to be examineds,th
affecting the final class type decision for theggiwcell. This
tells us that data classification is a sensitivecpss that is
largely affected by small variations, requiring reg@se and
accurate mechanism for acceptable results and duglity
performance.

3.3. Parabola Classifier Model

Our third classifier model recognizes a parabokpshn the
cell space from initially seeded points. The maddelreated
based on the parabolic pattern by using the patisrra
boundary that divided the space. On the grid, goaitove
the parabola were assigneldssl and points below it are

classes of data are presented on the gyige 1 (with cell’s
value = 1) representing the parabola, &gpe 2 (with cell’s
value = 2) indicating the area under the parabdtain the
three-class model, two separate simulations wergeda
out: one with Von Neumann neighborhood, and a s#con
run with Moore neighborhood, while using the samigail
values at the same locations on the grid. Figuaad’Figure

8 illustrate the simulation results for this modéhder both
types of cells’ neighboring (Figure 7 with Von Neamm
neighborhood, and Figure 8 with Moore neighboring),
initially the distribution of the data classes aBgy similar,
however, as the simulation evolves the parabolitepa
produced under Moore’s neighborhood starts to ldtse
smooth shape. This was not observed under Von Newuma
neighboring as the parabola remained in a morepsaicke
shape throughout the simulation until completiorheT
parabola model shows that useful pattern classificacan

assignectlass2. The model definition is the same one usedbe obtained using cell-DEVS, indicating how classifion

in our two-class classifier model. We have only ified

the initial cells locations to form a parabola. $hanly two

can in fact be used to perform pattern recognition.
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Figure7. Parabola
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4, SUMMARY AND FUTURE WORK [5] T. Fawcett, “Data mining with cellular automata”.
This paper proposes the use of Cell-DEVS for datang, SIGKDD, vol. 10, issue 1, pp. 32-39. 2008.
specifically data classification. Three classifiendels were  [6] S. Wolfram, .A New Kind of Science. Champaign, IL:
implemented based on Cell-DEVS formalism using CD++  Wolfram Media. 2002.

modeling and simulation environment. Cell-DEVS theo [7] G. Wainer, “Discrete-Event Modeling and Simulation:

overcomes the limitations of the classic CA by diefy a
cellular grid consisting of atomic DEVS cells whiehe
only required to propagate their values if a neduas
computed compared to the previous simulation gdioara
This advantage provides a major benefit by reduding
overall time complexity especially for multi-dimeosal
data classification models. Moreover, the simpficind
locality of the evaluation rules in Cell-DEVS prdei a
scalable and simple technique for mining data siriiés,

making it a great choice for exploring cellular aat

a Practitioner's approach”. CRC Press. Taylor and
Francis. 2009.

G. Wainer, “CD++: A Toolkit to Develop DEVS
Models”, Software — Practice and Experience, 32(13)
pp. 1261-1306, 2002.

H. Gutowitz, Cellular Automata and the Sciences of
Complexity. Parts I-Il. Complexity 1:16—22. 1995.

[10]T. Toffoli, and N. Margolus. 1987. Cellular automat

machines: A new environment for modeling.
Cambridge, MA: MIT Press.

classification. Our simulation experiments explored[11] Von Neumann, J. 1966. Theory of self-reproducing

different cellular neighboring by conducting thensiation

cellular automata. Urbana: University of IllinoiseBs.

scenarios with  Von Neumann and Moore neighborhtood [12]P. Kokol et al, 2004, Building Classifier Cellular

investigate how the overall classification resalts affected
by such metrics.

Automata, Springer, vol. 3305, issue 1, pp. 823-830

[13]A. Sleit et al, "Efficient Enhancement on Cellular

The work presented here stands as the basis for Automata for Data Mining". Proceedings of the™13

exploring much sophisticated data mining analysit the
help of Cell-DEVS as opposed to the traditionabdaining
algorithms. Our next research direction is to itigege

more than two dimensions of cellular classifiers by

incorporating large-scale data sets and more coatpli

classification rules. Moreover, the models will be

implemented using well-known data mining algorithtos
compare the results to those obtained with Cell-BBEdY
measure the performance gain and accuracy of opoped
mechanism.

REFERENCE

[1] J. Han and M. KambeBata Mining: Concepts and
Techniques. Morgan Kaufman, 2001.

[2] J. Han and Y. Fu, “Attribute-Oriented InductionData

WSEAS international conference on Systems, pp.616-
620. 2009.

[14]A. Latif, A. Dalhoum , I. Al-Dhamari, "fMRI Brain

Data Classification Using Cellular Automata”,
Proceedings of the 10th WSEAS international
conference, 2010.

[15]W. Press, S. Teukolsky, W. Vetterling, B. Flannery,

Numerical Recipes: The Art of Scientific Computing.
(3rd ed.). New York: Cambridge University Press.
2007.

[16]A. V. Moere, J. Clayden, and A. Dong, “Data

Clustering and Visualization Using Cellular Automat

Ants”. In Proceedings of ACS Australian Joint

Conference on Atrtificial Intelligence (AI'06), Holar

Australia, pages 826—836, Springer, Berlin. 2006.

Mining,” Advances in Knowledge Discovery and Data [17]B. Zeigler, Theory of Modding and Smulation, 1%

Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth

Edition, New York: Wiley-Interscience, 1976.

and R. Uthurusamy, eds., pp. 399-421, AAAI Press/Th [18]G. Wainer, N. Giambiasi, “Application of the Cell-

MIT Press, 1996.
[3] A. A. Freitas, “A survey of evolutionary algorithrfer

data mining and knowledge discovery,” in Advances i
Evolutionary Computation, A. Ghosh and S.S. Tsutsui

Eds. New York: Springer-Verlag, 2001.
[4] R. O. Duda, P.E. HarRattern Classification and Scene
Analysis. NewYork: John Wiley. 1973.

DEVS Paradigm for Cell Spaces Modelling and
Simulation”, SIMULATION, 76(1), pp. 22-39, 2001.



