
Advanced Computational Fluid Dynamic Solver Based on Cell-DEVS

Michael Van Schyndel, Gabriel Wainer

Department of Systems & Computer Engineering,

Carleton University, Ottawa, ON, Canada

Center for Visualization, Simulation and Modeling (VSIM)

mvschynd@connect.carleton.ca, gwainer@sce.carleton.ca

Keywords: DEVS, Cell-DEVS, Computational Fluid Dy-

namics.

Abstract

Computational Fluid Dynamics (CFD) deals with compu-

ting the equations of fluid flows using numerical methods

instead of partial differential equations. The Discrete-Event

System specification (DEVS) theory has already been used

to approximate various continuous systems by applying a

quantized state system approach. In this research, we exper-

iment with a new method: using Cell-DEVS theory to create

a uniform set of rules for CFD to apply to each cell and ex-

ecute the state changes of the cells asynchronously. This

harmonized set of state changes can effectively render the

fluid dynamics, by applying the accurate rules that repre-

sents the behavior of the fluid.

1. INTRODUCTION

Computational Fluid Dynamics (CFD) solving is the pro-

cess for calculating and describing the physics of the

movement and interaction of fluid flow with the use of nu-

merical methods [1]. Currently there exist no analytical so-

lution; however, various numerical methods have been pro-

posed, including Cellular Automata (CA) [2]. The behavior

of the motion is defined with the Navier-Stokes equations,

which are a representation of Newton’s Second Law of mo-

tion. These cells are solved for discrete durations of time

and the results rendered to provide results that are more

meaningful.

 Cell-DEVS is a derivative of the DEVS formalism that

implements the CA methodology. The cells are calculated

asynchronously, which reduces unnecessary processing

burden, with a continuous time base. Each cell is treated as

a DEVS atomic model [4] were the state changes are event

driven. Cell-DEVS was originally introduced for modeling

and simulation of spatial systems however, there has been

no research on adopting it for CFD. In n this research, we

propose using the Cell-DEVS methodology to implement

CFD equations to simulate fluid dynamics. The rule-based

nature of cellular model behavior definition provides a plat-

form for spatial behavior definition, leading to easier and

faster adoption and implementation of CFD solver algo-

rithms. The asynchronous updating of the cells should help

reduce the large computational time required for solving

CFDs. Additionally, simulating with continuous time will

provide a better resolution then that provided by the CA’s

discrete time steps.

 The CD++ software [3] provides a development envi-

ronment to create and navigate through the process of Mod-

eling and Simulation (M&S) of a Cell-DEVS model. CD++

is an open-source framework that has been used to model

environmental, biological, physical and chemical models as

well as many other real-life simulations. The toolkit in-

cludes a high-level scripting language keyed to Cell-DEVS,

a simulation engine, a testing interface and a basic 2D [5]

and 3D [6] graphical interfaces.

 The research and solver presented here are an im-

proved derivative of the solver presented in [7]. By using a

new solver and implementing a new strategy for defining

the rules, it was possible to increase the computational effi-

ciency drastically. We will discuss the framework that can

be used to allow the solver to be implemented as an interac-

tive model and how to export the generated data to other

graphical environments.

2. BACKGROUND

Fluid dynamic solvers have been used for a wide variety of

purposes. The goal is to create a realistic representation of a

naturally occurring fluid system such as rising smoke or

blowing dust. The flow of fluids can be viewed as solid par-

ticles interacting with a velocity field, or as a density of par-

ticles. There are different methods for solving the evolution

of these fields and densities, such as, the Lattice-Gas meth-

od [8], Navier-Stokes Equations [9] and Riemann Solvers

[10].

 The Navier-Stokes equations were the first to attempt

to provide a physical description of fluid motion by apply-

ing Newton’s second law of motion “with the assumption

that the stress in the fluid is the sum of a diffusing viscous

term (proportional to the gradient of velocity) and a pres-

sure term [11]. In Sukop et al. [12], the authors presented a

method for creating a basic model of 2D fluid flow that

maps the possible collisions that can occur. The random-

ness generated by these collisions is essential to its ability

to simulate flows. A similar model was made to represent

the effect of polymer chains on fluid flow [13] where a lat-

tice-gas CA was used to provide a 2D model.

 In [14], Koelman and Nepveu demonstrated the use of

CA to model flow through porous materials. They were

able to model a one-phase Darcy automaton based on a Na-

vier-Stokes automaton; however, when they implemented a

two-phase Darcy automaton they had to implement simpler

local transition rules.

 In [15], Stam proposed a new method of resolving the

Navier-Stokes equations. A cell lattice is spanned over the

simulation window with each cell holding unique infor-

mation regarding that particular area. Each cell stores a

density value and the horizontal and vertical components of

velocity (as well as the z component for a 3-dimensional

model). The cell spaces are updated simultaneously at dis-

crete time intervals. This algorithm provided realistic re-

sults with limited computational effort by utilizing a rather

basic set of rules.

 In this paper, we are interested in adapting the algo-

rithms presented by Stam [15] and use the models to define

a discrete-event CFD solver developed according to the

conventions of the DEVS and Cell-DEVS formalism.

DEVS formalism [1] has several characteristics which aide

in the development of such simulations. The general nature

of the specifications of the DEVS formalism, in comparison

to other formalisms, allows it to be used in a wide range of

simulation methods [2]. Second, the DEVS formalism pro-

vides a hierarchal approach for coupling models to create

larger, more complex system. Finally, the principle of

DEVS is to separate the model code, which contains the re-

al-world system, from the simulator and the time advance

functions, which allows models to be coupled that have dif-

ferent time advance functions. This makes the DEVS for-

malism a powerful tool for simulating large complex sys-

tems, such as biological systems.

A Cell-DEVS model is defined as a lattice of cells hold-

ing state variables and a computing apparatus, which is in

charge of updating the cell states according to a local rule.

This is done using the current cell state and those of a finite

set of nearby cells (called its neighborhood), as done in Cel-

lular Automata. Cell-DEVS improves execution perfor-

mance of CA by using a discrete-event approach. It also en-

hances the cell’s timing definition by making it more ex-

pressive. Each cell is defined as a DEVS atomic model, and

it can be later integrated into a coupled model representing

the cell space. Cell-DEVS models are informally defined as

shown in Figure 1.

Figure 1. Cell-DEVS Model.

Each cell of the lattice contains information regarding

its neighborhood and its local computing function. This lo-

cal computing function has three main parts: PostCondi-

tion, Delay and PreCondition. That is to say, when defin-

ing the local computing function, simply define the Pre-

Condition that must be satisfied so that the PostCondition

will be applied to that cell after the Delay has expired. By

using a source-destination method of evaluating the cells,

Cell-DEVS allows the cells to be calculated asynchronously

and then updated all at once. This feature allows for the

possibility of parallel computing.

The version of the CD++ modeler used to implement

the model presented in this paper provides several useful

benefits. One such benefit is that the new simulator pro-

vides two ways of implementing state variables. The first is

a local variable that can only be accessed by the cell to

which it belongs. The second is neighbor ports; hereafter

referred to as ports, that functions similar to a variable,

however, it can be accessed by any cell within the designat-

ed neighborhood. These methods improve the efficiency of

the model when large amounts of data is required to be

stored, since the old simulator required the use of multiple

planes to store additional information.

The algorithms by Stam are stable, and allow simula-

tions to be advanced using arbitrary time steps. This feature

is relevant to the time advancement strategies facilitated by

the DEVS formalism. Second, the relative simplicity of

these algorithms lends itself well to the prospect of extend-

ing this solver to handle increasingly complex scenarios.

Third, these algorithms can be performed using a standard

PC for reasonably sized grids of both two- and three-

dimensions. Fourth, as the complete C-code implementation

of these algorithms is published in [15], it can be used for

verification of the Cell-DEVS implementation.

 In the following section, we will introduce the defini-

tion of this CFD model, and will discuss the model imple-

mentation and simulation results.

3. MODEL DEFINITION

The Navier-Stokes equations, named after Claude-Louis

Navier and George Gabriel Stokes, make use of Newton’s

Second law by applying it to fluid flow, and assuming that

the stress on the fluid is proportional to the diffusing vis-

cous term and the pressure term [15].

Equation 1. Velocity Equation in compact vector nota-

tion

Equation 2. Density Equation in compact vector nota-

tion

The first equation is for solving the velocity vectors; the

sum of which is hereafter referred to as the velocity field.

The equation is a re-arrangement of the incompressible

flow of Newtonian fluids. The acceleration () is equal to

the sum of; the negative continuity equation (, re-

sponsible for the conservation of mass), the viscosity (

) and any body forces present (f). In other words, the

change in the evolution of the velocity field is based on the

viscosity and any other forces that may act upon it (such as

a heating vent). While this is the most important part of any

good CFD solver, it provides very little visually. To make it

more useful, we must demonstrate particles moving through

the velocity fields. To move objects, we must simply de-

termine what forces are going to be acting on it, and in what

direction. These forces are extracted from the velocity

fields. Most of the objects we wish to move are relatively

light, and the only relevant forces are those applied by the

velocity field, such as dust or smoke [15]. One could simply

apply these forces to the particles, and see how they move.

However, for more complex models, it would be taxing to

perform these calculations for a large number of particles.

Instead, we could treat the matter as a density of particles,

where instead of either being 0 or 1 (no particle, particle re-

spectively); we would treat it as a gradient value that ranges

from no particles present to some maximum number of par-

ticles present. The forces on these densities are applied us-

ing equation 2, which is similar to the equation used for

evolving velocities, but more simplified since the only forc-

es present are solely generated from the velocity vector

field.

The algorithm was broken into two parts: A density

solver and a velocity solver. Each section represented one

of the Navier-Stoker equations. The two sections were fur-

ther broken into discrete steps that must be completed be-

fore moving on, as seen in Figure2.

Figure 2. Velocity Solver Steps.

As seen in Figure 3, there are three functions used for

both sub-routines: diffusion, advection and projection.

Figure 3. Density Solver Steps.

The diffusion function is responsible for calculating the

natural flow of the particles regardless of the forces exerted

by the velocity fields. The density for the cell is calculated

as the sum of the densities not exiting the cell to the sur-

rounding area and the densities entering the cell from its

neighboring cells, as seen in equation 3. Equation 3 states

that the new density in the cell at position (i, j) is equal to

what will remain in the cell from the original density plus

what will enter the cell from the four cardinal neighbors

(North, South, East and West). The amount of density that

moves between the cells, or viscosity, is determined by the

variable a. To increase the resolution of the model this step

is run multiple times [15].

Equation 3 Diffusion Calculation [15].

The advection function’s role is to apply the forces gen-

erated by the velocity fields. The force acting on the density

at any location is equal to the equivalent velocity vector of

u and v. To apply the forces is significantly more compli-

cated. The simplest approach would be to determine the

destination based on the magnitude of the forces applied.

However, since the system is treated as a cell space and not

all densities will end up in the exact center of the cell after

moving, this would cause problems. Instead, to move the

density, one simply traces backwards from the cell center to

compute where the density would have to come from, as

seen in Figure 4 [15].

Figure 4. Tracing backwards to the source of density.

Then, we take a weighted average of the four cells the

densities will be arriving from to calculate the new density

at the destination. Once this is done, the cell states are up-

dated with their new densities and the process repeated.

Figure 5 shows the movement of densities through a fixed

vector field.

Figure 5. Moving densities, fixed velocity field [15].

During the calculations of the previous steps the results

are rarely mass conserving, an important characteristic to

maintain realism and stability in the model. The projection

function helps conserving mass, and it add some desired

visual effects (swirls and eddies). In order for this to occur,

the velocity field is defined as the sum of a mass conserving

field and a gradient field. To get the mass conserving field,

the gradient field is subtracted from the current velocity

field. The gradient field is calculated using a linear Poisson

system. The projection step is called twice to help maintain

accuracy after the advection step.

 Finally, the behavior between the CFD and its bounda-

ries must be defined. For this paper, we chose the no-slip

condition to model velocity boundary interactions. The the-

ory of the no-slip condition states that the fluid velocity is

always zero at the boundary-fluid interface [16]. For in-

stance, in Figure 6, at the surface of the interaction between

cell A (boundary) and cell B (a fluid), the velocities in these

cells need to average to zero. The velocities are never actu-

ally averaged; instead, the velocity for cell A becomes the

negation of cell B. In this way, where the two cells are av-

eraged, the result would be zero. The interactions between

cells A and B and between cells C and D are straightfor-

ward, since the interaction is between one fluid cell and one

boundary cell. The interaction between cells E, J and F is

more difficult. The value for cell F becomes equal to the

average of the negation of cells E and J. The most difficult

situation to define is an interaction between three fluid cells

and a single boundary cell, as seen between K, L, M and P.

However, such a situation can be avoided by not allowing

boundaries or passageways to be one cell wide.

Figure 6. Model of Boundary Fluid Interactions.

Boundaries: dark cells; Fluids: light cells.

4. MODEL IMPLEMENTATION

As seen in Figures 2 and 3, the model can be broken into

several functions that are used in both sub-routines. Each

individual function is used to resolve one of the terms from

equations 1 and 2. The specific code for the functions will

vary slightly depending on which sub-routine it appears in,

however the core of the code will remain the same.

4.1. Diffusion

The diffusion function is responsible for calculating the

natural flow of the particles regardless of the forces exerted

by the velocity fields. The density for the cell is calculated

as the sum of the densities not exiting the cell to the sur-

rounding area and the densities entering the cell from its

neighboring cells, as seen in equation 3.

The rate at which the densities leave the cells is referred

to as the viscosity and is incorporated into equation 3 as the

value for a. By incorporating the viscosity into the equa-

tion, it is possible to simulate fluids with different parame-

ters. Densities with low viscosities would move through the

fluid with very little diffusion; similar to a liquid moving

through a rigid space, while densities with high viscosities

would rapidly diffuse and take the shape of the container;

which is similar to the behavior of a gas.

 The implementation of equation 3 with the Cell-DEVS

formalism is straightforward. Two ports are used for storing

the information regarding the densities, and they are the

value and diffusion port. The value port stores the result

generated by the diffusion and the advection step, and it is

only updated upon the completion of the advection step.

Therefore, it can be thought of as the x’(i,j) term from equa-

tion 3. The other four values for the x terms come from the

surrounding neighbors’ diffusion port values. The following

code implements this calculation:

~diffusion := ((0,0)~value +

 0.05*((0,-1)~diffusion + (0,1)~diffusion

+(-1,0)~diffusion+(1,0)~diffusion))/1.2))

For this instance, the viscosity was set to 0.05. Figure 7

below shows the evolution of the densities over time, absent

of the presence of any forces generated by the velocity

field:

Figure 7. Diffusing densities over 16 iterations with a

viscosity of 0.05. Dark to light shades represent a high

density to low density gradient.

 As we can see, without any external forces, the densi-

ties diffuse outwards evenly from a high to low density. It is

important to note that the eventually the densities will not

appear anymore. This does not mean that there is no density

for that cell; it could just mean that the magnitude of the

densities is such that it is negligible.

4.2. Advection

The advection step is responsible for the movement of den-

sities and velocity fields. The most obvious method of de-

termining where a density will end up is to trace it forward

based on the velocity field. However, the method described

by Stam [15] suggests that one start in the center of the cell

space and trace backwards to find the origins, based on the

velocity field. Then, the weighted average of the four clos-

est cells is calculated to determine the source density. This

is done because the source is unlikely to be located directly

in the middle of the cell, and therefore the surrounding den-

sities will affect the new density values. The advection step,

as it appears in the original algorithm in [15] is used to

trace the origins of the current density by looking at the

vector field. Since the origin is not likely to be at a cell cen-

ter, a weighted average of the surrounding four cells is tak-

en, their weighting being dependent on their proximity to

the origin location.

A logic map is implemented to determine which cells

are used based on the state values for the velocity vector

component ports, as seen in Figure 8.

In Case #1, the four cells that are circled will be used

when 0 ≤ u ≥ 1 and 0 ≤ v ≥ 1. In Case #2, the four cells that

are circled will be used when -1 <u> 0 and 0 <v> 1.In Case

#3, the four cells that are circled will be used when -1 ≤ u ≥

0 and -1 ≤ v ≥ 0. In Case #4, the four cells that are circled

will be used when 0 <u> 1 and -1 <v> 0.

Figure 8. Break down of the possible sources of the

density for the advection step.

When implemented, a series of if statements is used to

determine which case is required and therefore which cells

are going to be used in the calculation of the new state val-

ue for the value port. The implementation is as follows:

 if(((0,0)~u >= 0 and (0,0)~u <= 1),

//This can be either #1,#4

if(((0,0)~v >= 0 and (0,0)~v <= 1),

//If yes Case #1

((0,0)~u*((0,0)~v*(-1,-1)~diffusion +

(1-(0,0)~v)*(-1,0)~diffusion)+(1-

(0,0)~u)*((0,0)~v*(0,-1)~diffusion +

(1 -(0,0)~v)*(0,0)~diffusion

)) ,

//If not Case#1 than it must be Case#4

((0,0)~u*(abs((0,0)~v)*(-1,1)~diffusion+ ...

)

)),

if(((0,0)~v >= -1 and (0,0)~v <= 0),

// Since u is negative it must be either

// Case#2 or #3. If v is negative than it

// is Case #3

(abs((0,0)~u)*(

abs((0,0)~v)*(0,0)~diffusion + ...)

) ,

// if v is positive than it is Case #2

(abs((0,0)~u)*(

abs((0,0)~v)*(0,-1)~diffusion + ...)

)))

The case numbers match those referred to in Figure 8. The

calculations are done by directly calling the u and v vectors.

The vector components’ magnitudes are equal to s0 and t0

respectively, which for the cases where the vector magni-

tudes could be negative the absolute value of the vector is

calculated by calling the abs() function. To calculate s1and

t1 it is as simple as doing one minus the magnitude of the

vector. This method does eliminate some unnecessary cal-

culations since the (i,j) values are inherently stored during

the simulation process. The values for the densities are

grabbed from the diffusion port, since it is behaving as the

d0 for this model, and being stored in the value port, d(i,j).

4.3. Projection

The projection function is responsible for calculating the

first term of the Navier-Stokes equation, as seen in equation

1. This term is responsible for the conservation of mass.

The implementation of the projection function is done using

two ports, while the remainder of the function is done with-

in the two vector ports. We used two ports to reproduce the

original algorithm. The div port is responsible for the first

part of the computation; hereafter referred to as the div

function, while the p port handles the second part; hereafter

referred to as the p function. The third part is handled by

their respective vector component ports.

The implementation of the div function is straightfor-

ward. The h term is defined as the inverse of the number of

cells in the cell-space. This term is later cancelled out when

the vectors are separated back to component form. The val-

ue for the div port is calculated as the negative of the sum

of the differences of the horizontal and vertical neighbors,

which is scaled by the size of the cell space, h. The follow-

ing is the implementation of the div function:

~div := -0.5*(1/441)*((1,0)~u - (-1,0)~u +

(0,1)~v - (0,-1)~v)

The p port value is calculated as the sum of the corre-

sponding div port state value and the values of the p ports

of the immediately adjacent cells, divided by four. This

process is run for several iterations before proceeding to the

final stage, as follows:

~p :=((0,0)~div + (-1,0)~p + (1,0)~p +

(0,-1)~p + (0,1)~p)/4)

Once the p loop has been completed, we proceed to the

final stage where the results are once again split into com-

ponent form. The u port is updated by taking the current

value and subtracting the difference of the horizontal

neighbors, which have had the scaling factor h removed

from them. The v port is similarly calculated, using the ver-

tical neighbors instead.

~u := (0,0)~u - (0.5)*(441)*

((1,0)~p - (-1,0)~p)

~v:= (0,0)~v - (0.5)*(441)*

((0,1)~p - (0,-1)~p)

During the projection stage, we added the velocity vectors

together to make a single velocity field. However, for the

rest of the algorithm we want to have the velocities in sepa-

rate fields. These steps are used twice for each cycle.

4.4. Boundaries

The no-slip condition states that the velocity should be av-

erage to zero along the boundaries. To implement this we

added an addition function to both sub-routines called

boundary and a port with the same name. The port calcula-

tions for the boundary variable only occur when initializing

the cell-space. It is here that the boundaries and obstacles

are created for the model, and they provide a reference lo-

cation of these obstacles. For example, to create boundaries

along the borders of cell-space the following code is used:

~boundary := if(time = 0 and (cellpos(1) = 0

or cellpos(1) = 49 or cellpos(0) = 0 or cell-

pos(0) = 49), 2, (0,0)~boundary)

The boundary function is only used in the density solver

sub-routine twice. After the diffusion of the densities and

the advection of the densities. The purpose here is to ensure

that the value port remains empty in cells that contain a

boundary. This is only a precaution since the velocity fields

should stop the densities from entering these cells. Addi-

tionally, to ensure mass is not lost to densities being dif-

fused into the boundary cells we, the diffusion port is set to

equal the average density of its neighboring cells; which

with this method of implementing boundaries is never more

than two. The following code is how this is implemented:

 ((0,1)~diffusion*(1 ((0,1)~boundary)/2) +

(0,-1)~diffusion*(1 - ((0,-1)~boundary)/2) ...)

Instead of using a set of if statements to covers all the

possible set ups, this equation handles all of them The diffu-

sion values for the four adjacent cells are summed, with

specific cells being zeroed if they are a boundary cell, and

then divided by the number of non-boundary cells. Similar-

ly, the boundary function zeroes out the cells that are de-

fined as boundaries for the div port, again just as a precau-

tion, and ensure there is no mass lost to the system.

The more important role of the boundary function is to

control the behavior of the velocity fields around the

boundaries. As previously stated, the no-slip condition

states that the average of the velocity field should be zero

along the edge of the boundaries. What is nice about this

model is that the velocities are stored in component form.

This mean the only boundaries that are of interest to the u

vectors are the surfaces that run perpendicular to the vec-

tors, in this case vertical boundaries, while the v vectors

look at the horizontal boundaries. When running the

boundary function for the vector ports, you trace along the

boundary and set the vector ports for those boundary cells

to be equal to the negative of the neighboring non-boundary

cell’s corresponding vector port. That way if you were to

average the two values the result would be zero. This zero-

ing of the velocity field will stop the densities from interact-

ing with the boundaries. To make it easier to implement, if

we ensure that no boundaries are a single cell thick, we do

not have to worry about a situation arising similar to that of

L in Figure 6. An example of how this is implemented is as

follows:

if((0,0)~boundary = 2,

//If the cell is a boundary cell then,

if((0,1)~boundary !=2,

//If the cell to the right is empty

-1*(0,1)~v,

if((0,-1)~boundary != 2,

//If the cell to the left is empty

-1*(0,-1)~v,0))

(0,0)~v)

//If neither case is true, no changes

This process is repeated for the u port values as well.

Before the functions can be implemented, we must first

initiate the parameters of the model. The first parameter is

the neighborhood. As the advection routine sometimes

makes use of additional cells, the model uses the nearest

neighbors. Secondly, to store all the necessary information

and perform the calculations required in each function re-

quires the use of seven ports: value, diffusion, u, v, p, div

and boundary. The local computing function for this model

will be defined as a single rule. Since a single frame of the

simulation cannot be completed in a single time step, the

run during specific periods as outlined in table 1.

Table 1. Timing information for functions during one

execution frame lasting 20 time steps.

 As you can see after 20 time steps, the routine is com-

pleted. Therefore, time steps with a multiple of 20 are re-

garded as a single frame.

5. RESULTS

In order to test the model, we executed several simulations

scenarios, adjusting the velocities, densities and viscous

properties. The simulations are uploaded and executed re-

motely on the RISE server [17] using the new version of the

CD++ simulator presented in the introduction. The results

are then downloaded and visualized using a 2D tool, as seen

in the different figures presented in this section.

The first simulation presented here includes a test case

presented in [7], which we used to verify the new model

(which does not present differences with the current results.

The initial conditions include a single focus of densities and

a non-uniform velocity field. The velocities are between the

range of 0.6 <u< 0.8 and 0.1 <v< 0.3, or -0.2 <u< -0.4 and

0.6 <v< 0.8. Figure 9 shows the results of this simulation

(the arrows represent the vector force being applied to the

density focus).

Figure 9. First Test with non-uniform velocity field and

viscosity of 0.05.

The new model was able to provide results with a bet-

ter resolution and a better representation of the evolution of

the velocity field. Additionally, the results were generated

in a fraction of the time. Originally, we could only run a 50-

by-50 cell space (2500 cells), as it was built using seven

additional layers, each of them used to use a different piece

of information needed by the model (17500 cells). For a

reasonable number of frames it would take between 6-8

hours to complete a simulation. The new model is able to

complete a simulation of similar size and length in less than

one hour.

The next two simulations were to used test the new ad-

dition to the model, boundaries. The scenario was set up

similar to a wind tunnel were the velocity field was manly

wind blowing in one direction and a density cloud injected

into the tunnel. The one key difference was that we still

wished to see how the velocity field interacted with the

boundaries as well as the densities. For this reason, instead

of a constant input of blowing force on the velocity field,

similar to a true wind tunnel, a single initiation of the cell

space was used. Figures 10 and 11 show the results for

these tests with arrows used to represent the forces applied

by the velocity fields.

 In Figure 10, we can see a density focus encountering

a fixed obstacle. With the viscosity set relatively low for

both the velocity and the density (0.05), we can see that the

focus splits into two distinct densities and they are pulled

back together mostly by the velocity field. With the viscosi-

ty of the velocity field being low, we see a space of zero ve-

locity directly behind the obstacle, as we would expect.

Figure 10. Second Test scenario with small obstacle.

 The next simulation presented here used the exact

same parameters as before, however, the obstacle was made

larger and the velocities only were allowed flowing around

in on one path.

In Figure 11, we see the focus encountering the obsta-

cle. The majority of the density is redirected by the evolv-

ing velocity to flow around the obstacle and stay within a

high velocity field. However, through diffusion and the

momentum of the foci, some of the density entered the low

velocity field caused by contact between the field and the

obstacle. This can be seen as the long tail that extends from

the foci. Again an area of null velocity occurred behind the

obstacle, however, this time the obstacle was larger and the

field could only flow around in one direction. Consequent-

ly, the null region extended further behind the obstacle.

Figure 11. Third Test scenario with large obstacle.

The velocity fields behaved as expected. The no-slip

boundary condition stated that the velocity should be zero

along the surfaces. What we expected to see was a slowing

down of the velocities near the surfaces of boundaries and

that is what we see in the results, best described in Figure

11. The other interesting behavior to note is the one of the

velocities behind an obstacle perpendicular to the direction

of travel. In Figure 10, the obstacle was small and the ve-

locities were able to travel around either side. As we would

expect, the velocities immediately behind the obstacle are

zero and this null zone take the shape of a teardrop. How-

ever, when the density had passed the obstacle, some of it

was “pulled” backward into this null zone in a similar fash-

ion to an eddy current. This current eventually stabilized

and the densities escaped. The second simulation involved

the use of a larger obstacle, and it only allowed the veloci-

ties to flow around one side of it. As expected, the null zone

behind the obstacle was larger and no eddy current was

produced.

There are three functions that produce the specific re-

sults that can be seen in the two simulations. The first func-

tion to look at is the diffusion function, which is more obvi-

ous when used in the density solver, since the density focus

spreads out over time. The diffusion of the velocities is

more subtle. Without the diffusion of the velocity field, the

null zone behind the obstacle would most likely be larger

since there is no force pulling the velocities into this area of

low pressure. The diffusion function is clearly the driving

force that provides the force that draws the velocities into

this null region.

The next function to look at is the advection. Again, the

most obvious application of the advection function that can

be noted is the movement of the density foci. The forces are

being correctly applied to the density field, since the result-

ing behavior is as expected. The more subtle expression of

this function is in the velocity field. The initiation of both

models was the same in that a uniform velocity field was

generated with no null zones. The null zones are created by

the momentum of the velocity driving itself forward, and

the obstacle preventing velocities from taking the place of

the forces that left.

As previously described, the projection function was re-

sponsible for ensuring that the fields remain mass conserv-

ing and for visual effects. Due to the nature of how the ad-

vection function was implemented, if the system were not

mass conserving we would see densities disappearing in re-

gions where the velocities are larger than allowed, since

there are no conditions to handle this. Clearly, the projec-

tion function is performing its most critical role since no ve-

locities are exceeding a magnitude of 1, which considering

the initial values ranged from 0.9 to 1.0 would definitely

occur if the system were not mass stable.

 The results of our simulations showed that the individ-

ual functions are working exactly as expected. The integra-

tion of these functions built a model that is fully functional

and accurately describes the mechanics of the fluid flow.

6. CONCLUSION
Fluid dynamic solvers are used in a wide variety of applica-

tion ranging from video games and entertainment to model-

ing of environmental events and biological systems. In this

research, a CFD solver is proposed that uses the parameters

of a CA in Cell-DEVS. The asynchronous and more effi-

cient computing grid of Cell-DEVS with the continuous

time-base allowed for more realistic simulation of fluid dy-

namics. We showed how CD++ toolkit was used to imple-

ment the Cell-DEVS model of the Navier-Stokes equations

for CFD. We were able to create a fluid dynamic solver that

met the requirements of a Cellular Automata, demonstrating

that it is possible to create models of vary complex phe-

nomenon using a relatively simple technique. The model

was a significant improvement to the first version, in that it

was able to provide results with a better resolution in a sig-

nificantly shorter time. The model also improved the size of

the log files generated which was a major concern of the

last model, without sacrificing the ability to access the high

level of detail generated during the evolution of both the

density and velocity field. The results shown in this paper

demonstrate that it is possible for a CFD model to be creat-

ed and coupled to help resolve the physics of the fluid flow

in any system: biological, environmental, etc.

REFERENCES
[1] Anderson, J. D. "Basic philosophy of CFD." Computational

Fluid Dynamics, pp. 3-14, 2009.

[2] Ilachinski, Andrew "Cellular Automate: A Discrete Uni-

verse" World Scientific Publishing Co. 2001.

[3] Wainer, G. A. Discrete-event modeling and simulation: a

practitioner's approach.CRC, 2009.

[4] Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000) Theory of

modeling and simulation. 2000.

[5] Kidisyuk, Kiril, and Gabriel A. Wainer. "CD++ Modeler: a

graphical toolkit to develop DEVS models." In Proceedings

of the 2008 Spring Simulation multi-conference, p. 8.Society

for Computer Simulation International, 2008.

[6] Venhola, Wilson, and Gabriel Wainer. "DEVSView: A tool

for visualizing CD++ simulation models." SIMULATION

SERIES 38, no. 1 (2006): 133.

[7] M. Van Schyndel, G. Wainer, M. Moallemi. Computational

Fluid Dynamic Solver based on Cellular Discrete-Event

Simulation. In Proceedings of SIMULTECH

2013.Rejkyavik, Iceland. 2013.

[8] Toro, Eleuterio F. "Rienmann Solvers and Numerical Meth-

ods for Fluid Dynamics: A Practical Introduction 3rd Edi-

tion" Springer-Verlag Berlin Heidelberg. 2009.

[9] Saleh, Jamal Mohammed.Fluid flow handbook. New York

(NY): McGraw-Hill, 2002.

[10] Currie, I. G. Fundamental Mechanics of Fluids, McGraw-

Hill, Inc., 1974.ISBN 0-07-014950-X.

[11] J.M. Saleh, Fluid Flow Handbook, McGraw-Hill, New York,

2002.

[12] M.C. Sukop, D.T. Thorne, Jr., Lattice Boltzmann Modeling:

An Introduction for Geoscientists and Engineers, Springer,

2006.

[13] J.M.V.A. Koelman, Cellular-Automata-Based Computer

Simulations of Polymer Fluids, Numerical Methods for the

Simulation of Multi-Phase and Complex Flow: Lecture

Notes in Physics, vol. 398, 1992, 146-153.

[14] J.M.V.A. Koelman, M. Nepveu, Darcy flow in porous media:

Cellular Automata Simulations, Numerical Methods for the

simulation of multi-phase and complex flow: Lecture notes

in Physics, vol. 398, 1992, 136-145.

[15] J. Stam, Real-Time Fluid Dynamics for Games, Proceedings

of the Game Developer Conference, San Jose CA,2003.

[16] J.D. Müller, M. Jitsumura, N.H.F. Müller-Kronast, Sensitivi-

ty of flow simulations in a cerebral aneurysm, Journal of

Biomechanics, vol. 45, 2012, 2539-2548.

[17] Al-Zoubi, K., & Wainer, G. (2010). RISE: Rest-ing hetero-

geneous simulations interoperability. In Simulation Confer-

ence (WSC), Proceedings of the 2010 Winter . IEEE.

