Cellular Modeling with Cell-DEVS:
A Discrete-Event Cellular Automata Formalism

Gabriel A. Wainer

Department of Systems and Computer Engineering
Carleton University, Ottawa, ON, Canada
gwalner@sce.carleton.ca

Abstract. In recent years, grid-shaped cellular models have gained popularity to
understand physical systems. Complex cell spaces can require large amounts of
compute time, mainly due to its synchronous nature; the use of a discrete time
base also constrains the precision of the model. The Cell-DEVS formalism was
defined in order to deal with these issues. We give a brief introduction to the main
characteristics of Cell-DEVS, and show how to use the method to model complex
cell spaces. We present different examples of application, and show how to inte-
grate cellular models with external data collection and visualization.

1 Introduction

In recent years, there has been a trend in studying natural and humanmade systems
using advanced modeling and simulation techniques. These problems were tradition-
ally modeled with differential equations, and standard numerical methods. New
methods based on Cellular Automata (CA) have provided new ways to solve these
problems [1]. CA are represented as a cell space (a regular n-dimensional lattice
whose cells can take discrete values). The states in the space are updated according to
a local rule in simultaneous and synchronously, in discrete time steps, as dictated by a
local transition function using the cell state and a finite set of neighbors. When CA
are used to study complex systems, the use of a discrete time base poses restrictions in
performance and in the precision of the model. In [2, 3, 4] we showed how the
Cell-DEVS formalism solves these problems by using the Discrete Events Systems
Specification formalism (DEVS) [5]. The goal is to build discrete event cell spaces,
improving their definition by making the timing specification more expressive.

The DEVS and Cell-DEVS formalisms were implemented in the CD++ environ-
ment [3, 6, 7] which has been was used successfully to develop different types of
systems: biological (ecological models, heart tissue, ant foraging systems, fire spread,
etc.), physical (diffusion, binary, solidification, excitable media, surface tension, etc.),
artificial (robot trajectories, networking, traffic, etc.), and others [3, 7-11]. We have
developed different kinds of simulation engines (centralized, parallel distributed and
real-time), which were used to execute the same models [12, 13].

In the following sections we give an introduction to Cell-DEVS, and show how to
model cell spaces in an asynchronous environment.

J. Was, G.C. Sirakoulis, and S. Bandini (Eds.): ACRI 2014, LNCS 8751, pp. 6-15, 2014.
© Springer International Publishing Switzerland 2014

Cellular Modeling with Cell-DEVS: A Discrete-Event Cellular Automata Formalism 7

2 Background

DEVS is a formalism for discrete-event dynamic systems. It defines a way of specify-
ing models whose states change upon the reception of an input event or the expiration
of a time delay. It also allows for hierarchical decomposition of the model by defining
a way to couple existing models. A coupled model can be regarded, due to the closure
property, as another DEVS model. This allows for hierarchical model construction. A
model that is not constructed as a coupled model is known as an atomic model.

Cell's connections

‘ &)
g
i
2
- /f
IM oJT
T 5= H —
| Cel defiration

Fig. 1. Informal definition of a Cell-DEVS model [3]

Cell-DEVS is a formalism based on DEVS for cellular models. As in CA, a Cell-
DEVS model is defined as a lattice of cells, each of which has a value and a local rule
that defines how to obtain a new value based on the current state of the cell and the
values its neighbors. Cell-DEVS defines a cell as a DEVS model and a cell space as a
coupled model. It introduces a new flexible way of defining the timing for each cell
(each cell defines its own update delay asynchronously from the others). A cell uses a
set of input values to compute its future state, which is obtained by applying the local
computation function t. A delay function d is associated with each cell, deferring the
output of the new state value. After the basic behavior for a cell is defined, the com-
plete cell space will be constructed by building a coupled Cell-DEVS model.

The CD++ tool has been used to model numerous applications in different fields
[3]. In http://cell-devs.sce.carleton.ca the reader will find a list of hundreds of models
available for use, in different fields that range from basic chemistry and physics prob-
lems, up to advanced environmental and networking applications. Fig. 2 shows a
number of different results obtained with the related tools.

8 G.A. Wainer

n
j { = Obstacle
= Walkers (People)

T

Fig. 2. a) Diffusion Limited Aggregation Model b) Tumor-Immune Model c¢) HIV Influence
Model d) Pedestrian movement

The first example shows the Simulation results of a Diffusion Limited Aggregation
Model [3], which begins with particles moving at random (in this case, from right to
left), and an initial seed (in this case, on the left of the figure). The diffusing particles
stick to and progressively enlarge an initial seed, growing in an irregular shape. This
figure presents a case with concentration of 40%, showing fractal growth properties.
The second example shows three different scenarios used for modeling tumor-
immune systems [14]. The model shows how to model a core of necrotic cells, sur-
rounded by a ring of dormant cells, surrounded in turn by a ring of proliferative cells.
The immune cells attack the tumor in an attempt to stop it from growing. The next
example focuses on the attitudes and influences of neighbors for intravenous drug
user. Some people (green cells) affect their neighbors in a positive way (i.e., clinics
and aid workers). The light green cells represent individuals that can be influenced by
negative neighbors, or to remain drug free. The red cells represent HIV+ people who
can be convinced to stop using. Finally the brown cells are users with HIV who will
influence their neighbors negatively and will soon turn into a black square (someone
who died of HIV). The last example shows a simulation scenario for a two dimen-
sional pedestrian movement model in a corridor with obstacles.

The following sections are devoted to show how to define this kind of models and
how to generate varied Simulation results based on the execution of the cellular mod-
els in CD++.

Cellular Modeling with Cell-DEVS: A Discrete-Event Cellular Automata Formalism 9

3 Basic Model: Human Circulatory System

The human circulation system transports oxygen and minerals through a network of
arteries, veins and capillaries. The blood never comes into contact with any of the
body’s cells: the substances are diffused through the capillaries. In this section we
present an example model of how oxygen is transported to the muscle cells using
Cell-DEVS.

The first set of rules focus on the movement of blood cells. Since blood flow is a
driven activity, a directional movement rule with fixed priority was defined. A blood
cell will first attempt to move to the cell in front; if it is occupied it will then attempt
to move into NE; if this cell is occupied it will try to move to the SE and if this space
is full it will stop.

rule:{ 1£((0,-1)=1, 1f(((-1,-1)=6 or (1,-1)=6),
1, 2), 2)y 1 {((0,0)=0 and ((-1,-1)=7 or (-1,-
1)=6)) and ((0,-1)=1 or ((-1,-1)=1 and (-1,0)!'!'=0
) or ((1,-1)=1 and (1,0)!=0 and (2,0)!=0) or ((-
1,1)=2 and (0,1)=2) or ((1,1)>=8 and (0,1)>=8))

A blood cell will have two states, oxygenated or deoxygenated. An oxygenated cell
will become deoxygenated when it passes by a deoxygenated muscle cell. They will
“re-oxygenate” in the lung cells when they pass an oxygenated cell. Muscle cells
become oxygenated when an oxygenated blood cell comes into contact with them. An
oxygenated muscle cell will become deoxygenated after some time. The code snippet
above shows the de-oxygenation of cells. Like the muscle cells, lung cells become
oxygenated after spending a period of time deoxygenated, and deoxygenated when a
deoxygenated blood cell comes into contact with it, as follows:

rule : { if((1,0) =1, 6, 7) } 1 { (0,0) =7 }
$Muscle Cell Becoming Oxygenated

rule : { if((-1,0) = 0.1, 7, 6) }y 1 { (0,0)=6 1}
$Muscle Cell Becoming De-Oxygenated

rule : { if((-1,0) = 0.1, 4, 5) } 1 { (0,0)=5 1}
%$Lung Cell Becoming Oxygen Enriched

rule : { if((1,0) =2, 5, 4) }y 1 { (0,0)=4 }
%$Lung Cell Becoming Carbon Dioxide Enriched
rule : {(0,0)} 1 {(0,0) != 0 }

The counter is responsible for “resetting” the corresponding lung or muscle cell to
either oxygenated or deoxygenate.

Rate of Consumption = (0,1)/(0.004) = 25 s
if((1,0)=6, ((0,0)+0.005),0)31{(1,0)} =6 1}
Lung Cells Replenishing Oxygen Supply

Rate of Regeneration = (0.1)/0.004 = 25 s

{ 1£((1,0)=5, ((0,0)+.025), 0)}Y 1 {(1,0)=5 }

0P 0P ~ 0P

10 G.A. Wainer

zone : top cell-rule { (1,30)..(1,69) }

&

Fig. 3. Lung Model Simulation Results

4 Advanced Models: An Evacuation Cellular Model

The simulation of evacuation processes has been widely used to buildings, ships and
the aviation industry. In [3, 5, 17] we presented various models in this area. The mod-
el introduced in this section represents people moving through a room trying to leave
the building through an exit door.

The model is a 3D Cell-DEVS with two planes: one for the floor plan of the struc-
ture and the people, and the other for a Voronoi Diagram representing the orientation
to the closest exit. The model characterizes a person's behavior: a normal person goes
to the closest exit; a person in panic goes in opposite direction People move at
different speeds; if the way is blocked, people can decide to move away and look for
another way. The rules in Fig. 5 have two parts: the coupled model definition (size,
neighborhood shape, initial conditions, etc.) and the local computing function. The
first set of rules serves to define what path a person should follow using the orienta-
tion plane. The basic idea is to take the direction that decreases the potential of a cell.
We have 8 rules to control the people’s movement, one for each direction. A second
set of rules governs the panic behavior.

In [15] this model was extended to conduct an integration between 3D visualiza-
tion software and CD++, using as example the Society for Arts and Technology
(SAT) building in downtown Montreal. Fig. 5 shows the results for this model. We
can see the initial grid split into two layers. The left represents the walls, exits and
initial positions of the people. Red cells represent people who want to escape. The
black cells represent walls. On the right we can see the second layer which holds the
distances to the exits. Fig. 5 considers a basic model with eight people without panic.
In this simple scenario we could observe that they follow the second layer to exit the
building without any complications. The building is almost empty (which is a normal
condition for SAT). This evacuation is designed to give us a general idea of the exit
directions people will follow, which will help us in developing the successive simula-
tions.

Cellular Modeling with Cell-DEVS: A Discrete-Event Cellular Automata Formalism 11

type : cell dim : (49,27,2) delay : INERTIAL
defaultDelayTime : 1 border : wrapped
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0)
neighbors : (0,-1,0) (0,0,0) (0,1,0)
[EvaRule]

% Rules to control the movement of individuals
rule : {#posl+1l} {1000/#posO0} {((0,0,0)>0 AND

#pos0 =0 ...

rule : {#posl+3} {1000/#posO0} {((0,0,0)>0 AND
#pos0 =0 ...

rule : {#posl+5} {1000/#posO0} {((0,0,0)>0 AND
#pos0 =0

rule : {#posl+7} {1000/#pos0} {((0,0,0)>0 AND

#pos0 =0 ...

rule : {#posl+2} {1000/#pos0} {((0,0,0)>0 AND
#pos0 =0

Fig. 4. Evacuation rules as set in the CD++ Model file

5 Interfacing Cell-DEVS, External Input and Visualization

Several zoonotic diseases have emerged on the Asian landscape; Macaques have been
affected by landscape changes caused by humans and these have increased the inci-
dence of human interaction, potentially leading to bi-directional pathogen transmis-
sion to macaques.

The model in this section focuses on evaluating how landscape changes might
influence pathogen transmission patterns [18]. Macaques can move to surrounding
environment randomly, they may or may not carry pathogen, and can be infected by
nearby neighbors. This model uses the landscape (the map contains only forest, water,
and coastlines), temple (macaques live in their birth temple; females cannot cross the
temple borders, while male macaques can), movement (at random into one of the 8
adjacent cells; collision avoidance is implemented), gender, and pathogen (each
monkey may carry the pathogen; there are four phases of the transmission cycle:
susceptible, latent, symptomatic, and acquired immunity).

The GRASS GIS was used to generate inputs for the model, combining informa-
tion about the forests in Bali, and the water and coast map. The final map, shown in
Fig. 6, is used to get the landscape values to be represented as cells and be used in the
model simulation.

12 G.A. Wainer

Fig. 5. a) SAT at time: 00:000-Initial placement of people; b) 00:834—First movement of people; c)
02:673—People proceed to the nearest exits; d) 13:015-Last person to leave the building

Fig. 6. The map divided into a cell space

Cellular Modeling with Cell-DEVS: A Discrete-Event Cellular Automata Formalism 13

Fig. 7 shows the model execution under 3 scenarios. The first one uses an initial
monkey occupation of 10%, a river cross probability of 20%, a male ratio of 50%, and
an initial pathogen infection ratio of 30%. The second test uses an occupation of 20%,
a river cross probability of 20%, a male ratio of 40%, and an infection ratio of 50%.
The third test uses a 30% occupation, a river cross probability of 50%, a male ratio of
70%, and an initial pathogen infection ratio of 80%.

Fig. 7. Three test cases comparison

A closer look at what is happening in the pathogen layer can be seen in Fig. 8. The
cell marked by a circle is currently in latent infection. On the next step of the simula-
tion, the cell changes stage 3 (symptomatic). The cells in the square show two mon-
keys with immunity. Since the rules state that when a cell in stage 4 has surrounding
cells which are also in stage 4, it will not change phases. The two cells adjacent to the
circled cell represent two monkeys that attempted to move to the same cell.

- e

Fig. 8. Phase changes example

Fig. 9 shows the visualization of the simulation results in Google Earth. To do so, a
KML file was generated from the CD++ simulation log file and the geographical
information for the map generated above. The small white square on the map is the
region that was used to test the pathogen transmission. The panel on the left shows
visualization with the 5 layers in our model. Here, only the gender layer is shown
(pink cells: females; blue cells: males).

14 G.A. Wainer

800 Google Earth
¥ Search O leldes @k &)] [=alE =

goarch 12/31/2009_8:00:30 pm,

& Computer repair near Baston 270000 pm 8:00:30 pm

et Directons Histary

v places
v i My Places
» | g ing T

layer
¥ Z& Temporary Places
¥ [visualization
> 0 layer

+ |+ ="

Earth Gallery 5
¥ (=% Primary Database
» [P Borders and Labels
Places
* = Photos
_E= Roads
» | i 30 Buildings
¥ P Ocean
* % Weather
> ¥ Gallery
b [A Clohal Awarenazs
P D More -
ges© 2013 DigitalGlobe

Goagl

8°16'1150° 5 115°05'12.89"€ clevyl281lm eysalt 7.22 km

Fig. 9. Gender Layer in Google Earth

6 Conclusions and Future Work

We have presented the Cell-DEVS formalism, and introduced several features CD++,
a toolkit for DEVS modeling and simulation. Cell-DEVS allows describing physical
and natural systems using an n-dimensional cell-based formalism. Input/output port
definitions allow the definition of multiple interconnections between Cell-DEVS and
DEVS models. Complex timing behavior for the cells in the space can be defined
using very simple constructions. The CD++ tool implements the Cell-DEVS formal-
ism and entitles the definition of complex cell-shaped models. We showed how to
develop several Cell-DEVS models using the CD++ toolkit, which provides a general
framework to define and simulate complex generic models. Cell-DEVS simplifies the
construction of complex simulations, allowing a simple and intuitive model specifica-
tion.

We showed that different kinds of applications can be easily developed, allowing
the study of complex problems through simulation, which, otherwise, could not be
attacked. Finally, the use of a formal base improves the development, checking and
maintaining phases, facilitating the testing and reuse of their components.

The tools are public domain and can be obtained at http://cell-devs.sce.carleton.ca.

Acknowledgement. This work was partially funded by NSERC. Numerous students
participated in the construction of the models presented here, including Eman Al Disi,
Rhys Goldstein, Joanna Lostracco, Emil Poliakov, Faezeh Rafsanjani Sadeghi, Mi-
chael Van Schyndel, Sixuan Wang and Myriam Younan.

Cellular Modeling with Cell-DEVS: A Discrete-Event Cellular Automata Formalism 15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Burks, A.W.: Von Neumann’s self-reproducing automata. In: Burks, A.W. (ed.) Essays on

Cellular Automata, pp. 3—64. University of Illinois Press, Champaign (1970)

Wainer, G., Giambiasi, N.: Application of the Cell-DEVS paradigm for cell spaces model-
ing and simulation. SIMULATION 71(1), 22-39 (2001)

Wainer, G.: Discrete-Event Modeling and Simulation: a Practitioner’s approach. CRC
Press, Taylor and Francis (2009)

Wainer, G., Giambiasi, N.: N-dimensional Cell-DEVS. Discrete Events Systems: Theory
and Applications 12(1), 135-157 (2002)

Zeigler, B., Kim, T., Prachofer, H.: Theory of Modeling and Simulation: Integrating Dis-
crete Event and Continuous Complex Dynamic Systems. Academic Press (2000)
Bonaventura, M., Wainer, G., Castro, R.: A Graphical Modeling and Simulation Environ-
ment for DEVS. SIMULATION: Transactions of the SCS 89(1), 4-27 (2013)

Wainer, G., Liu, Q., Dalle, O., Zeigler, B.: Introduction to Cellular Automata in Gaming.
Simulation and Gaming 41(6), 796-823 (2010)

Wainer, G., Castro, R.: A survey on the application of the Cell-DEVS formalism in cellu-
lar models. Journal of Cellular Automata 5(6), 509-524 (2010)

Saadawi, H., Wainer, G.: Modeling Physical Systems Using Finite Element Cell-DEVS.
Simulation Modelling Practice and Theory 15(10), 1268-1291 (2007)

Wainer, G., Davidson, A.: Defining a Traffic Modeling language Using Cellular Discrete-
Event abstractions. Journal of Cellular Automata 2(4), 291-343 (2007)

Wainer, G.: Applying Cell-DEVS Methodology for Modeling the Environment.
SIMULATION: Transactions of the SCS 82(10), 635-660 (2006)

Liu, Q., Wainer, G.: Parallel Environment for DEVS and Cell-DEVS Models.
SIMULATION: Transactions of the SCS 83(6), 449-471 (2007)

Al-Zoubi, K., Wainer, G.: RISE: A General Simulation Interoperability Middleware Con-
tainer. Journal of Parallel and Distributed Computing 73(5), 580-594 (2013)

Wainer, G., Goldstein, R.: Modelling Tumor-Immune Systems with Cell-DEVS. In: Pro-
ceedings of the European Modeling and Simulation Conference 2008, Nicosia, Cyprus
(2008)

Poliakov, E., Wainer, G., Hayes, J., Jemtrud, M.: A Busy Day at the SAT Building. In:
Proceedings of AIS 2007, Artificial Intelligence, Simulation and Planning. Buenos Aires,
Argentina (2007)

Castonguay, P., Wainer, G.: Aircraft Evacuation DEVS Implementation & Visualization.
In: Proceedings of SCS/ACM Springsim 2009 (DEVS Symposium), San Diego, CA, USA
(2009)

Wang, S., Van Schyndel, M., Wainer, G., Subashini, V., Woodbury, R.: Interactive DEVS-
based Building Information Modeling & Simulation for Emergency Evacuation. In: Pro-
ceedings of Winter Simulation Conference, Berlin, Germany (2012)

Kennedy, R.C., Lane, K.E., Arifin, S.N., Fuentes, A., Hollocher, H., Madey, G.R.: A GIS
aware agent-based model of pathogen transmission. International Journal of Intelligent
Control and Systems 14(1), 51-61 (2009)

	Cellular Modeling with Cell-DEVS: A Discrete-Event Cellular Automata Formalism
	1 Introduction
	2 Background
	3 Basic Model: Human Circulatory System
	4 Advanced Models: An Evacuation Cellular Model
	5 Interfacing Cell-DEVS, External Input and Visualization
	6 Conclusions and Future Work
	References

