
J. Parallel Distrib. Comput. 73 (2013) 580–594
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

RISE: A general simulation interoperability middleware container
Khaldoon Al-Zoubi ∗, Gabriel Wainer
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

a r t i c l e i n f o

Article history:
Received 16 July 2012
Received in revised form
22 December 2012
Accepted 26 January 2013
Available online 4 February 2013

Keywords:
Interoperability
Simulation
Web services
REST
Middleware
Experimental framework
Semantic Web

a b s t r a c t

In recent years, new services on the Internet have enabled global cooperation; in particular, the Web has
enabled new distributed simulation technology. Much research has been devoted to developmiddleware
interoperability methods on theWeb. However, most existing methods have constraints in the structural
rules that are placed on the design ofmiddleware interoperabilitymethods. For example, such constraints
make it difficult to enhance interoperability via decoupling systems implementations and design, which
is essential in open computing networks, as in the case of the Web. In order to achieve such objectives
we present the RISE (RESTful Interoperability Simulation Environment) middleware. This all-purpose
WS-based distributed simulation middleware decouples design and implementation while allowing
composition scalability and dynamicity. Furthermore, it supports experiment-oriented frameworks and
has the ability to put Web 2.0 services in the simulation loop. RISE is the first existing middleware
to achieve such objectives, and the first to employ RESTful Web-services. We present the foundations
for meeting the above objectives, and the distinct characteristics of RISE from existing Web-based
approaches.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Modeling and Simulation (M&S) has evolved to become a disci-
pline that has its own knowledge, formalisms, and methodologies.
At the heart of the M&S, technology is the model concept: a repre-
sentation of a system with the purpose to promote understanding
of that system. The second concept is simulation, which refers to
the execution of those models with particular sets of data using
a computing device [46]. As simulated systems become increas-
ingly sophisticated, the simulation software becomes larger and
more complex. In these cases, the resources provided by a single-
processor machine often become insufficient to execute these sys-
tems. Parallel and distributed simulations dealwith these issues by
executing simulations over multiple processors [17]. Distributed
Simulation (DS) is distinguished from parallel simulation by their
physical architecture, communication network and latency. A fo-
cal point of distributed simulation software has been on how to
achieve model reuse via interoperation of different simulation
components (without relocating people/equipment to other loca-
tions). Other benefits include information hiding such as the pro-
tection of intellectual property.

With the expansion of the Internet, the desire toward global
cooperation via the Web in the distributed simulation technol-
ogy has also been on the rise as indicated by number of surveys

∗ Corresponding author.
E-mail addresses: khaldoon_alzoubi@hotmail.com,

kazoubi@connect.carleton.ca (K. Al-Zoubi), gwainer@sce.carleton.ca (G. Wainer).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2013.01.014
such as [4,37]. Consequently, much research has been devoted to
develop middleware interoperability methods on the Web, partic-
ularly using the Simple Object Access Protocol (SOAP) based Web-
Services (WS) [30] (e.g. [15,35,42,45]), the High Level Architecture
(HLA) standard [23], or a combination of both (e.g. [6,22,48,49]).

The HLA is a distributed simulation architecture mainly used
in the defense community since 1996 [23]. HLA-based simula-
tions interact with each other via a common software layer (acting
like a bus), called the Run-Time Infrastructure (RTI). On the other
hand, SOAP-based WS provide a general interoperability frame-
work on the Web, in which systems (i.e., simulation software)
interact through the WS layer, using the Remote Procedure Call
(RPC) mechanism. The WS layer transports those RPCs in the form
of the Extensible Markup Language (XML) SOAP messages. How-
ever, such methods have constraints in the structural rules that
are placed on the middleware design methods. In particular, the
way they exchange, structure, and use the information is usually
tied to internal software design issues, making it difficult to decou-
ple the system implementations and their design. This path usu-
ally leads to the need for homogenizing different implementations,
which is usually a complex problem to resolve, particularly, in
open computing networks, as in the case of the Web. In such open
communities, we need interoperating systems that are developed
independentlywithout being aware of each other internal software
design issues [7]. Any number of systems is expected to be able
to join/disjoin the overall distributed environment dynamically at
runtime.

Current Web-based distributed simulation systems (particu-
larly using SOAP WS), are mostly under the control of single

http://dx.doi.org/10.1016/j.jpdc.2013.01.014
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.01.014&domain=pdf
mailto:khaldoon_alzoubi@hotmail.com
mailto:kazoubi@connect.carleton.ca
mailto:gwainer@sce.carleton.ca
http://dx.doi.org/10.1016/j.jpdc.2013.01.014

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 581
team or a closed community, using interfaces that are tied to the
implementation (e.g. [35,42]). On the other hand, hiding the imple-
mentations (where heterogeneity resides) enhances interoperabil-
ity, allowing the systems to evolve independently from each other.

Based on the above, our main goal is to develop an all-purpose
Web-services based distributed simulation middleware with the
following objectives:

(1) The middleware will decouple design and implementation,
while allowing composition scalability (i.e. any number of sys-
tems can join the distributed environment) and dynamicity (i.e.
systems can be created and destroyed at runtime). The main
motivation is hiding these internal details can improve inter-
operability. This problem has never been investigated before.
The assumption has been that, if system A is able to perform
distributed simulation on the Web using SOAP WS, there will
be a straightforwardway to interoperate it with another SOAP-
based system. However, in reality, as interoperability is tied to
implementation, combining systems developed independently
is not trivial (in fact, it usually requires major software design
refactoring).

(2) Themiddleware must serve as a container of any of simulation
environment. Therefore, it must be independent of any specific
implementation, synchronization algorithms, semantics, and
formalisms. This means that the simulation software should
run one level above the middleware. Further, design scalabil-
ity must be ensured. This means that the middleware design
structure must scale up when adding/removing a supported
simulation environment type.

(3) The middleware should support Experiment-oriented frame-
works. To do so, we provideModeler-oriented Templates, which
are experiment resources created and named by modelers.
They can be created for anymodel, of any settings of any simu-
lation environment. The experiments should be provided with
a Web interface that enables those simulation experiments to
bemanipulated externally via theWeb, hence enhancing inter-
operability with other Web-based applications. Finally, all ex-
periment resources must be preserved unless deleted by their
owner. This Experimental Framework (EF) approach is one of
the characteristics that distinguish the proposedmethods here
from existing Web-based simulations, which usually build en-
tire specific implementations around specific goals while ig-
noring other possibilities. For example, a system may focus
on visualization access via a Web browser while ignoring dis-
tributed simulation and vice versa.

(4) We want to have the ability to put Web 2.0 services in the
simulation loop. The ability to create and manipulate experi-
ments on theWeb allowsputting anything attached to theWeb
within the simulation loop. This means that one canmix simu-
lations with any service addressed with a URI according to the
Web interoperability style. This Web-based information shar-
ing (Web 2.0 [27]) can be used to compose Web-enabled ser-
vices to produce a new application, known asmashup [21].

In order to achieve the goals above, we defined a new sim-
ulation architecture based on RESTful WS [32]. The Represen-
tational State Transfer (REST) term first appeared in Chapter 5
in [12] to describe the WWW architectural elements. In this
client/server model, resources hold representations (states) where
these representations are transferable between resources. For ex-
ample, as shown in Fig. 1, the client call transfers the HyperText
Markup Language (HTML) representation from the resource (e.g.
www.carleton.ca) to the Web browser.

SOAP-based WS imposes many constraints to interoperabil-
ity [42]: for instance, one cannot decouple interoperated SOAP-
based systems implementations as in most cases the data
channels (implemented as procedures) and the exchanged data
Fig. 1. Representational State Transfer (REST) concept.

(described as programming parameters) are part of implementa-
tion itself. Composition scalability is complex as every service (im-
plemented as procedure) at the server side, usually requires a stub
on the client side. Instead, as discussed here, RESTful WS interop-
erability mechanism along with our design and methods, allowed
us to meet the listed objectives above.

The RESTful Interoperability Simulation Environment (RISE)
middleware (formally known RESTful-CD++) [3,2] is the first ex-
isting simulation middleware to achieve the goals stated above,
and the first distributed simulation middleware to be based on
RESTful WS. RISE serves as a container to hold different simula-
tion environments without being specific to any of them. In RISE,
all functionalities are hidden in resources, namedwith uniform re-
source identifiers (URIs).1 Those resources (URIs) are connected to
each other via uniform virtual channels in which the simulation
synchronization is done using XMLmessages. Thus, the RESTful in-
teroperability approach allows system designers, as we did in the
presented RISE middleware to accomplish the following: (1) de-
compose the systems in components (i.e. called resources/URIs),
(2) hide the implementation within those components, hence sep-
arating component interfaces from software implementation. This
concept similar is information hiding in modular programming,
which is the chief aspect behind the well-known style of object-
oriented programming [31]. These fundamentals were adapted by
the RESTful WS style, which was adapted by the World Wide Web
(WWW), the largest open computing environment. In contrast, ex-
isting simulation interoperability approaches do the opposite to
these principles by following procedural programming style, hence
mixing systems implementation and interface. By going against the
Web interoperability principles will always cause serious difficult
interoperability issueswhen interoperating on theWebwith other
existing systems. These issues became obvious during the current
efforts on standardization of Discrete Event System Specifications
(DEVS) [46]. This standardization effort is aiming on interoperating
various DEVS-based implementations systems via the Web [41].

In the following sections, we present the RISE design, the
foundations ofmeeting the above objectives, and the distinguished
characteristics from existing Web-based approaches.

The paper is organized as follows: Section 2 presents back-
ground of the concept of simulation interoperability, and we de-
scribe howRISE fitswithin this concept. Section 3 presents the RISE
middleware design fundamentals. Section 4 summarizes a number
of RISE-based services, applications, and extensions.

2. Background

In recent years, some studies conducted in the form of sur-
veys of experts fromdifferent backgrounds (e.g. [4,5,37]) discussed
the trends and challenges of distributed simulation. The studies
pointed out for the need to enhance cooperation across geograph-
ical areas at different levels, as follows: (1) Cooperation at a global
level via the Internet, which is driven by economic incentives to
form industrial clusters. (2) Hiding/packaging information in com-
ponents (e.g. to enhance reuse and protect intellectual property

1 Terms Resources and URIs are used here interchangeably.

http://www.carleton.ca

582 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Fig. 2. RISE layers within LCIM model layers.

rights). The surveys acknowledged that the most serious challenge
to resolve is interoperability. Our objectives of enhancing interoper-
ability, particularly by decoupling/hiding implementations and the
general Web-basedmiddleware container follow these guidelines.

Interoperability enables two or more different software sys-
tems to interface and use each service correctly [38]. The complex-
ity of interoperability arises when systems are heterogeneous, as
in the case of distributed simulation. This is usually because sys-
tems have been developed independentlywith different semantics
(i.e. the meaning of the exchanged information) and/or syntactic
(i.e. the rules of structuring and exchanging the information). Since
such capabilities are realized in software design and implementa-
tion, interoperability needs to be studied from the software per-
spective, in particular, at the Application Programming Interface
(API) level (since this is how systems access and use other systems
services).

To hide implementation details and raise the level of abstrac-
tion, a layered architecture can be used (similar to the shown
model in Fig. 2). In this model, each layer defines its interoper-
ability methods, and provides services to the layer above it. Fol-
lowing this concept, RISE is organized in the following layers:
middleware, the simulation, and modeling. The middleware layer
(discussed in Section 3) provides a number of services to the sim-
ulation layer, such as all means of communication and managing
all simulation experiments lifecycle and executions. The simula-
tion layer deploys different simulation environment types, each of
which supports its own time management. Themodeling layer op-
erates above the simulation layer. This represents the system un-
der study,which is simulated by a specific simulation environment.
This RISE model layers match other existing interoperability con-
ceptual layers, particularly the Level of Conceptual Interoperability
Model (LCIM) [38], as shown in Fig. 2.

LCIM divides all related interoperability aspects into three gen-
eral layers (Fig. 2): the LCIM integrability layer deals with network
and connectivity issues. In RISE environment, themiddleware layer
uses existing Web protocols to resolve networking and connectiv-
ity issues. In this case, the middleware layer conceals the network
and any connectivity issues from the upper layers. The LCIM inter-
operability layer deals with the software implementation of inter-
operation, including simulation andmiddleware. In RISE, this layer
is presented in two layers:middleware and simulation. As discussed
previously, the simulation layer contains the simulation engine im-
plementation including simulation algorithms and formalism. This
makes the simulation implementation and algorithms indepen-
dent of the middleware layer. Thus, the simulation layer can have
different types of simulation implementations and algorithms. The
middleware layer provides management and common interoper-
ability services to the simulation services in the upper layer. For
example, the middleware layer manages the distributed aspects
in for distributed simulation services, simulation experiments life-
cycle, formatting simulation remote messages, interfacing simula-
tion systems with theWeb, etc. The LCIM composability layer deals
with the alignment issues of the models, that is, how to compose
various models correctly to meet the overall purpose. In RISE, this
is themodeling layer discussed previously. RISE composes themod-
els based on themodeler’s instructions (e.g. in form of XML) as part
of setting up a simulation experiment. In this case, composition
here deals with interoperating different partitions. This partition
encloses a portion of the distributed model along with the simu-
lation environment. The assumption here is that a simulation en-
vironment in a partition is capable of executing the model portion
in its partition. However, in the case of the LCIM and other con-
ceptual frameworks (e.g. [11,29]), composability only deals with
the conceptual ideas of constructing a model correctly to achieve a
solution. Thus, those works only provide modelers with concep-
tual ideas of building models to represent systems under study
correctly. However, composability in RISE goes beyond building a
model correctly. For example, in RISE, those models are enabled
with a Web interface, and models can be partitioned and simu-
lated over a number of machines in a distributedmatter. Of course,
models partitions might be heterogeneous, hence are not neces-
sary simulated by the same simulation environment type.

The way current distributed simulation approaches exchange,
structure, and use information, is usually tied to programming and
implementation, which exposes the heterogeneity of the systems.
In order to deal with these issues, we need to homogenize different
implementations, which is usually a complex problem to resolve.

In particular, the Common Object Request Broker Architec-
ture (CORBA) based and SOAP-based distributed simulation proto-
cols are complex to interoperate. SOAP-basedWS simulations [30]
group the services as procedures inWSports (addressed by a single
URI). Thus, simulation data is exchanged and described in the form
of procedure parameters while the data channels are described as
procedures. SOAP messages in XML (describing RPCs) are not ex-
changed at the simulation level, but at the Web service technol-
ogy layer. This is the case for all SOAP-based WS simulations such
as [15,35,42,44].

It is worth to note that we tried to achieve our goals based on
SOAP-based WS [42], which was one of the first Service Oriented
Architecture (SOA)/DEVS simulators, as part of trying to standard-
ize the middleware [1] for DEVS-based systems. Discrete Event
System Specification (DEVS) [46] is a modeling and simulation for-
malism that has been widely used through many different imple-
mentations over the last three decades to study complex discrete
event systems. A number of DEVS-based implementations are pre-
sented in [41]. However, we realized that it was not possible due
to the restrictions imposed by SOAPWS structural rules. For exam-
ple, we cannot decouple interoperated systems implementations
if the data channels (procedures) and the way data is described
(programming parameters) are part of implementation itself. Com-
position scalability is complex if every service (implemented as
procedure) at the simulations at the server side require stubs on
each simulation client. Thus, this interoperability approach is dif-
ficult to achieve in open communities as in the case of the Web.
This is because in such communities practice, systems need to be
designed, implemented, and evolved independently. On the other
hand, the SOAP-based WS ports (along with their procedures) had
to be created and compiled before even starting up the system. This
approach usually ends in a close communitywhere software devel-
opers can discuss with each other to resolve systems API related
design issues. TheWeb Services Description Language (WSDL) role
is to describe the RPCs signatures (i.e. names and input/output pa-
rameters). However, once the published WSDL document is com-
piled to programming stubs (usually by a tool), programmers need
to code those stubs and compile themwith their software [30]. This

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 583
Table 1
Comparing RISE to current interoperability approaches.

Approach Simulation synchronization
description

Simulation information
channels

Middleware to middleware
interoperability

Services addressing

HLA Procedure parameters
(interaction data fields between
the RTI and the federates)

Interactions (callback
functions between the RTI and
the federates)

RTI is implementation specific.
RTIs exchange information as
regions of attributes

RTI implementation specific

SOAP WS approaches Procedure parameters RPCs (each set is grouped in a
port)

RPC converted to SOAP over
HTTP

URI instance per port (port
contains a set of services/RPCs)

CORBA approaches Procedure parameters RPCs (each set is grouped in
an object)

Parameters marshaling and
unmarshaling

CORBA reference per object

RISE middleware (based
on RESTful WS)

XML messages
(message-oriented)

Four uniform software
channels (HTTP methods)

XML over HTTP URI template is per resource
(service type). Instances (URIs)
are created at runtime
fact usually becomes more obvious when examining the interface
requirements in the software developer manuals for SOAP-based
systems like the well-known Apache AXIS engine [43]. This ar-
gument also applies to CORBA-based simulations (e.g. [25]), since
they use the same RPC interoperability style, but with different
standards.

The HLA standard [23] performs distributed simulation via
interfacing a number of federates via the Run Time Infrastructure
(RTI). To be part of the Web, the HLA recently allowed interfacing
the RTI with a SOAPWS interface (e.g. [6,22,48,49]). However, this
WS interface still does not cover RTI-to-RTI interoperability. This is
done in the form of programming functions (called interactions);
hence, data is exchanged at the federate level via those functions’
parameters. The data exchanged between federates is described
in programming parameters, while the data channels are realized
as programming procedures. Further, the RTIs themselves are
implementation-specific, which makes it difficult to interoperate
different vendors’ RTIs. At the RTI level, simulation data is
usually exchanged as attributes according to an RTI specific
implementation.

In contrast, the WWW is the largest existing distributed struc-
ture where countless of systems interoperate with each other
according the Web standards. Considering this open-community
interoperability style, we decided to use RESTful WS [32]. This
is mainly because the RESTful interoperability approach allows
system designers to decompose systems in resources/URIs while
hiding implementationwithin those components, separating com-
ponent interface from their software implementation (as we did
in the presented RISE middleware). Specifically, the resources
exchange messages and they are connected via virtual constant
standardized channels. RESTful Web-services are also gaining
increased attention with the advent of Web 2.0 [27] and the
concept of mashups [21] (a grouping of various services from
different providers presented as a bundle in order to provide single
integrated service). For example, IBM enterprise mashup solutions
[20] aim on integrating Web 2.0 functions as rapid as possible.

The proposed RISEmiddleware, which is the first RESTful-based
simulation middleware, provides a novel approach to decouple in-
teroperability from simulation systems implementations and in-
ternal software design issues (Table 1). This is mainly because APIs
are moved outside implementations. Information is exchanged
using XML messages and transferred via virtual channels (HTTP
methods [13] in our case). Table 1 compares RISE with other ex-
isting approaches, classifying the way in which synchronization
messages are defined and exchanged, and in the way simulation
services are accessed, structured, and addressed. These RISE de-
sign issues are discussed in Section 3. SOAP-based WS ports are
usually connected with specific designed remote procedures, tar-
geting specific systems implementations. On the other hand, the
Web-based HLA method is similar to the typical HLA, but feder-
ates are able to communicate with their RTI via the Internet using
SOAP-based RPC-style.
Other Web-based simulation efforts have mainly focused on
visualization and models reusability [8,14,28,33,50] by providing
Web access to model repositories and visualization environments.
However, these models are only executable on specific simulation
environments. Table 2 compares the presented RISE middleware
with current Web-based simulation approaches.

Table 2 compares the proposed RISE framework with various
Web-based simulation systems. Although there are numerous
web-based simulation environments, the references selected for
the table reflect the most recent Web-based simulation works.
Table 2 summarizes a number of characteristics:

(1) General middleware (Row #1 in Table 2): the ability to support
different simulation environments (e.g., the middleware is
independent of the implementation).

(2) Distributed simulation (Row #2 in Table 2): several processors
perform a single simulation via synchronization through the
Web.

(3) Composition scalability (Row #3 in Table 2): the number of
partitions in distributed simulation is independent from the
way synchronization information is exchanged.

(4) Standardized information channels (Row #4 in Table 2): RISE
virtual information channels use the HTTP standards [13]. Ex-
isting Web distributed simulation systems often design their
specific RPCs. There are few systems based on standardized
SOAP-based RPCs, but those implementations are heavily in-
fluenced by such standards. For example, the SOAP-based ID-
Sim system [15] uses the Globus Toolkit [16] implementation.
The Globus Toolkit [16] realizes the SOAP-based OGSI [39]
interoperability specifications standards. Because the SOAP-
based interoperability rules are tied to programming, the
OGSI standards become tied to programming as well. In this
case, the IDSim software design architecture (as described
in [15]) has heavily been tied to theGlobus implementation of
the OGSI standards. In general, it is difficult to come upwith a
software design interface that would fit every system imple-
mentation needs.

(5) Synchronizationmessages description (Row#5 in Table 2): RISE
uses XML to describe all synchronization messages. In fact,
RISE is the only Web-based simulation system on this list
(which is generic) to use XML descriptions. This message-
oriented approach provides a better method compared to
programming parameters. XML messages and the virtual
channels put systems APIs outside their implementations,
hence, decoupling distributed systems implementations. For
example, SOAP-based systems exchange simulation informa-
tion as programming parameters via RPCs. Even though the
WS engines describe those RPCs as XML SOAP messages, in-
formation still exchanged as programming parameters at the
simulation engines.

584 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Table 2
Comparing current Web-based simulation approaches.

Characteristic RISE middleware Web API access to
simulation services
(e.g. [24,45,47,50])

SOAP-based WS and/or HLA
with SOAP interface distributed
simulation (e.g. [35,33,42,44])

Programming procedure API
to simulation services
(e.g. [9,26,36])

1 General middleware
(ability to support different
simulation environments)

Yes No No No

2 Distributed simulation
(partition simulation
among different machines)

Yes No Yes No

3 Composition scalability Yes No No No

4 Distributed simulation
standardized information
channels

Yes No No (except [15], it uses
OGSI [39])

No

5 Distributed simulation
synchronization messages
description

XML No Programming parameters No

6 Experiments direct access
on the Web (experiments
seen as URIs)

Yes Yes No (accessed on Web via
programming procedures)

No (accessed on Web via
programming procedures)

7 Experiments named with
modelers choice of URIs

Yes No No No

8 Dynamic experiments Yes No No No

9 API XML description Yes (WADL; can be done in
WSDL 2.0)

No Yes (WSDL 1.1) (except [25], it
uses CORBA IDL)

No

10 Interoperable with Web 2.0 Yes Yes No No
(6) Experiments have direct access on theWeb (Row #6 in Table 2):
RISE exposes all experiments as URIs on theWeb. This means
that experiments are directly accessed and manipulated as
any other URI on the Web. This is important because it eases
interoperability with other Web-based applications.

(7) Resource names of their choice (Row #7 in Table 2) for any sup-
ported simulation environment. This follows a general tem-
plate pattern as discussed in Section 3.2.2.

(8) Dynamic experiments (Row #8 in Table 2): in RISE, experi-
ments URIs can be created, deleted, and manipulated at run-
time, as discussed in Section 3.2.2.

(9) In RISE, the API XML publication description (Row #9 in Ta-
ble 2) is based on the SunMicrosystemsWeb Application De-
scription Language (WADL) standards [19] and can be done in
WSDL 2.0. This XML standard allows clients to generate RISE
API automatically (WSDL 2.0 is the recommended standard
since year 2007 [10]).

(10) Interoperable with Web 2.0 (Row #10 in Table 2): it is simple
to due to the use of RESTful WS.

3. Rise middleware principles

In this section, we will discuss the three RISE middleware
fundamentals: its uniform interface (Section 3.1), the resource-
orientation design (Section 3.2), and themessage-orientationmech-
anisms (Section 3.3). We first summarize how our objectives are
met using these principles.

In general, RISE spreads services over a number of resources/
URIs, and these resources exchange synchronization information
in form of XML messages via uniform channels, as shown in Fig. 3.

To decouple systems software related design issues (our first
objective in Section 1), is to place the APIs (i.e. how data is ex-
changed and described) outside systems interoperation. In RISE,
this is accomplished via message-orientation and uniform inter-
faces. Further, composition scalability is achieved because all the
interoperating resources (URIs) are always connected with the
same channels. These channels are virtual (i.e. they are part of
the exchanged messages), and they automatically exist upon a re-
source creation, providing dynamicity. The virtual channels con-
form to the universal HTTP methods standards [13], hence they
can be used to create/destroy resources at runtime. Thus, RISE re-
sources are designed externally as URIs that can be manipulated
according to HTTP standards. The second objective is that the mid-
dleware must serve as container to hold different simulation en-
vironments. To meet this objective, RISE organizes the resources
hierarchically, allowing design scalability. Resources are expressed
as URI templates (created at runtime using HTTP standards), which
led to a layered interoperability where simulations reside on top of
the middleware. This resource-oriented design also allowed us to
meet our third objective: defining experiment blueprints directly
attached to the Web. Experiments (and not only simulators and
models) are seen externally as URIs. That is, the middleware in-
teroperates at the Web layer using the Web standards and style
(i.e. based on RESTfulWS). This alsomeets our fourth objective: we
have the ability to interoperate and to put other Web 2.0 RESTful
services in the simulation loop.

3.1. Uniform interface

RISE uses a uniform interface for each resource, i.e., they are
connected with the same software channels that are used to ex-
change all information between resources. The concept of software
channels is usually realized (at the software level) by setting a field
in the header of a message to specify the used channel of that mes-
sage, hence providing a softwaremultiplexingmethod for themes-
sages exchanged. Since RISE already uses the HTTP envelopes to
wrap all the transferred information, HTTP methods are the ideal
choice to realize those channels. RISE uses thoseHTTPmethods and
treats them as software virtual channels as in Fig. 4.

The GET channel is used to read information from resources
(such as simulation status and results). The PUT channel creates
a resource or updates existing data in a resource (i.e., experiment
settings). POST is used to append new information to an existing
resource (such as XML synchronization messages in a distributed
simulation session). The DELETE channel is used to remove a
resource from RISE (such as deleting an experiment URI). The
OPTIONS channel is used to retrieve anXMLWADL [19] description
of all the RISE API.

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 585
Fig. 3. Overview of RISE main concepts.
Fig. 4. Uniform channels for RISE resources.
Fig. 5. RISE information channels structure.

Having these standardized channels for each resource, we
can achieve composition scalability and improve dynamicity in
distributed simulations. Since the channels of each resource exist
automatically upon that resource creation, the foundations for
dynamic interoperability already exist. Further, because each
resource is connected with the same number of virtual channels
(regardless of the number of remote resources); composition is
scalable, as shown Fig. 5.

Based on the above, RISE uses a uniform way to send messages
and access system resources. Four parameters are needed for a
message: the destination URI, the channel name, themessage syntax
(e.g., defined in XML), and the actual message data. This means that
the message transmission mechanism can be implemented in a
single procedure, where each message is transmitted within its
own thread [3]. Once the message arrives at its destination, RISE
needs to forward it to the appropriate local resource (i.e. the service
URI). This is done in three steps (Fig. 6):

(1) The Router (i.e. a thread in RISE) checks if the URI matches one
of the templates in the server. If so, it starts a thread (from
the threads pool) and initializes it with the HTTP envelope
information along with an instance of the Java class associated
with the subject URI template.

(2) The proper operation (of the Java object) is invoked based
on the message channel. At this point, the message in the
HTTP envelope is processed (e.g. converting the received XML
message, and sending it to a simulation engine). A resource
is implemented as a Java class, and channels as operations in
that class. These operations take HTTP requests as inputs, and
produce HTTP responses.

(3) The HTTP response is generated, and the message thread is
terminated.

As seen on the second step in Fig. 6, a message always enters
a resource through uniform channels. RISE uses this characteris-
tic to filter all incoming messages via those channels based on the
authentication and authorization scheme. The idea is that the GET
channel (i.e. read data) does not change resource states, while the
others do (i.e. write data). RISE realizes the access mechanism by
protecting every resource with a filter, as shown in Fig. 7. The fil-
ter performs the following steps: (1) Authentication, which veri-
fies the username and password in the request; if authentication
passes, it performs (2) Authorization, which verifies that the re-
ceived request belongs to the owner of that resource. The filter re-
spondswith the Unauthorized error (HTTP code 401), if either fails.
Otherwise, the received request is processed.

3.2. General resource-oriented design

In this section, we describe the resource-oriented hierarchical
design, the Experimental Framework (EF) blueprint, and the
resources database.

3.2.1. Resources hierarchical design
A resource on the Web is conceptually intended to capture a

target of a hypertext Ref. [12]. A resource is named with a URI and
canbeused to find other resources, similar to typicalWebbrowsers
hyper links. This concept is applied in RISE, butwith one difference:
resources are typeswhose instances are created at runtime (analog
to the concept of a class, which can havemany instances). To do this,
RISE applies the concept of URI templates [18] to deploy resources
types. A URI Template is a URI with variables (placed between

586 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Fig. 6. Processing received messages in RISE.
Fig. 7. Resources authorization access process.
braces ‘{}’) which can be substituted with the appropriate values
to obtain the actual URI instances. For example, ‘‘username’’ in the
template ‘‘users/{username}’’ can be substituted with any string to
obtain the actual URI instance such as ‘‘users/Bob’’. The use of URI
templates allowed us to achieve our goals in terms of middleware
organization, since URIs can be created and named at runtime to
wrap concrete services.

Fig. 8 shows how resources are organized hierarchically, with
multiple instances of each template created simultaneously by dif-
ferent users (the RISE API is detailed in [3]). For example, the tem-
plate ‘‘{userworkspace}’’ allows anynumber ofmodelerworkspaces
to be created, separating the modelers’ experiments from each
other. The ‘‘{servicetype}’’ template allows each modeler to se-
lect a simulation service. This allows modelers to create exper-
iments based on different environments. For instance, setting it
to ‘‘DCDpp’’ will activate the Distributed CD++ environment [3].
It also allows RISE middleware developers to support additional
simulation environments types without affecting other existing
types. The ‘‘{framework}’’ template indicates that themodelersmay
create any number of Experimental Frameworks with any sup-
ported simulation environment type (see ‘‘{servicetype}’’ discus-
sion above). As shown in Fig. 8, these URIs are linked to each other,
allowing aURI to be discovered via its parentURIs. For example, the
‘‘{servicetype}’’ template does not only indicate a simulation envi-
ronment type, but also serves as a structural resource for its chil-
dren. For instance typing ‘‘. . . /Bob/DCDpp/ ’’ in a Web browser will
return all of Bob’s URIs experiments that use the DCD++.

The concept of providing services as general resources led to
the layered interoperability concept discussed in Section 2, which
can be seen in Fig. 9. The middleware layer provides services to
the simulation layer (i.e., all means to exchange all information,
URI encapsulation, experimental frameworks, authentication,
database, and data distributed simulation). Themiddleware allows
Fig. 8. Excerpt of resources templates with instances examples.

adapting the data distribution scheme to different simulation
methods (as described by the RISE implementation in [3]). The
simulation layer deploys different simulation environment types
(e.g. conservative/optimistic, distributed/parallel, etc.), each of
which can support their own time management based on their
internal algorithms. The actual simulation engines (which are
responsible of executing the model) are created only when
the simulation is started within a simulation experiment. The
modeling layer operates on top of a simulation environment (its
model representation is compatible only within its associated
simulator). In RISE, the modeling layer schemes define the level of

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 587
Fig. 9. RISE middleware general simulation container on a machine.
partitioning granularity in the distributed model. For example, the
DCD++ simulator [3] supports partitioning as low as DEVS [46]
atomic models. Note that DEVS expresses a system as a number
of behavioral models (called atomic) and structural components
(called coupled). DEVS coupled model may consist of a number
of atomic and other coupled models; DEVS atomic models are
indivisible blocks. Thus, DCD++ partitions themselves might
be fragmented or exist as single blocks. However, the scheme
described in [2] places an entire model as a black box in each
partition.

Using this architecture, any number of experiments of any type
may be conducted at the simulation layer. For example, Fig. 9
shows two experiments with two simulation environments: Type-
A (e.g. distributed conservative) and Type-B (e.g. single engine
sequential). In this example, <. . . /Type-A/Exp-1>corresponds to
the experiment ‘‘Exp-1’’ of simulation system ‘‘Type-A’’. Likewise,
<. . . /Type-B/Exp-1>corresponds to the experiment ‘‘Exp-1’’ of
simulation system ‘‘Type-B’’. In this case, Exp-1 is distributed over
two machines; hence, Type-A algorithms must synchronize their
activities, and the middleware supports these services. On the
other hand, Exp-2 is running on a single machine, hence, the
middleware is only providing aWeb access to such experiment. Of
course, those experiments are executing separately of each other,
and they may belong to the same user or different users.

3.2.2. Experimentation blueprint
As discussed in the previous section, the simulation resources

(i.e., the second layer in Fig. 9) are typically part of experiments
instances. Because the resources are defined as templates, each
template is an experiment blueprint. This means that the creation
and manipulation of experiments follows a generic pattern
discussed in this section.

The Experimental Framework (EF) template is shown in Fig. 10.
Here, the ‘‘{servicetype}’’ template is used to select a given sim-
ulation environment. The ‘‘{framework}’’ template is used to cre-
ate an experiment and its main URI. This URI provides a web
interface to the encapsulated settings and data of an experimental
framework. The ‘‘{framework}/simulation’’ template is used towrap
an active simulation for an experiment. This URI provides a web
interface to the running simulation for a given experiment. The
‘‘{framework}/results’’ template is used to store simulation results
once a simulation is completed. The ‘‘{framework}/debug ’’ template
is used to store any errors relatedwith themodel under simulation.

We will illustrate the experiment template in Fig. 10 using
an example summarizing the modeler’s activities. The first step
is to create an experiment (typically via client software). For
instance, the modeler requests to create an experiment via the
PUT channel to URI <. . . /Bob/DCDpp/MyModel>. RISE will then
create an experiment with the requested URI, and it will update
Fig. 10. Simulation experimental framework template.

it with any information received with the request. In this example,
this URI indicates that the experiment name is ‘‘MyModel’’, using
the ‘‘DCDpp’’ simulation environment, and belongs to user ‘‘Bob’’.
The following steps in this experiment will interact with this URI,
submitting the necessary settings and data to run the simulation.
The actual data submitted can be specific to the simulation
environment. For example, the RISE-based DCD++ [3] requires
the modeler to submit (via the PUT channel) an XML message
describing the CD++ model-partitioning scheme over a number
of machines. For instance, the following XML document shows a
CD++ model partitioned over two machines; the ‘‘Producer ’’ and
the ‘‘Consumer ’’.

<Partitions>
<Partition IP=’’10.0.40.175’’ PORT=’’8080’’>

<MODEL>Producer</MODEL>
</Partition>
<Partition IP=’’10.0.40.162’’ PORT=’’8080’’>

<MODEL>Consumer</MODEL>
</Partition>

</Partitions>

The above scheme only assigns DEVS atomic models to parti-
tions, since they are the indivisible blocks in the DEVS formalism.
However, these atomic models and their relations are described
using the CD++ modeling language. Thus, the modeler also needs
to submit the CD++ model to the experiment URI before simula-
tion can take place. This is usually done in a form of zipped file (via
the POST channel) to URI<. . . /Bob/DCDpp/MyModel>. At this point,
the simulation can be started (or restarted). This is done via the PUT
channel to URI <. . . /Bob/DCDpp/ MyModel/simulation>. This newly
created URI becomes the active simulation Web address. Further,
once the simulation started, the middleware creates all other par-
titions in the distributed environment. At this point, the algorithms

588 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Fig. 11. Example of experiment instances.
in each partition synchronize their execution among each other via
exchanging XML messages to each other active simulation URIs.

As discussed above, each of the experiment resources instances
are attached to the Web, (since they are URIs) and all the informa-
tion flows to/from those resources through a set of uniform chan-
nels, as discussed in Section 3.1. In fact, the URIs act as wrappers to
concrete simulation services and data. To showhow the simulation
experiments are interfaced and wrapped in URIs, consider the ex-
ample shown in Fig. 11. We can two experiment instances where
experiment-1 is of Type-A (e.g. a sequential simulation) while
experiment-2 is of Type-B (e.g. a conservative distributed sim-
ulation). Here, experiment-1 holds the results from a previous
simulation (completed state) while experiment-2 is executing a
simulation distributed over two computers (active simulation
state). In distributed simulations like experiment-2, the algorithms
in each partition synchronize their execution among each other via
exchanging XMLmessages with the URI ‘‘{framework}/simulation’’.
This URI wraps all the simulation components in each partition,
including the simulation engines. Each resource in the RISE API is
described in terms of its URI, supported channels, messages ex-
changed via those channels (to execute a function), and type of er-
ror responses that may be generated.

Each of the experiments instances follows aworkflow shown in
Fig. 12. As we can see, the modeler first needs to create an EF in-
stance on RISE, and submit all of the necessary files and configura-
tion settings to it. The EF instance creation is performed via the PUT
channel where the experiment settings (e.g. model partitioning)
may be optionally submitted as an XML message. If this message
is received by an existing experiment URI, the experiment URI is
updated; otherwise, the URI it is created. The ‘‘{framework}’’ URI is
named by the modeler upon creation (e.g. . . . /FireModelWithRain).

After the EF instance is created, the modeler can update the
existing data via this URI. For instance, models scripts can be
submitted as a zipped file via the POST channel. Furthermore, the
experiment settings may be updated sending new XML messages
via the PUT channel. These changes are only allowed if a simulation
is not running the experiment. The main experiment URI can be
used to check the simulation status via the GET channel to URI
‘‘. . . /{framework}?sim = status’’. The middleware responds with
an XML message containing one of the following states: IDLE (the
simulation never run), INIT (the simulation is being initialized),
RUNNING (the simulation is being executed), ABORTED (the
simulation was stopped by the modeler), ERROR (the simulation
stopped due to an error), STOPPING (the simulation is finishing),
and DONE (the simulation is complete).

Once the experiment is set up (Fig. 12), the simulation
can be started by creating the Active Simulation URI (e.g. . . . /
FireModelWithRain/simulation). However, before this, the middle-
ware verifies that the experiment has been set up correctly. This,
for example, includes all of the model script files and configura-
tions. The type of the information submitted to an experiment de-
pends on the selected simulation environment for that experiment.
Recall that the ‘‘{servicetype}’’ template can used to select differ-
ent simulation environments for a given experiment, as shown in
Fig. 10. This Active Simulation URI is to manipulate simulation in
an experiment during execution such as: (1) sending distributed
simulation synchronization messages (via the POST channel),
(2) inserting external events (via the POST channel), and (3) read-
ing simulation results (via the GET channel to URI . . . /simulation?
sim= results). In this case, a copy of the collected simulation results
up to the time of receiving the request is sent back to modeler.

Once the Active Simulation URI is correctly created (Fig. 12),
the necessary components are deployed on each partition to man-
age and execute the simulation. At this point, the simulation
can exist on one of the following states: ERROR (e.g., a problem
in the scripts), ABORTED (the modeler sent a DELETE request),
or DONE (the simulation is complete). When the simulation is
successful, a results resource (e.g. . . . /FireModelWithRain/results) is
created to hold all simulation outputs. These results can be down-
loaded at anytime (for instance, to replay a simulation’s visualiza-
tion without running it again). In order to retrieve results while
the simulation is in progress, the modeler needs to issue a read
request (via the GET channel) to URI . . . /{framework}/simulation?
sim = results. In this case, the client does not need to wait un-
til the simulation completed to obtain results. If the simula-
tion aborts, the errors are stored in the debugging resource (e.g.
. . . /FireModelWithRain/debug).

3.2.3. Resources database
One of the objectives of RISE is to preserve all the experiments’

instances unless deleted by an authorized user. Thus, we need a
database to maintain all resources instances and settings.

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 589
Fig. 12. Simulation experimental framework pattern context.
The database is divided into sections, and each section belongs
to a user (i.e., a username account). This allows multiple messages
from different users to modify the database without blocking each
other, as each incoming message is processed in its own thread
(a single thread can only modify one object at a time, but differ-
ent threads can manipulate different objects simultaneously). The
database is transactional, i.e., a transaction can only insert an object
in the database when the previous transaction to the same object
is completed.

As seen on Fig. 13, each user’s section contains an account
object (i.e. username, password, etc.) and a workspace object. The
workspace contains the list of the simulation services types (e.g.
DCD++) that are currently used in this user’s experiments. Each
service object contains the list of the experiments objects created
by the subject user for a specific simulation environment type.
The database main issues are summarized as follows: (1) RISE
divides the database into sections, each section belonging to one
username account. This minimizes the number of threads needed
to manipulate the same data objects simultaneously. (2) The
database (stored in the file system) and the objects inmemory have
to be synchronized at all times (without degrading performance)
as server reboots or failures may happen. The database and cache
synchronization do not affect distributed simulation performance,
because in RISE, a simulation in an experiment always needs to be
restarted if the server fails (e.g. power failure). However, the RISE
database keeps the door open tomark a simulation progress so that
it can later be resumed due to such unexpected failures.
Fig. 13. User section in the database.

3.3. Message-orientation

In this section, we discuss the information flow between re-
sources through the virtual uniform channels discussed earlier.
Since the middleware transfers all information in HTTP envelopes
and realizes the resources channels byHTTPmethods, any data for-
mat type supported on the Web can be transferred between the
resources. However, our focus here is on the distributed simula-
tion synchronization information, since they directly affect syn-
chronization algorithms design and decoupling systems from each
other.

In RISE, the semantics of all synchronization messages is de-
scribed in XML [3]. One of reasons is to enhance the decoupling

590 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Fig. 14. Overview of RISE typical simulation environments.
of different systems implementations in a number of ways: (1) the
design decisions for handling simulation messages become an in-
ternal issue that does not need to conform to other systems imple-
mentations. (2) The synchronization algorithms can be designed
at a level higher than programming, independent of programming
details, languages and implementations. This is because the focus
of this message-oriented protocol is on what the XML messages
can send and the messages expected in return. On the other hand,
how these messages are handled during implementation is out of
the protocol scope (i.e., one does not need to be a programmer to
design the synchronization algorithms).

The flexibility of XML message description also allowed us to
enhance performance by aggregating multiple remote messages
in distributed simulations. Multiple simulation messages were
grouped in a single XML message to reduce the number of remote
transmissions. The flexiblemessage description can also be used to
support multiple synchronization protocols, accommodating dif-
ferent interoperability domains. In order to transmit a message
uniformly, we use four pieces of information: the destination URI,
the channel name, the message syntax, and the actual message
data. To accommodate different protocols, the software needs to
pack the XML messages according to the synchronization protocol
semantics. From the sending routine viewpoint, sending different
types of XML messages is the same. At the receiver, the XML mes-
sages are processed similarly to the transmission. The information
packed in an XML message still needs to be mapped to the local
software implementation, but these issues are irrelevant to other
systems implementations (and synchronization protocols), which
is a fundamental factor for decoupling systems implementations
and improving interoperability.

4. Examples: services and applications

In this section, we show different examples of the use of RISE.
To do so, we will provide an overview of a number of RISE-
based services. Some of them are placed within the RISE general
container. Other applications are placed on the client side, where
they can use RISE services.

4.1. Simulation and visualization environments

RISE is designed as a container for different simulation envi-
ronments, which are interfaced with the RISE component on the
same machine via the IPC queues. However, from the API view-
point, adding new services to the URI template structure is similar
to regular Web site URIs.

Fig. 14 shows an example of three types of services: visu-
alization, conservative, and parallel simulation. The simulation/
visualization managers shown in Fig. 14 are actually a part of the
RISE middleware. The Manager component usually extends the
RISE generic component to handle environment specifics such data
distribution across the distributed environment. For example, the
visualization environment can interoperate with the open Sec-
ond Life visualization environment [34]. The visualizationmanager
manages the visualization representations and their distributions
to registered clients who view them locally. The other simulation
environments in the figure need time management according to
their specific mechanisms. However, if a simulation environment
needs to synchronizewith other remote systems, themanager also
handles the data distribution mechanisms.

We next show an example based on the distributed CD++

(DCD++) simulator [3]. This is a modeling and simulation toolkit
capable of executing DEVS [46] and Cell-DEVS models [40]. Fig. 15
shows (on the top-left of the figure) a DEVS model, called Coupled-
A. DEVS coupled models are the structural models that contain
other internal coupled/atomic models. In this example, Coupled-
A consists of two models: Atomic-A and Coupled-B, each including
input and output ports. The input port of Atomic-A is connected
to the Coupled-B output port (and vice versa). Coupled-B also
consists of two atomic models: Atomic-B and Atomic-C. The XML
partitioning scheme (on the top-right of Fig. 15): it assigns Atomic-
B to a partition and Atomic-A and Atomic-C to the other partition.
A partition is identified by the machine’s IP address and the
middleware TCP port. As the two partitions in Fig. 15 have different
IP addresses, each of them is executed on a different machine. The
modeler can change this XML partitioning scheme at anytime.

Themodeler runs an experiment by creating the URI . . . /DCDpp/
{framework}/simulationon themainRISE server (i.e. the server used
to create theDCD++ experiment). As a result, themain RISE server
creates the simulationmanager component within the local EF par-
tition (Fig. 15). This simulation manager creates all necessary local
components; including the CD++ engine in its partition. Further-
more, it contacts the remote RISE servers to create other partitions
of the experiment. The CD++ simulation environments only ex-
ist during active simulation. At this point, each CD++ engine rec-
ognizes the parts of the model it is supposed to execute (based
on the XML partitioning scheme). In this example, the CD++ on
the left executes Atomic-B while the CD++ on the right executes
Atomic-A and Atomic-C. The CD++ engines recognize the ports in-
terconnections based on the coupled model definition file. Once
all components are created, the algorithms synchronize their local
activities via XML synchronization messages between each other
URIs [3]. The DCD++ experiment follows the pattern described in
Section 3.2.2.

4.2. Distributed simulation standards foundations

As a proof of concept of a semantic synchronization protocol
with specific requirements, the scheme in this section can be used

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 591
Fig. 15. Overview of RISE-based DCD++ environment.
to standardize synchronization interfaces between different DEVS
implementations [41]. To do so, the scheme uses a centralized time
manager, as adopted by the P-DEVS synchronization protocol [46]
(which, implemented by most existing DEVS tools, is the basis for
the current efforts on DEVS standardization [41]).

As discussed earlier, RISE philosophy is that systems imple-
mentations can interoperate easily if they are decoupled (that is,
the proposed algorithms and standardized protocols should not
enforce the software design, while respecting legacy systems de-
signs). To do so, the RISE-based algorithms place models in each
partition as black boxes interconnected with other models via in-
put/output ports [2]. The simulation is executed in cycles where
the synchronization messages exchanged are in XML. These al-
gorithms can handle dynamic simulations, whose partitions can
join/disjoin a runtime. The main idea is that systems algorithms
synchronize the simulation by exchanging XMLmessageswrapped
within HTTP envelopes, leaving the implementation details for the
developers.

As seen in Fig. 16, this scheme [2] puts each model as a black
box on each partition. This makes it easier to interoperate hetero-
geneous models that are executable by a specific simulation envi-
ronment. The only information that each system needs to identify
is how the model influences other remote models. This informa-
tion is provided to each system (domain) in XML, as in the example
shown in Fig. 17.

The synchronization scheme in Fig. 17 adapts the DEVS syn-
chronization style, which can be accepted and supported by the
numerous distributedDEVS simulators (and, on the other hand, ad-
ditional synchronization schemes can be proposed). In our scheme,
the RISE Time Manager (RISE-TM) component advances the simu-
lation in cycles comprised of two steps:
(1) RISE-TM requires all domains to execute all of their events
at the current (or newly calculated) RISE time (i.e. the time
that simulation partitions are allowed to execute events at).
This is done via sending (in parallel) one XML message to each
relevant domain, including the current RISE time and all the
external messages generated in the previous cycle (if any).
Once a domain partition executes all the internal events with
the current RISE timestamp, it responds to RISE-TM with one
message containing all external messages generated for other
domains (if any). All generated external messages must be
stamped with the current RISE time (or larger). This message
also contains the next event time in the sender partition,which
is the time of the next event in a partition larger than RISE time.

(2) Once RISE-TM receives replies from all the relevant domains, it
calculates the next RISE time. RISE-TM merges all the external
messages generated, and passes them to all the relevant
domains at the beginning of the next simulation cycle. If RISE-
TM finds the new RISE time to be infinity (or receives a stop
request from the modeler), the simulation ends.

Thus, synchronization via exchanging messages describing
information in XML enhances protocol support flexibility (for ex-
ample, comparing to RPCs describing information in programming
parameters). This is because, in practice, systems design and im-
plementations are less sensitive to XML messages comparing to
programming procedures interface. For example, DCD++ can in-
teroperate with another DCD++ via the scheme in Fig. 15. How-
ever, DCD++ can also interoperate with other DEVS tools by using
the schemepresented in this section too. In this case, a DCD++ can
be set up (as part of an experiment) to use a specific protocol when
synchronizing the simulation with other remote DEVS-based sys-
tem. In this case, theDCD++ sends/handles XMLmessages accord-
ing to the required protocol rules. This concept can be extended for

592 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Fig. 16. Models interconnection across domains.
Fig. 17. Models interconnection across domains.
non-DEVS simulators. For example, what do we need to do to in-
teroperate, let us say, a DEVS-based simulator on one end, with a
simulator based on Process Algebra models on the other end? In
practice, we can use RISE to solve this issue in two steps (carried
out by users familiarwith both systems simulation engines, though
they do not need to be programmers). The first step is to deter-
mine if a synchronization algorithm can be developed to interop-
erate both systems (in this case, both systems are interoperable).
The second step is to describe the information exchanged in XML
and the rules for exchanging such messages, similarly to the ex-
ample in Fig. 17. In this case, such protocol can be supported by
systems using the RISE middleware to interoperate.

Conclusion

We presented a new concept and ideas for distributed simu-
lation, implemented as the RISE middleware. We introduced the
software design of this middleware along with a number of RISE-
based services and applications examples. We showed that the
three design principles of RISE (i.e. general resource-orientation,
uniform-interface, and message-orientation) can achieve various
objectives with respect to interoperability. Particularly, hiding in-
teroperating systems heterogeneities (by decoupling systems APIs
from internal implementations), composition scalability (by ad-
vocating uniform-interface), and dynamicity (since information
channels automatically exist). We also showed how the middle-
ware could be designed to serve as a general container to hold
simulation environments. This is done via the concept of layered
interoperability: The middleware layer (the interoperability meth-
ods), the simulation layer (i.e. the simulation environments; in
our examples above we used DCD++ as a proof of concept), and
the modeling layer (i.e. partitioning granularity). Thus, the mid-
dleware design is not specific to any simulation package, keeping
the door open for additional extensions. Interoperating in theWeb
style at the Web layer level (i.e. RESTful WS) allows the middle-
ware to take advantage of any new Web-based applications and
ideas such as Web 2.0. Doing this with SOAP-based WS is diffi-
cult, mainly because SOAP creates an RPC layer above the Web

K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594 593
layer that exposes internal systems implementations to each other.
On the other hand, RISE provides better interoperability applying
RESTful WS principles. As in the case of any technology, the de-
cision to use such technology can be different from a project to
another. Therefore, we recommend the use of RESTful WS princi-
ples in Web-service based projects that contain some or all of the
following characteristics: (1) Projects that desire to interoperate
with applications that use the Web interoperability style such as
Web 2.0 and mashup solutions. (2) Projects that are expecting to
interoperate with systems outside their control. In this case, as we
did in RISE design, systems APIs can be moved outside the imple-
mentation, decoupling the system components. (3) Projects that
are expecting to scale up well when composing large number of
systems (components). The REST style has proved to work well on
the WWW, which RISE imitates. (4) Projects that expect having
different components joining/disjoining the distributed structure
dynamically at run time. The REST (Web) style has been proven
to work on the WWW by having countless number of systems to
join/disjoin all times.

References

[1] K. Al-Zoubi, G. Wainer, Interfacing and coordination for a DEVS simulation
protocol standard, in: Proc. 12th IEEE Int’l Symp. Distributed Simulation and
Real-Time Applications, DS-RT2008, 2008, pp. 300–307.

[2] K. Al-Zoubi, Wainer, Performing distributed simulation with RESTful Web-
services, in: Proc. 2009 Winter Simulation Conference, WSC 2009, 2009,
pp. 1323–1334.

[3] K. Al-Zoubi, G. Wainer, Using REST Web services architecture for distributed
simulation, in: Proc. 23rd ACM/IEEE/SCS Proceedings of Principles of Advanced
and Distributed Simulation, PADS2009, 2009, pp. 114–121.

[4] C. Boer, A. Bruin, A. Verbraeck, Distributed simulation in industry—a survey,
part 3—the HLA standard in industry, in: Proc. 2008 Winter Simulation
Conference, WSC2008, 2008, pp. 1094–1102.

[5] C. Boer, A. Bruin, A. Verbraeck, A survey on distributed simulation in industry,
Journal of Simulation 3 (1) (2009) 3–16.

[6] A. Boukerche, F. Iwasaki, R. Araujo, E. Pizzolato, Web-based distributed
simulations visualization and control with HLA and Web services, in: Proc.
12th IEEE Int’l Symp. Distributed Simulation and Real-Time Applications, DS-
RT’08, 2008, pp. 17–23.

[7] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (6) (2009) 599–616.

[8] J. Byrne, C. Heavey, P. Byrne, A reviewofWeb-based simulation and supporting
tools, Simulation Modelling Practice and Theory 18 (3) (2010) 253–276.

[9] E. Chia, M. Shamsir, Z. Hussein, S. Hashim, GridMACS portal: a grid web
portal for molecular dynamics simulation using GROMACS, in: Proc. 4th
IEEE Asia International Conference OnMathematical/AnalyticalModelling and
Computer Simulation, AMS2010, 2010, pp. 507–512.

[10] R. Chinnici, J. Moreau, A. Ryman, S. Weerawarana, Web services description
language (WSDL) version 2.0 part 1: core language, 2007.
http://www.w3.org/TR/wsdl20/ (accessed March 2012).

[11] P. Davis, R. Anderson, Improving the composability of department of defense
models and simulation, Rand Corporation, Santa Monica, California, 2003.
http://www.rand.org/pubs/monographs/MG101.html (accessedMarch 2012).

[12] R. Fielding, Architectural styles and the design of network-based software
architectures, Ph.D. Dissertation, Dept. of Computer Science, Univ. of
California, Irvine, CA, USA, 2000.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext transfer protocol–HTTP/1.1. RFC 2616, 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html (accessed March 2012).

[14] P. Fishwick, L. Jinho, P. Minho, RUBE: a customized 2D and 3D modeling
framework for simulation, in: Proc. 2003 Winter Simulation Conference,
WSC2003, 2003, pp. 755–762.

[15] J. Fitzgibbons, R. Fujimoto, D. Fellig, D. Kleban, A. Scholand, IDSim: an
extensible framework for interoperable distributed simulation, in: Proc. IEEE
International Conference on Web Services, ICWS2004, 2004, pp. 532–539.

[16] I. Foster, C. Kesselman, Globus: a metacomputing infrastructure toolkit,
International Journal on Supercomputer Applications 11 (2) (1997) 115–128.

[17] R. Fujimoto, Parallel and Distribution Simulation Systems, John Wiley & Sons,
New York, 2000.

[18] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, URI Templates, 2010.
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
(accessed March 2012).

[19] M. Hadley, Web application description language, WADL, 2009.
http://www.w3.org/Submission/wadl/ (accessed October 2008).

[20] IBM Mashup Center. http://www-01.ibm.com/software/info/mashup-center/
(accessed March 2012).
[21] IBM Software Group. Whymashups matter, 2008. ftp://ftp.software.ibm.com/
software/lotus/lotusweb/portal/why_mashups_matter.pdf (accessed March
2012).

[22] P. Ke, S. Turner, C. Wentong, L. Zengxiang, A service oriented HLA RTI on the
grid, in: Proc. 2007 IEEE International Conference onWeb Services, ICWS 2007,
2007, pp. 984–992.

[23] F. Khul, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An
Introduction to High Level Architecture, Prentice Hall, 1999.

[24] T. Kim, S. Hoon Hong, Y. Chung, I. Park, Web-based CAD framework for low
cost SoC design prototyping, in: Proc. 2010 IEEE International SoC Design
Conference, ISOCC2010, 2010.

[25] K. Kim, W. Kang, CORBA-based, multi-threaded distributed simulation
of hierarchical DEVS models: transforming model structure into a non-
hierarchical one, in: Proc. International Conference on Computational Science
and its Applications, ICCSA2004, 2004.

[26] H. Leong, D. Brutzman, D. McGregor, C. Blais, Web services integration on the
fly for service-oriented computing and simulation, in: Proc. of the 2009 Spring
Simulation Multiconference, SpringSim2009, 2009.

[27] T. O’Reilly, What Is Web 2.0, 2005. http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html (accessed March 2012).

[28] E. Page, Beyond speedup: PADS, the HLA and web-based simulation, in: Proc.
1999 Winter Simulation Conference, WSC1999, 1999, pp. 2–9.

[29] E. Page, R. Briggs, J. Tufarolo, Toward a family of maturity models
for the simulation interconnection problem, in: Proc. 2004 Simulation
Interoperability Workshop, SIW2004, 2004.

[30] M. Papazoglou, Web Services: Principles and Technology, Prentice Hall, 2007.
[31] D.L. Parnas, On the criteria to be used in decomposing systems into modules,

Communications of the ACM 15 (12) (1972) 1053–1058.
[32] L. Richardson, S. Ruby, RESTful Web Services, O’Reilly Media, Inc., Sebastopol,

California, 2007.
[33] R. Rocha, R. Araujo, M. Campos, A. Boukerche, Understanding and building

interoperable, integrable and composable distributed training simulations, in:
Proc. 14th IEEE Int’l Symp. Distributed Simulation and Real-Time Applications,
DS-RT2010, 2010, pp. 121–128.

[34] Second Life. http://secondlife.com/ (accessed March 2012).
[35] C. Seo, B. Zeigler, Automating the DEVS modeling and simulation interface

to web services, in: Proc. of the 2009 Spring Simulation Multiconference,
SpringSim2009, 2009.

[36] W. She, I. Yen, B. Thuraisingham, WS-Sim: a web service simulation toolset
with realistic data support, in: Proc. 34th IEEE Computer Software and
Applications Conference Workshops, COMPSACW2010. 2010.

[37] S. Strassburger, T. Schulze, R. Fujimoto, Future trends in distributed simulation
and distributed virtual environments: results of a peer study, in: Proc. 2008
Winter Simulation Conference, WSC2008, 2008, pp. 777–785.

[38] A. Tolk, Interoperability and composability, in: C. Banks, J. Sokolowski (Eds.),
Modeling and Simulation Fundamentals: Theoretical Underpinnings and
Practical Domains, Wiley, New Jersey, 2010, pp. 373–402.

[39] S. Tuecke, I. Foster, et al. Open grid services infrastructure (OGSI) ver-
sion 1.0. open grid services infrastructure working group (OGSI-WG)
2003. http://xml.coverpages.org/OGSI-SpecificationV110.pdf (accessedMarch
2012).

[40] G. Wainer, Discrete-Event Modeling and Simulation: A Practitioner’s Ap-
proach, CRC press, Taylor & Francis Group, Boca Raton, Florida, 2009.

[41] G. Wainer, K. Al-Zoubi, S. Mittal, J. Risco Martín, H. Sarjoughian, B. Zeigler,
in: G. Wainer, P. Mosterman (Eds.), Discrete-Event Modeling and Simulation:
Theory and Applications, CRC Press. Taylor and Francis, 2010, pp. 389–494
(Chapters 15–18).

[42] G. Wainer, R. Madhoun, K. Al-Zoubi, Distributed simulation of DEVS and Cell-
DEVS models in CD++ using Web services, Simulation Modelling Practice and
Theory 16 (9) (2008) 1266–1292.

[43] Web-services AXIS. http://ws.apache.org/axis/java/user-guide.html (accessed
March 2012).

[44] Q. Xiang, G. Chen, Y. Wang, Distributed simulation based on web en-
abling HLA, in: Proc. 2nd IEEE International Conference on Artificial Intelli-
gence, Management Science and Electronic Commerce, AIMSEC2011, 2011,
pp. 2062–2064.

[45] T. Yoo, K. Kim, S. Song, H. Cho, E. Yucesan, Applying web services technology
to implement distributed simulation for supply chain modeling and analysis,
in: Proc. 23rd ACM/IEEE/SCS Proceedings of Principles of Advanced and
Distributed Simulation, PADS2009, 2009, pp. 863–873.

[46] B. Zeigler, H. Praehofer, T. Kim, Theory of Modeling and Simulation, Academic
Press, San Diego, CA, 2000.

[47] S. Zhang, P. Coddington, A. Wendelborn, A national grid submission gateway
for eScience, in: Proc. 7th IEEE International Conference on E-Science,
e-Science2011, 2011, pp. 23–30.

[48] H. Zhang, H. Wang, D. Chen, Integrating web services technology to HLA-
based multidisciplinary collaborative simulation system for complex product
development, in: Proc. 12th IEEE International Conference on Computer
Supported Cooperative Work in Design, CSCWD2008, 2008, pp. 420–426.

[49] S. Zhu, Z. Du, X. Chai, GDSA: a Grid-based distributed simulation architecture,
in: Proc. 6th IEEE Int’l Symp. on Cluster Computing and the Grid Workshops,
CCGRID2006, 2006, pp. 66–71.

[50] K. Zhu, H. Song, J. Gao, Web-based atmospheric nucleation data management
and visualization, in: Proc. 2nd IEEE Int’l Conference on Networking and
Distributed Computing, ICNDC2011, 2011, pp. 127–131.

http://www.w3.org/TR/wsdl20/
http://www.rand.org/pubs/monographs/MG101.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://tools.ietf.org/html/draft-gregorio-uritemplate-04
http://www.w3.org/Submission/wadl/
http://www-01.ibm.com/software/info/mashup-center/
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
ftp://ftp.software.ibm.com/software/lotus/lotusweb/portal/why_mashups_matter.pdf
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://secondlife.com/
http://xml.coverpages.org/OGSI-SpecificationV110.pdf
http://ws.apache.org/axis/java/user-guide.html

594 K. Al-Zoubi, G. Wainer / J. Parallel Distrib. Comput. 73 (2013) 580–594
Khaldoon Al-Zoubi received both Ph.D. (2011) in Electri-
cal and Computer Engineering andM.C.S. (2006) from Car-
leton University (Ottawa, Ontario, Canada). He received
a B.Sc. in Electrical and Computer Engineering (1995)
from the University of Louisiana at Lafayette (Lafayette,
Louisiana, USA). His current research interests are related
with modeling methodologies, parallel/distributed simu-
lation, Grid Computing and Real-Time systems. He is also
a senior Software Engineer and Programmer with over 14
years of industry experience occupying a number of se-
niority and leadership positions throughout the USA and

Canada. His industry experience spreads over wide range of areas such as em-
bedded software and mobility, air-traffic software management and telecommu-
nications, security software for explosives and narcotics detections. His email
is kazoubi@connect.carleton.ca.
GabrielWainer, SMSCS, SMIEEE, received theM.Sc. (1993)
at the University of Buenos Aires, Argentina, and the Ph.D.
(1998, with highest honors) at the University of Buenos
Aires, Argentina, and Université d’Aix-Marseille III, France.
After being Assistant Professor at the Computer Science
Department of UBA, in July 2000 he joined the Department
of Systems and Computer Engineering at Carleton Univer-
sity (Ottawa, ON, Canada), where he is now Full Professor.
He has held visiting positions at the University of Arizona,
LSIS (CNRS), University Paul Cezanne, University of Nice,
INRIA Sophia-Antipolis (France), UCM (Spain) and others.

He is the author of three books and over 260 research articles; he edited four other
books, and helped organizing over 120 conferences, including being one of the
founders of SIMUTools and SimAUD.Hewas PI of different researchprojects (funded
byNSERC, CFI, GRAND,MITACS, Autodesk Research, IBM, Intel, INRIA, CANARIE, Pre-
carn, Usenix, CONICET, ANPCYT). Prof. Wainer is the Vice-President Conferences,
and was a Vice-President Publications and a member of the Board of Directors of
SCS. He is Special Issues Editor of SIMULATION, member of the Editorial Board of
IEEE Computing in Science and Engineering, Wireless Networks (Elsevier), Journal
of Defense Modeling and Simulation (SCS), and International Journal of Simulation
and Process Modeling (Inderscience). He is the head of the Advanced Real-Time
Simulation lab, located at Carleton University’s Centre for advanced Simulation and
Visualization (V-Sim). He is also the Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences and chair of the Ottawa M&SNet. He has been the
recipient of various awards, including the IBM Eclipse Innovation Award, SCS Lead-
ership Award, and various Best Paper awards. He has been awarded Carleton Uni-
versity’s Research Achievement Award (2005–2006), the First Bernard P. Zeigler
DEVSModeling and Simulation Award, and the SCSOutstanding Professional Award
(2011). His current research interests are relatedwithmodelingmethodologies and
tools, parallel/distributed simulation and real-time systems. His e-mail andweb ad-
dresses are gwainer@sce.carleton.ca and www.sce.carleton.ca/faculty/wainer.

mailto:kazoubi@connect.carleton.ca
mailto:gwainer@sce.carleton.ca
http://www.sce.carleton.ca/faculty/wainer

	RISE: A general simulation interoperability middleware container
	Introduction
	Background
	Rise middleware principles
	Uniform interface
	General resource-oriented design
	Resources hierarchical design
	Experimentation blueprint
	Resources database

	Message-orientation

	Examples: services and applications
	Simulation and visualization environments
	Distributed simulation standards foundations

	References

