
On the Verification of Hybrid DEVS Models

Hesham Saadawi
1
 Gabriel Wainer

2

1
School of Computer Science, Carleton University, Ottawa, ON, CANADA

2
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, CANADA

Hybrid systems (those where continuous and discrete phenomena interact) can be found in many natural and artificial

systems. For example, real-time embedded systems usually include discrete-event controllers interacting with a continu-

ous plant. Verifying such real-time systems for correctness is of utmost importance, as results of incorrect behavior could

be catastrophic. Although Modeling and Simulation is one of most used tools to study such hybrid real-time systems, they

lack of a robust formal mechanism for checking the correctness of the system. Here, we introduce a new verification

method, based on RTA-DEVS, hybrid Timed Automata and the QSS method, which allows verifying real-time hybrid

systems modeled by DEVS formalism.

I. INTRODUCTION

Real-Time (RT) systems are very advanced computer sys-

tems with hardware and software components with timing con-

straints. In some cases, they have “soft” timing constraints

(i.e., a deadline can be missed without serious consequences).

In other cases, the system must satisfy "hard" timing con-

straints (and a missed deadline can result in catastrophic con-

sequences). In these highly reactive systems, not only correct-

ness is critical, but also the timeliness of the executing tasks.

Embedded Real-Time (RT) software systems are increasingly

used in mission critical applications, where a failure of the sys-

tem to deliver its function can be catastrophic. For instance, if

we consider the design decisions made for an aircraft autopi-

lot, or a controller for an automated factory, we need to obtain

system responses within well-defined deadlines. Great care

must be taken when developing RT systems to guarantee their

functional correctness along with non-functional correctness

such as timing constraints.

Because of the growing complexity of RT systems and

their need for high reliability, RT software development is still

time consuming, error prone, and expensive, requiring a diffi-

cult and costly development effort with no guarantee for a bug-

free software product. Many techniques have been proposed to

check correctness of RT software. Current RT Engineering

methodologies use modeling as a method to study and evaluate

different system designs before building the real application.

In this way, RT systems can have very high predictability and

reliability. To do so, a designer must abstract the physical sys-

tem at hand and build a model for it, then combine this with a

model of the proposed controller design. Then, different tech-

niques can be used to reason about these models and gain con-

fidence in its correctness. Informal methods usually rely on ex-

tensive testing of the systems based on system specification

[1]. These methods have limitations because we need to apply

exhaustive testing to the software component, using all possi-

ble input combinations, which is a costly process. Many tech-

niques have been proposed to enable practical testing methods

[2]. However, we cannot guarantee full coverage of all possi-

ble execution paths in software, thus leaving us with limited

confidence in about correctness. These informal techniques

can reveal errors, but cannot prove model’s correctness.

Formal analysis is growing as an alternative, as it allows

the full verification of the software components, which can be

proved as being free of errors. In last decades, these tech-

niques have matured, and they have been used in some indus-

trial capacity [3]. Nevertheless, these formal methods are still

constrained in their application, as they do not scale up well.

Likewise, the designers need a high level of expertise in apply-

ing these techniques. Another drawback of formal techniques

is their need to be applied to an abstract model of the real sys-

tem. However, in doing so, what is being verified is not the

target system. Even if the abstract designed model is proven

correct, there is a risk that some errors creep during the devel-

opment process through the manual implementation of the de-

sign into executable code [1] .

Formal verification techniques are of two main types, de-

ductive or algorithmic [13]. Deductive techniques rely on rep-

resenting the system and its specification with logic rules, and

then try to deduct a proof of system correctness. Algorithmic

techniques rely on modelling the system in a graphical form,

and coding specifications in logical queries. Then, an algo-

rithm for reachability analysis searches the graph space for

nodes reachable from an initial system configuration that satis-

fies the specification queries. This method is also called model

checking. New theoretical advances in model checking allow

guaranteeing certain properties about models of such systems

using a formal approach. Model checking techniques can be

automated, and Timed Automata (TA) theory [4], in particular,

has provided many practical results in this area. However,

there is still a gap between a system model that is checked as

an abstract entity, and the actual system implementation code

run on the target platform. Errors can creep into the final im-

plementation (when the programmer translates requirements

captured in TA into code). Also, though formal methods have

showed promising results, they are difficult to apply, and do

not scale up well.

A different approach considers using Modeling and Simu-

lation (M&S) to gain confidence about the model correctness.

The use of M&S is not new, and systems Engineers often rely

on these methods in order to improve the study of experi-

mental conditions during model definition. M&S let users ex-

periment with “virtual” systems, allowing them to explore

changes, and test dynamic conditions in a risk-free environ-

ment. This is a useful approach, moreover considering that

testing under actual operating conditions may be impractical or

even impossible. Nevertheless, no practical, automated ap-

proach exists to perform the transition that exists between the

modeling and the development phases, and this often results in

initial models being abandoned, resulting in increased initial

costs that project managers usually try to avoid. Simultaneous-

ly, M&S frameworks are not as robust as their formal counter-

parts are.

If the models used for M&S are formal, their correctness

would also be verifiable, and a designer could see the system

evolution and its inner workings even before starting a simula-

tion [5]. Another advantage of executable models is that they

can be deployed to the target platform, thus giving the oppor-

tunity to use the model not only for simulations, but also as the

actual implementation deployed on the target hardware. This

avoids any new errors that would appear during the implemen-

tation from transformation of the verified models into an im-

plementation, thus guaranteeing a high degree of correctness

and reliability.

The objective of this paper is to introduce a methodology

enabling formal verification of hybrid RT systems modeled

with DEVS formalism. This methodology would add the bene-

fit of rigorous formal correctness check to the current practice

of simulating RT hybrid systems. The main contribution is to

show a transformation method from continuous systems mod-

eled with QSS to an equivalent TA model. This method would

deal with issues of infinite continuous state space, abstraction

and preservation of critical model properties through the trans-

formation.

II. RELATED WORK

A. Hybrid DEVS models

Hybrid models are important particularly in modeling con-

trol systems where the controlled environment obeys the laws

of physics, while the controller is a digital discrete system. The

study of such systems requires the verification of the resulting

hybrid system.

A Major problem in verification of hybrid systems is the

lack of a unified theory to model and solve both continuous

and discrete components together [6]. As a result, modeling

and simulation is still one of the most useful methods to verify

this kind of systems [7][8][9]. Hybrid systems simulation was

enabled within DEVS formalism by using a method, called

Quantizes State Systems (QSS) that will be covered in section

B, which allows modeling continuous components

[10][11][12]. However, simulation does not guarantee the ab-

sence of defects from the system under study. Simulation veri-

fies the system for particular scenarios chosen by the system

tester. Formal methods can then be used to provide an ab-

sence-of-defects guarantee. In doing so, a hybrid system needs

to be modeled and verified within a formal framework.

To use the algorithmic method (model checking through

reachability analysis) to verify hybrid systems, the focus would

be to find a suitable finite abstraction of the hybrid system that

can be verified and hence reachability algorithm is guaranteed

to terminate. Different types of labeled transition systems were

proposed to model hybrid systems abstractions including Petri

Nets [14], hybrid automata and TA [13].

 However, as Henzinger et al. shows in [16], Hybrid TA

verification through reachability analysis is not decidable in

general. For this reason, recent research has concentrated on

modeling the hybrid system in some form with a decidable ver-

ification such as TA. In doing so, a technique must be used to

model the continuous component in a discrete finite form. As

continuous system variables are real values, their state space

could be infinite. An approximation to a finite representation is

needed to enable the decidability and termination of reachabil-

ity analysis. Many techniques have been proposed to approxi-

mate continuous-time systems into a discrete representation of

TA [17] [18][19][20].

This paper uses another innovative technique to represent

the continuous system in discrete format using DEVS formal-

ism. Although DEVS is a discrete-event system specification,

some methods are used to represent continuous systems in a

discrete format that can be simulated with DEVS. One of these

methods is Quantized State Systems (QSS) method [11]. This

method enables modeling and simulation of hybrid systems

with DEVS formalism.

B. Quantized State Systems (QSS) method

In this section, we introduce the QSS method [10][11]. The

QSS is an approximation method to model and simulate con-

tinuous systems, which are usually modeled with Ordinary Dif-

ferential Equations (ODE) and Algebraic Equations. Obtaining

a detailed description of system behavior entails solving these

equations simultaneously. In doing so, many different tech-

niques of numerical integration are used to solve ODEs such

as Euler, Runge-Kutta, etc. These methods approximate the so-

lution of ODEs, and they limit the error to an acceptable range

based on the choice of its discrete integration step. All these

methods rely on discrete-time integration of ODEs. In this

way, time is allowed to progress in small steps, and at each

step, an approximation is computed for ODEs solution. When

a system modeled by ODEs has a discontinuity (i.e. sudden

jumps in its variables values with regard to time), the numeri-

cal integration method may produce unacceptable errors [23].

These kinds of discontinuity are normal properties in hybrid

systems, which can be seen as operating in different modes

each described with a specific ODE. An example of such a

system would be a heating system with an on-off thermostat

switch.

A different method for approximation is called Quantized

State Systems QSS, a quantization-based method that models

hybrid systems as discrete-event systems and not as discrete-

time. This solves the above problem around discontinuities

while solving hybrid system as discussed in [11]. Consider a

continuous system modeled by some time-invariant Ordinary

differential equation (ODE) and it is in its State Equation Sys-

tem (SES) representation:

x˙ (t) = f[x(t), u(t))] (Eq.II.1)

Where x(t)  R
n
 represents the system state vector and u(t) 

R
m

 represents an input vector, which is a known piecewise

constant function, and R is the set of Real numbers. With the

QSS method, we simulate an approximate system, which is

called Quantized State System:

x˙ (t) = f[q(t), u(t))] (Eq.II.2)

Where q(t) is a vector of quantized variables which are ob-

tained with quantization function q from the state variables

x(t). Each component of q(t) may be related with the corre-

sponding component of x(t) by a hysteretic quantization func-

tion, as given in [11]. A hysteresis function approximates a

continuous linear function xi(t) by outputting a number of dis-

crete levels. Each level is called a quantization level Qi. The

difference between two successive quantization levels (Qi,
Qi+1) is called the quantum (dq) and it is usually constant. The

crossing of the continuous function to a quantization level

generates an output.

An example of simulating a continuous system with QSS

can be shown by using the exponential decay formula which is

modeled as follows, using an ODE:

dx/dt = -x(t) (Eq.II.3)

Which has the analytical solution x(t) = e
-t
, with the initial

condition x(0) =1. Figure 1 shows a graph of the exact analyti-

cal solution of the exponential decay formula x(t) = 10 e
-t

where x(0) =10.

Figure 1: Exact solution for exponential decay formula.

The solution of (Eq.II.3) is approximated in discrete-event

form by the following QSS DEVS model:

AMD = <X, Y, S, int, ext ,ta> (Eq.II.4)

X = Ø; S={s | s=(q,)} ; ta(s) = ta(q,) = 

int (s) = int (q,) = (q-0.1, 0 .1/q) ; q,) = q

q: is a quantized variable related to the x(t) system variable by

a quantization function.

Figure 2 shows the quantized representation of the decay

formula as a result of simulating this QSS model.

Figure 2: Quantized representation of Exponential Decay.

III. MAPPING QSS TO TA

The main contribution of this paper is a novel approach to

transform QSS model to TA, and hence enabling formal verifi-

cation of hybrid models within DEVS formalism. To transform

a DEVS model (Eq.II.4) to a TA, we need to solve the follow-

ing issues:

1. The TA variables can only be of bounded integer type, in

order to guarantee the finiteness of state space and hence

the termination of the reachability algorithm. However, in

QSS, state variables are real numbers and thus have infi-

nite values.

2. Time ( of next quantum event is approximated to an in-

teger number. However in doing so we need to preserve

original behavior of QSS and hence the properties we

need to formally verify.

The first issue is handled by converting rational real num-

bers to integers by multiplying all values by the least common

multiple of all the denominators. For any irrational values, we

can use a technique we introduced in [29]. For the second is-

sue, we use abstraction by over-approximation [26]. With this

technique, we approximate the real value of the event time ti

with a bounded time interval such that tc [TL,TH]. This inter-

val is bounded by floor(ti) and ceiling(ti) respectively. This

guarantees that the resulting TA would include all possible

event timings in that interval. Hence, verification of TA would

apply to the real value produced in QSS model, as proved in

[21] for robust timed automata. figure 3 shows a transfor-

mation from QSS to TA for the QSS model of (Eq.II.4). Over-

approximation also preserves safety properties, i.e. any proof

of a safe over-approximation implies the original system is al-

so safe, however as over-approximation contains more behav-

iors than the original system, it verification may produce safety

property violations that does not exist in the original system. In

this case, any violation scenario should also be checked

against the original system to confirm it is a real safety viola-

tion [22].

The semantics of the QSS models a loop as follows:

1. Initial values are assigned to q=1 and so=(1,0).

2. After a time elapse of e= the output function is triggered

to send value q, and int is triggered to calculate the next

state, composed of new q and s = (q-0.1, 0.1/q).
3. Repeat step 2 in the loop until s = (1,10).

To obtain a TA that contains all the behavior of QSS model,

we need to a simulation relation with QSS model (i.e., TA

simulates QSS). To do so, each state in QSS would be simulat-

ed by a corresponding state in TA and each target state in QSS

is simulated by a corresponding target state in TA. Inspecting

the TA model figure 3, we can see the following simulation to

the QSS model after multiplying by scale of 10 to remove frac-

tional parts:

1. The TA starts in the initial state S1, and moves to S2. On

this initial transition, the total state variables are initialized

as sigmaL=0, sigmaH=0, and q=10.

2. After time elapse t where  ≤ t ≤ , the transition

S2S3 is executed, calculating new value of q=q-1.

3. S3 is a committed state, causing transition S3S2 to be

taken immediately, calculating new values for sigmaL =

 and sigmaH = . The total state at S2 is (q-1,  ≤ t

≤ ).

4. Steps 2 and 3 are repeated until the total state = (q=1,

sigmaL=sigmaH=10).

Figure 3: TA representation of QSS exponential decay.

This shows that the TA of figure 3 simulates the above QSS

model.

A. Verification of discrete DEVS models

There have been several proposals to verify discrete DEVS

models. In this paper, we use the methodology we introduced

in [27][28][29]. The idea is to transform DEVS models for-

mally into behaviorally equivalent TA, which are then verified

against system requirements by TA model checking tools (such

as UPPAAL). For our purpose of verification, we assume all

to-be-verified DEVS models are finite in terms of the number

of states, input events, and output events. For a coupled DEVS

model on the form

CM = <X, Y, D, {Md |dD},EIC,EOC,IC,SELECT > (Eq. III.1)

The algorithm below is used to model it with TA:

1. Declare a set of clocks C = {xi | 1≤ i ≤ |D| }, where i is the

index of component d D

2. Convert the rational numbers defined in RTA-DEVS to

integers, as described in section II.B.

3. Define a TA location for each RTA-DEVS state and de-

fine location invariant if necessary:

For each d D do

 Nd = {lj | dj Ss  , dD} //component N of the TA

corresponding to component d

 β(C)lj = { xi ≤ ta(sj) | dj Ss  ,1≤ i ≤ |D|, ta(sj)< ∞}

4. Define a set of channels for communication between TA

components: H = {aj | j IC}

5. Define set of TA transitions for RTA-DEVS internal tran-

sitions:

 set E = Ø; //Initialize the set of TA Transitions

For each d D do

For each sj  Sd do

If (ta(sj) < ∞ && δint(sj) = sk && λ(sj) = a) then

E = E  (lj, xd ≥ ta(sj), a!, xd := 0, lk);

6. Add TA transitions corresponding to RTA-DEVS external

transitions:

 For each d D do

 For each sj  Sd do

If (δext(sj, a, cond(e)m) = sk m) then

E = E  (lj, cond(xd)m), a?, xd := 0, lkm);

// whenever: δext(sj,a,e) = sk1 cond(e)1: 0 ≤e<c1

// = sk2 cond(e)2: c1 ≤e<c2

// ... = skm cond(e)m: cm-1 ≤e<cm

// we define cond(xd)m = cm-1 ≤xd<cm, where cond(xd)1,

// cond(xd)2,…, cond(xd)m are convex polyhedra (i.e. described

// by a finite number of linear inequalities)

IV. CASE STUDY: A HYBRID ELEVATOR CONTROL SYSTEM.

To show our methodology for verification of hybrid DEVS

models, we modified an example originally introduced in [27].

That example defines an elevator system composed of an Ele-

vator, the Elevator Controller and an Environment that repre-

sents a user pressing different buttons. The elevator controller

interacts with the user to receive button requests from each

floor. Then, it makes the elevator move to respond to the user

requests. This is an example of a (soft) Real-Time System with

safety and bounded response time requirements. This example

was transformed from RTA-DEVS to TA, and verified to work

correctly in UPPAAL. A summary of this case study, original-

ly presented in [28], is given below.

Figure 4: Elevator RTA-DEVS Model.

 The elevator model shown in figure 4 represents the differ-

ent states of the elevator movement and transitions between

these states. This is an abstract model of the elevator where

some details like door operation, floor display, etc. have been

ignored (as we only interested to control the elevator move-

ment). The elevator starts in the stopped state and waits for the

controller commands to move (satisfying a button request from

the user). The controller takes the decisions for direction, start

and stop of the motors.

 The elevator DEVS graph model in figure 4 has 5 external

transitions, shown with solid arrows; and three internal transi-

tions, shown with dotted arrows. Note that an external transi-

tion is enabled whenever the expression on that transition

evaluates to true in RTA-DEVS model.

 The expression Value(mover) evaluates to true whenever

the elevator model receives a value in mover variable equals to

1. This expression is translated to a channel reception move?

as shown in TA model in figure 5. By following the algorithm

in section III.A, we obtain the TA model shown in figure 5.

Details of the transformation and interaction of this model with

other components are described in [28] and [29].

Figure 5: Elevator TA model.

The elevator controller is also responsible to interact with the

user, and to send commands to the elevator to satisfy the user

requests. The controller RTA-DEVS model is shown in figure

6, represented in DEVS graphs notation. We abstracted the

behaviour of the controller to being in one of possible 6 states,

representing the elevator’s direction and acceleration. StdBy-

Stop represents the elevator in a complete stop and ready to

move for any coming requests. Moving is when the controller

makes a decision to move the elevator based on current floor

and the button pressed floor. StdByMov corresponds to the el-

evator moving to the desired floor and the controller in that

state receiving sensor signals to decide when to stop the eleva-

tor. Aux is an intermediate state with an instantaneous internal

transition (to enable the test of the sensor value on the external

transition with the function equal(sensor,floor)). Stopped cor-

responds to the controller deciding to send a signal to the ele-

vator to slow in preparation to stop. Stopping corresponds to

the controller waiting for the elevator to get into complete stop

and sending a stop signal to the controller.

Figure 6: Elevator Controller Model as DEVS Graphs.

After applying the transformation steps in [28] to the con-

troller RTA-DEVS model, we obtain TA shown in figure 7.

Figure 7: TA Controller model in UPPAAL.

Figure 8: Environment inputs (Button and Sensor).

A. Continuous Model of Elevator Braking

In this paper we extend the case study by introducing a model

of the elevator de-acceleration motion due to applying the

brakes that can be described by a differential equation as:

a
dt

dv


(Eq.IV.1)

Where v is the elevator speed, and a is a constant accelera-

tion which would be a negative value in case of braking or a

positive value for moving out of rest. Figure 9 shows a nega-

tive acceleration representing braking action on the elevator.

E levator B raking

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20 25 30 35

T ime (sec)

De-a c c e lera tion

(m/sec 2)

Figure 9: Elevator braking. De-acceleration: 0.5 m/s

2
.

The speed of the elevator at any point in time t can then be

obtained as:

v = at + vi (Eq.IV.2)

With vi the initial elevator speed before applying the brakes.

Figure 10 shows the change in elevator speed during braking.

The elevator brakes are applied while its speed is 4 m/s, and

the subsequent reduction of speed is shown until complete

stop.

E levator s peed

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10

T ime (sec .)

S peed m/sec

Figure 10: Elevator speed under braking.

With this continuous model of the elevator motion, our

overall elevator model becomes a hybrid between discrete and

continuous components. To simulate and then verify this hy-

brid model, we must obtain discrete representation of the ele-

vator braking model. This can be done within DEVS formal-

ism using QSS method. A QSS model to represent elevator

speed under braking (Eq.IV.2) can be described as follows:

AMD = <X, Y, S, int, ext , ta> (Eq.IV.3)

X = Ø; S={s | s=(q,)};

ta(s) = ta(q,) = int (s) =int (q,) = (q-0.5, 0.5/a)

 qq

q: is a quantized variable related to v(t) system variable by

quantization function as shown in section II.B. Figure 11

shows the quantized output of this QSS model.

Figure 11: Quantized braking-elevator speed.

To enable the formal verification within UPPAAL to the com-

bined hybrid elevator model, we transform the QSS model of

(Eq.IV.3) to an equivalent TA model as per the method shown

in III resulting in the TA shown in figure 12.

On this model, location S1 represents the initial elevator

speed (4 m/s), the quantum value is dQ = 0.5 m/s, and sigma

represents the time interval between the outputs of two succes-

sive quantized values. When this model receives a synchroni-

zation event on the applyBrake channel, it moves to the state

S2 to start the main loop S2-S3-S2-..., calculating the next

quantized output q and the next values of sigmaL and sigmaH.

When the quantized speed q reaches zero, the model moves

back to S1 and waits for another applyBrake event.

Figure 12: TA model of braking elevator motion.

Sigma is calculated as per the definition of (Eq.IV.3) with-

in int function. However, sigma is defined as a real value in

QSS model. Therefore, sigma value is over-approximated with

an integer interval   [sigmaL, sigmaH] as described in sec-

tion III. Thus, TA model behavior includes all trajectories (q,t)

where q is the quantized state, and t  [sigmaL, sigmaH]. In

addition, since TA deals with only integer type variables, we

multiplied all values of the QSS model by a factor of 100 to

convert all fractions to integers. This multiplication is done on

all TA components to scale the time evenly of all component

models.

Another modification to the original elevator model was

necessary to enable the elevator communicate with the QSS

model through the synchronization channel applyBrake, and

for the elevator to be in Stopped location only when the quan-

tized speed value q reaches zero. The modified elevator model

is shown in figure 13.

Figure 13: Modified elevator TA model.

In this model, whenever the elevator receives the command

from the controller to stop, it synchronizes with the braking el-

evator motion model with sending applyBrake!. This would

start the computation of quantized speed output by the TA

shown in figure 12. The elevator waits in state Braking for the

quantized speed q value to reach zero. Once elevator speed

reaches zero, the transition from Braking to Stopped would be

enabled and executed, then the elevator sends stop! to the ele-

vator-controller. The rest of the model executes exactly as

shown before. This hybrid model allows the designer to verify

the control system with different parameters of the elevator

physical system such as different braking values of de-

accelerations, different elevator initial speeds, or other pa-

rameters in a more detailed QSS model. This is an important

addition to the elevator system verification as relevant physical

factors to the controller performance can be identified and

formally verified during design phase.

V. VERIFICATION EXAMPLES

In [27][28], we showed how to verify a number of desired

properties for the DEVS model such as deadlock freedom,

bounded response time, and safety properties for the elevator

coupled model. We used Computational Tree Logic (CTL) to

construct queries with the requirements and submitted it to

UPPAAL to get an answer and hence verify that requirement.

We check one of these required properties here with the hybrid

system modeled in the previous section. We start with an ele-

vator model as the one described in figure 12 with its speed

decrease as in figure 11.

One such requirement is the freedom of deadlocks ex-

pressed in CTL as A[] not deadlock. This means for all

paths, there should be no deadlocks.

After running the checker, it shows that this property is sat-

isfied, i.e. there is no deadlock in the DEVS model:
(Academic) UPPAAL version 4.0.13 (rev. 4577), Sep-

tember 2010 -- server.

A[] not deadlock

Property is satisfied.

In another example, a second elevator with braking de-

acceleration equals -0.12 m/s
2
 has its continuous and quantized

speeds described by graphs shown in figure 14 and figure 15.

Figure 14: Elevator speed, acceleration= - 0.12 m/sec

2
.

Figure 15: Quantized speed, acceleration= - 0.12 m/s

2
.

To verify the elevator-controller with this second version,

we changed the parameters of the elevator acceleration in its

TA model and re-verified again. The results are shown as fol-

lows:
A[] not deadlock

Property is not satisfied.

In this case, the time needed for the elevator to stop is ap-

proximately 33 seconds. This would contradict with the user

requirements model shown in figure 8. In this model, the user

expects the elevator to reach 3
rd

 floor within 27 seconds at

most, and after this time the requirement for the elevator con-

troller to be ready to accept another as shown on the transition

S5  S6. However, the slow-braking elevator would not be

able to fulfill the second request in time, hence we have a time

lock [31] and the model cannot progress beyond S5.

VI. CONCLUSION

We showed a methodology to verify hybrid DEVS models.

This is an extension of previous results verifying discrete

DEVS [27][28][29], and this was obtained by using QSS

method to model continuous components in a discrete repre-

sentation. We believe this methodology would enable real-time

system designers not only study their systems by simulation,

but also to be able to formally verify system requirements

within simulation models.

REFERENCES
[1] M. J. Rehman, F. Jabeen, A. Bertolino, and A. Polini. 2007. “Testing

Software Components for Integration: a Survey of Issues and Tech-

niques”. Software Testing,Verification and Reliability 17(2): 95–133.

[2] R. Gerlich, R. Gerlich, T. Boll. 2007. “Random Testing: From the Clas-

sical Approach to a Global View and Full Test Automation”. In Pro-

ceedings of the 2nd international Workshop on Random Testing, Co-

Located with the 22nd IEEE/ACM international Conference on Auto-

mated Software Engineering (ASE 2007), Atlanta, Georgia.

[3] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, and W. Visser.

2007. "Formal Software Analysis Emerging Trends in Software Model

Checking". In Proceedings of the 2007 Future of Software Engineering

(FOSE '07). IEEE Computer Society, Washington, DC, pages 120-136.

[4] R. Alur, D. Dill. “Theory of Timed Automata". Theoretical Computer

Science, volume 126, pg. 183-235, 1994.

[5] G. Wainer, E. Glinsky, and P. MacSween. 2005. “A Model-Driven

Technique for Development of Embedded Systems Based on the DEVS

Formalism”. In Model-driven Software Development - Volume II of Re-

search and Practice in Software Engineering, edited by S. Beydeda and

V. Gruhn. Springer-Verlag.

[6] M. S Branicky. 2005. “Introduction to Hybrid Systems” D. Hristu-

Varsakelis and W.S. Levine (eds.), Handbook of Networked and Em-

bedded Control Systems, 91-116. Boston: Birkhauser.

[7] A. Donzé, O. Maler. 2007. “Systematic simulation using sensitivity

analysis”. In Proceedings of the 10th international conference on Hy-

brid systems: computation and control (HSCC'07) :174-189.

[8] A. Donzé. 2007. “Trajectory-Based Verication and Controller Synthesys

for Continuous and Hybrid Systems”. PhD thesis, University Joseph

Fourier.

[9] A. Donzé, B. Krogh, and A. Rajhans. 2009. “Parameter synthesis for

hybrid systems with an application to simulink models”. In Proceedings

of the 12th International Conference on Hybrid Systems : Computation

and Control (HSCC'09), San Francisco, CA, USA, April 13-15, 2009.

[10] E. Kofman, S. Junco. 2001."Quantized State Systems. A DEVS Ap-

proach for Continuous Systems Simulation". Transactions of SCS.

18(3): 123-132.

[11] E. Kofman. 2004. "Discrete Event Simulation of Hybrid Systems". SI-

AM Journal on Scientific Computing 25(5): 1771-1797.

[12] M. Otter, F. Cellier. 1996. The Control Handbook, chapter Software for

Modeling and Simulating Control Systems, 415–428. CRC Press, Boca

Raton, FL.

[13] S. Kowalewski. 2002. “Introduction to the Analysis and Verification of

Hybrid Systems”. Modelling, Analysis, and Design of Hybrid Systems.

Lecture Notes in Control and Information Sciences, 279: 153-171.

[14] G Decknatel, R. Slovák, E. Schnieder. 2002. “Definition of a Type of

Continuous-Discrete High-Level Petri Nets and Its Application to the

Performance Analysis of Train Protection Systems In S. Engell,

G. Frehse, and E. Schnieder (Eds.), Modelling, Analysis, and Design of

Hybrid Systems, Lecture Notes in Control and Information Sciences

279: 355–367.

[15] T. Henzinger. 1996. “The Theory of Hybrid Automata”. Lecture Notes

in Computer Science 278.

[16] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. 1995. “What's

decidable about hybrid automata?”. In Proceedings of the twenty-

seventh annual ACM symposium on Theory of computing, STOC ’95,

New York, NY, USA, 373–382.

[17] J. Lunze and J. Raisch. 2002. “Discrete Models for Hybrid Systems.

Modelling, Analysis, and Design of Hybrid Systems”. Lecture Notes in

Control and Information Sciences, 279: 67-80.

[18] R. Alur, T.A. Henzinger, G. Lafferriere, G.J. Pappas. 2000. “Discrete

abstractions of hybrid systems”. Proceedings of the IEEE, 88(7): 971-

984.

[19] E. Barke, D. Grabowski, H. Graeb, L. Hedrich, S. Heinen, R. Popp, S.

Steinhorst, and Y. Wang. 2009. “Formal approaches to analog circuit

verification”. In Proceedings of the Conference on Design, Automation

and Test in Europe (DATE '09), European Design and Automation As-

sociation, 3001 Leuven, Belgium, Belgium, 724-729.

[20] Oded Maler and Grégory Batt. 2008. “Approximating Continuous Sys-

tems by Timed Automata”. In Proceedings of the 1st international

workshop on Formal Methods in Systems Biology (FMSB '08), Cam-

bridge, UK, Jasmin Fisher (Ed.). Springer-Verlag, Berlin, Heidelberg,

77-89.

[21] M. De Wulf, L. Doyen, N. Markey. 2004."Robustness and Implement-

ability of Timed Automata" Formal Techniques, Modelling and Analy-

sis of Timed and Fault-Tolerant Systems : 359-374.

[22] B. Berard, , M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,

Ph. Schnoebelen and P. McKenzie. 2001. Systems and Software Verifi-

cation: Model-Checking Techniques and Tools. Springer Verlag.

[23] M. Otter, F. Cellier. 1996. The Control Handbook, chapter Software for

Modeling and Simulating Control Systems, 415–428. CRC Press, Boca

Raton, FL.

[24] G. Wainer, L. Morihama, and V. Passuello. 2002. "Automatic verifica-

tion of DEVS models", In Proceedings of SISO Spring Interoperability

Workshop, Orlando, FL. U.S.A. March 10-15.

[25] B. P. Zeigler, T. Kim, and H. Praehofer. 2000 . Theory of Modeling and

Simulation. San Diego, CA: Academic Press, ISBN-10: 0127784551.

[26] L. Aceto, A. Ingólfsdóttir, K. Guldstrand Larsen, J. Srba. 2007. Reactive

Systems: Modelling, Specification and Verification. Cambridge Univer-

sity Press.

[27] H. Saadawi, G. Wainer. 2009. “Verification of real-time DEVS mod-

els”. In Proceedings of DEVS Symposium 2009. San Diego, CA, March

22 – 27.

[28] H. Saadawi, G. Wainer. 2010. “Rational time-advance DEVS (RTA-

DEVS). In Proceedings of DEVS Symposium 2010, Orlando, FL., April

11-15.

[29] Hesham Saadawi and Gabriel Wainer. 2010. “From DEVS to RTA-

DEVS”. In Proceedings of the 2010 IEEE/ACM 14th International

Symposium on Distributed Simulation and Real Time Applications

(DS-RT '10). IEEE Computer Society, Washington, DC, USA, 207-210.

[30] J. Bengtsson, W. Yi. “Timed Automata: Semantics, Algorithms and

Tools”. Lectures on Concurrency and Petri Nets, Vol. 3098. 2004.

[31] H. Bowman, R. Gomez. Concurrency Theory: Calculi and Automata

for Modelling Untimed and Timed Concurrent Systems. Springer-

Verlag London 2006.

VII. APPENDIX

In this section, we give a quick reference to the concepts used

in this paper. Hence, we cover a basic introduction to RTA-

DEVS and Timed Automata. The reader may consult the ref-

erenced material for more detailed background.

A. RTA-DEVS

RTA-DEVS [28] atomic model is defines as in classical DEVS

[25]. RTA-DEVS changes the definitions of time advance

function ta and the external transition function ext as follows.

The Atomic Rational Time-Advance is defined as:

AMTC = < X, Y, S, int, ext , ta>

- X : The set of external inputs.

- :Y Set of external outputs.

- S: set of system states.

- int: S → S is the internal transition function (the same as

in classic DEVS).

ext: TxX → S with T={(s,e)/s 0≤e≤ta(s), e  Q0,+∞} is the

external transition function (e is the time elapsed since the last

transition, which takes a positive rational value).

- : S → Y  is the output function.

- ta: S → Q0,+∞ is the time advance function that maps each

state to a positive rational number.

Coupled RTA-DEVS model are defined exactly as in clas-

sic DEVS Coupled RTA-DEVS models are composed of

atomic or other coupled RTA-DEVS models:

SelectyCxCiMDYXCM ,,},{,,,

X: Set of external input events.

Y: Set of external output events.

D: Finite index of sub-components.

{Mi}: The set of sub-components. A sub-component may

be an atomic or coupled. Di is the index of the component.

Cx: Set of input couplings.

Cy: Set of output couplings.

Select: 2
D
 →D is a tie-breaking function, which defines

how to select an event from asset of simultaneous events.

A coupled RTA-DEVS model M can be simulated with an

equivalent atomic RTA-DEVS model, whose behavior is de-

fined as follows [29]:

M = < X,Y,S,s0,δext,δint,λ,ta >

 X and Y are the input and output event sets, respectively.

X is the set of all input events accepted and Y is the set of all

output events generated by coupled model M.

 iVDiS  is the model state. It is expressed as the

Cartesian product of all component states, where
iV is the total

state for component i,  )](,0[,|),(istaeitiSiseitisiV  .

Here, eit denotes the elapsed time in state is of component i,

and iS is the set of states of component i.


i

vDis 00  is the initial system state, with)0,0(0 is
i

v 

is the initial state of component Di .

 Sta : is the time advance function. It is calculated

for the global state Ss of the coupled model as the minimum

time remaining for any state among all components, formally:

 Dieitistasta  |))((min)(where  ),...,(..., ietiss  is

the global total state of coupled model at some point in time,

is is the state of component i, iet is elapsed time in that state.

 SVX
ext

: is the external transition function for

the coupled model. Where V is total state of the coupled mod-

el:  )](,0[,|),(staetSsetsV  .

 SS :
int
 is the internal transition function of the

coupled model.

YS : is the output function of the coupled model.

UPPAAL added more features to ease the process of model-

ing using TA as variables, committed states, communication

channels, etc. These additions do not change the basic seman-

tics of TA and are described in [30].

