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Abstract 

Computational Fluid Dynamics (CFD) deals with compu-

ting the equations of fluid flows using numerical methods 

instead of partial differential equations. The Discrete-Event 

System specification (DEVS) theory has already been used 

to approximate various continuous systems by applying a 

quantized state system approach. In this research, we exper-

iment with a new method: using Cell-DEVS theory to create 

a uniform set of rules for CFD to apply to each cell and ex-

ecute the state changes of the cells asynchronously. This 

harmonized set of state changes can effectively render the 

fluid dynamics, by applying the accurate rules that repre-

sents the behavior of the fluid.   

 

1. INTRODUCTION 

Computational Fluid Dynamics (CFD) solving is the pro-

cess for calculating and describing the physics of the 

movement and interaction of fluid flow with the use of nu-

merical methods [1]. Currently there exist no analytical so-

lution; however, various numerical methods have been pro-

posed, including Cellular Automata (CA) [2]. The behavior 

of the motion is defined with the Navier-Stokes equations, 

which are a representation of Newton’s Second Law of mo-

tion. These cells are solved for discrete durations of time 

and the results rendered to provide results that are more 

meaningful. 

 Cell-DEVS is a derivative of the DEVS formalism that 

implements the CA methodology. The cells are calculated 

asynchronously, which reduces unnecessary processing 

burden, with a continuous time base. Each cell is treated as 

a DEVS atomic model [4] were the state changes are event 

driven. Cell-DEVS was originally introduced for modeling 

and simulation of spatial systems however, there has been 

no research on adopting it for CFD. In n this research, we 

propose using the Cell-DEVS methodology to implement 

CFD equations to simulate fluid dynamics. The rule-based 

nature of cellular model behavior definition provides a plat-

form for spatial behavior definition, leading to easier and 

faster adoption and implementation of CFD solver algo-

rithms. The asynchronous updating of the cells should help 

reduce the large computational time required for solving 

CFDs. Additionally, simulating with continuous time will 

provide a better resolution then that provided by the CA’s 

discrete time steps.  

  The CD++ software [3] provides a development envi-

ronment to create and navigate through the process of Mod-

eling and Simulation (M&S) of a Cell-DEVS model. CD++ 

is an open-source framework that has been used to model 

environmental, biological, physical and chemical models as 

well as many other real-life simulations. The toolkit in-

cludes a high-level scripting language keyed to Cell-DEVS, 

a simulation engine, a testing interface and a basic 2D [5] 

and 3D [6] graphical interfaces.  

 The research and solver presented here are an im-

proved derivative of the solver presented in [7]. By using a 

new solver and implementing a new strategy for defining 

the rules, it was possible to increase the computational effi-

ciency drastically. We will discuss the framework that can 

be used to allow the solver to be implemented as an interac-

tive model and how to export the generated data to other 

graphical environments.  

 

2. BACKGROUND 

Fluid dynamic solvers have been used for a wide variety of 

purposes. The goal is to create a realistic representation of a 

naturally occurring fluid system such as rising smoke or 

blowing dust. The flow of fluids can be viewed as solid par-

ticles interacting with a velocity field, or as a density of par-

ticles. There are different methods for solving the evolution 

of these fields and densities, such as, the Lattice-Gas meth-

od [8], Navier-Stokes Equations [9] and Riemann Solvers 

[10]. 

 The Navier-Stokes equations were the first to attempt 

to provide a physical description of fluid motion by apply-

ing Newton’s second law of motion “with the assumption 

that the stress in the fluid is the sum of a diffusing viscous 

term (proportional to the gradient of velocity) and a pres-

sure term [11]. In Sukop et al. [12], the authors presented a 

method for creating a basic model of 2D fluid flow that 

maps the possible collisions that can occur. The random-

ness generated by these collisions is essential to its ability 

to simulate flows. A similar model was made to represent 

the effect of polymer chains on fluid flow [13] where a lat-

tice-gas CA was used to provide a 2D model.  

 In [14], Koelman and Nepveu demonstrated the use of 

CA to model flow through porous materials. They were 

able to model a one-phase Darcy automaton based on a Na-

vier-Stokes automaton; however, when they implemented a 

two-phase Darcy automaton they had to implement simpler 

local transition rules. 

 In [15], Stam proposed a new method of resolving the 

Navier-Stokes equations. A cell lattice is spanned over the 

 



simulation window with each cell holding unique infor-

mation regarding that particular area. Each cell stores a 

density value and the horizontal and vertical components of 

velocity (as well as the z component for a 3-dimensional 

model). The cell spaces are updated simultaneously at dis-

crete time intervals. This algorithm provided realistic re-

sults with limited computational effort by utilizing a rather 

basic set of rules. 

 In this paper, we are interested in adapting the algo-

rithms presented by Stam [15] and use the models to define 

a discrete-event CFD solver developed according to the 

conventions of the DEVS and Cell-DEVS formalism. 

DEVS formalism [1] has several characteristics which aide 

in the development of such simulations. The general nature 

of the specifications of the DEVS formalism, in comparison 

to other formalisms, allows it to be used in a wide range of 

simulation methods [2]. Second, the DEVS formalism pro-

vides a hierarchal approach for coupling models to create 

larger, more complex system. Finally, the principle of 

DEVS is to separate the model code, which contains the re-

al-world system, from the simulator and the time advance 

functions, which allows models to be coupled that have dif-

ferent time advance functions. This makes the DEVS for-

malism a powerful tool for simulating large complex sys-

tems, such as biological systems. 

A Cell-DEVS model is defined as a lattice of cells hold-

ing state variables and a computing apparatus, which is in 

charge of updating the cell states according to a local rule. 

This is done using the current cell state and those of a finite 

set of nearby cells (called its neighborhood), as done in Cel-

lular Automata. Cell-DEVS improves execution perfor-

mance of CA by using a discrete-event approach. It also en-

hances the cell’s timing definition by making it more ex-

pressive. Each cell is defined as a DEVS atomic model, and 

it can be later integrated into a coupled model representing 

the cell space. Cell-DEVS models are informally defined as 

shown in Figure 1. 

 
Figure 1. Cell-DEVS Model. 

 

Each cell of the lattice contains information regarding 

its neighborhood and its local computing function. This lo-

cal computing function has three main parts: PostCondi-

tion, Delay and PreCondition. That is to say, when defin-

ing the local computing function, simply define the Pre-

Condition that must be satisfied so that the PostCondition 

will be applied to that cell after the Delay has expired. By 

using a source-destination method of evaluating the cells, 

Cell-DEVS allows the cells to be calculated asynchronously 

and then updated all at once. This feature allows for the 

possibility of parallel computing. 

The version of the CD++ modeler used to implement 

the model presented in this paper provides several useful 

benefits. One such benefit is that the new simulator pro-

vides two ways of implementing state variables. The first is 

a local variable that can only be accessed by the cell to 

which it belongs. The second is neighbor ports; hereafter 

referred to as ports, that functions similar to a variable, 

however, it can be accessed by any cell within the designat-

ed neighborhood. These methods improve the efficiency of 

the model when large amounts of data is required to be 

stored, since the old simulator required the use of multiple 

planes to store additional information.  

The algorithms by Stam are stable, and allow simula-

tions to be advanced using arbitrary time steps. This feature 

is relevant to the time advancement strategies facilitated by 

the DEVS formalism. Second, the relative simplicity of 

these algorithms lends itself well to the prospect of extend-

ing this solver to handle increasingly complex scenarios. 

Third, these algorithms can be performed using a standard 

PC for reasonably sized grids of both two- and three-

dimensions. Fourth, as the complete C-code implementation 

of these algorithms is published in [15], it can be used for 

verification of the Cell-DEVS implementation. 

 In the following section, we will introduce the defini-

tion of this CFD model, and will discuss the model imple-

mentation and simulation results.  

 

3. MODEL DEFINITION 

The Navier-Stokes equations, named after Claude-Louis 

Navier and George Gabriel Stokes, make use of Newton’s 

Second law by applying it to fluid flow, and assuming that 

the stress on the fluid is proportional to the diffusing vis-

cous term and the pressure term [15]. 

 

 
Equation 1. Velocity Equation in compact vector nota-

tion 

 
Equation 2. Density Equation in compact vector nota-

tion 

The first equation is for solving the velocity vectors; the 

sum of which is hereafter referred to as the velocity field. 

The equation is a re-arrangement of the incompressible 

flow of Newtonian fluids. The acceleration (  ) is equal to 

the sum of; the negative continuity equation ( , re-

sponsible for the conservation of mass), the viscosity (  

) and any body forces present (f). In other words, the 

change in the evolution of the velocity field is based on the 

viscosity and any other forces that may act upon it (such as 

a heating vent). While this is the most important part of any 

good CFD solver, it provides very little visually. To make it 

more useful, we must demonstrate particles moving through 



the velocity fields. To move objects, we must simply de-

termine what forces are going to be acting on it, and in what 

direction. These forces are extracted from the velocity 

fields. Most of the objects we wish to move are relatively 

light, and the only relevant forces are those applied by the 

velocity field, such as dust or smoke [15]. One could simply 

apply these forces to the particles, and see how they move. 

However, for more complex models, it would be taxing to 

perform these calculations for a large number of particles. 

Instead, we could treat the matter as a density of particles, 

where instead of either being 0 or 1 (no particle, particle re-

spectively); we would treat it as a gradient value that ranges 

from no particles present to some maximum number of par-

ticles present. The forces on these densities are applied us-

ing equation 2, which is similar to the equation used for 

evolving velocities, but more simplified since the only forc-

es present are solely generated from the velocity vector 

field. 

The algorithm was broken into two parts: A density 

solver and a velocity solver. Each section represented one 

of the Navier-Stoker equations. The two sections were fur-

ther broken into discrete steps that must be completed be-

fore moving on, as seen in Figure2. 

 
Figure 2. Velocity Solver Steps. 

 

As seen in Figure 3, there are three functions used for 

both sub-routines: diffusion, advection and projection. 

 
Figure 3. Density Solver Steps. 

 

The diffusion function is responsible for calculating the 

natural flow of the particles regardless of the forces exerted 

by the velocity fields. The density for the cell is calculated 

as the sum of the densities not exiting the cell to the sur-

rounding area and the densities entering the cell from its 

neighboring cells, as seen in equation 3. Equation 3 states 

that the new density in the cell at position (i, j) is equal to 

what will remain in the cell from the original density plus 

what will enter the cell from the four cardinal neighbors 

(North, South, East and West). The amount of density that 

moves between the cells, or viscosity, is determined by the 

variable a. To increase the resolution of the model this step 

is run multiple times [15]. 

 

 
Equation 3 Diffusion Calculation [15]. 

 

The advection function’s role is to apply the forces gen-

erated by the velocity fields. The force acting on the density 

at any location is equal to the equivalent velocity vector of 

u and v. To apply the forces is significantly more compli-

cated. The simplest approach would be to determine the 

destination based on the magnitude of the forces applied. 

However, since the system is treated as a cell space and not 

all densities will end up in the exact center of the cell after 

moving, this would cause problems. Instead, to move the 

density, one simply traces backwards from the cell center to 

compute where the density would have to come from, as 

seen in Figure 4 [15]. 

 
Figure 4. Tracing backwards to the source of density. 

 

Then, we take a weighted average of the four cells the 

densities will be arriving from to calculate the new density 

at the destination. Once this is done, the cell states are up-

dated with their new densities and the process repeated. 

Figure 5 shows the movement of densities through a fixed 

vector field. 

 
Figure 5. Moving densities, fixed velocity field [15]. 
 

During the calculations of the previous steps the results 

are rarely mass conserving, an important characteristic to 

maintain realism and stability in the model. The projection 

function helps conserving mass, and it add some desired 

visual effects (swirls and eddies). In order for this to occur, 

the velocity field is defined as the sum of a mass conserving 

field and a gradient field. To get the mass conserving field, 

the gradient field is subtracted from the current velocity 

field. The gradient field is calculated using a linear Poisson 

system. The projection step is called twice to help maintain 

accuracy after the advection step. 

 Finally, the behavior between the CFD and its bounda-

ries must be defined. For this paper, we chose the no-slip 

condition to model velocity boundary interactions. The the-

ory of the no-slip condition states that the fluid velocity is 

always zero at the boundary-fluid interface [16]. For in-

stance, in Figure 6, at the surface of the interaction between 

cell A (boundary) and cell B (a fluid), the velocities in these 

cells need to average to zero. The velocities are never actu-



ally averaged; instead, the velocity for cell A becomes the 

negation of cell B. In this way, where the two cells are av-

eraged, the result would be zero. The interactions between 

cells A and B and between cells C and D are straightfor-

ward, since the interaction is between one fluid cell and one 

boundary cell. The interaction between cells E, J and F is 

more difficult. The value for cell F becomes equal to the 

average of the negation of cells E and J. The most difficult 

situation to define is an interaction between three fluid cells 

and a single boundary cell, as seen between K, L, M and P. 

However, such a situation can be avoided by not allowing 

boundaries or passageways to be one cell wide.  

 
Figure 6. Model of Boundary Fluid Interactions. 

Boundaries: dark cells; Fluids: light cells. 

 

4. MODEL IMPLEMENTATION 

As seen in Figures 2 and 3, the model can be broken into 

several functions that are used in both sub-routines. Each 

individual function is used to resolve one of the terms from 

equations 1 and 2. The specific code for the functions will 

vary slightly depending on which sub-routine it appears in, 

however the core of the code will remain the same.  

 

4.1. Diffusion 

The diffusion function is responsible for calculating the 

natural flow of the particles regardless of the forces exerted 

by the velocity fields. The density for the cell is calculated 

as the sum of the densities not exiting the cell to the sur-

rounding area and the densities entering the cell from its 

neighboring cells, as seen in equation 3. 

The rate at which the densities leave the cells is referred 

to as the viscosity and is incorporated into equation 3 as the 

value for a. By incorporating the viscosity into the equa-

tion, it is possible to simulate fluids with different parame-

ters. Densities with low viscosities would move through the 

fluid with very little diffusion; similar to a liquid moving 

through a rigid space, while densities with high viscosities 

would rapidly diffuse and take the shape of the container; 

which is similar to the behavior of a gas. 

 The implementation of equation 3 with the Cell-DEVS 

formalism is straightforward. Two ports are used for storing 

the information regarding the densities, and they are the 

value and diffusion port. The value port stores the result 

generated by the diffusion and the advection step, and it is 

only updated upon the completion of the advection step. 

Therefore, it can be thought of as the x’(i,j) term from equa-

tion 3. The other four values for the x terms come from the 

surrounding neighbors’ diffusion port values. The following 

code implements this calculation: 

 

~diffusion := ((0,0)~value +  

  0.05*((0,-1)~diffusion + (0,1)~diffusion  

+(-1,0)~diffusion+(1,0)~diffusion))/1.2)) 
 

For this instance, the viscosity was set to 0.05. Figure 7 

below shows the evolution of the densities over time, absent 

of the presence of any forces generated by the velocity 

field: 

 
Figure 7. Diffusing densities over 16 iterations with a 

viscosity of 0.05. Dark to light shades represent a high 

density to low density gradient. 
  

 As we can see, without any external forces, the densi-

ties diffuse outwards evenly from a high to low density. It is 

important to note that the eventually the densities will not 

appear anymore. This does not mean that there is no density 

for that cell; it could just mean that the magnitude of the 

densities is such that it is negligible.  
 

4.2. Advection  

The advection step is responsible for the movement of den-

sities and velocity fields. The most obvious method of de-

termining where a density will end up is to trace it forward 

based on the velocity field. However, the method described 

by Stam [15] suggests that one start in the center of the cell 

space and trace backwards to find the origins, based on the 

velocity field. Then, the weighted average of the four clos-

est cells is calculated to determine the source density. This 

is done because the source is unlikely to be located directly 

in the middle of the cell, and therefore the surrounding den-

sities will affect the new density values. The advection step, 

as it appears in the original algorithm in [15] is used to 

trace the origins of the current density by looking at the 

vector field. Since the origin is not likely to be at a cell cen-

ter, a weighted average of the surrounding four cells is tak-

en, their weighting being dependent on their proximity to 

the origin location. 

A logic map is implemented to determine which cells 

are used based on the state values for the velocity vector 

component ports, as seen in Figure 8. 

In Case #1, the four cells that are circled will be used 

when 0 ≤ u ≥ 1 and 0 ≤ v ≥ 1. In Case #2, the four cells that 

are circled will be used when -1 <u> 0 and 0 <v> 1.In Case 

#3, the four cells that are circled will be used when -1 ≤ u ≥ 

0 and -1 ≤ v ≥ 0. In Case #4, the four cells that are circled 

will be used when 0 <u> 1 and -1 <v> 0.  

 



Figure 8. Break down of the possible sources of the 

density for the advection step. 
 

When implemented, a series of if statements is used to 

determine which case is required and therefore which cells 

are going to be used in the calculation of the new state val-

ue for the value port. The implementation is as follows: 
 

 if( ( (0,0)~u >= 0 and (0,0)~u <= 1 ),  

//This can be either #1,#4 

if( ( (0,0)~v >= 0 and (0,0)~v <= 1 ),  

//If yes Case #1 

((0,0)~u*((0,0)~v*(-1,-1)~diffusion +  

(1-(0,0)~v)*(-1,0)~diffusion)+(1-

(0,0)~u)*((0,0)~v*(0,-1)~diffusion +  

(1 -(0,0)~v)*(0,0)~diffusion  

  )) ,  

//If not Case#1 than it must be Case#4   

((0,0)~u*(abs((0,0)~v)*(-1,1)~diffusion+ ... 

)  

)),  

if( ( (0,0)~v >= -1 and (0,0)~v <= 0 ),  

// Since u is negative it must be either  

// Case#2 or #3. If v is negative than it  

// is Case #3 

(abs((0,0)~u)*(  

abs((0,0)~v)*(0,0)~diffusion + ... ) 

) ,  

// if v is positive than it is Case #2 

(abs((0,0)~u)*(  

abs((0,0)~v)*(0,-1)~diffusion + ...)  

))) 
 

The case numbers match those referred to in Figure 8. The 

calculations are done by directly calling the u and v vectors. 

The vector  components’ magnitudes are equal to s0 and t0 

respectively, which for the cases where the vector magni-

tudes could be negative the absolute value of the vector is 

calculated by calling the abs() function. To calculate s1and 

t1 it is as simple as doing one minus the magnitude of the 

vector. This method does eliminate some unnecessary cal-

culations since the (i,j) values are inherently stored during 

the simulation process. The values for the densities are 

grabbed from the diffusion port, since it is behaving as the 

d0 for this model, and being stored in the value port, d(i,j). 
 

4.3. Projection 

The projection function is responsible for calculating the 

first term of the Navier-Stokes equation, as seen in equation 

1. This term is responsible for the conservation of mass. 

The implementation of the projection function is done using 

two ports, while the remainder of the function is done with-

in the two vector ports. We used two ports to reproduce the 

original algorithm. The div port is responsible for the first 

part of the computation; hereafter referred to as the div 

function, while the p port handles the second part; hereafter 

referred to as the p function. The third part is handled by 

their respective vector component ports.  

The implementation of the div function is straightfor-

ward. The h term is defined as the inverse of the number of 

cells in the cell-space. This term is later cancelled out when 

the vectors are separated back to component form. The val-

ue for the div port is calculated as the negative of the sum 

of the differences of the horizontal and vertical neighbors, 

which is scaled by the size of the cell space, h. The follow-

ing is the implementation of the div function: 
 

~div := -0.5*(1/441)*( (1,0)~u - (-1,0)~u + 

(0,1)~v - (0,-1)~v) 
 

The p port value is calculated as the sum of the corre-

sponding div port state value and the values of the p ports 

of the immediately adjacent cells, divided by four. This 

process is run for several iterations before proceeding to the 

final stage, as follows: 
 

~p :=((0,0)~div + (-1,0)~p + (1,0)~p +  

(0,-1)~p + (0,1)~p)/4) 
 

Once the p loop has been completed, we proceed to the 

final stage where the results are once again split into com-

ponent form. The u port is updated by taking the current 

value and subtracting the difference of the horizontal 

neighbors, which have had the scaling factor h removed 

from them. The v port is similarly calculated, using the ver-

tical neighbors instead. 
 

~u := (0,0)~u - (0.5)*(441)* 

( (1,0)~p - (-1,0)~p ) 

~v:= (0,0)~v - (0.5)*(441)* 

( (0,1)~p - (0,-1)~p ) 
 

During the projection stage, we added the velocity vectors 

together to make a single velocity field. However, for the 

rest of the algorithm we want to have the velocities in sepa-

rate fields. These steps are used twice for each cycle.  

 

4.4. Boundaries 

The no-slip condition states that the velocity should be av-

erage to zero along the boundaries. To implement this we 

added an addition function to both sub-routines called 

boundary and a port with the same name. The port calcula-

tions for the boundary variable only occur when initializing 

the cell-space. It is here that the boundaries and obstacles 

are created for the model, and they provide a reference lo-

cation of these obstacles. For example, to create boundaries 

along the borders of cell-space the following code is used: 
 

~boundary := if( time = 0 and (cellpos(1) = 0 

or cellpos(1) = 49 or cellpos(0) = 0 or cell-

pos(0) = 49), 2, (0,0)~boundary) 
 

The boundary function is only used in the density solver 

sub-routine twice. After the diffusion of the densities and 

the advection of the densities. The purpose here is to ensure 

that the value port remains empty in cells that contain a 

boundary. This is only a precaution since the velocity fields 

should stop the densities from entering these cells. Addi-

tionally, to ensure mass is not lost to densities being dif-

fused into the boundary cells we, the diffusion port is set to 

equal the average density of its neighboring cells; which 

with this method of implementing boundaries is never more 

than two. The following code is how this is implemented: 
 

 ((0,1)~diffusion*( 1 ((0,1)~boundary)/2) + 

(0,-1)~diffusion*( 1 - ((0,-1)~boundary)/2) ... ) 
 

Instead of using a set of if statements to covers all the 

possible set ups, this equation handles all of them The diffu-

sion values for the four adjacent cells are summed, with 



specific cells being zeroed if they are a boundary cell, and 

then divided by the number of non-boundary cells. Similar-

ly, the boundary function zeroes out the cells that are de-

fined as boundaries for the div port, again just as a precau-

tion, and ensure there is no mass lost to the system. 

The more important role of the boundary function is to 

control the behavior of the velocity fields around the 

boundaries. As previously stated, the no-slip condition 

states that the average of the velocity field should be zero 

along the edge of the boundaries. What is nice about this 

model is that the velocities are stored in component form. 

This mean the only boundaries that are of interest to the u 

vectors are the surfaces that run perpendicular to the vec-

tors, in this case vertical boundaries, while the v vectors 

look at the horizontal boundaries. When running the 

boundary function for the vector ports, you trace along the 

boundary and set the vector ports for those boundary cells 

to be equal to the negative of the neighboring non-boundary 

cell’s corresponding vector port. That way if you were to 

average the two values the result would be zero. This zero-

ing of the velocity field will stop the densities from interact-

ing with the boundaries. To make it easier to implement, if 

we ensure that no boundaries are a single cell thick, we do 

not have to worry about a situation arising similar to that of 

L in Figure 6. An example of how this is implemented is as 

follows: 
 

if( (0,0)~boundary = 2,  

//If the cell is a boundary cell then, 

if( (0,1)~boundary !=2,  

//If the cell to the right is empty 

-1*(0,1)~v,  

if( (0,-1)~boundary != 2, 

//If the cell to the left is empty 

-1*(0,-1)~v,0)) 

(0,0)~v)  

//If neither case is true, no changes 
 

This process is repeated for the u port values as well.  

Before the functions can be implemented, we must first 

initiate the parameters of the model. The first parameter is 

the neighborhood. As the advection routine sometimes 

makes use of additional cells, the model uses the nearest 

neighbors. Secondly, to store all the necessary information 

and perform the calculations required in each function re-

quires the use of seven ports: value, diffusion, u, v, p, div 

and boundary. The local computing function for this model 

will be defined as a single rule. Since a single frame of the 

simulation cannot be completed in a single time step, the 

run during specific periods as outlined in table 1.  

 

Table 1. Timing information for functions during one 

execution frame lasting 20 time steps. 

 

 As you can see after 20 time steps, the routine is com-

pleted. Therefore, time steps with a multiple of 20 are re-

garded as a single frame. 

5. RESULTS 

In order to test the model, we executed several simulations 

scenarios, adjusting the velocities, densities and viscous 

properties. The simulations are uploaded and executed re-

motely on the RISE server [17] using the new version of the 

CD++ simulator presented in the introduction. The results 

are then downloaded and visualized using a 2D tool, as seen 

in the different figures presented in this section.  

The first simulation presented here includes a test case 

presented in [7], which we used to verify the new model 

(which does not present differences with the current results. 

The initial conditions include a single focus of densities and 

a non-uniform velocity field. The velocities are between the 

range of  0.6 <u< 0.8 and 0.1 <v< 0.3, or -0.2 <u< -0.4 and 

0.6 <v< 0.8. Figure 9 shows the results of this simulation 

(the arrows represent the vector force being applied to the 

density focus). 

 
Figure 9. First Test with non-uniform velocity field and 

viscosity of 0.05. 

The new model was able to provide results with a bet-

ter resolution and a better representation of the evolution of 

the velocity field. Additionally, the results were generated 

in a fraction of the time. Originally, we could only run a 50-

by-50 cell space (2500 cells), as it was built using seven 

additional layers, each of them used to use a different piece 

of information needed by the model (17500 cells). For a 

reasonable number of frames it would take between 6-8 

hours to complete a simulation. The new model is able to 



complete a simulation of similar size and length in less than 

one hour. 

The next two simulations were to used test the new ad-

dition to the model, boundaries. The scenario was set up 

similar to a wind tunnel were the velocity field was manly 

wind blowing in one direction and a density cloud injected 

into the tunnel. The one key difference was that we still 

wished to see how the velocity field interacted with the 

boundaries as well as the densities. For this reason, instead 

of a constant input of blowing force on the velocity field, 

similar to a true wind tunnel, a single initiation of the cell 

space was used. Figures 10 and 11 show the results for 

these tests with arrows used to represent the forces applied 

by the velocity fields. 

 In Figure 10, we can see a density focus encountering 

a fixed obstacle. With the viscosity set relatively low for 

both the velocity and the density (0.05), we can see that the 

focus splits into two distinct densities and they are pulled 

back together mostly by the velocity field. With the viscosi-

ty of the velocity field being low, we see a space of zero ve-

locity directly behind the obstacle, as we would expect. 

 
Figure 10. Second Test scenario with small obstacle. 
 

 The next simulation presented here used the exact 

same parameters as before, however, the obstacle was made 

larger and the velocities only were allowed flowing around 

in on one path.  

In Figure 11, we see the focus encountering the obsta-

cle. The majority of the density is redirected by the evolv-

ing velocity to flow around the obstacle and stay within a 

high velocity field. However, through diffusion and the 

momentum of the foci, some of the density entered the low 

velocity field caused by contact between the field and the 

obstacle. This can be seen as the long tail that extends from 

the foci. Again an area of null velocity occurred behind the 

obstacle, however, this time the obstacle was larger and the 

field could only flow around in one direction. Consequent-

ly, the null region extended further behind the obstacle.  

 

 
Figure 11. Third Test scenario with large obstacle. 

 

The velocity fields behaved as expected. The no-slip 

boundary condition stated that the velocity should be zero 

along the surfaces. What we expected to see was a slowing 

down of the velocities near the surfaces of boundaries and 

that is what we see in the results, best described in Figure 

11. The other interesting behavior to note is the one of the 

velocities behind an obstacle perpendicular to the direction 

of travel. In Figure 10, the obstacle was small and the ve-

locities were able to travel around either side. As we would 

expect, the velocities immediately behind the obstacle are 

zero and this null zone take the shape of a teardrop. How-

ever, when the density had passed the obstacle, some of it 

was “pulled” backward into this null zone in a similar fash-

ion to an eddy current. This current eventually stabilized 

and the densities escaped. The second simulation involved 

the use of a larger obstacle, and it only allowed the veloci-

ties to flow around one side of it. As expected, the null zone 

behind the obstacle was larger and no eddy current was 

produced.  

There are three functions that produce the specific re-

sults that can be seen in the two simulations. The first func-

tion to look at is the diffusion function, which is more obvi-

ous when used in the density solver, since the density focus 

spreads out over time. The diffusion of the velocities is 

more subtle. Without the diffusion of the velocity field, the 

null zone behind the obstacle would most likely be larger 

since there is no force pulling the velocities into this area of 

low pressure. The diffusion function is clearly the driving 

force that provides the force that draws the velocities into 

this null region. 

The next function to look at is the advection. Again, the 

most obvious application of the advection function that can 

be noted is the movement of the density foci. The forces are 

being correctly applied to the density field, since the result-

ing behavior is as expected. The more subtle expression of 

this function is in the velocity field. The initiation of both 

models was the same in that a uniform velocity field was 

generated with no null zones. The null zones are created by 

the momentum of the velocity driving itself forward, and 

the obstacle preventing velocities from taking the place of 

the forces that left. 



As previously described, the projection function was re-

sponsible for ensuring that the fields remain mass conserv-

ing and for visual effects. Due to the nature of how the ad-

vection function was implemented, if the system were not 

mass conserving we would see densities disappearing in re-

gions where the velocities are larger than allowed, since 

there are no conditions to handle this. Clearly, the projec-

tion function is performing its most critical role since no ve-

locities are exceeding a magnitude of 1, which considering 

the initial values ranged from 0.9 to 1.0 would definitely 

occur if the system were not mass stable.  

 The results of our simulations showed that the individ-

ual functions are working exactly as expected. The integra-

tion of these functions built a model that is fully functional 

and accurately describes the mechanics of the fluid flow. 

 

6. CONCLUSION 
Fluid dynamic solvers are used in a wide variety of applica-

tion ranging from video games and entertainment to model-

ing of environmental events and biological systems. In this 

research, a CFD solver is proposed that uses the parameters 

of a CA in Cell-DEVS. The asynchronous and more effi-

cient computing grid of Cell-DEVS with the continuous 

time-base allowed for more realistic simulation of fluid dy-

namics. We showed how CD++ toolkit was used to imple-

ment the Cell-DEVS model of the Navier-Stokes equations 

for CFD. We were able to create a fluid dynamic solver that 

met the requirements of a Cellular Automata, demonstrating 

that it is possible to create models of vary complex phe-

nomenon using a relatively simple technique. The model 

was a significant improvement to the first version, in that it 

was able to provide results with a better resolution in a sig-

nificantly shorter time. The model also improved the size of 

the log files generated which was a major concern of the 

last model, without sacrificing the ability to access the high 

level of detail generated during the evolution of both the 

density and velocity field. The results shown in this paper 

demonstrate that it is possible for a CFD model to be creat-

ed and coupled to help resolve the physics of the fluid flow 

in any system: biological, environmental, etc.  
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