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ABSTRACT 
The Imprecise DEVS approach combines the advantages of 
imprecise computation with a formal modeling methodolo-
gy in order to avoid the transient overloads on real-time 
systems. This process requires efficient scheduling methods 
to find the best schedule of the computations to guarantee 
the deadlines and to increase the quality of the results by 
reducing the discarding of the optional computations. This 
work introduces a solution to integrate schedulability analy-
sis with Imprecise DEVS to improve the predictability and 
the feasibility for scheduling. The proposed schedulability 
analysis and scheduling methods are based on Earliest 
Deadline First, priority-driven and mandatory-first ap-
proaches and they are considered to be executed dynamical-
ly. The schedulability tests contribute to avoid unnecessary 
discarding of optional computations improving the quality 
of the results. 

Author Keywords: Imprecise DEVS; Real-Time Systems; 
Schedulability Analysis. 

1. INTRODUCTION 
Hard Real-Rime Systems (RTS) have high design complex-
ity, mainly due to complexity in meeting timing constraints. 
Failing to guarantee that all the computations meet their 
deadlines could be catastrophic. Most designing methods 
for RTS are complex to apply mostly on large scale systems 
and they do not guarantee free-errors systems. Modeling 
and Simulation (M&S) techniques have shown to help in 
reducing the effort and the cost for the overall designing 
process of RTS [15].  

However, the M&S techniques often require great effort to 
model features of specific target systems, for example, the 
timing constraints on the RTS. The Imprecise DEVS for-
malism [16] is a recent attempt that extends a model-driven 
framework to develop RTS based on the DEVS [26] for-
malism and the Imprecise Computation (IC) technique [13] 
to deal with timing constraints. In the IC technique, parts of 
the computations could be discarded to guarantee the dead-
lines if imprecise results are acceptable [12, 14]. In this 
case, the computations are divided in mandatory and op-
tional parts. As the mandatory parts affect the correctness of 
the result then all of them must be completely executed. 
Optional parts affect the quality of the result and they can 
be discarded if they will not meet their deadlines.  

In order to guarantee the deadlines as well as the quality of 
the results, an efficient scheduling algorithm is required to 
determine the best order to execute the computations. Most 
existing research efforts spend efforts to improve the 
scheduling algorithms, however, there are no works based 
on addressing the best order for scheduling computations 
integrated in the M&S environments. We propose a new 
methodology that extends I-DEVS to integrate schedulabil-
ity analysis to improve predictability and feasibility for 
scheduling of computations. The schedulability tests are 
based on the Worst Response Time (WRT) and on the 
Worst Case Execution Time (WCET) measures [27, 21, 
25].  

Our approach makes I-DEVS able to identify when a given 
set of computations is schedulable or not dynamically. If it 
is not schedulable, the schedulability test is able to show 
how to improve the schedule to guarantee the execution of 
all mandatory computations, and reducing the discarding of 
the optional ones. It combines the mandatory-first and pri-
ority based approaches with WRT and Earliest-Deadline 
First scheduling in a new method for M&S environments to 
simulate hard RTSs.  

2. BACKGROUND 
The workload is one of the most critical issues for real-time      
systems. When the system needs more computing resources 
than those available in order to guarantee the timing con-
straints (transient overload), then it might be impossible to 
meet the deadlines [5]. Flexible applications based on the 
IC technique [12] are able to reduce the resource demands 
by degrading the quality of the results gracefully at runtime 
while keeping the result quality acceptable [14, 13]. In hard 
RTS, graceful degradation is better than obtaining late re-
sults.  

The IC method helps overcoming overload scenarios by 
dividing the computations into mandatory (M) and optional 
(O) parts. All the mandatory parts must be completed in 
time to guarantee the correctness of the system. Optional 
parts can be discarded if there are no resources available to 
execute them in a timely fashion [3, 7]. A system is consid-
ered feasible if all the mandatory computations of the sys-
tem are schedulable. To study this, different scheduling 
algorithms have been proposed. These algorithms must be 
able to guarantee feasibility and, in general, they are priori-
ty-driven and they usually execute the mandatory computa-
tions first (mandatory-first approach) [14]. In the following 
section, we discuss some of these algorithms.  
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2.1. Scheduling Algorithms  
The most popular priority-driven algorithms for RTS are 
the Rate Monotonic (RM), Deadline Monotonic (DM) [1] 
and Earliest Deadline First (EDF) [5]. RM and DM work 
dynamically with static priority. EDF works dynamically, 
and it could works with static or dynamic priority and it is 
considered optimal on single processor systems (when the 
CPU is not overloaded). RM uses a periodic scheduler and 
it assigns high priorities to the computation with the biggest 
rates (smallest periods). DM assigns high priorities to the 
computations with the nearest deadline, which must be 
equal to or less than the period [19]. EDF assigns priorities 
dynamically and the computations with the earliest dead-
lines have the highest priorities. EDF allows more efficient 
exploitation of computational resources and better respon-
siveness of non-periodic activities. 

The IC technique [13] also has been applied for scheduling 
algorithms that try to improve performance under transient 
overloads. Scheduling policies with IC provide better re-
sults in comparison with their original versions [25]. In [7, 
3, 19], the performance of EDF, RMS, Most Execution 
Time First (MEF) and Least Execution Time First (LEF) 
were compared. The results showed that EDF had the best 
performance. Simulation environments as MAST [8], 
AgaPé-TR [24] and Times [2], have been used to study 
scheduling algorithms based on the simulation of RTSs 
scheduling. These environments allow schedulability test-
ing, introducing a complex analytical problem discussed in 
the following section.  

2.2. Schedulability Analysis of Real-Time Systems 
Schedulability analysis of RTSs [10, 27] is useful to predict 
whether a set of computations will meet their deadline. The 
success depends on whether all the computations can be 
guaranteed to complete before their deadlines. If this can be 
guaranteed, the set of computations is said schedulable. 
Schedulability analysis methods [20] have been classified 
according to the approach used, if the schedulability tests 
are executed, if they are done statically or dynamically, and 
if they are used to plan the schedule. Based on this, the al-
gorithms can be considered static or dynamic. The first type 
performs the tests statically, and the resulting schedule is 
used at runtime. The second type checks the schedulability 
dynamically, which has a higher computational cost.  

Baker [4] presents schedulability analysis approaches over 
EDF, addressing monotonic schedulability of RTSs. Sun 
and Lipari [23] presents a schedulability test for sporadic 
RT tasks using Global Fixed Priority on a multiprocessor 
system. The probabilistic guarantee [11] improves the re-
sults of scheduling of soft RT applications where the arrival 
times of processes and the processing times are random. 
However, as it does not guarantee that all the computations 
meet their deadlines, it is not acceptable for schedulability 
in hard RTS. Kuo [10] presents an online test for the peri-
odic and multiframe process in uniprocessor environments 
for online admission control of newly arrived computations. 

Schedulability analysis for fixed priority scheduling based 
on WRT are exact, dynamic schemes seem to be more ef-
fective [27].  

It is important to consider both IC and schedulability analy-
sis on the design phases of RT systems. However, as of 
today, no M&S environment combines these. In order to 
contribute in this field, we proposed the Imprecise DEVS 
framework, which integrates IC with DEVS and opened 
new perspectives towards the improvement of predictability 
and feasibility of scheduling in M&S environments [16]. 
We extended Imprecise DEVS in order to integrate sched-
ulability analysis, as the integration of schedulability analy-
sis on the early phases of the design can improve the sched-
uling algorithms efficiency affecting the quality of the re-
sults. 

2.3. Imprecise DEVS 
Imprecise DEVS (I-DEVS) [15, 16, 17] integrates IC with 
DEVS in order to model RT systems. The main objective is 
to provide an imprecise framework for applications where 
the job arrival times are not known a-priori. The approach 
balances the computation when the system is busy while 
keeping the runtime overhead as low as possible. This load 
balance is based on the computations priorities. 

I-DEVS added d to the atomic model and c to the definition 
of states as following: 

d: S → R1
0,∞ is the relative deadline of each state for output 

production 

S:{(s,c) | s ∈ Z1
0 and c ∈ (mandatory, optional)} 

The coupled model is defined as DEVS where: 
CM=<X,Y,D, {Mi | i ∈ D}, EIC, EOC, IC>  
and D is a set of components and for each i in D  
and Mi = {Xi,Yi,Si,δexti,δinti,δconi,λi,tai,di} is the I-DEVS 
basic structure.   

Despite the I-DEVS definitions of d and c are enough to 
manage the mandatory and optional computations, the 
schedulability analysis approach requires a known set of 
computations at a given state time. For each computation, it 
is essential to know the execution time, the release time, the 
deadline and if the computation is mandatory or optional. 
We extended the formal definition of I-DEVS to allow the 
execution of the schedulability tests, presented following. 

3. EXTENDING I-DEVS  
In I-DEVS, whenever there is more than one internal event 
(computation) to be serviced, the mandatory ones have pri-
ority over the optional events. If an optional internal event 
is to be serviced later than its release time, its output will be 
discarded. This strategy cannot be used to apply schedula-
bility tests because it is done by the DEVS Simulator. In-
stead, schedulability tests should be done by the Coordina-
tors, as the optional computations that will not meet their 
deadline must be discarded earlier (before sending them to 



the Simulator). We will discuss the definition of set of 
computations managed Coordinators.  

Coupled models connect basic models hierarchically, and 
they are defined as in Section 2.3. We will define the set of 
computations which is based on the definition of set of 
components where:  

for each D, Mi is a component defined by Mi = 
{Xi,Yi,Si,δexti,δinti,δconi,λi,tai,di} 

Then, K=(C1,C2,…,Cn) is the set of computations of com-
ponents D.  

In the following, we say a computation is an internal event 
with finite worst case execution time (wi) and it can be said 
to be a mandatory or optional computation (ci). Each com-
putation has a release time (ri) defined by the beginning of 
the computation time, which, according to I-DEVS, it is 
equal to the arrival of an input to the coupled model or an 
input on the input port of the atomic model. The execution 
time of each computation is limited by its relative deadline 
d(si). The set of components D can have multiple sets of 
computations of atomic models Mi defined by the set Ki.  

Then Ci=(ri, ci, wi, d(si)) denotes a computation of the 
atomic model i, where:   

ri is the release time,  
ci ∈ (mandatory, optional),  
wi is the worst case execution time,  
d(si) is the relative deadline of the state si based on I-DEVS. 

Each computation Ci is subject to timing constraints given 
by the release time (ri), its worst case execution time wi, 
and its maximum ending time defined by d(si). 

If there is a set of C ∈ K and {(s, e, d(s)) | s ∈ S, 0 ≤ e ≤ 
ta(s) and d(s) ≥ ta(s)}, then for each i ∈ M, Ci is schedula-
ble if C(wi) + w(hp(Ci)∈ K) + ei ≤ d(si).  

where:  

ei is the elapsed time of Ci since its release time ri  

C(wi) is the worst case execution time of computation Ci  

w(hp(Ci)∈ K) is the sum of all C(wi) ∈ K with higher priori-
ty (hp) than Ci where (hp(Ci) ∈ K) is the set of all C ∈ K 
with the priority greater than the priority of Ci  

d(si) is the relative deadline from the last state transition 
before si. 

As a computation Ci is schedulable only if C(wi) + w(hp(Ci) 

∈ K) + ei ≤ d(si), then the set K of computations is said 
schedulable only if all Ci ∈ K are schedulable on a single 
CPU at a given current state (instant of time). 

The set K must include all Ci of the model at a given time to 
execute the schedulability analysis. However, as each Co-
ordinator manages only the computations of its own Simu-
lators, we need to flatten the hierarchical structure to have 
the set of computations of all Coordinators in the set K. The 

Flattened Coordinator [9, 22] strategy transforms a hierar-
chical structure of the coupled model to a flattened structure 
with depth one by eliminating intermediary Coordinators. 
The transformation must preserve the original port linkage 
relationship among atomic models.  

4. SYSTEM MODEL 
The internal events of I-DEVS models are mapped into 
computations (C1, C2,…,Cn) to represent the hard RTS on a 
single CPU and they must meet their deadlines defined by 
d(s). The computations are considered sporadic, and they 
have irregular arrivals. Their minimum interarrival time is 
denoted as Ti. If a computation Ci has its arrival time set 
based on a given elapsed time ei from the last transition, the 
next arrival of Ci must occur on or after ei+Ti.  

As each computation Ci is performed on a given state s 
where s ∈ S, and S={s,c}, and c ∈ (mandatory, optional), 
then each computation can be mandatory or optional ac-
cording to its current state s. All computations must be 
completed before their deadlines d(s) to each state s.  

The release time of each computation is equal to its arrival 
time. The arrivals are defined by content (Q,Y) or synchro-
nization (@,*,done) messages according to the DEVS simu-
lator. Before the atomic model executes an optional compu-
tation, it must have its schedulability analyzed at a level 
higher than the atomic model level to verify if the computa-
tion will meet its deadline. The WRT of the computation is 
given by C(wi) + w(hp(Ci)∈ K) + ei. If the schedulability 
test shows that the computation will meet its deadline, then 
it will be sent to the Simulator. Otherwise, it will be dis-
carded.  

When there are multiply arrivals of computations to one or 
more atomic models simultaneously, all the computations 
of the set K=(C1, C2,…,Cn) must be verified. Computations 
that not meet their deadline are discarded. To do so, the 
Coordinator does not trigger the computation on the Simu-
lator level by discarding the messages q, * or @. The results 
of the schedulability tests are assumed to be feasible. It 
means that all optional computations sent to the atomic 
model will meet the deadlines. Mandatory computations are 
always sent to the atomic models.  

The scheduling is performed at the same level. As the cur-
rent schedulability tests solution is not be able to deal with 
preemptive scheduler, we assumed that the scheduler is 
non-preemptable. After each new schedulability test, the set 
of computations with a new configuration of earliest dead-
lines is known, and the priorities are assigned dynamically. 
The scheduler follows the priority-driven based EDF algo-
rithm.  

The results are considered precise when all optional compu-
tations are executed. The maximum accepted (graceful) 
degradation of the results happen when all optional compu-
tations are discarded. The system is considered to fail when 
one or more mandatory computations do not meet their 



deadline. Mandatory computations have higher priority 
over the optional ones, and we assume non-hierarchical 
Simulation structures (the flat Coordinator communicates 
directly with all Simulators). In order to perform the sched-
ulability analysis on the Coordinator level as discussed in 
this section, the Coordinator algorithms were adapted. The 
next section presents these changes.  

5. COORDINATOR ALGORITHMS 
According to the DEVS simulation algorithms [6], the mes-
sages received by the Coordinator from top to a child i are 
sent to the child i, and then the identification of the child i is 
cached into a synchronization set (SyncSet). After, the Co-
ordinator sends the '*' message to all the children in 
SyncSet, and waits until all (done, tN)’s are received. 

We proposed to change the order of these steps to make the 
Coordinator able to perform the schedulability tests over the 
SyncSet before sending the messages to the children. The 
messages received by the Coordinator (and their child des-
tination) are cached into SyncSet. The state transition (or 
internal event) that each message represents is mapped to a 
computation based on Ci=(ri, ci, wi, d(si)). Then, the sched-
ulability tests are performed over the mapped computations 
in the SyncSet that are ready to be sent to the children at 
current time t. Based on the schedulability test result, the 
non-schedulable computations are discarded, and the 
scheduler works with the schedulable subset of computa-
tions to send them to the children.  

Figure 1 illustrates the Coordinator algorithm when it re-
ceives a '*' message. If the Coordinator receives an internal 
message * from the parent Coordinator and there are inputs 
q ∈ Bag, instead of sending them immediately to the child 
(as in other DEVS Coordinators), it processes each qj mes-
sage stored in the Bag to be sent to a child j, and j(q,t) is 
cached into the SyncSet (lines 5-6). Following, the sched-
ulability test is run over all the components of the SyncSet. 
The idea is to verify if each computation of j(q,t) (mapped 
to Ci=(ri, ci, wi, d(si)) ) at current time t for all child j ∈ 
SyncSet, and whose current state sj is optional, will meet 
their deadlines (line 10). This is based on the worst re-
sponse time of i(q), or (wrt(i(q))), given by C(wi) + 
w(hp(Ci)∈ K) + ei according to the definition presented in 
the section 3. If si is optional and wrt(i(q)) > d(si) then j(q,t) 
is not schedulable because it will not meet its deadline, then 
the Coordinator will discard j(q,t) from the SyncSet (lines 
12 and 13). If j(q,t) is schedulable, then the Coordinator 
sends it to the child (line 11) followed by * (line 22). Man-
datory computations are always sent to the children (lines 
16-18). When a Simulator does not receive the message due 
to the discarding, time is saved for mandatory computa-
tions. Keep in mind that for Real-Time simulators, the tim-
ing information is tied to the CPU’s Real-Time clock, thus 
the algorithm can run in simulated mode (discrete-event) or 
Real-Time. The * message is always sent to the child to 
execute the internal transition. The atomic model executes 

δint in response to a * message, and returns its next internal 
event time by a done message (line 28 in Figure 1).  

1 when  a ( * , t ) msg is received from parent Coordinator  
2       if tL ≤ t ≤ tN  
3 for all q ∈ bag  
4         for all receivers of q, j ∈ Iself  
5  q := zself, j (q)  
6   cache j(q,t) in the SyncSet  
7        end for  
8 endfor 
9 for all j(q,t) in SyncSet 
10        if sj is optional and j(q,t) is schedulable  
11  send (q,t) to j  
12        else 
13  discard j(q,t) of the SyncSet 
14  send (*,t) to j /* state transition 
15        endif 
16        if sj is mandatory 
17  send (q,t) to j 
18        endif 
19        endfor         
20  empty bag  
21  for all i in the SyncSet  
22        send ( *, t ) to i  
23 end for  
24  wait until all ( done, tN)’s are received  
25  tL :=t  
26 tN := minimum of components’ tN’s  
27  clear the SyncSet  
28 send ( done, tN ) to parent Coordinator  
29       else raise an error  
30       endif  
31 end when 

Figure 1. Coordinator algorithm: internal message  

Similar changes were made in the Coordinator algorithms 
when receiving a collect (@) and output messages (y) from 
children. Whenever the Coordinator receives a @ message 
to be sent to the child i, i(@) is also cached into the 
SyncSet. Following, the Coordinator applies the schedula-
bility test to verify if the computations of i(@) at the time t 
for all child i ∈ SyncSet will meet the deadline based on 
wrt(i(@)). If discarded, the @ message is not sent to the 
Simulator. If the @ message is sent to the target Simulator, 
the Simulator responds to the @ message by executing the λ 
function and returning the output value through an output 
(y) message.  

When the Coordinator receives an output message y from 
child i to be sent to the child j, the Coordinator translates 
the Output Message y into the External Message q at first, 
and then caches j(q,t) into the SyncSet. Before sending it to 
all of its receiving Simulators, the Coordinator verifies if 
the state of the j is optional and if j(q,t) is schedulable 
among all j ∈ SyncSet at the current time t. If j is schedula-
ble then j(q,t) is sent to its receiving Simulator. If not 
schedulable, the Coordinator discards j(q,t) from SyncSet 
and the message q will not be sent to the child.  

Each Coordinator has its own SyncSet to manage the mes-
sages to the target Simulators. The schedulability tests are 
performed based on the SyncSet at the Coordinator level 
and each Coordinator sees only its own Simulators. Be-



cause of this, the schedulability tests and scheduling are not 
effective. There are two main strategies to avoid this limita-
tion: a message passing protocol to centralize all SyncSets 
of Coordinators in the topmost Coordinator which will be 
responsible for schedulability testing and scheduling, or 
applying the Flattened Coordinator strategy [9, 22] to trans-
form a hierarchical structure of the coupled model to a flat-
tened structure with depth one by eliminating intermedi-
ary Coordinators. 

This work assumes non-hierarchical structures where in-
termediary Coordinators are eliminated and the flattened 
top most Coordinator communicates directly with all simu-
lators. The literature presents algorithms to transform a hi-
erarchical structure of the model to a flattened structure by 
eliminating Coordinators and transforming hierarchical 
coupled model into a coupled model with depth one. Sec-
tion 6 shows an example to discuss the schedulability test 
based on the worst execution time and EDF scheduling. 

6. SCHEDULING AND SCHEDULABILITY  
This section describes the schedulability testing process 
based on the EDF scheduling. The main EDF based sched-
uling aspects are discussed and, following, we present the 
process to verify the schedulability of a set of computations 
dynamically using the definition of SyncSet.  

6.1. Scheduling 
The scheduler works to determine the best order for sched-
uling of computations, and schedulability analysis helps the 
scheduler to minimize the number of discarded optional 
computations. In general, static scheduling algorithms are 
suitable for periodic computations with hard deadlines and 
dynamic algorithms are more suitable for sporadic or aperi-
odic computations. The schedule is said feasible if the tim-
ing constraints of all computations are satisfied. Most algo-
rithms for IC scheduling are based on EDF. Here, we 
adopted EDF based strategies for scheduling IC (mandatory 
and optional) and for integrating schedulability analysis 
with I-DEVS. 

The EDF algorithm is priority-driven and the computations 
with the earliest deadlines have the highest priorities. We 
follow the mandatory first approach to manage the priorities 
of mandatory and optional computations. We assume that 
all computations defined by a set K=(C1,C2,..,Ci) on a given 
time t execute on a single CPU. Mandatory computations 
are always executed and optional ones are executed only if 
their scheduling is feasible according to the results of the 
schedulability test. The system is considered to fail when 
one or more mandatory computations do not meet their 
deadline. The EDF based scheduling algorithm works dy-
namically to assign the priorities as described on the fol-
lowing general steps: 

 whenever there is a set K of computations with release 
time r ready to be executed at a given time t, the sched-
uler updates the priorities of the computations according 

to the value of c (mandatory computations have higher 
priority than optional computations);  

 Considering the subset of K(C(ci)) computations where 
c = mandatory, the computations with earliest deadlines 
have higher priority; 

 Considering the subset of K(C(ci)) computations where 
c = optional, let the computations with earliest dead-
lines have assigned highest priorities. 

EDF assigns the priorities at runtime whenever there are new 
arrivals of computations. Here, the weight of all the computa-
tions is considered equal. Computations with different weights 
will be explored in future works.  

6.2. Schedulability Analysis 
If the utilization factor U of a set K of computations is 
equal to or less than 1 (U ≤ 1, where 1 is the maximum ca-
pacity of a CPU), then the set K is schedulable by EDF. The 
Utilization Factor represents the fraction of CPU time used 
by the computation and it is defined by the following equa-
tion [5]: 

U i=
wi

Pi  
Where wi is the WCET of the computation i and Pi is the 
period. The minimum interval Ti between the arrivals of a 
sporadic computation i [27] is used as the period Pi for 
schedulability testing. As the sporadic computations behave 
like periodic computations with period T and deadline d(s) 
(where d(s) ≤ T) and the minimum interval can be set to be 
equal to the deadline, then   Ti = d(si) and Pi = Ti. In addi-
tion, the deadline can be equal to or less than the period. As 
we are considering the relative deadline from the time t of 
the last transition and this could be different for distinct Ci 
∈ K, then the elapsed time e cannot be considered to ana-
lyze the schedulability. Then, the minimum interval is given 
by the equation: 

Pi= d (si)− ei  
Then, given a set K of computations, K could be considered 
schedulable if U ≤ 1 for all Ui(Ci ∈ K) according the equa-
tion: 

∑
i= 1

n

U i⩽1
 

The schedulability analysis requires previous knowledge of 
the WCET of each computation. The WCET provides in-
formation about the worst possible execution time of the 
computation before running it. Usually, the WCET can be 
defined by strategies like code analysis [25] or probabilistic 
techniques [11]. Here, we consider that the execution time 
wi is specified at the project time for each computation to be 
used as the WCET on the schedulability testing.  

The utilization factor is seen as a non-exact test to verify if 
the set K is entirely schedulable or not. If the schedulability 
test is negative, the set K is definitely not entirely schedula-

(2) 

(3) 

(1) 



ble. If non-negative, it does not guarantee that all Ci ∈ K are 
schedulable. In addition, it does not help the scheduler to 
identify which of optional computation could be discarded 
in case of transient overloads. This test is based on the fol-
lowing equations: 

R0= wi  

Rm+1= wi+ ∑
j ⩽hp (i )⩽Rm

P j
⩽. wj

 
The R is the interval between the release time and the end 
of the execution of the computation and it defines the WRT. 
The WRT [21] is one of the main EDF based methods used 
to test the exact schedulability of computations. Given a set 
K of computations, it permits to verify if each computation 
of the set K is schedulable or not. The equation (4) of this 
test is applied to the first calculation of R and the equation 
(5) is applied iteratively until: Rn

i = Rn+1
i. The result is the 

maximum response time Ri of the computation i. The com-
putation is schedulable when the maximum response time 
Ri is less than or equal to its deadline (Ri ≤ Di) and it con-
siders the situation where the deadline is equal to or less 
than the minimum interval between the arrivals of the com-

putation (Di ≤ Pi). 

If there is a set K of computations to be executed at a given 
time t, then we assume the greatest minimum interval be-
tween the arrivals among all current computations of the set 
K to be the Pi to perform the schedulability tests of all Ci. 
Then, for all Ci ∈ K at a given time t,                                    
Pi = {max[K(Pi)] | Pi = d(si) - ei}. 

This is to avoid pessimistic estimation [18] on the sched-
ulability tests without losing the feasibility.  

Figure 2 illustrates the example where three models have 
their computations executed on a single CPU. The execu-
tion is for a non hierarchical structure and there is one flat-
tened topmost Coordinator that communicates directly with 
all Simulators. 

In Figure 2, for instance, the computation A(λ2I2) is on the 
state A2 and its release time is equal to 2 (rA2 = 2), the 
computation is mandatory (cA2 = mandatory), and the exe-
cution time (WCET) is equal to 2 (wA2 = 2). The deadline is 
4 (d(sA2) = 4), and the elapsed time from the last transition 
of the model A is 1 (eA2 = 1). As RA2 = 2 (equation 4) and    
RAA2 + eA2 ≤ d(sA2) or (2+1≤4) then A2 is schedulable.

Figure 2.  Sample of schedulability testing of the computations B3, C3 and A4 on a single CPU.

At time 15, the set K includes the computations B(λ3I3) and 
C(λ3I3), where C(λ3I3) has the highest priority, and there is 
no computation with higher priority (hp) than C(λ3I3) in K:  

 B(λ3I3) is on the state B3, and rB3=15, and cB3=optional, 
and wB3=2, and d(sB3)=11 

 C(λ3I3) is on the state C3, and rC3=15, and cC3=optional, 
and wC3=2, and d(sC3)=5 

Then, applying the equation (4) as following: 

RC 3
0 = wi= 2  

Result: as the RC3 + eC3 < d(sC3), then C(λ3I3) is schedula-
ble at t=15 as shown in Figure 2. 

Considering that the C(λ3I3) has the highest priority in the 
set K, it belongs to the set of computations with higher pri-
orities than B(λ3I3). It is defined by C(λ3I3)∈ hp(B(λ3I3)), 

(4) 

(5) 



where hp(i) is the set of computations with higher priority 
than i. Then, the RB3 is therefore given by: 

RB 3
0 = wi= 2  

RB 3
1 = wi+ ∑

j⩽hp (i)
⩽R0

Pj
⩽.w j= 2+⩽2

4⩽.2= 4
 

RB 3
2 = wi+ ∑

j⩽hp (i)
⩽R1

Pj
⩽.w j= 2+⩽4

4⩽.2= 4
 

Result: as R1 = R2 at the second iteration and RB3 + eB3 ≤ 
d(sB3) then B(λ3I3) is schedulable and, considering the 
schedulability testing at time 15, it can be executed at 17. 

However, before executing B(λ3I3), A(λ4I4) is released at 
time 17, so there are two computations, A(λ4I4) and 
B(λ3I3), ready to be executed at time 17 and A(λ4I4) has 
higher priority than B(λ3I3), where:  

 A(λ4I4) is on state 4, and rA4=17, and cA4=mandatory, 
and wA4=2, and d(sA4)=9 

 B(λ3I3) is on state 3, and rB3=15, and cB3=optional, and 
wB3=2, and d(sC3)=11 

As there is no computation with higher priority (hp) than 
A(λ4I4) in K, then: 

R A 4
0 = wi= 2  
Result: as the RA4 + eA4 < d(sA4) than A(λ4I4) is schedula-
ble. 

Considering that A(λ4I4) has the highest priority in the set 
K, it belongs to the set of computations with higher priori-
ties than B(λ3I3), or: A(λ4I4)∈ hp(B(λ3I3)). Then, RB3 is 
therefore given by: 

RB 3
0 = wi= 2  

RB 3
1 = wi+ ∑

j⩽hp ( i)
⩽R0

Pj
⩽.w j= 2+⩽2

3⩽.2= 4
 

RB 3
2 = wi+ ∑

j⩽hp ( i)
⩽R1

Pj
⩽.w j= 2+⩽4

3⩽.2= 6
 

RB 3
3 = wi+ ∑

j⩽hp ( i)
⩽R2

Pj
⩽.w j= 2+⩽6

3⩽.2= 6
 

Result: as R2 = R3 at the third iteration and RB3 + eB3 > 
d(sB3) then B(λ3I3) is not schedulable and it must be dis-
carded as shown in Figure 2.  

Whenever the schedulability test shows that the scheduling 
is feasible for all C(ci) ∈ K, all computations can be sched-
uled. Whenever the schedulability test shows that there are 
optional computations that will not meet the deadline, they 
are discarded. If at least one computation with ci = manda-
tory is not schedulable, the system fails.  

7. CONCLUSION 
We presented an approach to integrate schedulability analy-
sis strategy with I-DEVS in order to improve the predicta-
bility and the feasibility for scheduling ICs. The approach is 

based on the EDF algorithm combined with the mandatory-
first approach and schedulability testing is based on the 
WRT to verify whether each computation is schedulable or 
not according their timing constraints. This feature makes 
possible, for instance, to analyze whether the model can be 
executed on a specific hardware platform. 

To integrate this strategy into the I-DEVS, we proposed to 
use the Synchronization Set as the main resource to imple-
ment the schedulability tests and the scheduling on the Co-
ordinator level before triggering the computations on the 
Simulators. 

In the future, we will study new scheduling and schedula-
bility analysis methods. For example, we want to integrate 
sharing resources in the system models, the scheduling and 
schedulability analysis process could implement mutual 
exclusion functionalities in order to deal with deadlocks 
situations. Moreover, in our approach the priority inversion 
situations can happen when an optional computation has 
earlier deadline then a mandatory one and both computa-
tions could meet their deadlines if the optional computation 
is executed before the mandatory one. The proposed sched-
ulability test solution does not deal with priority inversion 
scenarios. For example, in Figure 2, if d4 = 21 instead d4 = 
20 then there was time enough to execute both computa-
tions A4 and B3 if B3 was executed first. However, A4 has 
highest priority according to the scheduling algorithm. This 
leads to priority inversion. 

Finally, we consider that the WCET is defined at project 
time. A new functionality could be integrated to define the 
WCET dynamically such as we have done with the WRT.  
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