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Hybrid systems (those where continuous and discrete phenomena interact) can be found in many natural and artificial 

systems. For example, real-time embedded systems usually include discrete-event controllers interacting with a continu-

ous plant. Verifying such real-time systems for correctness is of utmost importance, as results of incorrect behavior could 

be catastrophic. Although Modeling and Simulation is one of most used tools to study such hybrid real-time systems, they 

lack of a robust formal mechanism for checking the correctness of the system. Here, we introduce a new verification 

method, based on RTA-DEVS, hybrid Timed Automata and the QSS method, which allows verifying real-time hybrid 

systems modeled by DEVS formalism.  

 

I. INTRODUCTION 

Real-Time (RT) systems are very advanced computer sys-

tems with hardware and software components with timing con-

straints. In some cases, they have “soft” timing constraints 

(i.e., a deadline can be missed without serious consequences). 

In other cases, the system must satisfy "hard" timing con-

straints (and a missed deadline can result in catastrophic con-

sequences). In these highly reactive systems, not only correct-

ness is critical, but also the timeliness of the executing tasks. 

Embedded Real-Time (RT) software systems are increasingly 

used in mission critical applications, where a failure of the sys-

tem to deliver its function can be catastrophic. For instance, if 

we consider the design decisions made for an aircraft autopi-

lot, or a controller for an automated factory, we need to obtain 

system responses within well-defined deadlines. Great care 

must be taken when developing RT systems to guarantee their 

functional correctness along with non-functional correctness 

such as timing constraints. 

Because of the growing complexity of RT systems and 

their need for high reliability, RT software development is still 

time consuming, error prone, and expensive, requiring a diffi-

cult and costly development effort with no guarantee for a bug-

free software product. Many techniques have been proposed to 

check correctness of RT software. Current RT Engineering 

methodologies use modeling as a method to study and evaluate 

different system designs before building the real application. 

In this way, RT systems can have very high predictability and 

reliability. To do so, a designer must abstract the physical sys-

tem at hand and build a model for it, then combine this with a 

model of the proposed controller design. Then, different tech-

niques can be used to reason about these models and gain con-

fidence in its correctness. Informal methods usually rely on ex-

tensive testing of the systems based on system specification 

[1]. These methods have limitations because we need to apply 

exhaustive testing to the software component, using all possi-

ble input combinations, which is a costly process. Many tech-

niques have been proposed to enable practical testing methods 

[2]. However, we cannot guarantee full coverage of all possi-

ble execution paths in software, thus leaving us with limited 

confidence in about correctness. These informal techniques 

can reveal errors, but cannot prove model’s correctness. 

Formal analysis is growing as an alternative, as it allows 

the full verification of the software components, which can be 

proved as being free of errors. In last decades, these tech-

niques have matured, and they have been used in some indus-

trial capacity [3]. Nevertheless, these formal methods are still 

constrained in their application, as they do not scale up well. 

Likewise, the designers need a high level of expertise in apply-

ing these techniques. Another drawback of formal techniques 

is their need to be applied to an abstract model of the real sys-

tem. However, in doing so, what is being verified is not the 

target system. Even if the abstract designed model is proven 

correct, there is a risk that some errors creep during the devel-

opment process through the manual implementation of the de-

sign into executable code [1] . 

Formal verification techniques are of two main types, de-

ductive or algorithmic [13]. Deductive techniques rely on rep-

resenting the system and its specification with logic rules, and 

then try to deduct a proof of system correctness. Algorithmic 

techniques rely on modelling the system in a graphical form, 

and coding specifications in logical queries. Then, an algo-

rithm for reachability analysis searches the graph space for 

nodes reachable from an initial system configuration that satis-

fies the specification queries. This method is also called model 

checking. New theoretical advances in model checking allow 

guaranteeing certain properties about models of such systems 

using a formal approach. Model checking techniques can be 

automated, and Timed Automata (TA) theory [4], in particular, 

has provided many practical results in this area. However, 

there is still a gap between a system model that is checked as 

an abstract entity, and the actual system implementation code 

run on the target platform. Errors can creep into the final im-

plementation (when the programmer translates requirements 

captured in TA into code). Also, though formal methods have 

showed promising results, they are difficult to apply, and do 

not scale up well. 

A different approach considers using Modeling and Simu-

lation (M&S) to gain confidence about the model correctness. 

The use of M&S is not new, and systems Engineers often rely 

on these methods in order to improve the study of experi-

mental conditions during model definition. M&S let users ex-

periment with “virtual” systems, allowing them to explore 



changes, and test dynamic conditions in a risk-free environ-

ment. This is a useful approach, moreover considering that 

testing under actual operating conditions may be impractical or 

even impossible. Nevertheless, no practical, automated ap-

proach exists to perform the transition that exists between the 

modeling and the development phases, and this often results in 

initial models being abandoned, resulting in increased initial 

costs that project managers usually try to avoid. Simultaneous-

ly, M&S frameworks are not as robust as their formal counter-

parts are. 

If the models used for M&S are formal, their correctness 

would also be verifiable, and a designer could see the system 

evolution and its inner workings even before starting a simula-

tion [5]. Another advantage of executable models is that they 

can be deployed to the target platform, thus giving the oppor-

tunity to use the model not only for simulations, but also as the 

actual implementation deployed on the target hardware. This 

avoids any new errors that would appear during the implemen-

tation from transformation of the verified models into an im-

plementation, thus guaranteeing a high degree of correctness 

and reliability. 

The objective of this paper is to introduce a methodology 

enabling formal verification of hybrid RT systems modeled 

with DEVS formalism. This methodology would add the bene-

fit of rigorous formal correctness check to the current practice 

of simulating RT hybrid systems. The main contribution is to 

show a transformation method from continuous systems mod-

eled with QSS to an equivalent TA model. This method would 

deal with issues of infinite continuous state space, abstraction 

and preservation of critical model properties through the trans-

formation. 

II. RELATED WORK 

A. Hybrid DEVS models 

Hybrid models are important particularly in modeling con-

trol systems where the controlled environment obeys the laws 

of physics, while the controller is a digital discrete system. The 

study of such systems requires the verification of the resulting 

hybrid system.  

A Major problem in verification of hybrid systems is the 

lack of a unified theory to model and solve both continuous 

and discrete components together [6]. As a result, modeling 

and simulation is still one of the most useful methods to verify 

this kind of systems [7][8][9]. Hybrid systems simulation was 

enabled within DEVS formalism by using a method, called 

Quantizes State Systems (QSS) that will be covered in section 

B, which allows modeling continuous components 

[10][11][12]. However, simulation does not guarantee the ab-

sence of defects from the system under study. Simulation veri-

fies the system for particular scenarios chosen by the system 

tester. Formal methods can then be used to provide an ab-

sence-of-defects guarantee. In doing so, a hybrid system needs 

to be modeled and verified within a formal framework. 

To use the algorithmic method (model checking through 

reachability analysis) to verify hybrid systems, the focus would 

be to find a suitable finite abstraction of the hybrid system that 

can be verified and hence reachability algorithm is guaranteed 

to terminate. Different types of labeled transition systems were 

proposed to model hybrid systems abstractions including Petri 

Nets [14], hybrid automata and TA [13]. 

 However, as Henzinger et al. shows in [16], Hybrid TA 

verification through reachability analysis is not decidable in 

general. For this reason, recent research has concentrated on 

modeling the hybrid system in some form with a decidable ver-

ification such as TA. In doing so, a technique must be used to 

model the continuous component in a discrete finite form. As 

continuous system variables are real values, their state space 

could be infinite. An approximation to a finite representation is 

needed to enable the decidability and termination of reachabil-

ity analysis. Many techniques have been proposed to approxi-

mate continuous-time systems into a discrete representation of 

TA [17] [18][19][20]. 

This paper uses another innovative technique to represent 

the continuous system in discrete format using DEVS formal-

ism. Although DEVS is a discrete-event system specification, 

some methods are used to represent continuous systems in a 

discrete format that can be simulated with DEVS. One of these 

methods is Quantized State Systems (QSS) method [11]. This 

method enables modeling and simulation of hybrid systems 

with DEVS formalism. 

B. Quantized State Systems (QSS) method 

In this section, we introduce the QSS method [10][11]. The 

QSS is an approximation method to model and simulate con-

tinuous systems, which are usually modeled with Ordinary Dif-

ferential Equations (ODE) and Algebraic Equations. Obtaining 

a detailed description of system behavior entails solving these 

equations simultaneously. In doing so, many different tech-

niques of numerical integration are used to solve ODEs such 

as Euler, Runge-Kutta, etc. These methods approximate the so-

lution of ODEs, and they limit the error to an acceptable range 

based on the choice of its discrete integration step. All these 

methods rely on discrete-time integration of ODEs. In this 

way, time is allowed to progress in small steps, and at each 

step, an approximation is computed for ODEs solution. When 

a system modeled by ODEs has a discontinuity (i.e. sudden 

jumps in its variables values with regard to time), the numeri-

cal integration method may produce unacceptable errors [23]. 

These kinds of discontinuity are normal properties in hybrid 

systems, which can be seen as operating in different modes 

each described with a specific ODE. An example of such a 

system would be a heating system with an on-off thermostat 

switch. 

A different method for approximation is called Quantized 

State Systems QSS, a quantization-based method that models 

hybrid systems as discrete-event systems and not as discrete-

time. This solves the above problem around discontinuities 

while solving hybrid system as discussed in [11]. Consider a 

continuous system modeled by some time-invariant Ordinary 

differential equation (ODE) and it is in its State Equation Sys-

tem (SES) representation: 

x˙ (t) = f[x(t), u(t) ) ] (Eq.II.1) 

Where x(t)  R 
n
 represents the system state vector and u(t)  

R 
m 

 represents an input vector, which is a known piecewise 

constant function, and R is the set of Real numbers. With the 



QSS method, we simulate an approximate system, which is 

called Quantized State System: 

x˙ (t) = f[q(t), u(t) ) ] (Eq.II.2) 

Where q(t) is a vector of quantized variables which are ob-

tained with quantization function q from the state variables 

x(t). Each component of q(t) may be related with the corre-

sponding component of x(t) by a hysteretic quantization func-

tion, as given in [11]. A hysteresis function approximates a 

continuous linear function xi(t) by outputting a number of dis-

crete levels. Each level is called a quantization level Qi. The 

difference between two successive quantization levels (Qi, 
Qi+1) is called the quantum (dq) and it is usually constant. The 

crossing of the continuous function to a quantization level 

generates an output. 

An example of simulating a continuous system with QSS 

can be shown by using the exponential decay formula which is 

modeled as follows, using an ODE: 

dx/dt = -x(t) (Eq.II.3) 

Which has the analytical solution x(t) = e
-t
, with the initial 

condition x(0) =1. Figure 1 shows a graph of the exact analyti-

cal solution of the exponential decay formula x(t) = 10 e
-t
 

where x(0) =10.  

 

 
Figure 1: Exact solution for exponential decay formula. 

 

The solution of (Eq.II.3) is approximated in discrete-event 

form by the following QSS DEVS model: 

AMD = <X, Y, S, int, ext ,ta>  (Eq.II.4) 

X = Ø;           S={s | s=(q,)} ;         ta(s) = ta(q,) =  

int (s) = int (q,) = (q-0.1, 0 .1/q)   ;    q,) = q 

q: is a quantized variable related to the x(t) system variable by 

a quantization function.  

Figure 2 shows the quantized representation of the decay 

formula as a result of simulating this QSS model. 

 
Figure 2: Quantized representation of Exponential Decay. 

III. MAPPING QSS TO TA 

The main contribution of this paper is a novel approach to 

transform QSS model to TA, and hence enabling formal verifi-

cation of hybrid models within DEVS formalism. To transform 

a DEVS model (Eq.II.4) to a TA, we need to solve the follow-

ing issues: 

1. The TA variables can only be of bounded integer type, in 

order to guarantee the finiteness of state space and hence 

the termination of the reachability algorithm. However, in 

QSS, state variables are real numbers and thus have infi-

nite values. 

2. Time ( of next quantum event is approximated to an in-

teger number. However in doing so we need to preserve 

original behavior of QSS and hence the properties we 

need to formally verify. 

The first issue is handled by converting rational real num-

bers to integers by multiplying all values by the least common 

multiple of all the denominators. For any irrational values, we 

can use a technique we introduced in [29]. For the second is-

sue, we use abstraction by over-approximation [26]. With this 

technique, we approximate the real value of the event time ti 

with a bounded time interval such that tc [TL,TH]. This inter-

val is bounded by floor(ti) and ceiling(ti) respectively. This 

guarantees that the resulting TA would include all possible 

event timings in that interval. Hence, verification of TA would 

apply to the real value produced in QSS model, as proved in 

[21] for robust timed automata. figure 3 shows a transfor-

mation from QSS to TA for the QSS model of (Eq.II.4). Over-

approximation also preserves safety properties, i.e. any proof 

of a safe over-approximation implies the original system is al-

so safe, however as over-approximation contains more behav-

iors than the original system, it verification may produce safety 

property violations that does not exist in the original system. In 

this case, any violation scenario should also be checked 

against the original system to confirm it is a real safety viola-

tion [22]. 

The semantics of the QSS models a loop as follows: 

1. Initial values are assigned to q=1 and so=(1,0). 

2. After a time elapse of e= the output function is triggered 

to send value q, and int is triggered to calculate the next 

state, composed of new q and s = (q-0.1, 0.1/q). 
3. Repeat step 2 in the loop until s = (1,10). 

To obtain a TA that contains all the behavior of QSS model, 

we need to a simulation relation with QSS model (i.e., TA 

simulates QSS). To do so, each state in QSS would be simulat-

ed by a corresponding state in TA and each target state in QSS 

is simulated by a corresponding target state in TA. Inspecting 

the TA model figure 3, we can see the following simulation to 

the QSS model after multiplying by scale of 10 to remove frac-

tional parts:  

1. The TA starts in the initial state S1, and moves to S2. On 

this initial transition, the total state variables are initialized 

as sigmaL=0, sigmaH=0, and q=10.  

2. After time elapse t where  ≤ t ≤ , the transition 

S2S3 is executed, calculating new value of q=q-1. 

3. S3 is a committed state, causing transition S3S2 to be 

taken immediately, calculating new values for sigmaL = 



 and sigmaH = . The total state at S2 is (q-1,  ≤ t 

≤ ). 

4. Steps 2 and 3 are repeated until the total state = (q=1, 

sigmaL=sigmaH=10).  

 
Figure 3: TA representation of QSS exponential decay. 

This shows that the TA of figure 3 simulates the above QSS 

model.  

A. Verification of discrete DEVS models 

There have been several proposals to verify discrete DEVS 

models. In this paper, we use the methodology we introduced 

in [27][28][29]. The idea is to transform DEVS models for-

mally into behaviorally equivalent TA, which are then verified 

against system requirements by TA model checking tools (such 

as UPPAAL). For our purpose of verification, we assume all 

to-be-verified DEVS models are finite in terms of the number 

of states, input events, and output events. For a coupled DEVS 

model on the form 

CM = <X, Y, D, {Md |dD},EIC,EOC,IC,SELECT > (Eq. III.1) 

The algorithm below is used to model it with TA: 

1. Declare a set of clocks C = {xi | 1≤ i ≤ |D| }, where i is the 

index of component d D 

2. Convert the rational numbers defined in RTA-DEVS to 

integers, as described in section II.B. 

3. Define a TA location for each RTA-DEVS state and de-

fine location invariant if necessary: 

For each d D do 

 Nd = {lj | dj Ss  , dD} //component N of the TA 

corresponding to component d  

 β( C )lj = { xi ≤ ta(sj) | dj Ss  ,1≤ i ≤ |D|, ta(sj)< ∞} 

4. Define a set of channels for communication between TA 

components:  H = {aj | j IC} 

5. Define set of TA transitions for RTA-DEVS internal tran-

sitions: 

  set E = Ø;   //Initialize the set of TA Transitions 

For each d D do 

For each sj  Sd do 

If ( ta(sj) < ∞ && δint(sj) = sk && λ(sj) = a ) then 

E = E  (lj, xd ≥ ta(sj), a!, xd := 0, lk); 

6. Add TA transitions corresponding to RTA-DEVS external 

transitions: 

        For each d D do 

          For each  sj  Sd do 

If (δext(sj, a, cond(e)m  ) = sk m) then 

E = E  (lj, cond(xd)m ), a?, xd := 0, lkm); 

// whenever:  δext(sj,a,e) = sk1 cond(e)1:  0 ≤e<c1 

//                     =  sk2 cond(e)2:  c1 ≤e<c2 

//  ...                 =  skm cond(e)m:  cm-1 ≤e<cm 

// we define   cond(xd)m = cm-1 ≤xd<cm, where cond(xd)1,  

// cond(xd)2,…, cond(xd)m are convex polyhedra (i.e. described  

// by a finite number of linear inequalities) 

IV. CASE STUDY: A HYBRID ELEVATOR CONTROL SYSTEM. 

To show our methodology for verification of hybrid DEVS 

models, we modified an example originally introduced in [27]. 

That example defines an elevator system composed of an Ele-

vator, the Elevator Controller and an Environment that repre-

sents a user pressing different buttons. The elevator controller 

interacts with the user to receive button requests from each 

floor. Then, it makes the elevator move to respond to the user 

requests. This is an example of a (soft) Real-Time System with 

safety and bounded response time requirements. This example 

was transformed from RTA-DEVS to TA, and verified to work 

correctly in UPPAAL. A summary of this case study, original-

ly presented in [28], is given below.  

 
Figure 4: Elevator RTA-DEVS Model. 

 The elevator model shown in figure 4 represents the differ-

ent states of the elevator movement and transitions between 

these states. This is an abstract model of the elevator where 

some details like door operation, floor display, etc. have been 

ignored (as we only interested to control the elevator move-

ment). The elevator starts in the stopped state and waits for the 

controller commands to move (satisfying a button request from 

the user). The controller takes the decisions for direction, start 

and stop of the motors. 

 The elevator DEVS graph model in figure 4 has 5 external 

transitions, shown with solid arrows; and three internal transi-

tions, shown with dotted arrows. Note that an external transi-

tion is enabled whenever the expression on that transition 

evaluates to true in RTA-DEVS model. 

 The expression Value(mover) evaluates to true whenever 

the elevator model receives a value in mover variable equals to 

1. This expression is translated to a channel reception move? 

as shown in TA model in figure 5. By following the algorithm 

in section III.A, we obtain the TA model shown in figure 5. 

Details of the transformation and interaction of this model with 

other components are described in [28] and [29].  



 

Figure 5: Elevator TA model. 

The elevator controller is also responsible to interact with the 

user, and to send commands to the elevator to satisfy the user 

requests. The controller RTA-DEVS model is shown in figure 

6, represented in DEVS graphs notation. We abstracted the 

behaviour of the controller to being in one of possible 6 states, 

representing the elevator’s direction and acceleration. StdBy-

Stop represents the elevator in a complete stop and ready to 

move for any coming requests. Moving is when the controller 

makes a decision to move the elevator based on current floor 

and the button pressed floor. StdByMov corresponds to the el-

evator moving to the desired floor and the controller in that 

state receiving sensor signals to decide when to stop the eleva-

tor. Aux is an intermediate state with an instantaneous internal 

transition (to enable the test of the sensor value on the external 

transition with the function equal(sensor,floor)). Stopped cor-

responds to the controller deciding to send a signal to the ele-

vator to slow in preparation to stop. Stopping corresponds to 

the controller waiting for the elevator to get into complete stop 

and sending a stop signal to the controller. 

 
Figure 6: Elevator Controller Model as DEVS Graphs. 

 

After applying the transformation steps in [28] to the con-

troller RTA-DEVS model, we obtain TA shown in figure 7. 

 

Figure 7: TA Controller model in UPPAAL. 

 

 

Figure 8: Environment inputs (Button and Sensor). 

 

A. Continuous Model of Elevator Braking 

In this paper we extend the case study by introducing a model 

of the elevator de-acceleration motion due to applying the 

brakes that can be described by a differential equation as: 

 

a
dt

dv
  

(Eq.IV.1) 

Where v is the elevator speed, and a is a constant accelera-

tion which would be a negative value in case of braking or a 

positive value for moving out of rest. Figure 9 shows a nega-

tive acceleration representing braking action on the elevator. 
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Figure 9: Elevator braking. De-acceleration: 0.5 m/s

2
. 

The speed of the elevator at any point in time t can then be 

obtained as: 

v = at + vi     (Eq.IV.2) 



With vi the initial elevator speed before applying the brakes. 

Figure 10 shows the change in elevator speed during braking. 

The elevator brakes are applied while its speed is 4 m/s, and 

the subsequent reduction of speed is shown until complete 

stop.  
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Figure 10: Elevator speed under braking. 

 

With this continuous model of the elevator motion, our 

overall elevator model becomes a hybrid between discrete and 

continuous components. To simulate and then verify this hy-

brid model, we must obtain discrete representation of the ele-

vator braking model. This can be done within DEVS formal-

ism using QSS method. A QSS model to represent elevator 

speed under braking (Eq.IV.2) can be described as follows: 

AMD = <X, Y, S, int, ext , ta> (Eq.IV.3)  

X = Ø;                   S={s | s=(q,)};  

ta(s) = ta(q,) = int (s) =int (q,) = (q-0.5, 0.5/a) 

 qq 

q: is a quantized variable related to v(t) system variable by 

quantization function as shown in section II.B. Figure 11 

shows the quantized output of this QSS model. 

 
Figure 11: Quantized braking-elevator speed. 

To enable the formal verification within UPPAAL to the com-

bined hybrid elevator model, we transform the QSS model of 

(Eq.IV.3) to an equivalent TA model as per the method shown 

in III resulting in the TA shown in figure 12. 

On this model, location S1 represents the initial elevator 

speed (4 m/s), the quantum value is dQ = 0.5 m/s, and sigma 

represents the time interval between the outputs of two succes-

sive quantized values. When this model receives a synchroni-

zation event on the applyBrake channel, it moves to the state 

S2 to start the main loop S2-S3-S2-..., calculating the next 

quantized output q and the next values of sigmaL and sigmaH. 

When the quantized speed q reaches zero, the model moves 

back to S1 and waits for another applyBrake event. 

 

Figure 12: TA model of braking elevator motion. 

 

Sigma is calculated as per the definition of (Eq.IV.3) with-

in int function. However, sigma is defined as a real value in 

QSS model. Therefore, sigma value is over-approximated with 

an integer interval   [sigmaL, sigmaH] as described in sec-

tion III. Thus, TA model behavior includes all trajectories (q,t) 

where q is the quantized state, and t  [sigmaL, sigmaH]. In 

addition, since TA deals with only integer type variables, we 

multiplied all values of the QSS model by a factor of 100 to 

convert all fractions to integers. This multiplication is done on 

all TA components to scale the time evenly of all component 

models.  

Another modification to the original elevator model was 

necessary to enable the elevator communicate with the QSS 

model through the synchronization channel applyBrake, and 

for the elevator to be in Stopped location only when the quan-

tized speed value q reaches zero. The modified elevator model 

is shown in figure 13. 

 
Figure 13: Modified elevator TA model. 

In this model, whenever the elevator receives the command 

from the controller to stop, it synchronizes with the braking el-

evator motion model with sending applyBrake!. This would 

start the computation of quantized speed output by the TA 

shown in figure 12. The elevator waits in state Braking for the 

quantized speed q value to reach zero. Once elevator speed 

reaches zero, the transition from Braking to Stopped would be 

enabled and executed, then the elevator sends stop! to the ele-

vator-controller. The rest of the model executes exactly as 

shown before. This hybrid model allows the designer to verify 

the control system with different parameters of the elevator 

physical system such as different braking values of de-



accelerations, different elevator initial speeds, or other pa-

rameters in a more detailed QSS model. This is an important 

addition to the elevator system verification as relevant physical 

factors to the controller performance can be identified and 

formally verified during design phase. 

V. VERIFICATION EXAMPLES 

In [27][28], we showed how to verify a number of desired 

properties for the DEVS model such as deadlock freedom, 

bounded response time, and safety properties for the elevator 

coupled model. We used Computational Tree Logic (CTL) to 

construct queries with the requirements and submitted it to 

UPPAAL to get an answer and hence verify that requirement. 

We check one of these required properties here with the hybrid 

system modeled in the previous section. We start with an ele-

vator model as the one described in figure 12 with its speed 

decrease as in figure 11. 

One such requirement is the freedom of deadlocks ex-

pressed in CTL as A[] not deadlock. This means for all 

paths, there should be no deadlocks. 

After running the checker, it shows that this property is sat-

isfied, i.e. there is no deadlock in the DEVS model: 
(Academic) UPPAAL version 4.0.13 (rev. 4577), Sep-

tember 2010 -- server. 

A[] not deadlock 

Property is satisfied. 

In another example, a second elevator with braking de-

acceleration equals -0.12 m/s
2
 has its continuous and quantized 

speeds described by graphs shown in figure 14 and figure 15.  

 
Figure 14: Elevator speed, acceleration= - 0.12 m/sec

2
. 

  

 
Figure 15: Quantized speed, acceleration= - 0.12 m/s

2
. 

 

To verify the elevator-controller with this second version, 

we changed the parameters of the elevator acceleration in its 

TA model and re-verified again. The results are shown as fol-

lows: 
A[] not deadlock 

Property is not satisfied. 

In this case, the time needed for the elevator to stop is ap-

proximately 33 seconds. This would contradict with the user 

requirements model shown in figure 8. In this model, the user 

expects the elevator to reach 3
rd

 floor within 27 seconds at 

most, and after this time the requirement for the elevator con-

troller to be ready to accept another as shown on the transition 

S5  S6. However, the slow-braking elevator would not be 

able to fulfill the second request in time, hence we have a time 

lock [31] and the model cannot progress beyond S5.  

VI. CONCLUSION 

We showed a methodology to verify hybrid DEVS models. 

This is an extension of previous results verifying discrete 

DEVS [27][28][29], and this was obtained by using QSS 

method to model continuous components in a discrete repre-

sentation. We believe this methodology would enable real-time 

system designers not only study their systems by simulation, 

but also to be able to formally verify system requirements 

within simulation models. 
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VII. APPENDIX 

In this section, we give a quick reference to the concepts used 

in this paper. Hence, we cover a basic introduction to RTA-

DEVS and Timed Automata. The reader may consult the ref-

erenced material for more detailed background. 

A. RTA-DEVS 

RTA-DEVS [28] atomic model is defines as in classical DEVS 

[25]. RTA-DEVS changes the definitions of time advance 

function ta and the external transition function ext  as follows. 

The Atomic Rational Time-Advance is defined as: 

AMTC = < X, Y, S, int, ext , ta> 

- X : The set of external inputs. 

- :Y  Set of external outputs. 

- S: set of system states.  

- int: S → S is the internal transition function (the same as 

in classic DEVS). 

ext: TxX → S with T={(s,e)/s 0≤e≤ta(s), e  Q0,+∞} is the 

external transition function (e is the time elapsed since the last 

transition, which takes a positive rational value). 

- : S → Y  is the output function. 

- ta: S → Q0,+∞ is the time advance function that maps each 

state to a positive rational number. 

Coupled RTA-DEVS model are defined exactly as in clas-

sic DEVS Coupled RTA-DEVS models are composed of 

atomic or other coupled RTA-DEVS models: 

SelectyCxCiMDYXCM ,,},{,,,  

X: Set of external input events. 

Y: Set of external output events. 

D: Finite index of sub-components. 

{Mi}: The set of sub-components. A sub-component may 

be an atomic or coupled. Di  is the index of the component. 

Cx: Set of input couplings. 

Cy: Set of output couplings. 

Select: 2
D
 →D is a tie-breaking function, which defines 

how to select an event from asset of simultaneous events. 

A coupled RTA-DEVS model M can be simulated with an 

equivalent atomic RTA-DEVS model, whose behavior is de-

fined as follows [29]: 

M = < X,Y,S,s0,δext,δint,λ,ta > 

 X and Y are the input and output event sets, respectively. 

X is the set of all input events accepted and Y is the set of all 

output events generated by coupled model M. 

 iVDiS   is the model state. It is expressed as the 

Cartesian product of all component states, where 
iV  is the total 

state for component i,  )](,0[,|),( istaeitiSiseitisiV  . 

Here, eit denotes the elapsed time in state is  of component i, 

and iS  is the set of states of component i. 

 
i

vDis 00  is the initial system state, with )0,0(0 is
i

v   

is the initial state of component Di . 

 Sta : is the time advance function. It is calculated 

for the global state Ss of the coupled model as the minimum 

time remaining for any state among all components, formally: 

 Dieitistasta  |))((min)(  where  ),...,(..., ietiss   is 

the global total state of coupled model at some point in time, 

is  is the state of component i, iet  is elapsed time in that state. 

 SVX
ext

:  is the external transition function for 

the coupled model. Where V is total state of the coupled mod-

el:  )](,0[,|),( staetSsetsV  . 

 SS :
int
  is the internal transition function of the 

coupled model. 

YS :  is the output function of the coupled model. 

UPPAAL added more features to ease the process of model-

ing using TA as variables, committed states, communication 

channels, etc. These additions do not change the basic seman-

tics of TA and are described in [30]. 


