
SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

Visualization in 3ds Max for Cell-DEVS Models Based on
Building Information Modeling

Victor Freire
1
, Sixuan Wang

2
, and Gabriel Wainer

2

1
Dept. of Systems and Computing,

Universidade Federal de Campina Grande

Rua Aprigio Veloso, 882, Campina Grande

PB 58429-900, Brazil

victor.freire@ccc.ufcg.edu.br

2
Dept. of Systems and Computer Engineering,

Carleton University

1125 Colonel By Dr. Ottawa

ON K1S 5B6, Canada

{swang, gwainer}@sce.carleton.ca

Keywords: DEVS, Cell-DEVS, Building Information

Modeling (BIM), 3ds Max, 3D Visualization

Abstract

Building Information Modeling (BIM) increasingly

benefits from modeling, simulation and visualization

techniques. 3D visualization can provide a better way to

obtain visual simulation results in BIM authoring tools. In

this paper, we focus on improving interoperability,

traceability, reusability and visibility of 3D visualization.

We employ the DEVS (Discrete Event Systems

Specification) formalism and its cellular extension Cell-

DEVS, providing a method for visualizing Cell-DEVS

models based on moving entities. We used this technique to

develop a 3ds Max visualization plug-in for Cell-DEVS

models based on BIM. This tool can show different

animation models and allows designers to filter the building

for visibility. We also show two case studies applying this

tool for evacuation and occupancy simulation.

1. INTRODUCTION

Building Information Modeling (BIM) plays a

significant role in the whole design lifecycle in the

Architecture, Engineering, and Construction (AEC)

industry. BIM is a modern way to create, document, manage

and exchange information about buildings. BIM uses 3D

real-time object-oriented building modeling to achieve

accurate AEC projects with minimized costs, improving the

way architects-contractors and fabricators work (Hardin

2009). BIM authoring tools capture a rich set of digital data,

including 3D geometry (instead of 2D), properties and

relationships between objects.

Modeling and simulation (M&S) has been employed in

BIM applications to analyze and evaluate the performance

of building designs using an iterative process with several

cycles through alternative simulations (Jiang et al. 2012).

Each cycle can be divided into small sub-phases (e.g. pre-

design, main design, detail design). In order to evaluate the

performance or find the optimal solution, at the end of each

sub-phase, the designers test, analyze and refine their

solutions with different simulation scenarios. Related

simulation tools cover different domains, such as energy

consumption, CO2 emissions, occupancy management, and

evacuation planning (Wang et al. 2012).

We are interested in the interoperability of BIM and

generic simulation models. In particular, we are exploring

the use of the Discrete Event Systems Specification (DEVS)

formalism, a popular systems theoretical approach that

allows the definition of hierarchical modular models,

composed by behavioral (atomic) and structural (coupled)

components (Zeigler et al. 2000). Also, Cell-DEVS, which

extended DEVS for modeling discrete-event spatial systems

(Wainer 2009), can be used with this purpose. Here, we

focus on generic 3D visualization in Autodesk 3ds Max for

Cell-DEVS models. The provided tool can get information

from IFC file automatically, parse the simulation results into

3ds Max and provide different options in our GUI. This tool

allows designers to hide different building floors and filter

models for visibility, as well as different animation features

of models (the realistic model for real body movement and

the arrow model for pointing the moving direction).

The following sections will present the results of this

effort. We first introduce the related work about

visualization techniques. Then, we present the general idea

for visualizing Cell-DEVS models based on moving entities.

The following section describes our implementation. We

employed this tool in two case studies: Building Evacuation

and Occupation model of Copenhagen House. The results

have shown its higher reusability and extensibility. This

kind of application brings better visualization of simulation

results, enabling the designers to check building

mailto:%7bswang,%20gwainer%7d@sce.carleton.ca
mailto:%7bswang,%20gwainer%7d@sce.carleton.ca

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

performance, compare between different solutions and find

flaws for future improvement.

2. RELATED WORK

Modeling, Simulation and Visualization has been

employed in BIM applications to analyze and evaluate the

performance of building designs using an iterative process

with several cycles through alternative simulations (Jiang et

al. 2012). 3D visualization provides a more intuitive way to

obtain visual simulation results in BIM authoring tools.

From 3D visualization, at the end of each sub-phase, the

designers can observe, analyze and refine their solutions

with different simulation scenarios. Numerous related

simulation and visualization tools cover different domains,

such as indoor climate, energy consumption, CO2

emissions, occupancy management, and evacuation

planning (Wang et al. 2012). However, most of the tools

support limited 3D visualization using BIM or Cell-DEVS,

in terms of interoperability with IFC, traceability of data,

reusability of model and visibility options of GUI.

There are a number of applications in BIM using spatial

lattice to analyze the quality and performance of building

designs during the AEC projects life cycle. For example, a

space representation of work zones for resources

management was represented with small grid units that take

irregular shapes (Elbeltagi et al. 2004). A BIM-ISEE

(Immersive Safety Engineering Environment) was

developed, focused on the realistic virtualization in their

immersive environment for integrating fire and evacuation

simulation with BIM tools (Ruppel and Abolghasemzadeh

2009).

Advanced 3D visualization for simulation has attracted

much attention. Bijl and Boer (2011) provided a 3D

visualization tool for discrete event simulation using game

technology. In (Guo et al. 2012), the authors proposed a

Flight Data 3D visualization for an entire fight quality

analysis. In (Zhange et al. 2010), they represented a

platform of tunnel construction process in a distributed

simulation environment. However, these advanced

techniques are not applied in BIM authoring tools.

In recent years, different AEC projects with DEVS and

Cell-DEVS have been developed. Cell-DEVS models were

introduced for construction sites, to deal with the

construction performance, conflict analysis and

visualization of work site (Hammad and Zhang 2011). A

Cell-DEVS simulation of Diffusion Limited Aggregation

(DLA) was used to model the growth of mold in building

walls, using Autodesk Revit for Data collection (Ahmed et

al. 2010). An integrated framework was introduced for

combining BIM and Cell-DEVS, in which a simulation of

evacuation planning in a multi-floor building was used

(Wang et al. 2012). However, the tool mentioned above

usually supports well 1D or 2D visualization, with limited

3D visualization.

Besides, there are other efforts to 3D visualization

focusing on Cellular Automata (CA). Capow (Rucker and

Ostrov 1997) is a program for visualizing CAs. The user

can control color, selecting view type and 3D view details.

CASim (Freiwald et al. 2001) is an environment for

simulating 3D cellular automata, allowing users to design

states, transition rules, colors and icons. However, most of

them only enable displaying the surface of the 3D graph,

which cannot present realistic moving entities.

3. VISUALIZING CELL-DEVS MODELS IN 3D

In this section we show how to interface moving entities

and Cell-DEVS models. The key idea in tracking the entities

is to keep a record of the direction and position of each

entity while parsing the simulation results. When a cell

becomes empty, the position of the entity is set as the cell its

direction was pointing to. This information can be extracted

from the simulation. The visualization system extracts the

position and state of a cell at a certain time. The following

UML activity diagram (Figure 1) shows the overall

architecture of the proposed solution.

Figure 1. Activity diagram of the implementation

First, the Cell-DEVS model is simulated in CD++ and a

simulation log obtained. A parsed log is provided to the 3ds

Max visualization plug-in along with the file containing the

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

initial values of the Cell-DEVS model and the IFC model of

the building.

The simulation is parsed before being passed to the

visualization plug-in. This preprocessing phase facilitates

the reuse of the visualization plug-in code, simplifies the

plug-in code and speeds up the generation of visualization

data. Reusability is accomplished by hiding details of the

Cell-DEVS model from the visualization plug-in. (In the

case studies to be presented in the following section, the

sizes of the parsed logs were less than 5% of the original

ones.) The parser extracts from the simulation log the

position and state of each cell at every simulation time.

In order to generate the visualization, the plug-in needs

to know the size and boundaries of the building, the number

of cells in the model and the size of each cell. This

information is extracted from the building model in the IFC

format during the creation of the Cell-DEVS simulation. We

chose to use the IFC standard to represent the building,

because most BIM authoring tools support these files for

collaborative development and interoperability, and it

facilitates the extraction of the needed information. Figure 2

shows a part of the IFC-EXPRESS standard

(buildingSMART 2012) focusing on the entity IfcWall,

which represents the walls of the building. IfcWall contains

the coordinate information needed to determine the size and

boundaries of the building, the number of cells in the model

and the size of each cell.

Figure 2. IfcWall in the IFC hierarchy

To collect this information, we used the open API from

BIMServer.org for querying that the needed IFC elements

are used (BIMServer.org 2012). Using this, we can obtain

(Xmin, Ymin) and (Xmax, Ymax), the points which constitute

the bounding box of the building. Based on this box, the

designers can define the size of each cell and the number of

cells in each dimension.

4. IMPLEMENTING A VISUALIZATION PLUG-IN

3ds Max supports building plug-ins written in C++ or in

MAXScript (a native programming language). The

performance of MAXScript is lower than C++, however it is

more productive and it enables faster prototyping since it is

more abstract than C++ (Autodesk 2012a).

Figure 3 shows a UML class diagram of the overall

architecture of the plug-in, which is based on the Model-

View-Controller design pattern (Krasner and Pope 1988).

The view is implemented by the 3DGui class and 3ds Max

objects; the controller is CDVizController, and the

remaining classes are the model. Some of the model’s logic

is inside CDVizController, and it could be refactored in the

future to improve understanding of the software.

Figure 3. Class diagram of the visualization plug-in

The LogLine class represents a line from the parsed log

and it is responsible for extracting the data from that line.

CDVizController processes the simulation and, at each

simulation timestep, sets the position of all people according

to the log. The simulation grid is represented by an array of

GridCell objects, which keep track of which person is in

that cell, and each person in the simulation is represented by

an instance of PersonModel. GridCell behaves like a queue,

and it reports that the person at the top of the queue is the

one occupying the cell. An array of GridCells is used

instead to prevent data being lost during the processing of

the simulation (since the log is processed sequentially).

In order to allow a person to be represented graphically

in one or more different ways simultaneously while

abstracting this from the rest of the program, the Composite

pattern was used in PersonModel (Gamma et al 1995). Our

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

implementation allows people to be represented as cones

and/or 3D models that look like people.

4.1. Cone models

Cone models are implemented in the class

ArrowPersonModel, and they allow a user to see a person’s

position and direction. The plug-in makes use of 3ds Max

key framing ability for animations; the position and

direction of the cone are set each time they change, and

3dsmax interpolates all the data producing a smooth

transition between the key frames.

4.2. Realistic models

Realistic 3D person models are implemented in the class

RealisticPersonModel. This graphical representation is not

as straightforward to implement as cones and a rigged 3D

model and movement animation files are needed. The

Motion Mixer component of 3ds Max (Autodesk 2012b)

was used to mix all the animations for each person in the

visualization. In the Mixer, we define when each animation

occurs and the order of the animations (the interaction with

the Motion Mixer API is in the PersonMovementSequences

class).

The most important feature of the Mixer for this

application is the interpolation of positions between

animations. Each instance of a walking animation must

make the character start moving from its current position.

Without interpolation, if a walking forward animation clip A

is added, followed by clip B, clip B will start the animation

from the starting position of the character (and not the

position at the end of A). The plug-in inserts an empty

animation file in the Mixer when gaps are needed.

We create an on-the-fly version of each animation for

each floor, each with the Z coordinate of the corresponding

floor. The Z positions of all characters are set to the Z of the

top floor and then, according to the floor where the

character is in, a different version of the animation is added

to the Mixer. The solution is implemented by the

BipGenerator (the cost of generating these animations

increases with the number of floors of the building).

4.3. Visibility selection

The plug-in GUI lets the user select which parts of the

building are shown, so that the user can have a better view.

This is implemented in the CDVizController class.

Hiding and revealing the building constituent objects is

performed by applying the hide or unhide MAXScript

functions on a range of objects that fall within a certain

boundary. For instance, to hide a floor, the hide function is

applied on all objects that lie between the floor to be hidden

and the next floor above. The problem of using the hide and

unhide functions for is that they do not consider 3ds Max

animation time. For example, if the current animation time

is X and hide is applied on a certain object Y, this object is

hidden for all the animation (not just at or after time X). If Y

is a person on the second floor at time X and on the first

floor at time X + 100, and the second floor was hidden by a

call to hide at time X, then if 3ds Max is set to show time X

+ 100, Y will still be hidden. The consequence is that the

user has to click the Refresh Visibility when changing the

current displayed animation time to see the objects.

4.4. Grid coordinates conversion

To convert the Cell-DEVS coordinates of a cell in the

simulation grid to the corresponding coordinates in the

building model, an affine transformation matrix is used.

This was done by first applying a scaling transformation,

and then a coordinate system transformation to the grid

rectangle. The scaling transformation matrix is calculated as

follows (Shirley et al. 2009):

Here (a0, b0) is the bottom-left corner of the grid

rectangle, (a1, b1) is the top-right corner of the grid

rectangle, (c0, d0) is the bottom-left corner of the building

model and (c1, d1) is the top-right corner of the building

model. Also, (c0, d0) is (Xmin, Ymin); (c1, d1) is (Xmax,

Ymax), a1 – a0 is CellsX and b1 – b0 is CellsY. Therefore,

the 4x4 scaling transformation matrix becomes:

The coordinate system transformation matrix depends on

the coordinate system of the building model and examples

of it can be seen in the Case Study section. The final

transformation matrix for converting grid coordinates to

building model coordinates is given by multiplying the

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

scaling transformation matrix and the coordinate

transformation matrix. This matrix is generated once in the

CDVizController class before processing the parsed

simulation log.

5. CASE STUDIES

5.1. Building Evacuation

The visualization system was applied to a Cell-DEVS

model of the occupancy of a building model with three

floors. The objective of the model is to help determine the

maximum occupancy for the building that allows a

reasonable emergency evacuation time (Wang et al. 2012).

Figure 4. (a) Building for evacuation and (b) pathway

The building (shown in Figure 4a) contains three floors

connected by two stairwells. There are exit doors on the first

floor (in the lower right corner). In the case of emergencies,

people try to evacuate along the pathway on each floor

(Figure 4b), go down the stairwell, and finally get out the

building through exits. This multi-level evacuation Cell-

DEVS model is defined in CD++. The behavior of each cell

depends on its current state whose value is determined by a

set of rules after satisfying a precondition of his

neighborhood. It contains different groups of rules

(describes in Wang et al. 2012). For instance, to model

someone entering into an unoccupied cell the rule is as

follows:

rule : 4 100 { (0,0,0) = 3 and ((0,1,0) = 10 or (-1,0,0) = 4

or (0,-1,0) = 6 or (-1,0,0) = 14 or (1,0,0) = 14 or

(0,1,0) = 14 or (0,-1,0) = 14)}

The parser for this model extracts the following

properties from each simulation log: the time a change

occurred, the position of the cell if it is now occupied or

empty (a 3D tuple [x, y, z]) and its direction. Then, it builds

a human-readable text line with this using the following

format:

time position_x position_y position_z occupied direction

All duplicate lines are removed, and the remaining lines

are sorted according to its time and outputted. The GUI

allows the user to select which floors will be displayed. To

obtain the height of each floor, the plug-in iterates through

all the objects whose name starts with the prefix “floors”

and adds their height to a list that does not allow duplicate

values. The height of a floor is calculated by adding the Z

coordinate of the position of the floor to the height of its

bounding box. After the list is filled, it is sorted and then it

contains the height of each floor in a bottom to top order.

Figure 5. Diagram showing how the two coordinate systems differ.

The grid coordinate system uses the Cartesian system

with an inverted Y axis in relation to the building model

coordinate system. The diagram below shows how the two

coordinate systems differ. The notation (x, y) g represents a

point in the grid coordinate system and (x, y) bm represents

a coordinate in the building model coordinate system. The

rectangle represents the boundaries of the building, as seen

in Figure 5.

The following matrix was used to convert from the grid

coordinate system to the building model coordinate system:

In the test machine (Intel Quad Core Q8200, 8GB

DDR3, Geforce GTX 560 Ti 448), the realistic visualization

took about 1 minute to load and the average visualization

playback rate was 0.5 frames/s. Using cones in the same

machine, the visualization takes on average 15 seconds to

load and a maximum playback rate defined for the

visualization of 10 frames/s is achieved.

5.2. Occupation model of Foster’s Elephant House

The visualization system was applied to a Cell-DEVS

model of the occupancy of Foster’s Elephant House at the

Copenhagen Zoo (Figure 6a). The objective of the model is

to bring designers to understand different building

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

properties in order to facilitate the occupancy management

or design suggestions for future improvement (e.g., door

locations, number of stairs, rush/slash hours (Wang et al.

2013)).

Figure 6. (a) Elephant House Building and (b) Cell states

This occupancy model simulates people’s behavior for

occupancy analysis. People walk in from the main entrance

on floor1, go downstairs to floor2 and then leave the house

through the exit. People can move in different directions

(which is simulated using a random selection) and they wait

randomly when visiting in the two floors of this building.

This occupancy Cell-DEVS model is defined in CD++,

similarly as in the model in Section 5.1. The cells of this

building change their values according to a set of rules. As

shown in Figure 6b, each cell has five state variables:

Movement, Phase, Pathway, Layout, and Hotzone. The most

important variable is Phase, which is divided into four sub-

phases: intend, grant, wait and move. They occur

sequentially in that order every 400ms: e.g., if an intend

phase happens at time X, grant happens at time X+100, wait

phase at time X+200, move phase at time X+ 300, the intend

phase at X+400 and so on. The time is used to identify to

which of these phases the event belongs to. For an occupied

cell, a visitor chooses a direction randomly at the intend

phase. If the target cell accepts it, it changes to get grant;

otherwise, it turns to get rejected. If granted, the visitor

would wait for some time randomly according to the hot

zone where the visitor is standing at, and then empty the cell

at the move phase. For the purpose of visualization, the only

relevant information comes from the intend and move

phases.

One rule in the intend phase is used to choose the

intended direction of an occupied cell at random, and is

defined as follows (Wang et al. 2013):

rule : {~movement := uniform(0,1); ~phase := 1.1}

 100 { (0,0,0)~phase = 1 and (0,0,0)~movement=1

and (0,0,0)~pathway>=5}

The events of an intend-grant-wait-move sequence

actually happen at the same time but are separate in

simulation time for ease of modeling. The parser groups

each intend-grant-wait-move sequence. The parser output

will denote that events from intend phase at time X and

events from move phase at time X+300 both happened at

time:

 .

For instance, events from intend phase at 500 and move

phase at 800 will be outputted as having occurred at time

100.

The parser output lines, which denote events from intend

and move phases, are in the following format:

 Intend event:

real_time x y z direction

 Move event:

real_time x y z “m”

The lines are ordered first in increasing order by

real_time and secondly by type with intend events coming

before move events since the direction of the person must be

set before it moves.

The GUI allows the user to hide each floor, the roof, and

the side walls. The height of each floor is obtained as

described in the previous case study and the position of the

side walls is obtained manually and typed into the plug-in

code.

The grid coordinate system is rotated by 90 degrees and

transposed by in relation to the building

model coordinate system (Figure 7):

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

Figure 7. Diagram showing how the two coordinate systems differ.

Thus, the following matrix was used to convert from the

grid coordinate system to the building model coordinate

system:

The plug-in helped locate several bugs in the Cell-DEVS

model, as the 3D visualization is an effective way to find

errors in these types of Cell-DEVS models. These errors

were detected because the plug-in works with people not

cells, therefore assumptions about the behavior are made:

e.g., when a cell that does not represent an exit becomes

empty, it means the person who was in that cell is now in an

adjacent cell. Examples of the types of errors detected were

people disappearing from the simulation and people being

duplicated.

These errors would manifest as 3ds Max error messages

while the plug-in generated the visualization, or as visual

errors with people models being displayed in incorrect

places. The stack trace shown in 3ds Max error messages

would pinpoint the time where the simulation was behaving

wrongly and for the visual errors the name of the person

model would show the time when it was created.

The performance of realistic models for this case study

was very similar to the previous case study. A snapshot of

the simulation visualization can be seen in Figure 8.

Figure 8. Screenshots of the visualization plug-in for the model of

Foster’s Elephant House.

6. CONCLUSION

The case studies provided evidence that the tool does

solve the issues present in similar tools discussed in Section

2. The tool in both case studies: showed people moving

continuously from one cell to another; was integrated into a

BIM authoring tool (Autodesk 3ds Max 2012); was easily

adapted to each model; and displayed specific models (cone

and realistic models) that allowed the user to see easily extra

information about each person, namely, where they were

facing and intending to move to.

The reusability of the tool could be further improved if a

uniform interface between the parser and the visualization

plug-in was created. With this interface, the plug-in would

not need to be changed for different underlying Cell-DEVS

models. That is, only the parser would need to be changed

for different applications of BIM.

The Elephant House case study suggests 3D

visualization can be effective in verifying Cell-DEVS

models based on moving entities. Hence, this could also be

a subject for future research.

Since the performance of the realistic models was found

to be unsatisfactory in the test machine, improving it in

future work would be helpful to users of the tool.

Acknowledgements

We would like to thank Vinu Subashini Rajus for

creating the building model used in the case study of

Foster’s Elephant House and the company Mixamo for

making a rigged 3D person model freely available on:

http://www.turbosquid.com/3d-models/free-fbx-model-

soldier-military-character-rigged/516949.

http://www.turbosquid.com/3d-models/free-fbx-model-soldier-military-character-rigged/516949
http://www.turbosquid.com/3d-models/free-fbx-model-soldier-military-character-rigged/516949

SimAUD 2013 Symposium on Simulation for Architecture and Urban Design San Diego, California, USA

References

Autodesk 2012, MAXScript Help: The SDK and MAXScript,

http://docs.autodesk.com/3DSMAX/15/ENU/MAXScript-

Help/index.html?url=files/GUID-C0F38270-F5DD-4356-AFFF-

B037D97F0017.htm,topicNumber=d30e3671. Accessed December 14th,

2012.

Autodesk 2012, 3ds Max Reference: Motion Mixer

http://download.autodesk.com/us/3dsmax/2012help/index.html?url=files/

GUID-A4F4A6A6-27A9-482C-9A95-853B1ADC68C-

1251.htm,topicNumber=d28e256342. Accessed December 14th, 2012.

Bijl, J. L., and Boer, C. A. 2011. Advanced 3D visualization for simulation

using game technology. In Simulation Conference (WSC), Proceedings

of the 2011 Winter (pp. 2810-2821). IEEE.

BIMServer.org. 2012. http://bimserver.org/buildingSMART. Accessed

Nov 6. 2012.

IFC2x3. http://www.buildingsmart-tech.org/ifc/IFC2x3/ Accessed Nov 6

2012.

Elbeltagi, E., Hegazy, T., and Eldosouky, A. 2004. Dynamic Layout of

Construction Temporary Facilities Considering Safety. Journal of

Construction Engineering and Management. 130(4):534-541

Freiwald, U., Weimar, J. 2001. JCASim - a Java system for Simulating

Cellular Automata, Theoretical & Practical Issues on Cellular Automata

(ACRI 2000), S. Bandini and T.Worsch (eds.), Springer Verlag, London.

Friendly, M., and Denis, D. J.. 2012. Milestones in the history of thematic

cartography, statistical graphics, and data visualization. Accessed Nov 6.

Gamma, E., Helm, R., Johnson, R., AND Vlissides, J. M. 1995. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley. ISBN 0-201-63361-2. pp. 395

Guo, H., Pang, J., Han, L., and Shan, Z. 2012. Flight Data Visualization for

Simulation & Evaluation: A General Framework. InComputational

Intelligence and Design (ISCID), 2012 Fifth International Symposium

on (Vol. 1, pp. 497-502). IEEE.

Hammad, A., and Zhang., C. 2011. Towards Real-time Simulation of

Construction Activities Considering Spatio-temporal Resolution

Requirements for Improving Safety and Productivity. In Proceedings of

the 2011 WSC, AZ. 3533-3544.

Hardin, B. 2009. BIM and Construction Management: Proven Tools,

Methods, and Workflows. Wiley.

Jiang, Y., Ming, J., Wu, D., Yen, J., Mitra, P., Messner, J. I., and Leicht, R.

2012. BIM Server Requirements to Support the Energy Efficient

Building Lifecycle. In Proc. 2012 ASCE international conference on

computing in civil engineering.

Khan, A., Wainer, G. A. 2005 Advanced Visualization of DEVS and Cell-

DEVS Models in CD++/Maya. Proceedings of SISO Fall Interoperability

Workshop, San Diego, CA. U.S.A - 2005

Krasner, G. E., Pope, S. T. 1988, A Description of the Model-View-

Controller User Interface Paradigm in the Smalltalk-80 System,

http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_

pope.pdf. Accessed Nov 6, 2012.

Malinowsky, B., and Kastner, W. 2010. Integrating Process

Communication in Building Information Models with IFC and LON.

8th IEEE International Workshop on Factory Communication Systems.

Rucker, R., Ostrov, D. 1997. Continuous-Valued Cellular Automata for

Non-Linear Wave Equations, Complex Systems 10 (1196) 91-119.

Ruppel, U., and Abolghasemzadeh, P. 2009. BIM-based Immersive

Evacuation Simulations. In 18th In-ternational Conference on the

Application of Computer Science and Mathematics in Architecture and

Civil Engineering. Weimar, Germany.

Shirley, P., Marschner, S., Ashikhmin, M., Gleicher, M., Hoffman, N.,

Johnson, G., Munzner, T., Reinhard, E., Sung, K., Thompson, W. B.,

Willemsen, P., Wyvill, B. 2009. Fundamentals of Computer Graphics.

AK Peters 3rd ed ISBN 978-1-56881-469-8. pp.132

Wainer, G., 2009. Discrete-event Modeling and Simulation: a

Practitioner's Approach. CRC/Taylor & Francis.

Wainer, G., Poliakov, E., Hayes, J., and Jemtrud, M. 2007. A Busy day at

the SAT building. In Proceedings of the International Modeling and

Simulation Multiconference Buenos Aires, Argentina.

Wang, S., Schyndel, M.V., Wainer, G., Subashini, V., and Woodbury, R.

2012. DEVS-based Building Information Modeling AND Simulation for

Emergency Evacuation.bIn Proceedings of the 2012 Winter Simulation

Conference. Berlin, Germany. IEEE.

Wang, S., Wainer, G., Rajus, V.S., and Woodbury, R. 2013 (accepted).

Occupancy Analysis Using Building Information Modeling and Cell-

DEVS Simulation. Symposium on Theory of Modeling and Simulation.

TMS'13. San Diego, USA

Venhola, W., and Wainer, G. 2006. DEVSView: A tool for visualizing

CD++ simulation models. SIMULATION SERIES, 38(1), 133.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of Modeling and

Simulation. Academic Press

Zhang, Y., Moghani, E., AbouRizk, S. M. and Fernando, S. 2010. 3D CAD

modeling and visualization of the tunnel construction process in a

distributed simulation environment. In Simulation Conference (WSC),

Proceedings of the 2010 Winter (pp. 3189-3200). IEEE.

http://docs.autodesk.com/3DSMAX/15/ENU/MAXScript-Help/index.html?url=files/GUID-C0F38270-F5DD-4356-AFFF-B037D97F0017.htm,topicNumber=d30e3671
http://docs.autodesk.com/3DSMAX/15/ENU/MAXScript-Help/index.html?url=files/GUID-C0F38270-F5DD-4356-AFFF-B037D97F0017.htm,topicNumber=d30e3671
http://docs.autodesk.com/3DSMAX/15/ENU/MAXScript-Help/index.html?url=files/GUID-C0F38270-F5DD-4356-AFFF-B037D97F0017.htm,topicNumber=d30e3671
http://download.autodesk.com/us/3dsmax/2012help/index.html?url=files/GUID-A4F4A6A6-27A9-482C-9A95-853B1ADC68C-1251.htm,topicNumber=d28e256342
http://download.autodesk.com/us/3dsmax/2012help/index.html?url=files/GUID-A4F4A6A6-27A9-482C-9A95-853B1ADC68C-1251.htm,topicNumber=d28e256342
http://download.autodesk.com/us/3dsmax/2012help/index.html?url=files/GUID-A4F4A6A6-27A9-482C-9A95-853B1ADC68C-1251.htm,topicNumber=d28e256342
http://bimserver.org/buildingSMART
http://www.buildingsmart-tech.org/ifc/IFC2x3/
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf
http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf

