
Advances in Engineering Software 79 (2015) 111–126
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft
Using a Discrete-Event System Specifications (DEVS) for designing
a Modelica compiler
http://dx.doi.org/10.1016/j.advengsoft.2014.09.009
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Fax: +1 613 520 5727.
E-mail addresses: gwainer@sce.carleton.ca (G.A. Wainer), mdabreu@dc.uba.ar

(M.C. D’Abreu).
Gabriel A. Wainer a,⇑, Mariana C. D’Abreu b

a Department of Systems and Computer Engineering, Centre for Visualization and Simulation (V-Sim) Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada
b Computer Science Department, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 January 2014
Received in revised form 25 September 2014
Accepted 28 September 2014
Available online 28 October 2014

Keywords:
Simulation
Object Oriented Modeling
Discrete event systems
Hybrid systems
Modelica
DEVS
We introduce a new architecture for the design of a tool for modeling and simulation of continuous and
hybrid systems. The environment includes a compiler based on Modelica, a modular and a causal stan-
dard specification language for physical systems modeling (the tool supports models composed using
certain component classes defined in the Modelica Standard Library, and the instantiation, parameteriza-
tion and connection of these MSL components are described using a subset of Modelica). Models are
defined in Modelica and are translated into DEVS models. DEVS theory (originally defined for modeling
and simulation of discrete event systems) was extended in order to permit defining these of models. The
different steps in the compiling process are show, including how to model these dynamic systems under
the discrete event abstraction, including examples of model simulation with their execution results.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a number of software tools built
for Modeling and Simulation (M&S) of Continuous Variable
Dynamic Systems [1–4]. These systems are usually represented
by continuous variables on a continuous time basis (i.e., mechani-
cal, electrical, electro-magnetic, hydraulic physical systems, belong
to this category). Although the analysis of these complex systems
had been traditionally tackled with different mathematical formal-
isms, including Differential Algebraic Equations (DAEs), Ordinary
Differential Equations (ODEs), or Partial Differential Equations
(PDEs) [5] for most complex systems, the solutions to these equa-
tions are very difficult or impossible to find. Instead, M&S tools
have been successful in finding approximate solutions to these
equations, allowing studying many different phenomena where
analytical results are unfeasible.

Most of these tools implement numerical methods that discret-
ize time in order to find approximate solutions to the equations [6].
Instead, in the last few years, a radically different approach based
on the DEVS (Discrete Event System Specification) formalism [7]
has been explored. This method presents some advantages over
time-stepped simulation, including the reduction of the number
of calculations for a given accuracy [8] and the seamless integra-
tion of complex systems modeled by both continuous time and dis-
crete events. The idea of this method, called Quantized Systems
theory (Q-DEVS), is to provide quantization of the state variables
obtaining a discrete event approximation of the continuous system
[9]. The state variables of the system are converted into a piece-
wise constant function via a quantization function. The Quantized
State System (QSS) method [10] is an extension to Q-DEVS in
which the trajectory of each state variable uses a quantization
function equipped with hysteresis, which constitutes a general
method for ODEs integration using discrete event theory.

Based on this theoretical framework, the design of an environ-
ment for M&S of continuous and hybrid systems using such a dis-
crete-event modeling approach is presented here. This resulted in
the design of an open-source tool, called M/CD++, based on Model-
ica [11] and CD++ [12]. Modelica is an object-oriented language for
modeling physical systems, designed to support library develop-
ment and model exchange. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. CD++ is
an M&S tool implementing DEVS theory. M/CD++ is a proof-of-con-
cept implementation, which allows building dynamic systems
belonging to the electrical domain, and it shows how this language
can be converted into a discrete event approximation. M/CD++
includes Modelica v2.1 language support for electrical circuits con-
struction [11].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.09.009&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.09.009
mailto:gwainer@sce.carleton.ca
mailto:mdabreu@dc.uba.ar
http://dx.doi.org/10.1016/j.advengsoft.2014.09.009
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


112 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
One of the original contributions is that, internally, the models
are represented using Bond Graphs (BG) [13], which allows
domain-independent description of the dynamic behavior in the
physical systems being modeled. BG representation provides a
sound mathematical foundation for model verification, as they
can be manipulated and converted, checking for algebraic loops
and singularities (elements that have discontinuities), which will
be discussed further in Section 2. The compiler builds an optimized
BG corresponding to the original circuit in Modelica. This is a major
difference between M/CD++ and other compilers like Adevs (http://
web.ornl.gov/~1qn/adevs). The Bond Graph intermediate represen-
tation can be composed with other models as it is a generic mod-
eling language.

Another original contribution is that this optimized BG, in turn,
is used to generate a DEVS model specification (an executable
DEVS model according to the rules of CD++). The resulting CD++
model represents a discrete-event version of the equations associ-
ated to the original electrical circuit. Based on the QSS and QBG
theories, CD++ is used to approximate the solution numerically
using a discrete event approach. The main objective of this work
is to show how to integrate these methodologies and to discuss
the results obtained in such process.
2. Modeling continuous systems

The behavior of continuous dynamic systems is usually
described in terms of DAEs, ODEs or PDEs. Simulations based on
these formalisms are mainly accomplished by describing the set
of equations, and finding a numerical approximation to them based
on consistent initial conditions [5,6,14,15]. Recently, a different
approach has been proposed, which focuses on decomposing mod-
els of the physical systems into smaller submodels interfaced by
distinct connections. Some of them have used an Object-Oriented
approach to promote model specification in a more natural way,
decreasing the abstraction gap between the real system and its
representation, while improving development and reusability of
the models [16–18]. Many of these concepts were adopted for
the design of a new family of languages [13,16] that were stan-
dardized by Modelica [11].

2.1. Modelica

Modelica [11] is an object-oriented language intended for mod-
eling continuous systems within many application domains (elec-
trical, hydraulics, mechanics, thermo-dynamical, etc.) that
supports several formalisms (e.g. ODEs, DAEs, etc.). It is a non-cau-
sal language that includes mathematical equations and object-ori-
ented constructs, allows library development and model exchange.
The model semantics in Modelica is specified by a set of rules used
to translate the models to a corresponding flat hybrid DAE. A
model is represented using classes that can be developed hierar-
chically, allowing component and knowledge reuse. Fig. 1 presents
an example of an electrical circuit specified using Modelica electri-
cal library. Fig. 1(a) shows the Modelica specification of the circuit
presented in Fig. 1(b).

2.2. Bond graphs

As discussed earlier, M/CD++ can simulate electrical circuit
models defined with Modelica, and the compiler uses Bond Graphs
as intermediate model representation. BG were used because they
provide multiple advantages:

- They allow domain-independent description of the dynamic
behavior of the physical systems.
- They can be applied to multiple physical domains, thus, inter-
mediate models could be reused in a different context.

- They use modular and hierarchical models (BG submodels con-
nect via well-defined interfaces), improving model reuse.

- No algebraic manipulation is needed.
- They can be easily translated to equivalent block diagrams.

A BG is a directed graph where the bonds represent the ideal
exchange of energy between physical processes represented by
the graph vertices, as seen in Fig. 2 [19]. BGs represent continuous
systems as a set of elements interacting with each other by energy
interchange that determines the dynamics of the system. Power
(the time derivative of energy) is the product of two factors: effort
and flow. In electrical systems, for instance, power is the product of
voltage and current; in hydraulic systems, power is the product of
pressure and volume flow rate. If generalized effort and flow vari-
ables are defined, their product gives the power exchanged by the
elements of the system. Besides effort and flow, momentum (p) and
displacement (q) are the result of an accumulation (integration)
process. These quantities represent the state variables of the
system.

BG modeling is based on two main assumptions: the energy
conservation law and the use of a lumped approach. These charac-
teristics imply that model properties can be separated from each
other using components that can be coupled using ideal connec-
tions. As seen in Fig. 2, these abstract entities are called energy
ports. Ports connections represent the energy flow, guaranteeing
the power continuity quality (i.e. no energy is generated or dissi-
pated by the ports). The power direction on a bond determines
the flow sign (inward pointing bonds represent positive flow; out-
ward pointing bonds have negative flow). Elements can use more
than one port. One-port elements use one energy port represented
with a bond. Two-port elements are represented with two ports
(and bonds) in which the exchange of power between the elements
occurs.

BGs are a causal, meaning that components can determine the
two power variables – effort and flow – at the same time. In order
to simulate BGs, causal analysis is essential to describe a BG model
in computational terms and to derive its set of differential equa-
tions. Given a pair of elements connected through a bond, their
causality determines which component causes the flow and which
one the effort, as seen in Fig. 3.

BG with causality conflicts describe implicit models whose rep-
resentation generates a set of DAEs. In the absence of differential
causality (non-dependent storage elements) and algebraic loops,
the set of equations derived from the causal BG corresponds to
first-order ODEs.

The BG elements are the following: Capacitor (C), Inductor (I),
Resistor (R), Effort source (Se), Flow source (Sf), Transformer (TF),
Gyrator (GY), 1-junction and 0-junction. As an example, Fig. 4
shows the specification an Inductor (I elements), in which a con-
served quantity p is stored by accumulating effort e. Examples of
I elements include inductors and mass (in the electrical and
mechanical domains respectively). The constitutive equations are
defined as p = e and f = f(p). The equations for a linear inductor
are p ¼

R t
0 edt and i ¼ 1

L p where L is the inductor’s constant.
Junctions represent the constrained interactions between ele-

ments and couple the components in a power-continuous way,
with no energy dissipation or storage. Since there are only two
ways in which components can exchange power (serial or in paral-
lel), only two types of junctions are needed (see Fig. 5).

The 0-junction represents a node where all the efforts of the
connecting bonds are equal (i.e. a parallel connection in an electri-
cal circuit). In terms of power continuity, the sum of all the flows
(considering power direction) is zero. This corresponds to Kirch-
hoff’s law of current in electrical networks (all currents on a node,

http://web.ornl.gov/~1qn/adevs
http://web.ornl.gov/~1qn/adevs


model SampleCircuit

Modelica.Electrical.Analog.Basic.Resistor R1(R=10);  
Modelica.Electrical.Analog.Basic.Inductor L(L=0.1);
Modelica.Electrical.Analog.Basic.Capacitor C(C=0.01);
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Basic.Resistor R2(R=100); 
Modelica.Electrical.Analog.Basic.VsourceAC AC;

equation
connect (AC.p, R1.p); 
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (AC.n, G.p);
connect (R1.p, R2.p); 
connect (R2.n, L.p);
connect (L.n, C.n);

end SampleCircuit;  (a)

(b)

Fig. 1. Modelica specification of a simple electrical circuit (a) Modelica Specification and (b) graphical representation.

Fig. 2. BG representation of energy flow from Ei to Ej.

f

eEi Ej

Ei.e = Ej.e Ej.f = Ei.f 

Ei Ej

Fig. 3. Causal bond, equivalent graph, equations.

Fig. 4. I element with preferred causality and block diagram representation.

Fig. 5. (a) 1-Junction – serial junction. (b) 0-Junction – parallel junction.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 113
considering their signs, sum to zero). The 1-junction represents a
node where all the flows of the connecting bonds are equal (i.e. a
serial connection in an electrical circuit). Due to power continu-
ity, all the efforts must sum to zero (which corresponds to Kirch-
hoff’s voltage law in electrical networks; in the mechanical
domain, 1-junctions represent the principle of d’Alembert for force
balance).
2.3. The DEVS formalism

In M/CD++, the intermediate BG models are subsequently
mapped into DEVS (Discrete Event System specifications) [7].
DEVS, a universal formalism for M&S of discrete-event dynamic
systems, can be seen as a mechanism to specify systems whose
inputs, states and outputs are piecewise constant, and whose tran-
sitions are identified as discrete events. DEVS models can be
described using a mix of modular components called atomic or
coupled. Atomic models are formally defined by:

M ¼ hX; S;Y; dint; dext; k; tai

A DEVS model is in state s 2 S, waiting for the next internal tran-
sition determined by ta(s) (i.e., the time advance function applied
to the current state). When this time passes, the model can gener-
ate an output event y 2 Y using the output function k(s). The model
also changes to a new state given by dint(s) (the internal transition
function applied to s). Whenever the model receives an external
event x 2 X, the external transition function dext is executed to
compute the new model’s state.

These behavioral models can be composed hierarchically. These
structural models (called coupled) are defined as:

CM ¼ hX;Y;D; fMig; fIig; fZijg; selecti

For each j 2 Ii, Zij is a function that translates the outputs from
model i to j. These models Mi are indexed by D. When an internal
event occurs on i, a signal is sent to component j at the same time.
External inputs and outputs X and Y define the model’s interface.
Two or more components might have their internal transitions
scheduled at the same time, generating ambiguity during the sim-
ulation. The select function solves this problem by defining the
rules needed to determine which one of the imminent components
will execute next.

DEVS has been extended in order to be able to model and
simulate continuous and hybrid systems. Different research teams
[8–10,20,21,23–27] have shown that discrete event methods (in
general) and DEVS (in particular), present several advantages:

� Computational time reduction: for a given accuracy, the
number of calculations can decrease.

� Hierarchical modular modeling, which improves verifica-
tion and validation, also enhancing reusability.

� Seamless integration with models defined with other mod-
eling techniques (Petri Nets, Automata, Statecharts, etc.).

� Simulation of time-stepped (discrete time) models, which
are a particular case of discrete event methods.

� Hybrid systems modeling: the discrete event paradigm pro-
vides a unified theory to model and simulate systems with
continuous and discrete components.



Fig. 6. Signal quantization.

114 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
Most of these techniques are based on Q-DEVS [9], whose main
idea is to represent continuous signals by the crossing of an equal
spaced set of boundaries (as shown in Fig. 6). This approach
requires determining at what time a dependent variable will enter
a given state. QSS (Quantized State Systems) [10,23] is a method
based on this idea that includes hysteresis, which, as proved in
[10], can be used to approximate differential equation systems
by legitimate DEVS models.

We also defined some models based on the GDEVS formalism
[25]. GDEVS [36] uses polynomials of arbitrary degree (as opposed
to constant values), to represent the piecewise input–output tra-
jectories of a DEVS model. In GDEVS, the system is modeled
through piecewise polynomial coefficients. As these have piece-
wise constant trajectories, we can build a discrete event abstrac-
tion in the coefficient space using the concept of coefficient
event (an instantaneous change of, at least, one of the value of
the coefficients defining the polynomial trajectory). An event is a
list of coefficient values defining a polynomial describing the tra-
jectory. QSS is an approximation method to model and simulate
continuous systems, which are usually modeled with Ordinary Dif-
ferential Equations (ODEs) and Algebraic Equations. Traditional
method to obtain a detailed description of a system behavior
entails solving these equations simultaneously. To do this, a tech-
nique of numerical integration is used to solve ODEs such as Euler,
and Runge–Kutta. All these methods rely on discrete-time integra-
tion of ODEs. In this way, time progresses in small steps, and at
each step, an approximation is computed for the ODEs solution.
When a system modeled by ODEs has a discontinuity (i.e. sudden
jumps in its variables values with regard to time), the numerical
integration method may produce unacceptable errors. However,
these kinds of discontinuity are normal properties in hybrid sys-
tems, which can be seen as operating in different modes, each
described with a specific ODE, for example, a heating system with
an on–off thermostat controller. Quantized State Systems QSS is a
different method for approximation. This is a quantization-based
method that models hybrid systems as discrete-event systems
and not as discrete-time. This solves the above problem around dis-
continuities while solving hybrid system. Let D ¼ fd0; . . . ; dn=di 2 R;

di�1 < di with 1 6 i 6 rg and x 2X a continuous trajectory with
x: R! R. Let b: X ? X be a mapping and q a trajectory defined
by q = b(x). A fundamental property of function b is given by
d0 6 x(t) 6 dr) jq(t)–x(t)j = jb(x(t))–x(t)j 6max16i6r (di–di�1, e)
where e is the size of the hysteresis window. The addition of
hysteresis removes the problem of a possible infinite number
of transitions performed by a model in a finite time interval
greater than zero [23]. The existence of a minimum time inter-
val between events constitutes a sufficient condition to
obtain legitimate models [10]. A detailed discussion on how
to choose the quantum size for QSS simulations can be found in
[35].
These methods are the basis of M/CD++, which was imple-
mented on CD++, an environment for DEVS-based M&S [12]. In
CD++, atomic models are implemented using C++, and coupled
models are described using a built-in specification language, which
includes information about the components, the coupling and the
input and output ports. The following sections will explain how
these methods were used in building this M&S environment and
its implementation using CD++.
3. M/CD++

M/CD++ allows the definition and simulation of dynamic sys-
tems in the electrical domain, providing support for electrical cir-
cuits using a subset of Modelica Standard Library v2.1 [11]. The
compiler builds an object-oriented representation of an electrical
circuit that is translated into a BG to verify model properties. Then,
the BG is converted into a DEVS model (where atomic models are
based on QSS and Quantized BG). These models, added to CD++,
can numerically approximate the solution using a discrete event
approach. Although this work focuses on the electrical library,
extending the compiler to other elements based on the techniques
presented here is straightforward.

The objects defined in the Modelica Electrical library and sup-
ported on M/CD++ are: Modelica.Electrical.Analog.Basic: Ground,
Resistor, Conductor, Capacitor, Inductor; Modelica.Electrical.
Analog.Ideal: IdealTransformer, IdealGyrator; Modelica.Electrical.
Analog.Sources: ConstantVoltage, Step Voltage, SineVoltage,
PulseVoltage, Constant Current, Step Current, SineCurrent and
PulseCurrent. These components are described according to
Modelica specifications [11], as seen in Fig. 7. The pulse voltage
source uses various parameters: I (default = 1V) defines the pulse
amplitude; and width defines the duty cycle (50% by default). The
remaining parameters include the period (1 Hz by default), voltage
and time offsets.

M/CD++ connects the different theories and languages pre-
sented in Section 2. M/CD++ is defined by various core components
shown in Appendix I. The compiler starts with an electrical circuit
model specified using Modelica, and finishes with a log file includ-
ing the simulation results. The following sections describe the gen-
eralities of each of these components.
3.1. Modelica parser & checker

The first component executed is in charge of parsing the Model-
ica input file, and of checking the syntax and grammar of the elec-
trical circuit model. The parser was built using GNU Bison [28], a
general-purpose parser generator that uses the description of an
LALR context-free grammar. Bison allows the specification of
actions that accompany the syntactic rules. These actions are used
to build the input file syntax tree, which is in turn used to perform
semantic validation and construction of the electrical circuit. This
includes the following checks:

� Specification of valid and supported packages.
� Specification of valid and supported types/classes.
� Checking for undeclared symbols.
� Specification of valid references to component attributes.

Only if a complete syntax tree is validated successfully, the elec-
trical circuit model can be built; otherwise, the process is aborted
(and the syntax/grammar error is reported). Several verifications
were implemented to preserve the model properties, which are
checked during the parsing phase (when the electrical circuit is
built). This includes:



Fig. 7. Definition: sources.pulsecurrent.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 115
� Valid specification of pin references.
� Definition of connections between existing elements.
� Connections from a component to itself.
� At least one source component defined.

A class hierarchy was implemented in CD++ to model the elec-
trical circuit objects, its components and attributes. The definitions
of pin (positive and negative), port, one-port element, two-port
element, electrical component (resistance, capacitor, source, etc.)
and circuit were implemented in order to generate the OO model
associated to these concepts [21].

Fig. 8 shows an example of a circuit, its corresponding Modelica
specification file, and the objects model constructed by the parser.
The EC model shown in Fig. 8(a) and (b) uses various Modelica
objects:

- V: instance of the pulse Voltage class (one-port element)
- C: instance of the Capacitor class (one-port element)
- R: a resistor component (one-port element)
- I: and Inductor component (one-port element)
- Gnd: instance of Ground class (one positive pin).

As discussed earlier, the electrical circuit is translated into an
internal representation based on a graph notation that we use to
build the Bond Graph, showed in Fig. 8(c). This is used to build
model EC
Modelica.Electrical.Analog.Sources.PulseVolta

V(V=200, period=1, width=10);
Modelica.Electrical.Analog.Basic.Capacitor C
Modelica.Electrical.Analog.Basic.Resistor R(
Modelica.Electrical.Analog.Basic.Inductor I(
Modelica.Electrical.Analog.Basic.Ground Gnd;

equation 
connect(V.p, R.p);  connect(R.n, I.p);
connect(R.n, C.p);  connect(I.n, V.n);
connect(C.n, V.n);  connect(C.n, Gnd.p);
end circuit; (a)

V.p

V.n

R.p R.n

C.p

C.n

Gnd.p

(c)

Fig. 8. (a) Modelica input file (b) electrical circuit model (c) graph intermediate
the corresponding DEVS models in CD++ (showed in Fig. 8(d)). This
intermediate notation represents each component using as many
nodes as the number of pins of the element (for instance, V uses
2 nodes – 1 per pin – and GND only needs one). In addition, each
element is represented by two nodes corresponding to the positive
and the negative pins. Generalizing, k-port elements are repre-
sented by 2.k nodes. The graph distinguishes two types of connec-
tions: physical (solid lines) and logical (dotted lines). The former
corresponds to the physical coupling between the elements of
the circuit (for instance, Vp ? Rp is a physical connection). Logical
connections correspond to the associations between pins and
ports: the pins of a given port connector are linked by dashed lines,
while the port connectors are linked by dotted lines.

This graph representation considers the BG generation algo-
rithm used in the mapping phase. The idea is to have a suitable
data structure and model representation to optimize the genera-
tion process of the BG associated to the circuit, discussed next
(see Fig. 9).

3.2. Mapping electrical circuits to bond graphs

After the compilation process finishes with no errors, we have a
syntactically correct Modelica electrical circuit, the structure of the
model in a graph notation, and the list of objects needed. Then,
these data structures are used to generate a BG model. The BG
ge  

(C=200);
R=1.5);
L=40);

(b)

I.p

I.n

EC : ECircuit

C : Capacitor I : Inductor

R : Resistance

Gnd : Ground

«usos»

«usos»

«usos»«usos»

V : VoltageSource

«usos»

(d)

representation on M/CD++ and (d) objects generated by the M/CD++ parser.



Fig. 10. 0-Junction insertion process (a) and (b): alternatives for Fig. 8. (c) Graph
representation with 0-junctions inserted.

116 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
generation algorithm is based on the Karnopp’s circuit construc-
tion method [29], which creates a BG that resembles the circuit
graphically. Then, a simplified BG is built, based on various circuit
properties, using the following steps:

1. For each node with a distinct potential, insert a 0-junction.
2. Add a 1-junction to each 1-port element. Add 1-junctions

between the appropriate pair of 0-junctions (elements C, I,
R, Se, Sf).

3. Assign power directions to all bonds.
4. If the circuit has explicit ground potential, delete the 0-junc-

tion and its bond; if no explicit ground potential is shown,
choose any 0-junction and delete it.

5. Simplify the resulting BG.

These steps are discussed in detail below.

� Step 1: 0-junction insertion

The goal of this step is to insert a 0-junction at each node with
distinct potential. The idea is to apply the transitive closure to
every node on the graph (given only adjacency information, the
transitive closure tells if there is a path between arbitrary nodes
x and y in a graph). Calculating the transitive closure for every node
guarantees that the 0-junction elements will be inserted correctly,
no matter how connections between coupled elements were
described on the Modelica input file (moreover considering that
the user has a number of different possibilities to specify the par-
allel coupling between the elements of a circuit). This process is
illustrated in Fig. 10, which shows two ways of defining the nodes
in Fig. 8. Starting in Vn, a 0-junction is inserted on each serial
connection.

� Step 2: 1-junction insertion

A 1-junction component is added to each 1-port element, insert-
ing it between each corresponding pair of 0-junctions (the method
supports k-port elements, adding k 1-junction elements to each k-
port component). In this step, the nodes describing logical relations
(dashed lines) are also merged, as the representation of these
relations is no longer needed for the simulation process. This
kind of edge is deleted, and the corresponding nodes joined, reduc-
ing the cardinality of the graph nodes and edge sets, as seen in
Fig. 11.

Fig. 12 shows the graph obtained when this method is applied
to graph in Fig. 10(c).

� Step 3: Assigning power direction

The power direction specifies the direction in which the power
flow is assumed positive. A standard convention that assumes a
positive direction when it flows out of the sources Se and Sf and
into elements C, I and R. For two-port elements TF and GY, a
power-in convention is used.
e.port1.p

e.port1.n

e.port2.p

e.port2.n

e.port1.p

e.port1.n

e.port1

e.port1

(a) (b)

Fig. 9. Node representation of ports (a) o
To assign power direction to all bonds, a propagation algorithm
was used, which ‘‘extends’’ the power through the graph using the
standard conventions and the information compiled from the
Modelica model. Depending on the connections and port types
(positive/negative), direction is inferred for bonds where no con-
ventions apply. Once direction is assigned to all bonds, a directed
BG is obtained (Figs. 13 and 14).

� Step 4: Deleting ground potential.

All the explicit ground potentials are deleted from the graph (as
shown in Fig. 15); if no explicit ground potential is found, the 0-
junction nearest to each source element is erased. The 0-junctions
.p

.n

e.port2.p

e.port2.n

e.portn.p

e.portn.n

(c)

ne-port (b) two-port and (c) k-port.



Fig. 11. (a) Transformer element (b) graph representation with 0-junctions insertion and (c) graph with 1-junctions insertion and no logical-linked nodes.

Fig. 12. 1-Junctions insertion and logical-linked nodes merging.

Fig. 14. Power direction assigned to the graph in Fig. 12.

Fig. 15. Ground potential elimination for the graph in Fig. 14.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 117
selected are only those associated with the negative pin of every
source port.

� Step 5: BG simplification.

The BG is simplified applying the following rules:

- A junction between two bonds with through power direc-
tion can be left out from the graph.

- A bond connecting two junctions of the same type can be
deleted and the junctions joined.

When these simplification rules are applied to the example
graph in Fig. 15, the result in Fig. 17 is obtained (see Fig. 16).
Fig. 13. (a) and (b) Electrical circuit and its directed BG representation (
3.3. Bond graph validation

After the BG is constructed and simplified, different error detec-
tion techniques are applied to the resulting BG. The first one, cau-
salization, is the process where the signal direction of the bonds is
determined.
c) and (d) capacitor change reflected on the bonds power direction.



118 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
Once this process finishes, each bond can be interpreted as a bi-
directional signal flow and the causal BG can then be seen as a
compact block diagram. A port can impose four different causal
constraints to its connected bonds, depending on its base
equations:

- Fixed causality: this constraint appears when the equations
only allow one of the two port variables to be the outgoing var-
iable, i.e. source effort (Se) and source flow (Sf) components.

- Constrained causality: this is a relation between the causalities
of the different ports within the components defining the causal
constraints. At 0-junctions (where all efforts are equal), exactly
one bond has flow causality (flow-out causality). The causal con-
straint at a 1-junction is the dual form of the 0-junction. TF and
GY elements also have constrained causality: at TF elements,
one bond has effort causality and the other flow causality; at
GY elements, both bonds have either effort or flow causality.

- Preferred causality: on storage elements, it determines whether
integration or differentiation (with respect to time) will be
used. Integration has preference, representing the preferred cau-
sality. Likewise, the preferred causality at C elements is the
effort causality; at I elements, the flow causality.

- Arbitrary causality: arbitrary causality is used when no causal
constraints exist, i.e. at R elements.

The Sequential Causality Assignment Procedure (SCAP) method by
Karnopp and Rosenberg assigns causality to the bonds of a given
BG [29]. This method starts by choosing a fixed causality element
(i.e., a source), and then it propagates the assignment through
structural components (junctions, transformer and gyrator) when-
ever it is possible, according to the causality restrictions. Once all
sources have been processed, a storage element (C or I) is selected,
and the preferred causality is applied. The process is repeated until
all storages have their causalities assigned. If the graph is not com-
pletely causal, the iteration is repeated with a resistor (R). If the
graph is still not causal, the model contains algebraic loops.

The causality assignment process in M/CD++ was almost totally
based on the SCAP method. The algorithm above was developed
with some restrictions, in order to check and inform structural con-
flicts within the model. Given the problems of differentiation algo-
rithms (i.e. infinite outputs for a step input function) only the
1
e1 e2

f1 f2
=

0
e1 e2

f1 f2
=

1
e1 e3

f1 f3

f1 =

e

e

=

e2 f2

1
e5

f5

e4 f4

0
e1 e3

f1 f3

e1 = 

f

f

=

e2 f2

0
e5

f5

e4 f4

Fig. 16. Simplification exam
preferred causality was implemented for storage elements. Effort-
out causality is represented with a causal stroke outwards the com-
ponent. The flow-out causality is indicated using a causal stroke
inward the component (see Fig. 18).

Whenever structural singularities or algebraic loops are discov-
ered, the processing stops and the exception is informed to the
modeler. As mentioned, only integral causalities are assigned to
storage components. Then, for structural singularities (i.e. coupled
storages), one of the elements should be assigned the derivative
causality. The component causing the preferred causality violation
can be used to detect dependent storages, which do not represent a
state variable of the system. An example of such a model with a
structural singularity is shown in Fig. 19. For this error, the circuit
can thus be modified by adding a dissipater with a very low resis-
tance value.

Algebraic loops are found by inspection of closed causal paths
(i.e., paths defined by bonds with the same causal orientation that
not include storages or sources). If at least one algebraic loop exists
in the closed causal path, an inspection algorithm implemented
within M/CD++ allows the listing of the resistance elements defin-
ing the loop (as seen in Fig. 20).

Fig. 21 shows a model with an algebraic loop and the modified
circuit with a storage element to break the loop.

4. Bond-Graph library

After the compiler finishes successfully with steps discussed in
Section 3, a model representing the original Modelica code con-
verted into its causal, error free BG representation is obtained.
Now, this model needs to be converted into an executable. To do
so, a library of Bond-Graphs was developed using DEVS [21]. This
library was defined based on the concepts of GDEVS, QDEVS and
QSS. The library provides modular means for building and simulat-
ing BG using DEVS, allowing code reuse and the various advantages
discussed in Section 1.

The first step is the transformation of the BG into an equivalent
Quantized Bond Graph model (QBG). A QBG represents an approx-
imation of the standard BG that is thus suitable for discrete-event
simulation where all the storages and sources are quantized ele-
ments [30]. For instance, a quantized capacitor (or inertia) needs
its displacement related to the effort (or flow) via a quantization
e

f

f1 = f2

e1 - e2= 0
=

e

f

e1 = e2

f1 - f2= 0
=

 f2= f3= f4= f5

1 - e2- e3= 0

3 - e4- e5= 0

=
e1

f1
e2 f2

1
e5

f5

e4 f4

e2= e3= e4= e5

1 - f2- f3= 0

3 - f4- f5= 0

=
e1

f1
e2 f2

0
e5

f5

e4 f4

ples: Rule I and Rule II.



Fig. 17. Simplification rules applied to the BG in Fig. 15 (a) Simplification by rule I, (b) simplification by rule II, and (c) resulting BG.

R C

I01V
 

Fig. 18. Causality assignment to the BG in Fig. 17.

Fig. 19. (a) Circuit with coupled capacitors; and (b) problem elimination.

R1 R2

10Sf C

I

Fig. 20. Loop in closed casual path with resistance elements.

Fig. 21. (a) Electrical circuit with an algebraic loop between R1 and R2 and BG
representation and (b) storage insertion to break the algebraic loop.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 119
function with hysteresis. Likewise, a quantized effort (or flow)
source has a piecewise constant trajectory and a bounded function.
QBG can be modeled as a DEVS coupled model in which each com-
ponent of the QBG is an atomic DEVS. As proved in [30], QBG can be
represented exactly by DEVS, which can exactly model systems
whose input and output trajectories are piecewise constant. QSS
error, convergence and stability properties are valid on QBG models.

Based on these ideas, all BG primitive elements were built as a
library of atomic DEVS models whose elements (some of which are
shown in Appendix II) are the following:

- BG: this abstract class, the base for primitive BG elements,
introduces basic functionality to add bonds to components.

- Bond: they connect different components, modeling the
exchange of power between them. Every bond is associated
with an input port and an output port, which must transport
the effort and flow values between components. Different
attributes specify the power direction and the causality
restrictions.

- Quantizer: it represents the output trajectories as piecewise
constant segments through a quantization function. Two types
of quantizers were implemented: uniform (which specifies a
fixed quantum size for all intervals) and non-uniform (or inter-
vals, which allows different interval lengths). A quantizer with
hysteresis was also included.

- Integrator: it outputs the integrated value of its input. It imple-
ments the Euler integration algorithm, a first order method
that provides numerical solution to integral calculus.



120 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
- Resistance: it calculates the effort value according to the resis-
tance equation: effort = R.flow, with R a resistance constant, and
a flow received from its adjacency. The model’s internal transi-
tion implements a GDEVS polynomial approximation of the
continuous effort function. To do so, the instants of input arriv-
als t1,...,tn are associated to tuples (ai,bi) whose values corre-
spond to the coefficients used to approximate the effort curve
by a polynomial function: effort(t) = ai.t + bi " t 2 hti,tji.

- Capacitor: it models the static relation between effort and dis-
placement. All storage elements, including Capacitors, have a
preferred causality. The equation defined by the Capacitor ele-
ment can be expressed in two forms: effort ¼ 1

C

R t
�1 flow dt or

flow ¼ C deffort
dt , where C is the Capacitor constant. A capacitor

defines the following relation between the power variable e
(effort) and the energy variable q (displacement):
e(t)�g(q(t)) = 0; q(t)–f(t) = 0. The integral causality assignment
makes the function f(t) to represent the input, and e(t) the cor-
responding output. The displacement, q(t), is the state variable
(integrator’s output). Using the QSS method, the function is
transformed in e(t) = g(qq(t)), with qq(t) the quantized version
of q(t) [30]. This equation can be rewritten using the composi-
tion of the quantization function with function g, e(t) = gq(q(t)),
where gq is a quantized function (the composition of a quanti-
zation function and a continuous function). The same reason-
ing can also be applied to the inertias, which can be replaced
by their quantized version.

- EffortSource and FlowSource: these components generate sig-
nals according to a given frequency. EffortSource sends the
effort through the output port, while the FlowSource sends
the flow value. Several types of output signals were imple-
mented, providing varied functions to use in different contexts:
Constant, Step, Ramp, Sine, ExpSine, Exponential, and Pulse.

- Inductor: it defines the static relation existing between flow
and momentum. The following preferred equation was used:
flow ¼ 1

L

R t
�1 effort dt where L corresponds to the Inertial con-

stant. The model transition functions are similar to those used
for the Capacitor, but in this case, the Inductor load (flow) is
calculated as the integral of effort value.

- Transformer: this model conserves power and it transmits the
factors with the proper scaling defined by the transformer
modulus. As this element has two bonds connected to it, both
output effort and flow values must be calculated. The modulus
equation defines the following relations: fj = r�fi, and ej = (1/r)�ei,
with r the transformer modulus and (ei,fi), (ej,fj) the (effort, flow)
values transported by bondi and bondj attached to the compo-
nent. New input effort data arriving at the component is pro-
cessed in the external transition function and it is used to
compute the outgoing effort according to the modulus relation.

- Gyrator: this model establishes the relationship between flow
to effort and effort to flow, keeping the power unchanged.
The relations are defined by: ej = l�fi, ei = l�fj where l is the
gyrator modulus, and where (ei,fi) and (ej,fj) are the (effort, flow)
values transported by bondi and bondj attached to the
component.

- 0-junction (1-junction): it processes the arrival of new effort
(flow) data in the model’s external function, sending the value
received through all the output effort (flow) ports. On the other
hand, the arrival of new flow (effort) in one of the bonds gen-
erates the recalculation of the equation and flow (effort) is sent
out through the output port.

For each of these models, a DEVS formal specification (which
was used for verification) was defined, and a model was built in
CD++ based on such specification. The simulation of the atomic
DEVS models is based on the detection of effort value changes, as
the input flow and the output effort are piecewise constant and
the displacement trajectories are piecewise linear. This time is cal-
culated as the distance of the displacement value to the next quan-
tum crossing and the flow value, and it is associated to the time
advance function. In the case of input flow variations, the time to
the next effort change must be recalculated. The current displace-
ment is computed according to the elapsed time and the previous
flow value. Input flow changes are associated to external events on
the DEVS model.

The following QBG components were implemented: QBGCapac-
itorFlowIn, QBGInductorEffortIn, QBGResistance FlowIn, QBGResist-
anceEffortIn, QBGSourceEffort_Constant, QBGSourceEffort_Step,
QBGSourceEffort_Sine, QBGSource Effort_Pulse, QBGSource-
Flow_Constant, QBGSourceFlow_ Step, QBGSourceFlow_Sine,
QBGSourceFlow_Pulse, QBG Transformer, QBGGyratorFlowIn, QBG-
GyratorEffortIn, QBG SerialJunction and QBGParallelJunction. In
order to show how this was done, the definition of the model QBG-
SourceEffort_Sine is described below (the remaining components
were built using a similar approach, and details can be found in
[21]). First, the formal definition of the model is presented, and then
the implementation in CD++. QBGSourceEffort_Sine is an atomic
DEVS component that models the BG source element generating
the sine signal. Like the rest of the source DEVS models, it is simu-
lated using QSS (quantization function with hysteresis) applied to
signal function generator. The simulation calculates the time to
the next quantum crossing, and uses this value as the time advance
function ta (implemented by the holdIn function in CD++). The
model generates a sine signal with angular frequency X, amplitude
A and quantum value equal to A�du.

SourceSine ¼ hX; S;Y; dint; dext; k; tai

where X ¼£; Y ¼ R; S ¼ R�Rþ

dint(s) = dint(s,r) = (s0,r0) where

r0 ¼

arcsin½sinðxsÞþdu�
x �s if ðsinðxsÞþdu61 ^ cosðxsÞ>0Þ

_ðsinðxsÞ�du>�1Þ
sgnðsÞp�arcsin½sinðxsÞþdu�

x �s otherwise

8><
>:

and s0 ¼
sþr0 if xðsþr0Þ<p
sþr0 � 2p

x otherwise

(

kðsÞ ¼ kðs;rÞ ¼ ðA � sinðxsÞ;1Þ

taðsÞ ¼ taðs;rÞ ¼ r

The model shown in Fig. 22 presents the implementation of the
model in CD++.

As we can see, the initialization function &QBGSource_Sine::

initFunction starts by computing function s (which implements
the r function defined in the formal specification SourceSine
above). It then computes its quantized value, and triggers an inter-
nal transition immediately (ta with time = 0). As a consequence,
the output function &QBGSource_Sine::outputFunction is
activated, and this function it checks if the next quantum threshold
has been passed. In that case, it transmits the results. Then, the
internal transition function &QBGSource_Sine::internalFunc-

tion is activated, which computes function s again, following
the formulas above. Then, the value obtained quantized, the time
to cross the next threshold is computed and used as time advance.
If the quantized state value does not change, a timeout is used
(TICK_VALUE) to trigger a change if needed (for instance when
the slope of the function equals 0).

Coupled components are built as DEVS models representing
model’s interconnections as follows:

CQBG ¼ hXself ;Yself ;D; fMig; fICg; selecti

- Xself = Yself = {£} no external inputs or outputs are used,



Fig. 22. QBGSource_Sine DEVS model and simulation execution.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 121
- D is the set of all the BG elements components, and " i2D,
- Mi is a DEVS atomic model representing a QBG component,
- IC is the internal coupling set defined as IC = {iceui,vj} [ {icfvj,ui}

where iceui,vj and icfvj,ui represent the coupling between effort
and flow ports on components u and v, being the effort calcu-
lated by element u (the causal stroke outwards u).
iceui;v j¼
ððu;outeiÞ;ðv; inejÞÞ if v isnotasourceðflowsourceÞ
u otherwise

�
if u isa1� junctionthen i¼1
ðonly one effort�out portÞ

icfvj;ui¼
ððv;outfjÞ;ðu; infiÞÞ if u is not a source ðeffortsourceÞ
u otherwise

�
if v is a 0� junction then j¼1
ðonly one flow�out portÞ
- select: the tie-breaking function, gives priority to the structural
components (junctions, transformer and gyrator).

Given the definition of the coupled DEVS model associated to a
QBG, M/CD++ generates a coupled model using the specification
language supported by CD++. To generate this specification file,
the compiler executes the following steps:

1. For each component u of the QBG, add u to the component
section of the model file. Considering the assigned causal-
ization, select the valid implementation class for the com-
ponent (as discussed earlier, two implementations are
available for components with both causality types)
2. For each bond b = (u,v) of the QBG, generate the coupling
information between u and v on the links section in the
model file. Follow the coupling definitions formalized
above.

3. For each component u of the QBG, generate the compo-
nent’s configuration information in the parameterization
section on the model file.

The process is illustrated in Figs. 23 and 24.
Fig. 23 shows a simple circuit in Modelica, and Fig. 24 the CD++

coupled model file generated by the compiler, using the model
structure generated based on the BG specification.

The compiler uses the models and generates a coupled model
structure following the procedures presented in Sections 3 and 4.
In this case, it generates three atomic models: $SJ1, an instance
of @QBGSerialJunction R1, an instance of QBGResistanceEf-
fortIn, and V, an instance of QBGSourceEffort_Sine (these
three models are in the library). Then, the models are connected
through their input/output ports (defined by the link clauses).
The model’s parameters are extracted from the Modelica specifica-
tion and converted into CD++ arguments for the coupled model.
For instance, we can see that the Source generates a Sine signal
with amplitude of 15 V, and a frequency of 20 ms (based on the ori-
ginal specification of 50 Hz). Finally, the discrete event simulator
CD++ is internally invoked from M/CD++ and the simulation results
generated.
5. M/CD++ execution examples

In this section, the simulation results of executing different
electrical circuits using M/CD++ on an Intel workstation is pre-
sented (numerous tests were carried out; further details can be
found in [31–33,26]). The goal of this section is to show that the
results obtained by M/CD++ are consistent with the real behavior
of the circuits studied.

Our first example considers the simulation of the electrical cir-
cuit with sine voltage presented in Figs. 23 and 24 (where V gen-
erates a sine voltage). After the model is compiled and executed,
the following results were obtained. Fig. 25(a) shows the voltage
on source V (a sine wave with amplitude 15 V) and Fig. 25(b)
shows the voltage and current on resistor R. The resistor is a pas-
sive element in this oscillating circuit, so the current and the volt-
age on the resistor are in phase; the amplitude of the current is
I = V/R1.

The example in Fig. 26 shows a model of an electrical circuit
with pulse voltage. The structure of the model is similar to the
one presented in Fig. 23 using a different voltage generator and
including a capacitor.

After the complete model is generated and executed, we obtain
the results shown in Fig. 27. The resistor is a passive circuit ele-
ment and, as in previous example, its current is I = V/R1. The volt-
age on the capacitor increases until the maximum value (10 V), and
when it is fully charged, the current becomes zero. The voltage
source provides only positive pulses, so the capacitor will not be
discharged.

The following example includes an inductor added to the origi-
nal circuit, using a pulse voltage (see Fig. 28).

The inductor is an active circuit element. When the current var-
ies from zero to its nominal value (transient regime of the circuit),
there is an induction phenomenon which generates voltage in this
transition stage. Therefore, the voltage on the inductor varies in the
(�6 V, 6 V) interval while the source voltage V varies in the interval
[0 V, 10 V].

In order to validate the simulation results, exhaustive tests
were carried out, comparing the results to those obtained with



model circuit 
Modelica.Electrical.Analog.Sources.SineVoltage 

V(V=15,freqHz=50);
Modelica.Electrical.Analog.Basic.Resistor R1(R=10);
Modelica.Electrical.Analog.Basic.Ground Gnd;

equation
connect(V.p, R1.p);
connect(R1.n, V.n);
connect(R1.n, Gnd.p);

end circuit;

Fig. 23. Electrical circuit model and representation in Modelica.

Fig. 24. Coupled model representation in CD++ notation.

-20
-15
-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Voltage

-20
-15
-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Current Voltage

(a) (b)

time

Voltage

time

Current and Voltage on R1

V V,
C

Fig. 25. Current/voltage on V/R1.

Fig. 26. Electrical model in Modelica: pulse voltage and capacitor.

122 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
Dymola [34], a commercial toolkit for complex physical system
M&S with Modelica support. The idea was to compare the results
of M/CD++ (which took approximately nine person-months to be
developed) with those obtained by a fully featured commercial
tool. The results obtained show that, besides the various advanta-
ges discussed in Section 1, a DEVS-based approach can also
improve the development of a complex tool while having mini-
mum error.

The test cases presented here were executed using both M/
CD++ and Dymola, varying simulation parameters in order to com-
pare their results and calculate the error between them. The objec-
tive of this comparison is not to discuss performance or precision
of the results, neither the qualitative or quantitative results, but
to show the final results obtained when executing all the steps in
the tool chain, and to show the validity of the tool results when
compared with a commercial tool with thousands of person-hours
of development. Numerous examples were presented in [31–
33,26] (only one example is introduced due to space limitations)
(see Fig. 29).

The first test presented here shows the execution of the cir-
cuit using the DASSL integration method on Dymola for 15 s of



Fig. 27. Electrical model with pulse signal: (a) current and voltage on R1; and (b) current and voltage on the capacitor.

model circuit
Modelica.Electrical.Analog.Sources.PulseVoltage 

V(V=10,width=50,period=2);
Modelica.Electrical.Analog.Basic.Resistor R1(R=10);
Modelica.Electrical.Analog.Basic.Inductor I1(L=48);
Modelica.Electrical.Analog.Basic.Ground Gnd;

equation
connect(V.p, R1.p);
connect(R1.n, I1.p);
connect(I1.n, V.n);
connect(V.n, Gnd.p);

end circuit;

(a) (b) 
Fig. 28. Pulse signal and inductor: current and voltage on the inductor.

Fig. 29. An oscillating electrical circuit.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 123
simulation time (using intervals of 500 time units, and a toler-
ance of 0.0001). The results were compared with those obtained
Fig. 30. Voltage curve on capacitor 1
by M/CD++ using a quantum size q = 1.6 for Capacitors (with a
hysteresis window of 0.5) and q = 0.5 for Inductors (with a hys-
teresis window of 0.1). Fig. 30 shows the state trajectories on
capacitor C1 and inductor I1 for the given simulation
parameters.

As seen in the figure, the error produced is minimum (the high-
est error was obtained when values are close to zero, because, as
the quantum size used during the simulation is a fixed value for
all the points on the curve, smaller values will produce greater rel-
ative errors; this can easily be improved with QSS of higher order).
The error curve decreases when time advances. The results highly
improve when decreasing the quantum and hysteresis window
size on M/CD++.
and current curve on inductor 1.



124 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
6. Conclusion

The DEVS formalism is a methodology introduced for M&S of
discrete event systems. During the last decade the DEVS theory
has evolved, and new methods allow DEVS simulation of continu-
ous and hybrid systems. The design of a tool for M&S of continuous
systems was introduced. Models are described using Modelica, a
modular and causal standard specification language for physical
system modeling and then translated into DEVS. Examples of
model simulation with their execution results were included. The
simulation results generated by M/CD++ were compared with
those produced by the commercial simulation environment Dymo-
la. Several test cases were executed using both toolkits, varying the
quantization parameters used on M/CD++ and the integration
methods utilized by Dymola. It was shown that a higher relative
error is obtained for slopes near to zero on a trajectory. This is
related with the fixed quantum size used by the quantization func-
tion over a state trajectory, and it can be solved with higher order
methods like QSS2 or QSS3, as M/CD++ approximates the system
solution based on the QSS method, which uses a simple first order
integration approach. Most of the results produced by M/CD++
Fig. A1
were contrasted with results generated using a higher order and
variable step-size integration method, DASSL. It was shown that,
in general, choosing adequate quantization parameters produces
more accurate solutions and decrease error.

In the long term, new libraries will be built in order to make it
easy to use the components developed on top of DEVS modeling
tools. One of the benefits is that for a given accuracy, the number
of transitions can be reduced, decreasing the execution time of
simulations. Discrete time models can be simulated under the dis-
crete event paradigm, thus allowing the development of a simula-
tion environment for complex systems, modeled as hybrid
systems, where all paradigms merge (continuous time, discrete
time, and discrete event).

Appendix I. M/CD++ components UML class diagram

See Fig. A1.

Appendix II. Bond graph class hierarchy

See Fig. A2.
.



Fig. A2.

G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126 125
References

[1] Gilat A. MATLAB: an introduction with applications. 2nd ed. John Wiley &
Sons; 2004.

[2] Wolfram S. Mathematica: a system for doing mathematics by computer. 2nd
ed. Redwood City (CA, USA): Addison Wesley; 1991.

[3] Zimmerman W. Multiphysics modeling with finite element methods. River
Edge (NJ): World Scientific Publishing Co., Inc.; 2006.

[4] Heck A. Introduction to maple. Springer; 1996.
[5] Taylor M. Partial differential equations: basic theory. NY: Springer; 1996.
[6] Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical

recipes. Cambridge (MA): Cambridge University Press; 1986.
[7] Zeigler B, Kim T, Praehofer H. Theory of modeling and simulation. 2nd ed. New

York: Academic Press; 2000.
[8] Zeigler BP. Continuity and change (activity) are fundamentally related in DEVS

simulation of continuous systems. LNCDS, vol. 3397. NY: Springer-Verlag;
2005. p. 1–17.

[9] Zeigler B. DEVS theory of quantization. In: DARPA Contract N6133997K-007.
Tucson (AZ): ECE Dept., University of Arizona; 1998.

[10] Kofman E. Discrete event based simulation and control of continuous systems.
Simulation 2003;79(7):363–76.

[11] Modelica language specification. Version 2.1. <http://www.modelica.org>.
[accessed: March 2010].

[12] Wainer G (. Discrete-event modeling and simulation: a practitioner’s
approach. Boca Raton (Florida): CRC press, Taylor & Francis; 2009.

[13] Åström KJ, Elmqvist H, Mattsson SE. Evolution of continuous-time modeling
and simulation. In: 12th European simulation multiconference, Manchester,
UK; 1998.

[14] Pantelides C. The consistent initialization of differential algebraic systems.
SIAM J Sci Stat Comp 1988;9:213–31.
[15] Fábián GD, van Beek DA, Rooda JE. Substitute equations for index reduction
and discontinuity handling. In: Proc. of the third IMACS symposium on
mathematical modeling, Vienna, Austria; 2000.

[16] Cellier FE, Elmqvist H. Automated formula manipulation supports object-
oriented continuous-system modeling. IEEE Control Syst 1993;13(2):28–38.

[17] Geuder DF. Object oriented modeling with SIMPLE++. In: Proceedings of winter
simulation conference, Arlington, VA; 1995.

[18] Roberts C, Dessouky Y. An overview of object-oriented simulation. Simulation
1998;70:359–68.

[19] Samantaray A. About bond graph-the system modeling world [online]. <http://
www.bondgraph.info/about.html.> [accessed April 2010].

[20] Kofman E, Junco S. Quantized state systems. A DEVS approach for continuous
system simulation. Trans SCS 2001;18(3):123–32.

[21] D’Abreu M, Wainer G. Defining hybrid system models using DEVS quantization
techniques. In: Proceedings of the winter simulation conference. New Orleans,
LA, USA; 2003.

[23] Nutaro James J, Zeigler Bernard P, Jammalamadaka R, Akerkar S. Discrete event
solution of gas dynamics within the DEVS framework. In: International
Conference on Computational Science; 2003. p. 319–28

[24] Bolduc Jean-Sébastien, Vangheluwe Hans. Mapping ODEs to DEVS: adaptive
quantization. In: Summer computer simulation conference, Montréal, Canada;
2003. p. 401–7

[25] Giambiasi N, Escude B, Ghosh S. GDEVS: a generalized discrete event specification
for accurate modeling of dynamic systems. Trans SCS 2000;17(3):120–34.

[26] D’Abreu M, Wainer G. M/CD++: modeling continuous systems using Modelica
and DEVS. In: Procedings of IEEE/ACM MASCOTS 2005, Atlanta, GA; 2005.

[27] Sanz V, Urquia A, Cellier FE, Dormido S. Modeling of hybrid control systems
using the DEVSLib Modelica library. Control Eng Pract 2012;20(1):24–34.
2011.

[28] GNU. Introduction to Bison [online]. <http://www.gnu.org/software/bison/
bison.html.> [accessed 26.04.10].

http://refhub.elsevier.com/S0965-9978(14)00152-5/h0185
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0185
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0010
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0010
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0015
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0015
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0020
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0025
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0030
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0030
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0190
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0190
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0040
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0040
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0040
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0050
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0050
http://www.modelica.org
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0195
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0195
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0070
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0070
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0080
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0080
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0090
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0090
http://www.bondgraph.info/about.html
http://www.bondgraph.info/about.html
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0100
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0100
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0125
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0125
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0205
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0205
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0205
http://www.gnu.org/software/bison/bison.html
http://www.gnu.org/software/bison/bison.html


126 G.A. Wainer, M.C. D’Abreu / Advances in Engineering Software 79 (2015) 111–126
[29] Karnopp D, Margolis D, Rosenber R. System dynamics: a unified
approach. Wiley; 1990.

[30] Kofman E, Junco S. Quantized bond graphs: an approach for discrete event
simulation of physical systems. In: Proceedings of ICBGM’01. Phoenix, Arizona,
Jan. 2001; p. 369–74.

[31] D’Abreu M, Wainer G. Experimental results on the implementation of
Modelica using DEVS modeling and simulation. In: Proceedings of SpringSim
2006 (DEVS Symposium). Huntsville (AL) USA; 2006.

[32] Chechiu L, Wainer G. Experimental results on the use of Modelica/CD++. In:
Proceedings of the 2005 SCS summer computer simulation conference
(student workshop). Philadelphia, PA; 2005.
[33] Sanz V, Jafer S, Wainer G, Nicolescu G. Hybrid modeling of opto-electrical
interfaces using DEVS and Modelica. In: Proceedings of SCS/ACM Springsim
2009 (DEVS symposium). San Diego, CA. USA; 2009.

[34] Dymola. <http://www.3ds.com/products/catia/portfolio/dymola>. accessed
July 2010.

[35] Kofman E, Cellier FE, Migoni G. Continuous system simulation and control. In:
Wainer GA, Mosterman PJ, editors. Discrete event simulation and modeling:
theory and applications. Boca Raton (FL): CRC Press; 2010. p. 75–107.

[36] Giambiasi N, Escude B, Ghosh S. Generalized discrete event simulation of
dynamic systems. Trans. Soc. Comput. Simul. Int. 2001;18(4):216–29.

http://refhub.elsevier.com/S0965-9978(14)00152-5/h0145
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0145
http://www.3ds.com/products/catia/portfolio/dymola
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0175
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0175
http://refhub.elsevier.com/S0965-9978(14)00152-5/h0175
http://refhub.elsevier.com/S0965-9978(14)00152-5/h9000
http://refhub.elsevier.com/S0965-9978(14)00152-5/h9000

	Using a Discrete-Event System Specifications (DEVS) for designing a Modelica compiler
	1 Introduction
	2 Modeling continuous systems
	2.1 Modelica
	2.2 Bond graphs
	2.3 The DEVS formalism

	3 M/CD++
	3.1 Modelica parser & checker
	3.2 Mapping electrical circuits to bond graphs
	3.3 Bond graph validation

	4 Bond-Graph library
	5 M/CD++ execution examples
	6 Conclusion
	Appendix I M/CD++ components UML class diagram
	Appendix II Bond graph class hierarchy
	References


