
Scheduling Predictability in I-DEVS by Schedulability Analysis
Braulio Adriano de Mello

Universidade Federal da Fronteira Sul
108 Av. Fernando Machado, Chapeco, SC. Brazil

braulio@uffs.edu.br

Gabriel A. Wainer
Carleton University

1125 Colonel By Dr. Ottawa, ON. Canada.
gwainer@sce.carleton.ca

ABSTRACT
The Imprecise DEVS approach combines the advantages of
imprecise computation with a formal modeling methodolo-
gy in order to avoid the transient overloads on real-time
systems. This process requires efficient scheduling methods
to find the best schedule of the computations to guarantee
the deadlines and to increase the quality of the results by
reducing the discarding of the optional computations. This
work introduces a solution to integrate schedulability analy-
sis with Imprecise DEVS to improve the predictability and
the feasibility for scheduling. The proposed schedulability
analysis and scheduling methods are based on Earliest
Deadline First, priority-driven and mandatory-first ap-
proaches and they are considered to be executed dynamical-
ly. The schedulability tests contribute to avoid unnecessary
discarding of optional computations improving the quality
of the results.

Author Keywords: Imprecise DEVS; Real-Time Systems;
Schedulability Analysis.

1. INTRODUCTION
Hard Real-Rime Systems (RTS) have high design complex-
ity, mainly due to complexity in meeting timing constraints.
Failing to guarantee that all the computations meet their
deadlines could be catastrophic. Most designing methods
for RTS are complex to apply mostly on large scale systems
and they do not guarantee free-errors systems. Modeling
and Simulation (M&S) techniques have shown to help in
reducing the effort and the cost for the overall designing
process of RTS [15].

However, the M&S techniques often require great effort to
model features of specific target systems, for example, the
timing constraints on the RTS. The Imprecise DEVS for-
malism [16] is a recent attempt that extends a model-driven
framework to develop RTS based on the DEVS [26] for-
malism and the Imprecise Computation (IC) technique [13]
to deal with timing constraints. In the IC technique, parts of
the computations could be discarded to guarantee the dead-
lines if imprecise results are acceptable [12, 14]. In this
case, the computations are divided in mandatory and op-
tional parts. As the mandatory parts affect the correctness of
the result then all of them must be completely executed.
Optional parts affect the quality of the result and they can
be discarded if they will not meet their deadlines.

In order to guarantee the deadlines as well as the quality of
the results, an efficient scheduling algorithm is required to
determine the best order to execute the computations. Most
existing research efforts spend efforts to improve the
scheduling algorithms, however, there are no works based
on addressing the best order for scheduling computations
integrated in the M&S environments. We propose a new
methodology that extends I-DEVS to integrate schedulabil-
ity analysis to improve predictability and feasibility for
scheduling of computations. The schedulability tests are
based on the Worst Response Time (WRT) and on the
Worst Case Execution Time (WCET) measures [27, 21,
25].

Our approach makes I-DEVS able to identify when a given
set of computations is schedulable or not dynamically. If it
is not schedulable, the schedulability test is able to show
how to improve the schedule to guarantee the execution of
all mandatory computations, and reducing the discarding of
the optional ones. It combines the mandatory-first and pri-
ority based approaches with WRT and Earliest-Deadline
First scheduling in a new method for M&S environments to
simulate hard RTSs.

2. BACKGROUND
The workload is one of the most critical issues for real-time
systems. When the system needs more computing resources
than those available in order to guarantee the timing con-
straints (transient overload), then it might be impossible to
meet the deadlines [5]. Flexible applications based on the
IC technique [12] are able to reduce the resource demands
by degrading the quality of the results gracefully at runtime
while keeping the result quality acceptable [14, 13]. In hard
RTS, graceful degradation is better than obtaining late re-
sults.

The IC method helps overcoming overload scenarios by
dividing the computations into mandatory (M) and optional
(O) parts. All the mandatory parts must be completed in
time to guarantee the correctness of the system. Optional
parts can be discarded if there are no resources available to
execute them in a timely fashion [3, 7]. A system is consid-
ered feasible if all the mandatory computations of the sys-
tem are schedulable. To study this, different scheduling
algorithms have been proposed. These algorithms must be
able to guarantee feasibility and, in general, they are priori-
ty-driven and they usually execute the mandatory computa-
tions first (mandatory-first approach) [14]. In the following
section, we discuss some of these algorithms.

SpringSim-TMS/DEVS, 2016, April 3-6, Pasadena, CA, USA. Copyright
2015 Society for Modeling & Simulation International (SCS)

2.1. Scheduling Algorithms
The most popular priority-driven algorithms for RTS are
the Rate Monotonic (RM), Deadline Monotonic (DM) [1]
and Earliest Deadline First (EDF) [5]. RM and DM work
dynamically with static priority. EDF works dynamically,
and it could works with static or dynamic priority and it is
considered optimal on single processor systems (when the
CPU is not overloaded). RM uses a periodic scheduler and
it assigns high priorities to the computation with the biggest
rates (smallest periods). DM assigns high priorities to the
computations with the nearest deadline, which must be
equal to or less than the period [19]. EDF assigns priorities
dynamically and the computations with the earliest dead-
lines have the highest priorities. EDF allows more efficient
exploitation of computational resources and better respon-
siveness of non-periodic activities.

The IC technique [13] also has been applied for scheduling
algorithms that try to improve performance under transient
overloads. Scheduling policies with IC provide better re-
sults in comparison with their original versions [25]. In [7,
3, 19], the performance of EDF, RMS, Most Execution
Time First (MEF) and Least Execution Time First (LEF)
were compared. The results showed that EDF had the best
performance. Simulation environments as MAST [8],
AgaPé-TR [24] and Times [2], have been used to study
scheduling algorithms based on the simulation of RTSs
scheduling. These environments allow schedulability test-
ing, introducing a complex analytical problem discussed in
the following section.

2.2. Schedulability Analysis of Real-Time Systems
Schedulability analysis of RTSs [10, 27] is useful to predict
whether a set of computations will meet their deadline. The
success depends on whether all the computations can be
guaranteed to complete before their deadlines. If this can be
guaranteed, the set of computations is said schedulable.
Schedulability analysis methods [20] have been classified
according to the approach used, if the schedulability tests
are executed, if they are done statically or dynamically, and
if they are used to plan the schedule. Based on this, the al-
gorithms can be considered static or dynamic. The first type
performs the tests statically, and the resulting schedule is
used at runtime. The second type checks the schedulability
dynamically, which has a higher computational cost.

Baker [4] presents schedulability analysis approaches over
EDF, addressing monotonic schedulability of RTSs. Sun
and Lipari [23] presents a schedulability test for sporadic
RT tasks using Global Fixed Priority on a multiprocessor
system. The probabilistic guarantee [11] improves the re-
sults of scheduling of soft RT applications where the arrival
times of processes and the processing times are random.
However, as it does not guarantee that all the computations
meet their deadlines, it is not acceptable for schedulability
in hard RTS. Kuo [10] presents an online test for the peri-
odic and multiframe process in uniprocessor environments
for online admission control of newly arrived computations.

Schedulability analysis for fixed priority scheduling based
on WRT are exact, dynamic schemes seem to be more ef-
fective [27].

It is important to consider both IC and schedulability analy-
sis on the design phases of RT systems. However, as of
today, no M&S environment combines these. In order to
contribute in this field, we proposed the Imprecise DEVS
framework, which integrates IC with DEVS and opened
new perspectives towards the improvement of predictability
and feasibility of scheduling in M&S environments [16].
We extended Imprecise DEVS in order to integrate sched-
ulability analysis, as the integration of schedulability analy-
sis on the early phases of the design can improve the sched-
uling algorithms efficiency affecting the quality of the re-
sults.

2.3. Imprecise DEVS
Imprecise DEVS (I-DEVS) [15, 16, 17] integrates IC with
DEVS in order to model RT systems. The main objective is
to provide an imprecise framework for applications where
the job arrival times are not known a-priori. The approach
balances the computation when the system is busy while
keeping the runtime overhead as low as possible. This load
balance is based on the computations priorities.

I-DEVS added d to the atomic model and c to the definition
of states as following:

d: S → R1
0,∞ is the relative deadline of each state for output

production

S:{(s,c) | s ∈ Z1
0 and c ∈ (mandatory, optional)}

The coupled model is defined as DEVS where:
CM=<X,Y,D, {Mi | i ∈ D}, EIC, EOC, IC>
and D is a set of components and for each i in D
and Mi = {Xi,Yi,Si,δexti,δinti,δconi,λi,tai,di} is the I-DEVS
basic structure.

Despite the I-DEVS definitions of d and c are enough to
manage the mandatory and optional computations, the
schedulability analysis approach requires a known set of
computations at a given state time. For each computation, it
is essential to know the execution time, the release time, the
deadline and if the computation is mandatory or optional.
We extended the formal definition of I-DEVS to allow the
execution of the schedulability tests, presented following.

3. EXTENDING I-DEVS
In I-DEVS, whenever there is more than one internal event
(computation) to be serviced, the mandatory ones have pri-
ority over the optional events. If an optional internal event
is to be serviced later than its release time, its output will be
discarded. This strategy cannot be used to apply schedula-
bility tests because it is done by the DEVS Simulator. In-
stead, schedulability tests should be done by the Coordina-
tors, as the optional computations that will not meet their
deadline must be discarded earlier (before sending them to

the Simulator). We will discuss the definition of set of
computations managed Coordinators.

Coupled models connect basic models hierarchically, and
they are defined as in Section 2.3. We will define the set of
computations which is based on the definition of set of
components where:

for each D, Mi is a component defined by Mi =
{Xi,Yi,Si,δexti,δinti,δconi,λi,tai,di}

Then, K=(C1,C2,…,Cn) is the set of computations of com-
ponents D.

In the following, we say a computation is an internal event
with finite worst case execution time (wi) and it can be said
to be a mandatory or optional computation (ci). Each com-
putation has a release time (ri) defined by the beginning of
the computation time, which, according to I-DEVS, it is
equal to the arrival of an input to the coupled model or an
input on the input port of the atomic model. The execution
time of each computation is limited by its relative deadline
d(si). The set of components D can have multiple sets of
computations of atomic models Mi defined by the set Ki.

Then Ci=(ri, ci, wi, d(si)) denotes a computation of the
atomic model i, where:

ri is the release time,
ci ∈ (mandatory, optional),
wi is the worst case execution time,
d(si) is the relative deadline of the state si based on I-DEVS.

Each computation Ci is subject to timing constraints given
by the release time (ri), its worst case execution time wi,
and its maximum ending time defined by d(si).

If there is a set of C ∈ K and {(s, e, d(s)) | s ∈ S, 0 ≤ e ≤
ta(s) and d(s) ≥ ta(s)}, then for each i ∈ M, Ci is schedula-
ble if C(wi) + w(hp(Ci)∈ K) + ei ≤ d(si).

where:

ei is the elapsed time of Ci since its release time ri

C(wi) is the worst case execution time of computation Ci

w(hp(Ci)∈ K) is the sum of all C(wi) ∈ K with higher priori-
ty (hp) than Ci where (hp(Ci) ∈ K) is the set of all C ∈ K
with the priority greater than the priority of Ci

d(si) is the relative deadline from the last state transition
before si.

As a computation Ci is schedulable only if C(wi) + w(hp(Ci)

∈ K) + ei ≤ d(si), then the set K of computations is said
schedulable only if all Ci ∈ K are schedulable on a single
CPU at a given current state (instant of time).

The set K must include all Ci of the model at a given time to
execute the schedulability analysis. However, as each Co-
ordinator manages only the computations of its own Simu-
lators, we need to flatten the hierarchical structure to have
the set of computations of all Coordinators in the set K. The

Flattened Coordinator [9, 22] strategy transforms a hierar-
chical structure of the coupled model to a flattened structure
with depth one by eliminating intermediary Coordinators.
The transformation must preserve the original port linkage
relationship among atomic models.

4. SYSTEM MODEL
The internal events of I-DEVS models are mapped into
computations (C1, C2,…,Cn) to represent the hard RTS on a
single CPU and they must meet their deadlines defined by
d(s). The computations are considered sporadic, and they
have irregular arrivals. Their minimum interarrival time is
denoted as Ti. If a computation Ci has its arrival time set
based on a given elapsed time ei from the last transition, the
next arrival of Ci must occur on or after ei+Ti.

As each computation Ci is performed on a given state s
where s ∈ S, and S={s,c}, and c ∈ (mandatory, optional),
then each computation can be mandatory or optional ac-
cording to its current state s. All computations must be
completed before their deadlines d(s) to each state s.

The release time of each computation is equal to its arrival
time. The arrivals are defined by content (Q,Y) or synchro-
nization (@,*,done) messages according to the DEVS simu-
lator. Before the atomic model executes an optional compu-
tation, it must have its schedulability analyzed at a level
higher than the atomic model level to verify if the computa-
tion will meet its deadline. The WRT of the computation is
given by C(wi) + w(hp(Ci)∈ K) + ei. If the schedulability
test shows that the computation will meet its deadline, then
it will be sent to the Simulator. Otherwise, it will be dis-
carded.

When there are multiply arrivals of computations to one or
more atomic models simultaneously, all the computations
of the set K=(C1, C2,…,Cn) must be verified. Computations
that not meet their deadline are discarded. To do so, the
Coordinator does not trigger the computation on the Simu-
lator level by discarding the messages q, * or @. The results
of the schedulability tests are assumed to be feasible. It
means that all optional computations sent to the atomic
model will meet the deadlines. Mandatory computations are
always sent to the atomic models.

The scheduling is performed at the same level. As the cur-
rent schedulability tests solution is not be able to deal with
preemptive scheduler, we assumed that the scheduler is
non-preemptable. After each new schedulability test, the set
of computations with a new configuration of earliest dead-
lines is known, and the priorities are assigned dynamically.
The scheduler follows the priority-driven based EDF algo-
rithm.

The results are considered precise when all optional compu-
tations are executed. The maximum accepted (graceful)
degradation of the results happen when all optional compu-
tations are discarded. The system is considered to fail when
one or more mandatory computations do not meet their

deadline. Mandatory computations have higher priority
over the optional ones, and we assume non-hierarchical
Simulation structures (the flat Coordinator communicates
directly with all Simulators). In order to perform the sched-
ulability analysis on the Coordinator level as discussed in
this section, the Coordinator algorithms were adapted. The
next section presents these changes.

5. COORDINATOR ALGORITHMS
According to the DEVS simulation algorithms [6], the mes-
sages received by the Coordinator from top to a child i are
sent to the child i, and then the identification of the child i is
cached into a synchronization set (SyncSet). After, the Co-
ordinator sends the '*' message to all the children in
SyncSet, and waits until all (done, tN)’s are received.

We proposed to change the order of these steps to make the
Coordinator able to perform the schedulability tests over the
SyncSet before sending the messages to the children. The
messages received by the Coordinator (and their child des-
tination) are cached into SyncSet. The state transition (or
internal event) that each message represents is mapped to a
computation based on Ci=(ri, ci, wi, d(si)). Then, the sched-
ulability tests are performed over the mapped computations
in the SyncSet that are ready to be sent to the children at
current time t. Based on the schedulability test result, the
non-schedulable computations are discarded, and the
scheduler works with the schedulable subset of computa-
tions to send them to the children.

Figure 1 illustrates the Coordinator algorithm when it re-
ceives a '*' message. If the Coordinator receives an internal
message * from the parent Coordinator and there are inputs
q ∈ Bag, instead of sending them immediately to the child
(as in other DEVS Coordinators), it processes each qj mes-
sage stored in the Bag to be sent to a child j, and j(q,t) is
cached into the SyncSet (lines 5-6). Following, the sched-
ulability test is run over all the components of the SyncSet.
The idea is to verify if each computation of j(q,t) (mapped
to Ci=(ri, ci, wi, d(si))) at current time t for all child j ∈
SyncSet, and whose current state sj is optional, will meet
their deadlines (line 10). This is based on the worst re-
sponse time of i(q), or (wrt(i(q))), given by C(wi) +
w(hp(Ci)∈ K) + ei according to the definition presented in
the section 3. If si is optional and wrt(i(q)) > d(si) then j(q,t)
is not schedulable because it will not meet its deadline, then
the Coordinator will discard j(q,t) from the SyncSet (lines
12 and 13). If j(q,t) is schedulable, then the Coordinator
sends it to the child (line 11) followed by * (line 22). Man-
datory computations are always sent to the children (lines
16-18). When a Simulator does not receive the message due
to the discarding, time is saved for mandatory computa-
tions. Keep in mind that for Real-Time simulators, the tim-
ing information is tied to the CPU’s Real-Time clock, thus
the algorithm can run in simulated mode (discrete-event) or
Real-Time. The * message is always sent to the child to
execute the internal transition. The atomic model executes

δint in response to a * message, and returns its next internal
event time by a done message (line 28 in Figure 1).

1 when a (* , t) msg is received from parent Coordinator
2 if tL ≤ t ≤ tN
3 for all q ∈ bag
4 for all receivers of q, j ∈ Iself
5 q := zself, j (q)
6 cache j(q,t) in the SyncSet
7 end for
8 endfor
9 for all j(q,t) in SyncSet
10 if sj is optional and j(q,t) is schedulable
11 send (q,t) to j
12 else
13 discard j(q,t) of the SyncSet
14 send (*,t) to j /* state transition
15 endif
16 if sj is mandatory
17 send (q,t) to j
18 endif
19 endfor
20 empty bag
21 for all i in the SyncSet
22 send (*, t) to i
23 end for
24 wait until all (done, tN)’s are received
25 tL :=t
26 tN := minimum of components’ tN’s
27 clear the SyncSet
28 send (done, tN) to parent Coordinator
29 else raise an error
30 endif
31 end when

Figure 1. Coordinator algorithm: internal message

Similar changes were made in the Coordinator algorithms
when receiving a collect (@) and output messages (y) from
children. Whenever the Coordinator receives a @ message
to be sent to the child i, i(@) is also cached into the
SyncSet. Following, the Coordinator applies the schedula-
bility test to verify if the computations of i(@) at the time t
for all child i ∈ SyncSet will meet the deadline based on
wrt(i(@)). If discarded, the @ message is not sent to the
Simulator. If the @ message is sent to the target Simulator,
the Simulator responds to the @ message by executing the λ
function and returning the output value through an output
(y) message.

When the Coordinator receives an output message y from
child i to be sent to the child j, the Coordinator translates
the Output Message y into the External Message q at first,
and then caches j(q,t) into the SyncSet. Before sending it to
all of its receiving Simulators, the Coordinator verifies if
the state of the j is optional and if j(q,t) is schedulable
among all j ∈ SyncSet at the current time t. If j is schedula-
ble then j(q,t) is sent to its receiving Simulator. If not
schedulable, the Coordinator discards j(q,t) from SyncSet
and the message q will not be sent to the child.

Each Coordinator has its own SyncSet to manage the mes-
sages to the target Simulators. The schedulability tests are
performed based on the SyncSet at the Coordinator level
and each Coordinator sees only its own Simulators. Be-

cause of this, the schedulability tests and scheduling are not
effective. There are two main strategies to avoid this limita-
tion: a message passing protocol to centralize all SyncSets
of Coordinators in the topmost Coordinator which will be
responsible for schedulability testing and scheduling, or
applying the Flattened Coordinator strategy [9, 22] to trans-
form a hierarchical structure of the coupled model to a flat-
tened structure with depth one by eliminating intermedi-
ary Coordinators.

This work assumes non-hierarchical structures where in-
termediary Coordinators are eliminated and the flattened
top most Coordinator communicates directly with all simu-
lators. The literature presents algorithms to transform a hi-
erarchical structure of the model to a flattened structure by
eliminating Coordinators and transforming hierarchical
coupled model into a coupled model with depth one. Sec-
tion 6 shows an example to discuss the schedulability test
based on the worst execution time and EDF scheduling.

6. SCHEDULING AND SCHEDULABILITY
This section describes the schedulability testing process
based on the EDF scheduling. The main EDF based sched-
uling aspects are discussed and, following, we present the
process to verify the schedulability of a set of computations
dynamically using the definition of SyncSet.

6.1. Scheduling
The scheduler works to determine the best order for sched-
uling of computations, and schedulability analysis helps the
scheduler to minimize the number of discarded optional
computations. In general, static scheduling algorithms are
suitable for periodic computations with hard deadlines and
dynamic algorithms are more suitable for sporadic or aperi-
odic computations. The schedule is said feasible if the tim-
ing constraints of all computations are satisfied. Most algo-
rithms for IC scheduling are based on EDF. Here, we
adopted EDF based strategies for scheduling IC (mandatory
and optional) and for integrating schedulability analysis
with I-DEVS.

The EDF algorithm is priority-driven and the computations
with the earliest deadlines have the highest priorities. We
follow the mandatory first approach to manage the priorities
of mandatory and optional computations. We assume that
all computations defined by a set K=(C1,C2,..,Ci) on a given
time t execute on a single CPU. Mandatory computations
are always executed and optional ones are executed only if
their scheduling is feasible according to the results of the
schedulability test. The system is considered to fail when
one or more mandatory computations do not meet their
deadline. The EDF based scheduling algorithm works dy-
namically to assign the priorities as described on the fol-
lowing general steps:

 whenever there is a set K of computations with release
time r ready to be executed at a given time t, the sched-
uler updates the priorities of the computations according

to the value of c (mandatory computations have higher
priority than optional computations);

 Considering the subset of K(C(ci)) computations where
c = mandatory, the computations with earliest deadlines
have higher priority;

 Considering the subset of K(C(ci)) computations where
c = optional, let the computations with earliest dead-
lines have assigned highest priorities.

EDF assigns the priorities at runtime whenever there are new
arrivals of computations. Here, the weight of all the computa-
tions is considered equal. Computations with different weights
will be explored in future works.

6.2. Schedulability Analysis
If the utilization factor U of a set K of computations is
equal to or less than 1 (U ≤ 1, where 1 is the maximum ca-
pacity of a CPU), then the set K is schedulable by EDF. The
Utilization Factor represents the fraction of CPU time used
by the computation and it is defined by the following equa-
tion [5]:

U i=
wi

Pi
Where wi is the WCET of the computation i and Pi is the
period. The minimum interval Ti between the arrivals of a
sporadic computation i [27] is used as the period Pi for
schedulability testing. As the sporadic computations behave
like periodic computations with period T and deadline d(s)
(where d(s) ≤ T) and the minimum interval can be set to be
equal to the deadline, then Ti = d(si) and Pi = Ti. In addi-
tion, the deadline can be equal to or less than the period. As
we are considering the relative deadline from the time t of
the last transition and this could be different for distinct Ci
∈ K, then the elapsed time e cannot be considered to ana-
lyze the schedulability. Then, the minimum interval is given
by the equation:

Pi= d (si)− ei
Then, given a set K of computations, K could be considered
schedulable if U ≤ 1 for all Ui(Ci ∈ K) according the equa-
tion:

∑
i= 1

n

U i⩽1

The schedulability analysis requires previous knowledge of
the WCET of each computation. The WCET provides in-
formation about the worst possible execution time of the
computation before running it. Usually, the WCET can be
defined by strategies like code analysis [25] or probabilistic
techniques [11]. Here, we consider that the execution time
wi is specified at the project time for each computation to be
used as the WCET on the schedulability testing.

The utilization factor is seen as a non-exact test to verify if
the set K is entirely schedulable or not. If the schedulability
test is negative, the set K is definitely not entirely schedula-

(2)

(3)

(1)

ble. If non-negative, it does not guarantee that all Ci ∈ K are
schedulable. In addition, it does not help the scheduler to
identify which of optional computation could be discarded
in case of transient overloads. This test is based on the fol-
lowing equations:

R0= wi

Rm+1= wi+ ∑
j ⩽hp (i)⩽Rm

P j
⩽. wj

The R is the interval between the release time and the end
of the execution of the computation and it defines the WRT.
The WRT [21] is one of the main EDF based methods used
to test the exact schedulability of computations. Given a set
K of computations, it permits to verify if each computation
of the set K is schedulable or not. The equation (4) of this
test is applied to the first calculation of R and the equation
(5) is applied iteratively until: Rn

i = Rn+1
i. The result is the

maximum response time Ri of the computation i. The com-
putation is schedulable when the maximum response time
Ri is less than or equal to its deadline (Ri ≤ Di) and it con-
siders the situation where the deadline is equal to or less
than the minimum interval between the arrivals of the com-

putation (Di ≤ Pi).

If there is a set K of computations to be executed at a given
time t, then we assume the greatest minimum interval be-
tween the arrivals among all current computations of the set
K to be the Pi to perform the schedulability tests of all Ci.
Then, for all Ci ∈ K at a given time t,
Pi = {max[K(Pi)] | Pi = d(si) - ei}.

This is to avoid pessimistic estimation [18] on the sched-
ulability tests without losing the feasibility.

Figure 2 illustrates the example where three models have
their computations executed on a single CPU. The execu-
tion is for a non hierarchical structure and there is one flat-
tened topmost Coordinator that communicates directly with
all Simulators.

In Figure 2, for instance, the computation A(λ2I2) is on the
state A2 and its release time is equal to 2 (rA2 = 2), the
computation is mandatory (cA2 = mandatory), and the exe-
cution time (WCET) is equal to 2 (wA2 = 2). The deadline is
4 (d(sA2) = 4), and the elapsed time from the last transition
of the model A is 1 (eA2 = 1). As RA2 = 2 (equation 4) and
RAA2 + eA2 ≤ d(sA2) or (2+1≤4) then A2 is schedulable.

Figure 2. Sample of schedulability testing of the computations B3, C3 and A4 on a single CPU.

At time 15, the set K includes the computations B(λ3I3) and
C(λ3I3), where C(λ3I3) has the highest priority, and there is
no computation with higher priority (hp) than C(λ3I3) in K:

 B(λ3I3) is on the state B3, and rB3=15, and cB3=optional,
and wB3=2, and d(sB3)=11

 C(λ3I3) is on the state C3, and rC3=15, and cC3=optional,
and wC3=2, and d(sC3)=5

Then, applying the equation (4) as following:

RC 3
0 = wi= 2

Result: as the RC3 + eC3 < d(sC3), then C(λ3I3) is schedula-
ble at t=15 as shown in Figure 2.

Considering that the C(λ3I3) has the highest priority in the
set K, it belongs to the set of computations with higher pri-
orities than B(λ3I3). It is defined by C(λ3I3)∈ hp(B(λ3I3)),

(4)

(5)

where hp(i) is the set of computations with higher priority
than i. Then, the RB3 is therefore given by:

RB 3
0 = wi= 2

RB 3
1 = wi+ ∑

j⩽hp (i)
⩽R0

Pj
⩽.w j= 2+⩽2

4⩽.2= 4

RB 3
2 = wi+ ∑

j⩽hp (i)
⩽R1

Pj
⩽.w j= 2+⩽4

4⩽.2= 4

Result: as R1 = R2 at the second iteration and RB3 + eB3 ≤
d(sB3) then B(λ3I3) is schedulable and, considering the
schedulability testing at time 15, it can be executed at 17.

However, before executing B(λ3I3), A(λ4I4) is released at
time 17, so there are two computations, A(λ4I4) and
B(λ3I3), ready to be executed at time 17 and A(λ4I4) has
higher priority than B(λ3I3), where:

 A(λ4I4) is on state 4, and rA4=17, and cA4=mandatory,
and wA4=2, and d(sA4)=9

 B(λ3I3) is on state 3, and rB3=15, and cB3=optional, and
wB3=2, and d(sC3)=11

As there is no computation with higher priority (hp) than
A(λ4I4) in K, then:

R A 4
0 = wi= 2
Result: as the RA4 + eA4 < d(sA4) than A(λ4I4) is schedula-
ble.

Considering that A(λ4I4) has the highest priority in the set
K, it belongs to the set of computations with higher priori-
ties than B(λ3I3), or: A(λ4I4)∈ hp(B(λ3I3)). Then, RB3 is
therefore given by:

RB 3
0 = wi= 2

RB 3
1 = wi+ ∑

j⩽hp (i)
⩽R0

Pj
⩽.w j= 2+⩽2

3⩽.2= 4

RB 3
2 = wi+ ∑

j⩽hp (i)
⩽R1

Pj
⩽.w j= 2+⩽4

3⩽.2= 6

RB 3
3 = wi+ ∑

j⩽hp (i)
⩽R2

Pj
⩽.w j= 2+⩽6

3⩽.2= 6

Result: as R2 = R3 at the third iteration and RB3 + eB3 >
d(sB3) then B(λ3I3) is not schedulable and it must be dis-
carded as shown in Figure 2.

Whenever the schedulability test shows that the scheduling
is feasible for all C(ci) ∈ K, all computations can be sched-
uled. Whenever the schedulability test shows that there are
optional computations that will not meet the deadline, they
are discarded. If at least one computation with ci = manda-
tory is not schedulable, the system fails.

7. CONCLUSION
We presented an approach to integrate schedulability analy-
sis strategy with I-DEVS in order to improve the predicta-
bility and the feasibility for scheduling ICs. The approach is

based on the EDF algorithm combined with the mandatory-
first approach and schedulability testing is based on the
WRT to verify whether each computation is schedulable or
not according their timing constraints. This feature makes
possible, for instance, to analyze whether the model can be
executed on a specific hardware platform.

To integrate this strategy into the I-DEVS, we proposed to
use the Synchronization Set as the main resource to imple-
ment the schedulability tests and the scheduling on the Co-
ordinator level before triggering the computations on the
Simulators.

In the future, we will study new scheduling and schedula-
bility analysis methods. For example, we want to integrate
sharing resources in the system models, the scheduling and
schedulability analysis process could implement mutual
exclusion functionalities in order to deal with deadlocks
situations. Moreover, in our approach the priority inversion
situations can happen when an optional computation has
earlier deadline then a mandatory one and both computa-
tions could meet their deadlines if the optional computation
is executed before the mandatory one. The proposed sched-
ulability test solution does not deal with priority inversion
scenarios. For example, in Figure 2, if d4 = 21 instead d4 =
20 then there was time enough to execute both computa-
tions A4 and B3 if B3 was executed first. However, A4 has
highest priority according to the scheduling algorithm. This
leads to priority inversion.

Finally, we consider that the WCET is defined at project
time. A new functionality could be integrated to define the
WCET dynamically such as we have done with the WRT.

ACKNOWLEDGMENTS
This research was supported by Universidade Federal da
Fronteira Sul and the Brazilian research agency CAPES,
process No. 1835-14-9. It was partially funded by NSERC.

REFERENCES
1. Altenbernd, P. Deadline-monotonic software scheduling

for the co-synthesis of parallel hard real-time systems.
In Proceedings of the 1995 European conference on De-
sign and Test, Washington, DC, USA, 190, 1995.

2. Amnell, T. F., E. Mokrushin, L., Pettersson, P. and Yi,
W. “TIMES: A Tool for Schedulability Analysis and
Code Generation of Real-Time Systems”, Formal Mod-
eling and Analysis of Timed Systems Lecture Notes in
Computer Science, Volume 2791, (2004) 60-72.

3. Aydin, H., Melhem, R., and Mosse, D.Optimal schedul-
ing of IC tasks in the presence of multiple faults. In Re-
al-Time Computing Systems and Applications, Cheju
Island,South Korea, 2000, 289–296.

4. Baker, T. P. Multiprocessor EDF and Deadline Mono-
tonic Schedulability Analysis. In Proceedings of the
24th IEEE International Real-Time Systems Symposi-
um . Washington, DC, 2003, 120-129.

5. Buttazzo, G.C. “Hard Real-time Computing Systems:
Predictable Scheduling Algorithms and Applications”,
second ed., Springer-Verlag, New York, (2004).

6. Chow, A. C. “Abstract simulator for the Parallel DEVS
formalism”. AI. Simulation, and Planning in High Au-
tonomy Systems, 1994.

7. Guo, C, Zhu, C. Tay, T.T. “Design and Simulation of a
Green Broker with Imprecise Computation Scheduling
for Energy-efficient Large Scale Computing in Clus-
ters”. In Journal of Emerging Trends in Computing and
Information Sciences, Vol. 4, No. 12, Dec. 2013.

8. Harbour, M. G. García, J.J. G. J.C. Gutiérrez, P. and
Moyano, J.M. D. MAST: Modeling and Analysis Suite
for RT Applications. Proc. 13th Euromicro Con-ference
on Real-Time Systems, Delft, Netherlands, 2001.

9. Kim, K., Kang, W., Sagong, B. and Seo, H., Efficient
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-Hierarchical
One. In Proceedings of 33rd Annual Simulation Sympo-
sium, Washington, D.C., 2000.

10. Kuo, T.W., Chang, L.P., Liu, Y.H. and Lin. K.J. “Effi-
cient Online Schedulability Tests for Real-Time Sys-
tems”. IEEE TRANSACTIONS ON SOFTWARE EN-
GINEERING, Vol. 29, No. 8, Aug. (2003).

11. Li, W., Wang, G. and Zhao. W. Stochastic Analysis of
Expected Schedulability for Real-Time Tasks on a Sin-
gle Computing System. In Proceedings of the 12th
IEEE/ACM International Symposium on Distributed
Simulation and Real-Time Applications, 2008.

12. Lin, K., Natarajan, S. and Liu,J.-S. Imprecise Results:
Utilizing Partial Computations in Real-Time Systems. In
proceedings of the IEEE 8th Real-Time Systems Sym-
posium, San Jose, California, USA, 1987.

13. Liu, J. W. S., Shih, W.-K., Lin, K.-J. R. and Bettati, J.-
Y. Chung. Imprecise Computations. In Proceedings of
the IEEE, Vol. 82, No. 1, pp. 83-94, Jan. 1994.

14. Liu, J. W. S. “Real-Time Systems”. (1st ed.). Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2000.

15. Moallemi, and M. Wainer, G. A. Designing an Interface
for Real-Time and Embedded DEVS. In Proceedings of
TMS/DEVS Symposium. Orlando, FL. 2010.

16. Moallemi, M. and Wainer, G. A. I-DEVS: Imprecise
Real-Time and Embedded DEVS Model-
ing. In Proceedings of 2011 Spring Simulation Confer-
ence, DEVS Symposium, 2011, 95-102.

17. Moallemi, M. Wainer, G. A. "Modeling and simulation-
driven development of embedded real-time systems".
Simulation Modeling, Practice and Theory. Elsevier,
Volume 38, Nov. 2013, 115-131.

18. Nasri, M., Baruah, S., Fohler, G. and Kargahi, M. On
the Optimality of RM and EDF for Non-Preemptive Re-
al-Time Harmonic Tasks. In Proceedings of the 22nd In-
ternational Conference on Real-Time Networks and
Systems. New York, NY, 2014, 331-340.

19. Palencia, J. C. and Harbour, G. M. “Response time
analysis of EDF distributed real-time systems”. J. Em-
bedded Comput. 1, 2 (April 2005), 225-237.

20. Ramamritham,K., Stankovic,J. A. and Shiah, P. F. Effi-
cient Scheduling Algorithms for Real-Time Multipro-
cessor Systems. IEEE Trans. Parallel Distrib. Syst. 1, 2,
(1990), 184-194.

21. Ripoll, I., Crespo, A. and Mok, A. K. Improvement in
feasibility testing for real-time tasks. Real-Time Syst.
11, 1 (July 1996), 19-39.

22. Shang, H. and Wainer, G. A. Dynamic structure DEVS:
Improving the real-time embedded systems simulation
and design. In Annual Simulation Symposium. IEEE
Computer Society, 2008, 271–278.

23. Sun, Y. and Lipari, G. A Weak Simulation Relation for
Real-Time Schedulability Analysis of Global Fixed Pri-
ority Scheduling Using Linear Hybrid Automata. In
Proceedings of the 22nd International Conference on
Real-Time Networks and Systems. New York, 2014.

24. Wainer, G. A. Experiencing with AgaPé-TR: a simula-
tion tool for local real-time scheduling. In Proc. 4th
IFAC/IFIP Workshop of Algorithms and Archi-tectures
for Real-Time Control, Lisbon, Portugal, 1997.

25. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N.,
Thesing, S., Whalley, D., Bernat, G., Ferdinand, C.,
Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J. and Stenström, P. 2008. The
worst-case execution-time problem-overview of meth-
ods and survey of tools. ACM Trans. Embed. Comput.
Syst. 7, 3, Article 36 (May 2008), 53 pages.

26. Zeigler, B., Kim, T. and Praehofer, H. 2000.“Theory of
Modeling and Simulation”. Academic Press.

27. Zhang, F. and Burns, A. “Schedulability Analysis for
Real-Time Systems with EDF Scheduling”. IEEE
TRANSACTIONS ON COMPUTERS, VOL. 58, No.9,
Sep. 2009, 1250-1258.

