
Computational Fluid Dynamic Cell-DEVS M&S of Coronary
Heart Disease

Michael Van Schyndel Gabriel Wainer

System & Computer Engineering
Carleton University
Ottawa, ON, Canada

Azam Khan Rhys Goldstein
2Autodesk Research

210 King St. East, Toronto
ON M5A 1J7, Canada

Keywords
Computational Fluid Dynamics, Cell-DEVS, Cellular
Models

Abstract
Computational Fluid Dynamics (CFD) deals with
computing the equations of fluid flows using numerical
methods instead of partial differential equations. The
Discrete-Event System specification (DEVS) theory has
already been used to approximate various continuous
systems by applying a quantized state system approach. In
this research, we experimented with a method based on
Cell-DEVS theory and CFD, building a uniform set of rules
for to apply to each cell and execute the state changes of
the cells asynchronously. We show how this harmonized
set of state changes can effectively render the dynamics of
the fluid. To do so, we show an application of the model in
the narrowing of the coronary arteries due to plaque
buildup.

1. INTRODUCTION
Computational Fluid Dynamics (CFD) solving is the
process for calculating and describing the physics of the
movement and interaction of fluid flow with the use of
numerical methods [1]. Currently there exist no analytical
solution; however, various numerical methods have been
proposed, including Cellular Automata (CA) [2]. The
behavior of the motion is defined with the Navier-Stokes
equations, which are a representation of Newton’s Second
Law of motion. These cells are solved for discrete durations
of time and the results rendered to provide results that are
more meaningful.
 Cell-DEVS is a derivative of the DEVS formalism
that implements CA. The cells execute, which reduces
unnecessary processing burden, with a continuous time
base. Each cell is treated as a DEVS atomic model [4] were
the state changes are event driven. Cell-DEVS was
originally introduced for modeling and simulation of spatial
systems however, there has been no research on adopting it
for CFD. In n this research, we propose using the Cell-
DEVS methodology to implement CFD equations to
simulate fluid dynamics. The rule-based nature of cellular
model behavior definition provides a platform for area-wise
behavior definition, leading to easier and faster adoption
and implementation of CFD solver algorithms.
Additionally, simulating with DEVS allows interfacing

CFD models with other models defined in different
formalisms with ease.

The research and solver presented here are an
improved derivative of the solver presented in [5]. By using
a new solver and implementing a new strategy for defining
the rules, it was possible to increase the computational
efficiency drastically. We will discuss the framework that
can be used in a real-case application about Coronary
Artery Disease (CAD), which is trying to narrow the
coronary arteries due to plaque buildup will affect the flow
of blood to the heart muscles.

2. RELATED WORK
Fluid dynamic solvers have been used for a wide variety of
purposes. The goal is to create a realistic representation of a
naturally occurring fluid system such as rising smoke or
blowing dust. The flow of fluids can be viewed as solid
particles interacting with a velocity field, or as a density of
particles. There are different methods for solving the
evolution of these fields and densities, such as, Lattice-Gas
[6], Navier-Stokes Equations [7] and Riemann Solvers [8].
In [9], Stam proposed a new method of resolving the
Navier-Stokes equations. A cell lattice is spanned over the
simulation window with each cell holding unique
information regarding that particular area. Each cell stores
a density value and the horizontal and vertical components
of velocity. The cell spaces are updated simultaneously at
discrete time intervals. This algorithm provided realistic
results with limited computational effort by utilizing a
rather basic set of rules.
 We are interested in adapting the algorithms presented
by Stam [9] and to use the models to define a discrete-event
CFD solver developed according to the conventions of the
DEVS and Cell-DEVS formalism. DEVS [1] has several
characteristics which aide in the development of such
simulations. The general nature of the specifications of
DEVS allows it to be used in a wide range of simulation
methods [2] (parallel, distributed, real-time). DEVS
provides a hierarchal approach for coupling models to
create larger, complex models with different methods.
DEVS separates the model code, which contains the real-
world system, from the simulator and the time advance
functions, which allows models to be coupled that have
different time advance functions. This makes the DEVS
formalism a powerful tool for simulating large complex
systems, such as biological systems.

A Cell-DEVS is an extension defined as a lattice of
cells holding state variables and a computing apparatus,

which is in charge of updating the cell states according to a
local rule. This is done using the current cell state and those
of a finite set of nearby cells (called its neighborhood), as
done in CA. Each cell is defined as a DEVS atomic model,
and it can be later integrated into a coupled model
representing the cell space (Figure 1).

Figure 1. Cell-DEVS Model.

Each cell of the lattice contains information regarding
its neighborhood and its local computing function. This
local computing function has 3 main parts; a
PostCondition, a Delay and a PreCondition. When defining
the local computing function, we define the PreCondition
that must be satisfied so that the PostCondition will be
applied to that cell, and after the Delay has expired, that
value is transmitted to other cells in the neighborhood (or to
other DEVS models). Cell-DEVS allows for the cells to be
calculated asynchronously and then updated all at once.
This feature allows for the possibility of parallel
computing.

The CD++ software [4] provides a development
environment to create and navigate through the process of
Modeling and Simulation (M&S) of a Cell-DEVS model.
CD++ is an open-source framework that has been used to
model environmental, biological, physical and chemical
models as well as many other real-life simulations. The
toolkit includes a high-level scripting language keyed to
Cell-DEVS, a simulation engine, a testing interface and a
basic 2D and 3D graphical interfaces. The following code
is a sample of the implementation of a Cell-DEVS coupled
model in CD++.

[cfd]
type : cell width : 75 height : 25
delay : transport border : wrapped
neighbors : cfd(-1,-1) cfd(-1,0) cfd(-1,1)
neighbors : cfd(0,-1) cfd(0,0) cfd(0,1)
neighbors : cfd(1,-1) cfd(1,0) cfd(1,1)
localtransition : Navier-Stokes
neighborports : value diffusion u v boundary p div

In this example, we see the definition of a Cell-DEVS
coupled model named cfd. We define the model’s
dimensions, and the number of cells per dimension (in this
example, two dimensions, 75x25). We then determine the
behavior of the boundaries (border). In this example, the
model is continuous along all the boundaries (wrapped).
The other option is to have unwrapped borders, in which
case special rules must be used for the cells in the borders.

During the evolution of a model, the values used in the
local computing function are taken from the defined set of
surrounding (the neighborhood), defined next.

The user can employ a number of state variables in each
cell, and input/output ports in the cell. Variables are useful
for storing information locally, to be accessed by the cells
during the local computing function calculations; however,
the information stored within them could only be accessed
by the cell to which it was linked and not by any
neighboring cells. I/O ports allow transmitting information
to any of the neighboring cells.

At this point, all that remains is defining the local
computing function, that is, the set of rules located in each
cell that governs cell behavior and determines the state
changes. The following is an example of such a rule:

rule : { ~value := if((0,-1)~value = 1, 0,1); }

100 { (0,0)~value = 1 }

Here the PreCondition is that the state of the value port

must be equal to one. If this is true then the state of the
value port is equal to zero if the neighboring state is one
else it would retain the state value of one. This is the
PostCondition. Finally, the delay is set; in this case a
delay of 100ms was chosen. In the following section, we
will introduce the definition of our CFD model, and will
discuss the model implementation and simulation results.

3. MODEL DEFINITION
The Navier-Stokes equations, named after Claude-Louis
Navier and George Gabriel Stokes, make use of Newton’s
Second law by applying it to fluid flow, assuming that the
stress on the fluid is proportional to the diffusing viscous
and the pressure terms [9].

∆�
∆�

= 	−��. ∇
� + �∇	� + �	
∆�
∆�

= 	−��. ∇
� + �∇� + �

Equation 1. Velocity and Density Equations
The first equation is for solving the velocity vectors; the

sum of which is hereafter referred to as the velocity field.
The equation is a re-arrangement of the incompressible
flow of Newtonian fluids. The acceleration (∆�

∆�
	
	 is equal

to the sum of the negative continuity equation ��. ∇
� ,
responsible for the conservation of mass),the viscosity
��∇2	�) and any body forces present (f). In other words, the
change in the evolution of the velocity field is based on the
viscosity and any other forces that may act upon it (such as
a heating vent). While this is the most important part of any
good CFD solver, it provides very little visually. To make it
more useful, we must demonstrate particles moving
through the velocity fields. To move objects, we must
simply determine what forces are going to be acting on it,
and in what direction. These forces are extracted from the
velocity fields. Most of the objects we wish to move are
relatively light, such as dust or smoke [9]. One could
simply apply these forces to the particles, and see how they
move; however, for more complex models, it would be

taxing to perform these calculations for a large number of
particles. Instead, we could treat the matter as a density of
particles, where instead of either being 0 or 1 (no particle,
particle respectively), we would treat it as a gradient value
that ranges from no particles present to some maximum
number of particles present. The forces on these densities
are applied using the second equation, which is similar to
the equation used for evolving velocities, but more
simplified since the only forces present are solely generated
from the velocity vector field.

The algorithm was broken into two parts: A density
solver and a velocity solver. Each section represented one
of the Navier-Stoker equations.

The diffusion function is responsible for calculating the
natural flow of the particles regardless of the forces exerted
by the velocity fields. The density for the cell is calculated
as the sum of the densities not exiting the cell to the
surrounding area and the densities entering the cell from its
neighboring cells, as seen in Equation 2.

���, �
 	=
����, �
� + 	� ∗ ���� − �, �
 + 	��� + �, �
 + 	���, � + �
 + 	���, � − �
��

	� + !

Equation 2. Diffusion Calculation [9].

The rate at which the densities radiate between cells is
referred to as the viscosity and is incorporated into the
equation as the value for a. By incorporating the viscosity
into the equation, it is possible to simulate particles with
different behaviors. A low viscosity would cause the
densities to have very little diffusion, similar to a liquid;
while a high viscosity would rapidly radiate to the
surrounding cells and take the shape of the container, which
is similar to the behavior of a gas.

The advection function’s role is to apply the forces
generated by the velocity fields. The force acting on the
density at any location is equal to the equivalent velocity
vector of u and v. To apply the forces is significantly more
complicated. The simplest approach would be to determine
the destination based on the magnitude of the forces
applied. However, since the system is treated as a cell space
and not all densities will end up in the exact center of the
cell after moving, this would cause problems. Instead, to
move the density, one simply traces backwards from the
cell center to compute where the density.

The diffusion function is responsible for calculating the
natural flow of the particles regardless of the forces exerted
by the velocity fields. This natural flow, or diffusion, is
represented in the Navier-Stokes equations as the radiation
term. In addition to resolving the radiation of the densities,
it is also responsible for resolving the radiation of the
velocity field. The implementation of equation 2 with the
Cell-DEVS formalism is straightforward. The x(i,j) term is
replaced with the port for which the state value is
calculated. For example when the values stored within the
diffusion port are being diffused, the x(i,j) term is replaced
by (0,0)~diffusion, similarly the x(i±1,j±1) terms are
replaced by the corresponding neighbors’ diffusion port

values. Finally, the x’(i,j) is replaced with the state value
stored in the value port.

To calculate the new state value for the cell we must
first determine two factors: the particles leaving the cell
and the particles entering the cell from the immediately
adjacent cells. Therefore the new cell value will be equal to
the previous state value minus the densities leaving to the
surrounding cells plus the particles entering the cell, as seen
in equation 3.
"#$%�&, '
 = "�&, '
 − "()*+,-.�&, '
 + 	"$-�)/,-.�& ± 1, ' ± 1

 Equation 3. Calculating the new density values

After calculating the diffusion, we invoke an advection

function whose purpose is to “move” the densities and
velocity fields. This movement generated is caused by
either the forces acting upon the density field from the
velocity fields, or, in the case of the velocity solver, the
momentum of the velocity fields. The velocity field is
composed of velocity vectors which are stored in
component form, hereafter referred to as velocity
component vectors where u represents the horizontal
component and v represents the vertical component. In
other words, the advection function resolves the last term of
the Navier-Stokes equations. While there are many
methods for which the forces could be interpreted to
resulting movements, the method used in this thesis is
stable and works with the Cell-DEVS.

The approach to moving densities is to determine the
densities entering the cell instead of where the densities
currently in the cell will end up. To implement this process
we must first ensure that the origin of the densities lie
within the defined neighborhood.

If we can ensure that the velocity vectors will remain
within a set range we can define a neighborhood with 100%
certainty that the displacements will not exceed the
neighborhood boundaries. In our model, the maximum
absolute value of the magnitudes for the velocities is set to
be one, therefore the neighborhood was defined as the 8
cells surrounding the cell being computed (called a
Moore’s Neighborhood). The magnitude of the velocity
component vectors was limited to one for several reasons.
First, if the modeler is not careful, large movements can
cause instability in the model. The backwards tracing
method is supposed to lead to a more stable model. Second,
larger velocities would require a larger neighborhood; this
would result in the need for additional cases and overall
increase the computational effort.

The probability that the location in which the densities
originated is at the cell center is rare. For this reason, the
densities that will be “moved” to the new cell location will
most likely come from 1 or more cells. Therefore, the new
density state value is calculated as a weighted average of
the four closest cells to the origin. For example, if we
assume the velocity component vectors at the current cell
are u = 0.6 and v = 0.4, the cell from which the densities
originate from would be at (-1,1) (Figure 2).

Figure 2. Results of the advection calculation

The amount of the densities coming from each cell is
proportional to the area of each cell enclosed by the square.
The following equation is used to determine these amounts:

"�0,0
 = �	� × �	� × 4��−1,0
 + �1 − �
 × 4��−1,1
� +
�1 − �
 × �	� × 4��0,0
 + �1 − �
 × 4��0,1
��

Equation 4. Weighted averages for new density

Using the values previously described the results would

be as follows: 36% of the density originates from the cell
location (-1,1), while 24% from both (-1,0) and (0,1) cells
and the remaining 16% comes from (0,1) cell; this totals to
100% therefore the formula is mass conserving.

As previously mentioned, the magnitudes for the
velocity component vectors were restricted to fall between
1 and -1. These forces would translate to the maximum
distance traveled to the cell being 1. This means there are
four different combinations for which the velocity
components could be. Therefore, four versions of equation
4 must be defined to represent the possible outcomes.

Figure 3. Possible sources of the density for advection

The first case is for when the velocity component

vectors are between 0 ≤ u ≥ 1 and 0 ≤ v ≥ 1:

"�0,0
 = �	� × �	� × 4��−1,−1
 + �1 − �
 × 4��−1,0
� +
�1 − �
 × �	� × 4��0, −1
 + �1 − �
 × 4��0,0
��
Equation 5. Weighted Average for new density Case #1

The second case is for when the velocity vectors are
between; -1 < u > 0 and 0 < v > 1:

"�0,0
 = �	|�| × �	� × 4��0, −1
 + �1 − �
 × 4��0,0
� +
�1 − |�|
 × �	� × 4��1,−1
 + �1 − �
 × 4��1,0
��
Equation 6. Weighted Average for new density Case #2

The third case is for when the velocity vectors are
between; -1 ≤ u ≥ 0 and -1 ≤ v ≥ 0:

"�0,0
 = �	|�| × �	|�| × 4��0,0
 + �1 − |�|
 × 4��0,1
� +
�1 − |�|
 × �	|�| × 4��1,0
 + �1 − |�|
 × 4��1,1
��

Equation 7. Weighted Average for new density Case #3

The final case, case 4, is for when the velocity vectors
are between; 0 < u > 1 and -1 < v > 0:

"�0,0
 = �	� × �|�| × 4��−1,1
 + �1 − |�|
 × 4��−1,0
� +
�1 − �
 × �	|�| × 4��0,1
 + �1 − |�|
 × 4��0,0
��
Equation 8. Weighted Average for new density Case #4

The advection function is therefore represented by these
4 equations. These same equations are used for moving the
velocity vectors as well, with the only difference being that
instead of density values being used, the magnitudes of the
velocity vectors are being averaged.

After the advection calculation, the projection function
is responsible for calculating the first term of the Navier-
Stokes equation. The main role of that term is to ensure the
solution to the equation remains mass-conserving. The
projection function is the most complex function of the
entire model and therefore, the information generated
during the execution is stored in two separate ports, while
the remaining information from the function is stored
within the two vector component ports. These two parts are
hereafter referred to as the div and p functions. The div
function is responsible for creating a gradient map. A
gradient map shows changes in the velocity fields, with
small values representing a uniform field with little
variation and large values representing extreme fluctuations
in the velocity field. To ensure the system remains stable,
i.e. mass is not lost or created, we want to ensure that
situations do not arise were the velocity vectors all
converge to a point or diverge from a point, as seen in
figure 4.

Figure 4. Convergent and Divergent Velocity Fields

Figure 4 shows a case of convergence and divergence,

which could cause instability. For example, while the
densities can theoretically exceed a value of 1 without
causing instability this may not be a desired outcome. More
importantly though is this may cause the magnitude of the
velocity component vectors to exceed 1 at this location and
that is not allowed. Similarly, with the divergent case, were
all the velocities are leading away from the cell, the density
at the center cell would follow each velocity vector without
being divided amongst all of the vectors. This would result
in more mass leaving the cell then was actually present in
the cell, once again leading to instability. The equation for
generating the gradient map is as follow:

4&�[&, '] = 	−0.5 ∗ 1/ℎ ∗ �	��& + 1, '
 − ��& − 1, '
 + ��&, ' + 1

− ��&, ' − 1
	

Equation 9. Generating the gradient field

As we can see, the gradient field is calculated as the
sum of the differences of the vertical and horizontal
neighbors. Therefore, a small gradient value will occur
when the change in values of the neighborhood is small.
Large gradient values will occur when the values of the
velocities make extreme changes but still maintained the
same sign. The largest, and worst case, is when the values
are opposite signs on either side of the cell. Once we have
obtained the gradient field, the p function is executed.
Similar to the diffusion function it helps average the values
out, reducing large gradient changes. The equation for the p
function is as follows:

��&, '
 = [4&��&, '
 + ��& − 1, '
 + ��& + 1, '
 + ��&, ' − 1

+ ��&, ' + 1
]/4
Equation 10. Averaging the gradient field

This equation is run for several iterations. The final step
is to subtract the gradient field from the velocity field. The
result will be a more stable field, void of any situations
such as those shown in figure 4. The following two
equations represent the gradient field being subtracted from
the velocity field.

��&, '
 = �	���&, '
 − 0.5 ∗ ℎ ∗ �	��& + 1, '
 − ��& − 1, '
�
��&, '
 = �	���&, '
 − 0.5 ∗ ℎ ∗ �	��&, ' + 1
 − ��&, ' − 1
�	

Equation 11. Subtracting the gradient field from the
horizontal and from the vertical fields

Again, for small changes in the velocity field the p

values will be equal and therefore the final velocity field
will not be changed. Even for large differences that occur
between velocities of the same sign, the p value will have
been averaged such that the final difference in the p values
will not be that large, and will not affect the final field
significantly.

The projection function is repeated twice for the
velocity solver in order to ensure that changes made to the
velocity field during the diffusion or advection functions do
not cause any convergent or divergent behaviors in the
velocity field. For example, if two “fronts” are about to
collide, the diffusion process could bring them close
enough together. This would cause problems to occur
during the advection process. Therefore the projection
function is used to help negate this. However, this would
only effect the leading edges of these “fronts” and once
again when advected the fronts may come near enough that
they are convergent. During the diffusion process these
fronts would be averaged and the result could be that they
cancel each other out. This is not the desired effect;
therefore, we call the projection function once more to
ensure this does not occur.

After, we execute the boundary function is to define the
behavior of fluid-boundary interactions. The no-slip
condition states that the velocity should average to zero

along the boundaries. To implement this, we added an
additional function to both solvers called the boundary
function. The main goal is to ensure the system remains
mass conserving and provides the behavior of the fluid-
boundary interactions. The most important role of the
boundary function is to control the behavior of the velocity
fields around the boundaries. As previously stated, the no-
slip condition states that the average of the velocity field
should be zero along the edge of the boundaries. What is
nice about this model is that the velocities are stored in
component form. This mean the only boundaries that are of
interest to the u vectors are the surfaces that run
perpendicular to the vectors, in this case vertical
boundaries, while the v vectors look at the horizontal
boundaries. When running the boundary function for the
vector ports, you trace along the boundary and set the
vector ports for those boundary cells to be equal to the
negative of the neighboring non-boundary cell’s
corresponding vector port. That way if you were to average
the two values the result would be zero. This zeroing of the
velocity field will stop the densities from interacting with
the boundaries. By ensuring that boundaries are more than
one cell wide, we reduce the loss that would be generated
from having to average the values of more than two cells.
When a boundary is in contact with only one non-boundary
cell, it is equal and opposite to the state value of the non-
boundary cell. When in contact with two non-boundary
cells, it needs to assume a state value that is equal and
opposite to the average of the adjacent cell’s state values.
This introduces the possibility for some loss of mass to
occur, however it is minimal.

As previously mentioned, the other role of the boundary
function is to ensure the system remain mass conserving,
i.e. that the presence of boundaries does not negatively
impact the system. Therefore, the boundary function is
integrated when the other functions are called. For
example, to ensure no mass is lost during the diffusion of
the densities, the boundary cells assume a value that is
equal to the average of the surrounding non-boundary cells,
as seen in equation 13.

"<=�->*/?�&, '
 =
�@�A	B�	CBD	EB�D4FGH	IJKKL

#	B�	CBD	EB�D4FGH	IJKKL

Equation 12. Boundary Equation

In figure 5, we can see a density focus encountering a
fixed obstacle. With the viscosity set relatively low for both
the velocity and the density (0.05), we can see that the
focus splits into two distinct clouds, mostly by the velocity
field. With the viscosity of the velocity field being low, we
see a space of zero velocity directly behind the obstacle, as
we would expect.

The projection function was responsible for ensuring
that the fields remain mass conserving and for adding
visual effects. First, as can be seen in figure 5, the velocity
vectors never exceed their allowed size. As we expected the
velocities were slowed by the presence of barriers. More
importantly though is how the projection function handled

the collision between the velocity field and the obstacle. As
described earlier the velocity value for the “boundary” cells
should be equal to the negative of the neighboring cells, as
seen in the first frames of the figure. This would cause a
convergence in the velocity field, which causes instability.
It is to handle these situations that this function exists. As
seen in the second set of frames from figure 5, it handles
this convergence of forces by taking the forces entering the
area directly in front of the obstacle from the velocity field,
and diverting the horizontal forces up and down.

Figure 5. Velocity Component Vectors u and v: initial

values and mid simulation values with an obstacle

This is a solution reflects the real-world behavior of

such a fluid-boundary interaction. The final goal of the
projection function is to create visual effects such as eddies.
In the real world, forces would be drawn into the null
region created behind an obstacle. As seen in figure 6, the
projection function causes forces created to drive the
densities into this space.

Figure 6. Vertical velocity component with obstacle.

Figure 6 shows the vertical forces acting on the

densities. As we can see, upon initial contact with the
obstacle the projection function creates a force that pushes

the densities around the obstacles and pulls them back in
behind the obstacle to the area of low pressure.

4. APPLICATION
In this section we discuss a real-world application for the
model. We will look at the effect the narrowing of the
coronary arteries due to plaque buildup will affect the flow
of blood to the heart muscles. The simulations are uploaded
and executed remotely on the RISE server [10] using the
CD++ simulator presented in the introduction. The results
are then downloaded and visualized using a 2D tool, as
seen in the different figures presented in this section.

Coronary Artery Disease (CAD) is the leading form of
heart disease and the leading cause of heart attacks,
resulting in the most deaths world-wide. CAD happens
when plaque builds up on the artery walls. This
accumulation of plaque hardens, and thus narrows the
arteries. This narrowing restricts blood flow through the
arteries, and since these arteries are supplying blood to your
heart, the restriction of blood flow weakens it. The
dangerous part of CAD is that typically patients suffering
do not show any immediate signs or symptoms. Eventually,
the myocardial cells will become ischemic from the lack of
oxygen and potentially cause a heart attack [11].

To detect for CAD, doctors often perform an angiogram.
In an angiogram, dye is injected into the coronary artery via
a catheter and a rapid series of x-ray images are used to
track the flow of the dye through the arteries and detect any
narrowing or blockages [12].

CFD is used to simulate the interaction between blood
flow, artery walls, and the plaque that can lead to CAD [13].
This application of CFD may benefit from the possibility of
generating patient-specific models of arterial geometry
using angiogram data [14]. The example presented here
differs from studies found in medical literature in that
blood flow is modeled with a rule-based approach using
Cell-DEVS methodology.

The following simulation is an attempt to demonstrate
how the narrowing of the arteries affects the blood flow.
Several scenarios will be run: a control test blockage (0%),
a minor blockage (17%), a medium blockage (35%), a
major blockage (52%), and a late stage CAD blockage
(70%). A single bolus of dye will be “injected” into the
artery that is initialized with a uniform velocity field.

Figure 7 shows the results for all the scenarios after 25
iterations have passed. There is no significant difference
between 0% and 17% blockage manly due to the size of the
bolus and the size of the blockage. The 35% blockage
shows the bolus being more concentrated and not being
allowed to diffuse as much, however there is still little
effect on the velocity field. The 52% and 70% blockage
show a decrease in the velocity field due to the narrowed
arteries.

Figure 7. Simulation of CAD after 25 iterations: 0%,

17%, 35%, 53% and 70% blockage respectively

Figure 8 shows the results after 50 iterations have

passed. Again there is no significant difference between the
first three scenarios; however, the larger blockages are
slowed significantly and have not passed through the
blockage site yet. This is expected since the behavior of the
fluid-boundary interactions is such that flow decreases near
the boundary walls and with a narrow channel the flow is
slowed across the width of it.

Figure 8. Simulation of CAD after 50 iterations

The following shows the vertical velocities at this point

in time for the 53% blockage. During the second pass of the
bolus, we start to see the most significant results.

Figure 9. Simulation of CAD after 125 iterations

By the 100th iteration the first three scenarios are

making their second pass through the blocked section of

artery. The 35% blockage scenario is showing a decreased
velocity field along the edges of the artery resulting in the
bolus being longer. Also, the bolus has fallen behind from
the control signifying a slight decrease in the flow rate. The
last two scenarios show a large decrease in the flow rate
and in the concentration of the bolus that has made it
through. This demonstrates that at these levels of blockage
we would most likely see a drop in the amount of oxygen
being delivered to the nearby heart muscle which could
result in a weakening of the heart function. In Figure 10 we
see what would happen if there was a second blockage
downstream of the first, of equal size.

In Figure 10 we see that with a second blockage of 35%
there is a further decrease in the flow rate, resulting in less
dye passing through the blockage. With 53% and 70%
blockage would see very little of the bolus making it
through the blocked region and the flow rate being further
reduced.

Figure 10. Simulation of CAD after 150 iterations

As stated before, there exists no analytical solution for

fluid flow. The goal of all CFDs is to provide results that
accurately portray reality. The goal of this research was to
create a CFD solver that could be integrated to solve these
flows for any system, specifically for use in biological
systems. What we simulated here was a part of a larger
system. We looked at how the model would behave if the
passage width was decreased by a blockage; the real-world
equivalent being CAD and its effect on blood flow through
the arteries of the heart. The results generated matched
what we expected to see and even helped provide a visual
explanation of the dangers of CAD. As we increased the
size of the blockage we saw progressively larger decreases
in blood flow rate and in the amount of dye that passed
through the blockage. However, it was never to the point
that the flow was completely cut off and there was still a
significant amount of flow passed through the blockages. In
the real-world this would signify that oxygen is still being
delivered to the muscles in the heart and an increase in
blood pressure could offset the slight oxygen shortage due
to the blockage. This decreased flow would still likely be
enough to maintain regular heartbeat during restful
activities, but what happens when the heart rate increases?
The muscles will require more oxygen. However, as we see

with the 53% and 70% blockages any increase in pressure
upstream of the blockage would not result in a change in
the rate of flow downstream of the blockage. This would
result in the heart muscles becoming ischemic and cause a
cardiac event to occur, such as a heart attack. We know that
people suffering from CAD show no real symptoms until a
cardiac event occurs, which would most likely occur after a
period of high exertion.

 The model presented in this research met many of the
goals we wished to achieve. The rule-based nature of the
model code is significantly easy to understand. This means
users will be able to easily adjust the parameters of the
rules to modify the model so it best fits their needs. The
model included a function for defining the behavior of fluid
barrier-interactions which will ensure it can be used for a
wide range of application. Finally, the method of
simulation allowed for only the results at the end of each
iteration to be stored, and only the density values stored, or
whichever values you are interested in.

As previously mentioned, by restricting the velocity
vector magnitudes it gave rise to the idea of varying time
steps. What this means is that during periods of velocities
with large magnitudes the equivalent time an iteration
represents is decreased. During periods of low flow, the
length of time an iteration represents is increased. This
variance of time can be handled by the DEVS simulator,
which is an important feature, and can help reduce the
computational load when it is implemented into a
biological system that has periods of high and low flow, a
beating heart for example.

The results presented in this give a small glimpse into
the possible application of the CFD model presented in this
research.

Once again, the benefits of the DEVS formalism are
such that, if a new simulator is developed, by keeping the
model and the simulator separate, the model will not
require any adjustments to run on this theoretical simulator.

5. CONCLUSION
Fluid dynamic solvers are used in a wide variety of
application ranging from video games and entertainment to
modeling of environmental events and biological systems.
In this research, a CFD solver is proposed that uses the
parameters of a CA in Cell-DEVS. The asynchronous and
more efficient computing grid of Cell-DEVS with the
continuous time-base allowed for more realistic simulation
of fluid dynamics. We showed how CD++ toolkit was used
to implement the Cell-DEVS model of the Navier-Stokes
equations for CFD. We were able to create a fluid dynamic
solver that met the requirements of a Cellular Automata,
demonstrating that it is possible to create models of vary
complex phenomenon using a relatively simple technique.
The model was a significant improvement to the first
version, in that it was able to provide results with a better

resolution in a significantly shorter time. The model also
improved the size of the log files generated which was a
major concern of the last model, without sacrificing the
ability to access the high level of detail generated during
the evolution of both the density and velocity field. The
results shown in this paper demonstrate that it is possible
for a CFD model to be created and coupled to help resolve
the physics of the fluid flow in any system; biological,
environmental, etc.

REFERENCES
[1] Anderson, J. D. "Basic philosophy of CFD."

Computational Fluid Dynamics, pp. 3-14, 2009.
[2] Ilachinski, Andrew "Cellular Automate: A Discrete

Universe" World Scientific Publishing Co. 2001.
[3] Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000)

Theory of modeling and simulation. 2000.
[4] Wainer, G. A. Discrete-event modeling and simulation:

a practitioner's approach.CRC, 2009.
[5] M. Van Schyndel, G. Wainer, M. Moallemi.

Computational Fluid Dynamic Solver based on
Cellular Discrete-Event Simulation. In Proceedings of
SIMULTECH 2013.Rejkyavik, Iceland. 2013.

[6] Toro, Eleuterio F. "Rienmann Solvers and Numerical
Methods for Fluid Dynamics: A Practical Introduction
3rd Edition" Springer-Verlag Berlin Heidelberg. 2009.

[7] Saleh, Jamal Mohammed.Fluid flow handbook. New
York (NY): McGraw-Hill, 2002.

[8] Currie, I. G. Fundamental Mechanics of Fluids,
McGraw-Hill, Inc., 1974.ISBN 0-07-014950-X.

[9] J. Stam, Real-Time Fluid Dynamics for Games,
Proceedings of the Game Developer Conference, San
Jose CA,2003.

[10] Al-Zoubi, K., & Wainer, G. (2010). RISE: Rest-ing
heterogeneous simulations interoperability.
In Simulation Conference (WSC), Proceedings of the
2010 Winter . IEEE.

[11] Mount Sinai Hospital, Fighting Coronary Disease,
[Online] Available: http://www.mountsinai.org/patient-
care/service-areas/heart/areas-of-care/heart-attack-
coronary-artery-disease

[12] Mayo Clinic, Coronary Angiogram, [Online] Available:
http://www.mayoclinic.com/health/coronary-
angiogram/MY00541

[13] Chaichana, T., Sun, Z., & Jewkes, J. Computational
Fluid Dynamics Analysis of the Effect of Plaques in
the Left Coronary Artery. Computational and
Mathematical Methods in Medicine. 2012.

[14] De Santis, G., Mortier, P., De Beule, M., Segers, P.,
Verdonck, P., & Verhegghe, B. Patient-specific
computational fluid dynamics: structured mesh
generation from coronary angiography. Medical &
Biological Engineering & Computing. Volume 48,
Issue 4, pp. 371-380. 2010.

