
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2015, Vol. 91(1) 71–95

� 2014 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549714562994

sim.sagepub.com

A simulation as a service methodology
with application for crowd modeling,
simulation and visualization

Sixuan Wang and Gabriel Wainer

Abstract
Crowd modeling and simulation (M&S) has been used to support the analysis of the behavior of crowds, in order to pre-
dict the impact of pedestrian movement and to test design alternatives. In recent years, crowd M&S has become more
complex, and new technologies such as CAD (computer-aided design) and BIM (building information modeling) author-
ing tools are being used to support the process. There are challenges in adopting these technologies due to the lack of
automation and integration of these tools for crowd M&S. We propose a method based on a distributed architecture
with simulation in the cloud, and composition using workflows. In particular, we adopt a model-driven engineering
approach to extract data from CAD/BIM authoring tools, Cell-DEVS theory for crowd modeling, simulation as a service
to execute simulation remotely, and three-dimensional visualization. Finally, we present a case study for crowd evacua-
tion, discussing the advantages of the proposed architecture. We show the advantages obtained when using distributed
deployment, simulation-based design and collaborative development and we discuss how this facilitates the crowd beha-
vior study and improves reusability in crowd M&S.

Keywords
Crowd modeling and simulation, simulation as a service, cloud computing, model-driven engineering, building informa-
tion modeling, workflow

1. Introduction

In recent years, the population in public areas and trans-

portation facilities has become much denser. This situation

has potentially increased problems in terms of human

safety. Numerous incidents and accidents with crowds

have been recorded recently;1 thus, predicting and trying

to control the behavior of a crowd is an important issue.

Modeling and simulation (M&S) can support the analy-

sis of such behavior, and it can help designers to evaluate

the performance of their designs. Designers can use crowd

M&S to find flaws in particular areas of their buildings or

urban area designs before the construction has begun. In

particular, crowd modeling aims to define the behavior of

a crowd in a given area, while crowd simulation focuses

on executing one such model in order to predict the impact

of crowd movement under different situations.2

Crowd modeling is complex due to numerous factors:

physical (position, direction, speed, etc.), psychological

(stress, panic, etc.), social (culture, regulations, flocking,

etc.) and others.3 These factors are closely related to the

area where the crowds are studied (e.g., traffic intersec-

tions, shopping malls). To better study the behavior of a

crowd in the design of a building or city section, we need

to use a large amount of data (for instance, the layout

information of a traffic intersection could be used as input

for a crowd model). Nowadays, new technologies and

tools are available to manage this kind of data. For

instance, building designers use CAD (computer-aided

design) tools to improve the quality of building and urban

designs, and to enhance communication with stakeholders.

BIM (building information modeling) tools are also used

with this purpose: a BIM application usually includes

CAD facilities enhanced with varied databases for manag-

ing the buildings’ data.4 The data of these tools can be

used as crowd model inputs (e.g., the layout of the build-

ing or the coordinates of objects in a facility under study),

Department of Systems and Computer Engineering, Centre for

Visualization and Simulation (V-Sim), Carleton University, Canada

Corresponding author:

Sixuan Wang, Department of Systems and Computer Engineering, Centre

for Visualization and Simulation (V-Sim), Carleton University, Ottawa,

ON K1S5B6, Canada.

Email: swang@sce.carleton.ca

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

and the tools can be used for three-dimensional (3D)

visualization, taking advantage of advanced visualization

of the crowd simulation results.5 By doing this, the

designers can efficiently view, analyze and refine the

design with different scenarios.6

At present, crowd M&S lacks integration with advanced

CAD/BIM tools. When a designer wants to evaluate a

building design, they need to extract data from the building

design, build a crowd model with this data, execute simula-

tion experiments, and study the simulation results; how-

ever, there is no method to integrate all the activities. As

discussed by Zhou et al.,7 this is a complex and important

problem to solve. Although there are various tools to sup-

port the activities mentioned above, they cannot be inte-

grated: each tool has its own functionality, syntax,

semantic and structure, which makes the communication

between them hard. For instance, a simulator can record

state changes, while a visualization tool cannot animate

these changes due to the lack of some information needed

for visualization that the simulator does not provide. Most

of the recent work in this area has focused on two-part

integrations of these activities, and they are neither forma-

lized nor automated. Various efforts have focused on the

integration of crowd models and their simulations.7–9

Likewise, crowd simulation and visualization has received

some attention.10,11 In contrast, the integration of CAD

and crowd M&S is still limited12,13 and the integration

with BIM tools has been rarely investigated.14

The goal of this research is to provide an architecture to

allow a better integration of crowd M&S with CAD/BIM

tools and visualization. To do so, we need to deal with the

following issues.

1) We need to automate the use of CAD/BIM to pro-

vide model inputs. Many CAD/BIM tools use stan-

dard files based on the industry foundation classes

(IFCs). However, this standard is too complex and

redundant, and files are difficult to understand.15

Furthermore, the standard cannot cover all the

information needed for specific simulations.16

2) Crowd M&S itself is complex due to not only the

factors mentioned earlier, but also in terms of per-

formance. As the model size becomes larger, the

simulation execution time becomes unfeasible for

doing proper analysis.7

3) Usually, a crowd model is associated with a spe-

cific simulator running on a standalone worksta-

tion. Running new simulations needs installation

and configuration of the simulator. This requires

simulation expertise, which makes it difficult for

casual users to execute new crowd models.

4) The integration process involves different activi-

ties. However, it is complex for building designers

to link the solutions of these activities and to repro-

duce the whole process.

To deal with these issues, we defined an integrated archi-

tecture to combine crowd M&S, CAD/BIM tools and 3D

visualization. The architecture includes three layers: a

component layer (to provide different components focus-

ing on different aspects of the crowd modeling process), a

composition layer (to define workflows to integrate those

components) and an application layer (to allow users build-

ing crowd M&S applications easily).

In order to address the issue of the redundant informa-

tion found in the IFC files, we adopt a model-driven engi-

neering (MDE) approach. MDE can help users defining

domain-specific models (DSMs) for particular simulation

purposes, as well as supporting automatic or semi-

automatic model transformations. We propose a MDE-

based semi-automatic data collection method to query the

information needed from IFC files, and to generate the ini-

tial files for crowd models.

For modeling crowds, we used various models built

using Cell-DEVS theory,17 a rule-based, event-driven, for-

mal mechanism to define these behaviors. Cell-DEVS

helps dealing with modeling complexity.

Simulation as a service (SimaaS) is a method to deploy

simulation resources (e.g., simulators, models, input data)

in the cloud, using web services (WSs) for users to access

these resources. Users can share crowd models, reproduce

the execution of crowd simulations and retrieve the simu-

lation results remotely. In order to match the actual com-

putational demands, SimaaS also allows the users to scale

up or down the underlying compute and storage capacities

according to their needs.

In order to integrate and automate the whole process,

we use workflows. A workflow links different efforts men-

tioned above and reproduces the whole process.

In order to show the uses of the proposed architecture

and the methods we defined, we present a case study for

evacuation in a shopping mall. We show two ways of col-

lecting data from BIM tools. We also discuss the steps to

build a crowd model using Cell-DEVS theory, as well as

executing the simulation using SimaaS. Furthermore, we

show how to integrate the simulation results with 3D

visualization. Finally, we show how to automate the exe-

cution of the whole process.

The following sections focus on presenting guidelines

and solutions for the integration of crowd M&S and CAD/

BIM tools. The proposed architecture has several advan-

tages as follows.

- It supports a distributed way to deploy components

(e.g., data collection, 3D visualization). It allows

deploying these components in the cloud and using

workflows to automate the whole process. Users can

deploy their own components and link them as parts

of a workflow.

- It supports simulation-based design of buildings or

urban areas. The designers can repeat and modify

72 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

existing workflows to test different designs, enabling

them to compare alternatives, and to find flaws in

the design. This can speed up their decision-making

before construction has begun.

- It supports collaborative development of crowd

M&S. Users from different disciplines (e.g., build-

ing designers, modelers, crowd behavior analysts)

can work together. Users can focus on the develop-

ment of their own components and share them with

others, reusing existing components.

In the following sections we will focus on these advantages

(i.e., distributed deployment, simulation-based design and

collaborative development), showing how the proposed

architecture is able to facilitate the behavior study of

crowds and improve the reusability in crowd M&S.

2. Related work

Crowd modeling aims to define the behavior of a crowd in

an area of interest. The kind of behavior is usually related

to the movement of individuals. In Hoogendoorn and

Bovy,2 the authors presented a three-level theory on the

behavior of crowds: the strategic level, the tactical level

and the operational level. The strategic level reflects the

general decisions for the crowd (e.g., opening more doors

during rush hours). The tactical level defines the time and

space constraints of the crowd. The time constraints reflect

if the people in the crowd are in a hurry, and the space con-

straints define how much space they need. The operational

level defines concrete rules for the crowd behavior (e.g.,

where to move, how long to wait).

According to Zhou et al.,7 the modeling approaches for

the above behavior of crowds can be divided into three

categories: flow, agent and entity-based. Flow-based mod-

eling focuses more on the higher levels of the behavior of

crowds (e.g., strategic and tactical). It treats the crowd as a

whole (like a fluid), and the crowd is modeled using dif-

ferential equations.18,19 For instance, in Werberich et al.,20

the authors presented a crowd model based on friction

force equations. Agent and entity-based approaches focus

on the operational level of the behavior, seeing each indi-

vidual as an independent agent whose behavior is con-

trolled by specific laws.21,22 For instance, in Bae et al.,23

the authors developed an agent-based model for a crowd

evacuation in a city during a bombardment. Entity-based

models separate the crowd into homogeneous groups, and

the behavior of each group is defined by a set of rules.24

In agent-based models, each individual is governed by

rules that only work for that individual. In contrast, in

entity-based models, the crowd is separated into groups,

and entities in the same group share common rules, which

make it easier for management and extension. Agent-

based approaches usually require more resources due to

the independent processing for each individual.7

In recent years, entity-based approaches have gained

much attention. In particular, cellular automata (CA) have

been widely used for modeling entity-based crowds. CA

divide a physical space into a grid of cells. Each cell

changes its value based on the values of its neighbors fol-

lowing predefined rules.25 In Hoogendoorn and Bovy,2 the

authors divided such rules into three categories: moving

direction, collision avoidance and speed adjustment.

Blue and Adler26 presented a CA for a unidirectional

crowd flow over a multilane walkway. In Song et al.,27 a

multi-cell crowd model was presented for a simple eva-

cuation case. In Yue et al.,28 the authors presented a CA

with a two-step approach that allows handling collisions

when two pedestrians want to move in the same cell. In

Henein and White,9 the authors argued that the forces

that impose on cells (e.g., preferred direction) are essen-

tial, and they added vector-based information to each

cell. Tao and Jun10 proposed an improved CA model for

bi-directional crowd flow. They believed that the posi-

tion exchange and side-stepping movement in a bi-

directional flow were more complicated than the ones in

a unidirectional flow.

In this research, we used the Cell-DEVS formalism17 as

an entity-based approach similar to CA. Cell-DEVS is an

extension to the DEVS (discrete-event system specifica-

tion) formalism29 to model cell spaces. In Cell-DEVS,

each cell in the space is represented as a DEVS atomic

model that changes state according to the values of its

neighbors following the rules defined by a local computing

function. Similar to entity-based approaches, Cell-DEVS

requires fewer resources and is able to build models easily

by sharing rules in groups.7,30 Cell-DEVS is event-driven

and provides asynchronous execution, ignoring unneces-

sary processing in cells that are inactive; therefore, it is

suitable for large-size and long-term crowd simulations.

The formalism supports explicit timing constructions that

allow a modeler to define complex timing in each cell

(which is not allowed by methods like CA, or it can be

complex to define). Being derived from DEVS, it provides

a formal M&S specification, which allows one to prove

properties about the models and the simulation engines

running them. It supports fast prototyping and incremental

development. Finally, it has been proven that it can be eas-

ily interfaced with other components.17 The CD++ tool17

provides an environment to execute DEVS and Cell-DEVS

models.

In recent years, various Cell-DEVS models have been

developed for modeling different applications in the field

of architecture, construction and transportation. In Ahmed

et al.,31 a Cell-DEVS model of diffusion-limited aggrega-

tion showed the integration of construction modeling tools.

As a case study, a Cell-DEVS model of the growth of

mold in building was implemented, and Autodesk Revit (a

BIM application) was used for collecting building data

and 3ds Max for visualization. In Hammad and Zhang,32

Wang and Wainer 73

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

the authors used Cell-DEVS models for construction sites,

trying to deal with conflict analysis in cranes. In a 2012

study,33 we introduced the use of Cell-DEVS theory for

crowd modeling, showing how to build bi-directional

pedestrian models. In our 2013 study,34 an advanced

crowd model using Cell-DEVS was presented, taking into

consideration random movement and varied speed of the

crowds.

In crowd modeling, we need information about the

studied area (e.g., floor layout, location of doors, etc.).

This data is usually available in CAD/BIM tools. CAD

tools describe the data in geometry. If designers want to

modify a line, they need to change all the data related to

the line. In contrast, BIM views everything as objects, so

designers can modify the parameters of the object without

changing other data. Although CA and Cell-DEVS can

model the behavior of crowds, the integration of these

models and CAD tools is limited (and even rare with BIM

tools). Most CAD tools do not support this kind of data

collection, and designers should do this manually, which

is time-consuming and error-prone. In Sano et al.,12 the

authors showed a method to collect room information

from a CAD system as input data for a crowd model.

However, the rooms that they used are of simple shape.

STEPS35 is a micro-simulation tool for crowd movement

analysis that supports importing CAD geometry. STEPS is

an agent-based approach, and each person defined has spe-

cific attributes. In Lo et al.,36 the authors proposed a pre-

processing engine to transform spatial information of

CAD to the inputs of their spatial-grid evacuation model

(SGEM). This engine is complex to use due to the uses of

a series of different equations.

Most CAD tools support BIM to create, manage and

exchange information. However, to date it has been rare to

integrate BIM with crowd modeling. For instance, none of

the data collection tools above has been integrated with

BIM tools. BIM tools usually use the standard IFCs,14,15

which are supported also by many CAD tools. The IFC file

covers the core project information, such as building ele-

ments and geometric and material properties.37 The current

standard, IFC2x3, has 653 entities, 317 property sets and

164 enumerations (at the time of writing, IFC2x4 had just

been released). Given the popularity of IFC in CAD/BIM,

we need a data collection strategy to extract needed data

from IFC files. However, the IFC files are too complicated

and redundant, which makes it difficult to query them.38

The IFC is complex, as it intends to cover all design

domains in one file, which can include a large number of

information from many disciplines. Furthermore, the IFC

file might not cover all the information needed for a spe-

cific simulation.16 MDE can help with these issues. Jiang

et al.16 used a MDE approach to parse IFC files into a

model for saving building energy. MDE can help users to

define DSMs for particular purposes, as well as supporting

auto/semi-automatic model transformation.39 In MDE,

data exchanges from a source instance to a target instance.

MDE supports tools to define mappings between models;

using the mappings and a source instance, MDE also sup-

ports tools to generate the target instance.

Once the crowd model is created, and the input data for

the area under study is available, we need to execute a

number of simulation studies. In most cases, the simulation

is run on standalone computers, which means that the users

need to install and configure them properly. Instead, using

web-based simulation and SimaaS, this is not necessary.

Web-based simulation tries to invoke simulation services

through the web,40 allowing the simulation environment to

be shared and reused. Existing simulation-related WSs can

be categorized into two classes: RESTful41 and simple

object access protocol (SOAP)-based.42 SOAP-based WSs

are exposed as in remote procedure calls (RPCs). They

encapsulate various procedures on the server that can be

invoked like local procedures (described in extensible

markup language (XML) web services description lan-

guage (WSDL) documents). At runtime, the client wraps

the SOAP messages in hypertext transfer protocol (HTTP),

and POSTs the SOAP message to the server. When the

server receives the message, it extracts it using a procedure

call. The response of the server is similar. For instance, in

Madhoun,43 Madhoun et al.44 and Wainer et al.,45 we

define the first distributed DEVS simulation environment

over SOAP and user-controlled light paths (using

CaNet*4, Geantoptical networks infrastructure). As dis-

cussed by Wagh and Thool,46 SOAP WSs have shortcom-

ings compared to RESTful WSs. In the SOAP, client–

server interaction is tightly coupled, which means any

changes on the server result in a complex code change on

the client. Also, the SOAP has a heavier payload as com-

pared to representational state transfer (REST), as it con-

sumes more bandwidth in the XML messages, and it

exposes details of internal implementation, which makes

them harder to develop. These issues were thoroughly

investigated and discussed by Al-Zoubi and Wainer.47,48

Based on those studies, and even though there are various

SOAP DEVS simulators,49–52 we defined the first

RESTful distributed DEVS simulator.48

Compared to SOAP, RESTful WSs imitate the web

interoperability style, using universally accepted standards,

resource-orientation, uniform channels and information

hiding. RESTful WSs expose all services as resources with

uniform channels, and messages are transferred between

those resources through the channels. We can access

RESTful WSs via uniform resource identifiers (URIs) with

XML messages using HTTP methods. We can view these

methods as uniform channels: GET (to read the resource

or get its status), PUT (to create or update the resource),

POST (to append data to the resource) and DELETE (to

remove the resource). Our RESTful distributed simulation

is the RESTful interoperability simulation environment

(RISE). The main objective of RISE is to support

74 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

interoperability of distributed simulations regardless of the

model formalisms, model languages or simulation engines.

In recent years, new technologies based on WSs have

been introduced, including cloud computing.53 Cloud

computing can be used for building a simulation environ-

ment in a pay-as-you-go fashion, and computing and stor-

age capacities can be increased or decreased according to

current usage. It reduces cost in hardware and IT: a cloud

provider provides an efficient and affordable computing

infrastructure without needing expensive infrastructures.

SimaaS can take advantage of the existing technologies in

cloud computing – load balancing, fault tolerance and

security – while allowing the users to scale up or down the

underlying compute and storage capacities according to

their needs.54 This allows one to develop SimaaS, taking

the advantages of the cloud computing services (e.g.,

infrastructure as a service [IaaS], platform as a service

[PaaS] and software as a service [SaaS]).55 Although there

is no commonly accepted definition for SimaaS, its main

focus is on delivering simulation services in the cloud.

SimaaS can be used for crowd M&S, allowing users to

execute crowd models and obtain simulation results remo-

tely. Then, using two-dimensional (2D) and 3D visualiza-

tion can provide an intuitive way to show the simulation

results, allowing one to observe the results better and to

predict the impact of the crowd movement. At present, due

to the limitations in integration of tools, using 3D visualiza-

tion in CAD/BIM tools for crowd M&S is also limited. In

Tao and Jun,10 a CA-based model was integrated with a 3D

virtual reality engine. A similar visualization tool was

developed in Castonguay and Wainer11 using Blender. In

Ahmed et al.,56 we built a prototype interfacing virtual real-

ity software and distributed simulation. However, efforts

like these ones used general-purpose tools, and the users

needed to adapt them to build their visualizations.57

In summary, at present the integration efforts among

CAD/BIM tools, crowd modeling, simulation and visuali-

zation are limited. In Wang et al.,33 we presented an inte-

grated framework combining BIM tools and CD++ for a

test case focusing on building evacuation simulation. In

Wang et al.,58 we presented a revised scalable integration

framework, taking into consideration the IFC standard and

RISE. However, the integration of these components was

not formalized or automated, which makes it hard to repro-

duce the whole process. Some authors proposed to do this

by using workflows to link components, by connecting

their inputs and outputs. In Rybacki et al.,59 the authors

adapted the concepts of business process modeling (BPM)

and workflows to formalize the M&S process. In Ribault

and Wainer,60 the authors used Taverna,61 which provides

a compact set of functional modules for building work-

flows, in order to automate the simulation process. In

Cicirelli et al.,62 the authors presented a new workflow

approach with timing constrains by using time stream Petri

nets (TSPNs). However, none of the above workflows has

considered the integration of crowd M&S with CAD/BIM

tools and visualization.

3. An architecture for defining
and integrating crowd modeling
applications

Assume a construction project that needs to study a crowd

scenario in which building designers of a public area (e.g.,

a railway station) want to evaluate the behavior of the

crowd during peak hours. In the area under study, the flow

of the crowd is bi-directional; people tend to move for-

ward, but they can change direction if blocked, and can

sidestep to avoid collisions.2 Let us also assume that the

building designers have used BIM tools for their design,

and want to integrate the crowd model to improve deci-

sion-making. We want to use the BIM floor plan as model

inputs, and the BIM tools to visualize simulation results.

As discussed earlier, there are many issues in this pro-

cess: the redundancy of CAD/BIM files, the complexity of

the crowd models, the configuration of the simulator,

repeatability, reuse, etc. As discussed in Section 2, there is

no well-established method to integrate, formalize and

automate all these activities. In order to deal with these

issues, we propose the following layered architecture.

The architecture presented in Figure 1 focuses on inte-

grating the different aspects of the crowd M&S with CAD/

BIM tools, and it is organized in three layers as follows.

1) The component layer is responsible for deploying

user-developed components in the cloud. We need

components for each of the activities required in the

crowd M&S process, specifically the following.

a) Cell-DEVS modeling: it is used for building

crowd models using Cell-DEVS theory.

Currently various Cell-DEVS crowd models

are available (e.g., bi-directional, unidirec-

tional, multi-floor) and they can be expanded

and modified easily.

b) Data collection: it is used to extract data from

the designs. This is done automatically using

MDE techniques. It can retrieve information

from CAD/BIM tools to a DSM instance. Then,

this instance can generate inputs for the crowd

model.

c) SimaaS: it is used to run crowd simulation

experiments using WSs. We use RESTful WSs

for building and executing crowd simulations

remotely.

d) 3D visualization: it is responsible for visualiz-

ing the results. We defined a mechanism for

parsing the simulation results and for visualiz-

ing them directly in CAD/BIM tools. This

visualization component can be easily

customized.

Wang and Wainer 75

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

These components are independent from each other,

and they use well-defined interfaces to interconnect. This

layer also helps the users to orchestrate components in the

cloud, allowing them to be reusable and accessible. The

cloud server supports the necessary hardware dependen-

cies for these components, allowing them to be ready to

use and composed.

2) The composition layer is responsible for defining

workflows to formalize the integration of compo-

nents and automate its execution, as discussed ear-

lier. Users can easily replace components and

modify the workflow for their particular purposes.

Besides, these workflows can be stored in a work-

flow repository, allowing users to share and reuse

them.

3) The application layer is responsible for collaboration

in a simulation-based design process, allowing

designers to build crowd M&S easily. The designers

do not need to care about the workflow details: they

need to choose a workflow, and to provide a CAD/

BIM design file as the workflow input. Then, they

wait for the end of the workflow and visualize the

results. In addition, they can analyze the crowd

simulation results, evaluate their design and restart

the process.

This architecture involves three kinds of users as

follows.

1. The multi-domain providers are specialists from

different disciplines who can provide alternative

components. These are software engineers building

low-level components as SimaaS.

2. The workflow engineers are experts for designing

and managing the workflows of the components.

We have defined varied workflows using Taverna,

and other engineers can change them.

3. The designers are end users, who start the execution

of a workflow and analyze the behaviors of crowds.

These are the target users of the architecture.

The layered architecture divides the responsibilities of the

integration task into different levels. Each kind of user can

focus on their own task, and it makes easy for them to colla-

borate. The architecture provides the following advantages.

� Distributed deployment, which is done by using the

proposed component-oriented approach and cloud

computing. Components hide their design and

implementation details, providing their functional-

ities using well-defined interfaces. As the architec-

ture deploys these components in the cloud, the

users do not need to worry about hardware installa-

tion and computational limitations. Section 4 will

discuss more details about these components related

to crowd M&S.
� Simulation-based design using workflows to inte-

grate crowd M&S with CAD/BIM tools. The work-

flows automate the integration of the crowd M&S

components, including data collection, modeling,

simulation and 3D visualization. It also makes it eas-

ier to add new components as a part of a workflow

(e.g., statistics, verification and validation). The

designers can repeat and modify existing workflows

to test options, not worrying about the implementa-

tion. This enables them to compare alternatives, and

Figure 1. Integrated three-layer architecture for crowd modeling and simulation. CAD: computer-aided design; BIM: building
information modeling; DEVS: discrete-event system specification; SimaaS: simulation as a service; 3D: three-dimensional.

76 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

improve decision-making before construction has

begun. Section 5 will discuss more about the compo-

sition of components by using workflows.
� Collaborative development of crowd M&S applica-

tions. Users from different disciplines (e.g., mode-

lers, builders, architects, workflow engineers, crowd

behavior analysts) can work together. Users for the

component layer (multi-domain providers) can focus

on the development of their components and share

them. Users for the composition layer (workflow

engineers) can provide different workflows to com-

bine components by calling their interfaces. Users

from the application layer (designers) can find and

execute workflows to study the behavior of the

crowds in a particular area. The case study shown in

Section 6 will explain more about this point.

This layered architecture for crowd M&S matches other

existing M&S conceptual layers, particularly the architec-

ture for M&S presented by Mittal et al.63 The architecture

for M&S divides related M&S aspects into seven layers.

Here, we correlate our proposed architecture with it

(Figure 2). The network layer in the architecture for M&S

deals with underlying infrastructure and connecting net-

works issues. In our proposed architecture, all the compo-

nents are deployed in the cloud. The cloud supports the

underlying infrastructure and reliable network capacities.

The execution layer in the architecture for M&S deals

with the software that executes the models. In our pro-

posed architecture, the execution of models is carried out

using the SimaaS services in the component layer. The

modeling layer in the architecture for M&S deals with the

development of models. In our proposed architecture, we

use Cell-DEVS theory as the modeling formalism to

model the behavior of crowds. The Cell-DEVS models

work as components and are stored in the cloud. The col-

laboration layer in the architecture for M&S deals with

the collaboration and integration to achieve an overall

goal. In our proposed architecture, the composition layer

enables the workflow engineers to define workflows,

which can integrate components and automate the

execution of the whole process. In addition, one signifi-

cant difference of these two architectures is that our pro-

posed architecture can provide applications for the

designers. Instead of considering all aspects of the M&S

lifecycle, our proposed architecture focuses on the integra-

tion of CAD/BIM tools and crowd M&S. It allows users

to deploy different components (e.g., data collection and

3D visualization) in the cloud, and compose them using

workflows.

4. Cell-DEVS modeling, computer-aided
design/building information modeling
integration and simulation as a service
in the cloud

In this section, we will present more details of each com-

ponent introduced in Section 3, and we will show how they

deal with the issues discussed earlier.

4.1 Crowd modeling using Cell-DEVS

Let us consider the bi-directional crowd scenario we dis-

cussed earlier. The area under study is divided into a grid

of cells, each covering approximately 0.43 0.4 m2 (the

typical space in a dense crowd). Each cell can be occupied

by a person or an obstacle. Since the crowd is bi-direc-

tional, only S/N pedestrians are needed. We consider con-

stant speed (about 1 m/s), so it takes a person 400 ms to

cross a cell. Individuals try to move forward avoiding col-

lisions, as seen in Figure 3.

People try to move forward, and change directions if the

path is blocked (Figures 3(a)–(e)). Figure 3(b) shows that a

person can move to the right or left. To avoid collisions, if

more than one person wants to move to the same cell, we

decide who can do it. (Figures 3(f)–(h), where two persons

want to move to the N of the center. In order to avoid the

collision, the person in the center changes direction).

All the behaviors in Figure 3 have been defined as rules

in Cell-DEVS. In this case, the states of each cell can be

defined as: empty (state 0), occupied by an N pedestrian

(state 1), occupied by an S pedestrian (state 2) or an obsta-

cle (state 3). In CD++, the behavior of a Cell-DEVS

model is defined as a set of rules with format

\ VALUE . \ DELAY . \ PRECONDITION . (when

the PRECONDITION is satisfied, the state of the cell

changes to the assigned VALUE, which is transmitted after

a DELAY). Variations in speed can be modeled using dif-

ferent DELAYs.34

Let us define the CD++ rules for Figures 3(b) and (c).

If the cell to the N is occupied, the N pedestrian will move

to a preferred direction (here, if the cell to the E is unoccu-

pied, and no other pedestrian is trying to move to that cell,

we move to the E). The corresponding rules are as follows:

Figure 2. Associating the integrated three-layer architecture
with the architecture for modeling and simulation.

Wang and Wainer 77

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Rule : 0 400 {(0,0)=1 and (-1,0)!=0 and
(0,1)=0 and (-1,1)!=2 and (1,1)!=1}
Rule : 1 400 {(0,0)=0 and (0,-1)=1 and
(-1,-1)!=0 and (-1,0)!=2 and (1,0)!=1}

The first rule is for an N pedestrian leaving from the cur-

rent cell(0,0). This rule is executed when cell(-1,0)
is not empty, cell(0,1) is empty, and the cells around

cell(0,1) do not contain people. The second rule is a

symmetric rule for an N pedestrian entering the current

cell from cell(0,-1). This rule is executed when the cur-

rent cell is empty, cell(0,-1) contains an N pedestrian,

the cell(-1,-1) is not available, and no other pedestrian

is trying to enter the current cell.

Another example can be seen in Figures 3(f) and (g):

when an N pedestrian and an S pedestrian are trying to move

to the same cell, the N pedestrian will move to the E if the

cell to the E is unoccupied, and no other pedestrian is going

to take that cell. The corresponding rules are as follows:

Rule: 0 400 {(0,0)=1 and (1,0)=0 and (-2,0)
=2 and (0,1)=0 and (-1,1)!=2 and (1,1)!=1}
Rule: 1 400 {(0,0)=0 and (0,-1)=1 and(-2,-1)
=2 and (-1,-1)=0 and(-1,0)!=2 and (1,0)!=1}

The first rule is for a person leaving from the current cell. In

this case, a collision could happen if the person in cell(0,0)
is an N pedestrian and the person in cell(-2,0) is an

S pedestrian, and both of them want to enter cell(-1,0). In
order to avoid this collision, the person in cell(0,0) moves

to the E. The second rule is for an N pedestrian in cell(0,
-1)entering the current cell. This is a rule symmetric to the

previous one, and it has similar conditions.

The following figures show some simulation tests based

on the rules presented above using CD++. The first exam-

ple, presented in Figure 4, shows the correct execution of

the behaviors (e.g., moving forward and changing direction

if blocked).

At the bottom left of Figure 4, an N pedestrian in Cell

A faces an S pedestrian in Cell B. However, since another

S pedestrian in Cell C wants to move to Cell B, the N

pedestrian in Cell A waits. Similarly, in the center of the

figure, an S pedestrian in Cell X has space to the W.

However, since an N pedestrian in Cell Y wants to take

that cell, the S pedestrian in Cell X waits (the rules for

moving forward have higher priority than the rules for

sidestepping).

The second example presented here shows how colli-

sions are avoided. At the bottom-left of Figure 5, there is a

potential collision (the pedestrian in Cell A is going N, and

the pedestrian in Cell B is going S). To avoid this collision,

they will try to move to their right. For the S pedestrian in

Cell B, there is an available cell to the W, so this S pedes-

trian moves to the W. The N pedestrian in Cell A has an

available cell to the E, but there is an S pedestrian in Cell C

in the NE. Since Cell C has a higher priority to move for-

ward, the N pedestrian in Cell A waits. A similar situation

happens in the upper part of the figure: the S pedestrian in

Cell X moves forward to the S, the S pedestrian in Cell Y

waits and the N pedestrian in Cell Z moves to the E.

4.2 Data collection from CAD/BIM

In order to start a simulation for the crowd model men-

tioned above, we need the layout information of the stud-

ied area. As we discussed in Section 2, we can collect this

kind of information from the IFC files available in most

CAD/BIM.

Figure 3. Crowd behaviors: (a) move forward; (b)–(e) change
direction; (f)–(h) avoid collision.

Figure 4. Moving direction scenarios in CD++ of a
Cell-DEVS crowd model.

Figure 5. Avoidance collision scenarios in CD++ of a
Cell-DEVS crowd model.

78 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

We adopted a MDE approach to transform information

from the IFC file to the DSM for crowd simulation

(Figure 6). On one hand, the IFC standard is used as the

source model and the IFC file acts as the source instance.

On the other hand, a DSM contains the information format

for crowd simulations. M&S specialists can design the

DSM and the mappings between IFC and DSM. The DSM

instance acts as the target instance, which contains the

actual information for simulations. The DSM instance can

be generated based on the IFC file and the mappings

defined.

Based on these ideas, we propose a MDE-based semi-

automatic data collection method. The idea is to filter the

data needed from the IFC file, use MDE techniques to

build a DSM, and finally generate initial files for crowd

models (Figure 7). This approach uses the following steps:

� file collection: in this step, we query and filter the

data needed from the IFC file;
� building the DSM for the specific simulation

purposes;
� mapping IFC to DSM: we define mappings between

the IFC standard and the DSM;
� generating the DSM instance for specific simula-

tion based on the mappings and the data collected

from the IFC file;
� generating model inputs for the crowd models using

the DSM instance.

This approach resolves some of the IFC file issues of men-

tioned in Section 2. It deals with the complexity of IFC

files by letting users analyze the structure of the IFC and

query the elements from an IFC file. In order to handle the

mismatches between the IFC standard and DSM, this

approach allows users to define the DSMs and specify the

mappings between them. The whole process is done semi-

automatically: users only need to define the DSM and the

mappings (and the rest is automated). In the following, we

discuss each step in detail.

We first need to query and filter the data needed from a

given file. In Wang et al.,58 we studied the hierarchical

diagram of IFC2x3 (Figure 8). For crowd models, we need

to know the layout of the studied area (i.e., walls, doors,

obstacles). This kind of information is stored as subclasses

of IfcElement. Take IfcWall as an example: it contains

coordinates information in IfcLocalPlacement and

IfcProductDefinitionShape. IfcLocalPlacement has the

attributes of IfcAxis2Placement3D with IfcCartesionPoint

(coordinates) and IfcDirection. IfcProductDefinitionShape

could contain IfcPolyline with the explicit geometric

boundary points of its surfaces.

For instance, in Figure 9, IfcLocalPlacement represents

the starting point, while IfcProductDefinitionShape indi-

cates where we can place it (in which direction and how

far). Assume a wall of 8$ 3 2$ 3 4$ starts from (3,2,1)

towards direction (–1,1,1); the point diagonally opposite

the starting point would then be (x - width, y+ length,

z+ height) = (1,10,5).

There are different tools that allow us to query elements

out of the IFC file. We implemented a prototype using

BIMServer.org,64 a model-driven open-source tool to rep-

resent the IFC data. For instance, in Figure 9, we can query

all the IfcWall for each of the floors in the building, obtain-

ing the corresponding (x, y, z) coordinates of the filtered

elements. Note that we could query other element types in

the same manner (e.g., doors, furniture, windows).

The second step focuses on building the DSM for the

specific simulation using MDE techniques. Figure 10

shows an example of such a DSM for a crowd simulation.

All consists of Variables, Configuration and Entities.

Variables has parameters related to the crowd model, such

as CellUnit (the size of each cell), while Configuration

Figure 7. Model-driven engineering (MDE)-based semi-automatic
data collection approach. CAD: computer-aided design; BIM:
building information modeling; DSM: domain-specific model;
IFC: industry foundation class; DEVS: discrete-event system
specification.

Figure 6. Data exchange among the elements involved in the
industry foundation class (IFC) and domain-specific model (DSM).

Wang and Wainer 79

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

has parameters related to the crowd simulation, such as

IFCFilePath (the location of the IFC file) or CDppPath

(the location of the simulator). Entity is a super-class for

all other sub-entities, and it has the following attributes: id

(sequence number), type (e.g., materials, size), references

of a direction and a starting point with absolute coordi-

nates. Entity has three subclasses: Wall, Door and

Furniture. Door has subclasses ExitDoor and StairDoor.

As we can see, the DSM has a different structure to the

IFC file (which does not cover all the information for a

specific simulation; for example, it does not include infor-

mation about configuration and variables, as in the DSM).

We can define mappings between the IFC standard and

the DSM (shown in Table 1). As we can see, class names,

structure and attributes look similar but they have differ-

ences in syntax and semantics. For example, Direction and

Coordinates in DSM are absolute to a global coordinates

system, while the IFC uses relative coordinates.

Such mapping between may be difficult to find. They

may have many-to-many relationships or complex mis-

matches. Our work can be extended using existing

model transformation techniques in MDE, such as a

Figure 8. IfcWall hierarchy in industry foundation class standard (adapted from Ahmed et al.56).

Figure 9. IfcWall example (a wall of 8$× 2$× 4$ starts from
(3,2,1) towards direction (–1,1,1); the point diagonally opposite
the starting point is (x – width, y+ length, z+ height) = (1,10,5).

Figure 10. An example of a domain-specific model for simulation
(adapted from Wang et al.58).

80 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

semi-automatic framework to do run-time model transfor-

mation, as in Roman et al.,65 or a semantic interoperability

approach, as in Wang et al.66

After this step, the mappings and the IFC instance are

ready, and we can generate the DSM instance for a specific

simulation. We built a prototype to combine the above

steps, in order to generate the DSM instance. This tool can

load the extracted data from the IFC file; then, it generates

this DSM instance with XMI format (a more general XML

file for model transformation).

Finally, we need to generate initialization files for the

Cell-DEVS crowd model based on the DSM. For instance,

we need the layout of the area under study. Based on the

DSM instance, we can calculate the scale of this area by

finding XMIN (the horizontal ordinate of the left-most

point) and XMAX (the horizontal ordinate of the right-most

point). Similarly, we get YMIN and YMAX for the vertical

ordinates. Then, knowing the size of each cell, we can

compute the number of cells in 3D. After that, we can initi-

alize the state of each cell of the studied area by ‘‘paving’’

the elements according to the DSM instance. Besides, we

can also put in other information as input variables, such

as the size/number of cells, material feature, etc.

Our MDE-based approach is semi-automatic, requiring

additional work to build the DSM and the mappings.

Nevertheless, some BIM tools support plug-in functional-

ities to manage data. Therefore, besides the MDE-based

approach, we also developed a tool to extract the data

directly from Autodesk Revit architecture, which has a

parametric application programming interface (API) and

BIM add-in functionality. We used the Revit API to filter

parameters, coordinates and other specific information

for the studied area. Specifically, this is done in two

steps: (1) filtering elements and (2) extracting coordi-

nates. For the first step, we used the API to filter the ele-

ment type (e.g., wall, obstacles, doors, stairs), and then

to extract the parameter properties needed (e.g., length,

width, materials, color). Each element is identified by its

element ID, and we select all elements IDs we need.

Then, based on the filtered elements ID, we extract their

coordinates. After getting the information, we reuse gen-

erating model inputs (the fifth step discussed above) to

initialize the model inputs.

4.3. Simulation as a service

We have seen how to use Cell-DEVS to build crowd mod-

els and how to collect data from CAD/BIM tools. Now,

we will discuss the SimaaS component, which focuses on

integrating crowd modeling and crowd simulation with the

help of cloud computing and SimaaS.

As mentioned in Section 2, although SimaaS has

received some attention, it is still at an early stage. We

view SimaaS as a special case of SaaS. SimaaS provides

simulation services that build on the platform and infra-

structure of cloud computing.

Based on these ideas, we have developed CloudRISE,

an extended version of RISE running in the cloud, deliver-

ing SimaaS for users. Figure 11 shows its three-layer

architecture.

1) Simulation infrastructure: this layer supports the

upper layers with the computing and storage infra-

structure services available in the cloud. For our

experiments, CloudRISE was installed both in

Amazon Elastic Compute Cloud (Amazon EC2)

and on local servers.

2) Simulation platform: this layer provides a platform

to facilitate the development, deployment and

management of simulation services. CloudRISE

reuses RISE as middleware between simulation

engines and infrastructure.

3) SimaaS: this layer provides simulation services that

build on top of the simulation platform. The simu-

lation services are RESTful WSs. Users can invoke

these services through URIs by XML messages

using HTTP methods.

Figure 11. CloudRISE (RISE: RESTful interoperability simulation
environment) architecture. XML: extensible markup language;
HTTP: hypertext transfer protocol; URI, uniform resource identifier;
IPC: inter-process communication; Amazon EC2: Amazon elastic
compute cloud.

Table 1. Mapping between industry foundation class (IFC) and
domain-specific model (DSM).

IFC DSM

IfcElement Entity
IfcWall, IfcRectangleProfileRef Wall
IfcDoor, IfcRectangleProfileRef Door
IfcFurnishingElement, IfcPolyline Furniture
IfcLocalPlacement, IfcCartesianPoint Direction
IfcLocalPlacement, IfcDirection Coordinates

Wang and Wainer 81

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

In our case, we simulate Cell-DEVS models, which are

DEVS models. The ability to execute DEVS models in dif-

ferent operating systems (OSs; e.g., Windows, Linux) and

languages (e.g., C++, Java) has already thoroughly dis-

cussed in the DEVS literature. For instance, Mittal and

Risco-Martin67 proposed the ‘‘net-centric DEVS Virtual

Machine kernel’’. The idea is to embed the DEVS kernel

in a virtual machine that can be executed in a local, distrib-

uted and real-time environment. The proposed CloudRISE

is similar to the DEVS kernel at the point of decoupling

the model from the simulation platform. The major differ-

ence is that the DEVS kernel aims to provide a general

DEVS simulator that can be executed anywhere, while

CloudRISE is able to deploy any kind of simulator in the

cloud, using a middleware to wrap them and expose WSs

for them.

4.3.1. Simulation infrastructure. In its current implementa-

tion, we use Amazon EC2 for the simulation infrastruc-

ture. Amazon is one IaaS provider (this layer can also use

other IaaS services, such as Microsoft’s Azure or the

Google Application Engine [GAE]). We chose Amazon

EC2 because it supports lower level operations and we can

completely control the infrastructure and build our own

software stack.

We used the Amazon web services management con-

sole to manage the Amazon EC2 instances (Figure 12).

Amazon EC2 instances are the fundamental infrastructure

block for computing needs. They are like virtual servers,

where we put our simulation platform and simulation

engines. In order to create Amazon EC2 instances, we

need to specify the Amazon machine image (AMI) and

the instance type (an AMI is a template that contains a

software configuration, including an OS). Our current

implementation uses the Linux AMI. Instance types have

different combinations of central processing unit (CPU)/

graphics processing unit (GPU), memory, storage and net-

working capacity. We can also customize an instance type

with the appropriate mix of resources. Our current imple-

mentation uses micro-instances (they are low cost, provid-

ing a small amount of CPU that can be upgraded if

needed). We have two instances – CloudRISE Instance1

and CloudRISE Instance – each with its own public inter-

net protocol (IP). We can start/stop/terminate the instance

state, check the status and control the network traffic using

this console.

4.3.2. Simulation platform. This layer provides a platform

to develop simulation services, hiding the complexity

underlying the software stack. The basic idea is to use the

simulation middleware to link simulation engines, and

then to deliver the services to the upper SimaaS layer.

Each instance can have one or more simulation middle-

ware (such as RISE), and one or more simulation engines

(such as CD++). The simulation service middleware helps

the instance to transmit the message between the simula-

tion engines.

In our implementation, we used RISE. We can deploy

RISE by uploading it to a Tomcat container on Amazon

EC2 instances, or using Elastic Beanstalk to upload its

web application archive (WAR) file automatically. We

modified RISE, allowing the easy addition of new simula-

tion engines. For instance, in order to add the original

CD++ simulator, we upload it to an Amazon EC2

Instance; then, we add a new ../cdppv1 to the URI tem-

plate ../{ServiceType} of the RISE URI, and link it to the

path of the CD++. Finally, we compile and upload the

new RISE middleware.

As seen in Figure 11, when a message comes from the

upper SimaaS layer (e.g., a control message to stop the

simulation, or an external event at runtime), the execution

session is as follows:

a) RISE gets the XML message from the upper layer;

it parses the message to the inter-process communi-

cation (IPC) queue on the Amazon EC2 instance;

Figure 12. Amazon EC2 instances for CloudRISE.

82 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

b) the CD++ simulator that resides on the instance

keeps listening to the IPC queue;

c) as long as there is a message in the queue, CD++
will get the message and execute it.

4.3.3. SimaaS. This layer delivers the simulation services

based on the RISE middleware. The original RISE API

includes various services (e.g., ../log for system log, ../

accounts for user account information, ../framework for the

simulation framework, etc.). For simplicity, in CloudRISE,

the SimaaS layer only exposes the API services related to

the simulation framework. Table 2 shows these APIs

(the URIs start from the endpoint, i.e., http://www.

amazon-ec2ip.com:8080/cdpp/sim/workspaces/Tom). In

this URI, ‘‘http://www.amazon-ec2ip.com’’ can be

replaced with any public IP of an Amazon EC2 instance.

Besides, /Tom is a user name; all resources related to this

person will be under this URL.

We now need to simulate the crowd models that were

previously defined. Figure 13 shows an example of the

URI hierarchy in CloudRISE for this. We can see

from this figure that each URI starts from the endpoint

http://www.amazon-ec2ip.com:8080/cdpp/sim (e.g. http://

ec2-184-73-236-191.compute-1.amazonaws.com:8080/cdpp/

sim/workspaces/). It has two users (Tom and Bob), each of

which can use different simulation engines. At present, the

original CD++ is under the ../cdppv1. Furthermore, the

simulation engine can use different frameworks. For exam-

ple, Tom has the URI ../Tom/cdppv1/evacuation, which

means that Tom has a simulation framework for running an

evacuation model. Each simulation framework can further

have sub-branches with more operations (e.g., ./simula-

tion, ../results and ../debug). For instance, we can issue a

GET HTTP call to ../cdppv1/evacuation/results to get the

simulation results of the evacuation model.

The CloudRISE API, listed in Table 2, shows how we

can integrate the crowd M&S. After we get the crowd

model and its input files, we can use this API to execute

the simulation and get the simulation results. To do so, we

follow the steps below:

1) name a framework for this simulation, with PUT to

../cdppv1/{framework};

2) upload crowd models and related files, POST the

files to ../cdppv1/{framework};

Figure 13. CloudRISE uniform resource identifier hierarchy for crowd models.

Table 2. Simulation as a service application programming interfaces in CloudRISE.

URI METHOD DESCRIPTION

../cdppv1 GET Returns all simulation frameworks for a user

../cdppv1/{framework} PUT Creates a simulation framework

../cdppv1/{framework} POST Submits files for a simulation framework (e.g., models, initial files)

../cdppv1/{framework}/simulation PUT Starts the simulation of a framework

../cdppv1/{framework}/simulation GET Returns the execution status of a framework

../cdppv1/{framework}/results GET Returns the simulation results

../cdppv1/{framework}/debug GET Returns debugging information of a simulation

URI: uniform resource identifier.

Wang and Wainer 83

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://www.amazon-ec2ip.com:8080/cdpp/sim/workspaces/Tom
http://www.amazon-ec2ip.com
http://sim.sagepub.com/

3) start crowd simulation, with PUT to ../cdppv1/

{framework}/simulation;

4) check simulation status, with GET to ../cdppv1/

{framework}/simulation;

5) retrieve simulation results, with GET to ../cdppv1/

{framework}/results.

In our simulation scenario, we have a crowd model avail-

able (for instance, the Cell-DEVS bi-directional model

introduced in Section 4.1) and the inputs collected from

BIM tools (the initial layout for the Cell-DEVS model

introduced in Section 4.2). Assume that Bob wants to run

this simulation. Bob will follow the steps labeled in Figure

13. First, in order to create a framework, Bob names the

framework as crowd and issues PUT to ../Bob/cdppv1/

crowd. Then, Bob can upload the files (i.e., the crowd

model and the initial layout) via POST to the newly cre-

ated framework. Now, the simulation is ready to go, and

Bob uses PUT ../Bob/cdppv1/crowd/simulation. Next, Bob

can check the simulation execution status with GET ../

Bob/cdppv1/crowd/simulation. The simulation results are

obtained by GET to ../Bob/cdppv1/crowd/results.

4.4 Three-dimensional visualization

In order to complete the cycle, we now introduce how to

use 3D visualization (see Figure 14). We use a BIM

authoring tool (in order to import and use the IFC files).

The crowd simulation results contain different kinds of

information that might not be useful for visualization

(including synchronization messages for controlling the

simulation phase and time). The parser deals with this

issue. The 3D visualization engine provides different ani-

mation functions for the crowd movement. The engine

uses the parsed simulation results, the crowd model and

the collected inputs from the IFC file (Section 4.2).

Specifically, the collected data can tell us (Xmin, Ymin)

and (Xmax, Ymax), which constitute the bounding box of

the building. Besides, the Cell-DEVS crowd model tells us

the cell dimensions, in order to know how many cells

should be in the area. Based on this information, we can

establish the exact coordinates of each cell.

The 3D visualization engine has been built using the

model-view-controller (MVC) design pattern. Figure 15

shows its class diagram. The controller CDVizController is

for the key logic. The LogLine class keeps records of lines

from the parsed log. The simulation grid is represented by

an array of GridCell objects, which keeps track of the per-

sons in each cell. PersonModel is responsible for visualiza-

tion of each person with different models, allowing a

person to be represented in different ways: if the crowd

model does not include the direction information, we use a

cube (implemented in BlockPersonModel); if we have

direction information, we can use either cones pointing to

the direction, or realistic models (avatars). Cone models

are implemented in ArrowPersonModel, while avatars are

implemented by the class RealisticPersonModel.

In our case, we implemented a prototype using 3ds

Max, which has key framing ability for person animations,

allowing a smooth transition between continuous key

frames. For instance, in the realistic person model, we first

prepare an animation file for the movements of a person.

We use the Motion Mixer API of 3ds Max to mix all the

animations from this file. Due to the different coordinate

systems of the Cell-DEVS model and 3ds Max, we need a

transformation of coordinates. This is done by applying a

scaling and coordinate system transformation to the stud-

ied area (in our case, it is implemented in the

CDVizController class). We also provided a graphical user

interface (GUI) to improve usability (seen in Figure 16).

The user uses the GUI to load the crowd model and inputs

files and simulation results. It also allows the user to focus

on parts of the studied area (e.g., hiding floors or focusing

on a specific person). This function is implemented in

the CDVizController class, by applying the hide/unhide

MAXScript functions on the corresponding PersonModel.

For instance, Figure 17 shows the visualization results

for the crowd model presented in Section 4.1 at two differ-

ent times. In this case, we chose the block models for rep-

resenting the crowd.

The N and S pedestrians can be identified with different

colors. The tool helps the designers to observe crowd

Figure14. General data flow in the three-dimensional (3D)
visualization tool. IFC: industry foundation class; GUI: graphical
user interface.

Figure 15. Class diagram of the three-dimensional (3D)
visualization engine (adapted from Freire et al.57).

84 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

movements with different perspectives. This visualization

also helps us to verify the behavior of the Cell-DEVS

model. It can detect unexpected scenarios (e.g., a person

missing after a collision). It will display the error mes-

sages with the time and location of the person.

5. Composition of components

As discussed in Section 3, the integration process of the

components needs to be formalized and automated to make

it simple for the designers to reproduce the whole process.

To solve this issue, in this section, we discuss the composi-

tion layer of the proposed architecture.

The composition layer is for deploying all the compo-

nents related to crowd M&S in the cloud and defining

workflows of the integration process. Figure 18 illustrates

its overall conceptual structure. It consists of the compo-

nent deployment, the workflow engine and the workflow

repository.

� Component deployment: it is responsible for

deploying the components in the cloud. A compo-

nent provides its functionality as an interface for

other people (a simulation service, a tool, a script,

etc.). Component providers from different domains

have access to the cloud infrastructure. After a

component is developed, its provider can upload it

to make it reusable.
� Workflow engine: it is responsible for defining

workflows of the available components. A work-

flow engineer is in charge of building workflows

by linking the components. Here, we have used the

Taverna, which supports RESTful WSs, and we

have integrated Taverna and RISE.
� Workflow repository: it is responsible for sharing

the workflows for reuse by keeping existing work-

flows in the cloud. Workflow engineers reuse the

workflows, and building designers can specify the

workflow inputs and execute using a workflow

engine in the cloud. In our case, we used

myExperiment68 as the workflow repository.

In order to achieve our goals, at first, we need to consider

the crowd M&S components. We divided them into two

categories: crowd simulation services (such as SimaaS in

CloudRISE) and crowd M&S tools (such as BIM, CD++
and 3ds Max). On one hand, the crowd simulation services

are accessible via the web. Therefore, a workflow can

invoke these simulation services directly. For example,

Figure 16. Graphical user interface (GUI) for the 3ds Max visualization tool. 3D: three-dimensional.

Figure 18. The composition layer in the cloud. SimaaS:
simulation as a service.

Figure 17. Three-dimensional (3D) simulation results using the
3D visualization tool: (a) t = 50 s; (b) t = 100 s.

Wang and Wainer 85

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

SimaaS in CloudRISE uses RESTful WSs, which already

encapsulate simulation engines and their environment.

Thus, we can use the TavernaRESTful WS module to call

these services. On the other hand, the crowd M&S tools

provide particular functions for crowd M&S. As discussed

above, in order to let the workflow invoke the tool, the pro-

vider has to make it reusable. In our implementation, we

let the provider deploy the tool in the cloud. The provider

may have to install the necessary dependencies for this

component; for example, the IFC data collection tool

can take the inputs of the IFC file and DSM, and then it

can generate the outputs of the DSM and the initial input

files for the models. After the provider deploys the IFC

data collection tool in the cloud, the workflow can invoke

it and link its inputs and outputs with other components.

Based on these ideas, we can build a workflow to exe-

cute the crowd M&S. Figure 19 shows the overall view of

the workflow for the simulation scenarios. In general, it

takes the inputs of crowdModel (the cell-DEVS crowd

model), DSMmodel (the DSM including the particular

information for the crowd simulation), the IFCfile (includ-

ing the building information of the studied area) and a

‘‘framework’’ (a string name to describe the new crowd

simulation framework). The output of this workflow is the

parsedLogFile (the parsed simulation results that can be

visualized in 3ds Max). The designer can simply provide

these inputs, and run this workflow using the Taverna

Engine, which will run the workflow and generate the

parsed simulation results. After these are ready, the

designer can use the GUI presented in Section 4.4 to

visualize them in 3ds Max.

As we can see in Figure 19, in order to start the work-

flow, the crowd model should be ready (for instance, the

bi-directional Cell-DEVS model of Section 4.1). The input

parameter crowdModel records the model’s location. This

location can be either a uniform resource locator (URL)

that indicates to a model repository, or a file path in the

cloud. In order to integrate the CAD/BIM data with the

crowd model, we need to extract information from the

studied area as the model’s inputs. IFC2CDpp is the crowd

M&S tool for this task: it takes the input parameters of

DSMModel and IFCfile, and it then collects input data

(Section 4.2). Then, it generates the outputs of the DSM

and the initial files (e.g., the layout file and the initial para-

meters) as inputs for the crowd model. After these are

ready, it is combined with the crowdModel as inputs for

another two crowd M&S tools (XML Configuration and

Files2Zip). XML Configuration is a tool for generating the

XML configuration file for the simulation, and Files2Zip

is a tool for compressing the files to be updated to the

simulation framework. At this point, we have the crowd

model and its inputs ready. We now need to define a new

simulation experiment to start the simulation.

As described in Section 4.3, we provide SimaaS in

CloudRISE. To use the services, we need to invoke

them in the workflow (light boxes in the middle of

Figure 19). CreateFramework helps us create a new

framework for the crowd model. It uses TavernaRESTful

WS, which PUTs the XML configuration file to http://ec2-

184-73-236-191.compute-1.amazonaws.com:8080/cdpp/sim/

workspaces/Tom/cdppv1/crowdFramework. In this URI,

crowdFramework is the value of the input parameter frame-

work of the workflow. Next, SendZipModelFile POSTs the

zip file generated from Files2Zip. Now, the simulation is

ready to start. StartSimulation calls PUT to the ../simulation

URI, and it starts the simulation. Then, WaitSimulation

checks the simulation execution status using GET on URI

../simulation. When the simulation finishes, the results are

available in a zip file, and we use GetResults (sending GET

to the URI ../results). Then, the extractLOGFile extracts the

simulation results and passes it to 3DVizParser, which par-

sers the simulation results to be visualized in the 3D

visualization.

Figure 19. Overall workflow in Taverna.

86 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://ec2-184-73-236-191.compute-1.amazonaws.com:8080/cdpp/sim/workspaces/Tom/cdppv1/crowdFramework
http://sim.sagepub.com/

In addition, we can share the workflow on myExperiment. For

instance, the workflow in Figure 19 can be found at http://

www.myexperiment.org/workflows/3960.html. As discussed

earlier, a designer can now download this crowd simulation

workflow, specify the workflow inputs and execute the work-

flow in a Taverna workflow engine available in the cloud.

6. Case study: crowd behavior analysis
for emergency planning

In this section, we present a complete crowd M&S study

using the proposed architecture. We discuss how the

designer can reuse the components and the workflow men-

tioned above. The study presented here focuses on emer-

gency planning. Emergency planning has drawn attention

in building design and related applications in terms of

human safety and property security.69 In this section, we

consider a one-directional crowd model in a multi-floor

building.33,58 The objective is to show how the integrated

architecture is able to help the designers to study the

evacuation time of crowds and make decisions between

alternatives.

The emergency evacuation model is a Cell-DEVS

model built to determine the evacuation time and the occu-

pancy level of a building under emergency conditions. The

building under study has multiple floors connected by

stairwells, presented in Figure 20. Here, the black cells

represent walls; the gray cells represent exits (the four

cells at the bottom of Floor 1) or stairs (the rest of the gray

cells). There are exit doors on the first floor. In the case of

emergencies, people try to evacuate along the pathway on

each floor, moving down towards the exits. Each cell con-

tains the information of direction to the exit. The pathway,

shown in Floor 1 in Figure 21, is implemented using a

Voronoi diagram of the exit route. It starts with the neigh-

bors near the exits/stairs, it assigns each neighbor a direc-

tion to the exits/stairs, then it repeats this process in the

neighboring cells. Finally, each cell will have a direction

that points to the shortest path to the exit/stairs. Each per-

son occupies a cell and the behavior of this person depends

Figure 21. Evacuation simulation result of sample building.

Figure 20. Building with three floors and pathways.

Wang and Wainer 87

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

on the cell state, presented in Table 3. Besides walls (state

1) and exits (state 2), cells can be either occupied (e.g.,

states 4, 6, 12) or unoccupied (e.g., states 3, 5, 13).

The simulation rules will be listed in descending order

according to their priorities. To avoid collisions we used

different priorities to move (e.g., S.E.N.W), and

only the person with the highest priority can move (note

that the order of these priorities is just an example and they

can be customized). The rules of this model can be cate-

gorized as follows33:

a) someone enters a cell;

b) someone moves out of a cell;

c) someone moves from a cell to a stairwell;

d) someone enters a stairwell;

e) someone exits a stairwell.

In the following, we show a few examples of the imple-

mentation of these rules.

- Someone enters a cell: the rules in this group focus on

the empty cells and they are executed when an empty

cell is ready to accept a person from a nearby cell (i.e.,

N, S, W, E) or a stair. The following example shows a

subset of the rules used for this purpose:

Rule : 4 100 { (0,0,0) = 3 and ((0,1,0) = 10
or (-1,0,0) = 4 or (0,-1,0) = 6 or
(-1,0,0) = 14 or (1,0,0) = 14 or (0,1,0) = 14
or (0,-1,0) = 14)} .
Rule : 10 100 { (0,0,0) = 9 and ((1,0,0) = 8
or (0,1,0) = 10 or (-1,0,0) = 4 or
(-1,0,0) = 14 or (1,0,0) = 14 or (0,1,0) = 14
or (0,-1,0) = 14)}

Each empty cell contains the information of direction,

which means that if this cell is occupied, the person in this

cell should follow this direction to evacuate. The first rule

says that the current cell is empty, and its direction infor-

mation is to the S. In this case, if a person wants to enter,

the cell becomes occupied. Likewise, the second rule

shown as an example has a similar logic; the only differ-

ence is that the direction information in the cell is to the E

instead of to the S.

- Someone exits a stairwell: the following rules are

used for the occupied stairs cells; they change to

empty if the current cell is occupied and there are

empty cells nearby:

Rule : 13 100 { (0,0,0) = 14 and ((1,0,0) = 3
or (1,0,0) = 5 or (1,0,0) = 7 or
(1,0,0) = 9 or (-1,0,0) = 3 or (-1,0,0) = 5 or
(-1,0,0) = 7 or (-1,0,0) = 9 or
(0,1,0) = 3 or (0,1,0) = 5 or (0,1,0) = 7 or
(0,1,0) = 9 or
(0,-1,0) = 3 or (0,-1,0) = 5 or (0,-1,0) = 7
or (0,-1,0) = 9) }

Rule : 11 100 { (0,0,0) = 12 and (0,0,-1) =
13 }

The first rule says that if the current cell is an occupied

stair and there is an empty cell to its N, S, W or E, then the

cell turns out to be empty. The second rule says that if the

current cell is an occupied stair cell and there is an empty

cell to its downstairs, then the person goes down.

When we execute this model, we can obtain varied

simulation results. The results can be visualized using tra-

ditional tools. In our case, the simulation showed that the

crowds evacuate orderly following the behaviors defined.

Figure 21 shows a test for a building with five floors

(20 3 20 cells on each floor); from left to right shows

Floors 1–5. The building design has a single stairwell (in

the middle of each floor). People try to evacuate through

the stairwell, and leave through the main door in Floor 1.

The occupancy level is adjustable so that an optimal occu-

pancy can be determined. We used a 50% occupation rate

(730 persons), and it took 205 s to be fully evacuated.

Once a Cell-DEVS model like this one is developed,

we can store it in the SimaaS middleware. In order to start

a crowd simulation, this model firstly needs the layout

information of the studied area from CAD/BIM tools. To

do so, we use the data collection component (Section 4.2).

In our case, this uses the standardized IFC files to build

the DSM instance and then generates the initial files.

For instance, Figure 22 shows the IFC file of this case in

Revit.

For the DSM, the designer can use the methods and

tools presented in Section 4.2. The tool for building the

DSM instance requires two inputs: the DSM and its map-

pings with the IFC standard. The following example shows

a part of the results of a DSM instance in XML after this

step:

Table 3. Cell states and definitions of the emergency
evacuation model.

State Color Name State Color Name

1 Wall 8 N Occupied
2 Exit 9 W
3 S 10 W Occupied
4 S Occupied 11 Top of Stairs
5 E 12 Top Occupied
6 E Occupied 13 Bottom

of Stairs
7 N 14 Bottom

Occupied

Note: Color available in the online version of this article.

88 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

\?xml version="1.0" encoding="ASCII" ?.

\EVA:ALLxmlns:xmi="http://www.omg.org/XMI" . .

\Configuration IFCVersion="Ifc2x3" IFCFile="eva.IFC"
initialFiles="eva.val;eva.inc;eva.ma" /.

\DEVSVariablescell_size="24" cell_x="109" cell_y="43" cell_z="3" /.

\entitySetxsi:type="EVA:Wall" id="195643" type="Basic Wall:Generic - 8":249"
width="0.6666667" length="12.0".

\startingPoint X="-48.333332" Y="20.333334" Z="24.0"/.

\direction Xdir="-1.0" Ydir="0.0" Zdir="0.0"/.

\/entitySet.

.
\entitySetxsi:type="EVA:Door" id="181862" type="36" x 84"" width="0.0"
length="3.0".

\startingPoint X="4.9112697" Y="-5.993986" Z="12.0"/.

\direction Xdir="-1.0" Ydir="0.0" Zdir="0.0"/.

\wallBelonged.

\startingPoint X="4.577936" Y="19.4317" Z="12.0"/.

\direction Xdir="0.0" Ydir="-1.0" Zdir="0.0"/.

\/wallBelonged.

\/entitySet.

.
\entitySetxsi:type="EVA:Furniture" id="181832" type="96" x 96"".

\polygonSet.

\coordinateSet X="-35.333336" Y="-3.8333333" Z="2.5"/.

\coordinateSet X="-33.333336" Y="-3.8333333" Z="2.5"/.

\coordinateSet X="-33.333336" Y="-8.833333" Z="2.5"/.

\/polygonSet.

.
\/entitySet.

\/EVA:ALL.

Figure 22. Industry foundation class loading in Revit for the sample building.

Wang and Wainer 89

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

The XML file consists of all the simulation information

needed from the building. As we can see, it records con-

figuration information (e.g., IFCVersion, IFCFile and

initialFiles names), variables (e.g., cell_size, number of

cells) and entity information (e.g., EVA:Wall, EVA:Door,

EVA:Furniture). For example, the Wall shown uses id

(19,564), width (0.67), length (12.0), startingPoint (–48.3,

20.3, 24.0) and direction (–1.0, 0.0, 0.0, which means it

points to the negative x-axis).

Based on the DSM XML instance file, the designer can

reuse the tools in Section 4.2 to generate the initialization

files. For instance, some variables generated after this step

are XMIN (the horizontal ordinate of the left-most point)

and XMAX (the horizontal ordinate of the right-most

point), Cell_SIZE (the size of each cell), and Cell_X,

Cell_Y, Cell_Z (the number of cells in each dimension).

This step can also generate initial values for each cell. For

instance, (22,26,0)=0 means that the cell with the

number 22nd in the x-coordinate and 26th in the y-coordi-

nate on Floor 1 is Empty (0).

Once the data extracted from the CAD/BIM tool is

ready, the designer can reuse the SimaaS services of

CloudRISE (Section 4.3) to run the simulation. However,

using SimaaS services still needs several steps. For exam-

ple, the designer needs to choose the right URL and HTTP

methods to start an experiment, upload the initialized files,

execute the simulation and get the simulation results. To

automate this process, we provide a workflow defined in

Taverna (Figure 23). Using this workflow, the designer

only needs three inputs: the emergency model file and the

initial files generated, an XML to configure the SimaaS

experiment and a new experiment name (for instance, eva-

cuation). Then, the designer can run the workflow using

the Taverna Engine in the cloud. The workflow can run

the simulation and generate the output log file after it

finishes. In our case, the workflow is available at http://

www.myexperiment.org/workflows/2873.html.

After the simulation is done, the designer can access the

simulation framework through the hypertext markup lan-

guage (HTML). Figure 24 shows the HTML representation

of this experiment ../evacuation. The execution status and

the links of its results can be seen.

After this, the designer can use the advanced 3D

Visualization component (Section 4.4) to see the simula-

tion results in Autodesk 3ds Max. The designer can reuse

the simulation results parser to get the information (e.g.,

time, position, direction and occupation of each cell).

Then, the designer can load these results in 3ds Max.

Figure 25 shows how the results look from different per-

spectives: for example, (a) a realistic visualization in the

main exit; (b) an arrow visualization on the top of build-

ing; (c) crowd movement in a stairwell; and (d) crowd

Figure 23. Workflow defined in Taverna for automating web-based simulation using simulation as a service services.

90 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 24. Simulation as a service simulation framework hypertext markup language representation for the experiment/evacuation.

Figure 25. Three-dimensional visualization results in different perspectives: (a) a realistic visualization in the main exit; (b) an arrow
visualization on the top of building; (c) crowd movement in a stairwell; and (d) crowd movement in different floors.

Wang and Wainer 91

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

movement in different floors. The GUI also allows the

designer to filter specific floors and focus on individuals

for better tractability and visibility. The demo of this case

study can be found at http://www.youtube.com/watch?-

v=u5idq-PDLck.

At the composition layer of the proposed architecture,

workflow engineers can link the components mentioned

above to increase the automation of the whole process.

They can find and repurpose related workflows in the repo-

sitory. For instance, in this case, they can reuse the work-

flow described in Figure 19. The workflow takes the inputs

of crowdModel (the evacuation model presented above),

DSMmodel (the DSM with information for the crowd

simulation), IFCfile (the IFC file of the building design)

and framework (the name of the new experiment). The out-

put of this workflow is the parsedLogFile (the parsed

simulation results that can be visualized). To use the work-

flow, a designer only needs to specify the inputs. In this

case, a designer can pass specific inputs (for instance, this

emergency model, the same DSM used in Section 4.2, the

IFC file of the studied building and the experiment name

../evacuation). Then, the designer can run this workflow

using the Taverna Engine in the cloud. The workflow helps

the designer collecting the information, running the simu-

lation and parsing the results. After the simulation results

are ready, the designer can use the GUI to visualize them

in Autodesk 3ds Max (as shown in Figure 25).

Now, a complete application based on the proposed

architecture is available for studying crowds under emer-

gency scenarios. The designers can run this workflow mul-

tiple times to evaluate alternatives in order to improve

their final design. For instance, a designer might want to

test the evacuation time with different occupancy levels

for their designs. To do so, they can export the IFC files

from their designs and run the workflows of their interest.

Figure 26 shows an example. Designers obtained different

results for design alternatives (original design, relocating

the doors, or adding more stairs). The idea was to repro-

duce the workflow to extract floor data, run the simulation

in the cloud, and visualize the results obtained. For all

designs shown in Figure 26, when the occupancy level

increases, the corresponding evacuation needs more time

with a roughly linear manner. However, the relocating

design shows a least increasing rate when the occupancy

level increases. Therefore, this kind of application can tell

the designers that the relocating design is the best alterna-

tive in terms of reducing the evacuation time in an emer-

gency case.

7. Conclusion

We presented an architecture and a general integration

methodology to combine all the components needed for

crowd simulation (CAD/BIM data collection, crowd mod-

eling, crowd simulation and 3D visualization) in the cloud.

We showed how to use a MDE approach to collect data

from CAD/BIM tools, building Cell-DEVS crowd models

and using SimaaS middleware to run crowd simulations,

and 3D visualization of simulation results. We defined

workflows to automate the process and used a repository

to share the workflow. We illustrate the use of the architec-

ture with a case study in emergency planning, which illus-

trates the advantages (distributed deployment, simulation-

based design and collaborative development) of the

approach.

The main contributions include the following.

1) A unified approach for combing loosely coupled

components (data collection, modeling, simulation

and visualization) into a whole system. This

component-oriented approach not only provides

interfaces to reuse each component, but also pro-

motes the collaborative development among users

from different disciplines.

2) Different Cell-DEVS models for crowd behaviors,

showing the advantages of Cell-DEVS theory for

modeling complex behavior of crowds.

Figure 26. Building occupancy versus evacuation time for design alternatives (original design, relocating the doors or adding more
stairs). Adapted from Wang et al.33

92 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

3) Different solutions for CAD/BIM data collection

(directly or using MDE), SimaaS services for

crowd simulation and 3D visualization with realis-

tic crowd entities. Besides, we deployed these

solutions in the cloud to increase their reusability

and accessibility.

4) Workflows to formalize and automate the integra-

tion process of the proposed components. Users

can easily replace components and modify the

workflow for their particular purposes. Besides,

these workflows can be stored in a workflow repo-

sitory for reuse.

This work promotes collaborative development among

people from different disciplines (e.g., modelers, builders,

architects, building designers, workflow engineers, data

analysts). Each person can focus on a specific activity in

crowd M&S and provide a component for others. People

can provide new components or reuse the existing compo-

nents in the cloud. Besides, each component can be com-

posed as part of a workflow, allowing the automation of

the crowd M&S process. This kind of workflow hides the

technical details inside the components. Building designers

can test their designs by executing workflows. Therefore,

it can lead to faster decision-making between designs and

improve building design before construction has begun.

This kind of application can increase the reusability of

crowd M&S activities and improve productivity.

Funding

This research has been partially funded by NSERC.

Acknowledgements

The authors thank Michael Van Schyndel (the crowd model in

multiple floors), Victor Freire (the 3D visualization tool), Vinu

Subashini and Robert Woodbury (the building sample for the case

study), and Rhys Goldstein and Azam Khan (valuable insights

and support for Autodesk tools).

References

1. Ma J, Lo SM, Song WG, et al. Modeling pedestrian space in

complex building for efficient pedestrian traffic simulation.

Autom Constr 2013; 30: 25–36.

2. Hoogendoorn SP and Bovy PHL. Pedestrian route-choice and

activity scheduling theory and models. Transp Res B 2004;

38: 169–190.

3. Duives DC, Daamen W and Hoogendoorn SP. State-of-the-art

crowd motion simulation models. Transp Res C 2013; 37:

193–209.

4. Ham NH, Min KM, Kim JH, et al. A study on application of

BIM to pre-design in construction project. In: 3rd interna-

tional conference on convergence and hybrid information

technology, Busan, Korea, 2008.

5. Al-Hussein M, AtharNiaz M, Yu H, et al. Integrating 3D

visualization and simulation for tower crane operations on

construction sites. Autom Constr 2006; 15: 554–562.

6. Wurzer G, Ausserer M, Hinneberg H, et al. Sensitivity visua-

lization of circulation under congestion and blockage. In:

Peacock RD, Kuligowski ED and Averill JD (eds)

Pedestrian and evacuation dynamics. New York, NY:

Springer, 2011, pp.899–902.

7. Zhou S, Chen D, Cai W, et al. Crowd modeling and simula-

tion technologies. ACM Trans Model Comput Simulat 2010;

20: 20.

8. Ji X, Zhou X and Ran B. A cell-based study on pedestrian

acceleration and overtaking in a transfer station corridor.

Physica A 2013; 392: 1828–1839.

9. Henein CM and White T. Macroscopic effects of micro-

scopic forces between agents in crowd models. Physica A

2007; 373: 694–712.

10. Tao W and Jun C. An improved cellular automaton model

for urban walkway bi-directional pedestrian flow. In: inter-

national conference on measuring technology and mechatro-

nics automation, Zhangjiajie, China, 2009.

11. Castonguay P and Wainer G. Aircraft evacuation

DEVS implementation visualization. In: proceedings of the

2009 spring simulation multiconference, San Diego, CA,

2009.

12. Sano T, Yoshida Y, Takeichi N, et al. Experimental study of

crowd flow passing through simple-shaped room and valida-

tion for an evacuation simulator. In: Peacock RD,

Kuligowski ED and Averill JD (eds) Pedestrian and evacua-

tion dynamics. New York, NY: Springer, 2011, pp.587–599.

13. Castle CJE, Waterson NP, Pellissier E, et al. A comparison

of grid-based and continuous space pedestrian modelling

software: analysis of two UK train stations. In: Peacock RD,

Kuligowski ED and Averill JD (eds) Pedestrian and evacua-

tion dynamics. New York, NY: Springer, 2011, pp.433–446.

14. Lu SR, Wu IC and Hsiung BCB. Applying building informa-

tion modelling in environmental impact assessment for urban

deep excavation. In: proceedings of the ISARC, Eindhoven.

The Netherlands, 2012.

15. Hetherington R, Laney R, Peake S, et al. Integrated building

design, information and simulation modelling: the need for

a new hierarchy. In: proceedings of 2011 building simulation

conference. Sydney, Australia, 2011.

16. Jiang Y, Ming J, Wu D, et al. BIM server requirements to

support the energy efficient building lifecycle. In: proceed-

ings of 2012 ASCE international conference on computing

in civil engineering, Clearwater Beach, FL, 2012.

17. Wainer G. Discrete-event modeling and simulation: a practi-

tioner’s approach. Boca Raton, FL: CRC/Taylor Francis,

2009.

18. Xia Y, Wong SC and Shu CW. Dynamic continuum pedes-

trian flow model with memory effect. Phys Rev E 2009; 79:

066113.

19. Dogbe C. On the Cauchy problem for macroscopic model of

pedestrian flows. J Math Anal Appl 2010; 372: 77–85.

20. Werberich BR, Pretto CO and Cybis HBB. Pedestrian route

choice model based on friction forces. Simulation 2014; 90:

1177–1187.

Wang and Wainer 93

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

21. Salzarulo L. A continuous opinion dynamics model based on

the principle of meta-contrast. J Artif Societies Soc Simulat

2006; 9: 5–24.

22. Deffuant G. Extremism propagation patterns in continuous

opinion models. J Artif Societies Soc Simulat 2006; 9: 1–8.

23. Bae JW, Lee S, Hong JH, et al. Simulation-based analyses

of an evacuation from a metropolis during a bombardment.

Simulation 2014; 90: 1244–1267.

24. Helbing D, Farkas I and Vicsek T. Simulating dynamical fea-

tures of escape panic. Nature 2000; 407: 487–490.

25. Neumann JV and Burks AW. Theory of self-reproducing

automata. Champaign, IL: University of Illinois Press,

1966.

26. Blue VJ and Adler JL. Emergent fundamental pedestrian

flows from cellular automata micro simulation. Transp Res

Rec 1998; 1644: 29–36.

27. Song W, Xu X, Wang B, et al. Simulation of evacuation pro-

cesses using a multi-grid model for pedestrian dynamics.

Physica A. 2006; 363: 492–500.

28. Yue H, Guan H, Zhang J, et al. Study on bi-direction pedes-

trian flow using cellular automata simulation. Physica A

2010; 389: 527–539.

29. Zeigler BP, Praehofer H and Kim TG. Theory of modeling

and simulation. Waltham, MA: Academic Press, 2000.

30. Farrell R, Moallemi M, Wang S, et al. Modeling and simula-

tion of crowd using cellular discrete event systems theory.

In: proceedings of the 2013 ACM SIGSIM PADS, Montreal,

Canada, 2013.

31. Ahmed A, Wainer G and Mahmoud S. Integrating building

information modeling Cell-DEVS simulation. In: symposium

on simulation for architecture and urban design, Orlando,

FL, 2010.

32. Hammad A and Zhang C. Towards real-time simulation of

construction activities considering spatio-temporal resolution

requirements for improving safety and productivity. In: pro-

ceedings of 2011 winter simulation conference, Phoenix, AZ,

2011.

33. Wang S, Schyndel MV, Wainer G, et al. DEVS-based build-

ing information modeling and simulation for emergency eva-

cuation. In: proceedings of the winter simulation conference,

Berlin, Germany, 2012.

34. Wang S, Wainer G, Rajus VS, et al. Occupancy analysis

using building information modeling and Cell-DEVS simu-

lation. In: symposium on theory of modeling and simulation,

San Diego, CA, 2013.

35. MacDonald M. STEPS simulation of transient evacuation

and pedestrian movements user manual. Unpublished work,

2003.

36. Lo SM, Fang Z, Lin P, et al. An evacuation model: the

SGEM package. Fire Saf J 2004; 39: 169–190.

37. Fu C, Aouad G, Lee A, et al. IFC model viewer to support

nDModel application. Autom Constr 2006; 15: 178–185.

38. Lipman RR. Developing coverage analysis for IFC files. In:

proceedings of the CIB W78 2010: 27th international confer-

ence, Haifa, Israel, 2010.

39. Sanchez P, Barreda J and Ocon J. Integration of domain-

specific models into a MDE framework for time-critical

embedded systems. In: international workshop on intelligent

solutions in embedded systems, 2008.

40. Byrne J, Heavey C and Byrne PJ. A review of web-based

simulation and supporting tools. Simul Modell Pract Theory

2010; 18: 253–276.

41. Fielding RT. Architectural styles and the design of network-

based software architectures. Doctoral Dissertation,

University of California. Oakland, CA, 2000.

42. Papazoglou M. Web services: principles and technology.

Upper Saddle River, NJ: Prentice Hall, 2007.

43. Madhoun R. Web-services definition of discrete-event simu-

lation services. Master’s Thesis, Systems and Computer

Engineering, Carleton University, 2006.

44. Madhoun R, Feng B and Wainer G. On the creation of dis-

tributed simulation web-service-based distributed CD++. In:

proceedings of artificial intelligence, simulation and plan-

ning, Buenos Aires, Argentina, 2007.

45. Wainer G, Madhoun R and Al-Zoubi K. Distributed simula-

tion of DEVS and Cell-DEVS models in CD++ using web-

services. J Simul Modell Pract Theory 2008; 16: 1266–1292.

46. Wagh K and Thool R. A comparative study of soap vs rest

web services provisioning techniques for mobile host. J Inf

Eng Appl 2012; 2: 12–16.

47. Al-Zoubi K and Wainer G. Using REST web services archi-

tecture for distributed simulation. In: proceedings of princi-

ples of advanced and distributed simulation, Lake Placid,

New York, 2009.

48. Al-Zoubi K and Wainer G. RISE: a general simulation inter-

operability middleware container. J Parallel Distrib Comput

2013; 73: 580–594.

49. Mittal S, Risco-Martı́n JL and Zeigler BP. DEVSML: auto-

mating DEVS execution over SOA towards transparent

simulators. In: proceedings of the 2007 spring simulation

multiconference, Norfolk, VA, 2007.

50. Seo C and Zeigler BP. Interoperability between DEVS simu-

lators using service oriented architecture and DEVS name-

space. In: proceedings of the 2009 spring simulation

multiconference, San Diego, CA, 2009.

51. Muqsith MA and Sarjoughian HS. A simulator for service-

based software system co-design. In: proceedings of the 3rd

international ICST conference on simulation tools and tech-

niques, Malaga, Spain, 2010.

52. Mittal S and Risco-Martin JL. Model-driven systems engi-

neering in a netcentric environment with DEVS unified pro-

cess. In: proceedings of the winter simulation conference,

Washington, DC, 2013.

53. Cayirci E. Modeling and simulation as a cloud service: a sur-

vey. In: proceedings of the winter simulation conference,

Washington, DC, 2013.

54. Liu X, He Q, Qiu X, et al. Cloud-based computer simulation:

towards planting existing simulation software into the cloud.

J Simul Modell Pract Theory 2012; 26: 135–150.

55. Tsai WT, Li W, Sarjoughian H, et al. SimSaaS: simulation

software-as-a-service. In: proceedings of the 44th annual

simulation symposium, Boston, MA, 2011.

56. Ahmed A, Moallemi M, Wainer G, et al. VCELL: a 3D real-

time visual simulation in support of combat. In: proceedings

of the 2011 summer computer simulation conference, The

Hague, Netherlands, 2011.

57. Freire V, Wang S and Wainer G. Visualization in 3ds Max

for Cell-DEVS models based on moving entities. In:

94 Simulation: Transactions of the Society for Modeling and Simulation International 91(1)

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

symposium on simulation for architecture and urban

design, San Diego, CA, 2013.

58. Wang S, Wainer G, Goldstein R, et al. Solutions for scalabil-

ity in building information modeling and simulation-based

design. In: symposium on simulation for architecture and

urban design, San Diego, CA, 2013.

59. Rybacki S, Himmelspach J, Haack F, et al. Worms—a

framework to support workflows in MS. In: proceedings of

the winter simulation conference, Phoenix, AZ, 2011.

60. Ribault J and Wainer G. Simulation processes in the cloud

for emergency planning. In: proceedings of the 12th IEEE/

ACM international symposium on cluster, cloud and grid

computing, Ottawa, Canada, 2012.

61. Oinn T, Addis M, Ferris J, et al. Taverna: a tool for the com-

position and enactment of bioinformatics workflows.

Bioinformatics 2004; 20: 3045–3054.

62. Cicirelli F, Furfaro A and Nigro L. Using time stream petri

nets for workflow modelling analysis and enactment.

Simulation 2012; 89: 68–86.

63. Mittal S, Zeigler BP and Risco-Martin JL. Implementation of

formal standard for interoperability in M&S/system of sys-

tems integration with DEVS/SOA. Int Command Contr C2 J

2008; 3: 1–57.

64. Beetz J, VanBerlo L, DeLaat R and VanDen Helm P.

BIMserver.org — an open source IFC model server. In: pro-

ceedings of the CIP W78 conference. Cairo, Egypt, 2010.

65. Roman D, Morin B, Wang S, et al. A model-driven approach

to interoperability in B2B data exchange. In: advanced

results in MDI/SOA innovation workshop, IWEI, Stockholm,

Sweden, 2010.

66. Wang S, Morin B, Roman D, et al. A semi-automatic model

transformation approach for semantic interoperability. In:

proceedings of the NATO symposium on semantic & domain

based interoperability, Oslo, Norway, 2011.

67. Mittal S and Risco-Martin JL. Netcentric system of systems

engineering with DEVS unified process: a book in system of

systems engineering. Boca Raton, FL: CRC/Taylor Francis,

2013.

68. Goble CA and De Roure DC. myExperiment: social net-

working for workflow-using e-scientists. In: proceedings of

the 2nd workshop on workflows in support of large-scale sci-

ence. Monterey, CA, 2007.

69. Boukerche A, Zhang M and Pazzi R. An adaptive virtual
simulation and real time emergency response system. In:
international conference on virtual environments, HCI and

measurement systems, Hong Kong, China, 2009.

Author biographies

Sixuan Wang is a PhD candidate in electrical and com-
puter engineering with the Department of Systems and
Computer Engineering at Carleton University. He received
double master’s degrees from Harbin Institute of
Technology, China, and the University of Bordeaux 1,
France. His academic experience spreads over a wide
range of areas, such as M&S, software engineering, dis-
tributed systems and cloud computing. He has participated
in many scientific and industrial projects, including the
NSERC Engage project with Autodesk Research (2012,
Canada) and the European REMICS project within the
SINTEF Institute (2011, Norway). He has several publica-
tions and is a frequent reviewer of scientific papers. His
current research interests are M&S as a service, semantic
web, model composition and cloud computing.

Gabriel AWainer (SMSCS, SMIEEE) is a full professor
at the Department of Systems and Computer Engineering
at Carleton University. He is the author of three books and
over 260 research articles; he has edited four other books
and helped organize over 120 conferences, including
being one of the founders of SIMUTools and SimAUD.
He is the principal investigator of different research proj-
ects. He is the vice-president of conferences. He is special
issues editor of Simulation. He is the head of the
Advanced Real-Time Simulation Lab, located at Carleton
University’s Centre for advanced Simulation and
Visualization (V-Sim). He has been the recipient of vari-
ous awards, including the IBM Eclipse Innovation Award,
SCS Leadership Award and various Best Paper awards.
His current research interests are related to modeling
methodologies and tools, parallel/distributed simulation
and real-time systems.

Wang and Wainer 95

 at CARLETON UNIV on July 31, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

