
Data Mining with Cellular Discrete Event Modeling and Simulation 
 

Shafagh Jafer 
University of Virginia at Wise 

Wise, VA, USA 
sj2fd@uvawise.edu 

Yasser Jafer 
University of Ottawa 
Ottawa, ON, Canada 
yjafe089@uottawa.ca 

Gabriel Wainer 
Carleton University 

Ottawa, ON, Canada 
gwainer@sce.carleton.ca 

 
 

Keywords: Cellular discrete event simulation, Cell-DEVS, 
data mining, classification 
 
Abstract 
Data mining is the process of extracting patterns from data. 
A main step in this process is referred to as data 
classification. In this work, we investigate the use of the 
Cell-DEVS formalism for classifying data. The cells in a 
Cell-DEVS based grid are individually very simple but 
together they can represent complex behavior and are 
capable of self-organization. Three classifier models are 
implemented using Cell-DEVS. Different simulation 
scenarios are presented investigating the effect of  Von 
Neumann versus Moore neighborhood in the classifiers’ 
models. We show that effective classification performance, 
comparable to those produced by complex data mining 
techniques, can be obtained from the collective behavior of 
discrete-event cellular grids. 
 
1. INTRODUCTION 
The rapid emergence of computer and database technologies 
has turned data processing into a challenging task that is 
almost impossible to perform manually. Today's databases 
contain numerous data with many independent attributes 
that need to be considered simultaneously in order to extract 
accurate system behavior. Human's limited capacity for data 
processing has led to the need for automated extraction of 
useful knowledge from huge databases.  
 Data mining and knowledge discovery  [1] [2] have been 
widely recognized as core techniques in finding strategic 
information hidden in very large databases. These 
techniques focus on extracting new information from a large 
pool of data. This process requires the use of sophisticated 
data analysis algorithms to discover previously unknown 
valid patterns and relationships in large data sets. Moreover, 
data mining is not only about collection and management of 
data, but it also includes analysis and prediction.  
  Data mining is a relatively young discipline with wide 
and diverse applications. Some of the application domains 
in this field include: financial data analysis (e.g. banking 
and loan services), retail industry (e.g. on-line shopping), 
telecommunication industry (e.g. long-distance telephone 
services), biological data analysis (e.g. bioinformatics and 
biomedical research), intrusion detection (e.g. internet 
security), and many other fields. Data mining is an ongoing 

research field with many unfolded issues that are being 
currently investigated.  
 Classification, as one of the main data mining tasks, 
deals with the categorization of data for its most effective 
and efficient use. Classification techniques have been 
widely used by the machine learning and statistics 
communities over the past several decades  [3]. In this task, 
data is classified into different classes according to any 
criteria, and not only in terms of their relative importance or 
frequency of use. Classification, as a form of data analysis, 
is a well-known method used for extracting models 
describing important data classes. Data classification, along 
with prediction, are used in predicting future data trends 
which are vastly used for pattern recognition  [4]. Many 
classification and prediction methods have been proposed 
by researchers, such as decision tree classifiers, rule-based 
classifiers, k-nearest-neighbor classifiers, fuzzy logic 
techniques, and many others  [1]. Most of these algorithms 
suffer from memory constraints, limiting the application of 
the technique to small data sizes only. Developing scalable 
classification and prediction techniques capable of handling 
large-scale data set remains as a challenge in this field.  
 In a recent effort  [5], Cellular Automata (CA)  [6] was 
applied to data mining for the purpose of data classification. 
The study made use of the powerful characteristics of CA to 
show that effective classification performance can be 
achieved by very simple transition rules among the cellular 
neighbors that make purely local decisions. However, the 
study does not compete with classical models of data 
classification, and the time complexity of the algorithm 
grows as it is applied over larger cellular models.  
 We are thus interested in studying the application of  
Cellular Discrete Event System Specification (Cell-DEVS) 
 [7] to resolve the data classification problem. Unlike CA, 
Cell-DEVS does not require updating the entire cellular grid 
at every time step. Rather, only cells with updated neighbor 
values are evaluated. This improvement overcomes the issue 
of the original CA by reducing the overall execution cost, 
leading to faster classifications over large-scale data sets. 
We have implemented different classification models using 
the CD++ development environment  [8] which implements 
Cell-DEVS theory and allows visualization of the cellular 
models in real-time. The models used in this paper are 
similar to those studied in  [5] where the original CA 



technique was applied to data classification. We show that 
effective classification performance, comparable to those 
produced by complex data mining techniques, can be 
obtained from the collective behavior of discrete-event 
cellular grids, which is composed of very simple cells that 
make local decisions solely based on the information 
gathered from their immediate neighbors. The models 
presented here stand as the basis for exploring data mining 
with Cell-DEVS. Investigating more complex and mature 
models and techniques are our next research direction 
towards DEVS-based data mining. 
 The remainder of this paper is organized as follows. 
Section 2 provides basic background on data classification, 
and cellular automata, and presents related research in the 
scope of our work. Section 3 describes an approach to using 
Cell-DEVS for data mining, and highlights the benefits of 
using this methodology over the classical CA. Section 4 
presents three classifier models implemented using Cell-
DEVS in CD++ environment. It also provides some basic 
experiments on two-dimensional patterns using different 
cellular neighborhood definition. Section 5 provides the 
concluding remarks, and discusses our future research plan. 
 
2. BACKGROUND 
2.1. Data Classification 
Data mining is an interdisciplinary field, which combines a 
set of disciplines including database systems, statistics, 
machine learning, visualization, and information science. 
Moreover, depending on the kinds of data to be mined, other 
techniques such as pattern recognition, image analysis, 
computer graphics or even bioinformatics might be 
integrated as well. Therefore, the challenge is to distinguish 
among the different data mining systems, and to identify the 
appropriate technique that best meets one’s needs.  
 An important part of data mining is pattern 
classification. A data mining system has the potential of 
generating thousands or even millions of patterns. It is very 
important to identify the patterns that are interesting and 
provide meaningful information. A pattern is considered 
useful if  [1]: (1) it is easily understood by humans, (2) can 
be validated with new or test data, and (3) is useful and 
novel [1]. A data mining system is said to be complete if it 
is able to generate all of the interesting patterns. Obviously 
since it is often unrealistic and inefficient for data mining 
systems to generate all of the possible patterns, user-
supplied constraints and conditions are used to narrow down 
the search. Data classification, as a form of data analysis is a 
technique for identifying useful and interesting patterns by 
focusing on predefined characteristics among the data of the 
set being under study.  
 The process of data classification is implemented by 
first building a classifier that describes a predetermined set 
of data classes or concepts. This step is referred to as the 
learning step (or training phase), since the classifier is built 

by analyzing or learning from a training set. The second step 
in data classification process is ensuring accuracy. The 
accuracy of a classifier on a given test set is the percentage 
of the data that is correctly classified. If the accuracy of the 
classifier is considered acceptable, the classifier can be then 
used for similar future data sets.  
   
2.2. Cellular Automata 
A cellular automaton (CA)  [6] [9] [10] is a discrete dynamic 
system that provides a platform for performing complex 
computations based on local information only. CA were 
introduced for the first time by  Von Neumann  [11] to study 
self-reproducing systems. A CA is an infinite regular n-
dimensional lattice where each cell takes a finite value. 
Cells’ states are updated according to a local rule in a 
simultaneous, synchronous fashion at discrete time steps. 
The automaton evolves by triggering a local transition 
function on each cell, which uses the current state of the cell 
and a finite set of nearby cells (called the neighborhood of 
the cell). Neighbor cells can be in the local immediacy or 
they can include remote cells. The two most widely used 
neighborhoods are the  Von Neumann neighborhood (Figure 
1.A), in which each cell has neighbors to the north, south, 
east and west; and the Moore neighborhood (Figure 1.B), 
which adds the diagonal cells to the northeast, southeast, 
southwest and northwest.  

 
Figure 1. Neighborhoods: (A)  Von Neumann, (B) Moore 
 The grid is seeded with initial values, and then the cell 
space evolves by executing a series of discrete timesteps. At 
each timestep, called a generation, each cell computes its 
new value by evaluating the cells in its immediate 
neighborhood. Based on these values, it then applies its 
update rule to calculate its new state. Each cell executes the 
same update rule, and all cells’ values are updated 
simultaneously and synchronously. This update rule takes 
into account only its neighboring cells, thus, its processing 
is entirely local; avoiding any global or macro grid 
computation.  
 The global state of a CA strongly depends upon its 
update rules. The simplicity of the update rules and the 
overall interesting and complex patterns that can be 
obtained by CA, makes them a good candidate for exploring 
data mining, and, specifically, data classification. CA can be 
used as form of instance-based learning where the cells 
represent points of the instance space  [5]. The cells are 
connected according to the attribute value ranges. The 
resulting instance space acts as the grid for which the CA 
evolves. The grid is seeded with initial values (i.e. the 



training instances), and the CA runs until a stable state is 
reached (convergence point). The intention is that cells with 
similar class assignments will group and merge into distinct 
regions over the cell space.  
 
2.3. CA and Classification 
A number of studies have been proposed aiming at using 
CA models for classification. The model proposed by  [12] 
uses a two dimensional CA, and an attribute that changes 
over time in order to provide a dynamic and accurate 
classification. This approach mixes a group of classifiers to 
improve the classification accuracy. The results reported 
show that the iterative process of combining classifiers in 
CA leads to superior accuracy, since a combination of 
methods can be applied to a single model. Another CA 
classifier model proposed in  [5] makes use of 
multidimensional CA to classify data according to class 
assignments. The study shows that effective generalization 
can be achieved with very simple rules and cells that make 
purely local decisions. The experiments presented in that 
paper also reported that the performance obtained using CA 
is comparable to the more traditional (and complex) data 
mining algorithms. The study in  [13] provides an 
enhancement over the model presented in  [5] by modifying 
the transition rules to make the new model surpass the 
previous model in terms of performance and accuracy. 
However, both of these studies still suffer from high time 
complexity due to the discrete-time update nature of CA.  
 CA has also been used in other domains of data mining. 
The research presented in  [14] proposes a cellular automata 
model that can be used in Neuroimaging, specifically for 
functional magnetic resonance imaging (fMRI) brain images 
classification. The experimental results showed that CA 
outperformed the support vector machine classification 
method  [15] in terms of accuracy, sensitivity, specificity, 
and performance. Moreover, a data clustering and 
visualization model for cellular ants was presented in  [16]. 
The CA provided a decentralized multi-agent system that 
can autonomously detect data similarity patterns (clustering) 
in multi-dimensional datasets and then determine the 
corresponding visual cues, such as position, color, and 
shape size, of the visual objects. The research shows two 
new features of the cellular ant method: color and shape size 
negotiation because of combining CA insights with data 
clustering.  
 The major limitation of all of the previous studies 
mentioned above is the time complexity of the CA models, 
which grows exponentially especially when the cell space is 
large and is composed of more than two dimensions. CA 
requires updating all of the cell space at every time step. 
This leads to major speedup drawbacks as most of the cells 
do not necessarily need to re-compute their local rules (their 
state is the same from current generation to previous 

generation). Aiming at overcoming this limitation of the 
original CA, in this research we propose the use of Cell-
DEVS for data classification. Cell-DEVS formalism 
requires only those cells with sate change to re-compute 
their evaluation rules leading to a major speedup over the 
conventional CA.  
 
2.4. Cell-DEVS for Data mining 
Despite its widespread application, CA has two major 
limitations, making it computationally inefficient. First, due 
to its discrete-time nature, simulation precision and 
execution efficiency is greatly restricted. Secondly, at each 
time step, all the cells are evaluated synchronously, 
incurring an unnecessarily computational cost when only a 
small fraction of the cells needs to be updated. The Cell-
DEVS formalism  [7]  overcomes these issues by integrating 
DEVS  [17] and CA to present each cell as an atomic DEVS 
model. Cell-DEVS solves the problem of unnecessary 
processing burden in cells and allows for more efficient 
asynchronous execution, using a continuous time base, 
without loosing accuracy. The formalism allows defining an 
n-dimensional cell space to represent complex discrete event 
spatial models, where each cell is a DEVS atomic model, 
allowing for specifying both temporal and spatial relations 
between model components. In this methodology, each cell 
changes state in response to the occurrence of events in an 
event-driven fashion.  
 A Cell-DEVS atomic model is defined by  [18]: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >, 
where X is a set of external input events; Y is a set of 
external output events; I represents the model's modular 
interface; S is the set of sequential states for the cell; θ is the 
cell state definition; N is the set of states for the input 
events; d is the delay for the cell; δint is the internal 
transition function; δext is the external transition function; τ 
is the local computation function; λ is the output function; 
and D is the state's duration function. The modular interface 
(I) represents the input/output ports of the cell and their 
connection to the neighbor cell. Communications among 
cells are performed through these ports. The values inserted 
through input ports are used to compute the future state of 
the cell by evaluating the local computation function 
τ. Once τ  is computed, if the result is different from the 
current cell’s state, this new state value must be sent out to 
all neighboring cells informing the state change. Otherwise, 
the cell remains in its current state and therefore no output 
will be propagated to other cells. This will happen when the 
time given by the delay function expires. Finally, the 
internal, external transition functions and output functions 
(λ) define this behavior. Cell-DEVS improves execution 
performance of cellular models by using a discrete-event 
approach. It also enhances the cell’s timing definition by 
making it more expressive. 



 CD++  [8] is an open-source object-oriented modeling 
and simulation environment that implements both DEVS 
and Cell-DEVS theories in C++. The tool provides a 
specification language that defines the model’s coupling, the 
initial values, the external events, and the local transition 
rules for Cell-DEVS models. CD++ also includes an 
interpreter for Cell-DEVS models. The language is based on 
the formal specifications of Cell-DEVS. The model 
specification includes the definition of the size and 
dimension of the cell space, the shape of the neighborhood 
and the border. The cell’s local computing function is 
defined using a set of rules with the form postcondition 
delay {precondition}. These indicate that when the 
precondition is met, the state of the cell changes to the 
designated postcondition after the duration specified by 
delay. If the precondition is not met, then the next rule is 
evaluated until a rule is satisfied or there are no more rules. 
CD++ also provides a visualization tool, called CD++ 
Modeler, which takes the result of the Cell-DEVS 
simulation as input and generates a 2-D representation of the 
cell space evolution over the simulation time. This feature 
of the tool provides an interactive environment allowing for 
visual tracking of the classification process as it takes place 
over discrete timesteps. 
 We propose using Cell-DEVS for data classification. A 
model is presented as a cellular grid with initial points that 
are spread over the cell space. Using simple voting rules, a 
cell’s neighbors are examined and the cell’s value is set 
according to the number of neighbors that are set to a given 
class. Such model can be constructed in any dimension 
allowing incorporating more sophisticated features and 
classification rules. The simplicity of the computational 
rules and the ease of extending the model into a multi-
dimensional classifier makes Cell-DEVS a good choice for 
applying data classification for large-scale data sets. In 
addition, Cell-DEVS addresses major issues in data mining 
regarding mining methodology, user interaction, 
performance, and diverse data types.  
 
3. CELL-DEVS CLASSIFIER MODELS  
In this section, we present our classifier models based on 
Cell-DEVS, and implemented in the CD++ environment. 
Three different classifier models were constructed and 
examined with different data: 

• A two-class data classifier with Von Neumann 
neighborhood, 

• A three-class data classifier with Von Neumann 
and Moore neighborhoods, and 

• A parabola data classifier with Von Neumann and 
Moore neighborhoods. 

 The purpose of these models is to show the ability of 
Cell-DEVS theory in exploiting classification characteristics 
among the data set. We will show how simple evaluation 
rules classify the data as a result of only local computations 

of a given cell considering its immediate neighboring as 
dictated by the Cell-DEVS model specification. In all of our 
models, a cell space is seeded with initial values, and then 
the model evolves through a series cell computations. The 
simulation is divided into a number of generations. At each 
timestep, a new generation starts, requiring each cell to 
compute its new value by examining its neighboring cells. 
Based on the values of its neighboring cells, the cell then 
applies its evaluation rule to compute its new state. Each 
cell executes the same rule, but only those cells with a new 
state broadcast their new status to their neighboring cells. 
This will avoid the simultaneous and synchronous update of 
all the cells, as in the original CA. The simulation 
generations proceed until all cells are assigned a class.  
 
3.1. Two-class Classifier Model 
Our first classifier model creates a 2-D cell space that is 
initially seeded with two different classes. Cells are 
classified as either Type 1 (cell’s value = 1) or Type 2 (cell’s 
value = 2) based on the following voting rules  [5]: 

0              :   class 1 neighbors + class 2 neighbors = 0 
1              :   class 1 neighbors > class 2 neighbors 
2               :   class 1 neighbors < class 2 neighbors 
Rand({1,2}) :   class 1 neighbors = class 2 neighbors 

  
 Given the above voting rules, the formal Cell-DEVS 
specification of the model is as follows: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
X = Y = Ø 
S = {0, 1, 2} 
N = {(-1,0), (0,-1), (0,0), (0,1), (1,0)} 
d = 100 ms 
τ: N�S 

 A 60 by 60 cell space was chosen, with a grid initially 
filled with zeros (no class), and 4 seeds (two cells of Type 1, 
and two cells of Type 2). A cell with a value of zero has not 
been assigned any class. As the simulation evolves, the grid 
is filled with Type 1 and Type 2 cells according to the results 
of the evaluation rules, which are based on the cell’s value 
and the value of its immediate neighbors. The model 
specification in CD++ is presented below. 

 



 Line 1 through line 11 show the specification of the 
model in terms of size, delay of each generation (the 
timestep from one generation to another which is 100 
msec.), and the neighborhood definition of each cell. Line 
14 through line 18 present the evaluation rules for the 
classifier. These rules examine each cell’s four neighbors 
and set its class to the majority class. Each rule presents the 
resulting value of the cell if the condition presented in the 
brackets is met. It takes 100 milliseconds for the value of 

the cell to be transmitted to the neighbors. The function 
statecount(n) returns the number of neighboring cells with 
the value n. The rule at line 17 shows a tie-breaking 
scenario where if the cell has equal number of class1 and 
class2 neighbors, it will be assigned a class type based on 
the value returned by the random function. That is, if the 
generated random number, from the uniform distribution 
between 0 and 1, is larger than 0.5, then the cell is assigned 
to class1, otherwise, the cell’s value will be of type class2. 

 
Figure 2. Two-Class Model with Von Neumann Neighborhood 

 Figure 2 shows the simulation results, from five 
different generations, from the beginning of the simulation 
throughout completion (all cells are assigned a class). The 
rule-base nature of Cell-DEVS modeling scheme  allows for 
applying rule-base data mining algorithms which are the 
main techniques used in data classification. The cellular 
rules apply the if-then rule-base data mining strategy by 
examining only local information obtained from the cell’s 
immediate neighbors. As we can see, the classification 
process forms gradually, where the two classes start 
distributing evenly. However, as the simulation evolves, 
overlapping between the two classes neighbors’ trigger tie-
breaking scenarios, and random classification affects the 
final layout. By looking at the final results of the generation, 
we can see that the majority of the grid is filled with Type2 
cells, which indicates that based on our data classification 
rules and the initial seeds the data set was largely grouped 
into Type2 class showing that our classifier model was more 
biased towards one of the class types. The results obtained 
from this model are in-line with the objectives of data 
classification which are discovering previously unknown 
valid patterns and relationships in a data set. By simulating 
the two-class model we could recognize a pattern among the 
data set and clearly separate the two data types existing on 
the cellular grid, proving the accuracy and correctness of 
our classifier model. 
 
3.2. Three-class Classifier Model  
The three-class model adds an extra data class to the grid, to 
observe how classification results are affected. The Cell-
DEVS model specification is the same one used for the two-
class model. The only modification to the model’s 
implementation was updating the evaluation rules and 
adding extra rules for the new class type, Type 3 (cell’s 
value = 3). The rules are as follows. 

 Line 1 through line 9 represent the rules for assigning 
the cells to one of the three classes based on the majority of 
the neighboring cells’ class types. Line 10 indicates the rule 
for an empty cell that remains unclassified as long as all of 
its neighboring cells are empty as well. As in the two-class 
model, tie-breaking rules were required to address the 
situations were a cell happens to have equal number of 
neighbors of different class types. Uniform random number 
generation function was used to break the tie by assigning 
priority based on the random number returned. For instance, 
line 13 shows the case where a cell is assigned class2 if it 
had equal number of class2 and class3 neighbors and the 
random number generator returns a value greater than 0.5. 
 Similarly, the 60x60 cell space was seeded with three 
classes and the simulation was carried out until all cells 
were assigned a class. Figure 3 illustrates the simulation 
results for five different generations. Similar classification 
behavior was observed as in the two-class model. The 
classification spread of the three classes continues evenly 
throughout the simulation generations until tie scenarios 
start. The random number generator plays a big factor on the 
final classification layout of the grid. The results of this 
model show more complicated data classification compared 



to the two-class model. Successful classification was 
achieved even though extra data type and evaluation rules 
were used. This model shows the scalability of Cell-DEVS 
in terms of performing multi-type classification without 
sacrificing accuracy or correctness.  
 Another distribution of the data was also studied, where 
ambient data classification was modeled by placing the 
three different class types in an ambient fashion. The same 
model was used, with only changing the position of the 
initial seeds. The simulation results are presented in Figure 
4 showing the two classes that are surrounded by the third 
class. More precisely, this model shows the capability of 
Cell-DEVS in classifying data sets that have interleaving 
zones. The rule-based nature of the formalism could easily 
handle multi-type classification while avoiding classes’ 
collision. As shown on the last frame of Figure 4, the blue 
cells (class1 cells) form a barrier between the other two 
classes making the tie-breaking scenarios easier as the other 
two classes can only have a tie scenario with the third class 

(i.e. the surrounding cells of Type1). Moreover, the results 
show that with the surrounding class, the other two classes 
happen to occupy almost same amount of cells resulting in a 
more even classification.  
  In order to see how different neighborhood affects the 
classification results, we have run the model with both 
normal and ambient distribution using Moore neighborhood 
definition as well. As was mentioned earlier in the paper, 
Moore neighboring extends the cell’s neighborhood by 
including the diagonal cells as well, providing a more 
restricted classification. With Moore neighborhood, each 
evaluation rule needs to take into consideration four more 
neighboring cells. On the other hand, when the cell’s value 
is computed to a new value, eight neighboring cells must be 
updated as opposed to only 4 cells in the case of Von 
Neumann neighborhood. The results obtained for the same 
simulation scenarios of the three-class model are presented 
in Figure 5 and Figure 6. 

Initial Generation 2 Generation 8 Generation 10 Final  
Figure 3. Three-Class Model with Von Neumann Neighborhood and Normal Distribution of Initial Seeds

Initial Generation 2 Generation 8 Generation 10 Final
 

Figure 4. Three-Class Model with  Von Neumann Neighborhood and Ambient Distribution of Initial Seeds 

Initial Generation 2 Generation 8 Generation 10 Final  
Figure 5. Three-Class Model with Moore Neighborhood and Normal Distribution of Initial Seeds 

 
 Comparing the results of the three-class model under 
Von Neumann neighboring (Figure 3 and 4) with those 
obtained with Moore neighboring (Figure 5 and 6) shows 
that Von Neumann neighborhood allows more even 

distribution of the classes. This was clearly observed in the 
ambient model where the surrounded classes had smoother 
and more similar distribution under Von Neumann 
neighboring.



 
Figure 6. Three-Class Model with Moore Neighborhood and Ambient Distribution of Initial Seeds

  
 The results indicate that given the same data set and 
applying the same decision rules, the overall classification 
pattern is greatly affected by the decision parameters. In this 
example, such parameters were the cell’s neighborhood 
definition, which affected the classification process by 
requiring a larger parameter set to be examined, thus, 
affecting the final class type decision for the given cell. This 
tells us that data classification is a sensitive process that is 
largely affected by small variations, requiring a precise and 
accurate mechanism for acceptable results and high quality 
performance.  
3.3. Parabola Classifier Model 
Our third classifier model recognizes a parabola shape in the 
cell space from initially seeded points. The model is created 
based on the parabolic pattern by using the pattern as a 
boundary that divided the space. On the grid, points above 
the parabola were assigned class1 and points below it are 
assigned class2. The model definition is the same one used 
in our two-class classifier model. We have only modified 
the initial cells locations to form a parabola. Thus, only two  

 
classes of data are presented on the grid: Type 1 (with cell’s 
value = 1) representing the parabola, and Type 2 (with cell’s 
value = 2) indicating the area under the parabola. As in the 
three-class model, two separate simulations were carried 
out: one with Von Neumann neighborhood, and a second 
run with Moore neighborhood, while using the same initial 
values at the same locations on the grid. Figure 7 and Figure 
8 illustrate the simulation results for this model. Under both 
types of cells’ neighboring (Figure 7 with Von Neumann 
neighborhood, and Figure 8 with Moore neighboring), 
initially the distribution of the data classes are very similar, 
however, as the simulation evolves the parabolic pattern 
produced under Moore’s neighborhood starts to loose its 
smooth shape. This was not observed under Von Neumann 
neighboring as the parabola remained in a more acceptable 
shape throughout the simulation until completion. The 
parabola model shows that useful pattern classification can 
be obtained using cell-DEVS, indicating how classification 
can in fact be used to perform pattern recognition.

Initial Generation 2 Generation 8 Generation 10 Final  
Figure 7. Parabola Model with Von Neumann Neighborhood 

 
Figure 8. Parabola Model with Moore Neighborhood 

 
  



4. SUMMARY AND FUTURE WORK 
This paper proposes the use of Cell-DEVS for data mining, 
specifically data classification. Three classifier models were  
implemented based on Cell-DEVS formalism using CD++ 
modeling and simulation environment. Cell-DEVS theory 
overcomes the limitations of the classic CA by defining a 
cellular grid consisting of atomic DEVS cells which are 
only required to propagate their values if a new value is 
computed compared to the previous simulation generation. 
This advantage provides a major benefit by reducing the 
overall time complexity especially for multi-dimensional 
data classification models. Moreover, the simplicity and 
locality of the evaluation rules in Cell-DEVS provide a 
scalable and simple technique for mining data similarities, 
making it a great choice for exploring cellular data 
classification. Our simulation experiments explored 
different cellular neighboring by conducting the simulation 
scenarios with  Von Neumann and Moore neighborhood to 
investigate how the overall classification results are affected 
by such metrics. 
 The work presented here stands as the basis for 
exploring much sophisticated data mining analysis with the 
help of Cell-DEVS as opposed to the traditional data mining 
algorithms. Our next research direction is to investigate 
more than two dimensions of cellular classifiers by 
incorporating large-scale data sets and more complicated 
classification rules. Moreover, the models will be 
implemented using well-known data mining algorithms to 
compare the results to those obtained with Cell-DEVS to 
measure the performance gain and accuracy of our proposed 
mechanism.  
 
REFERENCE 
[1] J. Han and M. Kamber, Data Mining: Concepts and 

Techniques. Morgan Kaufman, 2001.  
[2] J. Han and Y. Fu, “Attribute-Oriented Induction in Data 

Mining,” Advances in Knowledge Discovery and Data 
Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, 
and R. Uthurusamy, eds., pp. 399-421, AAAI Press/The 
MIT Press, 1996. 

[3] A. A. Freitas, “A survey of evolutionary algorithms for 
data mining and knowledge discovery,” in Advances in 
Evolutionary Computation, A. Ghosh and S.S. Tsutsui, 
Eds. New York: Springer-Verlag, 2001. 

[4] R. O. Duda, P.E. Hart, Pattern Classification and Scene 
Analysis. NewYork: John Wiley. 1973.  

[5] T. Fawcett, “Data mining with cellular automata”. 
SIGKDD, vol. 10, issue 1, pp. 32-39. 2008. 

[6] S. Wolfram, . A New Kind of Science. Champaign, IL: 
Wolfram Media. 2002. 

[7] G. Wainer, “Discrete-Event Modeling and Simulation: 
a Practitioner’s approach”. CRC Press. Taylor and 
Francis. 2009. 

[8] G. Wainer, “CD++: A Toolkit to Develop DEVS 
Models”, Software – Practice and Experience, 32(13), 
pp. 1261-1306, 2002. 

[9] H. Gutowitz, Cellular Automata and the Sciences of 
Complexity. Parts I–II. Complexity 1:16–22. 1995. 

[10] T. Toffoli, and N. Margolus. 1987. Cellular automata 
machines: A new environment for modeling. 
Cambridge, MA: MIT Press. 

[11]  Von Neumann, J. 1966. Theory of self-reproducing 
cellular automata. Urbana: University of Illinois Press. 

[12] P. Kokol et al, 2004, Building Classifier Cellular 
Automata, Springer, vol. 3305, issue 1, pp. 823-830. 

[13] A. Sleit et al, "Efficient Enhancement on Cellular 
Automata for Data Mining". Proceedings of the 13th 
WSEAS international conference on Systems, pp.616-
620. 2009. 

[14] A. Latif, A. Dalhoum , I. Al-Dhamari, "fMRI Brain 
Data Classification Using Cellular Automata", 
Proceedings of the 10th WSEAS international 
conference, 2010. 

[15] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, 
Numerical Recipes: The Art of Scientific Computing. 
(3rd ed.). New York: Cambridge University Press. 
2007. 

[16] A. V. Moere, J. Clayden, and A. Dong, “Data 
Clustering and Visualization Using Cellular Automata 
Ants”. In Proceedings of ACS Australian Joint 
Conference on Artificial Intelligence (AI’06), Hobart, 
Australia, pages 826–836, Springer, Berlin. 2006. 

[17] B. Zeigler, Theory of Modeling and Simulation, 1st 
Edition, New York: Wiley-Interscience, 1976. 

[18] G. Wainer, N. Giambiasi, “Application of the Cell-
DEVS Paradigm for Cell Spaces Modelling and 
Simulation”, SIMULATION, 76(1), pp. 22-39, 2001. 

 
  
 
 
 


