
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/early/2012/10/02/0037549711436267
The online version of this article can be found at:

DOI: 10.1177/0037549711436267

 published online 2 October 2012SIMULATION
Matias Bonaventura, Gabriel A Wainer and Rodrigo Castro

Graphical modeling and simulation of discrete-event systems with CD++Builder

- Jan 10, 2013version of this article was published on more recent A

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 What is This?

- Oct 2, 2012OnlineFirst Version of Record >>

- Jan 10, 2013Version of Record

 at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on October 7, 2013sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/early/2012/10/02/0037549711436267
http://sim.sagepub.com/content/89/1/4
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/content/89/1/4.full.pdf
http://sim.sagepub.com/content/early/2012/10/02/0037549711436267.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

0(0) 1–24

� 2011 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549711436267

sim.sagepub.com

Graphical modeling and simulation of
discrete-event systems with
CD++Builder

Matı́as Bonaventura1, Gabriel A Wainer2, and Rodrigo Castro1

Abstract
We introduce CD++Builder, an open-source environment that aims at providing easy-to-use graphical modeling tools
to simplify the construction of models and the execution of simulations of complex Discrete Event System Specification
(DEVS) models. The architecture and implementation of CD++ Builder focuses on providing simple definition and reuse
of components, offering easy extensibility to support new features. CD++ Builder includes graphical editors for DEVS-
coupled models, DEVS-Graphs and C++ atomic models; it provides code templates that are synchronized with their
graphical versions, and it greatly simplifies the software installation and update procedures. We show how this environ-
ment can be used to build and simulate DEVS models, and we compare the process with previous versions and other
simulation tools, showing that CD++ Builder can improve model development by creating DEVS models in a completely
assisted manner, including advanced graphical interfaces.

Keywords
Discrete Event System Specification formalism, open-source modeling and simulation tools, graphical simulation environ-
ments, Discrete Event System Specification-Graphs, Cell-Discrete Event System Specification, CD++

1. Introduction

The DEVS (Discrete Event System Specification) formal-

ism1 is a sound formal framework (based on generic

dynamic systems theory concepts) that provides a discrete-

event approach that allows models to be defined in a hier-

archical and modular manner. DEVS defines the models

and their abstract simulation mechanisms independently

from each other and from the underlying hardware and

middleware. In recent years, DEVS has become very pop-

ular for modeling and simulation (M&S) of complex sys-

tems, and numerous DEVS simulators have been

implemented using diverse technology.2,3 DEVS has also

been used successfully in diverse areas, ranging from natu-

ral systems to human-made dynamic systems.4–7

In most DEVS M&S environments, model behavior

and structure are defined using high-level programming

languages (such as C++ or Java), making modeling more

difficult for non-expert developers, and introducing diffi-

culties for model validation. DEVS (and other) simulation

tools can be difficult to extend with new features, as some-

times they are developed from the ground up without using

standard user interfaces and technologies. Likewise, each

DEVS simulator usually defines its own specific program-

ming structures and Application Program Interface (API),

and users need to learn these implementation details.

Although these DEVS tools are based on the same formal

concepts, the use of different programming languages

makes it more difficult to reuse existing models in other

DEVS M&S tools. They are also difficult to extend with

new functionalities.

Some DEVS environments deal with these issues by

providing graphical modeling capabilities for structural

models, tools for tracking and animating simulations and

code structure aids for programming model behavior.3,8,9

We here present an open-source environment that tackles

these problems in a different way. The environment, called

CD++Builder,10 provides aids to support different lan-

guages for specifying DEVS models declaratively and

1Computer Science Department, Universidad de Buenos Aires, Ciudad

Universitaria, Argentina
2Department of Systems and Computer Engineering, Carleton University

Centre of Visualization and Simulation (V-Sim), Canada

Corresponding author:

Matı́as Bonaventura, Computer Science Department, Universidad de

Buenos Aires, Ciudad Universitaria, Pabellón I, (C1428EGA) Ciudad

Autónoma de Buenos Aires, Argentina.

Email: abonaven@dc.uba.ar

graphically for the CD++ DEVS simulator.2 In this way,

the barrier entrance for non-developer users is reduced.

DEVS atomic model behavior can be defined graphically

based on the DEVS-Graph11 notation, a declarative syntax

that can potentially be used by other tools as a means for

sharing models.

To solve the aforementioned issues, CD++Builder

integrates several tools that are available using a single

Eclipse Integrated Development Environment (IDE),12

thus reducing the learning curve for new users. The

plug-in architecture of Eclipse makes it possible to add

new features easily, and it also provides installation

and update mechanisms, which can be used to reduce

environment setup efforts and simplify distribution of new

versions.

In order to improve reuse and extensibility of the envi-

ronment, we used Eclipse graphical editor generator frame-

works, which provide intuitive and easy-to-use interfaces,

while guaranteeing the reuse of components.

CD++Builder avoids using different applications and

diverse formats, simplifying the M&S workflow.

Compilation of C++ source code is automated, and code

templates are used to avoid repetitive and error-prone

tasks, providing sample structures that promote good mod-

eling practices. Graphically defined DEVS models can

coexist with other models developed in C++ , which

gives more flexibility to the modeler: structural and simple

behavioral models can be defined graphically, while

C++ can be used to implement behavior that is more

complex. The environment also makes easy the definition

of automated regression tests, which are important when

new functionalities are included in the environment, pro-

viding a mechanism to verify the behavior of the software

after new code is introduced. We will discuss the advan-

tages of this approach in the following sections.

The rest of the paper is organized as follows: Section 2

introduces the DEVS formalism, the DEVS-Graphs nota-

tion and different simulation tools. Section 3 shows the

CD++Builder architecture and the technologies that

helped solve previous tool limitations. Section 4 provides

implementation details and it presents an overview of the

CD++Builder environment, its graphical editors and

main features. Section 5 demonstrates the M&S process

by showing the creation of a sample model using

CD++Builder. Section 6 presents a discussion about the

results and conclusions.

2. Background

In this section, we introduce the main features about dif-

ferent DEVS tools and the DEVS formalism; we also dis-

cuss the graphical specification of DEVS atomic models

and DEVS-Graphs. We finally give a brief introduction to

the CD++ toolkit.

2.1 The DEVS formalism and DEVS tools

DEVS1 is a M&S formalism based on systems theory con-

cepts for modeling both discrete and continuous worlds.

DEVS formal specifications provide the means for mathe-

matical manipulation of the models, and permit indepen-

dence of the language chosen to implement them.1,2 To

attack system complexity, DEVS models use a hierarchical

composition of behavioral models (atomic) and structural

models (coupled) with well-defined modular interfaces.

The DEVS formalism has been thoroughly discussed in

the literature; the reader can find a detailed description in

Appendix I.

AS DEVS is independent from any simulation mechan-

ism, several simulation tools have been developed by dif-

ferent groups, each tackling different needs and providing

advantages on specific applications. In order to define an

atomic DEVS model, we need a mechanism to specify the

model’s behavior (specified by the functions δint, δext, l
and ta described in the Appendix), for which tools provide

different aids to implement them. Likewise, most tools

provide mechanisms to define coupled models. A non-

exhaustive list (the interested reader can find a compre-

hensive list at http://cell-devs.sce.carleton.ca/devsgroup/)

of those DEVS simulators includes the following.

• ADEVS,13,15 a C++ library for developing

discrete-event simulations based on the parallel

DEVS and Dynamic Structure Discrete Event

System Specification (DSDEVS) formalisms. It

includes support for standard, sequential simulation

and conservative, parallel simulation on shared

memory machines with Portable Operating System

Interface for Unix (POSIX) threads.
• DEVSJAVA,3 a DEVS simulator that provides

Java classes for the users to implement their own

models. Four Java packages separate M&S from

user interface. It allows parallel and distributed

simulation, hierarchical model definition and visua-

lization. New DEVS-coupled and atomic models

are built by extending one of the base Java classes

provided by the framework. SimView, a graphical

component of DEVSJAVA, allows the user to spe-

cify the model layout (this must be done in the

same model’s source code, making model behavior

more difficult to understand). During the simulation

execution, synchronization messages sent between

models are displayed.
• DEVSim++ ,15 an object-oriented environment for

M&S of discrete-event systems. The software

includes numerous support tools: VeriTool (for

DEVS model verification), DEVSimHLA (a library

to support high-level architecture (HLA)), PlugSim

(a distributed simulation framework plug-in) and

others.

2 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

• SimStudio,9 a web-based framework implemented

using Java web technologies, using a layered archi-

tecture that supplies modeling, visualization and

analysis players. The modeling plug in, which is

implemented in Flash, allows one to specify a gra-

phical model, and to generate an Extensible Markup

Language (XML) file that is used by other tools.
• PowerDEVS,8 which allows one to specify coupled

DEVS models graphically, and atomic models in

C++ . A special editor aids the modeler with code

structure, and a model library enables model reuse

in a drag and drop fashion. Tracking model state

during simulation is done by special atomic models

that interact with outside devices. Although this

approach is useful, model definition and simulation

tracking are mixed into the same editor.
• JAMES II,16 a JAva-based Multipurpose

Environment for Simulation. This tool includes dif-

ferent formalisms, including DEVS. It is designed

to be adapted as a back-end into any existing soft-

ware. It provides a graphical user interface (GUI),

an experimentation layer, and it uses an open archi-

tecture, distributed as open source.
• DEVS/SOA,17 a Java implementation of DEVS over

a Service Oriented Architecture (SOA) framework.

The framework provides runtime composability of

coupled systems using SOA. We describe the archi-

tecture and designs of the server and the client.
• CD++ 2,18 implements DEVS and Cell-DEVS the-

ories, and it has been widely used in several areas

of interest, such as urban traffic, physical systems,

computer architecture and embedded systems.2

CD++ is implemented in C++ as a class hierar-

chy, where models are related to simulation entities.

Atomic model behavior is programmed in C++ ,

and coupled models are defined in a model defini-

tion file using a built-in high-level language.

2.2 Graphical specifications

The DEVS simulators discussed in the previous section

(and many other similar ones that have been implemented)

use the abstract DEVS simulation algorithms and provide

different APIs to define new models. In general, model

behavior must be implemented in some programming lan-

guage (such as Java or C++), making it more difficult

for non-expert developers. Most of these DEVS simulators

define their own programming structures and APIs, and

users need to learn these implementation details. Although

these DEVS tools are based on the same formal concepts,

the use of different programming languages makes it more

difficult to reuse existing models in other DEVS M&S

tools.

Many of these tools provide graphical aids to define the

coupled model structure and to analyze the simulation

results, but no descriptive high-level language is supported

to specify the atomic model behavior. In some cases, tools

provide specialized editors and generate code structures to

help programming new atomic models, but they lack com-

plete integration with coupled model editors; therefore,

code updates are restricted or not kept consistent with the

graphical representations. The absence of descriptive lan-

guages makes it very difficult to use models on different

simulators interchangeably, and it forces users to learn

specific implementation APIs. On the other hand, most of

the tools have been developed from the ground up using

diverse technologies (such as Java, .Net, C++ , etc.), mak-

ing it hard to leverage existing features.

To deal with these issues, CD++ supports the defini-

tion of atomic models using DEVS-Graphs, an extension

to the original DEVS atomic model.11 This graphical nota-

tion allows one to define the behavior of atomic models,

and it is depicted in Figure 1.

The graphical specification shown in Figure 1 can

improve interaction with stakeholders during system speci-

fication, and it has the advantage of allowing the modeler

to think about the problem in a more abstract way.2 This

graphical notation can be formally specified as

DEVS� Graphs= <X , S, Y , δint, δext, λ,D>

DEVS-Graphs models represent atomic model state

changes using a graph-based specification, where bubbles

represent each state s S (including an identifier and the

Figure 1. DEVS-Graphs graphical notation.2

Bonaventura et al. 3

state lifetime), dashed arrows represent the internal transi-

tion function δint, and full arrows represent the external

transition function δext, as shown in Figure 1. When the

lifetime of a state is consumed, the model will change its

state by executing an internal transition function, which

can be associated with a pair of port/value (p, v) Y that

represents the output function l. When an external event

(p, v) X occurs, the external transition whose condition is

satisfied is executed. Our DEVS-Graphs notation also

allows the definition of temporary state variables as S = B

× P(V), where B is a set of ‘Bubbles’ (Figure 1), and V is

the set of variables and values. Any number of state vari-

ables can be defined and internal and external transitions

have an optional list of actions (depicted as {(action;)*} in

Figure 1) to update the values of these variables. In addi-

tion, state variables can be used to specify the condition

for external transitions (depicted as [p?v] in Figure 1),

which are used to decide if the transition is be executed or

not. Likewise, different output values can be associated to

internal transitions (which is defined as a list of output

ports and their values, depicted as {q ! v}* in Figure 1).

Values used in conditions, actions and output values can

be any valid expression formed by variables, constants,

input ports and functions that can be composed to specify

more complex expressions. Appendix II shows the com-

plete grammar of the DEVS-Graph language and a simple

example of model definition.

The DEVS-Graphs notation needs to be converted into

an executable specification that can be used for computa-

tion. Figure 1 also presents an equivalent textual notation

that can be used with this purpose,19 in which the model

name is noted as [modelname], and the input and output

ports are specified using the in and out statements, respec-

tively. The state construction shown in Figure 1 declares

all the state identifiers; the lifetime of each state is then

assigned to the corresponding identifier in a separate state-

ment, and one of the states must be declared as the initial

state of the model. The keyword int is used to define inter-

nal transitions, indicating the source and destination states,

a list of actions and a list of output events denoted as q!v

(i.e. sending value v through port q). Similarly, the key-

word ext is used to define external transitions, indicating

the source and destination states, a list of actions and an

expression that must be satisfied for the transition to be

executed. Actions and conditions can be specified as sim-

ple mathematical expressions, or they can be implemented

in user-defined C++ functions, providing a flexible

mechanism for defining complex model behavior. The

keyword var allows defining temporary variables.

When defining new atomic models in CD++ and

other DEVS frameworks, the users typically follow the

workflow described in Figure 2. New atomic models must

implement a base class provided by the framework and the

model behavior must be programmed in an object-oriented

programming language (such as C++ , C# or Java).

Afterwards, the complete simulator must be recompiled to

include the new model. In order to test the implementa-

tion, a coupled model containing the new component and

a set of test input events must be specified. Depending on

the simulation results, the implementation might need cor-

rections and the process should be repeated. This includes

repetitive and error-prone tasks, such as the base class

implementation and the compilation process.

3. CD++Builder architecture

To solve the varied limitations introduced in Section 2, we

designed and implemented CD++Builder,2,10 an

Figure 2. Workflow for the definition and simulation of C++ models in CD++ .

4 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

environment based on the previously existing CD++
toolkit.2,18 The software is open source and it is based on

Eclipse’s plug-in infrastructure, making it possible to be

adapted to other M&S software tools. In this section, we

discuss the overall architecture of this software application.

3.1 Architecture components

In order to achieve the objectives discussed in Section 1

and to deal with the problems discussed in Section 2, we

introduced a layered architecture with a clear separation

between simulation execution, model definition, supporting

tools and underlying libraries, as shown in Figure 3. This

allows one to modify the simulation runtime without affect-

ing the models, tools or visualization engines that already

exist. The same tools and interfaces can be used to facilitate

model definition, whether those models will run in single

processor, parallel, distributed or embedded environments.

Figure 3 depicts the role of each CD++ component

and their main relationships. At the lowest layer (on top of

the Operating System), the Core Simulator layer imple-

ments the different versions of the abstract simulators algo-

rithms (e.g. parallel, flat, real time). The next level

(Libraries) provides different language interpreters, and

basic out-of-the-box atomic models that can be directly

used to define coupled models. The interpreters accept

input files coming from the Modeling level, which define

Coupled Models, Cell-DEVS models (both interpreted by

the Cell-DEVS Interpreter) or DEVS-Graph atomic models

(interpreted by the GGAD interpreter). Other area-specific

interpreters are also available, such as ATLAS for describ-

ing urban traffic20 or M/CD++ 21 for describing continu-

ous models using Bond Graphs and Modelica.2 High-level

languages from the Modeling layer are independent from

the Core and Libraries layers, so they can be used indepen-

dently of the simulator version. When a custom atomic

model behavior needs to be defined, it can be done with

User Models (which extend the Atomic C++ base class

of the framework, after which recompiling CD++ is

required), or using the DEVS-Graphs notation presented in

Figure 1. To execute a simulation, the users choose varied

options (coupled model definition, input events, etc.). The

simulation results are stored on two output files (.out files

contain port-value pairs for the output events of the model

and .log files contain all the message passing and synchro-

nization information between different models).

At the top Tools layer, different applications have been

developed to facilitate output file visualization, such as

Drawlog for Cell-DEVS models and CD++Modeler to ani-

mate Cell-DEVS, coupled model message passing and

atomic model output values. CD++Builder also provides

varied graphical editors to specify the model behavior, and

to generate the high-level specifications to be used by the

lower layers.

This architecture is extensible, and it allows the inclu-

sion of other new tools into CD++Builder. Other simula-

tors might take advantage of already developed

components, and some of the graphical editors’

Figure 3. CD+ + , high-level modeling languages, execution process and supporting tools.

Bonaventura et al. 5

functionality could be reused for simulators supporting high-

level language modeling. On the other hand, CD++ high-

level languages could be easily updated to interpret new

model notations, reusing existing graphical capabilities.

The hierarchical architecture of CD++Builder was

implemented using several well-known Eclipse frame-

works that provide the overall user interface and core

plug-in services. Eclipse provides several frameworks to

implement the graphical editors, including the Standard

Widget Toolkit (SWT), the Abstract Window Toolkit

(AWT) and Swing. Other more specific editors include

Draw2D and the Graphical Editing Framework (GEF).22

The first three libraries are based on Java and they provide

general GUI controls, which are useful for building form

windows. Nevertheless, they are not practical for manipu-

lating figures and shapes, and they do not provide any spe-

cial infrastructure for Eclipse-based editors. Figures are

the building blocks for Draw2D, which builds on top of

the SWT library. The GEF allows one to generate graphi-

cal editors based on an existing application model. Due to

these reasons, we chose Eclipse’s Graphical Modeling

Framework (GMF),23 as this library acts as a bridge

between GEF and the Eclipse Modeling Framework

(EMF),24 and it specifically tackles the creation of graphi-

cal Eclipse-based editors. The GMF also relies on the

Model-View-Controller (MVC) architectural pattern to

separate the model from its graphical representation,

which has been successfully used in other editors. A simi-

lar software stack has also been used by Ehrig et al.25 for

graphical editors of visual languages.

3.2 CD++ Builder software stack

The Tools layer presented in Figure 3 makes use of the

different tools and software packages shown in Figure 4,

which were used to implement the graphical editors that

support the high-level languages in the Modeling layer.

CD++Builder integrates the Eclipse IDE and the CD++
tools by means of graphical editors implemented using the

EMF, GEF and GMF. The EMF provides several services

for specifying, maintaining and persisting entities, and it is

used to specify Java classes that represent model entities

(i.e. Links, Models, Ports, etc.; the model part of MVC,

used by the IDE to define the behavior of the editors).

These model entities can be specified in the XML

Metadata Interchange (XMI)26 format, or using a graphical

editor. The EMF uses these to generate Java classes and

interfaces that describe the behavior and rules for each

entity. These classes are independent from any graphical

implementation, and they do not store any graphical infor-

mation (that represents each entity, colors, positions, etc.).

Custom code and methods can be added to these classes in

order to provide extra behavior to the model portion of the

architecture. The EMF recognizes special code comments

in customized methods, so that they are not overwritten

when the model is regenerated. The EMF also provides

persistence and validation services for generated models.

The detailed description of the model used to represent

DEVS entities in CD++Builder is discussed in Section 4.

The GEF and GMF leverage the classes generated by the

EMF to supply the graphical features of CD++Builder.

These frameworks provide base classes, which we extended

to implement the view and controller classes of the MVC

pattern. The GEF extends Draw2D to make it easier to cre-

ate a graphic representation of the model and provides base

Eclipse editor implementations. The GMF provides a gen-

erative component and runtime infrastructure for developing

graphical editors based on the EMF and GEF.22 The GMF

runtime can be seen as a white-box framework combining

EMF-generated models with the GEF’s controllers and

views, and providing additional services (i.e. transactional

support). GMF code generation can be seen as a black-box

framework defining meta-model information in XML files,

which are used afterwards to generate Eclipse editors’ code.

We used GMF code generation to define the general

look and feel, layout and behavior of the editors (many

new features were added, customizing and extending the

code generated by the GMF as explained in Section 4).

The GMF generates a decoupled infrastructure where con-

troller, view and editor implementation are separated from

the model. This suits CD++Builder’s requirements, as

the model can be reused by other CD++ or DEVS plug-

ins without depending on the editor implementation. The

model is independent from graphical and edition details.

The graphical editor information, which consists of model

information provided by the EMF and graphical data gen-

erated by GMF editors, is stored in XMI format, but per-

sistence services can be updated to use any other suitable

format. This could be useful in scenarios where DEVS

models need to be shared between different simulators.

3.3 Installation and updates

Installation and updates are centralized using the Eclipse

Update Manager. This allows hosting plug-in compiled

Figure 4. CD+ +Builder technology architecture.

6 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

code and its metadata in a single publication site, which

all users access for installation and periodical checks for

updates, as seen in Figure 5. This scheme allows easier

wizard-guided installation into already running instances

of Eclipse. More importantly, it resolves versioning prob-

lems; software fixes and new features do not have to be

distributed to users individually, but uploaded into a cen-

tral point. Integration with the Eclipse Update Manager

allows the clients to trigger manual update checks or to

configure for scheduling automatic periodic updates.

In summary, CD++Builder was built using an extensi-

ble architecture, based on well-known infrastructure and

frameworks provided by Eclipse. They allow updating and

extending CD++Builder functionalities with simple,

robust and well-documented procedures, an enabler for the

adoption of the tool by research and engineering commu-

nities demanding customized features. This represents a

major advantage from other existing simulation tools. In

addition, the integration with Eclipse Update Manager

centralizes the software and updates distribution, reducing

Figure 5. Centralized installation and update architecture.

Figure 6. CD++ Builder plug-in projects’ structure.

Bonaventura et al. 7

installation efforts and facilitating the delivery of new ver-

sions and fixes. Moreover, as the graphical model infor-

mation is stored using standard persistence formats,26 they

can be easily updated and then model files could poten-

tially be consumed by other tools, and even be used as a

means for porting models to other simulators.

4. CD++Builder implementation

As discussed earlier, a core requirement for CD++
Builder was to allow easy extensibility, as new features

are continuously added by different teams in geographi-

cally distant places. The plug-in architecture in Section 3

enables this by allowing new decoupled features into

CD++Builder and integrating them seamlessly. In this

section, we discuss the implementation of those features.

Figure 6 depicts the different Eclipse plug-in projects

that implement the CD++Builder environment. Each

plug-in implements a specific component of the environ-

ment, simplifying individual updates, installation and proj-

ect interdependencies.

• cdBuilder defines the Eclipse perspectives and

action buttons.
• cdBuilder.common defines functionality common

to all projects (such as helpers for manipulating

Eclipse resources).
• cdBuilder.model contains the EMF description

files and the Java classes generated in this project,

which are used by the graphical editors (and possi-

bly by other plug-ins to represent DEVS models).
• cdBuilder.editors.atomic.diagram, *.diagram and

*.hierarchicalEditor contain GMF-generated classes

and custom extensions to implement views and con-

trollers for DEVS-Graphs and coupled models.
• cdBuilder.editors.edit contains the GEF-generated

commands used by the graphical editors to interact

with the EMF model entities.
• cdBuilder.editors.couplingSyntaxEditor and

*.devsGraphsSyntaxEditor implement the

classes for the atomic DEVS-Graphs and DEVS-

coupled model textual editors.
• cdBuilder.console implements the classes and

helper methods to interact with Eclipse’s console,

which is used to give user feedback (i.e. when users

are compiling and simulating models).
• cdBuilder.repository implements the CD++

repository, an Internet-searchable database of models.
• cdBuilder.simulator contains the CD++ simula-

tor executable (represented by the Simulator and

Libraries layers in Figure 3) and the source files to

recompile new atomic models. It also provides

helper methods that implement compilation and

simulation execution.

As we can see, the model behavior and its graphical repre-

sentation are clearly separated. Figures, sizes, layout, col-

ors and graphic-specific information are stored separately

from the model. While this is conceptually correct, it pre-

sents some implementation challenges. Previously existing

applications, such as CD++Modeler10,19 used custom for-

mats for model graphics, from which textual definition

could be extracted (as in Figure 1). Nevertheless, the oppo-

site operation (i.e. generating a graphical representation

from a textual model) was not possible. The vast legacy

models available in the CD++ repository (http://cell-

devs.sce.carleton.ca/) could not be opened using the previ-

ously existing graphical tools. In addition, once the models

were exported to the CD++ format, the graphical repre-

sentation could not be easily updated without losing con-

sistency. To overcome these limitations, we developed

parser and writer classes to interpret different formats and

to translate from CD++ to the graphical representation,

and vice versa.

4.1 Main implementation classes and hierarchies

As explained on Section 3, the classes implementing the

graphical editors are generated by the EMF, and they are

described using EMF modeling tools. CD++Builder uses

Figure 7. CD+ + Builder model class hierarchy and relationships.

8 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

over 59 classes to describe each of the DEVS elements,

implemented on the cdBuilder.model project. The most rel-

evant classes, hierarchies, and relationships for this project

are shown in Figure 7.

As we can see, atomic and coupled models are repre-

sented as both instances and types; in this way, coupled

model types are composed of a set of model instances,

allowing several instances of the same type (which was

not possible in previous versions). The diagram also shows

the different atomic model types available: DEVS-Graphs,

represented by GGADAtomicModelType; and C++ , rep-

resented by CPPAtomicModelType. BuiltinModelType

represents special C++ atomic models already included

in the CD++ simulator, which cannot be updated.

Figure 8 shows the classes for links and ports. Atomic

links can represent either internal or external transitions for

the DEVS-Graphs. Coupled links are connected to ports,

allowing simple creation and graphical feedback validation

(having links connected to components would make visual

creation and validation harder).

Figure 9 shows the different entities used when

defining atomic models with DEVS-Graphs or C++ .

DEVS-Graph editors use the Expression subclasses to ver-

ify the correctness of its actions and conditions. For C++
models we store the source file path, and we only repre-

sent its external interface (ports and parameters), identified

by a parser that reads the source file to obtain this infor-

mation. The DEVS-Graph class hierarchy represents the

DEVS-Graphs notation (GGADAtomicModelType). The

numbers in Figure 9 identify the mapping between the the-

oretical concepts shown in Figure 1 and the implementa-

tion; for example, the State class represents the Bubbles,

Figure 9. Atomic model class hierarchy mapping with DEVS-Graphs notation.

Figure 8. Class hierarchy and relationships for ports, links and transitions.

Bonaventura et al. 9

and the InternalTransition class represents the dotted

arrows. The output values, actions, and conditions for tran-

sitions (numbers 4, 5 and 6, respectively) are specified

using expressions. A difference with previous editors is

that the expressions used in DEVS-Graphs textual notation

are modeled hierarchically, which allows easier definition

and validation in graphical editors. Variables, constants,

input ports and functions can form a valid expression, and

complex expressions can be built by composing functions,

as seen in Appendix II.

It is important to note that these figures represent execu-

table models, serving as live documentation for developers.

They are used by the EMF to generate the underlying

classes, and no reference is made to the graphical implemen-

tation (which enables reuse of model classes by non-

graphical plug-ins). The graphical editors’ code is generated

by the GMF, based on the EMF model and other files that

describe base editors in the cdBuilder.model. Based on these,

the GMF generates the projects cdBuilder.editors. atomic.-

diagram, *.coupled.diagram and *.edit. A description of the

code generated can be found in the GMF’s documentation,23

while some of the most important customizations performed

to the code generated (in order to fulfill CD++Builder

requirements) are listed below.

• Multiple page editors to support the graphical ren-

dering of a model in one page and the textual repre-

sentation on another page (some distributions allow

a third page with a tree-like hierarchical view).
• Synchronization mechanisms between pages to

keep consistency between graphical and textual

representations. Automatic and manual synchroni-

zation options are available.
• Translators for each of the persistence formats.

Persistence of the graphical model is provided by

the EMF and GMF, but custom translators and par-

sers were developed for CD++ coupled and

DEVS-Graphs notations, for C++ atomic models

and for CD++Modeler formats, which are used

when synchronizing models and animating results.
• Hierarchical model navigation by including com-

mands that execute when figures are double

clicked. For coupled models, an editor for the sub-

model is opened in a new tab; for atomic models,

the necessary files are created (using editors for

DEVS-Graphs models or C++ files).
• A tools panel with reusable models, which dyna-

mically loads built-in models and allows one to

reuse them in a drag and drop fashion (creating a

new instance of the associated model type).

4.2 Unit tests and automated updates

Each of the previously mentioned plug-ins is associated

with a project that implements JUnit27 testing for their main

functionality. These tests were implemented by leveraging

the Eclipse JUnit frameworks, which allow tests to run in a

separate Eclipse testing environment instance. A testing

project was created for each of the projects to verify the par-

ticular functionality of each component. In the case of gen-

erated projects, unit tests verify the correctness of custom-

created classes. On the other hand, created integration tests

validate the behavior of several features as a whole. Models

defined in CD++ notation are interpreted and stored in

XMI format, which in turn are used as inputs for the coupled

and DEVS-Graphs editors to verify the correctness of the

model. Graphical editors are used to translate models back

to CD++ notation to verify that they are equivalent to their

original definition. A similar process is used for coupled

and atomic animations that require transformations from

XMI format to CD++Modeler format and vice versa.

The different plug-ins described above enable simple

reuse and functionality updates. The separation of compo-

nents into various plug-ins allows varied functionality to

be reused by other tools, while enabling each plug-in to be

updated independently (for example cdBuilder.simulator

could be modified to support the Embedded CD++ ,

while the graphical editors would not need to be updated).

On the other hand, the EMF classes that describe DEVS

models and their generation facilities could be easily mod-

ified using the EMF editors to support new scenarios

(without changing the persistence mechanisms). The par-

sers that identify CD++ high-level languages and trans-

late them into graphical formats could be modified to

support new languages and other toolkits. One example of

such extensibility is the inclusion of the CD++ reposi-

tory,28 an Internet-searchable database of CD++ models,

which was developed by other authors in parallel and inde-

pendently of CD++Builder, and has been easily inte-

grated as part of the software package.

We also defined two projects that leverage the installa-

tion and update features of new plug-ins. The cdBuilder.

installation.features project defines an Eclipse installable

feature and the cdBuilder.installation.updateSite project

provides information to publish features and central in a

unique site. For that purpose, a Sourceforge repository

was created (http://cdppbuilder.sourceforge.net/updatesite/

site.xml), providing the central access point for all users.

4.3 CD++ Builder user interface

Figure 10 shows the CD++Builder user interface, in

which the Action buttons in the top toolbar allow execut-

ing external tools (implemented in the cdBuilder plug-in).

A special section is reserved animations and legacy tools

(CD++ Modeler, GGADTool and Drawlog). The Build

button uses the cdBuilder.simulator classes to generate a

makefile and compile the source code of a given project,

generating a new simulator that includes the new atomic

models. The Execute button allows one to specify

10 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

parameters and start a simulation. Model editing is done

within the Eclipse interface. Eclipse allows the users to

rearrange windows to personalize the interface, and the

Perspectives buttons and panels have been used to

improve this organization for different scenarios.

Some of the figures to be discussed in the next para-

graphs are included in Section 5, in which we will illus-

trate the use of the environment through a complete

example. For instance, Figure 10 (and also Figure 15)

shows that CD++ Builder is now integrated with

Eclipse C/C++ Development Tools (CDT) to facilitate

C++ coding. It also includes new animation features to

allow visualization of simulation results. This graphical

framework improves usability, including the usual edit-

ing actions (such as copy, paste, undo and redo). Other

features include zoom in/out capabilities, flexible look

and feel and different styles to avoid links obstructions

and overlapping. Both coupled and atomic model editors

Figure 10. CD++Builder environment.

Figure 11. CD++Builder coupled model editor and outline views.

Bonaventura et al. 11

provide a special pane with tools for easily creating

available entities (atomic/coupled models, links, ports,

transitions, states, variables, etc.). The Eclipse Properties

view (bottom of Figure 12) is used to show and edit enti-

ties, and the Outline (Figure 10 and Figure 11(b) shows

an overview of the model.

The coupled model editor shown in Figure 11 (and

Figure 17) defines components using colored rectangles

(with different ones for Coupled, DEVS-Graphs or Atomic

C++ models). Ports are rendered as black boxes with

their names and directed links. The DEVS-Graph atomic

editor (Figure 14) uses DEVS-Graphs as in Figure 1, addi-

tionally rendering variables and allowing actions and con-

ditions to be defined using the Eclipse Properties window.

To simplify the C++ atomic model definition, code

generation capabilities were added to the coupled DEVS

model editor. When a new C++ atomic model is

selected, C++ files are generated based on a template

that supplies the code structure to extend the Atomic class,

including helpful comments and code samples (Figure 15).

All methods that must be implemented (initFunction,

externalFunction, internalFunction and outputFunction)

are set up with brief comments useful for non-expert users.

Comments are also used to show how to add input/output

(I/O) ports and parameters.

When developing atomic models in C++ , the model’s

graphical representation is kept consistent with its C++
underlying code, as described earlier. When C++ files

are modified and saved, the parser recognizes the model’s

name, I/O ports and parameters. In this way, the model

graphical representation and the code are always

synchronized (with no restriction imposed on the code),

enabling one to modify the graphical metaphor at any

time.

DEVS-Graphs editors show both graphical and textual

views (see Figure 14), and when any of the views is saved,

both files are synchronized (using the translators to keep

them consistent). Although the graphic files contain all the

information needed to rewrite the CD++ model defini-

tion completely, the opposite is not true. Thus, when the

textual file is saved, the diagram can be updated, but all its

graphical information is lost. To overcome this issue,

when the textual model definition is saved, the old dia-

gram is synchronized using its graphical information (lay-

out, figure sizes, colors, etc.) to supersede any missing

information. Translators can also generate a new graphical

representation from a textual model definition (even when

it is written in an older version of CD++), enabling one

to use models that were not originally built using graphical

editors. In this case, default values are used for the missing

graphical information. In addition, the new editors have

been adapted to reuse the animation features of

CD++Modeler. A control is provided to manage time

advance, and links are dynamically highlighted to repre-

sent events between models (as in Figure 19). For coupled

models, a block representation is used; for atomic models,

the input and output trajectories are shown on different

ports over time (Figure 20).

Having the ability to view all models graphically helps

in better understanding other users’ models, facilitating

model reuse among the community. In this sense, we

added a pane (seen on the right-hand side of Figure 12)

Figure 12. Coupled model tool pane with reusable models.

12 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

Figure 14. PacketFilter DEVS-Graphs model definition (graphical and textual views).

Figure 13. Port synchronization; Top and Network models creation; PacketGenerator properties.

Bonaventura et al. 13

with a section for reusable models. This lets non-expert

users learn which models are available, and drag and drop

them into the Editor pane to be composed within the model

being edited.

5. Using CD++Builder

In this section, we will show the development of a com-

plete model representing a simple network that randomly

loses packets and generates delays during packet transmis-

sion (which can be found in the CD++ repository). As

shown in Figure 16, the top coupled model is composed of

a packet generator and the actual network. We use the

three different types of models available: DEVS-Graphs to

represent network unreliability (only 90% of the packets

received are retransmitted), the Generator built-in model

to represent incoming packets (using probabilistic dis-

tributions built-in in CD ++) and a C++ atomic

model representing the packet delay behavior (the

model resends packets after a random period between 0

and 1s).

CD++Builder provides wizards to assist in the creation

of the project. The Top model is automatically opened on

the coupled model graphical editor (Figure 13(b)). We first

add the PacketGenerator using the Built-in Generator model

(drag and drop into the Editor’s pane from the Built-in

Models pane). Then, using the Model Properties window,

we configure its parameters (bottom of Figure 13(b)). In this

case, we choose packets to be generated using a Poisson dis-

tribution with average 1. We then create the Network

coupled model, and its I/O ports. The Top model is com-

pleted by defining the PacketOut port at the Top model, and

then connecting the internal ports (Figure 13(b)).

To specify the Network model of Figure 16, we open it

in a different tab (top of Figure 14(a)) to define its con-

tents. The two editors are synchronized, so adding new

ports to the Network model will automatically make them

available to the Top model editor. Then, PacketFilter and

PacketDelay must be added. PacketFilter is a DEVS-Graph

using three states: waiting, discardPacket and sendPacket

(Figure 14). The model remains in waiting state, and

when a new packet arrives at port PacketIn, it randomly

Figure 15. PacketDelay C++ model-generated file

Figure 16. Network DEVS model.

14 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

transitions to the states sendPacket or discardPacket,

which represent packet transmission and packet loss,

respectively. The model also uses three state variables:

failRate, r and msg. The probability to transition to one or

other state is given by the state variables failRate and r. In

this example, the failRate state variable is fixed at 1 (which

represents a 10% chance of discarding packets), but it

could be updated dynamically. Figure 14 shows the repre-

sentation of the PacketFilter model in the CD++Builder

DEVS-Graphs editor, which allows one to view the graphi-

cal representation (at the top of the figure) and the CD++
grammar textual representation (at the bottom of the

figure). Appendix II shows the complete specification of

CD++ DEVS-Graphs grammar.

The values of the state variables msg and r are calculated

in the actions associated with the external transitions, and

they are updated every time a new packet arrives: msg stores

the value of the messages arrived and r is calculated at ran-

dom. The random transition to the states sendPacket or

discardPacket is modeled using two different external transi-

tions that compare the failRate and r variables to calculate

the next state. The condition associated to the first external

transition ‘‘And(Any(Value(packetIn)),Greater(r,failRate))?1’’

specifies that the transition should be executed if there is

Figure 17. Simple network model: Graphical representation and Textual definition.

Figure 18. Simulation Results. Log file: synchronization and input/output messages.

Bonaventura et al. 15

value in the packetIn port (‘‘Any(Value(packetIn)’’) and the

value of variable r is greater than the value of variable

failRate (‘‘Greater(r,failRate)’’). When this condition is met,

the actions ‘‘msg=Value(packetIn,1)’’ and ‘‘r=Rand(0,10)’’

are executed, which specify the new values for the msg and r

variables. The condition associated to the second external

transition ‘‘And(Any(Value(packetIn)), Less(r,failRate))?1’’ is

similar to the previous one, but is executed when the value

Figure 19. Simulation Results Animation Dynamic information shown on the model structure

Figure 20. Simulation Results Animation Timeline of output values.

16 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

of variable r is smaller than the value of variable failRate. In

the case the condition of the second external transition is

met, the same actions are executed, but the value of the msg

variable does not need to be stored.

When the model changes to sendPacket, the value of

the arrived packet is stored in the msg variable, so that it

can be retransmitted later if needed (this is represented by

the expression msg=Value(packetIn,1)). When the model

is in states sendPacket or discardPacket, an instantaneous

internal transition is executed (as the ta value for both

these states is 0) and the model changes to the waiting

state. When transitioning from discardPacket to waiting,

no value is sent through the output port (a packet is lost).

When transitioning from sendPacket to waiting, the value

of the msg variable is sent through the PacketOut output

port, representing a packet transmitted.

As seen in Figure 15, the PacketDelay atomic model is

programmed in C++ . This model uses one input port for

receiving packets, and one output port for sending packets

after a random period. It includes a queue to store mes-

sages received in the external transition function. The edi-

tor recognizes the ports and parameter declaration in

C++ code, and it keeps consistency between the model

definition and its graphical representation. Thus, Network

shows the PacketDelay atomic model with its correspond-

ing input and output ports, which can be used to create the

necessary links.

Figure 17 shows the complete coupled model definition

(Figure 17(a)) and the CD++ textual declaration (Figure

17(b)), which are kept consistent.

The simulation generates a log file (shown in Figure 18),

which is used by the animation tool (shown in Figure 19).

The log file includes synchronization and I/O messages sent

between models. As seen in Figure 20 at the left the simula-

tion starts with initialization (I) messages and their corre-

sponding done (D) messages (which indicate the

next scheduled event for each model), after which the

imminent models are identified and activated. The imminent

message * tells the models to execute their output function

(which can generate an output messages Y) and the internal

transition function after. In this case, we can see that

PacketGenerator sent a Y message with value 0.00000

through the out port in the top coupled model. After execut-

ing its internal transition function, it announced its next

scheduled event (a D message 1 second ahead in time).

Using the coupled model information, the Y message is con-

verted into an internal message X (using the Zij function),

and it is sent to the PacketIn port of the Network coupled

model. In turn, the coupled model is queried to find out that

the X message must be propagated to the PacketIn port of

the PacketFilter atomic model. This cycle is completed with

three D messages notifying the next scheduled time for

each model.

The next simulation cycle activates the imminent model

by means of the propagation of a * message in the model

hierarchy. In this case, the imminent PacketFilter atomic

model output function generates an output through its

PacketOut port to the parent coupled model Network, and

the internal transition function is executed. The time advance

function generates a new D message indicating that it has no

further scheduled events (‘.’ indicates infinity). The value

of the last Y message is converted into an internal message

X sent to the PacketIn port of PacketDelay. This simulation

cycle ends with three D messages, making the PacketDelay

model the new imminent atomic model with a future event

to be processed in 1 millisecond.

A new simulation cycle starts with the PacketDelay

atomic model generating a Y message through PacketOut

to its parent, Network, and then passivating (a D message

with time infinity). This time, a new Y message is imme-

diately sent upwards form Network to its parent Top

coupled model. On the left-hand margin of Figure 18 we

Figure 21. Integration of tools supporting the modeling and simulation process into a single environment.

Bonaventura et al. 17

can follow the thread of I/O messages, which trace the

lifetime of a network packet from its generation until it

has passed through the network. Trace (a) shows Packet

ID 0.00000 emitted as a Y message from PacketGenerator

and received as an X message by PacketFilter. Trace (b)

shows how the packet is forwarded from PacketFilter to

PacketDelay through the PacketOut and PacketIn ports,

respectively. Finally, Trace (c) shows how the packet

leaves PacketDelay and the Network subsystem.

While the log file includes all the required information

to reproduce a simulation experiment, it becomes hard to

follow complex threads of I/O messages. CD++Builder

was thus provided with animation tools to graphically

sequence I/O messages as time progresses, making it eas-

ier to study the simulation results. For instance, in our pre-

vious example, we can see the delay generated for the

packet transmission and the lost packets. This can be seen

in Figure 19, which shows the Coupled Animation tool

visualizing the dynamics of the Top coupled model and

the Network coupled model. The structure of the model is

represented graphically (circles are atomic models, squares

are coupled models, and triangles are I/O ports). The

arrows bear information about port linkage, and they show

the message and port values dynamically (i.e. the ‘active’

link is highlighted, and extra information is provided for

that instant).

The output file can also be visualized using the Atomic

Animation tool, which provides a multi-chart timeline for

the message values flowing through input and output

ports. For example, Figure 20 shows an animation for the

Network model, where incoming and outgoing packets

can be compared as time advances, and therefore lost

packets and delay times become easy to visualize. The

topmost chart uses a timeline to show the PacketOut port

values, while the lower chart shows the PacketIn port val-

ues. When a packet is lost, the PacketOut port remains

unchanged, as shown for the packets that arrived at times

7 and 9. The randomly generated packet delay can be seen

by comparing the packet arrival times (lower chart) and

packet retransmissions (top chart).

6. Discussion and conclusion

We presented the architecture and features of

CD++Builder, an open-source Eclipse plug-in intended

to facilitate the process of DEVS M&S with CD++ . In

this section, we give a brief discussion about the results of

the research results, and how the goals were achieved. We

then give a conclusion and discuss future related work in

this area.

6.1 Discussion

Comparing the M&S workflow using previously existing

tools for CD++ and CD++Builder, we can see that the

new IDE eliminates error-prone manual steps, simplifying

the process and reducing learning curve for new users. All

the steps originally shown in Figure 2 had to be executed

manually. A first evolution of that process allowed one to

define the models graphically with CD++Modeler, in

which the behavioral definition of the models using

DEVS-Graphs did not need to be compiled, as seen in the

workflow depicted in Figure 21(a). Nevertheless, addi-

tional steps (e.g. exporting/importing the graphical models

between different tools) were needed. CD++Builder inte-

grates the graphical modeling capabilities within Eclipse,

simplifies the graphical definition of atomic and coupled

models and keeps consistent versions of the declarative

and the graphical representation of models. Figure 21(b)

shows that, by using CD++Builder, the workflow for

M&S with DEVS-Graphs is now even simpler, as the IDE

facilitates all the steps, eliminating, for instance, the

export/import phase.

Besides reducing overhead in the graphical modeling

process, CD++Builder introduces tools to support devel-

oping atomic models in C++ (detailed in the case study

Figure 22. Process for the creation of C++ atomic models assisted by CD++ Builder.

18 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

in Section 5). Figure 22 presents a graphical summary of

the unified workflow obtained in the present work, empha-

sizing the evolution of the M&S process from its previous

status (Figure 2, Section 2) to the current version.

As we can see, three tasks have been simplified and

another three have been automated. When defining new

atomic models, the underlying corresponding C++ class

is automatically generated by CD++Builder, both for

DEVS-Graphs and for models programmed in C++ . In

the latter case, the implementation of the atomic model is

assisted by code templates, code highlighting and other

programming aids (functions outline, intellisense, etc.).

When an atomic model is defined using C++ , a compila-

tion task is required (the build action is also automated).

Building and updating coupled models is greatly simpli-

fied, and it can be done using the coupled model graphical

editor, which is completely integrated into the

CD++Builder environment (there is no need to export/

import from/to CD++Modeler anymore). Executing the

simulation is automatically done by defining the simula-

tion parameters (stop time, input events file, etc.) in a sim-

ple manner, and launching the simulation execution.

Finally, the analysis of simulation results was previously

done by interpreting the textual log file or by running

different independent tools with no contextual relation to

the model. This task has been simplified and the graphical

animation tool can be used for visualizing atomic

and coupled simulation results integrated within the

CD++Builder IDE, offering visualization alternatives

contextualized with the model under development.

(Teaching the use of DEVS simulation to new students

using CD++ has been reduced from 9 hours to 3 hours.

The time needed for a first complete model to be devel-

oped by those students has been reduced from 1 month to

2 weeks, thanks to the use of CD++Builder.)

6.2 Conclusion and future work

The development of CD++Builder has provided us with

an IDE that:

• includes all M&S tasks (modeling, compiling,

simulation execution and analysis);
• supplies editors that support the complete modeling

cycle to be performed graphically;
• includes C++ code templates to aid in the imple-

mentation of atomic models, while keeping the gra-

phical representation of these models consistent

with their C++ code;
• supports extensibility and development of new fea-

tures into the environment, including automated

regression testing capabilities.

Having all the features integrated into Eclipse allows for

easy extensibility by adding new plug-ins. While most tools

are built from the ground up, CD++Builder was built upon

Eclipse’s extensible mechanisms, which allows adding new

plug-ins independently from the rest of the features. Well-

known frameworks have been used to develop graphical edi-

tors, guaranteeing easy-to-use interfaces and simplifying

extensibility scenarios, as discussed on Section 5.

DEVS-Graphs and C++ atomic models can now be

used to define atomic model behavior. Other existing

simulators do not support atomic models to be defined gra-

phically, and they require this behavior to be specified in

some programming language. CD++Builder supports

complete graphical modeling (as shown on Section 5),

combining CD++ coupled models and DEVS-Graphs,

allowing non-expert developers to model real-world sys-

tems utilizing the DEVS formalism. In addition, the CDT

Eclipse plug-in is used for developing more advanced

models using C++ (whenever this is needed), allowing a

combination of graphical and non-graphical models, and

making the coding of C++ models easier. We also

showed how the modeling and definition of new C++
atomic models is simplified by auto-generated code tem-

plates, which are kept synchronized with their graphical

representation; other tools restrict the portions of code that

can be edited, or their model interfaces are not represented

graphically. Likewise, descriptive model languages, not

supported by most other simulators, can be used to port

models among simulators. Eclipse’s IDE extensibility fea-

tures also allowed the integration of several previously

existing tools into the same environment. For instance, the

modeler’s programming experience was enhanced by inte-

grating the Eclipse CDT plug-in to facilitate C++ coding,

thus reducing the learning curve for new users.

We improved issues about usability and modeling lim-

itations using new editors, a tool for easier model reuse, a

coupled model editor with automatic discovery, and new

install and update mechanisms. An example of this is the

Virtual Laboratory of Model-Based Development for

Network Processors (NPs), and Embedded-CD++ , both

currently under construction by our group. The IDEs for

both tools are based on CD++Builder, and they are tar-

geted to design advanced embedded control algorithms,

including a specialized version for the Intel IXP family of

NPs29 and a different one for embedded controllers on

microcontrollers and e-puck robotic kits.30,31 CD++
Builder provides a transparent interface for dealing with

the intricacies of the target hardware, such as compiling,

downloading and monitoring models for their real-time

execution on the target platform. It also provides an inte-

grated environment for mixing DEVS models with low-

level hardware-specific drivers, making the simulator

interact with real network signals in a real time.

In the future, we will also include the synchronization

of the right tool pane with the online CD++ repository, to

extend the set of models to be reused and facilitate search-

ing and uploading models. Likewise, we will explore the

Bonaventura et al. 19

integration with different versions of the simulator using

Web Services32 or the RISE middleware,33 which would

allow the users to use a lightweight client on their comput-

ers and run advanced simulations on high-performance ser-

vers remotely.

Funding

This research has been partially funded by NSERC and GRAND

NCE.

References

1. Zeigler B, Praehofer H and Kim T. Theory of modeling and

simulation. 2nd ed. Academic Press, 2000; Orlando, Florida,

USA.

2. Wainer G. Discrete-event modeling and simulation: a practi-

tioner’s approach. CRC Press, 2009: Boca Raton, Florida,

USA.

3. Sarjoughian H and Zeigler B. DEVSJAVA: basis for a

DEVS-based collaborative M&S environment. In: proceed-

ings of the international conference on web-based modeling

& simulation, San Diego, CA, 1998.

4. Wainer G. Applying Cell-DEVS methodology for modeling

the environment. Simulation 2006; 82: 635–660.

5. Chen Y and Sarjoughian H. A Component-based simulator

for MIPS32 processors. Simulation 2010; 86: 271–290.

6. Pérez E, Ntaimo L, Bailey B, et al. Modeling and simulation

of nuclear medicine patient service management in DEVS.

Simulation 2010; 86: 481–501.

7. Kim T, Seo C and Zeigler B. Web-based distributed network

analyzer using a system entity structure over a service-

oriented architecture. Simulation 2010; 86: 155–180.

8. Bergero F and Kofman E. PowerDEVS: a tool for hybrid sys-

tem modeling and real-time simulation. Simulation 2011; 87:

113–132.

9. Traoré M. SimStudio: a next generation modeling and simu-

lation framework. In: proceedings of SIMUTools, Marseille,

France, 2008.

10. Chidisiuc C and Wainer G. CD++Builder: an eclipse-based

IDE for DEVS modeling. In: proceedings of SpringSim

(DEVS symposium), Norfolk, VA, 2007.

11. Song HS and Kim TG. The DEVS framework for discrete

event systems control. In: 5th annual conference on AI,

simulation and planning in high autonomous systems,

Gainesville, FL, 1994.

12. Budinsky F, Steinberg D, Merks E, et al. Eclipse modeling

framework. Addison-Wesley Professional, 2005: Boston,

MA, USA.

13. Nutaro J. ADEVS: A Discrete Event System simulator,

http://www.ornl.gov/~1qn/adevs/adevs-docs/manual.pdf (acc-

essed 12 August 2011).

14. Wainer G, Glinsky E and Gutierrez-Alcaraz M. Studying

performance of DEVS modeling and simulation environ-

ments using the DEVStone benchmark. Simulation 2011; 87:

555–580.

15. Kim TG, Sung CH, Hong S-Y, et al. DEVSim++ toolset

for defense modeling and simulation and interoperation. J

Defense Model Simulat 2011; 8: 129–142.

16. Himmelspach J and Uhrmacher A. The JAMES II framework

for modeling and simulation. In: 2009 international work-

shop on high performance computational systems biology,

Trento, Italy, 2009.

17. Saurabh M, Risco-Martı́n J and Zeigler B. DEVS/SOA: a

cross-platform framework for net-centric modeling and

simulation in DEVS unified process. Simulation 2009; 85:

419–450.

18. Wainer G. CD++ : a toolkit to define discrete event models.

Software Pract Ex 2002; 32: 1261–1306.

19. Christen G, Dobniewski A and Wainer G. Modeling state-

based DEVS models in CD++ . In: proceedings of MGA,

advanced simulation technologies conference 2004

(ASTC’04), Arlington, VA, 2004.

20. Wainer G. Developing a software tool for urban traffic mod-

eling. Software Pract Ex 2006; 37: 1377–1404.

21. D’Abreu M and Wainer G. M/CD++ : modeling continuous

systems using Modelica and DEVS. In: proceedings of

MASCOTS 2005, Atlanta, GA, 2005.

22. Eclipse Consortium. Eclipse Graphical Editing Framework

(GEF) – Version 3.4, http://www.eclipse.org/gef (accessed

14 September 2010).

23. Eclipse Consortium. Eclipse Graphical Modeling Framework

(GMF), http://www.eclipse.org/gmf (accessed 14 September

2010).

24. Shatalin A and Tikhomirov A. Graphical modeling frame-

work architecture overview. In: Eclipse modeling sympo-

sium, 2006,

25. Ehrig K, Ermel C, Hansgen S, et al. Generation of visual

editors as eclipse plugins. In: 20th IEEE/ACM international

conference on automated software engineering, Long Beach,

CA, 2005.

26. OMG/XMI. October 1998, XML Model Interchange (XMI)

OMG Document AD/98-10-05.

27. Massol V and Husted T. JUnit in action. Manning

Publications, 2003: Samford, NY, USA.

28. Chreyh R and Wainer G. CD++ repository: an internet

based searchable database of DEVS models and their experi-

mental frames. In: proceedings of SpringSim’09, San Diego,

CA, 2009.

29. Castro R, Kofman E and Wainer G. A DEVS-based end-to-

end methodology for hybrid control of embedded networking

systems. In: 3rd IFAC conference on analysis and design of

hybrid systems, Zaragoza, Spain, 2009.

30. Saadawi H and Wainer G. Principles of DEVS models veri-

fication. Simulation. [Epub ahead of print] 2011. DOI:

10.1177/0037549711424424. Accessed: October 23, 2011.

31. Moallemi M, Wainer G, Bergero F, et al. Component-

oriented interoperation of RealTime DEVS engines. In: pro-

ceedings of annual simulation symposium, Boston, MA,

2011.

32. Wainer G, Al-Zoubi K and Madhoun R. Distributed simu-

lation of DEVS and Cell-DEVS models in CD++ using

web-services. Simulat Model Pract Theory 2008; 16:

1266–1292.

33. Wainer G and Al-Zoubi K. Distributed simulation using

RESTful interoperability simulation environment (RISE)

middleware. In: Tolk A (ed.) Handbook on intelligence-

based systems engineering. Springer, 2011: Berlin, Germany.

20 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

Author biographies

Gabriel A Wainer (SMSCS, SMIEEE) received his MSc

(1993) and PhD degrees (1998, with highest honors) from the

University of Buenos Aires (UBA), Argentina, and Université

d’Aix-Marseille III, France. After being Assistant Professor at

the Computer Science Department of the UBA, in July 2000 he

joined the Department of Systems and Computer Engineering at

Carleton University, where he is now an Associate Professor. He

has been a visiting scholar at ACIMS (The University of

Arizona); LSIS/CNRS, University of Nice and INRIA (Sophia-

Antipolis), France. He is the author of three books and over 250

research papers; he has edited nine other books and helped orga-

nize over 110 conferences, including being one of the founders

of SIMUTools and SimAUD. He is the Vice-President of

Publications, and was a member of the Board of Directors, of the

SCS. He is Special Issues Editor of Simulation, member of the

Editorial Board of Wireless Networks (Elsevier), Journal of

Defense Modeling and Simulation, and the International Journal

of Simulation and Process Modelling (Inderscience). He is the

head of the Advanced Real-Time Simulation lab, located at

Carleton University’s Centre for advanced Simulation and

Visualization (V-Sim). He has been the recipient of various

awards, including the IBM Eclipse Innovation Award, SCS

Leadership Award and various Best Paper awards. He has been

awarded Carleton University’s Research Achievement Award

(2005–2006), the First Bernard P. Zeigler DEVS Modeling and

Simulation Award and the SCS Outstanding Professional Award

(2011). Further information can be found at http://www.sce.car-

leton.ca/faculty/wainer.

Matias Bonaventura received his MSc (2010) from the UBA,

Argentina. From 2009 to 2011 he was ad honorem lecturer at the

Department of Computer Science, School of Sciences, UBA.

Rodrigo Castro, MSCS, MIEEE, received his MASc in

Electrical Engineering (2004) and his PhD in Electrical

Engineering (2010) from the Universidad Nacional de Rosario,

Argentina. Since 2007 he has been an adjunct Lecturer at the

Department of Computer Science, School of Sciences,

Universidad de Buenos Aires, Argentina (UBA), and a Lecturer

for the graduate programs at the School of Engineering at UBA.

In 2011, he was appointed as Assistant Researcher at the National

Scientific and Technical Research Council (CONICET),

Argentina. Since 2000, he has participated in several projects for

Siemens, Cisco and Hewlett Packard, in the area of networking,

performance analysis and software development. In 2007 he was

awarded a PhD Fellowship from Fundación Repsol YPF and a

grant from the Organization of Ibero-American States for studies

in Cooperation University-Enterprise for Development (Spain). In

2009 he received an Emerging Leaders in the Americas Program

scholarship from the Government of Canada. He was a visiting

research scholar at Carleton University (Ottawa, Canada) and the

ETH Zurich (Zurich, Switzerland). His current research interests

are related with modeling formalisms and methodologies, real-

time simulation and energy-based specification world-scale

systems.

Appendix I: the DEVS formalism

Formally, a DEVS atomic model (shown in Figure 23) is

defined with the following structure:

M = <X , S, Y , δint, δext, λ, ta>

A DEVS atomic model in a state s S remains in that

state for the time indicated by the time advance function

ta(s). Once the time ta(s) expires, the model can generate

an output event evaluating the l(s) output function and,

then, it transitions to state s’ indicated by the δint(s) inter-

nal transition function. If an external event x X occurs,

the model transitions to state s’ indicated by the external

transition function δext(s, e, x), which also takes the state s

CM = <X, Y, D, {Mi}, {Ii}, {Zij}, Select>

Coupled Model # 1 (TOP)

Atomic
Model # 1

Atomic
Model # 2

Atomic
Model # 3

Coupled Model # 2

Atomic
Model # 4

Atomic
Model # 5

Figure 24. DEVS-coupled model structure.

Figure 23. DEVS atomic model.2

Coordinator # 1

Coordinator # 2 Simulator # 1 Simulator # 2 Simulator # 3

Simulator # 4 Simulator # 5

Root Coordinator

Figure 25. Simulation hierarchy for the coupled model in
Figure 24.

Bonaventura et al. 21

in which the model was when the external event occurred,

and e, the time elapsed since the last transition.

A DEVS-coupled model (shown in Figure 24) is com-

posed of several atomic or coupled submodels, creating a

hierarchical structure and it is formally defined by:

CM = <X , Y ,D, Mif g, Iif g, Zij

� �
, Select>

In this case, X and Y are the set of external event values

and output values for the coupled model. Coupled models

are composed of a set of submodels Mi (i ∈ D) that inter-

act with each other through their I/O interfaces Xi and Yi. Ii

defines the set of models influenced by each Mi. The trans-

lation function Zij converts the output of each model into

input for other models (Xi!Yj). The Select tie-breaking

function is used to resolve simultaneity conflicts between

the Mi.

The simulation process is carried out by Processors that

drive the simulation by exchanging messages. Inter-pro-

cess interaction is carried out through message passing.

Each message includes information of the source (or desti-

nation), the event simulated time, and a content (consisting

of a port and a value). The message is the base class that

defines the different messages. There are four different

messages: * (internal event), X (external event), Y (mod-

el’s output) and done (a model has finished with its task).

Two types of Processors exist:

1. simulators: drive the simulation of atomic models;

and

2. coordinators: drive the execution of coupled com-

ponents and coordinate the activities of all their

dependent children.

Figure 25 shows a sample model whose topmost com-

ponent has three atomic submodels (Atomic Models #1, #2

and #3) and one coupled model (Coupled Model #2). That

inner-coupled component is formed by two atomic compo-

nents (Atomic Models #4 and #5). The processor hierarchy

corresponding to this example is shown on the right-hand

side of the figure.

A simulator object manages an associated atomic

object, handling the execution of its δint (internal transition

function), δext (external transition function) and l (output

function). A coordinator object manages an associated

coupled object. Only one root coordinator exists in a

simulation. It manages global aspects of the simulation. It

is involved with the topmost-coupled component, which

has the highest level in the model hierarchy. Moreover,

the root coordinator maintains the global time, and it starts

and stops the simulation process. Lastly, it receives the

output results that must be sent to the environment.

Appendix II: DEVS-Graphs grammar

In this section, we introduce the grammar for DEVS-

Graphs in CD++ , and show a simple example of the defi-

nition of these models.

II.I Context-free Grammar for DEVS-Graph models

DEVSGraph -> ModelName GGADT_EOL
GgadRules

ModelName -> GGADT_LBRACKET GGADT_ID
GGADT_RBRACKET

GgadRules -> GgadRule GGADT_EOL GgadRules
| GgadRule GGADT_EOL | GgadRule

GgadRule -> InDecl | OutDecl | StateDecl |
VarDecl | StateDef | InitialState |
IntDef | ExtDef | VarDef

InDecl -> GGADT_IN GGADT_COLON
PortInIdList

OutDecl -> GGADT_OUT GGADT_COLON
PortOutIdList

VarDecl -> GGADT_VAR GGADT_COLON
VarIdList

VarDef -> GGADT_VARIABLEID GGADT_COLON
GGADT_CONSTANT

StateDecl -> GGADT_STATE GGADT_COLON
StateIdList

StateDef -> GGADT_STATEID GGADT_COLON
GGADT_TIME_CONSTANT | GGADT_STATEID
GGADT_COLON GGADT_INFINITE

InitialState -> GGADT_INITIAL GGADT_COLON
GGADT_STATEID

IntDef -> GGADT_INT GGADT_COLON
GGADT_STATEID GGADT_STATEID
PortValueOutList Actions

PortValueOutList -> GGADT_PORTID
GGADT_OUTPUT GGADT_CONSTANT |
GGADT_PORTID GGADT_OUTPUT
GGADT_CONSTANT PortValueOutList

ExtDef -> GGADT_EXT GGADT_COLON
GGADT_STATEID GGADT_STATEID Expression
GGADT_INPUT GGADT_CONSTANT Actions

Expression -> FunctionCall | GGADT_PORTID
| GGADT_VARIABLEID | GGADT_CONSTANT

FunctionCall -> GGADT_FUNCTIONID
GGADT_LPAR ActualParamList GGADT_RPAR

ActualParamList -> ActualParameter |
ActualParameter GGADT_COMMA
ActualParamList

ActualParameter -> GGADT_CONSTANT |
GGADT_VARIABLEID | GGADT_PORTID

StateIdList -> StateIdList GGADT_ID |
GGADT_ID

22 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

PortInIdList -> PortInIdList GGADT_ID |
GGADT_ID

PortOutIdList -> PortOutIdList GGADT_ID |
GGADT_ID

VarIdList -> VarIdList GGADT_ID | GGADT_ID
Actions -> GGADT_BEGIN ActionList
GGADT_END | GGADT_VARIABLEID
GGADT_ASSIGNMENT Expression | /*empty */

ActionList -> Action GGADT_SEMICOLON |
ActionList Action GGADT_SEMICOLON

II.II Tokens

GGADT_CONSTANT
GGADT_IN reserved word ‘‘in’’
GGADT_OUT reserved word ‘‘out’’
GGADT_STATE reserved word

‘‘state’’
GGADT_INITIAL reserved word

‘‘initial’’
GGADT_ID an identifier
GGADT_STATEID a state identifier
GGADT_PORTID a port identifier
GGADT_FUNCTIONID a function identifier
GGADT_VARIABLEID a variable identifier
GGADT_INT reserved word ‘‘int’’
GGADT_EXT reserved word ‘‘ext’’
GGADT_VAR reserved word ‘‘var’’
GGADT_CONSTANT integer o real

constant
GGADT_TIME_CONSTANT time constant in cd++

format hh:mm:ss:nn
GGADT_INFINITE reserved word

‘‘infinite’’
GGADT_COLON ‘‘:’’
GGADT_EOL end of line character
GGADT_OUTPUT output operator ‘‘!’’
GGADT_INPUT input operator ‘‘?’’
GGADT_LPAR ‘‘(‘‘
GGADT_RPAR ‘‘)’’
GGADT_LBRACKET ‘‘[‘‘
GGADT_RBRACKET ‘‘]’’
GGADT_COMMA ‘‘,’’
GGADT_BEGIN ‘‘{‘‘
GGADT_END ’’}’’
GGADT_SEMICOLON ‘‘;’’
GGADT_ASSIGNMENT ‘‘=‘‘

II.III DEVS-Graphs built-in functions

DEVS-Graphs actions and conditions can be defined using

functions (FunctionCall in the context-free grammar

above). CD++ provides some functions already imple-

mented and new ones can be programmed and added to

the framework. Functions are declared by their name and

followed by their parameters in parenthesis; for instance,

the function add can be used as follows ‘‘add(1,2)’’. All

these constructions can be combined to define the beha-

vior of atomic models. The following built-in functions

are available with the tool:

• value: checks the value contents of a given port;
• add/minus/multiply/divide: arithmetic operations on

two sub expressions;
• pow: power function;
• any: returns the result of an expression;
• equal/notequal/less/greater/greaterequal: compare

two expressions;
• and/or/not: Boolean operators;
• rand: pseudorandom number generator.

In addition to these built-in functions, new custom user-

defined functions can be added to the framework. In order

to add a new function the following steps are required.

1. Extend the abstract GgadFunc class. This class

defines the executeImpl method where the actual

function needs to be implemented. In addition, a

name for the function needs to be specified by

implementing the name method. Figure 26 shows

a sample implementation of the round function.

2. Register the function in ggadfuncregister.cpp.

This file contains all the functions that the frame-

work recognizes, so the new function needs to be

added. Figure 27 shows the code that includes the

new round function.

3. Recompile CD++ . Once the new simulator

executable is generated by the compilation, it is

ready to be used with the new function.

II.IV A simple DEVS-Graphs model example

Figure 28 shows a simple DEVS-Graphs model defined

using CD++ grammar, and the corresponding graphical

representation.

Bonaventura et al. 23

Figure 28. Example of the CD++ textual and graphical representation of a simple DEVS-Graphs model.

/** Register builtin functions to be used. */
void GgadSymbolTable::RegisterFunctions() {

addFunction("value", new GgadFuncValue());
addFunction("add", new GgadFuncAdd());
… // other built-in function are registered here
addFunction("greater", new GgadFuncGreater());
addFunction("greaterequal", new GgadFuncGreaterEqual());
addFunction("round", new GgadFuncRound()); // register the new round function

}

Figure 27. Example code to register the new round function in CD+ + .

class GgadFuncRound : public GgadFunc {
public:

GgadFuncRound() {
setFormalParams(1); // specify that this function takes 1 parameter }

virtual ~GgadFuncRound() {}

virtual std::string name() { return "round"; } // name for this function

virtual GgadValue executeImpl () {
GgadValue vv = getParameter(0); // read 1st parameter (the cast will automatically

round it)
return vv ; }

virtual GgadFuncRound* create() { return new GgadFuncRound(); }
};

Figure 26. Example of a DEVS-Graphs new user-defined function that rounds the parameter.

24 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

