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3 Principles of DEVS 
Model Verification for 
Real-Time Embedded 
Applications

Hesham Saadawi, Gabriel A. Wainer, 
and Mohammad Moallemi

3.1  INTRODUCTION

Embedded real-time (RT) software systems are increasingly used in mission critical 
applications, where a failure of the system to deliver its function can be catastrophic. 
Currently existing RT engineering methodologies use modeling as a method to study 
and evaluate different system designs before building the target application. Having 
a system model enables the verification of system properties and functionality before 
building the actual system. In this way, deployed systems would have a very high 
reliability, as the formal verification permits detecting systems errors at the early 
stages of the design. To apply such methodologies for embedded control systems, a 
designer must abstract the physical system to be controlled and build a model for it. 
This model can then be combined with a model of the proposed controller design for 
study and evaluation.
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In general, different techniques are used to reason about these models and gain 
confidence in the correctness of a design. Informal methods usually rely on exten-
sive testing of the systems based on system specification. These techniques can 
reveal errors but cannot prove nonexistence of errors. Instead, formal techniques 
can prove the correctness of a design. Unfortunately, formal approaches are usually 
constrained in their applications, as they do not scale up well and they require the 
user to have expert knowledge in applying formal techniques. Another drawback of 
applying formal techniques is that they must be applied to an abstract model of the 
target system to be practical. However, in doing so, what is being verified is not the 
final executable system. Even if the abstract model is correct, there is a risk that some 
errors creep into the implementation through the manual process of implementing 
specifications into executable code [1].

A different approach considers using modeling and simulation (M&S) to gain 
confidence in the model correctness. M&S of RT systems also enables testing much 
like testing a physical system, even for cases where physical testing may be too costly 
or impossible to achieve [2]. If the models used for M&S are formal, their correct-
ness is verifiable and a designer can also observe the system evolution and its inner 
workings. Another advantage of executable models is that they can be deployed to 
the target platform, thus providing the opportunity to use the controller model not 
only for simulations but also as the actual code executing in the target hardware. The 
advantage of this methodology is that the verified model is itself the final implemen-
tation executing in RT. This avoids any new errors that would appear during trans-
formation of the verified models into an implementation, thus guaranteeing high 
degree of system correctness and reliability.

In the following sections, we introduce a new methodology proposed to verify 
simulation models based on the Discrete Event Systems Specification (DEVS) for-
malism [3]. The reason for introducing a new methodology for DEVS verification is 
that most existing such methods are limited to a constrained set of DEVS subclasses. 
This prevents the verification of a wide range of existing DEVS models and forces 
the modeler to use less-expressive subclasses. In addition, these DEVS subclasses 
require special verification tools that may not add much value over standard verifica-
tion tools for timed automata (TA) [4,5]. The value of these special verification tools 
is questionable, as most verification algorithms used for restricted DEVS subclasses 
rely on the same timed model-checking algorithm used for the verification of TA. 
In that sense, these algorithms have the same time and space complexity as those of 
TA model-checking algorithms, and thus, DEVS verification tools do not provide 
any advantages over TA verification. On the contrary, verification tools for TA are 
widespread, and they usually contain many performance optimizations.

For these reasons, we define a new class of rational time-advance DEVS called 
RTA-DEVS that is close to classic DEVS in semantics and expressive power (enabling 
the verification of most existing DEVS models [6]). Then, we define a transformation 
to obtain a TA that is behaviorally equivalent to RTA-DEVS [7]. The advantage of 
doing so is that many classic DEVS models would satisfy the semantics of RTA-
DEVS models, and they could be simulated with any DEVS simulator, but they can 
be transformed to TA to validate the desired properties formally. RTA-DEVS has 
followed Finite and Deterministic DEVS, called FD-DEVS [8], in restricting the 
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time advance function to nonnegative rational numbers but also relaxed the restric-
tion of FD-DEVS on external transition functions. This makes RTA-DEVS closer 
to general DEVS and adds expressiveness. However, RTA-DEVS still restricts the 
elapsed time in a state used in the external transition function to be a nonnegative 
rational number. This restriction translates to having nonnegative rational constants 
in guards in the transformed TA model and ensures termination of the reachability 
analysis algorithms implemented in UPPAAL [9]. As per the theory of TA presented 
in Ref. [4], irrational constants in TA guards render reachability analysis undecid-
able (as proved in Ref. [5]).

3.2  BACKGROUND

DEVS was originally defined in the 1970s as a mechanism for specifying discrete 
event models specification [3]. It is based on dynamic systems theory, and it allows 
one to define hierarchical modular models. A system modeled with DEVS is 
described as a composite of submodels, each of them being behavioral (atomic) or 
structural (coupled). Each model is defined by a time base, inputs, states, outputs, 
and functions to compute the next states and outputs. A DEVS atomic model is for-
mally described by

	 M X S Y= 〈 〉, , , , , ,δ δ λint ext ta 	

where

X is the set of external inputs.
Y is the set of external outputs.
S is the set of system states.
δint: S → S is the internal transition function.
δext: Q × X → S, where Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s), e ∈ ℜ 0+∞} is the external 

transition function (where e is the time elapsed since the last transition, a 
positive real value).

λ: S → Y ∪ Ø is the output function.
ta: S → ℜ 0+∞ is the time advance function, which maps each state to a positive 

real number.

A DEVS atomic model is the most basic DEVS component. The behavior of a 
DEVS model is defined by transition functions in atomic components. An atomic 
model M can be affected by external input events X and can generate output events 
Y. The state set S represents the state variables of the model. The internal transition 
function δint and the external transition function δext compute the next state of the 
model. When an external event arrives at elapsed time e (which is less than or equal 
to ta(s) specified by the time advance function), a new state s′ is computed by the 
external transition function. Otherwise, if ta(s) finishes without input interruption, 
the new state s′ is computed by the internal transition function. In this case, an output 
specified by the output function λ can be produced based on the state s. After a state 
transition, a new ta(s′) is computed, and the elapsed time e is set to zero.
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A DEVS coupled model is composed of several atomic or coupled submodels. 
The property of closure under coupling allows atomic and coupled models to be inte-
grated to form a model hierarchy. Coupled models are formally defined as follows:

	 CM = < >X Y D Md, , , ,EIC,EOC, IC,Select 	

where

X is the set of input ports and values.
Y is the set of output ports and values.
D is the set of the component names (an index of submodels).
EIC is the set of External Input Couplings, which connects the input events of 

the coupled model itself to one or more of the input events of its components.
EOC is the set of External Output Couplings, which connects the output events 

of the components to the output events of the coupled model itself.
IC is the set of Internal Couplings, which connects the output events of the 

components to the input events of other components.
Select: 2D → D is a tie-breaking function, which defines how to select an event 

from a set of simultaneous events.

CD++ [10] allows defining models following these specifications. The tool is 
built as a hierarchy of models, and each of the models is related to a simulation entity. 
CD++ includes a graphical specification language, based on DEVS Graphs [11], to 
enhance interaction with stakeholders during system specification while having the 
advantage of allowing the modeler to think about the problem in a more abstract way. 
DEVS graphs can be formally defined as [12]

	 GGAD , , , , , , taint ext= < >X S YM M δ δ λ 	

where

XM = {(p,v)| p ∈ IPorts, v ∈ Xp} is the set of input ports.
YM = {(p,v)| p ∈ OPorts, v ∈ Yp} is the set of output ports.
S = B × P(V) represents the states of the model, where

B = {b | b ∈ Bubbles} is the set of model states.
V = {(v,n) | v ∈ Variables, n ∈ R0} represents the intermediate state vari-

ables of the model and their values.
δint, δext, λ, and ta have the same meaning as in traditional DEVS models.

CD++ uses this formal notation to define atomic models, as seen in Figure 3.1. 
A unique identifier defines each model, which can be completely specified using a 
graphical specification based on the formal definition above. That is, states are rep-
resented by bubbles including an identifier and a state lifetime, state variables can be 
associated with the transitions, and there are two types of transitions: external and 
internal.
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The DEVS graph in Figure 3.1 shows a simple component for a packet routing 
model. As we can see, there are three states in this DEVS atomic model: waiting, dis-
cardPacket, and sendPacket. The model uses two input/output ports (corresponding 
to the XM and YM sets in the formal specification): packageIn and packetOut. Three 
variables are defined for this model and initialized: msg, failRate, and r. Internal 
transitions are shown with dashed arrow lines. The internal transition sendPacket 
→ waiting uses the output function, which is defined to send the value of the vari-
able msg to output port packetOut. The external transitions are shown with solid 
arrow lines, with a condition that would enable that transition only if it is evaluated 
to true, and an expression to update some of the model variables (when needed). For 
instance, the transition from waiting to sendPacket is activated when a packet is 
received on packageIn (Any(Value(packageIn, 1))) and the failRate is greater than a 
random value r (Greater(r, failRate)). In that case, the model changes to state send-
Packet and also assigns the value of the packet to the msg intermediate variable. It 
also computes a new random value.

Each DEVS graph is translated into an analytical definition that the runtime 
engines use to execute. The internal transitions employ the following syntax:

int: source destination [outport!value]* ( { (action;)* } )

Here, source and destination represent the initial and final states associated with 
the execution of the transition function. As the output function should also execute 
before the internal transition, an output value can be associated with the internal 
transition. One or more actions can be triggered during the execution of the tran-
sition (changing the values of state variables). External transitions are defined as 
follows:

ext : source destination ( { (action;)* } )? expression

In this case, when the expression is true (which includes inputs arriving from input 
ports), the model will change from state source to state destination, while also 

FIGURE 3.1  An atomic model defined as a DEVS graph.
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executing one or more actions. These notations are generated as a direct translation 
from the graph represented in Figure 3.1.

3.2.1  Difficulties of DEVS Formal Verification

DEVS formal definitions for atomic models are the most generic DEVS [3]. The first 
difficulty in DEVS formal verification, is that model-checking techniques are only 
decidable for finite state systems. In case of infinite-state systems, irrelevant details 
must be abstracted to obtain a finite state system before applying model-checking 
techniques. Another difficulty is the nondeterminism in DEVS behavior. This can 
be caused by stochastic behavior in a DEVS model due to the use of a probabilistic 
function in the definition of the external transition function δext or time advance 
function δint [13]. Another major difficulty in applying automatic formal verification 
techniques such as model checking to DEVS models is that the DEVS time advance 
function can take values of irrational real numbers. These values cannot be repre-
sented in a finite reachability graph that is used in model-checking algorithms, and 
thus, the algorithm will not be able to terminate, hence rendering the verification 
problem undecidable.

Several techniques have been introduced to overcome these problems and pro-
vide reasonable approximation to DEVS while enabling formal verification. As will 
be discussed in the following paragraphs, the techniques range from formal model 
checking of restricted classes of DEVS, the generation of test traces from DEVS 
models for simulation testing, the specification of high-level system requirements in 
TA and verifying DEVS model against those requirements, and introducing clock 
constructs to DEVS to conform with TA.

One approach, called real-time DEVS (RT-DEVS) introduces a time advance 
function that maps each state to a range with maximum and minimum time val-
ues and introduces an activity associated with every system state [14]. This work 
also introduced an RT-DEVS executive that executes these models in RT. RT-DEVS 
was also used to design RT controllers as shown in Ref. [15] for a train-gate sys-
tem. Further work on verifying RT-DEVS was introduced in Refs. [16,17], where 
the authors relied on TA as used by UPPAAL and defined (although not formally 
proved) a transformation method from RT-DEVS to UPPAAL. This transformation 
allows weak synchronization between components of the TA model as RT-DEVS 
semantics uses weak synchronization.

Other approaches use a limited version of DEVS that can be verified. For instance, 
a method based on Finite and Deterministic DEVS (FD-DEVS) was introduced [8] 
where the time advance function maps states into rational numbers and the exter-
nal transition function cannot use the elapsed time value. The verification relies on 
reachability analysis, similar to TA algorithms. FD-DEVS is limited, thus it may 
not fit some applications that require the full expressiveness of DEVS. Likewise, 
although reachability analysis algorithms have been defined (and verification is pos-
sible), there are no tools available that implement these algorithms.

To avoid these limitations, other approaches tried to map DEVS models to TA 
[18]. The conversion method mapped a DEVS model through its components and its 
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simulator. The approach suggests trace equivalence as the basis for parallel DEVS 
and TA model equivalence. This work did not consider some DEVS features that may 
not map to TA, such as irrational values in DEVS transition functions. Moreover, 
some limitations also exist for relying on trace equivalence between DEVS and TA, 
as we will show in Section 3.3. A similar approach presented in Ref. [19] uses TA to 
specify the high-level system requirements, after which these requirements are mod-
eled as a DEVS model. The system requirements are then verified through simula-
tion of the DEVS model.

The work by Hernandez and Giambiasi [20] showed that the verification of gen-
eral DEVS models through reachability analysis is undecidable. The authors based 
their deduction on building a DEVS simulation Turing machine. Since the halting 
problem in Turing machines is undecidable (i.e., with analysis only, we cannot know 
in which state a Turing machine would be), they concluded that this is also true for 
DEVS models. In other words, we cannot recognize if we have reached a particular 
state starting from an initial state, and consequently, reachability analysis for general 
DEVS is impossible. Based on this result, reachability analysis may be possible only 
for restricted classes of DEVS. This result was based on introducing state variables 
with infinite number of values into the DEVS formalism. Therefore, limiting the 
number of states of a DEVS model is mandatory for decidable reachability. Hence, 
further work [21] introduced a new class of DEVS called time-constrained DEVS 
(TC-DEVS), which expanded the definition of DEVS atomic models with multiple 
clocks incremented independently of other clocks. Classic DEVS atomic models can 
be seen as having only one clock that keeps track of the elapsed time in a state and 
is reset on each transition. TC-DEVS also added clock constraints similar to TA (to 
function as guards on external and internal transitions). However, it is different from 
UPPAAL TA in that it allows clock constraints in state invariants to include clock 
differences. TC-DEVS is then transformed into an UPPAAL TA model. This work, 
however, did not include a transformation of TC-DEVS state invariants to UPPAAL 
TA when the model has invariants with clock differences, as this is not allowed in 
UPPAAL TA.

For large and more complex DEVS models, where formal verification is not fea-
sible, testing would be the only choice. Techniques have been presented to gener-
ate testing sequences from model specifications that can then be applied against 
the model implementation to verify the conformance of the implementation to 
specifications [22,23].

3.2.2 R ational Time-Advance DEVS

RTA-DEVS was proposed to provide the system modeler with a formalism that is 
expressive and sufficient to model complex systems behavior, while being verifiable 
by formal model-checking techniques. RTA-DEVS is a subclass of DEVS that has 
removed the main difficulties of the formal model verification discussed in Section 
3.2.1; yet, it is sufficiently powerful to model complex system behavior.

As in classical DEVS, we must define RTA-DEVS atomic models. The main 
difference is that RTA-DEVS employs a different definition for the time advance 
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function, ta, and for the external transition function, δext. The Atomic Rational Time-
Advance is defined as follows:

	 AMTC = < >X Y S, , , , , , taint extδ δ λ 	

where

X is the set of external inputs.
Y is the set of external outputs.
S is the set of system states.
δint: S → S is the internal transition function (as in classic DEVS).
δext: T × X → S with T = {(s,e)/s 0 ≤ e ≤ ta(s), e ∈ Q0,+∞} is the external transi-

tion function (e is the time elapsed since the last transition, which takes a 
positive rational value).

λ: S → Y ∪ Ø is the output function.
ta: S → Q0,+∞ is the time advance function that maps each state to a positive 

rational number.

Coupled RTA-DEVS models are defined as in classic DEVS, as discussed in 
Section 3.2.

A coupled RTA-DEVS model M can be simulated with an equivalent atomic 
RTA-DEVS model, whose behavior is defined as follows:

	 M X Y S s= , , , , , , , taext int0 δ δ λ 	

where

X and Y are the input and output event sets, respectively. X is the set of all input 
events accepted and Y is the set of all output events generated by coupled 
model M.

S = Xi∈D  Vi is the model state, expressed as the Cartesian product of all com-
ponent states, where Vi is the total state for component i, Vi = {(si,tei)| si ∈ Si, 
tei ∈ [0,ta(si)]}. Here, tei denotes the elapsed time in state si of component i, 
and Si is the set of states of component i.

s0 = Xi∈D v0i is the initial system state, with v0i = (s0i, 0) the initial state of 
component i D∈ .

ta: S → T is the time advance function. It is calculated for the global state s ∈ S 
of the coupled model as the minimum time remaining for any state among 
all components, formally:
ta(s) = min{(ta(sj)−tei) | i ∈ D} where s = (…(si,tei),…) is the global total state 

of the coupled model at some point in time, si is the state of component 
i, and tei is elapsed time in that state.

δext: X × V → S is the external transition function for the coupled model, where 
V is total state of the coupled model, V = {(s,te)| s ∈ S, te ∈ [0,ta(s)]}.

δint: S → S is the internal transition function of the coupled model.
λ: S → Y is the output function of the coupled model.
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3.3  DEVS VERIFICATION METHODOLOGY

In this section, we introduce our methodology to transform RTA-DEVS models into 
TA models. The resulting TA models are a subset of deterministic safety automata 
(which can be used in UPPAAL or other similar model checkers). The transforma-
tion methodology can be summarized as follows:

	 1.	Define a clock variable for each atomic RTA-DEVS model (i.e., x).
	 2.	Replace every state in RTA-DEVS with a corresponding one in TA (i.e., L1 

for source s1 and L2 for destination s2).
	 3.	Model the RTA-DEVS internal transition from s1 to s2 as a TA as follows:
	 a.	 For the RTA-DEVS source state s1, define a TA source state L1. For the 

RTA-DEVS destination state s2, define a TA destination state L2.
	 b.	 Reset the clock variable on the entry to each state (x: = 0).
	 c.	 Put an invariant in the source state derived from the time advance func-

tion for that state, that is, x < ta(s1).
	 d.	 Optionally, define a transition with a guard. This guard should be the 

complement of the invariant in the source state, that is, x ≥ ta(s1).
	 e.	 Define an action for each output function defined.
	 4.	The RTA-DEVS external transition is modeled in TA with the following items:
	 a.	 A source state and some destination state(s), that is, L1 for source s1 and 

L2 for destination s2.
	 b.	 A clock reset on the entry into each state.
	 c.	 An invariant in the source state that corresponds to the time advance 

function for that state, that is, x < ta(s1).
	 d.	 For the external transition(s) with guards of clock constraints, these 

constraints should be disjoint to obtain a deterministic TA model.
	 e.	 The action label on TA transitions for each RTA-DEVS input event to 

source state s1.

By applying the above-mentioned steps, we obtain a TA model that executes every 
transition defined in the RTA-DEVS model under study. As already known, the RTA-
DEVS behavior is completely defined by its transition functions, which defines all transi-
tions in the RTA-DEVS model. Thus, the resulting TA model executes the RTA-DEVS.

However, TA models cannot have irrational constant values in guards or state invari-
ants. This implies that for any DEVS model containing a state lifetime of irrational 
values, it will not be possible to directly apply the transformation shown in Table 3.1. 
In this case, the irrational values would have to be approximated to the nearest rational 
value according to a choice by the modeler, based on the required precision for the 
equivalent RTA-DEVS model. In doing so, the transformation should take into account 
the following rules. These rules avoid building invalid RTA-DEVS or TA models that 
contain time-action locks (that prevent the model execution progress) or loops where 
execution progresses infinitely without allowing time to advance [24].

Rule 1: When approximating an irrational value triggering an internal transition 
that is coupled with an external transition, the choice of approximation value should 
be consistent for all constants using this irrational number.
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Formally, assume we have the following defined in a DEVS coupled model as 
shown in Figure 3.2:

	 δ λA
i j

A
i

A
iS C S S a S Cint irr irr( , ) , ( ) , ta ( )= = = 	

	 δB
k lS e a S C eext irr( , , ) ( , )= ≤ ∞0 ≺ 	

	 δB
k mS e a S e Cext irr( , , ) ( , )= 0 0 ≺ ≺ 	

It should be approximated in RTA-DEVS as follows:

	 δ λA
i r j

A
i

A
i rS C S S a S Cint ( , ) , ( ) , ta ( )= = = 	

	 δB
k l rS e a S C eext ( , , ) ( , )= ≤ ∞0 ≺ 	

TABLE 3.1
Transformation of Rational Time-Advance DEVS to Behaviorally Equivalent 
Time Automata

RTA-DEVS Equivalent TA
Internal transition 
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	 δB
k m rS e a S e Cext ( , , ) ( , )= 0 0 ≺ ≺ 	

where

Cirr is an irrational real number.
Cr is a rational real number.
δA

int, λ A, and ta A are functions defined for component A.

Rule 2: When approximating an irrational value for elapsed time in the definition 
of the external transition function, the choice of the approximation value should be 
consistent for all constants using this irrational number. Formally, assume we have 
the following DEVS definition of an external transition function in a model similar 
to the one shown in Figure 3.3:

	 δext irr( , , ) ( , )S e a S C ei j= ≤ ∞0 ≺ 	

	 δext irr( , , ) ( , )S e a S e Ci k= 0 0 ≺ ≺ 	

It should be approximated in the RTA-DEVS model with the following form to avoid 
creating action locks:

	 δext ( , , ) ( , )S e a S C ei j r= ≤ ∞0 ≺ 	

	 δext ( , , ) ( , )S e a S e Ci k r= 0 0 ≺ ≺ 	

The second rule is to avoid action locks that may happen if we define the external 
transition function with conditions on its transitions where there is a gap in time 

Component C
Component A

Component B

ta = √5

S1

S3

S5

S4

S2

OUT

IN

a!

a?

a?

FIGURE 3.2  A coupled DEVS model.
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(where the function is not defined). Another possibility is to have an approximated 
external transition function in which conditions on different transitions overlap in 
time, thus creating nondeterminism that is not in the original DEVS model.

To further clarify the method, we show a simple example representing the behav-
ior of an elevator [6]. The RTA-DEVS model in Figure 3.4 models the movement of 
the elevator.

Value(mover)

Value(mover)

MovingUp 00:00:1000:00

MovingDown
00:00:1000:00

SlowDown 00:00:1:00

Aux 00:00:00:00:00

StopUp 00:00:1:00

Value(mover)

Stop! 1

Sto
p! 

1Value(mover)

Va
lu

e(m
ov

er
)

Stopped 00:00:1000:00

FIGURE 3.4  Elevator RTA-DEVS model.

S1

S3 S4

S5

S2

Component C˝

Component A´

Component B˝

a!

a?

a?

ta = 2.23 ± Δ

OUT

ININ2

IN1

FIGURE 3.3  RTA-DEVS component with external input.
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As shown, the elevator can be in one of the five states (listed in Table 3.2).
In this model, the elevator starts in the Stopped state and waits for the control-

ler commands to move to satisfy a button request from the user. The decisions 
for the proper direction and the start and stop of movement are all taken by the 
controller. The  states of the elevator are represented by circles in the figure. 
External transitions are enabled when the function Value(mover) evaluates to 
true. This function is defined as in Table 3.3 for the different transitions shown 
in Figure 3.4.

Likewise, the behavior of the internal transitions are defined as in Table 3.4.
By following the transformation steps summarized in Table 3.1, we can construct 

the equivalent TA model as shown in Figure 3.5. This model is constructed to be 
behaviorally equivalent to the DEVS model of Figure 3.4. This equivalence is essen-
tial to ensure that any properties that we must check in the DEVS model are pre-
served in the constructed TA model.

By applying the methodology we identified in Section 3.3, we go through the 
following steps to obtain the TA model in Figure 3.5.

•	 Define a clock variable for each atomic RTA-DEVS model. This results in 
variable x.

•	 Replace every state in RTA-DEVS with a corresponding one in TA. A loca-
tion is created for each state in DEVS with the same name as is shown in 
the TA model.

•	 Model the RTA-DEVS internal transition as a TA as follows.
	 a.	 A source state L1 and a destination state L2: SlowingDown and StopUp 

states in Figure 3.5 represent source states of SlowDown and StopUp 
states depicted in Figure 3.4 Reset the clock variable on the entry into 
each state (x = 0).

	 b.	 Put an invariant in the source state derived from the time advance 
function for that state. The invariant at both states SlowingDown and 
StopUp is x < 1.

TABLE 3.2
Elevator Model States

Elevator State State Description

Stopped The elevator speed is zero and it is stopped at one of the 
floors.

StopUp The elevator is moving up and preparing to stop. It 
decelerates.

MovingUp The elevator is moving up with a constant speed.

SlowDown The elevator is moving down and preparing to stop. It 
decelerates.

MovingDown The elevator is moving down with a constant speed.

Aux An auxiliary state to allow output from the elevator model 
when internal transition occurs: Aux → Stopped.
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FIGURE 3.5  Elevator timed automata model.

TABLE 3.3
Elevator External Transitions

Transition Function Definition Expression

Stopped → MovingUp Value(mover)?2 Mover = = 2

MovingUp → StopUp Value(mover)?0 Mover = = 0

Stopped → Aux Value(mover)?0 Mover = = 0

MovingDown → SlowDown Value(mover)?0 Mover = = 0

SlowDown → Stopped stop!1 Stop = = 1

StopUp → Stopped stop!1 Stop = = 1

Stopped → MovingDown Value(mover)?1 Mover = = 1

TABLE 3.4
Elevator Internal Transitions

Transition Action Definition Outport!value

SlowingDown → Stopped stop!1

StopUp → Stopped stop!1
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	 c.	 Optionally, define a transition with a guard. This guard should be the 
complement to the invariant in the source state. None are defined in this 
model.

	 d.	 Define an action for each output function that is defined. This corre-
sponds to the two actions stop!1 in the model.

•	 The RTA-DEVS external transition is modeled in TA with the following 
items.

	 a.	 A source state and some destination state(s). Transitions are defined in 
the TA model that correspond to the DEVS model.

	 b.	 A clock reset on the entry into each state.
	 c.	 An invariant in the source state that corresponds to the time advance 

function for that state. This corresponds to the three occurrences of the 
invariant x < 1000.

	 d.	 For the external transition(s) with guards of clock constraints, these 
constraints should be disjoint to obtain a deterministic TA model. For 
example, in the elevator model, direction = =0, direction = = 1, and 
direction = = 2.

	 e.	 For each event on external transition of the RTA-DEVS model, place a 
synchronization channel on the corresponding TA transition. For exam-
ple, the move? and stop! channels in the TA model of Figure 3.5 repre-
sent external events of mover(value) and stop!1 in the elevator model of 
Figure 3.4.

It is important to preserve the equivalence properties also when we map any veri-
fication results obtained from the TA model back to the DEVS model. To ensure this 
equivalence, the transformation from DEVS to TA is done based on the notion of 
bisimulation equivalence [7]. This equivalence ensures that for each state in DEVS, 
there is a corresponding one in TA and vice versa. It also ensures that for each transi-
tion in DEVS, there would be a corresponding equivalent one in TA and vice versa. 
Once we have a TA model that is behaviorally equivalent to the DEVS model, any 
property we wish to verify in the DEVS model can be verified in the TA model, and 
verification results would apply directly to the DEVS model.

The DEVS Elevator-Controller is shown in Figure 3.6. By applying the transfor-
mation steps discussed in the beginning of Section 3.3, we obtain the TA model as 
shown in Figure 3.7. In this transformation, we represented DEVS states with life-
time of zero as committed locations in the TA model. Examples of these are states 
Aux1, Stopping, and Moving. Committed locations of TA prevent time to elapse in 
them and hence serve our purpose for this transformation.

To apply the UPPAAL model checker on this elevator system, the elevator system 
must be represented as a closed system that allows UPPAAL to explore all its transi-
tions and states. To do so, we define a simple environment model that represents a 
user requesting the services of the elevator, as shown in Figure 3.8. In this model, the 
third floor button is pressed after 5 time units. This causes the Elevator-Controller 
to receive the floor value and then send the corresponding command to the elevator 
model to reach the third floor. The environment model then simulates different user 
requests.
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The system composed of the Elevator, the Elevator-Controller, and the 
Environment can be checked using UPPAAL to verify certain properties about the 
system. For instance, some of the important properties would be as follows:

	 a.	Does the DEVS model progress? Can we detect deadlock conditions?
	 b.	 If no deadlocks are found, is it always guaranteed whenever a user pushes a 

floor button that the elevator would reach that floor (i.e., the normal opera-
tion of the elevator system)?

	 c.	 If the elevator eventually reaches the floor, is there a guaranteed upper 
bound between the request and the arrival of the elevator?

For the first question, we applied UPPAAL to our model to check for any dead-
locks that may be present in the elevator. To check for that failure, we had formulated 
a simple query, expressed in computational tree logic (CTL) [25–27] as follows:

A[] not deadlock

After running the checker, it shows that this property is satisfied, that is, there is no 
deadlock, as shown in Figure 3.9.

The property (b) is an example of the system liveness, in which we are interested 
to check if by pressing a certain floor button, the elevator would eventually reach 
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that floor. For example, if the user presses the third-floor button, the elevator should 
eventually reach the third floor. This property is expressed in CTL as follows:

button = = 3 --> ElevatorController.cur_floor = = 3

This states that whenever a user input for the third-floor button occurs, the 
cur_floor variable in the ElevatorController would eventually reach that floor. This 
property was also satisfied in UPPAAL model checker for the given model.

To check the third property (c), that is, whether the elevator would reach the 
requested third floor within some bounded time, we extend the model for bounded 
time checking by adding the Boolean variable b and a global clock z as shown in the 
elevator model in Figure 3.5. The variable b would be set to true for the time when 
the elevator starts traveling up until it reaches the Stopped state again. Therefore, by 
checking the accumulated time while b is true, it would provide us the property we 
must check. Then, the property can be expressed with the following query:

A[] ( b imply z < 27 ) which is satisfied.

However, the query

A[] ( b imply z < 26 ) is not satisfied.

This shows that the elevator would reach the third floor after requested to go there 
after no less than 26 time units, but is guaranteed to be there after 27 time units or more.

3.4 � CASE STUDY: CONTROLLER FOR AN E-PUCK 
ROBOTIC APPLICATION

In this section, we present a case study where we use DEVS to build a model of a con-
troller for an E-puck robot and later the same model is used as an actual controller. 
The E-puck (shown in Figure 3.10) is a desktop-size mobile robot with a wide range of 
possibilities (signal processing, autonomous control, embedded programming, etc.).

The E-puck contains various sensors covering different modalities: (i) eight 
infrared (IR) proximity sensors placed around the body measure the closeness of 
obstacles, (ii) a 3D accelerometer provides the acceleration vector of the E-puck, 
(iii) three microphones to capture sound, and (iv) a color CMOS (Complementary 
Metal Oxide Semiconductor) camera with a resolution of 640 × 480 pixels. It also 
includes the following actuators: (i) two stepper motors, making it capable of moving 
forward and backward, and spinning in both directions; (ii) a speaker, connected to 
an audio codec; (iii) eight red light-emitting diodes (LED) placed all around the top; 
and (iv) a red front LED placed beside the camera.

UPPAAL version 4.0.6 (rev. 2986), March 2007 -- server.
A[] not deadlock
Property is satisfied.

FIGURE 3.9  Elevator verification results in UPPAAL.
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In the following sections, we introduce a DEVS model for a simple controller for 
the E-puck, the corresponding implementation in CD++, and the formal verifica-
tion of different properties of the model through the transformation introduced in 
Section 3.4 combined with the use of the UPPAL model checker.

3.4.1  DEVS Model Specification

The controller is designed to steer the robot in a field while avoiding obstacles. 
We have defined a DEVS model with an atomic component (epuck0) that imitates 
the behavior of the controller, shown in Figure 3.11. There are eight input ports 
(InIR0, … InIR7), each of them modeling the connection to one proximity sensor. 
The input ports periodically receive the distances to the obstacles from the sensors. 
There are also two output ports: OutMotor, which transfers the output commands to 
the motors, and OutLED, to turn on/off the LEDs.

The controller can command the following actions based on the inputs received 
from the sensors: move forward, turn 45 degrees left, turn 45 degrees right, turn 90 
degrees left, turn 90 degrees right, turn 180 degrees, and stop. Initially, the robot 
starts moving forward while receiving the periodic inputs from proximity sensors 
and analyzing them. As soon as it detects an obstacle, it performs one of the turning 
actions based on the position of the obstacle. The robot continues turning until it 
finds an empty space ahead. The controller also uses LEDs to signal the action that is 
being performed. For example, if the robot is moving forward, the front LED (led0) 
turns on and if it is turning 45 degrees to the left, led7 turns on. Figure 3.12 illus-
trates two sample imaginary scenarios in which obstacles block the robot’s path.

FIGURE 3.10  E-puck robot.
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The DEVS formal specification of the epuck0 atomic component is as follows:

	 AM taext int= < >  , , , , , ,X S Y δ δ δ 	

where

X = {(IR0, R), (IR1, R), (IR2, R), (IR3, R), (IR4, R), (IR5, R), (IR6, R), (IR7, R)}.
S = {move forward, turn 45° left, turn 45° right, turn 90° left, turn 90° right, 

turn 180°, stop, prepare move forward, prepare turn 45° left, prepare turn 
45° right, prepare turn 90° left, prepare turn 90° right, prepare turn 180°, 
prepare stop}.
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Y = {(LED, (100, 0, 10, 20, …, 70, 1, 11, 21, …, 71)), (Motor, (0, 1, …, 6))}.
δext = If there is an obstacle trigger the proper state change based on Figure 3.13.
δint = Change the state based on Figure 3.13.
λ = Generate appropriate outputs to the robot based on Figure 3.13.
ta = move forward → ∞; turn 45° left → 100 milliseconds; turn 45° right → 

100 milliseconds; turn 90° left → 200 milliseconds; turn 90° right → 200 
milliseconds; turn 180° → 400 milliseconds; stop → ∞; prepare move for-
ward → 0 second; prepare turn 45° left → 0 second; prepare turn 45° right 
→ 0 second; prepare turn 90° left → 0 second; prepare turn 90° right → 0 
second; prepare turn 180° → 0 second; prepare stop → 0 second.

Table 3.5 summarizes the integer outputs of the DEVS model and their associated 
actions to be performed in the robot hardware. The driver interface programmed by 
the user transforms the numeric values to actions in the robot.

Figure 3.13 illustrates an abstract state diagram of the epuck0 atomic component. 
The DEVS graph state diagram summarizes the behavior of a DEVS atomic com-
ponent by representing the states, transitions, inputs, outputs, and state durations 
graphically. As we can see, initially, the robot moves forward and if no obstacle 
is detected from IR0, IR1, IR6, and IR7 (the four sensors scanning the front direc-
tion, as seen in Figure 3.12), it continues moving forward. As soon as an obstacle is 
detected, the value of the sensor IR6 is examined. If this sensor shows no obstacle, 
the left corner of the robot is open resulting in a 45° turn toward the left. Otherwise, 
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it checks IR1, and if there is space, the robot turns 45° to the right. If both IR1 and 
IR6 are blocked, the controller examines IR2; if there is space, the robot performs a 
90° turn to the left. The same occurs with IR2. If all sensors are blocked, the robot 
tries turning to the opposite direction (180°).

3.4.2  Implementation on the ECD++ Toolkit

To program a DEVS model on ECD++ [28,10], three main components are necessary.

	 1.	A model file in which the model hierarchy, model components, input and 
output ports of each component and input/output couplings are declared. 
The model file is passed to the ECD++ executable file as a runtime argu-
ment, and the latter instantiates the model components based on the decla-
rations in the model file.

	 2.	Source files of the model components. For each atomic component, a C++ 
class is defined, and the external and internal transitions and the output 
function are programmed as methods of this class.

	 3.	A driver interface. A driver function is overridden by the user for each input 
or output port at the top level of the model hierarchy that is connected to a 
hardware counterpart.

The ECD++ model file also contains information about the period of the input 
drivers and the duration of the states for each atomic component. In this example, 
we have tuned the input period of the IR sensors to 50 milliseconds. Therefore, for 

TABLE 3.5
DEVS Output Mapping Table

Port Name Port Value Hardware Command Comment

OutLED 100 Turn all LEDs off

0, 10, 20 … 70 Turn LED off The most significant digit is the 
number of LEDs to be turned off

1, 11, 21 … 71 Turn LED on The most significant digit is the 
number of LEDs to be turned on

OutMotor 0 Set horizontal and rotational 
speed to 0

Stop

1 Set horizontal speed to 0.5 Move forward

2 Set rotational speed to 1 Turn 45° left

3 Set rotational speed to −1 Turn 45° right

4 Set rotational speed to −1 Turn 90° right

5 Set rotational speed to 1 Turn 90° left

6 Set rotational speed to 1 Turn 180°
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every 50 milliseconds, the external transition of the epuck0 atomic component is 
invoked, and based on the updated values, the next action is decided. The following 
is the ECD++ model file of the e-puck robot controller model.

1	 [top]
2	 components : epuck0@epuck
3	 out : outmotor outled
4	 in : inir0 inir1 inir2 inir3 inir4 inir5 inir6 inir7
5	 link : inir0 ir0@epuck0
6	 link : inir1 ir1@epuck0
7	 link : inir2 ir2@epuck0
8	 link : inir3 ir3@epuck0
9	 link : inir4 ir4@epuck0
10	 link : inir5 ir5@epuck0
11	 link : inir6 ir6@epuck0
12	 link : inir7 ir7@epuck0
13	 link : motor@epuck0 outmotor
14	 link : led@epuck0 outled
15	 inir0 : 00:00:00:100
16	 inir1 : 00:00:00:100
17	 inir2 : 00:00:00:100
18	 inir3 : 00:00:00:100
19	 inir4 : 00:00:00:100
20	 inir5 : 00:00:00:100
21	 inir6 : 00:00:00:100
22	 inir7 : 00:00:00:100
23
24	 [epuck0]
25	 preparationTime : 00:00:00:000
26	 turn45Time : 00:00:00:100
27	 turn90Time : 00:00:00:700
28	 turn180Time : 00:00:02:000

Line 1 defines the top coupled component and line 2 declares its components. 
Lines 3 and 4 declare the output and input ports within the top coupled component, 
respectively. Lines 6–14 define the internal couplings. Lines 15–22 declare the peri-
ods of each input port. Lines 24–27 declare the duration of states within the epuck0 
component.

The external function performs the state transitions based on the DEVS graph 
diagram presented in Section 3.4.1. The following is the source code of the external 
transition function of epuck0 atomic component.

1  if(state!=Mov_Fwd && IR0>0.04 &&  IR7>0.04 && IR1>0.02 && 
IR6>0.02){
2  }else if((state==Mov_Fwd)&&(IR0<0.05 || IR1< 0.02) && 
IR6>0.04){
3    state = Pre_Trn_45_Lft;
4    holdIn( Atomic::active, preparationTime );
5  }else if((state==Trn_45_Lft)&&(IR0<0.05 || IR1<0.02) && 
IR6>0.04){
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6    state = Trn_45_Lft;
7    holdIn( Atomic::active, turn45Time);
8  }else if((state == Mov_Fwd)&& (IR6< 0.02 || IR7< 0.05) && 
IR1> 0.04){
9     state = Pre_Trn_45_Rgt;
10    holdIn( Atomic::active, preparationTime);
11  }else if((state==Trn_45_Rgt)&& (IR6< 0.02 || IR7< 0.05) && 
IR1> 0.04){
12    state = Trn_45_Rgt;
13    holdIn( Atomic::active, turn45Time);
14  }else if(state == Mov_Fwd && IR[0]< 0.05 && IR[7]< 0.05 && 
IR[2]> 0.04){
15    state = Pre_Trn_90_Lft;
16    holdIn( Atomic::active, preparationTime);
17  }else if(state == Mov_Fwd && IR[0]< 0.05 && IR[7]< 0.05 && 
IR[5]> 0.04){
18    state = Pre_Trn_90_Rgt;
19    holdIn(Atomic::active, preparationTime);
20  }else if(state!=Trn_180&&IR[0]<0.05&&IR[7]<0.05&&IR[2]<0.05
&&IR[5]<0.05){
21    state = Pre_Trn_180;
22    holdIn( Atomic::active, preparationTime);
23  }

Line 1 shows the case when moving forward is the current state and there is no 
obstacle ahead. Line 2 manages the case when IR0 or IR1 (right side of the robot) 
is obstructed. In that case, the state of the robot is changed to prepare turn 45° left 
(line 3), and in line 4, the time duration of this state is set. The other cases and the 
state changes are also indicated in the above-mentioned code snippet. The internal 
transition function and the output function are similar. For instance, the following 
code snippet shows a part of the internal transition function:

1  Model &epuck::internalFunction( const InternalMessage & )
2  {
3        switch (state){
4          case Pre_Mov_Fwd:
5          case Trn_45_Lft:
6          case Trn_45_Rgt:
7          case Trn_90_Lft:
8          case Trn_90_Rgt:
9          case Trn_180:
10              state = Mov_Fwd ;
11              passivate();
12              break;
13
14          case Pre_Trn_45_Lft:
15            state = Trn_45_Lft ;
16            holdIn( Atomic::active, turn45Time );
17            break;
18 …
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Lines 4–9 show a part of the internal transition for the states prepare move 
forward, turn 45° left, turn 45° right, turn 90° left, turn 90° right, and turn 180°, 
after which the model continues to move forward (line 10). Line 14 shows the case for 
prepare turn 45° left state, after which the component transfers to turn 45° left state.

The following code snippet shows a part of the ECD++ output function (λ) 
implementation:

1  Model &epuck::outputFunction( const InternalMessage &msg )
2  {
3        switch (state){
4            case Pre_Mov_Fwd:
5              sendOutput( msg.time(), led, 100) ;//Turn all 
Leds off
6              sendOutput( msg.time(), motor, 1) ;//Moving 
Forward
7              sendOutput( msg.time(), led, 1) ;//Turn Led 0 on
8              break;
9 
10            case Trn_45_Lft:
11              sendOutput( msg.time(), led, 70) ;//Turn Led 7 
off
12              sendOutput( msg.time(), motor, 1) ;//Moving 
Forward
13              sendOutput( msg.time(), led, 1) ;//Turn Led 0 on
14              break;
15 …

In this case, line 4 handles the outputs of state prepare move forward in which 
three different outputs are generated. Line 5 is the output command to turn off all 
LEDs. Line 6 shows the moving forward command sent to the motor port and line 
7 is the command to turn led0 on. These outputs are then decoded and converted 
by the corresponding drivers. Lines 9–13 show the outputs for the turn 45° left state 
where the led7 is turned off first, then the motors are instructed to move forward and 
led0 is turned on afterwards.

The following code snippet shows the driver interface function for the OutMotor 
output port of the top coupled component. The outputs generated in the output func-
tion for the motor port of the epuck0 atomic component are inputted to this function 
as an integer argument and the respective hardware command is spawned here.

1  bool OutMotor::pDriver(Value &value)
2  {
3      switch((int)value){
4          case 0: //Stop
5              playerc_position2d_set_cmd_vel(position2d, 0, 0, 
0, 1);
6              break;
7          case 1: //Moving Forward
8              playerc_position2d_set_cmd_vel(position2d, 1, 0, 
0, 1);
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9              break;
10          case 3: //Turn 45 deg. Right
11          case 4: //Turn 90 deg. Right
12              playerc_position2d_set_cmd_vel(position2d, 
0,0,-10,1);
13              break;
14          case 2: //Turn 45 deg. Left
15          case 5: //Turn 90 deg. Left
16          case 6: //Turn 180 deg. (turn from left)
17              playerc_position2d_set_cmd_vel(position2d, 0, 0, 
10,1);
18              break;
19  };
20  }

Lines 4–6 show the case of the stop command, which is encoded with value 
0. Line 5 is the command to stop the robot. Lines 7–9 handle the moving forward 
output command and lines 10–13 manage the right turning commands. For both 
45° and 90° turn actions, the robot starts spinning to the right, while the calibrated 
duration of the respective state accomplishes the desired degree of spinning. A more 
accurate approach to perform the turning actions would measure the spinning angle 
constantly and stop when the desired angle is reached.

3.4.3  Executing the Models

The e-puck model was first tested using virtual-time simulation mode. We designed 
a virtual space with obstacles and ran the simulation with inputs supplied from an 
event file, in which two series of inputs to the sensors are defined. Figure 3.14 

Event file Output file

00:00:04:000 inir0 0.01 00:00:00:000 outled 100 Turn all LEDS OFF
Move forward
Turn LED 0 ON

Turn 45° right
Turn LED 0 OFF
Turn LED 1 ON
Turn LED 1 OFF
Move forward
Turn LED 0 ON

Turn 180°
Turn LED 0 OFF
Turn LED 4 ON
Turn LED 4 OFF
Move forward
Turn LED 0 ON

outled 1

outled 1

outled 10
outled 11
outled 0

outmotor 1

outmotor 1

outmotor 3

00:00:00:000
00:00:00:000

00:00:04:000
00:00:04:000
00:00:04:000
00:00:04:100
00:00:04:100
00:00:04:100

outled 1

outled 40
outled 41
outled 0

outmotor 1

outmotor 600:00:08:000
00:00:08:000
00:00:08:000
00:00:10:100
00:00:10:100
00:00:10:100

inir1 0.01
inir2 0.01
inir3 0.01
inir4 0.01
inir5 0.01
inir6 0.01
inir7 0.01

00:00:04:000
00:00:04:000
00:00:04:000
00:00:04:000
00:00:04:000
00:00:04:000
00:00:04:000

00:00:08:000 inir0 0.01
inir1 0.01
inir2 0.01
inir3 0.01
inir4 0.01
inir5 0.01
inir6 0.01
inir7 0.01

00:00:08:000
00:00:08:000
00:00:08:000
00:00:08:000
00:00:08:000
00:00:08:000
00:00:08:000

FIGURE 3.14  Event file and output file of ECD++.
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shows the contents of the event file and output file of the ECD++ and the action 
associated with the outputs of the controller model. The event file is structured in 
the format of “time, input port and value” and in this example it consists of two 
series of events representing the two scenarios shown in Figure 3.12. The first 
three lines of the output file are the initial outputs of the model that move the robot 
forward. After 4 seconds of simulation, the first series of inputs is injected into 
the model, which results in the second series of outputs. The latter spins the robot 
45° to the right and performs the appropriate LED commands and after 100 mil-
liseconds moves the robot forward again with the appropriate LED commands. A 
similar scenario happens for the second series of inputs at time 8 of simulation in 
which the robot turns 180°.

After verifying the behavior of the model in various scenarios, we tested the 
model using the actual e-puck robot. The model was executed in RT mode in 
which the model interacts with the target platform (in this case, the robot hard-
ware). The same behavior was observed and the robot found its way through the 
obstacles.*

3.4.4  Verifying the Model

To obtain a TA model that is behaviorally equivalent to the DEVS model shown 
in Figure 3.13, we followed the procedure discussed in Sections 3.3 and 3.4. The 
equivalent TA is shown in Figure 3.15. In this model, the Boolean conditions of 

*	The results can be seen at http://youtube.com/arslab.

Turn_45_left

x<=100

Prepare_to_Turn_45_left

x<=0Turn_90_left

x<= 700

Prepare_to_turn_90_left

x<=0

Turn_180

x<= 2

Prepare_to_turn_90_right

x<=0

Turn_90_right

x<= 700

Turn_45_righT

x<= 100

Prepare_to_turn_45_right

x<= 0
Prepare_to_turn_180

x<= 0

moving_forward

Prepare_to_move_forward

x<= 0

Motor:=1, x=0motor:=1, x=0

backward_clear()
object_detected?

motor:=6

backward_clear()

object_detected?

motor:=6
move_motor!

move_motor!
motor:=1

move_motor!
motor:=2

move_motor!
motor:=1

move_motor!

move_motor!

x=0

move_motor!

move_motor!
motor:=1

move_motor!

right_90_clear()
object_detected?
motor:=4

left_45_clear()

object_detected?

backward_clear()
object_detected?

motor:=6

forward_clear()
object_detected?

forward_clear()

object_detected?

left_45_clear()
object_detected?

Left_90_clear()Object_detected?

x:=0,motor:=5

backward_clear()
object_detected?
motor:=6, x:=0

right_45_clear()
object_detected?

motor:=3

backward_clear()
object_detected?

motor:=6 right_45_clear()

object_detected?

forward_clear()
object_detected?

forward_clear()
object_detected?x:=0forward_clear()

object_detected?

FIGURE 3.15  Robot controller timed automata model.
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the DEVS state model were defined in functions in the TA model as shown in the 
following code snippet.

1  bool forward_clear(){return ir0>4 && ir7 >4 && ir1>2 && 
ir6>2;}
2  bool left_45_clear(){return (ir0<5 || ir1<2) && ir6>4;}
3  bool right_45_clear(){return (ir6>2 || ir7 <5) && ir1>4;}
4  bool backward_clear(){return ir0<5 && ir7 <5 && ir2<5 && 
ir5<5;}
5  bool right_90_clear(){return ir0<5 && ir7 <5 && ir5>4;}
6  bool left_90_clear(){return ir0<5 && ir7 <5 && ir2>4;}

In this TA model, Boolean functions constitute guards on the transitions that 
evaluate to true whenever the sensor values satisfy the condition given in the DEVS 
model. While the DEVS model of the robot-controller was tested and simulated with 
the real robot moving in a specific environment, to verify the robot-controller model, 
we built a closed system where this model interacts with other models representing 
the motor and the environment in which the robot travels.

Figure 3.16 shows the TA model of the motor. This model represents the motor 
states, starting in Preparing_To_Move_Forward. It then synchronizes the motor 
model with the controller model through the move_motor channel. The motor model 
shows six states that the motor can visit depending on the value of the shared vari-
able motor, which is updated by the Robot Controller model.

In Figure 3.17, a simple model of the environment in which the robot may travel 
is shown. This model represents an environment that looks like a contoured closed 
layout. This layout was modeled in TA by the values assigned to different sensors on 
the robot ir0, ir1, … , ir7. These values are also shown in the event file used to test 
the robot DEVS model.

Preparing_To_Move_Forward

Turning_180

Turning_90_Left

Turning_90_Right
Turning_45_Right

Turning_45_Left

Moving_Forward

motor==1
move_motor?

motor==1
move_motor?

motor==1
move_motor?

motor==1
move_motor?

motor==1
move_motor?

motor==1

move_motor?

motor==6
move_motor?

motor == 5
move_motor?

motor == 4

move_motor? motor == 3
move_motor?

motor == 2
move_motor?

FIGURE 3.16  Motor timed automata model.
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The verification of the system composed of Robot-Controller, Motor, and Environ-
ment in the UPPAAL tool revealed that it is free of deadlocks as shown in Figure 3.18. 
This ensures the controller is always able to successfully guide the robot through the 
given layout.

More complex layouts can also be modeled in TA to verify the system for more 
complicated behavior. For example, the TA environment model could be constructed 
to randomly assign values in reasonable range to the sensors. This would model 
generating arbitrary shaped obstacles around the robot. The verification for deadlock 
would then be executed to reveal if a deadlock is possible at any particular shape 

End_path

Initial

object_detected!

y>=16
ir0:=1,ir1:=1, ir2:=1, ir3:=10,
ir4:=10, ir5:=1, ir6:=1, ir7:=1

object_detected!

y>=8
ir0=1,ir1=1, ir2=1, ir3=10,
ir4=10, ir5=1, ir6=1, ir7=1

y:=0

FIGURE 3.17  Environment timed automata model.

FIGURE 3.18  UPPAAL verification for deadlocks.
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facing the robot. This would reveal either a fault in the robot-controller or the con-
troller being too simple to handle irregular shapes facing the robot.

Another example of verification that we can explore with verification includes 
different kinds of environments for the robot controller. In this example, we 
would attempt to check if the controller may enter into a deadlock and stop prog-
ress. To do so, we modify the environment model to randomly generate different 
sensor readings that simulate the robot approach to the situation where there is 
variety in the environment. This modified environment model is shown in Figure 
3.19. In this model, sensor ir0 obtains a value in the range of [1,5], ir1 a value 
in [1,10].

By checking the model for deadlock again, the UPPAAL tool would verify this 
property and give a trace if this property is violated. The trace comprises values 
shown in the following lines.

1  motor = 1
2  ir0 = 5
3  ir1 = 1
4  ir2 = 1
5  ir3 = 10
6  ir4 = 10
7  ir5 = 1
8  ir6 = 1
9  ir7 = 1

This shows that the current design for the robot controller would not handle this 
combination of sensor values. In this case, either the designer reevaluates the design 
to address the shortcoming or it may be stated as an assumption on the simple robot 
controller that this shortcoming is acceptable.

End_path

Initial

object_detected!

i : int[1,5], j: int [1,10]
y>= 16

ir0:=i, ir1:=j, ir2:=1, ir3:=10,
ir4:=10, ir5:=1, ir6:=1, ir7:=1

object_detected!

y>=8

ir0=1,ir1=1, ir2=1, ir3=10,
ir4=10, ir5=1, ir6=1, ir7=1

y:=0

FIGURE 3.19  Environment model with random sensor inputs.
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3.5  CONCLUSIONS

Mixing formal software verification and validation together with simulation 
techniques provides a strong methodology for simulation models verification and 
validation models. Because it is amenable to RT simulation, this methodology 
constitutes a significant contribution to the field of embedded software engineer-
ing. Simulation models must be validated against actual system properties to 
make sure the modeler captured the essence of the system under study. Formal 
verification provides this assurance without the need to run exhaustive simula-
tions and manually analyze simulation results. Simulation models also must be 
verified against any errors that may have been introduced during model building. 
Errors such as infinite transitions in a bounded time, which result in an illegiti-
mate DEVS model, are difficult to debug manually and thus good candidates for 
formal verification.

Embedded systems design must model both the physical system under con-
trol and the controller. These models hold more value if they are written in a 
formalism that can be simulated, such as is the case for DEVS. This allows the 
designer to simulate the system, change design, and simulate again to reach a 
correct and optimal design. Formal verification helps verify absence of defects in 
the system. Once the system is proven to be free of defects, the controller DEVS 
model, being verified within the complete system, is deployed as the executable 
controller by running on an embedded DEVS simulator. This eliminates any 
transformation between the verified model and its implementation, thus avoiding 
potential defects from creeping into the final implementation because of neces-
sary transformations.
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